[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022199003A1 - 像素排布结构、显示面板及其制备方法 - Google Patents

像素排布结构、显示面板及其制备方法 Download PDF

Info

Publication number
WO2022199003A1
WO2022199003A1 PCT/CN2021/125493 CN2021125493W WO2022199003A1 WO 2022199003 A1 WO2022199003 A1 WO 2022199003A1 CN 2021125493 W CN2021125493 W CN 2021125493W WO 2022199003 A1 WO2022199003 A1 WO 2022199003A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
sub
region
pixels
color
Prior art date
Application number
PCT/CN2021/125493
Other languages
English (en)
French (fr)
Inventor
曹席磊
王登宇
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/913,274 priority Critical patent/US20240237457A1/en
Publication of WO2022199003A1 publication Critical patent/WO2022199003A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • H01L27/156
    • H01L33/005
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/352Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels the areas of the RGB subpixels being different
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to a pixel arrangement structure, a display panel and a manufacturing method thereof.
  • LED light emitting diode
  • layers of luminescent materials for emitting different colors are provided to form sub-pixels of various colors.
  • the deposition of the luminescent material layer can be performed by using a mask, such as a high-precision metal mask (FMM).
  • FMM high-precision metal mask
  • the luminescent material is deposited onto the substrate through the patterned mask openings to form the desired pixel arrangement.
  • the present disclosure provides a pixel arrangement, wherein the pixel arrangement includes an array of repeating units repeatedly arranged in a first direction and a second direction perpendicular to the first direction,
  • repeating unit consists of first, second, third, fourth, fifth and sixth pixels sequentially arranged in the first direction
  • each of the first to sixth pixels is composed of first and second regions arranged in the second direction, the first and second regions of the first to sixth pixels, respectively Aligned in the first direction, wherein the second regions of the first, third and fifth pixels and the first regions of the second, fourth and sixth pixels are all arranged on the first
  • the first sub-region and the second sub-region in the direction consist of,
  • the first region is a first color sub-pixel
  • the first sub-region of the second region is a second color sub-pixel
  • the second sub-region of the second region is a third color sub-pixel pixel
  • the first sub-region of the first region is the first color sub-pixel
  • the second sub-region of the first region is the second color sub-pixel
  • the second region is the third color sub-pixel
  • the third pixel its first area is the second color sub-pixel, the first sub-area of the second area is the third color sub-pixel, and the second sub-area of the second area is the first color sub-pixel;
  • the first sub-region of the first region is the second color sub-pixel
  • the second sub-region of the first region is the third color sub-pixel
  • the second region is the first color sub-pixel
  • the first region of the pixel is the third color sub-pixel
  • the first sub-region of the second region is the first color sub-pixel
  • the second sub-region of the second region is the sub-pixel of the first color the second color sub-pixel
  • the first sub-region of the first region is the third-color sub-pixel
  • the second sub-region of the first region is the first-color sub-pixel
  • the second region is the second color sub-pixel.
  • the resolution of the pixel arrangement structure is above 250ppi.
  • the distance between adjacent pixels is in the range of 10-35 ⁇ m.
  • the closest distances of sub-pixels of the same color in different regions are in the range of 10-35 ⁇ m.
  • the light-emitting areas of the first region and the second region are different, or the light-emitting areas of the first sub-region and the second sub-region are different.
  • the first color, the second color and the third color are red, green and blue respectively.
  • the blue sub-pixel area is larger than the red sub-pixel area is larger than the green sub-pixel area
  • the blue sub-pixel area is larger than the red sub-pixel area and the green sub-pixel area is larger.
  • the sub-pixels of the same color have the same length in the second direction.
  • At least two sub-pixels of different colors have different lengths in the second direction.
  • the present disclosure provides a display panel having the above-mentioned pixel arrangement structure, wherein sub-pixels of the display panel include opposite pixel electrodes and a luminescent material layer and a pixel defining layer located between the pixel electrodes, wherein , in the first direction, the luminescent material layers of adjacent sub-pixels of the same color are continuous.
  • the total aperture ratio of pixels in the display area is more than 20%.
  • the sub-pixel is defined by an overlapping area of the pixel electrode and the luminescent material layer within the area defined by the pixel defining layer.
  • the driving units of the sub-pixels of the first color are arranged along a first column in the first direction, and the driving units of the sub-pixels of the second color are arranged in the first direction Arranged along a second column, the driving units of the third color sub-pixels are arranged along a third column in the first direction, wherein the first column, the second column and the third column are in the second direction stagger.
  • the display panel is an organic light emitting diode display panel or a quantum dot light emitting diode display panel.
  • the display panel is a sub-millimeter light emitting diode display panel or a micron light emitting diode display panel.
  • the present disclosure provides a display device including the above-mentioned display panel.
  • the present disclosure is a method of fabricating the above-described display panel, the method comprising depositing a continuous layer of luminescent material of the same color using a mask having staggered openings.
  • layers of luminescent material of different colors are deposited using masks of different opening sizes and/or different opening pitches.
  • FIG. 1 shows a conventional RGB pixel arrangement structure.
  • FIG. 2 shows an RGB pixel arrangement structure according to an embodiment of the present disclosure.
  • FIG 3 shows a cross-sectional view of a pixel structure according to an embodiment of the present disclosure.
  • Figures 4(a) and (b) show masks used in the present disclosure and existing masks.
  • FIG. 5(a) and (b) illustrate schematic diagrams of RGB pixel arrangement structures and mask openings used according to an embodiment of the present disclosure.
  • Figure 6 shows the arrangement of the drive units in one embodiment.
  • a typical pixel arrangement is a single pixel as a repeating unit. Pixels as repeating units are repeatedly arranged in a first direction and a second direction perpendicular to each other to form an array. In each pixel, sub-pixels of three colors are included, such as red, green, and blue (R, G, B) sub-pixels. In the first direction, sub-pixels of one color are repeatedly arranged. In the second direction, the sub-pixels of the three colors are arranged alternately.
  • FIG. 1 shows one such conventional RGB pixel arrangement.
  • the dashed box in the upper left of the figure shows the repeating unit of this pixel arrangement, which is one pixel.
  • the pixels are repeatedly arranged in the first direction X and the second direction. 4 ⁇ 2 pixels are shown in FIG. 1 .
  • Each pixel contains one each of RGB sub-pixels. In the X direction, sub-pixels of one color are repeatedly arranged. In the Y direction, the RGB sub-pixels are arranged in turns.
  • first direction and the second direction are also sometimes referred to as a column direction and a row direction, respectively, or are sometimes referred to as an X direction and a Y direction. It should be understood that this is for descriptive convenience only. X and Y or columns and rows can be reversed without any substantial impact on the technical solution.
  • the opposite pixel electrodes and the light-emitting material layer therebetween and optional carrier injection layer, carrier transport layer, etc. form a diode structure, and carriers are supplied from the pixel electrode to the light-emitting material layer Realize the light emission of the pixel.
  • a luminescent material layer can be deposited to each sub-pixel region through a mask. At this time, the sub-pixel size is constrained by the mask accuracy. The portion between the openings of the mask will block the deposition path of the organic material layer, so that there is a gap between the organic material layers deposited by different openings.
  • the spacing between the luminescent material layers of adjacent sub-pixels of the same color in the X direction needs to be minimized. This requires the corresponding occlusion of the mask to be narrowed accordingly.
  • the mask is designed such that one opening corresponds to one column of sub-pixels. That is, continuous strips of large area luminescent material layers are deposited to form multiple sub-pixels.
  • the actual light-emitting area of each sub-pixel can be separated by disposing a pixel defining layer between the sub-pixels or the like. For example, a raised pixel-defining layer is formed between sub-pixels in advance, and then a luminescent material layer covering all sub-pixels in a column is formed, so as to define the light-emitting area of each sub-pixel within the area enclosed by the pixel-defining layer.
  • the present disclosure proposes a new pixel arrangement structure, which optimizes the pixel arrangement, and at least partially solves the above problem of limited resolution due to masks.
  • the pixel arrangement structure of the present disclosure can improve the aperture ratio of the pixel and improve the resolution while achieving excellent display effect.
  • the present disclosure provides a pixel arrangement structure, wherein the pixel arrangement structure comprises repeating units that are repeatedly arranged in a first direction and a second direction perpendicular to the first direction an array of ,
  • repeating unit consists of first, second, third, fourth, fifth and sixth pixels sequentially arranged in the first direction
  • each of the first to sixth pixels is composed of first and second regions arranged in the second direction, the first and second regions of the first to sixth pixels, respectively Aligned in the first direction, wherein the second regions of the first, third and fifth pixels and the first regions of the second, fourth and sixth pixels are all arranged on the first
  • the first sub-region and the second sub-region in the direction consist of,
  • the first region is a first color sub-pixel
  • the first sub-region of the second region is a second color sub-pixel
  • the second sub-region of the second region is a third color sub-pixel pixel
  • the first sub-region of the first region is the first color sub-pixel
  • the second sub-region of the first region is the second color sub-pixel
  • the second region is the third color sub-pixel
  • the third pixel its first area is the second color sub-pixel, the first sub-area of the second area is the third color sub-pixel, and the second sub-area of the second area is the first color sub-pixel;
  • the first sub-region of the first region is the second color sub-pixel
  • the second sub-region of the first region is the third color sub-pixel
  • the second region is the first color sub-pixel
  • the first region of the pixel is the third color sub-pixel
  • the first sub-region of the second region is the first color sub-pixel
  • the second sub-region of the second region is the sub-pixel of the first color the second color sub-pixel
  • the first sub-region of the first region is the third-color sub-pixel
  • the second sub-region of the first region is the first-color sub-pixel
  • the second region is the second color sub-pixel.
  • FIG. 2 shows an RGB pixel arrangement structure according to an embodiment of the present disclosure.
  • the first direction is represented as the X direction, that is, the downward column direction;
  • the second direction is represented as the Y direction, that is, the rightward row direction.
  • FIG. 2 Two repeating units aligned in the Y direction are shown in FIG. 2 . It can be understood that the repeating units are repeatedly arranged in the row and column directions in the display surface, so as to form an array to realize display.
  • a repeating unit is indicated by a larger dashed box on the left side of FIG. 2, which consists of first, second, third, fourth, fifth and sixth pixels arranged in sequence in the first direction.
  • Each pixel is composed of a first area and a second area arranged in the Y direction.
  • the first area and the second area of the first to sixth pixels are respectively aligned in the X direction, wherein the second area of the first, third and fifth pixels and the second, fourth and sixth pixels
  • the first regions of each are composed of first subregions and second subregions arranged in the X direction.
  • the first pixel as shown in FIG. 2 has a first area on the left and a second area on the right.
  • the second to sixth pixels also have the first region on the left and the second region on the right. All the first regions are aligned in the X direction, and all the second regions are also aligned in the X direction.
  • the second regions of the first, third and fifth pixels and the first regions of the second, fourth and sixth pixels are each composed of two sub-regions.
  • each pixel has an integral region and a region that is combined from two sub-regions.
  • the overall area and the combined area are staggered.
  • staggered arrangement means that between adjacent elements in the first direction, there are elements of the same kind that are translated along the second direction. For example, between the whole area of the first pixel and the third pixel (ie, the first area of the first pixel and the first area of the third pixel), there is a whole area translated along the second direction (ie, the second area of the second pixel) Area).
  • each pixel contains sub-pixels of three colors, ie, sub-pixels of a first color, a second color, and a third color. Pixels with three-color sub-pixels at the same time can meet the needs of true color display. Examples of three-color sub-pixels include RGB sub-pixels. However, in the first to sixth pixels, the specific form and arrangement of the sub-pixels are different.
  • the first region is the first color sub-pixel.
  • the first color sub-pixel is denoted by I
  • the first color sub-pixel occupies the first area on the left side.
  • the first sub-region of the second region is a second-color sub-pixel, which is represented by II
  • the second sub-region is a third-color sub-pixel, which is represented by III.
  • the sub-pixels of the second color and the third color occupy only one sub-area respectively.
  • a sub-pixel occupying a region is sometimes referred to as a large sub-pixel
  • a sub-pixel occupying only one sub-region and forming a region with another color sub-pixel is referred to as a small sub-pixel.
  • the left side is the large sub-pixel of the first color
  • the right side is the small sub-pixel of the second color and the third color.
  • the sub-pixel arrangement of the second pixel below the first pixel among the first pixels is different from that of the first pixel. It consists of a large sub-pixel of the third color on the right and small sub-pixels of the first and second colors on the left.
  • the regular relationship between the second pixel and the first pixel is that a large sub-pixel of the same color (the third color in FIG. 2 ) is set below the small sub-pixel of the pixel above it (ie, the first pixel), and the large sub-pixel above it (the third color in FIG. 2 ) is set.
  • Small sub-pixels of the same color (the first color in FIG. 2 ) are arranged below the sub-pixels, and small sub-pixels (the second color in FIG. 2 ) different from the above two colors are arranged in the sub-regions below the small sub-pixels.
  • the lower pixels are set with the same pattern.
  • a second-color large sub-pixel is arranged below the second-color small sub-pixel of the second pixel
  • a third-color small sub-pixel is arranged below the third-color large sub-pixel of the second pixel, and further below the small sub-pixel
  • the first color small sub-pixel is set in the sub-region of .
  • each pixel includes sub-pixels of three colors arranged in one area and two sub-areas, respectively.
  • adjacent pixels have adjacent sub-pixels of the same color.
  • each pixel includes sub-pixels of three colors.
  • the sub-pixels of each color in the scheme of the present disclosure are displayed in true color (Real RGB), and the display effect is good.
  • the luminous intensity can be controlled by adjusting the independent driving unit of each sub-pixel to solve the problem of different sub-pixel areas.
  • each large subpixel is aligned with the small subpixels of the same color, forming a "strip" in the first direction.
  • the luminescent material layers in the large sub-pixels in one strip and the small sub-pixels at both ends can be formed through the same mask opening.
  • Each strip is surrounded by strips of other colors.
  • a second color strip in the right repeating unit is shown by a dot-dash box in FIG. 2, which includes a large sub-pixel in the middle and small sub-pixels above and below it, belonging to the third, second and fourth pixels, respectively. None of the subpixels around the strip are of the second color. There is sufficient distance between each stripe and its adjacent stripes of the same color, which is extremely advantageous for luminescent material deposition through a mask.
  • FIG. 2 is only a schematic diagram of a pixel arrangement structure. In the figure, two small subpixels in the same region are drawn next to each other. However, there can be gaps between them.
  • the luminescent material in one strip of the present disclosure is deposited continuously, therefore, in order to be divided into three pixels, the pixel electrode structure needs to be arranged.
  • 3 shows a cross-sectional view of a pixel structure according to an embodiment of the present disclosure.
  • FIG. 3 shows a schematic cross-sectional view A-A' of the marked second color strip in an embodiment of the display panel having the pixel arrangement shown in FIG. 2 .
  • the figure indicates the X direction, that is, the left side of FIG. 3 corresponds to the upper side in FIG. 2 , and the right side corresponds to the lower side of FIG. 2 .
  • a pixel arrangement structure is formed on the TFT substrate.
  • the TFT substrate is schematically and schematically represented in FIG. 3 , and includes, for example, a bottom layer 1 , a thin film transistor TFT and other film layers 2 , and may have a conventional structure.
  • TFT 1 is the TFT for the second color small sub-pixel of the first region of the fourth pixel in the strip of FIG.
  • TFT 2 is the TFT for the first region of the third pixel
  • TFT 1 is the TFT of the small sub-pixel of the second color in the first area of the second pixel
  • TFT 4 is the small sub-pixel of the first color of the first area of the second pixel.
  • the details of the TFT are not shown, which may conventionally include source, drain, gate and semiconductor layers and the like.
  • the bottom layer may include a base layer, a buffer layer, a reflective layer, and the like, and other film layers may include an interlayer dielectric layer, an insulating layer, and the like.
  • a planarization layer 3 may be formed on the TFT substrate, and the anode 4 is connected to the drain electrode of the TFT through a through hole in the planarization layer.
  • Five anodes are depicted, serving as pixel electrodes in the first region of the second pixel, the third pixel, and the fourth pixel in FIG. 2, respectively.
  • the pixel defining layer 5 is formed.
  • the pixel-defining layer is an insulating material for defining the range of each sub-pixel.
  • the luminescent material layers 61 , 62 , 63 of the first color, the second color and the third color may be deposited, respectively, using a mask.
  • a common cathode 7, and a package structure 8, such as a cover plate, are formed.
  • a carrier injection/carrier transport layer, etc. may also be formed before or after the formation of the light emitting material layer. These conventional layers are not shown in FIG. 3 for simplicity. It should also be understood that the display panel may also have conventional structures such as a color filter layer, a black matrix, and a protective layer. These conventional structures are also not shown in FIG. 3 for simplicity.
  • the pixel arrangement structure of the present disclosure can allow a large sub-pixel of the same color and a small sub-pixel whose two sides are aligned with it to share a continuous layer of luminescent material.
  • the second color light-emitting material layer 62 is used for TFT 1 , TFT 2 and TFT 3 at the same time.
  • the luminescent material layer is continuous, the luminescent material layer at the pixel defining layer does not emit light due to the presence of the pixel defining layer.
  • the crosstalk of the sub-pixels of the same color is only limited within the strip, and will not exceed the range of the strip.
  • the other sub-pixels of the second color in FIG. 2 are completely separated from the strip and are not affected by it. Therefore, high display quality can be ensured.
  • connection between the driving unit and the pixel electrode in FIG. 3 is only schematic.
  • the TFT driving electrodes may not be located directly under the pixel anode, but may be located at other appropriate positions and connected with the pixel anode through wires.
  • the luminescent material layer of the pixel arrangement structure of the present disclosure adopts stripe distribution, which is particularly beneficial to the process of depositing the luminescent material layer by using a mask. This is because the masks used to form the pixel arrangement of the present disclosure have several distinct advantages over masks of conventional pixel arrangements.
  • FIG. 4( a ) schematically shows a partial opening shape of a mask for forming the organic light-emitting layer of the second color band of FIG. 2 .
  • FIG. 4( b ) shows a mask used to prepare the strip openings of FIG. 1 .
  • the staggered mask opening design of the present disclosure can also prevent "mask wrinkling." Since the mask opening in Figure 4(b) is a plurality of parallel columns, its strength is affected in the direction perpendicular to the columns. The mask as shown in Fig. 4(b) clearly forms a region where the intensity fluctuates in the lateral direction, and it is easy to form wrinkles when pressed. The longer the openings, or the smaller the spacing between the openings in the longitudinal direction, the more pronounced the effect. Therefore, not only for large-area display panels, but also for small-area display panels, the risk of wrinkling also results in that the length of the openings must be limited, so that there must be a larger spacing between the openings that affects the resolution.
  • the pixel arrangement structure of the present disclosure in FIG. 4( a ) makes the mask openings discontinuous in the longitudinal direction and also arranged at intervals in the lateral direction, which greatly improves the lateral strength of the mask and prevents the occurrence of wrinkles. As a result, the requirements for the mask process level are also reduced, which can greatly simplify the process and reduce the cost.
  • a strip of luminescent material of one color can be shared by three adjacent pixels.
  • Each pixel still has three-color sub-pixels for Real RGB true color display.
  • mask deposition is used to form strips of luminescent material, higher resolution can be obtained with the same mask accuracy, or the mask accuracy requirement can be reduced with the same resolution.
  • the strips of luminescent material limit the lateral crosstalk to only the range of three sub-pixels, ensuring display quality.
  • the resolution of the pixel arrangement may be above 250ppi, preferably above 320ppi, more preferably above 400ppi, preferably up to 600ppi.
  • the resolution of the pixel arrangement of the present disclosure can be much greater than 300 ppi.
  • the specific resolution is not only related to the size of the same-color luminescent material deposited through the mask, but also can be adjusted by the pixel-defining layer width (PDL gap), specific process parameters, and the like.
  • the distance between adjacent pixels in the first direction is in the range of 10-35 ⁇ m.
  • the spacing between large sub-pixels and small sub-pixels of the same color of adjacent pixels can be reduced to within this range.
  • the closest distances of sub-pixels of the same color in different regions are in the range of 10-35 ⁇ m.
  • a staggered arrangement is adopted. Therefore, there is sufficient distance between sub-pixels of the same color in different regions in the first direction, which enables them to have a smaller distance in the second direction. For example, as shown in FIG.
  • a second pixel is also arranged below the sub-pixel of the first color in the first area of the second pixel and above the sub-pixel of the first color in the second area of the third pixel
  • the second color sub-pixel in the first area and the third color sub-pixel in the second area of the third pixel have a sufficiently large distance in the first direction. At this time, even if the distance between the first region and the second region is small, the two do not affect each other, and a high-specification mask is not required. On the contrary, if the RGB pixel repeating unit similar to FIG.
  • the first area and the second area may be of equal size, and the first sub-area and the second sub-area may also be of equal size.
  • the same mask can be used for the evaporation of luminescent materials of three colors at the same time, and there is no need to provide a separate mask for each color, thereby simplifying the process and reducing the cost.
  • the areas of the first area, the second area, the first sub-area, and the second sub-area can also be appropriately adjusted as required.
  • the light-emitting areas of the first region and the second region are different, or the light-emitting areas of the first sub-region and the second sub-region are different. More preferably, the light-emitting area may be specifically set for eighteen sub-pixels of six pixels.
  • RGB light-emitting materials have different light-emitting capabilities, usually blue light-emitting materials are weaker, and green light-emitting materials are the strongest.
  • the first color, the second color and the third color are red, green and blue, respectively, in the first region and the In the second area of the second, fourth and sixth pixels, the area of the blue sub-pixel is larger than that of the red sub-pixel and the area of the green sub-pixel is larger, and in the first and second sub-areas of the first to sixth pixels, The blue sub-pixel area is larger than the red sub-pixel area is larger than the green sub-pixel area.
  • the area of the blue sub-pixel is set to be the largest, the area of the green sub-pixel is set to be the smallest, and the area of the red sub-pixel is set in the middle.
  • a mask with a larger opening may be selected for the blue light-emitting material, and a mask with a smaller opening may be selected for the green light-emitting material.
  • the subpixels of the same color have the same length in the second direction.
  • a large subpixel has the same "width" as the small subpixels of the same color on either side of it. This facilitates the formation of strips of luminescent material of constant width using a mask with rectangular openings.
  • sub-pixels of the same color can also be designed to have different widths, but this may require higher mask opening processing.
  • sub-pixels of different colors have different lengths in the second direction.
  • the first, second and third color sub-pixels of the first region in the first, third and fifth pixels may have different lengths. This achieves the difference in the area of sub-pixels of different colors.
  • the openings differ only in the first direction, while remaining the same in the second direction. That is, the subpixels all have the same width but different lengths. In this way, the sub-pixel area is adjusted only by the length in the first direction.
  • Figure 5(a) shows an embodiment where the lengths of the RGB strips vary. It can be seen that the final display area of each area and each sub-area of a pixel can be adjusted by, for example, a pixel-defining layer.
  • Figure 5(b) shows, from left to right, the opening sizes of the masks used to deposit blue, red, and green light-emitting material layers when forming the pixel arrangement of Figure 5(a). That is, the blue stripes can be deposited from the mask with the longest openings, and the green strips can be deposited from the mask with the shortest openings.
  • the blue sub-pixel is the longest and the green sub-pixel is the shortest. However, all subpixels have the same width.
  • the sub-pixel layout factors should be taken into consideration when actually driving the six pixels.
  • the driving parameters can be appropriately set so that the overall luminous intensity of the first color sub-pixel in the first pixel is the same as the first color in the second pixel.
  • the overall luminous intensity of the sub-pixels is close, although the area of the former is larger than that of the latter.
  • the pixel arrangement structure of the present disclosure can form a higher resolution display panel with a lower specification mask, and each pixel includes three-color sub-pixels to achieve true color. show.
  • the present disclosure also provides a display panel having the above pixel arrangement structure, wherein sub-pixels of the display panel include opposite pixel electrodes and a luminescent material layer and a pixel defining layer located between the pixel electrodes, wherein in all In the first direction, the luminescent material layers of adjacent sub-pixels of the same color are continuous.
  • a display panel having the above pixel arrangement structure, wherein sub-pixels of the display panel include opposite pixel electrodes and a luminescent material layer and a pixel defining layer located between the pixel electrodes, wherein in all In the first direction, the luminescent material layers of adjacent sub-pixels of the same color are continuous.
  • FIG. 3 A schematic diagram can be seen in Figure 3.
  • the total aperture ratio of the pixels in the display area can reach more than 20%, preferably more than 22%, more preferably more than 24% .
  • the total aperture ratio of the display panel with the pixel arrangement of FIG. 1 is about 15% at the highest.
  • the light-emitting area of a sub-pixel is determined by the pixel structure.
  • the sub-pixels are defined by the overlapping regions of the pixel electrodes and the luminescent material layers within the regions defined by the pixel-defining layers.
  • the layer of luminescent material defines the largest possible luminescent area. The position where the luminescent material layer does not exist cannot emit light.
  • the real light-emitting area is also limited by the pixel electrode and the pixel defining layer. Only in the overlapping portion of the pixel electrode and the luminescent material layer, that is, the overlapping portion of the pixel anode and the pixel cathode luminescent material layer, it is possible to provide sufficient carrier luminescence.
  • the pixel anode cannot provide carriers to the luminescent material layer, and cannot emit light.
  • the desired pixel arrangement can be obtained by appropriately designing and adjusting the dimensions of the pixel electrode, the rate limiting layer and the luminescent material layer.
  • the arrangement of sub-pixels in the repeating unit is not uniform in area, so each sub-pixel needs an independent driving unit.
  • the driving units of the sub-pixels of the first color are arranged along a first column in the first direction, and the driving units of the sub-pixels of the second color are arranged in the first column. are arranged along the second column in one direction, the driving units of the third color sub-pixels are arranged along the third column in the first direction, wherein the first column, the second column and the third column are arranged in the first column. Stagger in both directions.
  • the driving units (eg, TFTs) of the sub-pixels are not arranged at corresponding positions of the sub-pixels, but are arranged in color columns.
  • FIG. 6 shows a drive unit arrangement that may be used with the embodiment shown in FIG. 2 .
  • the position of the circle indicates the approximate position of the driving unit of the corresponding sub-pixel in the top view.
  • the driving unit may be located in the TFT substrate below the pixel anode.
  • the driving units of the sub-pixels of the same color are all arranged along the first direction, and are staggered in columns in the second direction and arranged in turn.
  • the driving unit is then connected to the anode of each sub-pixel through a line. This layout facilitates the routing of data lines to input data signals to the driving unit.
  • the pixel arrangement structure of the present disclosure is generally applicable to any form of display panel because it can realize Real RGB true color display.
  • the pixel arrangement of the present disclosure is particularly suitable for a display panel in which a mask is used to form a luminescent material layer in the process of forming the pixel arrangement.
  • the display panel of the present disclosure may be an organic light emitting diode (OLED) display panel.
  • the display panel of the present disclosure may also be a quantum dot light emitting diode (QLED) display panel.
  • Display panels of the kind described above are particularly suitable for the deposition of layers of luminescent materials through masks.
  • the display panel of the present disclosure can achieve high resolution, and can be a sub-millimeter light emitting diode (mini LED) display panel or a micron light emitting diode (micro LED) display panel.
  • the present disclosure also provides a display device including the above-mentioned display panel.
  • a display device including the above-mentioned display panel.
  • Such a display device has the same advantages as the above-mentioned pixel arrangement structure and display panel, which will not be repeated here.
  • the present disclosure also provides a method of fabricating the above-mentioned display panel, the method comprising depositing a continuous layer of light-emitting material of the same color using a mask having staggered openings.
  • the staggered openings correspond to strips of the same color continuous layer of luminescent material.
  • the staggered openings allow higher resolution to be achieved at the same mask process level.
  • the same mask can be used to prepare light-emitting material layers of different colors.
  • different colors of luminescent material layers may be deposited using masks with different opening sizes and/or different opening pitches. That is, one mask is designed and prepared for the sub-pixels of the three colors, respectively.
  • Figure 5(b) schematically shows openings with different lengths for different color designs. Such openings can be provided in the mask of the structure shown in Figure 4(a).
  • the strips of luminescent material in the pixel arrangement shown in FIG. 1 are deposited.
  • the wall width of the pixel-defining layer is about 22 ⁇ m
  • the total pixel aperture ratio of the pixels in the pixel arrangement shown in FIG. 1 formed by the mask of FIG. 4(b) made with the current mask level is about 15 %
  • the area ratio of blue, green, and red is about 2.2:1.4:1.
  • the final display panel has a resolution of about 216ppi.
  • the mask of FIG. 4( a ) was used to deposit strips of luminescent material in the pixel arrangement shown in FIG. 2 .
  • the wall width of the pixel-defining layer is about 22 ⁇ m
  • the total pixel aperture ratio of the pixels in the pixel arrangement shown in FIG. 2 formed by the mask of FIG. 4( a ) made with the current mask level reaches about 23 ⁇ m. %, up to about 1.5 times that of the comparative example.
  • the final display panel has a resolution of about 326ppi.
  • Each sub-pixel is driven by an active matrix and Real RGB display algorithm.
  • the pixels of the display panel of the present disclosure do not need to share data lines or share sub-pixels. After power-on, a uniform color display is achieved.
  • the embodiments of the present disclosure can make a high-resolution display panel under the same mask level, and can realize true color display.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本公开提供一种像素排布结构,其具有由依次排列在第一方向上的六个像素组成的重复单元,其中每个像素都由排列在第二方向上的第一区和第二区组成,六个像素的第一区和第二区分别在第一方向上对齐,其中,第一、第三和第五像素的第二区以及第二、第四、第六像素的第一区均由排列在第一方向上的第一子区和第二子区组成,其中,每个像素中包括分别布置在一个区和两个子区中的三种颜色的子像素。在第一方向上,相邻像素具有相邻的同色的子像素。本公开还提供具有该像素排布结构的显示面板及其制备方法。

Description

像素排布结构、显示面板及其制备方法 技术领域
本公开涉及显示技术领域,特别涉及像素排布结构、显示面板及其制备方法。
背景技术
近年来,发光二极管(LED)型显示面板受到人们的广泛关注。典型地,在发光二极管显示面板中,设置用于发出不同颜色的发光材料层,以形成各种颜色的子像素。可以通过利用掩模,如高精度金属掩模(FMM),进行发光材料层的沉积。通过图案化的掩模开口将发光材料沉积到基板上,从而形成想要的像素排布结构。
随着人们对显示效果要求日益严格,以及技术的发展,对高分辨率显示面板的需求日益明显。不过,在沉积法形成显示面板的工艺中,像素分辨率受到掩模的制约。
概述
在一个方面,本公开提供一种像素排布结构,其中,所述像素排布结构包括由在第一方向和与所述第一方向垂直的第二方向上重复排列的重复单元组成的阵列,
其中所述重复单元由依次排列在所述第一方向上的第一、第二、第三、第四、第五和第六像素组成,
其中所述第一至第六像素中的每个都由排列在所述第二方向上的第一区和第二区组成,所述第一至第六像素的第一区和第二区分别在所述第一方向上对齐,其中,所述第一、第三和第五像素的第二区以及所述第二、第四、第六像素的第一区均由排列在所述第一方向上的第一子区和第二子区组成,
其中,
在所述第一像素中,其第一区为第一色子像素,其第二区的第一子区为第二色子像素,且其第二区的第二子区为第三色子像素;
在所述第二像素中,其第一区的第一子区为所述第一色子像素,其第一区的第二子区为所述第二色子像素,且其第二区为所述第三色子像素;
在所述第三像素中,其第一区为所述第二色子像素,其第二区的第一子区为所述第三色子像素,且其第二区的第二子区为所述第一色子像素;
在所述第四像素中,其第一区的第一子区为所述第二色子像素,其第一区的第二子区为所述第三色子像素,且其第二区为所述第一色子像素;
在所述第五像素中,其第一区为所述第三色子像素,其第二区的第一子区为所述第一色子像素,且其第二区的第二子区为所述第二色子像素;
在所述第六像素中,其第一区的第一子区为所述第三色子像素,其第一区的第二子区为所述第一色子像素,且其第二区为所述第二色子像素。
可选地,所述像素排布结构的分辨率为250ppi以上。
可选地,在所述第一方向上,相邻像素的距离在10-35μm的范围内。
可选地,在所述第二方向上,不同区的同色子像素的最近距离在10-35μm的范围内。
可选地,在至少一个像素中,所述第一区和所述第二区的发光面积不同,或所述第一子区和所述第二子区的发光面积不同。
可选地,所述第一色、第二色和第三色分别为红色、绿色和蓝色,
在所述第一、第三和第五像素的第一区和第二、第四、第六像素的第二区中,蓝色子像素面积大于红色子像素面积大于绿色子像素面积,
在所述第一至第六像素的第一和第二子区中,蓝色子像素面积大于红色子像素面积大于绿色子像素面积。
可选地,同色子像素在所述第二方向上的长度相同。
可选地,至少两个不同色的子像素在所述第二方向上的长度不同。
在另一个方面,本公开提供一种具有上述像素排布结构的显示面板,所述显示面板的子像素包括相对的像素电极以及位于所述像素电极之间的发光材料层和像素限定层,其中,在所述第一方向上,相邻的同色子像素的发光材料层是连续的。
可选地,显示区中像素总开口率为20%以上。
可选地,所述子像素在像素限定层限定的区域内由像素电极与发光材料层的重叠区域限定。
可选地,所述重复单元中,所述第一色子像素的驱动单元在所述第一方向上沿第一列排列,所述第二色子像素的驱动单元在所述第一方向上沿第二列排列,所述第三色子像素的驱动单元在所述第一方向上沿第三列排列,其中所述第一列、第二列和第三列在所述第二方向上错开。
可选地,所述显示面板是有机发光二极管显示面板或量子点发光二极管显示面板。
可选地,所述显示面板是次毫米发光二极管显示面板或微米发光二极管显示面板。
在还另一个方面,本公开提供一种显示装置,所述显示装置包含上述显示面板。
在还另一个方面,本公开一种制备上述显示面板的方法,所述方法包括,使用具有交错的开口的掩模沉积同色的连续的发光材料层。
可选地,使用不同开口尺寸和/或不同开口间距的掩模沉积不同颜色的发光材料层。
附图说明
图1示出了一种常规的RGB像素排布结构。
图2示出了根据本公开的一种实施方案的RGB像素排布结构。
图3示出了根据本公开的一种实施方案的像素结构的截面图。
图4(a)和(b)示出了本公开所用掩模与已有掩模。
图5(a)和(b)示出了根据本公开的一种实施方案的RGB像素排布结构和所用掩模开口示意图。
图6示出一种实施方案中驱动单元的排布位置。
具体实施方式
典型的像素排布结构是以单个像素为重复单元。作为重复单元的像素在相互垂直的第一方向和第二方向上重复排列,形成阵列。在每个像素中,包含三种颜色的子像素,如红绿蓝(R、G、B)子像素。在第一方向上,一种颜色的子像素重复排列。在第二方向上,三种颜色的子像素轮流排列。
图1示出了一种这样的常规的RGB像素排布结构。图中左上方的虚 线框示出了该像素排布的重复单元,其是一个像素。像素在第一方向X和第二方向上重复排列。图1中示出了4×2个像素。每个像素包含RGB子像素各一个。在X方向上,一种颜色的子像素重复排列。在Y方向上,RGB子像素轮流排列。
在本公开中,使用序数词“第一”、“第二”等仅是为了区分相同名称的不同特征的需要,而不是对表示特征进行任何其他限定。
在本公开中,为了方便,第一方向和第二方向有时也分别称为列方向和行方向,或者有时称为X方向和Y方向。应当理解,这只是用于描述方便的目的。X与Y或列与行均可以对调,不对技术方案造成实质影响。
在发光二极管型显示面板中,相对的像素电极与位于其间的发光材料层以及可选的载流子注入层、载流子传输层等形成二极管结构,从像素电极向发光材料层提供载流子实现像素的发光。为了图1所示的像素排布结构设计,可以通过掩模向每个子像素区域沉积发光材料层。此时,子像素大小受掩模精度的制约。掩模开口之间的部分会对有机材料层的沉积路径造成遮挡,使得不同开口沉积的有机材料层之间具有间距。因为在间距区不存在发光材料,因此该区不可能发光。因此,为了提高分辨率,需将在X方向上相邻的同种颜色的子像素的发光材料层之间的间距尽量减小。这要求掩模的相应遮挡部随之变窄。然而。由于掩模因材料性能和制备工艺存在尺寸极限,不能随意变窄,因此难以进一步提高分辨率。目前,分辨率很难突破300ppi。
为了克服掩模开口之间的遮挡部无法沉积发光材料的问题,可以考虑将掩模设计为一个开口对应一列子像素。即沉积连续的大面积的发光材料层的条带,用于形成多个子像素。此时,可以通过在子像素之间设置像素限定层等方式,使得各个子像素的实际发光区域分开。例如,预先在子像素之间形成凸起的像素限定层,随后形成覆盖一列所有子像素的发光材料层,以将每个子像素的发光区域限定在像素限定层围成的区域内。不过,整列子像素由一个掩模开口形成对于掩模水平要求过高,基本不可能用于形成较大面积的显示面板。此外,这一方案还难以避免载流子在发光材料层内的横向串扰。一个子像素点亮时,可能会影响到其周围数个子像素范围内的发光材料层,从而影响显示品质。
本公开提出了一种新的像素排布结构,对像素排布方式进行优化,至少部分解决了上述由于掩模限制分辨率的问题。本公开的像素排布结构可以在取得优异显示效果的同时,又可以提高像素的开口率,提高分辨率。
在一个实施方案中,本公开提供了一种像素排布结构,其中,所述像素排布结构包括由在第一方向和与所述第一方向垂直的第二方向上重复排列的重复单元组成的阵列,
其中所述重复单元由依次排列在所述第一方向上的第一、第二、第三、第四、第五和第六像素组成,
其中所述第一至第六像素中的每个都由排列在所述第二方向上的第一区和第二区组成,所述第一至第六像素的第一区和第二区分别在所述第一方向上对齐,其中,所述第一、第三和第五像素的第二区以及所述第二、第四、第六像素的第一区均由排列在所述第一方向上的第一子区和第二子区组成,
其中,
在所述第一像素中,其第一区为第一色子像素,其第二区的第一子区为第二色子像素,且其第二区的第二子区为第三色子像素;
在所述第二像素中,其第一区的第一子区为所述第一色子像素,其第一区的第二子区为所述第二色子像素,且其第二区为所述第三色子像素;
在所述第三像素中,其第一区为所述第二色子像素,其第二区的第一子区为所述第三色子像素,且其第二区的第二子区为所述第一色子像素;
在所述第四像素中,其第一区的第一子区为所述第二色子像素,其第一区的第二子区为所述第三色子像素,且其第二区为所述第一色子像素;
在所述第五像素中,其第一区为所述第三色子像素,其第二区的第一子区为所述第一色子像素,且其第二区的第二子区为所述第二色子像素;
在所述第六像素中,其第一区的第一子区为所述第三色子像素,其第一区的第二子区为所述第一色子像素,且其第二区为所述第二色子像素。
图2示出了根据本公开的一种实施方案的RGB像素排布结构。图2中,第一方向表示为X方向,即向下的列方向;第二方向表示为Y方向,即向右的行方向。
图2中示出了两个在Y方向排列的重复单元。可以理解,重复单元在 显示面内在行列方向上均重复排列,从而组成形成阵列,以实现显示。
在图2的左侧用较大的虚线框指示了一个重复单元,其由依次排列在所述第一方向上的第一、第二、第三、第四、第五和第六像素组成。
如图2中所示,在一个重复单元中,由上至下为第一至第六像素,各自用较小的虚线框指示。
每个像素都由排列在Y方向上的第一区和第二区组成。第一至第六像素的第一区和第二区分别在X方向上对齐,其中,所述第一、第三和第五像素的第二区以及所述第二、第四、第六像素的第一区均由排列在X方向上的第一子区和第二子区组成。
如图2中所示的第一像素具有左侧的第一区和右侧的第二区。同样,第二至第六像素也都具有左侧的第一区和右侧的第二区。全部第一区在X方向上对齐,全部第二区也在X方向上对齐。
具体地,第一、第三和第五像素的第二区和第二、第四、第六像素的第一区均由两个子区组成。这样,每个像素具有一个整体的区和一个由两个子区组合的区。整体区和组合区交错排列。
在本公开中,交错排列是指在第一方向上相邻的要素之间,存在沿第二方向平移的同种要素。例如,第一像素和第三像素的整体区(即第一像素的第一区和第三像素的第一区)之间,存在沿第二方向平移的整体区(即第二像素的第二区)。
本公开中,每个像素都含有三种颜色的子像素,即第一色、第二色和第三色子像素。同时具有三色子像素的像素可以满足真彩色显示的需要。三种颜色的子像素的实例包括RGB子像素。不过,在第一至第六像素中,子像素的具体形式和排布方式不同。
在第一像素中,第一区为第一色子像素。在图2中,第一色子像素用I表示,该第一色子像素占据左侧的第一区。此外,第二区的第一子区为第二色子像素,用II表示,其第二子区为第三色子像素,用III表示。第二色和第三色子像素分别只占据一个子区。在本公开中,有时将占满一个区的子像素为大子像素,而将仅占据一个子区且与另一色子像素组成一个区的子像素称为小子像素。这样,在第一像素中,左侧为第一色大子像素,右侧为第二色和第三色小子像素。
第一像素中第一像素下方的第二像素的子像素设置与第一像素不同。其由右侧的第三色大子像素和左侧的第一和第二色小子像素组成。第二像素与第一像素之间的规律关系为,在其上方像素(即第一像素)的小子像素下方设置同色的大子像素(图2中为第三色),并且在其上方的大子像素下方设置同色的小子像素(图2中为第一色),进而在该小子像素下方的子区中设置与上述两种颜色不同的小子像素(图2中为第二色)。
以相同规律设置下方的像素。在第三像素中,在第二像素的第二色小子像素下方设置第二色大子像素,在第二像素的第三色大子像素下方设置第三色小子像素,进而在该小子像素下方的子区中设置第一色小子像素。
依次设置第四、第五和第六像素后,形成一个重复单元。在X方向上的下一个像素将与第一像素相同。由此,每个像素中包括分别布置在一个区和两个子区中的三种颜色的子像素。在第一方向上,相邻像素具有相邻的同色的子像素。
本公开的像素排布结构中,每个像素都包括三种颜色的子像素。与一些在像素中省略子像素颜色或共用子像素及数据线的像素设计方案相比,本公开的方案各色子像素为真彩色显示(Real RGB),显示效果好。尽管每个像素中大像素与小像素的面积不同,但在实际使用时可以通过调节每个子像素的独立的驱动单元来控制发光强度,以解决子像素面积不同的问题。
本公开的像素排布结构的特点可进一步描述如下。每个大子像素的两端为与其对齐的同色的小子像素,组成一个在第一方向上的“条带”。这样,一个条带内的大子像素与其两端的小子像素中的发光材料层可以通过同一掩模开口形成。而各个条带的周围被其他颜色的条带所围绕。
图2中用点划线框示出了右侧重复单元中的一个第二色条带,其包括中间的大子像素和其上下的小子像素,分别属于第三、第二和第四像素。该条带周围的所有子像素均不是第二色的。每个条带与其附近的相同颜色的条带之间具有充足的距离,这对于通过掩模实施发光材料沉积是极为有利的。
图2仅是像素排布结构的示意图。在图中,同一区中的两个小子像素绘制为紧邻的。不过,它们之间可以具有间隙。
本公开的一个条带中的发光材料是连续沉积的,因此,为了使其分属于三个像素,需要对像素电极结构进行设置。图3示出了根据本公开的一种实施方案的像素结构的截面图。
图3中示出了具有图2所示的像素排布结构的显示面板的一个实施方案中,标出的第二色条带的A-A’截面示意图。图中标明了X方向,即图3的左侧对应于图2中的上方,右侧对应于图2的下方。
如图3所示,在TFT基板上形成像素排布结构。TFT基板在图3中简略且示意性地表示,包括例如底层1,薄膜晶体管TFT以及其他膜层2,可以具有常规的结构。图中示出了4个TFT,其中TFT 1是用于图2的条带中第四像素的第一区的第二色小子像素的TFT,TFT 2是用于第三像素的第一区的第二色大子像素的TFT,TFT 1是用于第二像素的第一区的第二色小子像素的TFT,TFT 4则是用于第二像素的第一区的第一色小子像素的TFT。此处,TFT的细节未示出,其可以常规地包括源、漏、栅极和半导体层等等。此外,底层可以包括基底层、缓冲层、反射层等,其他膜层可以包括层间介电层、绝缘层等等。
在TFT基板上可以形成平坦化层3,并且阳极4穿过平坦化层中的通孔,连接到TFT的漏极。图中绘出了5个阳极,分别用作图2中第二像素、第三像素和第四像素的第一区中的像素电极。
在形成阳极4后,形成像素限定层5。像素限定层是绝缘材料,用于限定各个子像素的范围。随后,可以利用掩模分别沉积第一色、第二色和第三色的发光材料层61、62、63。接着,形成公共阴极7,以及封装结构8,如盖板。
应当理解在形成发光材料层之前或之后,还可以形成载流子注入/载流子传输层等。为了简明,在图3中未示出这些常规膜层。还应当理解,显示面板还可以具有彩膜层、黑矩阵、保护层等常规结构。为了简明,图3中也未示出这些常规结构。
本公开的像素排布结构可以使同色的一个大子像素和其两侧与之对齐的小子像素共用连续的发光材料层。如图3中,第二色发光材料层62同时用于TFT 1、TFT 2和TFT 3。虽然发光材料层连续,但由于像素限定层的存在,在像素限定层处的发光材料层不会发光。此外,同色子像素的串 扰仅局限在该条带内,不会超出该条带的范围。例如,图2中其他的第二色子像素完全与该条带隔开,不会受到其影响。因此,可以保证高显示品质。
应当理解,图3中的驱动单元与像素电极之间的连接仅是示意性的。TFT驱动电极可以并不位于像素阳极的正下方,而是可以位于其他适当位置,并通过导线与像素阳极连接。
本公开的像素排布结构的发光材料层采用条带式分布,特别有利于采用掩模沉积发光材料层的工艺。这是因为用于形成本公开的像素排布结构的掩模相对于常规像素排布结构的掩模具有多个明显优点。
图4(a)示意性地示出了用于形成图2的第二色条带的有机发光层的掩模的局部开口形状。作为对比,图4(b)示出了用于制备图1的具有条状开口的一种掩模。
可以看到,图4(b)中,由于掩模材料和制备工艺精度的限制,其纵向上两个用于沉积同色发光材料的开口之间必须保持一定的间距。在该间距内,无法沉积发光材料,由此限制了像素分辨率。如果为了避免出现此间距将掩模开口设计为贯通整个显示区,从掩模的机械强度上说又是不可接受的。与此相比,适用于本公开的像素排布结构的图4(a)的掩模中,子像素之间的间距则不会受到掩模开口间距的影响。因此,在相同掩模工艺水平的情况下,本公开的像素排布方式不会导致子像素之间必须保持大的间距,从而实现更高的分辨率。
另外,本公开的交错式的掩模开口设计还可以防止“掩模褶皱”。由于图4(b)中的掩模开口为多个平行的纵列,因此其在垂直于纵列的方向上强度受到影响。如图4(b)所示的掩模在横向上明显地形成强度波动变化的区域,在受压时容易形成褶皱。开口越长,或在纵向上开口之间的间距越小,影响越明显。因此,不但对于大面积显示面板来说,即使对于小面积显示面板来说,发生褶皱的风险也导致其开口长度必须受到限制,从而必然出现影响分辨率的较大的开口间的间距。与此相比,图4(a)中本公开的像素排布结构使得掩模开口在纵向上不连续并且在横向上也间隔排布,大幅提高了掩模的横向强度,防止褶皱问题发生。由此,也降低了对掩模工艺水平的要求,可以大幅简化工艺和降低成本。
如上所述,本公开通过设计像素排布结构,使得一个颜色的发光材料条带可以由相邻的三个像素共用。每个像素都仍然具有三色子像素,为Real RGB真彩色显示。当利用掩模沉积形成发光材料条带时,可以在相同的掩模精度下获得更高的分辨率,或者可以在相同的分辨率下降低掩模精度的要求。发光材料条带使得横向串扰仅限制在三个子像素的范围内,保证了显示质量。
在一个实施方案中,像素排布结构的分辨率可以为250ppi以上,优选320ppi以上,更优选400ppi以上,优选多至600ppi。本公开的像素排布结构的分辨率可以远远大于300ppi。具体的分辨率除了与通过掩模沉积的同色发光材料的尺寸有关,还可以由像素限定层壁宽度(PDL gap)、具体工艺参数等调节。
在一个实施方案中,在所述第一方向上,相邻像素的距离在10-35μm的范围内。换言之,相邻像素的同色大子像素和小子像素之间的间距可以降低到此范围内。与此相比,图1的像素排布方案中相邻像素的同色子像素之间的间距难以达到这样小。
在一个实施方案中,在所述第二方向上,不同区的同色子像素的最近距离在10-35μm的范围内。本公开的像素排布结构中采取了交错式排布,因此,不同区的同色子像素之间在第一方向上具有充足的距离,这使得它们在第二方向可以距离更小。例如,如图2所示,由于在第一方向上,第二像素的第一区的第一色子像素下方与第三像素的第二区的第一色子像素上方还布置有第二像素的第一区的第二色子像素和第三像素的第二区的第三色子像素,因此这两个第一色子像素在第一方向上具有足够大的间距。这时,即使第一区和第二区的间距很小,两者也不会互相影响,并且不需要高规格的掩模。相反,如采用类似于图1的RGB像素重复单元,即使试图通过将三色子像素依次平移的方式避免同色子像素在第一方向上连续排布,同色子像素在对角线方向上仍然无法拉开距离,仍需要高规格的掩模。
图2所示的像素排布结构中,第一区和第二区可以是大小相等的,并且第一子区和第二子区也可以是大小相等。在此情况下,可以将同一掩模同时用于三种颜色的发光材料蒸镀,无需为每种颜色提供单独的掩模,从 而简化工艺和降低成本。
但是,为了进一步提高显示质量,也可以根据需要,适当地调节第一区、第二区、第一子区、第二子区的面积。优选地,在至少一个像素中,所述第一区和所述第二区的发光面积不同,或所述第一子区和所述第二子区的发光面积不同。更优选地,可以对六个像素的十八个子像素具体设置发光面积。
常规地,三色子像素采用RGB三色,来实现彩色显示。在当前技术水平下,RGB发光材料的发光能力不同,通常蓝色发光材料较弱,绿色发光材料最强。在此情况下,在一个实施方案中,所述第一色、第二色和第三色分别为红色、绿色和蓝色,在所述第一、第三和第五像素的第一区和第二、第四、第六像素的第二区中,蓝色子像素面积大于红色子像素面积大于绿色子像素面积,在所述第一至第六像素的第一和第二子区中,蓝色子像素面积大于红色子像素面积大于绿色子像素面积。换言之,在一个重复单元的同类子像素中,均将蓝色子像素面积设置为最大,绿色子像素面积设置为最小,红色子像素面积居中。通过设置子像素面积区别,有助于提高显示的均匀性。
相应地,可以为蓝色发光材料选用开口较大的掩模,而为绿色发光材料选择开口较小的掩模。
在一个实施方案中,在一个重复单元中,同色子像素在所述第二方向上的长度相同。或者说,大子像素与其两侧的同色小子像素具有相同的“宽度”。这有利于使用矩形开口的掩模形成宽度不变的发光材料条带。当然,也可以将同色子像素设计为宽度不同,但可能这对掩模开口加工要求更高。
在一个实施方案中,在一个重复单元中,不同色的子像素在所述第二方向上的长度不同。例如,在与图2所示的像素排布结构类似的结构中,第一、第三和第五像素中的第一区的第一、第二和第三色子像素可以具有不同的长度。由此实现不同色子像素面积的不同。
优选地,开口仅在第一方向上有区别,而在第二方向上仍保持相同。即,子像素宽度均相同但长度不同。这样,仅通过第一方向上的长度调节子像素面积。
图5(a)示出了一种由RGB条带长度各不相同的实施方案。可以看到, 像素的每个区和每个子区的最终显示面积是都是可以通过例如像素限定层调节的。在图5(b)中从左到右示出了用于形成图5(a)的像素排布结构时,用于沉积蓝色、红色和绿色发光材料层的掩模的开口大小。即,蓝色条带可以由具有最长开口的掩模沉积,绿色条带可以由具有最短开口的掩模沉积。相应地,同类子像素中,蓝色子像素最长,绿色子像素最短。不过,所有子像素都具有相同的宽度。
由于本公开的重复单元中的六个像素中具体的子像素布局不同,因此,为了更好的显示质量,在对六个像素进行实际驱动时,应将子像素布局的因素考虑在内。例如,为了在图2所示的实施方案中使各像素发出相等强度的白光,可以适当设置驱动参数,使得在第一像素中第一色子像素的总体发光强度与第二像素中第一色子像素的总体发光强度接近,虽然前者的面积大于后者。
与图1的常规像素排布结构相比,本公开的像素排布结构可以以较低规格的掩模形成较高分辨率的显示面板,并且每个像素均包括三色子像素,实现真彩色显示。
本公开还提供了一种具有上述像素排布结构的显示面板,所述显示面板的子像素包括相对的像素电极以及位于所述像素电极之间的发光材料层和像素限定层,其中,在所述第一方向上,相邻的同色子像素的发光材料层是连续的。如上所述,通过形成连续的发光材料条带,可以以较低规格的掩模形成较高分辨率的显示面板。示意图可参见图3。
在一个实施方案中,本公开的显示面板中,在像素限定层壁宽度为22μm的常规工艺条件下,显示区中像素总开口率可达20%以上,优选22%以上,更优选24%以上。相比之下,在相同工艺水平下,具有图1像素排布结构的显示面板的总开口率最高约15%。
在显示面板中,子像素的发光面积是由像素结构决定的。具体地,在本公开的一个实施方案中,子像素在像素限定层限定的区域内由像素电极与发光材料层的重叠区域限定。发光材料层限定了最大的可能发光面积。不存在发光材料层的位置无法发光。不过,真实发光面积还受像素电极和像素限定层的限定。仅在像素电极与发光材料层重叠的部分,即像素阳极、像素阴极发光材料层重叠的部分,才可能充分提供载流子发光。其中,像 素限定层处,像素阳极无法向发光材料层提供载流子,无法发光。可以通过适当地设计和调节像素电极、限速限定层和发光材料层的尺寸,获得所需的像素排布。
本公开中,重复单元中的子像素排布从面积上说不是均匀的,因此每个子像素需要独立的驱动单元。在一个实施方案中,在所述重复单元中,所述第一色子像素的驱动单元在所述第一方向上沿第一列排列,所述第二色子像素的驱动单元在所述第一方向上沿第二列排列,所述第三色子像素的驱动单元在所述第一方向上沿第三列排列,其中所述第一列、第二列和第三列在所述第二方向上错开。
换言之,子像素的驱动单元(例如TFT)不是布置在子像素的对应位置,而是按颜色分列排布。图6示出了图2所示的实施方案可以使用的一种驱动单元排布方式。其中,圆圈位置标示相应子像素的驱动单元的俯视图大致位置。驱动单元可以位于像素阳极下方的TFT基板中。
由此,同一颜色子像素的驱动单元均沿第一方向布置,并且在第二方向上按列错开,轮流布置。驱动单元再通过线路与各子像素的阳极连接。这种布局便于数据线走线,向驱动单元输入数据信号。
本公开的像素排布结构一般地适用于任何形式的显示面板,因为其可以实现Real RGB真彩色显示。本公开的像素排布结构特别适用于在形成像素排布结构过程中使用掩模形成发光材料层的显示面板。在一个实施方案中,本公开的显示面板可以为有机发光二极管(OLED)显示面板。在另一个实施方案中,本公开的显示面板也可以为量子点发光二极管(QLED)显示面板。上述种类的显示面板特别适合于通过掩模进行发光材料层的沉积制备。此外,本公开的显示面板可以达到高分辨率,可以为次毫米发光二极管(mini LED)显示面板或微米发光二极管(micro LED)显示面板。
本公开还提供一种显示装置,其包含上述显示面板。这种显示装置具有与上述像素排布结构和显示面板相同的优点,在此不再赘述。
本公开还提供一种制备上述显示面板的方法,所述方法包括,使用具有交错的开口的掩模沉积同色的连续的发光材料层。交错的开口对应于所述同色的连续的发光材料层的条带。交错的开口使得在相同的掩模工艺水平向可达到更高的分辨率。
当像素排布结构为图2所示的三色子像素尺寸相同的情况下,可以用同一掩模制备不同色的发光材料层。不过,当像素设计为三色子像素尺寸各自不同时,可以使用不同开口尺寸和/或不同开口间距的掩模沉积不同颜色的发光材料层。即,为三种颜色的子像素分别设计和制备一个掩模。图5(b)示意性示出了对于不同颜色设计的开口具有不同长度。这样的开口可以设置在图4(a)所示结构的掩模中。
比较例
采用图4(b)的掩模,沉积图1所示的像素排布结构中的发光材料条带。当像素限定层壁宽度为约22μm时,由目前的掩模水平制得的图4(b)的掩模所形成的图1所示的像素排布结构中像素的总像素开口率为约15%,蓝、绿、红的面积比为约2.2∶1.4∶1。最终制得的显示面板的分辨率为约216ppi。
实施例1
在与比较例相同掩模制备和应用工艺水平下,采用图4(a)的掩模,沉积图2所示的像素排布结构中的发光材料条带。当像素限定层壁宽度为约22μm时,由目前的掩模水平制得的图4(a)的掩模所形成的图2所示的像素排布结构中像素的总像素开口率达到约23%,可达比较例的约1.5倍。最终制得的显示面板的分辨率为约326ppi。
对各个子像素采用有源矩阵以Real RGB的显示算法进行驱动。本公开的显示面板的像素之间无需共用数据线或共用子像素。通电后,实现了均匀的彩色显示。
实施例2
采用与实施例1相同的方式,进一步减小像素限定层壁宽度后,分辨率达到400ppi。
可见,本公开的实施方案可以在相同掩模水平下,制成高分辨率的显示面板,并可实现真彩色显示。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (18)

  1. 一种像素排布结构,其中,所述像素排布结构包括由在第一方向和与所述第一方向垂直的第二方向上重复排列的重复单元组成的阵列,
    其中所述重复单元由依次排列在所述第一方向上的第一、第二、第三、第四、第五和第六像素组成,
    其中所述第一至第六像素中的每个都由排列在所述第二方向上的第一区和第二区组成,所述第一至第六像素的第一区和第二区分别在所述第一方向上对齐,其中,所述第一、第三和第五像素的第二区以及所述第二、第四、第六像素的第一区均由排列在所述第一方向上的第一子区和第二子区组成,
    其中,
    在所述第一像素中,其第一区为第一色子像素,其第二区的第一子区为第二色子像素,且其第二区的第二子区为第三色子像素;
    在所述第二像素中,其第一区的第一子区为所述第一色子像素,其第一区的第二子区为所述第二色子像素,且其第二区为所述第三色子像素;
    在所述第三像素中,其第一区为所述第二色子像素,其第二区的第一子区为所述第三色子像素,且其第二区的第二子区为所述第一色子像素;
    在所述第四像素中,其第一区的第一子区为所述第二色子像素,其第一区的第二子区为所述第三色子像素,且其第二区为所述第一色子像素;
    在所述第五像素中,其第一区为所述第三色子像素,其第二区的第一子区为所述第一色子像素,且其第二区的第二子区为所述第二色子像素;
    在所述第六像素中,其第一区的第一子区为所述第三色子像素,其第一区的第二子区为所述第一色子像素,且其第二区为所述第二色子像素。
  2. 根据权利要求1所述的像素排布结构,其中,所述像素排布结构的分辨率为250ppi以上。
  3. 根据权利要求1所述的像素排布结构,其中,在所述第一方向上,相邻像素的距离在10-35μm的范围内。
  4. 根据权利要求1所述的像素排布结构,其中,在所述第二方向上,不同区的同色子像素的最近距离在10-35μm的范围内。
  5. 根据权利要求1-4中任一项所述的像素排布结构,其中,在至少一个像素中,所述第一区和所述第二区的发光面积不同,或所述第一子区和所述第二子区的发光面积不同。
  6. 根据权利要求5所述的像素排布结构,其中,所述第一色、第二色和第三色分别为红色、绿色和蓝色,
    在所述第一、第三和第五像素的第一区和第二、第四、第六像素的第二区中,蓝色子像素面积大于红色子像素面积大于绿色子像素面积,
    在所述第一至第六像素的第一和第二子区中,蓝色子像素面积大于红色子像素面积大于绿色子像素面积。
  7. 根据权利要求1-4中任一项所述的像素排布结构,其中,同色子像素在所述第二方向上的长度相同。
  8. 根据权利要求1-4中任一项所述的像素排布结构,其中,不同色的子像素在所述第二方向上的长度不同。
  9. 一种具有权利要求1-8中任一项所述的像素排布结构的显示面板,所述显示面板的子像素包括相对的像素电极以及位于所述像素电极之间的发光材料层和像素限定层,其中,在所述第一方向上,相邻的同色子像素的发光材料层是连续的。
  10. 根据权利要求9所述的显示面板,其中,显示区中像素总开口率为20%以上。
  11. 根据权利要求9所述的显示面板,其中,所述子像素在像素限定层限定的区域内由像素电极与发光材料层的重叠区域限定。
  12. 根据权利要求9所述的显示面板,其中,在所述重复单元中,所述第一色子像素的驱动单元在所述第一方向上沿第一列排列,所述第二色子像素的驱动单元在所述第一方向上沿第二列排列,所述第三色子像素的驱动单元在所述第一方向上沿第三列排列,其中所述第一列、第二列和第三列在所述第二方向上错开。
  13. 根据权利要求9-12中任一项所述的显示面板,其中,所述显示面板是有机发光二极管显示面板。
  14. 根据权利要求9-12中任一项所述的显示面板,其中,所述显示面板是量子点发光二极管显示面板。
  15. 根据权利要求9-12中任一项所述的显示面板,其中,所述显示面板是次毫米发光二极管显示面板或微米发光二极管显示面板。
  16. 一种显示装置,所述显示装置包含根据权利要求9至15中任一项所述的显示面板。
  17. 一种制备权利要求9-15中任一项所述的显示面板的方法,所述方法包括,使用具有交错的开口的掩模沉积同色的连续的发光材料层。
  18. 根据权利要求17所述的方法,其中,使用不同开口尺寸和/或不同开口间距的掩模沉积不同颜色的发光材料层。
PCT/CN2021/125493 2021-03-25 2021-10-22 像素排布结构、显示面板及其制备方法 WO2022199003A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/913,274 US20240237457A1 (en) 2021-03-25 2021-10-22 Pixel arrangement structure, display panel and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110323248.1A CN112909068A (zh) 2021-03-25 2021-03-25 像素排布结构、显示面板及其制备方法
CN202110323248.1 2021-03-25

Publications (1)

Publication Number Publication Date
WO2022199003A1 true WO2022199003A1 (zh) 2022-09-29

Family

ID=76108709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/125493 WO2022199003A1 (zh) 2021-03-25 2021-10-22 像素排布结构、显示面板及其制备方法

Country Status (3)

Country Link
US (1) US20240237457A1 (zh)
CN (1) CN112909068A (zh)
WO (1) WO2022199003A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116482931A (zh) * 2023-06-25 2023-07-25 江西兆驰半导体有限公司 用于巨量转移的掩模版及其设计方法、巨量转移方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112909068A (zh) * 2021-03-25 2021-06-04 京东方科技集团股份有限公司 像素排布结构、显示面板及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103123927A (zh) * 2013-01-24 2013-05-29 昆山维信诺显示技术有限公司 用于oled显示屏的像素结构及其金属掩膜板
CN111383542A (zh) * 2018-12-29 2020-07-07 广东聚华印刷显示技术有限公司 像素结构和显示面板
CN112909068A (zh) * 2021-03-25 2021-06-04 京东方科技集团股份有限公司 像素排布结构、显示面板及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103123927A (zh) * 2013-01-24 2013-05-29 昆山维信诺显示技术有限公司 用于oled显示屏的像素结构及其金属掩膜板
CN111383542A (zh) * 2018-12-29 2020-07-07 广东聚华印刷显示技术有限公司 像素结构和显示面板
CN112909068A (zh) * 2021-03-25 2021-06-04 京东方科技集团股份有限公司 像素排布结构、显示面板及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116482931A (zh) * 2023-06-25 2023-07-25 江西兆驰半导体有限公司 用于巨量转移的掩模版及其设计方法、巨量转移方法
CN116482931B (zh) * 2023-06-25 2023-11-21 江西兆驰半导体有限公司 用于巨量转移的掩模版及其设计方法、巨量转移方法

Also Published As

Publication number Publication date
US20240237457A1 (en) 2024-07-11
CN112909068A (zh) 2021-06-04

Similar Documents

Publication Publication Date Title
KR101479994B1 (ko) 유기 발광 표시 장치 및 그 제조 방법
US8183768B2 (en) Organic light emitting display apparatus having pixels with increased aperture ratio
US8330352B2 (en) Organic light emitting diode display and method for manufacturing the same
TWI413448B (zh) 沉積有機電致發光裝置之發光層的方法、製造有機電致發光裝置的方法以及該方法製造的有機電致發光裝置
US8766290B2 (en) Mask assembly and organic light emitting diode display manufactured using the same
WO2018205652A1 (zh) 像素结构及其制作方法、显示基板和显示装置
EP3878017B1 (en) Display substrates and display devices
WO2019041939A1 (zh) 像素结构及包含所述像素结构的显示面板
KR20180076813A (ko) 전계 발광 표시 장치
KR20120025885A (ko) 유기전계발광 표시장치
CN107680990B (zh) 像素排列结构、像素结构、制作方法及显示方法
CN111883559B (zh) 像素排列结构和显示面板
US20220384535A1 (en) Display panel, manufacture method therefor, and display device
KR20190131580A (ko) 픽셀 구조체 및 oled 디스플레이 패널
WO2022199003A1 (zh) 像素排布结构、显示面板及其制备方法
CN105895663A (zh) 一种电致发光显示器件、其制作方法及显示装置
KR101663743B1 (ko) 유기전계발광 표시장치
KR20180076820A (ko) 전계 발광 표시 장치
CN215220728U (zh) 像素排布结构、显示面板和显示装置
CN112701148A (zh) 顶发射显示面板、显示装置及其制作方法
KR101274791B1 (ko) 유기전계발광표시장치 및 그 제조방법
US11398529B2 (en) Display panel and manufacturing method thereof
JP7540880B2 (ja) 有機el表示パネルの製造方法及び機能層形成装置
US20230247882A1 (en) Display panel and display device
CN117693248A (zh) 一种显示面板、制备方法和显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17913274

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21932611

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19/01/2024)

122 Ep: pct application non-entry in european phase

Ref document number: 21932611

Country of ref document: EP

Kind code of ref document: A1