[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022199520A1 - 一种导热相变材料及其应用 - Google Patents

一种导热相变材料及其应用 Download PDF

Info

Publication number
WO2022199520A1
WO2022199520A1 PCT/CN2022/081967 CN2022081967W WO2022199520A1 WO 2022199520 A1 WO2022199520 A1 WO 2022199520A1 CN 2022081967 W CN2022081967 W CN 2022081967W WO 2022199520 A1 WO2022199520 A1 WO 2022199520A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermally conductive
phase change
conductive phase
tert
butyl
Prior art date
Application number
PCT/CN2022/081967
Other languages
English (en)
French (fr)
Inventor
谭奎
吕玉霞
何丹丹
吴超波
Original Assignee
江西蓝星星火有机硅有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江西蓝星星火有机硅有限公司 filed Critical 江西蓝星星火有机硅有限公司
Priority to JP2023559027A priority Critical patent/JP2024511800A/ja
Priority to EP22774179.0A priority patent/EP4317335A1/en
Priority to KR1020237036243A priority patent/KR20240043725A/ko
Priority to US18/284,058 priority patent/US20240174906A1/en
Publication of WO2022199520A1 publication Critical patent/WO2022199520A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/10Block or graft copolymers containing polysiloxane sequences
    • C09D183/12Block or graft copolymers containing polysiloxane sequences containing polyether sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/46Block-or graft-polymers containing polysiloxane sequences containing polyether sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • C09K5/063Materials absorbing or liberating heat during crystallisation; Heat storage materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/085Copper
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/221Oxides; Hydroxides of metals of rare earth metal
    • C08K2003/2213Oxides; Hydroxides of metals of rare earth metal of cerium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation

Definitions

  • the present invention belongs to the field of polymer materials, and particularly relates to thermally conductive phase change materials and applications thereof.
  • heat sinks are usually designed.
  • the surfaces of electronic components and heat sinks cannot be absolutely flat, and there is an air gap of more than 90% on the contact surface, which greatly increases the thermal resistance.
  • thermally conductive phase change materials In order to reduce the interface thermal resistance, various solutions have been proposed in the prior art, such as metal welding, thermally conductive adhesives, thermally conductive gaskets, thermally conductive silicone grease, thermally conductive phase change materials, etc.
  • the solution using thermally conductive phase change materials is due to It has attracted attention due to its advantages of low thermal resistance, easy disassembly and assembly, and not easy to dry out.
  • Thermally conductive phase-change materials are a class of thermally conductive materials with phase-change capability, and phase-change behavior occurs in a specific temperature range. Usually, it becomes liquid at the working temperature of electronic components (generally above 30°C) to reduce thermal resistance; it remains solid at non-working temperature to effectively prevent seepage.
  • CN102634212B discloses a thermally conductive silicone grease composition, which is mainly composed of carbon nanotubes, graphene, phase-change capsule particles and silicone oil.
  • the thermally conductive silicone grease composition has high thermal conductivity and low thermal resistance value, greatly improves the heat dissipation efficiency and service life of the thermally conductive silicone grease, and has strong practical value.
  • this invention only mechanically mixes the capsules with phase change ability with silicone oil, which has poor compatibility and is easy to agglomerate locally, and the composition as a whole has no phase change behavior, and the silicone oil is easy to seep out after alternating hot and cold.
  • CN109844030A relates to a thermally conductive silicone composition
  • a thermally conductive silicone composition comprising (A) organopolysiloxane as a base polymer and (B) a thermally conductive filler, wherein the thermally conductive filler is 60 in the thermally conductive silicone composition -85% by volume, 40-60% by volume of the thermally conductive filler is aluminum nitride with an average particle size of 50 ⁇ m or more.
  • thermally conductive phase change materials of the current technology especially have one or more of the following problems:
  • phase change material is easily oxidized at high temperature, resulting in easy hardening or drying, or even losing the phase change function;
  • the present invention aims to overcome the problems of the prior art.
  • the object of the present invention is to provide a thermally conductive phase change material with excellent comprehensive properties.
  • the thermally conductive phase change material according to the present invention has good component compatibility.
  • the thermally conductive phase change material according to the present invention also has good anti-oxidation properties.
  • the thermally conductive phase change material according to the present invention can maintain good thermal conductivity and phase change behavior after undergoing aging experiments and/or long-term thermal shocks; and no group analysis is found after long-term thermal shocks.
  • the thermally conductive phase change material according to the present invention is non-flammable and easy to store.
  • the thermally conductive phase change material according to the present invention is particularly suitable for construction by screen printing.
  • thermoly conductive phase change composition comprising as a base polymer a multifunctional modified polysiloxane and a thermally conductive filler.
  • the thermally conductive phase change composition consists of a polyfunctional modified polysiloxane comprising as a base polymer and a thermally conductive filler.
  • the polyfunctionally modified polysiloxane as the base polymer is a difunctional modified polysiloxane, preferably a polysiloxane modified by a polyether functional group and a functional group having antioxidant properties oxane.
  • the backbone portion thereof consists essentially of organosiloxane repeating units.
  • the organic group bonded to the silicon atom in the organopolysiloxane for example, methyl, ethyl, propyl, 3,3,3-trifluoropropyl, xylyl, tolyl and phenyl can be mentioned .
  • the polysiloxane is a linear polydiorganosiloxane, particularly preferably a linear polydimethylsiloxane.
  • the polysiloxane is a polymethylhydrogensiloxane, preferably a linear polymethylhydrogensiloxane.
  • the polyether functional group is selected from polyalkylene oxide functional groups, preferably polyethylene oxide functional groups, polypropylene oxide functional groups and combinations thereof, the functional groups being optionally substituted, eg by alkyl groups Such as methyl, ethyl, propyl, butyl or alkenyl such as vinyl, allyl substituted.
  • the polyether functional group is an allyl polyoxyethylene ether functional group.
  • the functional group having antioxidant properties is selected from a hindered phenolic functional group, a hindered amine functional group, or a combination thereof.
  • the hindered phenol of the present invention can be selected from ⁇ -(3,5-di-tert-butylhydroxyphenyl) methyl propionate, tetrakis[3-(3,5-di-tert-butyl-4-hydroxyphenyl) Propionate] pentaerythritol ester, ⁇ -(4-hydroxyphenyl-3,5-di-tert-butyl) propionate n-octadecyl ester, N,N'-1,6-hexylene-bis[3-( 3,5-Di-tert-butyl-4-hydroxyphenyl)propionamide], N,N'-bis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionyl]hydrazine, 3 -(3,5-Di-tert-butyl-4-hydroxy) octadecyl propionate, 2,6-di-tert-butyl-4-cre
  • the hindered phenol of the present invention is methyl ⁇ -(3,5-di-tert-butylhydroxyphenyl)propionate.
  • the hindered amine of the present invention can be selected from diphenylamine, p-phenylenediamine, dihydroquinoline and combinations thereof.
  • the functional groups with antioxidant properties may be located on the side chains and/or both ends of the base polymer.
  • the polyfunctional modified polysiloxane has the following structure:
  • n 1 is any integer between 10 and 100, preferably between 12 and 60, more preferably between 15 and 50, and most preferably between 18 and 42; n 2 is between 6 and 120, preferably between 6 and 100 Any integer between , more preferably between 8 and 90 and most preferably between 10 and 80.
  • the phase transition temperature of the base polymer can be adjusted by changing n 1 .
  • the polyfunctional modified polysiloxane has a phase transition temperature of 0°C to 80°C, preferably 20°C to 50°C.
  • the viscosity of the base polymer can be adjusted by changing n2 .
  • the larger the value of n2 the higher the viscosity.
  • the multifunctional group-modified polysiloxane has a viscosity of 10-2000 mPa.s, preferably 200-1500 mPa.s, measured according to the national standard GB/T10247-2008 viscosity measurement method, rotational viscometer, measured at 50°C .
  • the thermally conductive filler can be selected from aluminum hydroxide, aluminum oxide, zinc oxide, cerium oxide, aluminum nitride, boron nitride, silicon nitride, silicon carbide, graphene, carbon nanotubes, quartz powder, aluminum powder, copper powder , silver powder and mixtures thereof.
  • the particle size (D 50 ) of the thermally conductive filler is 0.1 to 50 ⁇ m, preferably 1 to 20 ⁇ m, determined according to a laser particle size analyzer commonly used in the art (for example, PIP9.1 type particles of Omega Corporation Image processing instrument, NKT2010-L dry particle size analyzer from Shandong NIKE Analytical Instrument Co., Ltd., etc.).
  • a laser particle size analyzer commonly used in the art (for example, PIP9.1 type particles of Omega Corporation Image processing instrument, NKT2010-L dry particle size analyzer from Shandong NIKE Analytical Instrument Co., Ltd., etc.).
  • the thermally conductive filler may be used in combination with coarse and fine particle sizes, wherein the median particle size (D 50 ) of the coarser part may be 5 to 20 ⁇ m, and the median particle size (D 50 ) of the finer part may be 5 to 20 ⁇ m. ) can be 0.1 to 5 ⁇ m, wherein the ratio of the thickness of the part can be in the range of 3:7 to 7:3, preferably 4:6 to 6:4.
  • the shape of the thermally conductive filler is spherical or approximately spherical.
  • the thermally conductive filler is surface-treated with a treatment agent, wherein the treatment agent is preferably selected from stearic acid, zinc stearate, calcium stearate, KH550, KH560, KH792, KH602, KH570 , dynasylan @ 1146, hexamethyldisilazane, dodecyltrimethoxysilane, hexadecyltrimethoxysilane, vinyltrimethoxysilane, and mixtures thereof.
  • the treatment agent is preferably selected from stearic acid, zinc stearate, calcium stearate, KH550, KH560, KH792, KH602, KH570 , dynasylan @ 1146, hexamethyldisilazane, dodecyltrimethoxysilane, hexadecyltrimethoxysilane, vinyltrimethoxysilane, and mixtures thereof.
  • the composition according to the present invention may further comprise additives commonly used in thermally conductive phase change compositions, as long as they do not impair the purpose of the present invention.
  • the additives may be selected from pigments of different colors, reinforcing fillers such as carbon black or silica.
  • the thermally conductive phase change composition comprises 5-30% by weight, preferably 8-20% by weight of the polyfunctional modified polysiloxane, relative to the total weight of the composition.
  • the thermally conductive phase change composition comprises 70-95% by weight, preferably 80-92% by weight of a multifunctional modified thermally conductive filler relative to the total weight of the composition.
  • the inventors have surprisingly found that the use of a base polymer as defined in the present invention in a thermally conductive phase change composition enables to obtain a thermally conductive phase change material with excellent overall properties.
  • the use of specific base polymers as defined in accordance with the present invention makes it possible, in particular, to obtain thermally conductive phase change materials with the following excellent properties: good component compatibility, good anti-oxidative properties, after undergoing aging experiments and/or long-term thermal shocks Afterwards, it can maintain good thermal conductivity and phase change behavior, no group analysis after long-term thermal shock, non-flammable, easy to store, and especially suitable for screen printing construction.
  • the base polymers of the present invention can be prepared by means known to those skilled in the art.
  • the base polymer is prepared by reacting a polyether, a polysiloxane, an antioxidant in the presence of a catalyst.
  • the polyether is allyl polyoxyethylene ether
  • the polysiloxane is hydrogen-containing silicone oil
  • the antioxidant is ⁇ -(3,5-di-tert-butyl-4-hydroxybenzene base) methyl propionate as an example
  • the base polymer is prepared by a method comprising the following steps:
  • step 4) The solution obtained in step 4) is filtered with a filter, and the filtered clear solution is distilled under reduced pressure at a temperature of 80-120° C. for 2-4 hours to obtain the final product.
  • the catalyst A is preferably a platinum catalyst, more preferably any one selected from chloroplatinic acid, Speir catalyst, Karsted catalyst and solid-phase platinum catalyst.
  • the catalyst B is preferably a solid catalyst, more preferably an acidic solid catalyst, such as acidic resin, acidic clay and the like.
  • the reaction vessel is preferably a four-necked flask.
  • the hydrogen-containing silicone oil may be pumped into the reaction vessel via a peristaltic pump; and/or the addition rate of the hydrogen-containing silicone oil may be 0.5 to 20 ml/min.
  • step 3 allyl polyoxyethylene ether and hydrogen-containing silicone oil can be reacted at a temperature of 80 to 100°C for 3-5 hours; and/or the vacuum distillation can be performed at a temperature of 90 to 110°C 2 to 4 hours.
  • hydrogen-containing silicone oils are well known to those skilled in the art. The use and selection thereof are also within the ability of those skilled in the art.
  • hydrogen-containing silicone oil refers to a polysiloxane having a certain number of Si-H bonds, preferably a linear polysiloxane, which is usually liquid at room temperature.
  • the hydrogen-containing silicone oil is preferably terminal hydrogen-containing silicone oil.
  • the hydrogen-containing silicone oil used according to the present invention has a viscosity at 25° C.
  • the hydrogen-containing silicone oil used according to the present invention preferably has a silicon-hydrogen content of 0.4%-8.7%, more preferably 0.7%-7.5% and most preferably 1.6%-6.0%, calculated based on the SiH mass ratio.
  • the molar ratio of the allyl polyoxyethylene ether to the hydrogen-containing silicone oil is between 0.8:1 and 1.2:1.
  • the molar ratio of the polyether silicone oil to methyl ⁇ -(3,5-di-tert-butyl-4-hydroxyphenyl) propionate is between 0.8:1 and 1.6:1.
  • the mass of the catalyst A is 0.5 to 20 ppm of the sum of the mass of allyl polyoxyethylene ether and the hydrogen-containing silicone oil; and/or the mass of the catalyst B is polyether silicone oil and ⁇ -(3,5-di-tertiary 1% by weight to 5% by weight of the sum of the mass of methyl butyl-4-hydroxyphenyl)propionate.
  • the composition according to the present invention can be applied by using screen printing techniques.
  • the composition of the present invention can be applied at the heat sink interface by using screen printing techniques.
  • Screen printing technology is an application technology that controls the coating thickness more accurately. It can adjust the thickness of the coating by controlling the thickness and mesh (pore size) of the screen, and filter out some impurities with larger particles.
  • the coating using screen printing technology is conducive to further reducing the thermal resistance between the radiator and the heating element, saving materials at the same time, and effectively preventing the excess coating material from overflowing, avoiding contamination of other components, and eliminating potential hidden dangers .
  • composition of the present invention is suitable for coating by screen printing technology due to the following excellent properties: 1) good fluidity during construction; 2) the particle size of the filler contained is much smaller than the screen pore size; 3) The screen printing process does not cause cross-linking or crystallization of certain components due to chemical reactions.
  • composition according to the present invention can be used by a method comprising the steps of:
  • the present invention relates to the use of a base polymer as defined herein as a thermally conductive phase change substance.
  • the base polymer is used in a thermally conductive phase change composition.
  • the present invention relates to a thermally conductive phase change product obtainable by using the thermally conductive phase change composition of the present invention.
  • the thermally conductive phase change product according to the present invention can be prepared by mixing various components in the thermally conductive phase change composition. In particular, various components are added into a high-speed stirring tank, heated to 60 to 90 ° C, and under a negative pressure of -0.085 MPa, stirred at a rotational speed of 300 to 500 r/m for 30 to 60 min, and exported in a molten state, The thermally conductive phase change product is obtained.
  • the thermally conductive phase change product can be in the form of sheet, strip, ring, spherical, square, etc., which are easy to store according to specific applications.
  • the thermally conductive phase change product can be used as a heat dissipation element.
  • the heat dissipation element can be placed, for example, between the heat-generating electronic component and the heat sink component.
  • the thermally conductive phase change product can be coated or placed between the heat generating electronic component and the heat sink component by heating screen printing.
  • Figure 1 shows the DSC analysis of the thermally conductive phase change material according to Example 1 of the present invention, and its endothermic-exothermic behavior is studied with a heating and cooling rate of 5°C/min;
  • Figure 2 shows the DSC analysis of the thermally conductive phase change material according to Example 1 of the present invention, and its endothermic-exothermic behavior is studied with a heating and cooling rate of 2°C/min;
  • Figure 3 shows the endothermic-exothermic behavior of the thermally conductive phase change material according to Example 1 of the present invention for 30 cycles studied with a ramp rate of 10°C/min.
  • Figure 4 shows the infrared spectrum of the polyether silicone oil obtained in step (3) during the preparation of base polymer A.
  • Figure 5 shows the infrared spectrum of the obtained base polymer A.
  • Allyl polyoxyethylene ether the number of repeating units is between 18-42;
  • Hydrogen-containing silicone oil hydrogen-containing silicone oil at the end, the number of repeating unit chains is between 10-80, the viscosity is 6-150mm 2 /s, and it is determined according to the national standard GB/T 10247-2008 viscosity measurement method, capillary viscometer, 25 °C test; grade 620V3-150, Jiangxi Lanxingxinghuo Silicone Co., Ltd.;
  • Catalyst B acid resin, particle size 0.335-1.25mm, hydrogen type rate ⁇ 99.9%, styrene-divinylbenzene copolymer as the skeleton of large-pore strong acid cation exchange resin;
  • Methyl silicone oil grade 47V 100-1000, Jiangxi Lanxingxinghuo Silicone Co., Ltd.;
  • Antioxidant 1706 BASF Corporation.
  • Step 1) add 1 mole of allyl polyoxyethylene ether to the four-necked flask, be warming up to 90° C., fill with nitrogen, stir mechanically, and add a catalyst A with a total amount of 10 ppm to the four-necked flask after constant temperature; use The number of chain segments of the allyl polyoxyethylene ether determines the value of n 1 in the reaction product, and the two values are equal, and the corresponding relationship is shown in Table 1 below;
  • Step 2) drive 1 mole of hydrogen-containing silicone oil into the four-necked flask through a peristaltic pump, and the rate of addition is 1ml/min; the number of hydrogen-containing silicone oil chain segments used determines the value of n in the reaction product, and these two The values are equal, and the corresponding relationship is shown in Table 1 below;
  • Step 3) the reaction was completed at 90° C. for 5 h. and distilled under reduced pressure at 95° C. for 4 h to obtain polyether silicone oil.
  • Step 4) add 1 mole of the polyether silicone oil obtained in step 3) and 2 moles of ⁇ -(3,5-di-tert-butyl-4-hydroxyphenyl) methyl propionate into a four-necked flask, fill with nitrogen, Catalyst B was added and mixed evenly, and the reaction was refluxed at 140°C for 8 hours;
  • Step 5) filter the solution obtained in step 4) with a filter, and the filtered clear solution is distilled under reduced pressure at 100° C. for 4 hours to obtain the final product with the following structure:
  • Base polymers A to E as reaction products will be used in the following examples.
  • Example 1 The above materials were added to a high-speed stirring kettle, heated to 60°C, stirred at a rotational speed of 500 r/m for 30 min under a negative pressure of -0.085 MPa, and exported in a molten state to obtain the thermally conductive phase change material of Example 1.
  • Example 2 The above materials were added to a high-speed stirring kettle, heated to 70°C, stirred at a speed of 400r/m for 20min under a negative pressure of -0.085MPa, and exported in a molten state to obtain the thermally conductive phase change material of Example 2.
  • Example 3 The above materials were added to a high-speed stirring kettle, heated to 70° C., stirred at a speed of 500 r/m for 30 min under a negative pressure of -0.085 MPa, and exported in a molten state to obtain the thermally conductive phase change material of Example 3.
  • Example 4 The above materials were added to a high-speed stirring kettle, heated to 70° C., stirred at a speed of 500 r/m for 30 min under a negative pressure of -0.085 MPa, and exported in a molten state to obtain the thermally conductive phase change material of Example 4.
  • Example 5 The above materials were added to a high-speed stirring kettle, heated to 70°C, stirred at a speed of 400r/m for 40min under a negative pressure of -0.085MPa, and exported in a molten state to obtain the thermally conductive phase change material of Example 5.
  • Example 1 The base polymer in Example 1 was replaced with methyl silicone oil with the same weight and viscosity of 350 mPa.s, and the remaining components remained the same as those in Example 1, and the preparation process remained unchanged.
  • Example 2 The base polymer in Example 2 was replaced with methyl silicone oil with the same weight and viscosity of 500 mPa.s, and the remaining components remained the same as those in Example 2, and the preparation process remained unchanged.
  • Example 3 The base polymer in Example 3 was replaced with methyl silicone oil with the same weight and viscosity of 1000 mPa.s, and the remaining components remained the same as those in Example 3, and the preparation process remained unchanged.
  • the base polymer A in Example 1 was replaced with the polyether silicone oil having the following structure obtained from the preparation process steps 1) to 3) of the base polymer:
  • the base polymer B in Example 2 was replaced with the polyether silicone oil with the following structure obtained from the preparation process steps 1) to 3) of the base polymer:
  • Example 2 DSC analysis was carried out on Example 1, and its endothermic-exothermic behavior was studied with the heating and cooling rates of 5 °C/min and 2 °C/min respectively ( Figure 1 and Figure 2), and the heating and cooling rates of 10 °C/min were used to study its endothermic-exothermic behavior. Endothermic-exothermic behavior for 30 cycles (Fig. 3).
  • Example 1 From Figure 1, it can be found that the sample of Example 1 has a significant endothermic behavior from 20 °C to 37 °C at a heating rate of 5 °C. At this time, the polymer in the system undergoes a transition from solid phase to liquid phase. The thermal peak is about 32 °C; during the cooling process at the same rate, there is a significant exothermic behavior from 14 °C to 4 °C. At this time, the polymer in the system transitions from the liquid phase to the solid phase, and the exothermic peak is about 9 °C.
  • screen printing can be realized only by raising the temperature of the material above the melting temperature range; after the printing is completed, the cooling temperature only needs to be lower than the liquid-solid transition temperature, and the material can be re-solidified. Easy to pack and transport.
  • the protection scope of the present invention for product screen printing applications includes, but is not limited to, the temperature ranges involved in the embodiments.
  • Example 1 of the present invention is tested for 30 cycles at the same heating and cooling rate using DSC equipment, and its phase transition behavior is almost the same, indicating that the system has good stability.
  • Example 2 By comparing the test results (Table 2), it can be found that the samples of Examples 1 to 5 maintain good thermal conductivity and phase transition behavior after high-temperature and high-humidity aging and cold-heat shock tests. After the experiment, no group was analyzed, showing good performance; due to the different polymer structures in Examples 1 to 5, the melting endothermic peak also changed accordingly, indicating that the phase transition temperature of the system can be adjusted by changing the structure of the polymer. , to meet different needs.
  • the present invention includes, but is not limited to, the phase transition temperatures referred to in the examples.
  • the base polymer lacks an antioxidant group, it is easily oxidized in the environmental test of high temperature, high humidity and thermal shock, resulting in hardening, Lost phase transition behavior and cannot be used normally.
  • Comparative Example 6 although the antioxidant component was additionally added, it showed better high temperature and high humidity resistance than Comparative Examples 4 and 5, but after experiencing multiple thermal shocks, the sample became hard locally, The hardened part loses its phase transition behavior.
  • Examples 1 and 2 due to their lower viscosity, they can also meet the application of screen printing, but because they do not have phase transition behavior, after screen printing, even if the temperature is lowered, it cannot be solidified, so there is a packaging and the risk of being touched and partially wiped off during transport. On the other hand, after solidification, Examples 1 to 5 were not wiped off even if they were slightly touched.
  • Example 3 Compared with Example 3, because the viscosity is too high, the best screen printing effect cannot be achieved, and no obvious improvement can be found by increasing the construction temperature.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

一种导热相变组合物,包含作为基础聚合物的多官能团改性的聚硅氧烷和导热填料,其中该多官能团改性的聚硅氧烷是通过聚醚官能团和具有抗氧性能的官能团进行改性的聚硅氧烷。由该组合物获得的导热相变产品。

Description

一种导热相变材料及其应用 技术领域
本发明属于高分子材料的领域,并且尤其涉及导热相变材料及其应用。
背景技术
随着科技的发展,电子元器件集成度越来越高,单位体积发热量越来越大,散热问题早已成为设计的瓶颈。散热问题解决不好,将直接缩短电子设备的寿命,甚至影响其正常使用。为了解决发热电子元器件的散热问题,通常会设计散热片。然而,电子元器件与散热片的表面不可能绝对平整,接触面存在90%以上的空气间隙,从而大大增加了热阻。
为了降低界面热阻,现有技术提出了多种解决方案,例如采用金属焊接、导热粘接剂、导热垫片、导热硅脂、导热相变材料等,其中采用导热相变材料的解决方案因其具有热阻低、拆装容易、不易变干等优点而受到关注。
导热相变材料是一类具有相变能力的导热材料,在特定的温度区间会发生相变行为。通常在电子元器件的工作温度下(一般为30℃以上)变为液态,降低热阻;在非工作温度下保持固态,有效防止渗出。
CN102634212B公开了一种导热硅脂组合物,主要由碳纳米管、石墨烯、相变胶囊颗粒物以及硅油组成。该导热硅脂组合物具有高导热率和低热阻值,大大提高了导热硅脂的散热效率和使用寿命,具有较强的实用价值。但是,该发明只是将具有相变能力的胶囊与硅油机械混合,其相容性差,局部易团聚,并且组合物整体不具有相变行为,在冷热交替之后硅油容易渗出。
CN109844030A涉及一种导热性有机硅组合物,其包含(A)有机聚硅氧烷作为基础聚合物并且包含(B)导热性填充材料,其中导热性填充材料在导热性有机硅组合物中为60-85体积%,导热性填充材料中40-60体积%为平均粒径50μm以上的氮化铝。
但是,现在技术的导热相变材料尤其存在以下的一个或多个问题:
(i)组分之间相容性差,易导致分散不均,局部热阻增加;
(ii)相变材料在高温下容易被氧化,导致容易变硬或者变干,甚至失去相变功能;
(iii)在多次冷热冲击之后容易发生相分离,存在组分渗出的风险,导致热阻增加;
(iv)易燃,不易储存;
(v)不适合使用丝网印刷的施工方式。丝网印刷对于所涂覆的材料有严格的要求:1)所涂覆的材料在施工时必须保证良好的流动性;2)所涂覆的材料含有的填料粒径必须远小于丝网孔径;3)丝网印刷的过程中不能由于发生化学反应而产生交联或者某些组分出现结晶。因此,目前可使用丝网印刷技术进行涂覆的导热相变材料在市面少见。
发明内容
本发明旨在克服现有技术的问题。
因此,本发明的目的在于提供一种综合性能优异的导热相变材料。特别地,根据本发明的导热相变材料具有良好的组分相容性。根据本发明的导热相变材料还具有良好的抗氧性能。根据本发明的导热相变材料在经历老化实验和/或长期冷热冲击之后能够保持良好的导热性能和相变行为;并且在经过长期冷热冲击之后无组分析出。根据本发明的导热相变材料不易燃,易于储存。根据本发明的导热相变材料尤其适合于丝网印刷方式施工。
因此,根据本发明的一个方面,提供一种导热相变组合物,其包含作为基础聚合物的多官能团改性的聚硅氧烷和导热填料。
优选地,所述导热相变组合物由包含作为基础聚合物的多官能团改性的聚硅氧烷和导热填料组成。
根据一种实施方案,作为基础聚合物的多官能团改性的聚硅氧烷是双官能团改性的聚硅氧烷,优选是通过聚醚官能团和具有抗氧性能的官能团进行改性的聚硅氧烷。
对于所述聚硅氧烷来说,通常其主链部分基本上由有机硅氧烷重复单元构成。作为该有机聚硅氧烷中与硅原子结合的有机基团,例如可以提及甲基、乙基、丙基、3,3,3-三氟丙基、二甲苯基、甲苯基和苯基。
根据一种优选的实施方案,该聚硅氧烷为线性聚二有机硅氧烷,特别优选线性聚二甲基硅氧烷。根据另一种优选的实施方案,该聚硅氧烷为聚甲基氢基硅氧烷,优选线性聚甲基氢基硅氧烷。
根据一种实施方案,所述聚醚官能团选自聚环氧烷官能团,优选聚环氧乙烷官能团、聚环氧丙烷官能团以及其组合,所述官能团是任选被取代的,例如被烷基如甲基、乙基、丙基、丁基或者烯基如乙烯基、烯丙基取代。
根据一种特别优选的实施方案,所述聚醚官能团是烯丙基聚氧乙烯醚官能团。
根据一种实施方案,所述具有抗氧性能的官能团选自受阻酚官能团、受阻胺官能团 或其组合。
本发明所述的受阻酚可选自β-(3,5-二叔丁基羟基苯基)丙酸甲酯、四[3-(3,5-二叔丁基-4-羟基苯基)丙酸]季戊四醇酯、β-(4-羟基苯基-3,5-二叔丁基)丙酸正十八碳醇酯、N,N’-1,6-亚己基-双[3-(3,5-二叔丁基-4-羟基苯基)丙酰胺]、N,N’-双[3-(3,5-二叔丁基-4-羟基苯基)丙酰]肼、3-(3,5-二叔丁基-4-羟基)丙酸十八酯、2,6-二叔丁基-4-甲酚、2,2’-亚甲基双(4-甲基-6-叔丁基酚)、2,6-二叔丁基-4-甲基苯酚和4,4’-甲撑双(2,6-二叔丁基苯酚)及其组合。
根据一种特别优选的实施方案,本发明的受阻酚是β-(3,5-二叔丁基羟基苯基)丙酸甲酯。
本发明所述的受阻胺可选自二苯胺、对苯二胺、二氢喹啉及其组合。
所述具有抗氧性能的官能团可以位于基础聚合物的侧链和/或两端。
根据一种特别优选的实施方案,所述多官能团改性的聚硅氧烷具有以下结构:
Figure PCTCN2022081967-appb-000001
其中,n 1为10至100之间、优选12至60之间、更优选15至50之间且最优选18至42之间的任意整数;n 2为6至120之间、优选6至100之间、更优选8至90之间并且最优选10至80之间的任意整数。
所述基础聚合物的相变温度可通过改变n 1来调节。n 1数值越大,相变温度越高。例如,所述多官能团改性的聚硅氧烷具有0℃至80℃、优选20℃至50℃的相变温度。
所述基础聚合物的粘度可通过改变n 2来调节。n 2数值越大,粘度越高。优选地,所述多官能团改性的聚硅氧烷具有10-2000mPa.s,优选200-1500mPa.s的粘度,根据国标GB/T10247-2008粘度测量方法标准测定,旋转粘度计,50℃测定。
所述导热填料可选自氢氧化铝、氧化铝、氧化锌、氧化铈、氮化铝、氮化硼、氮化硅、碳化硅、石墨烯、碳纳米管、石英粉、铝粉、铜粉、银粉及其混合物。
根据一种实施方案,所述导热填料的粒径(D 50)为0.1至50μm,优选1至20μm,根据本领域中常用的激光粒径分析仪器测定(例如欧美克公司的PIP9.1型颗粒图像处理仪、山东耐克特分析仪器有限公司的NKT2010-L干法粒度分析仪等)。
根据另一种实施方案,所述导热填料可粗细粒径搭配使用,其中较粗的部分的中值粒径(D 50)可以为5至20μm,较细的部分的中值粒径(D 50)可以为0.1至5μm,其中粗细 部分搭配的比例范围例如可以为3:7至7:3,优选4:6至6:4。
优选地,所述导热填料的外形特征为球形或者近似于球形。
根据一种优选的实施方案,所述导热填料使用处理剂进行表面处理,其中所述处理剂优选选自硬脂酸、硬脂酸锌、硬脂酸钙、KH550、KH560、KH792、KH602、KH570、dynasylan @1146、六甲基二硅氮烷、十二烷基三甲氧基硅烷、十六烷基三甲氧基硅烷、乙烯基三甲氧基硅烷及其混合物。
任选地,根据本发明的组合物还可包含通常可用于导热相变组合物的添加剂,只要其不损害本发明的目的即可。例如,所述添加剂可选自不同颜色的颜料、补强填料如炭黑或者白炭黑。
根据本发明的一种实施方案,所述导热相变组合物包含相对于组合物的总重量计为5-30%重量、优选8-20%重量的多官能团改性的聚硅氧烷。
根据本发明的一种实施方案,所述导热相变组合物包含相对于组合物的总重量计为70-95%重量、优选80-92%重量的多官能团改性的导热填料。
本发明人出人意料地发现,导热相变组合物中本发明定义的基础聚合物的使用使得能够获得综合性能优异的导热相变材料。根据本发明定义的特定基础聚合物的使用使得尤其能够获得具有以下优异性能的导热相变材料:良好的组分相容性,良好的抗氧性能,在经历老化实验和/或长期冷热冲击之后能够保持良好的导热性能和相变行为,在经过长期冷热冲击之后无组分析出,不易燃,易于储存,并且尤其适合于丝网印刷方式施工。
本发明的基础聚合物可通过本领域技术人员已知的方式来制备。例如所述基础聚合物通过在催化剂的存在下使聚醚、聚硅氧烷、抗氧剂进行反应来制备。
特别地,以所述聚醚为烯丙基聚氧乙烯醚、所述聚硅氧烷为含氢硅油并且所述抗氧剂为β-(3,5-二叔丁基-4-羟基苯基)丙酸甲酯为例,所述基础聚合物通过包括如下步骤的方法制备:
1)将烯丙基聚氧乙烯醚加入到反应容器中,升温至60至90℃,充氮气,机械搅拌,恒温后将催化剂A加入到反应容器;
2)将含氢硅油加入到反应容器中;
3)使烯丙基聚氧乙烯醚与含氢硅油反应,反应完成后减压蒸馏,得到聚醚硅油;
4)将一定量聚醚硅油和β-(3,5-二叔丁基-4-羟基苯基)丙酸甲酯加入到反应容器中,充氮气,并加入催化剂B混合均匀,回流反应;优选地,回流反应温度为120-160℃,反应时间为6-9小时;
5)用过滤器过滤步骤4)得到的溶液,过滤后的澄清溶液在80-120℃的温度下减压蒸馏2-4小时,得到最终产物。
所述催化剂A优选是铂催化剂,更优选选自氯铂酸、Speir催化剂,Karsted催化剂和固相铂催化剂中的任意一种。
所述催化剂B优选为固体催化剂,更优选酸性固体催化剂,例如酸性树脂、酸性白土等。
所述反应容器优选是四口烧瓶。
在步骤2)中,所述含氢硅油可经蠕动泵打入到反应容器中;和/或含氢硅油的加入速率可为0.5至20ml/min。
在步骤3)中,烯丙基聚氧乙烯醚与含氢硅油可在80至100℃的温度下反应3-5h结束;和/或所述减压蒸馏可在90至110℃的温度下进行2至4h。
所述含氢硅油是本领域技术人员所熟知的。对其的使用和选择也在本领域技术人员的能力范围之内。一般地,含氢硅油是指具有一定数量的Si-H键的聚硅氧烷,优选线性聚硅氧烷,其在室温下通常为液体。所述含氢硅油优选为端含氢硅油。有利地,根据本发明使用的含氢硅油具有在25℃下的粘度为3-400mm 2/s,优选6-150mm 2/s,更优选7-50mm 2/s,所述粘度按照国标GB/T 10247-2008粘度测量方法标准测定,使用毛细管粘度计,在25℃下测量。还有利地,根据本发明使用的含氢硅油的硅氢含量优选为0.4%-8.7%,更优选0.7%-7.5%并且最优选1.6%-6.0%,基于SiH质量比计算。
优选地,所述烯丙基聚氧乙烯醚与含氢硅油的摩尔比在0.8:1到1.2:1之间。
优选地,所述聚醚硅油与β-(3,5-二叔丁基-4-羟基苯基)丙酸甲酯的摩尔比在0.8:1到1.6:1之间。
优选地,所述催化剂A的质量为烯丙基聚氧乙烯醚和含氢硅油质量之和的0.5至20ppm;和/或催化剂B的质量为聚醚硅油和β-(3,5-二叔丁基-4-羟基苯基)丙酸甲酯质量之和的1%重量-5%重量。
根据本发明的组合物可通过使用丝网印刷技术进行涂覆。例如,可通过使用丝网印刷技术在散热器界面涂覆本发明的组合物。丝网印刷技术是一种对涂覆厚度控制较为精准的应用技术,可以通过控制丝网的厚度和目数(孔径)来调节涂覆的厚度,以及过滤掉部分颗粒较大的杂质。利用丝网印刷技术的涂覆有利于进一步降低散热器与发热元件之间的热阻,同时节省物料,而且有效地防止了所涂覆的多余物料溢出,避免污染其他元器件,排除潜在的隐患。本发明的组合物由于具有以下的优异性能而适合于使用丝网 印刷技术进行涂覆:1)在施工时具有良好的流动性;2)所含有的填料粒径远小于丝网孔径;3)丝网印刷的过程中不会因发生化学反应而产生交联或者某些组分出现结晶。
作为示例,根据本发明的组合物可通过包括如下步骤的方法来使用:
1)将本发明的导热相变组合物填装至具有加热及恒温功能的丝网印刷设备;
2)对其加热到35至60℃,并保持恒温;
3)利用丝网印刷设备对需要散热的电子元器件如CPU、GPU等进行导热相变组合物的涂抹;
4)将涂抹完毕的电子元器件从传送带转移至降温区,迅速降低到5℃以下,待导热相变材料凝固之后,将其与电子元器件一起包装;
5)也可以在第3步完成之后,直接将涂抹导热相变材料的电子元器件与散热翅片装配在一起,然后整体包装。
根据另一个方面,本发明涉及如本文限定的基础聚合物作为导热相变物质的用途。优选地,所述基础聚合物被用在导热相变组合物中。
根据又一个方面,本发明涉及可通过使用本发明的导热相变组合物获得的导热相变产品。根据本发明的导热相变产品可通过将所述导热相变组合物中的各种组分混合来制备。特别地,将各种组分加入到高速搅拌釜中,加热到60至90℃,在-0.085MPa的负压下,用300至500r/m的转速搅拌30至60min,在熔融状态下导出,得到所述导热相变产品。
所述导热相变产品根据具体的用途可以为片状、长条形、环状、圆球形、方块状等易储存的形式。
优选地,所述导热相变产品可被用作散热元件。所述散热元件例如可被置于产生热的电子部件和散热片部件之间。
优选地,所述导热相变产品可以通过加热丝网印刷的方式涂覆于或放置于产生热的电子部件和散热片部件之间。
附图说明
图1显示了对根据本发明实施例1的导热相变材料进行DSC分析,用5℃/min的升降温速率研究其吸热-放热行为;
图2显示了对根据本发明实施例1的导热相变材料进行DSC分析,用2℃/min的升降温速率研究其吸热-放热行为;
图3显示了用10℃/min的升降温速率研究根据本发明实施例1的导热相变材料的 30个循环的吸热-放热行为。
图4显示了在制备基础聚合物A的过程中在步骤(3)中获得的聚醚硅油的红外光谱图。
图5显示了所获得的基础聚合物A的红外光谱图。
具体实施方式
以下结合具体实施例对本发明做进一步的说明:
实施例中使用的原料如下所示:
(1)烯丙基聚氧乙烯醚:重复单元链节数18-42之间;
(2)含氢硅油:端含氢硅油,重复单元链节数10-80之间,粘度6-150mm 2/s,按照国标GB/T 10247-2008粘度测量方法标准测定,毛细管粘度计,25℃测试;牌号620V3-150,江西蓝星星火有机硅有限公司;
(3)β-(3,5-二叔丁基-4-羟基苯基)丙酸甲酯:分析纯;
(4)催化剂A:Karsted催化剂,铂含量为3000ppm;
(5)催化剂B:酸性树脂,粒径0.335-1.25mm,氢型率≥99.9%,苯乙烯-二乙烯苯共聚体为骨架的大孔径强酸阳离子交换树脂;
(6)导热填料:工业级,按实施例所述特征;
(7)甲基硅油:牌号47V 100-1000,江西蓝星星火有机硅有限公司;
(8)抗氧1706:巴斯夫公司。
1、基础聚合物的制备:
步骤1):将1摩尔的烯丙基聚氧乙烯醚加入到四口烧瓶中,升温至90℃,充氮气,机械搅拌,恒温后加入总量为10ppm的催化剂A于四口烧瓶中;使用的烯丙基聚氧乙烯醚的链节数决定了反应产物中n 1的数值,并且这两者数值相等,对应关系见下表1;
步骤2):将1摩尔的含氢硅油经蠕动泵打入到四口烧瓶中,加入速率为1ml/min;使用的含氢硅油链节数决定了反应产物中n 2的数值,并且这两者数值相等,对应关系见下表1;
步骤3):于90℃下反应5h结束。并于95℃下减压蒸馏4h,得到聚醚硅油。产物的红外光谱图含有C-O-C和Si-O-Si吸收峰,并不含有C=C和Si-H峰,说明烯丙基聚氧乙烯醚与含氢硅油已经反应完全。作为示例,可参见附图4所示的在制备基础聚合物A的过程中在此步骤(3)中获得的聚醚硅油的红外光谱图。
步骤4):将1摩尔步骤3)得到的聚醚硅油和2摩尔β-(3,5-二叔丁基-4-羟基苯基)丙酸甲酯加入到四口烧瓶中,充氮气,并加入催化剂B混合均匀,于140℃下回流反应8小时;
步骤5):用过滤器过滤步骤4)得到的溶液,过滤后的澄清溶液于100℃下减压蒸馏4小时,得到具有以下结构的最终产物:
Figure PCTCN2022081967-appb-000002
产物的红外光谱图显示C=O和Ar-H的吸收峰,产物中已经含有β-(3,5-二叔丁基-4-羟基苯基)丙酸甲酯。例为示例,可参见附图5所示的在此步骤(5)中获得的基础聚合物A的红外光谱图。
表1 n 1和n 2链节数与产物的对应关系
Figure PCTCN2022081967-appb-000003
作为反应产物的基础聚合物A至E将被用于以下实施例中。
2、实施例
实施例1
本实施例的导热相变材料的组分按重量份数计包含:
基础聚合物A                                          20份,
经六甲基二硅氮烷处理的中值粒径D 50为0.5μm的氧化锌    40份,
经六甲基二硅氮烷处理的中值粒径D 50为5μm的氧化铝      40份。
将上述物料加入高速搅拌釜中,加热到60℃,在-0.085MPa的负压下,用500r/m的转速搅拌30min,在熔融状态下导出,得到实施例1的导热相变材料。
实施例2
本实施例的导热相变材料的组分按重量份数计包含:
基础聚合物B                                     15份,
经KH550处理的中值粒径D 50为1μm的氧化锌          65份,
经KH550处理的中值粒径D 50为20μm的氮化硼         20份。
将上述物料加入高速搅拌釜中,加热到70℃,在-0.085MPa的负压下,用400r/m的转速搅拌20min,在熔融状态下导出,得到实施例2的导热相变材料。
实施例3
本实施例的导热相变材料的组分按重量份数计包含:
基础聚合物C                                        10份,
经硬脂酸处理的中值粒径D 50为1μm的氧化铝            40份,
经硬脂酸处理的中值粒径D 50为10μm的氧化铝           50份。
将上述物料加入高速搅拌釜中,加热到70℃,在-0.085MPa的负压下,用500r/m的转速搅拌30min,在熔融状态下导出,得到实施例3的导热相变材料。
实施例4
本实施例的导热相变材料的组分按重量份数计包含:
基础聚合物D                                          20份,
经十二烷基三甲氧基硅烷处理的中值粒径D 50为1μm的氧化铈40份,
经十二烷基三甲氧基硅烷处理的中值粒径D 50为8μm的氧化铈40份。
将上述物料加入高速搅拌釜中,加热到70℃,在-0.085MPa的负压下,用500r/m的转速搅拌30min,在熔融状态下导出,得到实施例4的导热相变材料。
实施例5
本实施例的导热相变材料的组分按重量份数计包含:
Figure PCTCN2022081967-appb-000004
将上述物料加入高速搅拌釜中,加热到70℃,在-0.085MPa的负压下,用400r/m的转速搅拌40min,在熔融状态下导出,得到实施例5的导热相变材料。
对比实施例1
将实施例1中的基础聚合物换成同等重量份数,粘度为350mPa.s的甲基硅油,其余组分与实施例1保持不变,制备工艺不变。
对比实施例2
将实施例2中的基础聚合物换成同等重量份数,粘度为500mPa.s的甲基硅油,其余组分与实施例2保持不变,制备工艺不变。
对比实施例3
将实施例3中的基础聚合物换成同等重量份数,粘度为1000mPa.s的甲基硅油,其余组分与实施例3保持不变,制备工艺不变。
对比实施例4
将实施例1中的基础聚合物A替换成由基础聚合物的制备工艺步骤1)到步骤3)得到的具有以下结构的聚醚硅油:
Figure PCTCN2022081967-appb-000005
其中n 1=18,n 2=13;R 1为-H。
其余组分与实施例2保持不变,制备工艺不变。
对比实施例5
将实施例2中的基础聚合物B替换成由基础聚合物的制备工艺步骤1)到步骤3)得到的具有以下结构的聚醚硅油:
Figure PCTCN2022081967-appb-000006
其中n 1=24,n 2=80;R 1为-H。
其余组分与实施例2保持不变,制备工艺不变。
对比实施例6
在对比实施例5的配方中增加1份的抗氧1076,其余组分保持不变,制备工艺不变。
对实施例1进行DSC分析,分别用5℃/min和2℃/min的升降温速率研究其吸热-放热行为(图1和图2),并用10℃/min的升降温速率研究其30个循环的吸热-放热行为(图3)。
对上述实施例和对比实施例按照下述标准测试其各方面性能(表1)。
1)导热系数,使用Hot disk设备,按照标准ISO 22007进行制样测试;
2)熔融吸热峰值温度,通过DSC,以5℃/min的升温速度,测得的吸热峰顶点来计;
3)85℃,85%RH(双85)环境老化1000h后,导热系数和熔融吸热峰值温度;
4)-40℃至125℃冷热冲击100次之后,导热系数和熔融吸热峰值温度;
5)用两片50mm*50mm*2mm的阳极氧化铝块夹持,并在-40℃至125℃冷热冲击100次之后,观察是否有组分析出;
6)将实施例与对比实施例分别使用丝网印刷设备,对50mm*50mm*2mm的阳极氧化铝块进行涂抹,对比在不同施工温度下操作,能够涂抹到阳极氧化铝块上的导热相变材料的面积百分比。
表2 实施例与对比实施例综合性能测试
Figure PCTCN2022081967-appb-000007
表3 实施例与对比实施例施工性能比较
Figure PCTCN2022081967-appb-000008
通过图1可以发现,实施例1的样品在5℃的升温速率下,从20℃到37℃具有显著的吸热行为,此时体系中的聚合物发生从固相到液相的转变,吸热峰值约为32℃;相同速率的降温过程中,从14℃到4℃具有显著的放热行为,此时体系中的聚合物发生从液相到固相的转变,放热峰值约为9℃。
在应用本发明产品时,只需要使物料温度提升到熔融温度区间以上,就可以实现丝网印刷;印刷完成之后,冷却温度只需低于液-固转变温度以下,就可以使物料重新凝固,便于包装和运输。本发明对产品丝网印刷应用的保护范围包含但不限于实施例中所涉及的温度范围。
通过图2可以发现,升降温速率的改变,使体系相变温度发生偏移。
通过图3可以发现,使用DSC设备对本发明实施例1的样品在相同升降温速率下测试30个循环,其相变行为几乎保持一致,说明体系稳定性良好。
通过对比测试结果(表2)可发现,实施例1至5的样品在高温高湿老化和冷热冲击实验之后,导热性能与相变行为均保持良好,在铝片夹持下经过冷热冲击实验之后并无组分析出,表现出良好使用性能;由于实施例1至5中聚合物结构不同,所以熔融吸热峰值也相应改变,说明可以通过改变聚合物的结构,来调节体系相变温度,以满足不同需求。本发明包含但不限于实施例中所涉及的相变温度。
关于对比实施例1至3,由于未使用具有相变能力的基础聚合物,所以样品未表现出相变行为;铝片夹持下经过冷热冲击试验,由于部分硅油析出,导致体系增稠或者变干, 影响其使用性能。
关于对比实施例4至5,在与本发明实施例同等的条件下,由于基础聚合物缺少抗氧基团,所以在高温高湿和冷热冲击的环境试验中容易被氧化,导致变硬,失去相变行为,无法正常使用。
关于对比实施例6,虽然额外添加了抗氧组分,表现出比对比实施例4和5更好的耐高温高湿性能,但是在经历多次冷热冲击之后,样品的局部地方变硬,变硬部分失去相变行为。
通过施工性能对比结果(表3)可以发现,实施例1至5的样品在加热到相变温度以上时,均能够实行良好的丝网印刷。
对比实施例1和2,由于粘度较低,同样能够满足丝网印刷的应用,但是由于其不具备相变行为,所以在丝网印刷之后,即使降低温度,也无法使其凝固,所以存在包装及运输过程中被触碰及被部分擦拭掉的风险。而实施例1至5在凝固之后,即使发生轻微触碰也不会被擦拭掉。
对比实施例3,由于粘度过高,所以无法达到最佳丝网印刷的效果,提高施工温度也没发现明显改善。
对比实施例4、5和6,相比实施例1和2的基础聚合物,由于只是缺少抗氧基团,但对其他性能影响不大,所以对丝网印刷的效果无明显影响。

Claims (11)

  1. 一种导热相变组合物,其包含作为基础聚合物的多官能团改性的聚硅氧烷和导热填料,其中所述多官能团改性的聚硅氧烷是通过聚醚官能团和具有抗氧性能的官能团进行改性的聚硅氧烷。
  2. 根据权利要求1所述的导热相变组合物,其中所述聚醚官能团选自聚环氧烷官能团,优选聚环氧乙烷官能团、聚环氧丙烷官能团以及其组合,所述官能团是任选被取代的,例如被烷基如甲基、乙基、丙基、丁基或者烯基如乙烯基、烯丙基取代;更优选地,所述聚醚官能团是烯丙基聚氧乙烯醚官能团。
  3. 根据权利要求1-2任一项所述的导热相变组合物,其中所述具有抗氧性能的官能团选自受阻酚官能团、受阻胺官能团或其组合;其中所述受阻酚优选选自β-(3,5-二叔丁基羟基苯基)丙酸甲酯、四[3-(3,5-二叔丁基-4-羟基苯基)丙酸]季戊四醇酯、β-(4-羟基苯基-3,5-二叔丁基)丙酸正十八碳醇酯、N,N’-1,6-亚己基-双[3-(3,5-二叔丁基-4-羟基苯基)丙酰胺]、N,N’-双[3-(3,5-二叔丁基-4-羟基苯基)丙酰]肼、3-(3,5-二叔丁基-4-羟基)丙酸十八酯、2,6-二叔丁基-4-甲酚、2,2’-亚甲基双(4-甲基-6-叔丁基酚)、2,6-二叔丁基-4-甲基苯酚和4,4’-甲撑双(2,6-二叔丁基苯酚)及其组合并且最优选β-(3,5-二叔丁基羟基苯基)丙酸甲酯;和/或所述受阻胺优选选自二苯胺、对苯二胺、二氢喹啉及其组合。
  4. 根据权利要求1-3任一项所述的导热相变组合物,其中所述聚硅氧烷为线性聚二有机硅氧烷,优选线性聚二甲基硅氧烷。
  5. 根据权利要求1-4任一项所述的导热相变组合物,其中所述多官能团改性的聚硅氧烷具有以下结构:
    Figure PCTCN2022081967-appb-100001
    其中,n 1为10至100之间、优选12至60之间、更优选15至50之间且最优选18至42之间 的任意整数;n 2为6至120之间、优选6至100之间、更优选8至90之间并且最优选10至80之间的任意整数。
  6. 根据权利要求1-5任一项所述的导热相变组合物,其中所述导热填料选自氢氧化铝、氧化铝、氧化锌、氧化铈、氮化铝、氮化硼、氮化硅、碳化硅、石墨烯、碳纳米管、石英粉、铝粉、铜粉、银粉及其混合物。
  7. 根据权利要求6所述的导热相变组合物,其中所述导热填料使用处理剂进行表面处理,其中所述处理剂优选选自硬脂酸、硬脂酸锌、硬脂酸钙、KH550、KH560、KH792、KH602、KH570、dynasylan @1146、六甲基二硅氮烷、十二烷基三甲氧基硅烷、十六烷基三甲氧基硅烷、乙烯基三甲氧基硅烷及其混合物。
  8. 根据权利要求1-7任一项所述的导热相变组合物,其中所述导热相变组合物包含相对于组合物的总重量计为5-30%重量、优选8-20%重量的多官能团改性的聚硅氧烷,和/或所述导热相变组合物包含相对于组合物的总重量计为70-95%重量、优选80-92%重量的多官能团改性的导热填料。
  9. 通过使用根据权利要求1-8中任一项所述的导热相变组合物获得的导热相变产品,其优选为易储存的形式,例如为片状、长条形、环状、圆球形、方块状的形式。
  10. 根据权利要求9所述的导热相变产品,其为散热元件。
  11. 权利要求1-8任一项中限定的基础聚合物作为导热相变物质的用途。
PCT/CN2022/081967 2021-03-25 2022-03-21 一种导热相变材料及其应用 WO2022199520A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023559027A JP2024511800A (ja) 2021-03-25 2022-03-21 熱伝導性相変化材料とその用途
EP22774179.0A EP4317335A1 (en) 2021-03-25 2022-03-21 Thermally conductive phase-change material and application thereof
KR1020237036243A KR20240043725A (ko) 2021-03-25 2022-03-21 열 전도성 상 변화 물질 및 이의 용도
US18/284,058 US20240174906A1 (en) 2021-03-25 2022-03-21 Thermally conductive phase-change material and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110320183.5 2021-03-25
CN202110320183.5A CN113004793B (zh) 2021-03-25 2021-03-25 一种导热相变材料及其应用

Publications (1)

Publication Number Publication Date
WO2022199520A1 true WO2022199520A1 (zh) 2022-09-29

Family

ID=76407119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/081967 WO2022199520A1 (zh) 2021-03-25 2022-03-21 一种导热相变材料及其应用

Country Status (6)

Country Link
US (1) US20240174906A1 (zh)
EP (1) EP4317335A1 (zh)
JP (1) JP2024511800A (zh)
KR (1) KR20240043725A (zh)
CN (1) CN113004793B (zh)
WO (1) WO2022199520A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113004793B (zh) * 2021-03-25 2022-03-29 江西蓝星星火有机硅有限公司 一种导热相变材料及其应用
CN114539532B (zh) * 2022-02-24 2023-05-26 江西蓝星星火有机硅有限公司 一种降低硅氢加成反应过程中产物黄变的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101698705A (zh) * 2007-12-13 2010-04-28 吴江市方霞企业信息咨询有限公司 聚醚硅油的合成
CN102634212B (zh) 2012-04-23 2015-11-25 湖州明朔光电科技有限公司 一种导热硅脂组合物
CN105315414A (zh) * 2015-10-28 2016-02-10 苏州天脉导热科技有限公司 一种相变导热硅胶片的制备方法
CN109844030A (zh) 2016-10-18 2019-06-04 信越化学工业株式会社 导热性有机硅组合物
CN110776641A (zh) * 2019-12-13 2020-02-11 江西省科学院能源研究所 氨基聚醚改性聚硅氧烷的制备方法
CN113004793A (zh) * 2021-03-25 2021-06-22 江西蓝星星火有机硅有限公司 一种导热相变材料及其应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6620515B2 (en) * 2001-12-14 2003-09-16 Dow Corning Corporation Thermally conductive phase change materials
US6815486B2 (en) * 2002-04-12 2004-11-09 Dow Corning Corporation Thermally conductive phase change materials and methods for their preparation and use
CN103965529B (zh) * 2014-05-07 2016-04-13 深圳市安品有机硅材料有限公司 相变导热组合物、相变导热软片及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101698705A (zh) * 2007-12-13 2010-04-28 吴江市方霞企业信息咨询有限公司 聚醚硅油的合成
CN102634212B (zh) 2012-04-23 2015-11-25 湖州明朔光电科技有限公司 一种导热硅脂组合物
CN105315414A (zh) * 2015-10-28 2016-02-10 苏州天脉导热科技有限公司 一种相变导热硅胶片的制备方法
CN109844030A (zh) 2016-10-18 2019-06-04 信越化学工业株式会社 导热性有机硅组合物
CN110776641A (zh) * 2019-12-13 2020-02-11 江西省科学院能源研究所 氨基聚醚改性聚硅氧烷的制备方法
CN113004793A (zh) * 2021-03-25 2021-06-22 江西蓝星星火有机硅有限公司 一种导热相变材料及其应用

Also Published As

Publication number Publication date
CN113004793B (zh) 2022-03-29
CN113004793A (zh) 2021-06-22
EP4317335A1 (en) 2024-02-07
KR20240043725A (ko) 2024-04-03
JP2024511800A (ja) 2024-03-15
US20240174906A1 (en) 2024-05-30

Similar Documents

Publication Publication Date Title
JP4551074B2 (ja) 硬化性オルガノポリシロキサン組成物および半導体装置
US6040362A (en) Heat-conducting polymer composition
JP4913874B2 (ja) 硬化性オルガノポリシロキサン組成物および半導体装置
JP5640945B2 (ja) 硬化性オルガノポリシロキサン組成物及び半導体装置
JP5565758B2 (ja) 硬化性でグリース状の熱伝導性シリコーン組成物および半導体装置
JP4634891B2 (ja) 熱伝導性シリコーングリース組成物およびその硬化物
WO2022199520A1 (zh) 一种导热相变材料及其应用
EP1878767A1 (en) Heat conductive silicone grease composition and cured product thereof
CN110709474B (zh) 导热性聚有机硅氧烷组合物
JP6217588B2 (ja) 熱伝導性シリコーンポッティング組成物
JP6042307B2 (ja) 硬化性熱伝導性樹脂組成物、該組成物の製造方法、該組成物の硬化物、該硬化物の使用方法、該組成物の硬化物を有する半導体装置、及び該半導体装置の製造方法
WO2016140020A1 (ja) 熱伝導性シリコーン組成物
TW201700616A (zh) 熱傳導性聚矽氧組成物及硬化物以及複合薄片
JP6264307B2 (ja) 付加硬化型シリコーン組成物
EP4333047A1 (en) Curable organopolysiloxane composition and semiconductor device
TW201922935A (zh) 導熱性聚矽氧灌封組成物及其硬化物
JP7467017B2 (ja) 熱伝導性シリコーン組成物及びその硬化物
CN118804952A (zh) 双组分型导热性加成固化型有机硅组合物及其有机硅固化物
JP7435618B2 (ja) 熱伝導性シリコーンポッティング組成物およびその硬化物
WO2024084897A1 (ja) 硬化性オルガノポリシロキサン組成物及び半導体装置
WO2024195569A1 (ja) 熱伝導性シリコーン組成物及びその硬化物、ならびに製造方法
EP4361207A1 (en) Thermally conductive silicone composition
CN117551350A (zh) 一种导热有机硅组合物及其制备方法和应用
WO2022249754A1 (ja) 熱伝導性シリコーン組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22774179

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202347064073

Country of ref document: IN

Ref document number: 18284058

Country of ref document: US

Ref document number: 2023559027

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022774179

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022774179

Country of ref document: EP

Effective date: 20231025