[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022102329A1 - Supercharger - Google Patents

Supercharger Download PDF

Info

Publication number
WO2022102329A1
WO2022102329A1 PCT/JP2021/037942 JP2021037942W WO2022102329A1 WO 2022102329 A1 WO2022102329 A1 WO 2022102329A1 JP 2021037942 W JP2021037942 W JP 2021037942W WO 2022102329 A1 WO2022102329 A1 WO 2022102329A1
Authority
WO
WIPO (PCT)
Prior art keywords
seal member
turbine
turbine housing
gap
nozzle unit
Prior art date
Application number
PCT/JP2021/037942
Other languages
French (fr)
Japanese (ja)
Inventor
勇樹 郡司
亮太 崎坂
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Publication of WO2022102329A1 publication Critical patent/WO2022102329A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/16Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/24Control of the pumps by using pumps or turbines with adjustable guide vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • This disclosure relates to a turbocharger.
  • the turbocharger described in Patent Document 1 below is known as a technique in such a field.
  • the turbocharger includes a turbine housing that houses the turbine impeller and a variable nozzle unit that is located inside the turbine housing.
  • the variable nozzle unit drives the nozzle vanes to adjust the flow path area of the gas flowing into the turbine impeller.
  • the gap is sealed by sandwiching a sealing member forming an annular shape when viewed from the rotation axis direction of the turbine impeller in the gap between the turbine housing and the variable nozzle unit.
  • the seal member is inserted without a gap between the variable nozzle unit and the turbine housing.
  • the temperature of the seal member which is a component having a large specific surface area, drops faster than that of the turbine housing. Therefore, the seal member shrinks heat faster than the portion of the turbine housing with which the seal member is in contact, and the difference in heat shrinkage from the turbine housing causes thermal stress to be generated in the seal member.
  • FIG. 8 is an image diagram of a simulation result performed for an example of this type of turbocharger
  • graph 201 shows a change in temperature of a seal member
  • graph 202 shows a change in circumferential stress of a seal member.
  • the present disclosure describes a turbocharger that reduces the thermal stress of the sealing member generated during cooling.
  • the turbocharger is for sealing the gap between the turbine housing, the variable nozzle unit for driving the nozzle vanes arranged in the gas flow path in the turbine housing, and the turbine housing and the variable nozzle unit.
  • the sealing member is provided with a sealing member, and the sealing member covers the entire inner peripheral side with respect to a predetermined portion which is one of the turbine housing and the variable nozzle unit when viewed from the rotation axis direction of the turbine. It is brought into contact with each other and extends in a C shape around a predetermined portion.
  • the supercharger of the present disclosure it is possible to reduce the thermal stress of the seal member generated during cooling.
  • FIG. 3 is a sectional view taken along line III-III in FIG.
  • (A) is a plan view of the seal member
  • (b) is a sectional view thereof IVb-IVb
  • (c) is a sectional view showing elastic deformation in the sectional view of the seal member.
  • (A) to (d) are sectional views which show the modification of the seal member.
  • the turbocharger is for sealing the gap between the turbine housing, the variable nozzle unit for driving the nozzle vanes arranged in the gas flow path in the turbine housing, and the turbine housing and the variable nozzle unit.
  • the sealing member is provided with a sealing member, and the sealing member covers the entire inner peripheral side with respect to a predetermined portion which is one of the turbine housing and the variable nozzle unit when viewed from the rotation axis direction of the turbine. It is brought into contact with each other and extends in a C shape around a predetermined portion.
  • the outer peripheral side of the seal member may be in contact with the other of the turbine housing or the variable nozzle unit over the entire length. Further, the high pressure part and the low pressure part of the turbine are connected by a gap, the gap is divided into the high pressure part side and the low pressure part side by the seal member, and the cross section of the seal member has a shape having an opening open to the high pressure part side. You may do it.
  • the seal member may have a shape in which the curvature is the minimum at the center of the extending direction and the curvature increases as it approaches both ends in the extending direction when it is removed from the turbine housing and the variable nozzle unit.
  • variable capacity turbocharger of the present disclosure will be described with reference to the drawings.
  • the characteristics of the components may be exaggerated and depicted, so the dimensional ratio of each part on the drawing does not necessarily match the actual one.
  • variable capacity turbocharger 1 shown in FIG. 1 is applied to, for example, an internal combustion engine of a ship or a vehicle.
  • the variable capacity turbocharger 1 includes a turbine 2 and a compressor 3.
  • the turbine 2 includes a turbine housing 4 and a turbine impeller 6 housed in the turbine housing 4.
  • the turbine housing 4 has a scroll flow path 16 extending in the circumferential direction around the turbine impeller 6.
  • the compressor 3 includes a compressor housing 5 and a compressor impeller 7 housed in the compressor housing 5.
  • the compressor housing 5 has a scroll flow path 17 extending in the circumferential direction around the compressor impeller 7.
  • the turbine impeller 6 is provided at one end of the rotating shaft 14, and the compressor impeller 7 is provided at the other end of the rotating shaft 14.
  • a bearing housing 13 is provided between the turbine housing 4 and the compressor housing 5.
  • the rotating shaft 14 is rotatably supported by the bearing housing 13 via the bearing 15, and the rotating shaft 14, the turbine impeller 6 and the compressor impeller 7 rotate around the rotating axis H as an integral rotating body 12.
  • the turbine housing 4 is provided with an exhaust gas inlet (not shown) and an exhaust gas outlet 10.
  • Exhaust gas (fluid) discharged from an internal combustion engine (not shown) flows into the turbine housing 4 through the exhaust gas inlet, flows into the turbine impeller 6 through the scroll flow path 16, and rotates the turbine impeller 6. Let me. After that, the exhaust gas flows out of the turbine housing 4 through the exhaust gas outlet 10.
  • the compressor housing 5 is provided with a suction port 9 and a discharge port (not shown).
  • the compressor impeller 7 rotates via the rotating shaft 14.
  • the rotating compressor impeller 7 sucks in external air through the suction port 9. This air passes through the compressor impeller 7 and the scroll flow path 17, is compressed, and is discharged from the discharge port.
  • the compressed air discharged from the discharge port is supplied to the above-mentioned internal combustion engine.
  • the turbine 2 will be further described with reference to FIGS. 1 to 4.
  • the turbine 2 is a variable displacement turbine, and a movable nozzle vane 23 is provided in the gas inflow path 21 connecting the scroll flow path 16 and the turbine impeller 6.
  • a plurality of nozzle vanes 23 are arranged on the circumference centered on the rotation axis H, and each nozzle vane 23 rotates around an axis parallel to the rotation axis H.
  • the turbine 2 is provided with a variable nozzle unit 25 for driving the nozzle vane 23.
  • the variable nozzle unit 25 is fitted inside the turbine housing 4, and is sandwiched and fixed between the turbine housing 4 and the bearing housing 13.
  • the variable nozzle unit 25 has the nozzle vane 23, and a first nozzle ring 31 and a second nozzle ring 32 that sandwich the nozzle vane 23 in the axial direction.
  • the first nozzle ring 31 and the second nozzle ring 32 each form a ring shape surrounding the turbine impeller 6 in the circumferential direction.
  • the region sandwiched between the first nozzle ring 31 and the second nozzle ring 32 constitutes the gas inflow path 21 described above.
  • the rotation shaft 23a of each nozzle vane 23 is rotatably inserted into the first nozzle ring 31, and the first nozzle ring 31 supports each nozzle vane 23 in a cantilever manner.
  • the first nozzle ring 31 and the second nozzle ring 32 are connected by a plurality of connecting pins 35 extending in the axial direction.
  • the variable nozzle unit 25 has a driving force transmission unit 27, and the driving force from the outside of the turbine 2 is transmitted to the nozzle vane 23 by the driving force transmission unit 27.
  • the driving force transmission unit 27 is housed in a space between the first nozzle ring 31 and the bearing housing 13.
  • the rotation shaft 23a of each nozzle vane 23 is synchronously rotated by a predetermined mechanism, and each nozzle vane 23 is synchronously rotated. ..
  • the shroud 41 covers the turbine impeller 6 in the circumferential direction and is formed as a part of the inner peripheral surface of the turbine housing 4.
  • the second nozzle ring 32 of the variable nozzle unit 25 is fitted at a position radially outside the shroud 41.
  • the second nozzle ring 32 faces the scroll flow path 16, and the second nozzle ring 32 forms a part of the inner wall of the scroll flow path 16.
  • the gap G connects the scroll flow path 16 and the downstream portion 21a of the gas inflow path 21 (near the inlet of the turbine impeller 6). Since the scroll flow path 16 (high pressure portion) has a higher pressure than the downstream portion 21a (low pressure portion) of the gas inflow path 21, the exhaust gas of the scroll flow path 16 may leak to the downstream portion of the gas inflow path 21 through the gap G. There is. An annular seal member 45 is installed in order to suppress such an exhaust gas leak, and the seal member 45 seals the gap G as a gasket.
  • a step portion 47 is formed on the inner peripheral edge of the second nozzle ring 32 in order to install the seal member 45.
  • the step portion 47 has a step side surface 49 and a step bottom surface 51, the step side surface 49 forms a cylindrical surface having the rotation axis H as a cylindrical axis, and the step bottom surface 51 is located in a plane orthogonal to the rotation axis H. do.
  • a cylindrical surface 53 is formed at a position on the back surface side of the shroud 41.
  • the cylindrical surface 53 is a cylindrical surface facing the step side surface 49 and having the rotation axis H as the cylindrical axis.
  • the seal member 45 is radially sandwiched between the step side surface 49 and the cylindrical surface 53. Further, the seal member 45 is abutted against the step bottom surface 51 and is supported in the axial direction.
  • the seal member 45 in a state of being assembled to the turbine 2 will be described.
  • the seal member 45 When the seal member 45 in this state is viewed from the axial direction (viewed from the line of sight in the rotation axis H direction), the seal member 45 has the inner peripheral side in contact with the cylindrical surface 53 of the turbine housing 4 over the entire length.
  • the seal member 45 extends in a C shape around the cylindrical surface 53 along a virtual circumference centered on the rotation axis H. That is, when viewed from the axial direction, the seal member 45 has a shape in which a discontinuous portion 45s in the circumferential direction is provided at one place with respect to the annulus.
  • the seal member 45 has a shape in which a long member is curved so that both end faces 45t face each other.
  • the seal member 45 has a C-shape in which one part of the annulus is separated in the circumferential direction, and the end faces 45t in the circumferential direction of the seal member 45 have a slight gap (non-existence).
  • the continuous portion 45s) is opened to face each other.
  • the seal member 45 has the outer peripheral side in contact with the step side surface 49 of the variable nozzle unit 25 over the entire length.
  • the size of the discontinuous portion 45s drawn in the drawing in the circumferential direction is relatively large, but the size of the discontinuous portion 45s in the circumferential direction may be extremely small.
  • FIG. 4A shows a state in which the single seal member 45 removed from the turbine 2 is viewed from the axial direction by a solid line.
  • the seal member 45 in the state of being assembled to the turbine 2 is shown by a two-dot chain line in the figure.
  • the seal member 45 (solid line) removed from the turbine 2 has a slightly wider discontinuous portion 45s between the end faces 45t than the state attached to the turbine 2 (dashed-dotted line). ..
  • the angle (angle ⁇ in the figure) at which both end faces 45t are open about the rotation axis H is, for example, 20 ° or less.
  • the seal member 45 removed from the turbine 2 has the smallest curvature at the center 45p in the extending direction, and the curvature gradually increases as it approaches the both end faces 45t in the extending direction.
  • the cross section of the seal member 45 is V-shaped.
  • the seal member 45 exerts an elastic force in a direction in which the ends 45a and 45a of the V-shaped cross section are spaced apart from each other.
  • the seal member 45 assembled to the turbine 2 exerts an urging force in the direction of expanding the radial distance between the step side surface 49 and the columnar surface 53 with the above elastic force. Due to this urging force, the seal member 45 comes into close contact with the step side surface 49 and the cylindrical surface 53.
  • the sealing member 45 exists so as to partition the high pressure portion side (scroll flow path 16 side) and the low pressure portion side (downstream portion 21a side of the gas inflow path 21) of the gap G, the gap G is sealed and the exhaust gas is exhausted. Leakage is suppressed.
  • the sealing member 45 elastically deforms as described above to follow the dimensional fluctuation of the gap G, and the sealing property of the gap G is improved. Be maintained. According to the seal member 45, the sealing property is slightly sacrificed due to the discontinuous portion 45s as compared with the annular sealing member as described in Patent Document 1, for example.
  • the gap G connects the high pressure portion (scroll flow path 16) and the low pressure portion (downstream portion 21a of the gas inflow path 21) of the turbine 2.
  • the seal member 45 is arranged so as to cross the connection path between the high pressure portion side and the low pressure portion side, thereby partitioning the gap G into the high pressure portion side and the low pressure portion side.
  • the cross-sectional shape of the seal member 45 is a V-shape having an opening 45b opened on the high pressure portion side (scroll flow path 16 side). According to this cross-sectional shape, the seal member 45 receives a force in the direction in which the opening width of the opening 45b is further opened by the pressure from the high pressure portion side.
  • the seal member 45 heat-shrinks faster than the turbine housing 4, and thermal stress is generated in the seal member 45 due to the difference in heat shrinkage from the turbine housing 4.
  • the seal member 45 is not an annular shape but has a shape having a discontinuous portion 45s as described above, a part of the heat shrinkage difference between the seal member 45 and the turbine housing 4 is the expansion / contraction of the discontinuous portion 45s. Is absorbed by. As a result, the thermal stress generated in the seal member 45 when the turbocharger 1 is cooled is reduced.
  • FIG. 5 is an image diagram of the result of simulating the distribution of the circumferential stress of the seal member 45 generated when the temperature of the turbocharger 1 is raised by using the turbocharger model equivalent to the simulation of FIG.
  • Graph 101 in the figure shows the distribution of the circumferential stress of the seal member 45 generated when the temperature of the supercharger 1 rises
  • graph 102 in the figure shows the circumferential stress of the seal member 45 generated when the temperature of the supercharger 1 drops. Is the distribution of.
  • the horizontal axis of the graph indicates the circumferential position of the seal member 45, and the position of the discontinuous portion 45s is the 0 ° position. Comparing the result of FIG. 8 with the graph 102, it was confirmed that the circumferential stress of the seal member 45 during cooling of the turbocharger 1 was lower than that of the result of FIG.
  • the seal member 45 when the seal member 45 is assembled to the turbine 2, the seal member 45 not only brings the inner peripheral side into contact with the cylindrical surface 53 of the turbine housing 4 over the entire length, but also brings the outer peripheral side over the entire length.
  • the variable nozzle unit 25 is brought into contact with the step side surface 49 and inserted into the gap G.
  • the seal member 45 is fitted into the gap G in a state in which the discontinuous portion 45s is deformed so as to be reduced in the circumferential direction. Then, by reducing the discontinuous portion 45s in this way, the reduction in the sealing property of the sealing member 45 can be suppressed.
  • the sealing member 45 in a state of being removed from the turbine 2 has the smallest curvature at the center 45p in the extending direction when viewed from the axial direction, and both end faces in the extending direction. It has a shape in which the curvature gradually increases as it approaches 45t.
  • the seal member 45 having this shape is assembled to the turbine 2, the change in curvature at the center 45p is the largest, and the change in curvature becomes smaller as the both end faces 45t are approached, so that the seal member 45 approaches a perfect circle along the gap G. be able to.
  • the cross-sectional shape of the seal member 45 is not limited to that of FIG. That is, instead of the seal member 45, the seal member 55 having a cross-sectional shape as shown in FIGS. 6A to 6D may be adopted. In any of the cross-sectional shapes of FIGS. 6A to 6D, the seal member 55 has an opening 55e open to the high pressure portion side.
  • the seal member 55 In order to bring the seal member 55 into close contact with both the step side surface 49 and the cylindrical surface 53, the seal member 55 is press-fitted into the columnar surface 53 of the turbine housing 4 and also press-fitted into the step side surface 49 of the second nozzle ring 32. There is a need.
  • the cross-sectional shape of the seal member 55 may be as shown in FIG. 6A. That is, of the ends 55a and 55b in the cross section of the seal member 55, the radial inner end 55b may be curved toward the radial outer side. According to this configuration, when the seal member 55 is press-fitted into the cylindrical surface 53 of the turbine housing 4, the end portion 55b of the seal member 55 smoothly slides on the cylindrical surface 53, and the seal member 55 is smoothly inserted. To.
  • the cross-sectional shape of the seal member 55 may be as shown in FIG. 6 (b). That is, the cross section of the seal member 55 in FIG. 6B has an S shape as a whole, and the radial inner portion 55c is curved so as to be convex toward the turbine housing 4 side, and the radial outer portion. At 55d, it is curved so as to be convex toward the variable nozzle unit 25 side. According to this configuration, the seal member 55 is smoothly press-fitted into both the cylindrical surface 53 of the turbine housing 4 and the step side surface 49 of the second nozzle ring 32.
  • the cross-sectional shape of the seal member 55 may be as shown in FIG. 6 (c). That is, the cross section of the seal member 55 in FIG. 6C has a portion extending in the axial direction along the step side surface 49 and the columnar surface 53 and a portion extending in the radial direction along the step bottom surface 51. It has a U-shape with. Further, for example, as shown in FIG. 6D, the cross-sectional shape may be a shape in which a plurality of V-shaped portions (two steps in the example of the figure) are arranged in the radial direction.
  • the inner peripheral edge of the second nozzle ring 32 may extend toward the exhaust gas outlet 10 side to form the shroud 41.
  • the gap G connects the scroll flow path 16 (high pressure portion) and the exhaust gas outlet 10 (low pressure portion).
  • a seal member 45 is installed in the gap G, and the seal member 45 partitions the gap G between the scroll flow path 16 side and the exhaust gas outlet 10 side.
  • the seal member 45 is installed so that the opening 45b faces the high pressure side.
  • the seal member 45 is attached in a direction in which the inner peripheral side is brought into contact with the second nozzle ring 32 over the entire length, the outer peripheral side is brought into contact with the turbine housing 4 over the entire length, and the gap G is expanded in the radial direction. Demonstrate power. Even in such a sealing member 45, the presence of the discontinuous portion 45s reduces the thermal stress generated during cooling.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Supercharger (AREA)

Abstract

This supercharger comprises: a turbine housing; a variable nozzle unit that adjusts the gas flow path area inside the turbine housing; and a sealing member for sealing a gap between the turbine housing and the variable nozzle unit. The sealing member, when viewed from the direction of the rotation axis of a turbine, abuts a cylindrical surface of the turbine housing, on the inner peripheral side thereof, over the entire length thereof, and extends in a C-shape around the cylindrical surface.

Description

過給機Supercharger
 本開示は、過給機に関するものである。 This disclosure relates to a turbocharger.
 従来、このような分野の技術として、下記特許文献1に記載の過給機が知られている。この過給機は、タービン翼車を収容するタービンハウジングと、タービンハウジングの内側に配置された可変ノズルユニットと、を備えている。可変ノズルユニットはノズルベーンを駆動してタービン翼車に流入するガスの流路面積を調整する。タービンハウジングと可変ノズルユニットとの隙間には、タービン翼車の回転軸線方向から見て円環状をなすシール部材が挟み込まれることで、上記隙間がシールされている。 Conventionally, the turbocharger described in Patent Document 1 below is known as a technique in such a field. The turbocharger includes a turbine housing that houses the turbine impeller and a variable nozzle unit that is located inside the turbine housing. The variable nozzle unit drives the nozzle vanes to adjust the flow path area of the gas flowing into the turbine impeller. The gap is sealed by sandwiching a sealing member forming an annular shape when viewed from the rotation axis direction of the turbine impeller in the gap between the turbine housing and the variable nozzle unit.
国際公開第2016/159004号International Publication No. 2016/159004
 上記の過給機において、シール部材は、可変ノズルユニットとタービンハウジングとの間に隙間なく挿入される。過給機の運転停止後の冷却時には、比表面積が大きい部品であるシール部材が、タービンハウジングに比較して早く温度低下する。このため、シール部材は、このシール部材が当接しているタービンハウジングの部位に比較して早く熱収縮し、このタービンハウジングとの熱収縮の差によって、シール部材には熱応力が発生する。 In the above turbocharger, the seal member is inserted without a gap between the variable nozzle unit and the turbine housing. When the turbocharger is cooled after the operation is stopped, the temperature of the seal member, which is a component having a large specific surface area, drops faster than that of the turbine housing. Therefore, the seal member shrinks heat faster than the portion of the turbine housing with which the seal member is in contact, and the difference in heat shrinkage from the turbine housing causes thermal stress to be generated in the seal member.
 例えば、図8は、この種の過給機の一例について行ったシミュレーション結果のイメージ図であり、グラフ201はシール部材の温度変化、グラフ202はシール部材の周方向応力の変化を示す。図8に示されるように、t=t1で過給機が運転停止されると、シール部材の温度が低下していく。この温度低下に伴って、シール部材の周方向応力が大きくなり、ピークに達する。近年では、従来よりも高温環境下で過給機を運転することが要求されている。この場合、上記のようなシール部材に作用する熱応力は大きくなり、シール部材の損傷の原因にもなり得る。そして、このようなシール部材の損傷を予防すべく、シール部材の材料には破断強度が大きいものを選択する必要があるので、シール部材の材料選択の幅が狭くなってしまうという問題もある。 For example, FIG. 8 is an image diagram of a simulation result performed for an example of this type of turbocharger, graph 201 shows a change in temperature of a seal member, and graph 202 shows a change in circumferential stress of a seal member. As shown in FIG. 8, when the turbocharger is stopped at t = t1, the temperature of the seal member decreases. As the temperature decreases, the circumferential stress of the sealing member increases and reaches a peak. In recent years, it has been required to operate the turbocharger in a higher temperature environment than before. In this case, the thermal stress acting on the sealing member as described above becomes large, which may cause damage to the sealing member. Further, in order to prevent such damage to the seal member, it is necessary to select a material having a high breaking strength as the material of the seal member, so that there is also a problem that the range of material selection of the seal member is narrowed.
 このような問題に鑑み、本開示は、冷却時に発生するシール部材の熱応力を低減する過給機を説明する。 In view of such a problem, the present disclosure describes a turbocharger that reduces the thermal stress of the sealing member generated during cooling.
 本開示の一態様に係る過給機は、タービンハウジングと、タービンハウジング内のガスの流路に配置されるノズルベーンを駆動する可変ノズルユニットと、タービンハウジングと可変ノズルユニットとの隙間をシールするためのシール部材と、を備え、シール部材は、タービンの回転軸線方向から見て、タービンハウジング又は可変ノズルユニットのうちの何れか一方の一部位である所定部位に対し内周側を全長に亘って当接させ所定部位の周囲でC字状に延在する。 The turbocharger according to one aspect of the present disclosure is for sealing the gap between the turbine housing, the variable nozzle unit for driving the nozzle vanes arranged in the gas flow path in the turbine housing, and the turbine housing and the variable nozzle unit. The sealing member is provided with a sealing member, and the sealing member covers the entire inner peripheral side with respect to a predetermined portion which is one of the turbine housing and the variable nozzle unit when viewed from the rotation axis direction of the turbine. It is brought into contact with each other and extends in a C shape around a predetermined portion.
 本開示の過給機によれば、冷却時に発生するシール部材の熱応力を低減することができる。 According to the supercharger of the present disclosure, it is possible to reduce the thermal stress of the seal member generated during cooling.
実施形態の過給機の断面図である。It is sectional drawing of the supercharger of embodiment. 図1の過給機のシール部材の近傍を拡大して示す断面図である。It is sectional drawing which enlarges and shows the vicinity of the seal member of the supercharger of FIG. 図1におけるIII-III断面図である。FIG. 3 is a sectional view taken along line III-III in FIG. (a)はシール部材の平面図、(b)はそのIVb-IVb断面図、(c)はシール部材の断面内での弾性変形を示す断面図である。(A) is a plan view of the seal member, (b) is a sectional view thereof IVb-IVb, and (c) is a sectional view showing elastic deformation in the sectional view of the seal member. 本発明者らによるシミュレーション結果のイメージ図である。It is an image diagram of the simulation result by the present inventors. (a)~(d)は、シール部材の変形例を示す断面図である。(A) to (d) are sectional views which show the modification of the seal member. 過給機の変形例を示す断面図である。It is sectional drawing which shows the modification of the supercharger. 本発明者らによるシミュレーション結果のイメージ図である。It is an image diagram of the simulation result by the present inventors.
 本開示の一態様に係る過給機は、タービンハウジングと、タービンハウジング内のガスの流路に配置されるノズルベーンを駆動する可変ノズルユニットと、タービンハウジングと可変ノズルユニットとの隙間をシールするためのシール部材と、を備え、シール部材は、タービンの回転軸線方向から見て、タービンハウジング又は可変ノズルユニットのうちの何れか一方の一部位である所定部位に対し内周側を全長に亘って当接させ所定部位の周囲でC字状に延在する。 The turbocharger according to one aspect of the present disclosure is for sealing the gap between the turbine housing, the variable nozzle unit for driving the nozzle vanes arranged in the gas flow path in the turbine housing, and the turbine housing and the variable nozzle unit. The sealing member is provided with a sealing member, and the sealing member covers the entire inner peripheral side with respect to a predetermined portion which is one of the turbine housing and the variable nozzle unit when viewed from the rotation axis direction of the turbine. It is brought into contact with each other and extends in a C shape around a predetermined portion.
 シール部材の外周側は、タービンハウジング又は可変ノズルユニットのうちの他方に対し全長に亘って当接していることとしてもよい。また、タービンの高圧部と低圧部とが隙間によって接続され、隙間はシール部材によって高圧部側と低圧部側とに仕切られ、シール部材の断面は高圧部側に開いた開口部を有する形状をなすこととしてもよい。 The outer peripheral side of the seal member may be in contact with the other of the turbine housing or the variable nozzle unit over the entire length. Further, the high pressure part and the low pressure part of the turbine are connected by a gap, the gap is divided into the high pressure part side and the low pressure part side by the seal member, and the cross section of the seal member has a shape having an opening open to the high pressure part side. You may do it.
 シール部材は、タービンハウジング及び可変ノズルユニットから取り外された状態において、延在方向の中央で曲率が最小であり延在方向の両端に近づくに従って曲率が大きくなる形状をなすこととしてもよい。 The seal member may have a shape in which the curvature is the minimum at the center of the extending direction and the curvature increases as it approaches both ends in the extending direction when it is removed from the turbine housing and the variable nozzle unit.
 以下、図面を参照しながら、本開示の可変容量型過給機の実施形態について説明する。なお、各図面においては、構成要素の特徴を誇張して描写する場合があるため、図面上の各部位の寸法比は必ずしも実物とは一致しない。 Hereinafter, embodiments of the variable capacity turbocharger of the present disclosure will be described with reference to the drawings. In each drawing, the characteristics of the components may be exaggerated and depicted, so the dimensional ratio of each part on the drawing does not necessarily match the actual one.
 図1に示される可変容量型過給機1は、例えば、船舶や車両の内燃機関に適用されるものである。図1に示されるように、可変容量型過給機1は、タービン2とコンプレッサ3とを備えている。タービン2は、タービンハウジング4と、タービンハウジング4に収納されたタービン翼車6と、を備えている。タービンハウジング4は、タービン翼車6の周囲において周方向に延びるスクロール流路16を有している。コンプレッサ3は、コンプレッサハウジング5と、コンプレッサハウジング5に収納されたコンプレッサ翼車7と、を備えている。コンプレッサハウジング5は、コンプレッサ翼車7の周囲において周方向に延びるスクロール流路17を有している。 The variable capacity turbocharger 1 shown in FIG. 1 is applied to, for example, an internal combustion engine of a ship or a vehicle. As shown in FIG. 1, the variable capacity turbocharger 1 includes a turbine 2 and a compressor 3. The turbine 2 includes a turbine housing 4 and a turbine impeller 6 housed in the turbine housing 4. The turbine housing 4 has a scroll flow path 16 extending in the circumferential direction around the turbine impeller 6. The compressor 3 includes a compressor housing 5 and a compressor impeller 7 housed in the compressor housing 5. The compressor housing 5 has a scroll flow path 17 extending in the circumferential direction around the compressor impeller 7.
 タービン翼車6は回転軸14の一端に設けられており、コンプレッサ翼車7は回転軸14の他端に設けられている。タービンハウジング4とコンプレッサハウジング5との間には、軸受ハウジング13が設けられている。回転軸14は、軸受15を介して軸受ハウジング13に回転可能に支持されており、回転軸14、タービン翼車6及びコンプレッサ翼車7が一体の回転体12として回転軸線H周りに回転する。 The turbine impeller 6 is provided at one end of the rotating shaft 14, and the compressor impeller 7 is provided at the other end of the rotating shaft 14. A bearing housing 13 is provided between the turbine housing 4 and the compressor housing 5. The rotating shaft 14 is rotatably supported by the bearing housing 13 via the bearing 15, and the rotating shaft 14, the turbine impeller 6 and the compressor impeller 7 rotate around the rotating axis H as an integral rotating body 12.
 タービンハウジング4には、排気ガス流入口(図示せず)及び排気ガス流出口10が設けられている。内燃機関(図示せず)から排出された排気ガス(流体)が、排気ガス流入口を通じてタービンハウジング4内に流入し、スクロール流路16を通じてタービン翼車6に流入し、タービン翼車6を回転させる。その後、排気ガスは、排気ガス流出口10を通じてタービンハウジング4外に流出する。 The turbine housing 4 is provided with an exhaust gas inlet (not shown) and an exhaust gas outlet 10. Exhaust gas (fluid) discharged from an internal combustion engine (not shown) flows into the turbine housing 4 through the exhaust gas inlet, flows into the turbine impeller 6 through the scroll flow path 16, and rotates the turbine impeller 6. Let me. After that, the exhaust gas flows out of the turbine housing 4 through the exhaust gas outlet 10.
 コンプレッサハウジング5には、吸入口9及び吐出口(図示せず)が設けられている。上記のようにタービン翼車6が回転すると、回転軸14を介してコンプレッサ翼車7が回転する。回転するコンプレッサ翼車7は、吸入口9を通じて外部の空気を吸入する。この空気が、コンプレッサ翼車7及びスクロール流路17を通過して圧縮され吐出口から吐出される。吐出口から吐出された圧縮空気は、前述の内燃機関に供給される。 The compressor housing 5 is provided with a suction port 9 and a discharge port (not shown). When the turbine impeller 6 rotates as described above, the compressor impeller 7 rotates via the rotating shaft 14. The rotating compressor impeller 7 sucks in external air through the suction port 9. This air passes through the compressor impeller 7 and the scroll flow path 17, is compressed, and is discharged from the discharge port. The compressed air discharged from the discharge port is supplied to the above-mentioned internal combustion engine.
 以下の説明において、単に「軸方向」、「径方向」、「周方向」等と言うときには、それぞれ、タービン翼車6の回転軸線方向、回転径方向、回転周方向を意味するものとする。また、「上流」、「下流」などと言うときには、スクロール流路16における排気ガスの上流、下流を意味するものとする。 In the following description, when the terms "axial direction", "radial direction", "circumferential direction", etc. are simply used, they mean the rotation axis direction, the rotation radial direction, and the rotation circumferential direction of the turbine impeller 6, respectively. Further, when the terms "upstream" and "downstream" are used, they mean the upstream and downstream of the exhaust gas in the scroll flow path 16.
 図1~図4を参照しながら、タービン2について更に説明する。タービン2は可変容量型タービンであり、スクロール流路16とタービン翼車6とを接続するガス流入路21には、可動のノズルベーン23が設けられている。複数のノズルベーン23が回転軸線Hを中心とする円周上に配置されており、各々のノズルベーン23は回転軸線Hに平行な軸線周りに回動する。上記のようにノズルベーン23が回動することで、タービン2に導入される排気ガスの流量に応じてガス流路の断面積が最適に調整される。 The turbine 2 will be further described with reference to FIGS. 1 to 4. The turbine 2 is a variable displacement turbine, and a movable nozzle vane 23 is provided in the gas inflow path 21 connecting the scroll flow path 16 and the turbine impeller 6. A plurality of nozzle vanes 23 are arranged on the circumference centered on the rotation axis H, and each nozzle vane 23 rotates around an axis parallel to the rotation axis H. By rotating the nozzle vane 23 as described above, the cross-sectional area of the gas flow path is optimally adjusted according to the flow rate of the exhaust gas introduced into the turbine 2.
 このためタービン2は、ノズルベーン23を駆動するための可変ノズルユニット25を備えている。可変ノズルユニット25は、タービンハウジング4の内側に嵌め込まれており、タービンハウジング4と軸受ハウジング13とで挟み込まれて固定される。可変ノズルユニット25は、上記ノズルベーン23と、ノズルベーン23を軸方向に挟む第1ノズルリング31及び第2ノズルリング32と、を有している。第1ノズルリング31と第2ノズルリング32とは、それぞれタービン翼車6を周方向に囲むリング状を成している。 Therefore, the turbine 2 is provided with a variable nozzle unit 25 for driving the nozzle vane 23. The variable nozzle unit 25 is fitted inside the turbine housing 4, and is sandwiched and fixed between the turbine housing 4 and the bearing housing 13. The variable nozzle unit 25 has the nozzle vane 23, and a first nozzle ring 31 and a second nozzle ring 32 that sandwich the nozzle vane 23 in the axial direction. The first nozzle ring 31 and the second nozzle ring 32 each form a ring shape surrounding the turbine impeller 6 in the circumferential direction.
 第1ノズルリング31と第2ノズルリング32とで挟まれた領域が前述のガス流入路21を構成する。第1ノズルリング31には、各ノズルベーン23の回動軸23aが回転可能に挿通されており、第1ノズルリング31は各ノズルベーン23を片持ちで軸支している。第1ノズルリング31と第2ノズルリング32とは軸方向に延びる複数の連結ピン35で連結されている。この連結ピン35が高精度の寸法に作製されることで、ガス流入路21の軸方向の寸法精度が確保されている。 The region sandwiched between the first nozzle ring 31 and the second nozzle ring 32 constitutes the gas inflow path 21 described above. The rotation shaft 23a of each nozzle vane 23 is rotatably inserted into the first nozzle ring 31, and the first nozzle ring 31 supports each nozzle vane 23 in a cantilever manner. The first nozzle ring 31 and the second nozzle ring 32 are connected by a plurality of connecting pins 35 extending in the axial direction. By manufacturing the connecting pin 35 with high-precision dimensions, the axial dimensional accuracy of the gas inflow path 21 is ensured.
 可変ノズルユニット25は駆動力伝達部27を有しており、タービン2の外部からの駆動力が駆動力伝達部27によってノズルベーン23に伝達される。駆動力伝達部27は、第1ノズルリング31と軸受ハウジング13との間のスペースに収納されている。タービン2の外部からの駆動力が駆動力伝達部27に入力されると、所定の機構により各ノズルベーン23の回動軸23aが同期して回動され、各ノズルベーン23が同期して回動する。 The variable nozzle unit 25 has a driving force transmission unit 27, and the driving force from the outside of the turbine 2 is transmitted to the nozzle vane 23 by the driving force transmission unit 27. The driving force transmission unit 27 is housed in a space between the first nozzle ring 31 and the bearing housing 13. When the driving force from the outside of the turbine 2 is input to the driving force transmission unit 27, the rotation shaft 23a of each nozzle vane 23 is synchronously rotated by a predetermined mechanism, and each nozzle vane 23 is synchronously rotated. ..
 次に、タービンハウジング4内における可変ノズルユニット25の配置について説明する。シュラウド41は、タービン翼車6を周方向に覆い、タービンハウジング4の内周面の一部として形成されている。シュラウド41よりも径方向外側の位置に、可変ノズルユニット25の第2ノズルリング32が嵌め込まれている。第2ノズルリング32はスクロール流路16に面しており、第2ノズルリング32がスクロール流路16の内壁の一部を形成している。 Next, the arrangement of the variable nozzle unit 25 in the turbine housing 4 will be described. The shroud 41 covers the turbine impeller 6 in the circumferential direction and is formed as a part of the inner peripheral surface of the turbine housing 4. The second nozzle ring 32 of the variable nozzle unit 25 is fitted at a position radially outside the shroud 41. The second nozzle ring 32 faces the scroll flow path 16, and the second nozzle ring 32 forms a part of the inner wall of the scroll flow path 16.
 第2ノズルリング32とタービンハウジング4との間には隙間Gが生じている。隙間Gは、スクロール流路16とガス流入路21の下流部21a(タービン翼車6の入口近傍)とを接続している。スクロール流路16(高圧部)はガス流入路21の下流部21a(低圧部)よりも高圧であるので、スクロール流路16の排気ガスが隙間Gを通じてガス流入路21の下流部にリークする虞がある。このような排気ガスのリークを抑えるために環状のシール部材45が設置されており、シール部材45はガスケットとして隙間Gをシールする。 There is a gap G between the second nozzle ring 32 and the turbine housing 4. The gap G connects the scroll flow path 16 and the downstream portion 21a of the gas inflow path 21 (near the inlet of the turbine impeller 6). Since the scroll flow path 16 (high pressure portion) has a higher pressure than the downstream portion 21a (low pressure portion) of the gas inflow path 21, the exhaust gas of the scroll flow path 16 may leak to the downstream portion of the gas inflow path 21 through the gap G. There is. An annular seal member 45 is installed in order to suppress such an exhaust gas leak, and the seal member 45 seals the gap G as a gasket.
 シール部材45を設置するために、第2ノズルリング32の内周縁には段差部47が形成されている。段差部47は、段差側面49と段差底面51とを有しており、段差側面49は回転軸線Hを円柱軸とする円柱面をなし、段差底面51は回転軸線Hに直交する平面内に位置する。タービンハウジング4側においては、シュラウド41の裏面側の位置に円柱面53が形成されている。円柱面53は、上記段差側面49と対面し回転軸線Hを円柱軸とする円柱面である。シール部材45は、段差側面49と円柱面53との間に径方向に挟み込まれている。また、シール部材45は、段差底面51に突当てられて軸方向に支持されている。 A step portion 47 is formed on the inner peripheral edge of the second nozzle ring 32 in order to install the seal member 45. The step portion 47 has a step side surface 49 and a step bottom surface 51, the step side surface 49 forms a cylindrical surface having the rotation axis H as a cylindrical axis, and the step bottom surface 51 is located in a plane orthogonal to the rotation axis H. do. On the turbine housing 4 side, a cylindrical surface 53 is formed at a position on the back surface side of the shroud 41. The cylindrical surface 53 is a cylindrical surface facing the step side surface 49 and having the rotation axis H as the cylindrical axis. The seal member 45 is radially sandwiched between the step side surface 49 and the cylindrical surface 53. Further, the seal member 45 is abutted against the step bottom surface 51 and is supported in the axial direction.
 図3を参照し、タービン2に組付けられた状態のシール部材45について説明する。この状態のシール部材45を軸方向から見る(回転軸線H方向の視線で見る)と、シール部材45は、内周側を全長に亘ってタービンハウジング4の円柱面53に当接させている。そしてシール部材45は、当該円柱面53の周囲で回転軸線Hを中心とする仮想円周に沿ってC字状に延在している。すなわち、軸方向から見て、シール部材45は、円環に対し周方向の不連続部分45sを一か所設けた形状をなす。更に換言すれば、シール部材45は、長尺の部材を両端面45t同士がほぼ対面するように湾曲させた形状をなしている。軸方向から見て、シール部材45は、円環の一箇所が周方向に切り離されてなるC字の形状をなしており、シール部材45の周方向の端面45t同士は、僅かな隙間(不連続部分45s)をあけて対面している。また、シール部材45は、外周側を全長に亘って可変ノズルユニット25の段差側面49に当接させている。なお、特徴を分りやすくするために、図面に描かれた不連続部分45sの周方向のサイズは比較的大きいが、不連続部分45sの周方向のサイズは極めて小さいものであってもよい。 With reference to FIG. 3, the seal member 45 in a state of being assembled to the turbine 2 will be described. When the seal member 45 in this state is viewed from the axial direction (viewed from the line of sight in the rotation axis H direction), the seal member 45 has the inner peripheral side in contact with the cylindrical surface 53 of the turbine housing 4 over the entire length. The seal member 45 extends in a C shape around the cylindrical surface 53 along a virtual circumference centered on the rotation axis H. That is, when viewed from the axial direction, the seal member 45 has a shape in which a discontinuous portion 45s in the circumferential direction is provided at one place with respect to the annulus. In other words, the seal member 45 has a shape in which a long member is curved so that both end faces 45t face each other. When viewed from the axial direction, the seal member 45 has a C-shape in which one part of the annulus is separated in the circumferential direction, and the end faces 45t in the circumferential direction of the seal member 45 have a slight gap (non-existence). The continuous portion 45s) is opened to face each other. Further, the seal member 45 has the outer peripheral side in contact with the step side surface 49 of the variable nozzle unit 25 over the entire length. In order to make it easier to understand the characteristics, the size of the discontinuous portion 45s drawn in the drawing in the circumferential direction is relatively large, but the size of the discontinuous portion 45s in the circumferential direction may be extremely small.
 タービン2から取り外された状態の単独のシール部材45について説明する。図4(a)は、タービン2から取り外された状態の単独のシール部材45を軸方向から見た状態を実線で示したものである。なお、比較のため同図中にタービン2に組付けられた状態のシール部材45が二点鎖線で示されている。タービン2から取り外された状態のシール部材45(実線)は、タービン2に組付けられた状態(二点鎖線)と比較して、端面45t同士の間の不連続部分45sがやや広くなっている。この状態において、回転軸線Hを中心として両端面45t同士が開いている角度(図中の角度α)は、例えば20°以下である。また、タービン2から取り外された状態のシール部材45は、延在方向の中央45pにおいて曲率が最も小さく、延在方向の両端面45tに近づくに従って曲率が徐々に大きくなる形状をなしている。 The single seal member 45 in a state of being removed from the turbine 2 will be described. FIG. 4A shows a state in which the single seal member 45 removed from the turbine 2 is viewed from the axial direction by a solid line. For comparison, the seal member 45 in the state of being assembled to the turbine 2 is shown by a two-dot chain line in the figure. The seal member 45 (solid line) removed from the turbine 2 has a slightly wider discontinuous portion 45s between the end faces 45t than the state attached to the turbine 2 (dashed-dotted line). .. In this state, the angle (angle α in the figure) at which both end faces 45t are open about the rotation axis H is, for example, 20 ° or less. Further, the seal member 45 removed from the turbine 2 has the smallest curvature at the center 45p in the extending direction, and the curvature gradually increases as it approaches the both end faces 45t in the extending direction.
 図4(b),(c)に示されるように、シール部材45の断面はV字状をなしている。シール部材45は、V字断面の両端部45a,45aの間隔を開く方向に弾性力を発揮する。そして、タービン2に組付けられたシール部材45は、上記の弾性力をもって段差側面49と円柱面53との径方向の距離を押し拡げる方向の付勢力を発揮する。この付勢力によってシール部材45が段差側面49と円柱面53とに密着する。そして、隙間Gの高圧部側(スクロール流路16側)と低圧部側(ガス流入路21の下流部21a側)とを仕切るようにシール部材45が存在するので、隙間Gがシールされ排気ガスのリークが抑制される。 As shown in FIGS. 4 (b) and 4 (c), the cross section of the seal member 45 is V-shaped. The seal member 45 exerts an elastic force in a direction in which the ends 45a and 45a of the V-shaped cross section are spaced apart from each other. Then, the seal member 45 assembled to the turbine 2 exerts an urging force in the direction of expanding the radial distance between the step side surface 49 and the columnar surface 53 with the above elastic force. Due to this urging force, the seal member 45 comes into close contact with the step side surface 49 and the cylindrical surface 53. Since the sealing member 45 exists so as to partition the high pressure portion side (scroll flow path 16 side) and the low pressure portion side (downstream portion 21a side of the gas inflow path 21) of the gap G, the gap G is sealed and the exhaust gas is exhausted. Leakage is suppressed.
 また、過給機1においてはタービン2の温度に応じて隙間Gの寸法が変動するところ、上述のようなシール部材45が弾性変形して隙間Gの寸法変動に追従し隙間Gのシール性が維持される。なお、シール部材45によれば、例えば特許文献1に記載のような環状のシール部材と比較して、不連続部分45sに起因してシール性が僅かに犠牲になる。 Further, in the turbocharger 1, where the dimension of the gap G fluctuates according to the temperature of the turbine 2, the sealing member 45 elastically deforms as described above to follow the dimensional fluctuation of the gap G, and the sealing property of the gap G is improved. Be maintained. According to the seal member 45, the sealing property is slightly sacrificed due to the discontinuous portion 45s as compared with the annular sealing member as described in Patent Document 1, for example.
 このようなシール部材45がタービン2に組付けられるときには、軸方向から見て仮想円周に沿う形状に弾性的に変形した状態で隙間Gに挿入され、前述の図3の状態になる。なお、シール部材45がタービン2に組付けられるときには、可変ノズルユニット25の段差側面49にシール部材45が圧入され、更にシール部材45が円柱面53に圧入されて可変ノズルユニット25とタービンハウジング4とが組付けられる。 When such a sealing member 45 is assembled to the turbine 2, it is inserted into the gap G in a state of being elastically deformed into a shape along the virtual circumference when viewed from the axial direction, and the state shown in FIG. 3 described above is obtained. When the seal member 45 is assembled to the turbine 2, the seal member 45 is press-fitted into the step side surface 49 of the variable nozzle unit 25, and the seal member 45 is further press-fitted into the cylindrical surface 53 to form the variable nozzle unit 25 and the turbine housing 4. And are assembled.
 前述のとおり、隙間Gはタービン2の高圧部(スクロール流路16)と低圧部(ガス流入路21の下流部21a)とを接続するものである。そして、シール部材45は、上記の高圧部側と低圧部側との接続経路を横切るように配置されることで隙間Gを高圧部側と低圧部側とに仕切るものである。そして、シール部材45の断面形状は、高圧部側(スクロール流路16側)に開いた開口部45bを有するV字形状である。この断面形状によれば、シール部材45は、高圧部側からの圧力によって開口部45bの開口幅が更に開く方向の力を受ける。すなわち、シール部材45の両端部45a,45aの距離が拡大する方向の力を受ける。そうすると、両端部45a,45aが段差側面49及び円柱面53に対して更に強く押し付けられるので、排気ガスのリーク抑制効果が更に高められる。 As described above, the gap G connects the high pressure portion (scroll flow path 16) and the low pressure portion (downstream portion 21a of the gas inflow path 21) of the turbine 2. The seal member 45 is arranged so as to cross the connection path between the high pressure portion side and the low pressure portion side, thereby partitioning the gap G into the high pressure portion side and the low pressure portion side. The cross-sectional shape of the seal member 45 is a V-shape having an opening 45b opened on the high pressure portion side (scroll flow path 16 side). According to this cross-sectional shape, the seal member 45 receives a force in the direction in which the opening width of the opening 45b is further opened by the pressure from the high pressure portion side. That is, it receives a force in a direction in which the distance between both ends 45a and 45a of the seal member 45 increases. Then, since both end portions 45a and 45a are pressed more strongly against the step side surface 49 and the columnar surface 53, the effect of suppressing the leakage of the exhaust gas is further enhanced.
 過給機1が上記のシール部材45を備えることによる作用効果について説明する。過給機1の運転停止後の冷却時には、比表面積が大きい部品であるシール部材45が、タービンハウジング4に比較して早く温度低下する。このため、シール部材45は、タービンハウジング4に比較して早く熱収縮し、このタービンハウジング4との熱収縮の差によって、シール部材45には熱応力が発生する。ここで、シール部材45は円環形状ではなく、前述のように不連続部分45sを有する形状であるので、シール部材45とタービンハウジング4との熱収縮差の一部は不連続部分45sの拡縮により吸収される。その結果、過給機1の冷却時にシール部材45に発生する熱応力が低減される。 The action and effect of the supercharger 1 provided with the above-mentioned sealing member 45 will be described. When the turbocharger 1 is cooled after the operation is stopped, the temperature of the seal member 45, which is a component having a large specific surface area, drops faster than that of the turbine housing 4. Therefore, the seal member 45 heat-shrinks faster than the turbine housing 4, and thermal stress is generated in the seal member 45 due to the difference in heat shrinkage from the turbine housing 4. Here, since the seal member 45 is not an annular shape but has a shape having a discontinuous portion 45s as described above, a part of the heat shrinkage difference between the seal member 45 and the turbine housing 4 is the expansion / contraction of the discontinuous portion 45s. Is absorbed by. As a result, the thermal stress generated in the seal member 45 when the turbocharger 1 is cooled is reduced.
 図5は、図8のシミュレーションと同等の過給機モデルを用いて過給機1の昇温時に生じるシール部材45の周方向応力の分布をシミュレーションした結果のイメージ図である。図中のグラフ101は、過給機1の昇温時に生じるシール部材45の周方向応力の分布であり、図中のグラフ102は、過給機1の降温時に生じるシール部材45の周方向応力の分布である。グラフの横軸はシール部材45の周方向位置を示し、不連続部分45sの位置を0°位置としている。図8の結果とグラフ102を比較し、過給機1の冷却時におけるシール部材45の周方向応力は、図8の結果よりも低減されることが確認された。 FIG. 5 is an image diagram of the result of simulating the distribution of the circumferential stress of the seal member 45 generated when the temperature of the turbocharger 1 is raised by using the turbocharger model equivalent to the simulation of FIG. Graph 101 in the figure shows the distribution of the circumferential stress of the seal member 45 generated when the temperature of the supercharger 1 rises, and graph 102 in the figure shows the circumferential stress of the seal member 45 generated when the temperature of the supercharger 1 drops. Is the distribution of. The horizontal axis of the graph indicates the circumferential position of the seal member 45, and the position of the discontinuous portion 45s is the 0 ° position. Comparing the result of FIG. 8 with the graph 102, it was confirmed that the circumferential stress of the seal member 45 during cooling of the turbocharger 1 was lower than that of the result of FIG.
 また、シール部材45がタービン2に組付けられたとき、シール部材45は、内周側を全長に亘ってタービンハウジング4の円柱面53に当接させるのみならず、外周側を全長に亘って可変ノズルユニット25の段差側面49に当接させて、隙間Gに挿入される。これにより、シール部材45は、不連続部分45sを周方向に縮小するように変形した状態で隙間Gに嵌め込まれる。そして、このように不連続部分45sが縮小することによりシール部材45のシール性の低減が抑えられる。 Further, when the seal member 45 is assembled to the turbine 2, the seal member 45 not only brings the inner peripheral side into contact with the cylindrical surface 53 of the turbine housing 4 over the entire length, but also brings the outer peripheral side over the entire length. The variable nozzle unit 25 is brought into contact with the step side surface 49 and inserted into the gap G. As a result, the seal member 45 is fitted into the gap G in a state in which the discontinuous portion 45s is deformed so as to be reduced in the circumferential direction. Then, by reducing the discontinuous portion 45s in this way, the reduction in the sealing property of the sealing member 45 can be suppressed.
 また、図4(a)で説明したように、タービン2から取り外された状態のシール部材45は、軸方向から見て、延在方向の中央45pにおいて曲率が最も小さく、延在方向の両端面45tに近づくに従って曲率が徐々に大きくなる形状をなしている。この形状のシール部材45は、タービン2に組付ける際に、中央45pの曲率変化が最も大きく、両端面45tに近づくに従って曲率変化が小さくなるような変形によって、隙間Gに沿った正円に近づけることができる。 Further, as described with reference to FIG. 4A, the sealing member 45 in a state of being removed from the turbine 2 has the smallest curvature at the center 45p in the extending direction when viewed from the axial direction, and both end faces in the extending direction. It has a shape in which the curvature gradually increases as it approaches 45t. When the seal member 45 having this shape is assembled to the turbine 2, the change in curvature at the center 45p is the largest, and the change in curvature becomes smaller as the both end faces 45t are approached, so that the seal member 45 approaches a perfect circle along the gap G. be able to.
 本開示は、上述した実施形態を始めとして、当業者の知識に基づいて種々の変更、改良を施した様々な形態で実施することができる。また、上述した実施形態に記載されている技術的事項を利用して、下記の変形例を構成することも可能である。実施形態及び下記変形例の構成を適宜組み合わせて使用してもよい。 This disclosure can be carried out in various forms with various changes and improvements based on the knowledge of those skilled in the art, including the above-mentioned embodiment. Further, it is also possible to configure the following modification by utilizing the technical matters described in the above-described embodiment. The configurations of the embodiment and the following modifications may be appropriately combined and used.
 シール部材45の断面形状は図4のものには限定されない。すなわち、シール部材45に代えて、図6(a)~(d)に示されるような断面形状のシール部材55が採用されてもよい。図6(a)~(d)のいずれの断面形状においても、シール部材55は高圧部側に開いた開口部55eを有する。 The cross-sectional shape of the seal member 45 is not limited to that of FIG. That is, instead of the seal member 45, the seal member 55 having a cross-sectional shape as shown in FIGS. 6A to 6D may be adopted. In any of the cross-sectional shapes of FIGS. 6A to 6D, the seal member 55 has an opening 55e open to the high pressure portion side.
 シール部材55を段差側面49と円柱面53との両方に密着させるためには、シール部材55をタービンハウジング4の円柱面53に圧入すると共に、第2ノズルリング32の段差側面49にも圧入する必要がある。この組立方法に鑑みれば、シール部材55の断面形状を図6(a)のようにしてもよい。すなわち、シール部材55の断面における端部55a,55bのうち、径方向内側の端部55bを径方向外側に向けて湾曲させてもよい。この構成によれば、シール部材55がタービンハウジング4の円柱面53に圧入される際に、シール部材55の端部55bが円滑に円柱面53を摺動し、シール部材55が円滑に挿入される。 In order to bring the seal member 55 into close contact with both the step side surface 49 and the cylindrical surface 53, the seal member 55 is press-fitted into the columnar surface 53 of the turbine housing 4 and also press-fitted into the step side surface 49 of the second nozzle ring 32. There is a need. In view of this assembly method, the cross-sectional shape of the seal member 55 may be as shown in FIG. 6A. That is, of the ends 55a and 55b in the cross section of the seal member 55, the radial inner end 55b may be curved toward the radial outer side. According to this configuration, when the seal member 55 is press-fitted into the cylindrical surface 53 of the turbine housing 4, the end portion 55b of the seal member 55 smoothly slides on the cylindrical surface 53, and the seal member 55 is smoothly inserted. To.
 また、同様の理由により、シール部材55の断面形状を図6(b)のようにしてもよい。すなわち、図6(b)におけるシール部材55の断面は、全体としてS字をなし、径方向内側の部分55cにおいてはタービンハウジング4側に凸になるように湾曲しており、径方向外側の部分55dにおいては可変ノズルユニット25側に凸になるように湾曲している。この構成によれば、シール部材55がタービンハウジング4の円柱面53にも、第2ノズルリング32の段差側面49にも円滑に圧入される。 Further, for the same reason, the cross-sectional shape of the seal member 55 may be as shown in FIG. 6 (b). That is, the cross section of the seal member 55 in FIG. 6B has an S shape as a whole, and the radial inner portion 55c is curved so as to be convex toward the turbine housing 4 side, and the radial outer portion. At 55d, it is curved so as to be convex toward the variable nozzle unit 25 side. According to this configuration, the seal member 55 is smoothly press-fitted into both the cylindrical surface 53 of the turbine housing 4 and the step side surface 49 of the second nozzle ring 32.
 また、シール部材55の断面形状を図6(c)のようにしてもよい。すなわち、図6(c)におけるシール部材55の断面は、段差側面49と円柱面53とに沿うように軸方向に延在する部分と、段差底面51に沿うように径方向に延在する部分と、を有するU字状をなしている。また、例えば、図6(d)のように断面形状を径方向に複数段(図の例では2段)のV字状部分が並んだ形状としてもよい。 Further, the cross-sectional shape of the seal member 55 may be as shown in FIG. 6 (c). That is, the cross section of the seal member 55 in FIG. 6C has a portion extending in the axial direction along the step side surface 49 and the columnar surface 53 and a portion extending in the radial direction along the step bottom surface 51. It has a U-shape with. Further, for example, as shown in FIG. 6D, the cross-sectional shape may be a shape in which a plurality of V-shaped portions (two steps in the example of the figure) are arranged in the radial direction.
 また、図7に示されるように、第2ノズルリング32の内周縁が排気ガス流出口10側に延びシュラウド41を形成してもよい。この場合、隙間Gはスクロール流路16(高圧部)と排気ガス流出口10(低圧部)とを接続している。そして隙間Gにはシール部材45が設置され、シール部材45は、隙間Gをスクロール流路16側と排気ガス流出口10側とに仕切っている。シール部材45は、開口部45bを高圧側に向けるように設置されている。また、シール部材45は、内周側を全長に亘って第2ノズルリング32に当接させ、外周側を全長に亘ってタービンハウジング4に当接させ、隙間Gを径方向に拡げる方向に付勢力を発揮する。このようなシール部材45においても、不連続部分45sの存在により、冷却時に発生する熱応力が低減される。 Further, as shown in FIG. 7, the inner peripheral edge of the second nozzle ring 32 may extend toward the exhaust gas outlet 10 side to form the shroud 41. In this case, the gap G connects the scroll flow path 16 (high pressure portion) and the exhaust gas outlet 10 (low pressure portion). A seal member 45 is installed in the gap G, and the seal member 45 partitions the gap G between the scroll flow path 16 side and the exhaust gas outlet 10 side. The seal member 45 is installed so that the opening 45b faces the high pressure side. Further, the seal member 45 is attached in a direction in which the inner peripheral side is brought into contact with the second nozzle ring 32 over the entire length, the outer peripheral side is brought into contact with the turbine housing 4 over the entire length, and the gap G is expanded in the radial direction. Demonstrate power. Even in such a sealing member 45, the presence of the discontinuous portion 45s reduces the thermal stress generated during cooling.
1 過給機
2 タービン
4 タービンハウジング
25 可変ノズルユニット
45,55 シール部材
45t 端面
45p 中央
45b,55e 開口部
49 段差側面
53 円柱面
G 隙間
H 回転軸線
1 Supercharger 2 Turbine 4 Turbine housing 25 Variable nozzle unit 45, 55 Seal member 45t End face 45p Center 45b, 55e Opening 49 Step side 53 Cylindrical surface G Gap H Rotation axis

Claims (4)

  1.  タービンハウジングと、
     前記タービンハウジング内のガスの流路に配置されるノズルベーンを駆動する可変ノズルユニットと、
     前記タービンハウジングと前記可変ノズルユニットとの隙間をシールするためのシール部材と、を備え、
     前記シール部材は、タービンの回転軸線方向から見て、前記タービンハウジング又は前記可変ノズルユニットのうちの何れか一方の一部位である所定部位に対し内周側を全長に亘って当接させ前記所定部位の周囲でC字状に延在する、過給機。
    Turbine housing and
    A variable nozzle unit that drives a nozzle vane arranged in the gas flow path in the turbine housing, and
    A sealing member for sealing the gap between the turbine housing and the variable nozzle unit is provided.
    The seal member is brought into contact with a predetermined portion, which is one of the turbine housing and the variable nozzle unit, when viewed from the direction of the rotation axis of the turbine, with the inner peripheral side in contact with the predetermined portion over the entire length. A turbocharger that extends in a C shape around the site.
  2.  前記シール部材の外周側は、前記タービンハウジング又は前記可変ノズルユニットのうちの他方に対し全長に亘って当接している、請求項1に記載の過給機。 The supercharger according to claim 1, wherein the outer peripheral side of the seal member is in contact with the other of the turbine housing or the variable nozzle unit over the entire length.
  3.  前記タービンの高圧部と低圧部とが前記隙間によって接続され、
     前記隙間は前記シール部材によって高圧部側と低圧部側とに仕切られ、
     前記シール部材の断面は前記高圧部側に開いた開口部を有する形状をなす、請求項1又は2に記載の過給機。
    The high pressure part and the low pressure part of the turbine are connected by the gap, and the high pressure part and the low pressure part are connected by the gap.
    The gap is divided into a high pressure portion side and a low pressure portion side by the seal member, and the gap is divided into a high pressure portion side and a low pressure portion side.
    The supercharger according to claim 1 or 2, wherein the cross section of the seal member has a shape having an opening opened on the high pressure portion side.
  4.  前記シール部材は、
     前記タービンハウジング及び前記可変ノズルユニットから取り外された状態において、延在方向の中央で曲率が最小であり延在方向の両端に近づくに従って曲率が大きくなる形状をなす、請求項1~3の何れか1項に記載の過給機。
    The seal member is
    Any one of claims 1 to 3, which has a shape in which the curvature is the minimum at the center of the extending direction and the curvature increases as it approaches both ends of the extending direction when it is removed from the turbine housing and the variable nozzle unit. The supercharger described in item 1.
PCT/JP2021/037942 2020-11-13 2021-10-13 Supercharger WO2022102329A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020189283A JP2023182873A (en) 2020-11-13 2020-11-13 supercharger
JP2020-189283 2020-11-13

Publications (1)

Publication Number Publication Date
WO2022102329A1 true WO2022102329A1 (en) 2022-05-19

Family

ID=81601876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/037942 WO2022102329A1 (en) 2020-11-13 2021-10-13 Supercharger

Country Status (2)

Country Link
JP (1) JP2023182873A (en)
WO (1) WO2022102329A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010112195A (en) * 2008-11-04 2010-05-20 Ihi Corp Sealing device of turbocharger
JP2010190092A (en) * 2009-02-17 2010-09-02 Ihi Corp Turbocharger
JP2013170504A (en) * 2012-02-21 2013-09-02 Toyota Motor Corp Supercharger
WO2016159004A1 (en) * 2015-03-31 2016-10-06 株式会社Ihi Variable displacement supercharger
JP2020020358A (en) * 2018-07-30 2020-02-06 三菱電線工業株式会社 Seal ring
WO2020079969A1 (en) * 2018-10-18 2020-04-23 株式会社Ihi Variable-capacity supercharger

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010112195A (en) * 2008-11-04 2010-05-20 Ihi Corp Sealing device of turbocharger
JP2010190092A (en) * 2009-02-17 2010-09-02 Ihi Corp Turbocharger
JP2013170504A (en) * 2012-02-21 2013-09-02 Toyota Motor Corp Supercharger
WO2016159004A1 (en) * 2015-03-31 2016-10-06 株式会社Ihi Variable displacement supercharger
JP2020020358A (en) * 2018-07-30 2020-02-06 三菱電線工業株式会社 Seal ring
WO2020079969A1 (en) * 2018-10-18 2020-04-23 株式会社Ihi Variable-capacity supercharger

Also Published As

Publication number Publication date
JP2023182873A (en) 2023-12-27

Similar Documents

Publication Publication Date Title
KR102080018B1 (en) Turbine wastegate
JP6394791B2 (en) Variable capacity turbocharger
JP5710452B2 (en) Turbocharger
KR102142331B1 (en) Turbine wastegate
JP2007309139A (en) Turbocharger
JP5402061B2 (en) Turbocharger
US11371369B2 (en) Vanes and shrouds for a turbo-machine
WO2015114971A1 (en) Variable nozzle unit and variable displacement supercharger
JPWO2017163657A1 (en) Turbocharger
JP5494248B2 (en) Fixed-wing turbocharger
JP2010112223A (en) Turbocharger
KR20100020323A (en) Turbocharger with variable nozzle device
US20190292924A1 (en) Vane arrangement for a turbo-machine
WO2022102329A1 (en) Supercharger
EP3179069B1 (en) Exhaust bypass valve of multi-stage turbocharger
CN113557354B (en) Variable capacity supercharger
US12037916B2 (en) Turbine housing
US20220251960A1 (en) Vanes and shrouds for a turbo-machine
JP6638594B2 (en) Supercharger
WO2021039531A1 (en) Compressor and gas turbine
JP7302738B2 (en) Variable displacement turbocharger
JP2017180093A (en) Vehicular turbocharger
CN112302738B (en) Flexible and force classification method for high-pressure turbine air inlet shell structure
WO2020261417A1 (en) Variable nozzle device and variable capacity-type exhaust turbocharger
JP2004197611A (en) Centrifugal compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21891576

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21891576

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP