[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022196672A1 - Fe-Si-B系厚板急冷凝固合金薄帯の製造方法 - Google Patents

Fe-Si-B系厚板急冷凝固合金薄帯の製造方法 Download PDF

Info

Publication number
WO2022196672A1
WO2022196672A1 PCT/JP2022/011505 JP2022011505W WO2022196672A1 WO 2022196672 A1 WO2022196672 A1 WO 2022196672A1 JP 2022011505 W JP2022011505 W JP 2022011505W WO 2022196672 A1 WO2022196672 A1 WO 2022196672A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
alloy
rapidly solidified
cooling
roll
Prior art date
Application number
PCT/JP2022/011505
Other languages
English (en)
French (fr)
Inventor
裕和 金清
Original Assignee
Hilltop株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hilltop株式会社 filed Critical Hilltop株式会社
Priority to JP2023507122A priority Critical patent/JPWO2022196672A1/ja
Publication of WO2022196672A1 publication Critical patent/WO2022196672A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/25Magnetic cores made from strips or ribbons

Definitions

  • the present invention relates to a method for producing a rapidly solidified Fe-Si-B thick alloy ribbon.
  • Materials with low iron loss and high saturation magnetic flux density for various passive elements such as inductors and reactors used as electronic components, as well as transformers.
  • Materials with high magnetic permeability and low iron loss compared to electrical steel sheets include iron-based amorphous materials and iron-based nanocrystalline materials, which are soft magnetic materials made mainly of iron (Fe), boron (B), and silicon (Si). materials are known.
  • Fe-Si-B system rapidly solidified alloy ribbons with a thickness of about 17 ⁇ m to 25 ⁇ m, which are produced by the molten metal rapid solidification method using such soft magnetic materials, are used as wound cores for inductors, transformers, etc.
  • Demand is expanding year by year as a substitute for electrical steel sheets.
  • the iron-based amorphous alloy has excellent soft magnetic properties, with iron loss about 1/10 and magnetic permeability more than 3 times that of electromagnetic steel sheets (silicon steel sheets) used as laminated cores for motors. Therefore, in addition to the inductors and transformers described above, it is expected to contribute to the miniaturization and efficiency improvement of motors by using it as a wound iron core for motors.
  • iron-based amorphous alloys with a thickness of about 17 ⁇ m to 25 ⁇ m cannot be punched to form a laminated core, and the lamination factor decreases. It is only applied to motors with
  • Non-Patent Document 1 discloses that the rapid solidification rate is reduced by adding phosphorus (P), and an iron-based amorphous alloy ribbon having a thickness of about 50 ⁇ m can be obtained.
  • P phosphorus
  • the addition of phosphorus not only causes a decrease in the saturation magnetic flux density Bs, but also causes the phosphorus component to volatilize when the alloy is melted, resulting in significant contamination inside and outside the molten metal quenching device. Therefore, there are still few examples of application in the industrial field.
  • Patent document 1 and patent document 2 disclose a quenched alloy ribbon having a thickness (50 ⁇ m or more) that allows punching by a multiple slit method in which molten alloy is discharged from a plurality of slit nozzles onto a rotating cooling roll. is disclosed.
  • Patent Documents 1 and 2 disclose a manufacturing apparatus for mass-producing an iron-based amorphous alloy having such a plate thickness at a low cost while stably maintaining the homogeneity and uniform quality of the amorphous alloy. It does not disclose specifications or operating parameters.
  • Patent Documents 3 and 4 disclose a method of producing an iron-based amorphous alloy with a plate thickness of 30 ⁇ m or more by alternately tapping molten metal from multiple slit nozzles to two cooling rolls.
  • the production equipment used in this method requires two cooling rolls, which not only significantly increases production and running costs, but also greatly affects the plate thickness and quenching conditions of the iron-based amorphous alloy. and control of the gap on the surface of the cooling roll becomes extremely difficult compared to a conventional single roll molten metal quenching apparatus having only one cooling roll.
  • Patent Document 5 discloses a cooling roll used in a single-roll molten metal quenching apparatus for producing an iron-based amorphous alloy having a thickness of 30 ⁇ m or more. There is the problem of getting taller. Further, Patent Document 5 describes increasing the flow rate of cooling water as the thickness of the amorphous foil strip increases, but does not clarify the optimum roll cooling water flow rate. Furthermore, it is recommended that the diameter of the roll be different according to the thickness of the amorphous ribbon. Considering the production efficiency, it is difficult to apply it as a mass-production device.
  • Patent Document 6 discloses a method for producing a thin metal strip that uses a multi-hole nozzle to prevent the thickness of the thin metal strip from becoming non-uniform when producing a wide quenched thin strip.
  • the invention of Patent Document 6 is characterized by the shape of the nozzle opening, but there is a problem that the nozzle processing cost rises due to the difficulty of processing, and it is difficult to use at the mass production level.
  • Patent Document 7 discloses a method of producing a brazing ribbon with a thickness of 50 to 200 ⁇ m using a single-roll molten metal quenching apparatus, but the brazing ribbon obtained by this method is a crystalline Ni-based alloy. Therefore, it does not disclose a technique for producing a rapidly solidified alloy having an amorphous structure with a thickness of about 50 ⁇ m.
  • Patent Document 8 for the purpose of reducing hysteresis loss, which is the main factor of iron loss in a wide amorphous alloy ribbon, an Fe-based amorphous alloy ribbon having wavy unevenness formed on the free surface is produced by a single roll method. is disclosed.
  • Patent Document 8 describes the temperature distribution in the width direction of the molten metal nozzle and the roughness of the chill roll surface, it discloses a manufacturing technology for an iron-based rapidly solidified alloy having an amorphous structure that can be applied to a laminated core. not a thing
  • the Fe-Si-B-based amorphous material that is being applied to transformers, etc. has a thickness of around 20 ⁇ m, which is not at a level that can be used for laminated cores.
  • the prior art that makes it possible to increase the thickness of the Fe-Si-B system amorphous material either invites a decrease in soft magnetic properties or has problems in terms of productivity and cost. Therefore, there is a need for a method of mass-producing alloy ribbons made of Fe-Si-B based amorphous materials that are inexpensive and have high performance, and which can be made thicker from Fe-Si-B based amorphous materials regardless of the alloy composition. , is highly desired in the electronic component market.
  • the present invention provides an Fe-Si-B thick plate rapidly solidified alloy thin strip that can be easily mass-produced at low cost and is suitable for laminated cores of motors and the like.
  • the object is to provide a method for manufacturing an obi.
  • Fig. 6 is a schematic configuration diagram of an apparatus used in a conventional method for producing a rapidly solidified Fe-Si-B alloy ribbon.
  • the molten alloy supplied from the nozzle 52 of the molten metal container 51 to the surface of the cooling roll 54 is rapidly cooled on the cooling roll 54 and then peeled off from the cooling roll 54, resulting in Fe—Si A -B system melt-quenched alloy ribbon is obtained.
  • the molten alloy is rapidly cooled to obtain an amorphous structure so that the molten alloy is quickly passed between the melting point and the glass transition temperature of the alloy so that crystallization does not occur. Since the rapidly solidified alloy that has undergone primary cooling is in a supercooled state, it may recrystallize due to self-heating due to latent heat of solidification.
  • the molten metal is brought into contact with the cooling roll 54 about halfway around because if the rapidly solidified alloy ribbon 55 is separated from the cooling roll 54 immediately after being rapidly solidified, the rapidly solidified alloy ribbon is in a supercooled state. This is to prevent the solidification latent heat of 55 from being released and recrystallization.
  • the distance from the supply position of the molten metal on the surface of the cooling roll 54 to the separation position is increased in this way, the time until the molten metal is resupplied to the separation position by the rotation of the cooling roll 54 becomes shorter. If the molten metal supply rate per hit becomes high, the molten metal is repeatedly supplied to the chill roll 54 in a state where the surface temperature of the chill roll 54 is not sufficiently lowered. As a result, the surface temperature of the cooling roll 54 may rise excessively, making it impossible to continue rapid cooling of the molten metal.
  • the present invention has clarified through various tests the heat removal capacity required of the cooling roll in order to form a rapidly solidified alloy structure that does not recrystallize due to the release of solidification latent heat. That is, the present invention does not complicate the structure of the manufacturing apparatus by clarifying the preferable conditions of the surface speed, curvature, cooling water amount, and cooling water temperature of the cooling roll according to the size of the rapidly solidified alloy ribbon.
  • Fe--Si--B system molten metal quenching alloy ribbons that can be suitably used for laminated cores of motors, etc., can be easily mass-produced at low cost.
  • the object of the present invention is to eject a molten Fe-Si-B alloy essentially containing iron (Fe), boron (B) and silicon (Si) from a tapping nozzle onto the surface of a chill roll,
  • the cooling roll is passed through the cooling roll at a cooling water amount of 0.3 m 3 /min or more and less than 20 m 3 /min, so that the average thickness is 30 ⁇ m or more and less than 70 ⁇ m.
  • This is achieved by a method for producing a rapidly solidified Fe--Si--B thick plate alloy ribbon that has a width of 50 mm or more and less than 200 mm and contains an amorphous alloy structure of 90% by volume or more.
  • the slits of the tapping nozzle have the same length in the range of 45 mm or more and less than 200 mm, and the distance between them is 0.5 mm or more and 5.0 mm. mm, and the distance from the tip of the tapping nozzle to the surface of the cooling roll is preferably 0.15 mm or more and less than 30 mm.
  • the above object of the present invention is achieved by ejecting a molten Fe-Si-B alloy essentially containing iron (Fe), boron (B) and silicon (Si) from a tapping nozzle onto the surface of a chill roll, is rotated at a surface speed of 15 m/sec or more and 50 m/sec or less to quench the molten alloy on the surface of the cooling roll to produce an alloy ribbon, the tapping nozzle is formed with a single slit having a width of 0.5 mm or more and less than 1.5 mm, and the cooling roll has a curvature of 8 ⁇ 10 -4 or more and less than 4.0 ⁇ 10 -3 , and a cooling temperature of 5 ° C or more and less than 60 ° C.
  • the average thickness is 30 ⁇ m or more and less than 70 ⁇ m and the average width is 5 mm or more and less than 50 mm. It is achieved by a method for producing a rapidly solidified Fe--Si--B-based thick-plate, rapidly-solidified alloy ribbon containing at least vol %.
  • the length of the slit of the tapping nozzle is preferably 4 mm or more and less than 50 mm.
  • the distance to the surface is preferably 0.15 mm or more and less than 30 mm.
  • the cooling roll is made of a material containing any one of Cu, Mo or W as a main component, and has a surface arithmetic mean roughness Ra is 10 nm or more and less than 20 ⁇ m, the length is 50 mm or more and less than 400 mm longer than the length of the slit, and the thickness from the surface to the cooling water flow path is preferably 5 mm or more and less than 50 mm.
  • the pressure of the molten alloy ejected from the slit is preferably 2 kPa or more and less than 60 kPa.
  • the molten alloy has a composition formula of T loo-x-y-z-n Q x Si y M n
  • T is at least one element selected from the group consisting of Fe, Co and Ni, and Fe is A transition metal element that must be included
  • Q is one or more elements selected from the group consisting of B and C and must include B
  • M is P, Al, Ti, V, Cr, Mn, Nb, Cu, Zn, Ga, Mo , Ag, Hf, Zr, Ta, W, Pt, Au and Pb)
  • the composition ratio x, y and n are each 5 ⁇ x ⁇ 20 atomic % , 2 ⁇ y ⁇ 15 atomic %, 0 ⁇ n ⁇ 10 atomic %, and the composition ratio C/(B+C) of Q is 0 or more and less than 0.2.
  • amorphous structure with a thickness of 30 ⁇ m or more and less than 70 ⁇ m, which can be used as a laminated core that can be easily applied to motors, etc. It is possible to obtain a rapidly solidified Fe--Si--B-based thick plate alloy ribbon.
  • the above-mentioned Fe-Si-B thick plate rapidly solidified alloy ribbon is processed into a desired shape, and then the laminated iron core is laminated using a method such as resin bonding or caulking. can be obtained.
  • the produced laminated core can be further processed by wire cutting, laser cutting, or the like to obtain split cores that can be used for motors.
  • the rapidly solidified Fe-Si-B thick plate alloy ribbon suitable for laminated cores of motors and the like can be easily produced at low cost. Mass production is possible.
  • FIG. 1 is a schematic configuration diagram of an apparatus used in a method for producing a rapidly solidified Fe—Si—B thick alloy ribbon according to an embodiment of the present invention.
  • FIG. It is an enlarged drawing which shows the principal part of the apparatus shown in FIG. 1, (a) is sectional drawing, (b) is a bottom view.
  • FIG. 1 is a schematic diagram for explaining the details of a method for producing a rapidly solidified Fe—Si—B thick plate alloy ribbon according to an embodiment of the present invention.
  • 2 is an enlarged view showing another essential part of the device shown in FIG. 1, where (a) is a vertical cross-sectional view and (b) is a cross-sectional view taken along the line AA of (a).
  • FIG. 4 is an enlarged view of a main part of an apparatus used in a method for producing a rapidly solidified Fe—Si—B thick alloy ribbon according to another embodiment of the present invention, where (a) is a cross-sectional view and (b) is a bottom view; be.
  • 1 is a schematic configuration diagram of an apparatus used in a conventional method for producing a rapidly solidified Fe—Si—B alloy ribbon.
  • FIG. 1 is an X-ray diffraction pattern of a Fe--Si--B system rapidly solidified alloy ribbon obtained in an example of the present invention.
  • 4 is an X-ray diffraction pattern of a Fe--Si--B system rapidly solidified alloy ribbon obtained in another example of the present invention.
  • 4 is an X-ray diffraction pattern of a Fe--Si--B system rapidly solidified alloy ribbon obtained in still another example of the present invention.
  • 1 is an X-ray diffraction pattern of a Fe--Si--B system rapidly solidified alloy ribbon obtained in a comparative example of the present invention.
  • 4 is an X-ray diffraction pattern of a Fe--Si--B system rapidly solidified alloy ribbon obtained in another comparative example of the present invention.
  • 4 is an X-ray diffraction pattern of a Fe--Si--B system rapidly solidified alloy ribbon obtained in still another comparative example of the present invention.
  • composition formula of the molten alloy used in the method for producing the rapidly solidified Fe—Si—B thick plate alloy ribbon of the present embodiment is represented by T loo-x-y-z-n Q x Si y M n .
  • Q is one or more elements selected from the group consisting of B and C and necessarily containing B;
  • M is one selected from the group consisting of P, Al, Ti, V, Cr, Mn, Nb, Cu, Zn, Ga, Mo, Ag, Hf, Zr, Ta, W, Pt, Au and Pb.
  • composition ratios x, y and n are 5 ⁇ x ⁇ 20 atomic %, 2 ⁇ y ⁇ 15 atomic % and 0 ⁇ n ⁇ 10 atomic %, respectively. Also, the composition ratio C/(B+C) of Q is 0 or more and less than 0.2.
  • the transition metal T which contains Fe as an essential element, accounts for the remaining content of Q, Si, and M. Desired hard magnetic properties can be obtained by replacing part of Fe with one or both of Co and Ni, which are ferromagnetic elements like Fe. However, if the amount of replacement with respect to Fe exceeds 30%, the magnetic flux density will drop significantly, so the amount of replacement is limited to the range of 0% to 30%.
  • the composition ratio x is preferably 7 atomic % or more and less than 19 atomic %, more preferably 8 atomic % or more and less than 19 atomic %.
  • C/(B+C) is 0 or more and less than 0.2, preferably 0 or more and less than 0.15, and more preferably 0 or more and less than 0.1.
  • y should be less than 15 atomic %. Moreover, y is preferably 2 atomic % or more from the viewpoint of improving magnetic permeability. y is more preferably 2.5 atomic % or more and less than 12 atomic %.
  • n improves the productivity during rapid solidification by improving the ability to form amorphous material and refining the rapid solidification metal structure.
  • the composition ratio n of M exceeds 10 atomic %, the saturation magnetic flux density Bs is lowered, so n is limited to 0 atomic % or more and less than 10 atomic %.
  • n is preferably 0 atomic % or more and less than 7 atomic %, more preferably 0 atomic % or more and less than 5 atomic %.
  • FIG. 1 is a schematic configuration diagram of a single-roll molten-metal quenching apparatus used in a method for manufacturing a Fe--Si--B-based thick-plate, quench-solidified alloy ribbon according to one embodiment of the present invention.
  • the melting furnace 2 supplies the molten alloy 3 in which the raw materials are melted to the hot water storage container 5 by rotating the tilting shaft 4 .
  • the hot water storage container 5 is provided with a hot water nozzle 6 at the bottom, and the molten alloy 3 is jetted onto the surface (outer peripheral surface) of the cooling roll 8 from a slit 7 formed at the lower end of the hot water nozzle 6 .
  • the cooling roll 8 is supplied with cooling water to rapidly cool the molten alloy in contact with the surface thereof to form a rapidly solidified alloy ribbon 9 .
  • the slits 7 of the tapping nozzle 6 are multi-slits formed in two rows along the forming direction of the rapidly solidified alloy ribbon 9.
  • the single-roll molten metal quenching device 1 equipped with such a multi-slit is preferably used for producing a Fe-Si-B system thick plate rapidly solidified alloy ribbon having a thickness of 30 ⁇ m or more and less than 70 ⁇ m and a width of 50 mm or more and less than 200 mm. .
  • a rapidly solidified alloy ribbon having such a size is suitable for manufacturing laminated cores applied to, for example, motors for EVs, compressors, generators, and the like.
  • FIG. 2 is an enlarged view showing the tapping nozzle 6 of the device shown in FIG. 1, where (a) is a cross-sectional view and (b) is a bottom view.
  • the width W1 of the slit 7 shown in FIG. 2(a) is set to 0.2 mm or more and less than 1.2 mm. If the width is less than 0.2 mm, the flow of the molten metal passing through the slit 7 is obstructed, increasing the possibility of nozzle clogging. On the other hand, if the width is 1.2 mm or more, the molten metal tapping rate supplied to the cooling rolls becomes too high, and the cooling rolls cannot sufficiently cool the molten metal, so that the desired amorphous structure may not be obtained.
  • the width W1 of the slit 7 is more preferably 0.3 mm or more and less than 1.0 mm, and still more preferably 0.3 mm or more and less than 0.8 mm.
  • the widths W1 of the plurality of slits 7 may be the same or different.
  • the length L1 of the slit 7 shown in FIG. 2(b) is appropriately selected depending on the width of the cooling roll and the core size of the required motor, etc., and is not necessarily limited. While the application field is limited, if the length is 200 mm or more, the molten metal tapping rate supplied to the cooling roll 8 becomes too high, and the cooling roll 8 cannot sufficiently cool the molten metal, so that the desired amorphous structure cannot be obtained. There is a possibility that it will not.
  • the length L1 of the slit 7 is preferably 45 mm or more and less than 200 mm, more preferably 45 mm or more and less than 170 mm, more preferably 45 mm or more and less than 150 mm, in consideration of productivity including running costs and the cost of a single roll molten metal quenching device. preferable.
  • the lengths L1 of the plurality of slits 7 are preferably the same.
  • the depth D1 of the slit 7 shown in FIG. 2(a) is determined based on the thickness of the bottom of the molten metal tapping nozzle 6. If it is less than 2 mm, the strength of the bottom tends to be insufficient. The possibility of nozzle clogging increases due to the decrease in temperature. Therefore, the depth D1 of the slit 7 is preferably 2 mm or more and less than 15 mm, more preferably 3 mm or more and less than 12 mm, and even more preferably 3 mm or more and less than 10 mm in consideration of the stability (straightness) of tapping.
  • the slits 7 are arranged in two rows in the present embodiment, they may be arranged in three or four rows along the direction in which the rapidly solidified alloy ribbon 9 is formed. If the slits 7 are arranged in more than four rows, the total molten metal discharge rate obtained by summing the slits 7 is too large, and the molten metal cannot be sufficiently cooled by the cooling rolls, making it difficult to obtain an amorphous structure. Two or more rows and four rows or less are preferable. Considering the homogeneity of the rapidly solidified structure, the number of slits 7 is more preferably two or more and three or less. Considering the controllability of the molten metal rate and the production efficiency assuming continuous operation, it is more preferable to have two rows. preferable.
  • the interval S1 between the slits 7 shown in FIG. 2(b) is less than 0.5 mm, processing is difficult, while if it is 5 mm or more, it becomes difficult to obtain a rapidly solidified alloy ribbon having a desired thickness. Therefore, the interval S1 between the slits 7 is preferably 0.5 mm or more and less than 5.0 mm. Considering the possibility of the slits falling off when the molten metal is poured, it is preferably 1.0 mm or more and 5.0 mm or less. 1.0 mm or more and 3.0 mm or less is more preferable.
  • the molten metal supplied to the chill roll 8 from the tapping nozzle 6 forms a pool (puddle) on the surface of the chill roll 8, causing a rapid solidification reaction of the molten metal.
  • the distance d is preferably 0.15 mm or more and less than 30 mm.
  • the distance d is more preferably 0.3 mm or more and less than 30 mm, and considering the homogeneity of the rapidly solidified alloy structure, it is more preferably 0.3 mm or more and less than 20 mm.
  • the molten metal supplied to the surface of the cooling roll 8 is cooled by the rotation of the cooling roll 8 from the pouring position P directly below the slit 7 of the tapping nozzle 6 into a rapidly solidified alloy ribbon 9.
  • primary cooling to rapidly cool the molten alloy to a supercooled liquid state
  • secondary cooling to remove the solidification latent heat of the supercooled liquid and prevent recrystallization. is performed.
  • the distance ⁇ s from the pouring position P to the stripping position Q must be sufficient to complete the primary cooling and secondary cooling, but the stripping position Q rotates to the pouring position P again.
  • the rotation angle ⁇ of the cooling roll 8 from the pouring position P to the stripping position Q is a straight line from the pouring position P to the stripping position Q. It is preferable to be as small as possible.
  • ⁇ s can be obtained from the time required for the primary cooling and the secondary cooling.
  • a numerical range of 2R is determined.
  • a preferable value of ⁇ s depends on the size of the rapidly solidified alloy ribbon 9.
  • the cooling roll 8 When obtaining the rapidly solidified alloy ribbon 9 having an average thickness of 30 ⁇ m or more and less than 70 ⁇ m and an average width of 50 mm or more and less than 200 mm, the cooling roll 8
  • the diameter 2R is 1000 mm or more and less than 2500 mm, preferably 1500 mm or more and less than 2500 mm in consideration of the homogeneity of the rapidly solidified alloy structure, and 1500 mm in consideration of the restrictions on the processing equipment of the chill roll manufactured by forging and the manufacturing cost. It is more preferable to be at least 2300 mm or less.
  • the curvature ⁇ of the cooling roll 8 is the reciprocal of the radius R
  • the curvature ⁇ when obtaining the rapidly solidified alloy ribbon 9 having an average thickness of 30 ⁇ m or more and less than 70 ⁇ m and an average width of 50 mm or more and less than 200 mm is 8 ⁇ It is 10 ⁇ 4 or more and less than 2 ⁇ 10 ⁇ 3 , preferably 8 ⁇ 10 ⁇ 4 or more and less than 1.3 ⁇ 10 ⁇ 3 , more preferably 9 ⁇ 10 ⁇ 4 or more and less than 1.3 ⁇ 10 ⁇ 3 .
  • FIGS. 4A and 4B are schematic configuration diagrams showing an example of the cooling roll 8, where (a) is a vertical cross-sectional view and (b) is a cross-sectional view along AA.
  • the cooling water supplied from one end side (IN side) to the rotating shaft 81 of the cooling roll 8 spreads radially along the flow path 82 , cools the entire surface of the cooling roll 8 , and then joins the rotating shaft 81 . It is discharged from the other end side (OUT side).
  • the amount of cooling water is 0.3 m 3 /min or more and less than 20 m 3 /min, and in the single roll molten metal quenching device 1 that can be mass-produced assuming continuous operation, 0.5 m 3 /min or more and less than 20 m 3 /min is preferred, and 0.5 m 3 /min or more and less than 15 m 3 /min is more preferred.
  • the temperature of the cooling water of the cooling roll 8 affects the adhesion between the molten alloy and the cooling roll 8.
  • the temperature of the cooling water is 5° C. or more and less than 60° C., as it may cause failure of the pump that supplies the rolls 8 .
  • the lower limit of the cooling water temperature is particularly important, preferably 15°C or higher and lower than 60°C, more preferably 30°C or higher and lower than 60°C.
  • the adhesion between the molten alloy and the cooling roll 8 is also affected by the material of the cooling roll 8 .
  • the cooling roll 8 is preferably made of a material containing Cu, Mo or W as its main component. materials are preferred.
  • the term "Cu as the main component” includes not only alloys containing more than 50% by mass of Cu, but also pure copper (the same applies to materials containing Mo or W as the main component).
  • the arithmetic mean roughness Ra of the chill roll surface is 10 nm or more and less than 20 ⁇ m, which improves production efficiency and quality.
  • Ra is more preferably 50 nm or more and less than 10 ⁇ m, and still more preferably 100 nm or more and less than 10 ⁇ m.
  • the length L2 in the axial direction of the cooling roll 8 shown in FIG. 4(a) is preferably 50 mm or more and less than 400 mm longer than the length of the slit 7 shown in FIG. 2(b). Taking this into consideration, it is more preferably longer than the slit 7 by 100 mm or more and less than 300 mm, and more preferably 100 mm or more and less than 200 mm.
  • the ability of the cooling roll 8 to remove heat from the molten alloy is also affected by the thickness T2 from the surface of the cooling roll 8 to the flow path 82 shown in FIG. 4(a).
  • the thickness T2 is less than 5 mm, it becomes difficult to maintain the mechanical strength of the chill roll 8, while when the thickness T2 is 50 mm or more, the surface temperature of the chill roll 8 in contact with the molten alloy locally rises above the melting point. As a result, the rapidly solidified alloy may adhere to the surface of the chill roll 8, making it impossible to continue the rapid cooling of the molten metal. Therefore, the thickness T2 of the cooling roll 8 is preferably 5 mm or more and less than 50 mm.
  • the thickness T2 is more preferably 10 mm or more and less than 50 mm in consideration of wear due to roll grinding work after the molten metal quenching process, and more preferably 10 mm or more and less than 40 mm in consideration of operational stability in the molten metal quenching process.
  • the molten alloy ejected from the slit 7 of the tapping nozzle 6 is pressed against the surface of the cooling roll 8 to form a puddle as described above. Since it is difficult to form a desired puddle in the slit 7, the pressure of the molten alloy discharged from the slit 7 is preferably 2 kPa or more and less than 60 kPa. This tapping pressure is more preferably 10 kPa or more and less than 40 kPa, still more preferably 10 kPa or more and less than 30 kPa, in order to generate paddles more stably.
  • the hot water pressure can be adjusted by the head pressure and pressurization force in the hot water storage container 5 shown in FIG.
  • the above description shows preferred apparatus configurations and cooling conditions for producing a rapidly solidified Fe--Si--B thick plate alloy ribbon having an average thickness of 30 ⁇ m or more and less than 70 ⁇ m and an average width of 50 mm or more and less than 200 mm.
  • a rapidly solidified alloy ribbon containing 90% by volume or more of amorphous alloy structure can be obtained.
  • the single roll molten metal rapid cooling device 1 shown in FIG. A single slit nozzle having a single slit 7 is used as the tapping nozzle 6 in FIG.
  • preferable conditions in this case only points different from the above description will be described as follows.
  • the diameter 2R of the chill roll 8 is 500 mm or more and less than 2500 mm, preferably 570 mm or more and less than 2500 mm considering the homogeneity of the rapidly solidified alloy structure. Considering the manufacturing cost, it is more preferably 570 mm or more and less than 1500 mm. That is, the curvature ⁇ of the cooling roll 8 is 8 ⁇ 10 ⁇ 4 or more and less than 4 ⁇ 10 ⁇ 3 , preferably 8 ⁇ 10 ⁇ 4 or more and less than 3.5 ⁇ 10 ⁇ 3 , and 1.3 ⁇ 10 ⁇ 3 or more and 3.5 ⁇ 10 ⁇ Less than 3 is more preferred.
  • the cooling water flow rate is less than 0.05 m 3 /min, it becomes difficult to complete primary cooling and secondary cooling on the surface of the cooling roll 8.
  • the cooling water flow rate is 0.3 m 3 /min or more, 0.05 m 3 /min or more and less than 0.3 m 3 /min is preferable, and 0.05 m 3 /min or more and less than 0.2 m 3 /min is more preferable, because paddles generated during the period become unstable.
  • the width W2 of the slit 7 shown in FIG. 5(a) is set to 0.5 mm or more and less than 1.5 mm. If the width is less than 0.5 mm, the flow of molten metal passing through the slit 7 is obstructed, increasing the possibility of nozzle clogging. On the other hand, if the width is 1.5 mm or more, the molten metal tapping rate supplied to the cooling rolls becomes too high, and the cooling rolls cannot sufficiently cool the molten metal, so that the desired amorphous structure may not be obtained. Considering the workability and accuracy of the slit, the width W2 of the slit 7 is more preferably 0.5 mm or more and less than 1.2 mm, and still more preferably 0.6 mm or more and less than 1.0 mm.
  • the length L2 of the slit 7 shown in FIG. 5(b) is appropriately selected according to the width of the cooling roll and the core size of the required motor, etc., and is not necessarily limited. While the application field is limited, if the length is 50 mm or more, the molten metal tapping rate supplied to the cooling roll 8 becomes too high, and the cooling roll 8 cannot sufficiently cool the molten metal, so that the desired amorphous structure cannot be obtained. There is a possibility that it will not.
  • the length L2 of the slit 7 is preferably 4 mm or more and less than 50 mm, more preferably 7 mm or more and less than 50 mm, more preferably 10 mm or more and less than 50 mm, in consideration of productivity including running costs and the cost of a single roll molten metal quenching device. preferable.
  • the molten alloy in contact with the surface of the chill roll formed a puddle on the surface of the chill roll and was rapidly solidified at the interface between the paddle and the chill roll to obtain a ribbon-shaped rapidly solidified alloy.
  • Table 3 shows the average thickness and average width of this rapidly solidified alloy ribbon.
  • Example 2 is shown in FIG. 7
  • Example 5 is shown in FIG. 8
  • Example 10 is shown in FIG. .
  • Comparative Examples 13-21 as shown in Table 3, the volume ratio of the amorphous structure decreased compared to Examples 1-12 due to insufficient quenching ability.
  • Comparative Example 13 is shown in FIG. 10 and Comparative Example 17 is shown in FIG. 11, respectively.
  • Comparative Example 21 shown in FIG. 12 shows the X-ray diffraction pattern of a rapidly solidified alloy ribbon produced under the same conditions as in Example 10, except for the cooling water temperature of the chill roll.
  • the adhesion between the chill roll and the molten alloy is poor during rapid cooling of the molten metal, and the rapid cooling of the molten metal becomes uneven, resulting in a decrease in the overall molten metal quenching rate, and the ⁇ -Fe (200) on the free surface side exhibits very strong crystallinity. A peak is observed.
  • the rapidly solidified Fe-Si-B thick plate alloy ribbon obtained by the present invention can be suitably used as a low core loss laminated core that can be easily applied to reactors, various motors, generators, and the like.
  • Fe-Si-B amorphous alloys that can be used for laminated cores, which feature low iron loss and high magnetic permeability, at low cost on a mass production scale. can be offered to the market at

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Continuous Casting (AREA)

Abstract

鉄(Fe)、硼素(B)および珪素(Si)を必須とするFe-Si-B系合金溶湯を出湯ノズルから冷却ロールの表面に噴出し、前記冷却ロールを表面速度が15m/sec以上50m/sec以下となるように回転させて、前記冷却ロールの表面上で前記合金溶湯を急冷することにより、合金薄帯を製造する方法であって、前記出湯ノズルは、幅0.2mm以上1.2mm未満のスリットが、合金薄帯の形成方向に沿って2列以上4列以下で形成されており、前記冷却ロールは、曲率が8×10-4以上2×10-3未満であり、5℃以上60℃未満の冷却水を、0.3 m3/min以上20 m3/min未満の冷却水量で前記冷却ロールに通水することにより、平均厚みが30μm以上70μm未満、平均幅が50mm以上200mm未満でアモルファス合金組織を90体積%以上含む急冷凝固合金薄帯を製造する。

Description

Fe-Si-B系厚板急冷凝固合金薄帯の製造方法
 本発明は、Fe-Si-B系厚板急冷凝固合金薄帯の製造方法に関する。
 近年、電子部品として使用されるインダクタやリアクトルといった各種受動素子やトランス向けに、鉄損が低く飽和磁束密度が高い材料が市場から求められている。透磁率が高く鉄損が電磁鋼板に比べて低い材料として、鉄基アモルファス材料や鉄基のナノ結晶材料といった、鉄(Fe)、硼素(B)、珪素(Si)を主原料とする軟磁性材料が知られている。このような軟磁性材料を用いて溶湯急冷凝固法により作製される厚み17μmから25μm程度のFe-Si-B系急冷凝固合金薄帯は、インダクタやトランス等に巻き鉄心として使用されており、従来の電磁鋼板に代わるものとして需要が年々拡大している。
 また、鉄基アモルファス合金は、モータ向け積層鉄心として利用されている電磁鋼板(珪素鋼板)に対して、鉄損が約1/10、透磁率が3倍以上と優れた軟磁気特性を有することから、上述したインダクタやトランス用以外に、モータ用の巻き鉄心として使用することでモータの小型高効率化に寄与することが期待されている。ところが、厚み17μmから25μm程度の鉄基アモルファス合金は、積層鉄心にするために必要な打抜き加工ができないないことに加えて、占積率が低下する等の原因により、巻き鉄心として一部の限られたモータのみに適用されているに過ぎない。
 Fe-Si-B系のアモルファス合金は、従来、104~106 K/secといった非常に速い急冷凝固速度で、厚み17μmから25μm程度の急冷凝固合金薄帯でなければアモルファス組織を得られなかったが、非特許文献1では、リン(P)を添加することで急冷凝固速度を低下させ、厚み50μm程度の鉄基アモルファス合金薄帯が得られることが開示されている。ところが、リン添加系合金は、リンの添加によって飽和磁束密度Bsの低下を招来するだけでなく、合金溶解時にリン成分が揮発して溶湯急冷装置内外の汚染が著しくなり、更には燃えやすいおそれがあるため、未だ産業分野での応用例は少ない。
 特許文献1および特許文献2には、複数のスリットノズルから回転する冷却ロール上に合金溶湯を出湯する多重スリット法により、打抜き加工が可能な程度の板厚(50μm以上)を有する急冷合金薄帯を製造する方法が開示されている。ところが、特許文献1および特許文献2は、このような板厚の鉄系アモルファス合金を、低コストでかつアモルファス合金の均質性や等品質性を安定して維持しながら量産するための製造装置の仕様や操業パラメータを開示するものではない。
 特許文献3および特許文献4には、2つの冷却ロールに対して多重スリットノズルから溶湯を交互に出湯して、板厚が30μm以上の鉄系アモルファス合金を作製する方法が開示されている。この方法で使用する製造装置は、2つの冷却ロールが必須であることから、製造コストおよびランニングコストが大幅に増大するだけでなく、鉄系アモルファス合金の板厚および急冷状態に大きく影響するノズル先端と冷却ロール表面のギャップのコントロールが、1つの冷却ロールのみ有する通常の単ロール溶湯急冷装置に対して極めて難しくなる。
 特許文献5には、板厚が30μm以上の鉄系アモルファス合金を製造する単ロール溶湯急冷装置に使用される冷却ロールが開示されているが、冷却水流路の構造が複雑であるため製造コストが高くなるという問題がある。また、特許文献5には、アモルファス箔帯の板厚が増加するにつれて冷却水の流量を増加させることが記載されているが、最適なロール冷却水量は明らかにされていない。更に、ロール径については、アモルファス薄帯の板厚に応じて異なる直径にすることが推奨されているが、冷却ロールおよび駆動機構を板厚に応じて複数用意すると、装置の製造コストが大幅に増大することになり、生産効率を考慮すると、量産装置としての適用が困難である。
 特許文献6には、多孔ノズルを使用して、幅広の急冷薄帯を作製する際の金属薄帯の厚みが不均一になるのを抑制する金属薄帯の製造方法が開示されている。特許文献6の発明は、ノズル開口部の形状に特徴を有するものであるが、加工が難しいためにノズル加工費が高騰するという問題があり、量産レベルでの利用は難しい。
 特許文献7には、50~200μm厚のろう薄帯を、単ロール溶湯急冷装置にて作製する方法が開示されているが、この方法で得られるろう薄帯は、結晶質のNi基合金であるため、厚みが50μm程度の非晶質組織を有する急冷凝固合金の製造技術を開示するものではない。
 特許文献8には、幅広のアモルファス合金薄帯が持つ鉄損の主要因であるヒステリシス損失を低減することを目的として、波状凹凸が自由面に形成されたFe基アモルファス合金薄帯を単ロール法により製造する方法が開示されている。特許文献8には、溶湯ノズルの幅方向温度分布や、冷却ロール表面の粗さに関する記載はあるものの、積層鉄心へ適用可能な非晶質組織を有する鉄基急冷凝固合金の製造技術を開示するものではない。
 このように、従来のスリットノズルを用いた厚み30μm以上のFe-Si-B系溶湯急冷合金を製造する技術としては、リン(P)添加等による合金のアモルファス生成能を向上する以外に、複数列のスリットを冷却ロールの回転方向と垂直に配したマルチスリット出湯ノズルを用いる提案がなされている。ところが、複数列のスリットから溶湯を噴出する等により出湯レートが高まると、冷却ロールで合金溶湯を急冷することが困難になり、アモルファス組織を得にくくなる。このため、本課題に対する解決策として、冷却ロールの冷却水路構造の工夫や、冷却ロールを2台並列に配置し、交互に溶湯を供給する等の対策が従来考案されている。このような対策は、いずれも溶湯急冷装置の構成が複雑になることから、厚み30μm以上のFe-Si-B系溶湯急冷合金を安価に安定して量産する溶湯急冷技術は確立されておらず、今まで量産レベルで市場へ提供された実績はない。
特開平5-329587号公報 特開平7-113151号公報 特許第5114241号公報 特許第5270295号公報 特開2015-205290号公報 特開昭63-220950号公報 特開昭63-157793号公報 特許第6107140号公報
高飽和磁束密度を有する新規バルク金属ガラス/アモルファス厚板の創製(東北大学・金属ガラス総合研究センター)牧野彰宏、久保田健、常春涛
 現在、トランス向け等に応用されているFe-Si-B系アモルファス材料は、厚みが20μm前後と積層鉄心に利用可能な厚みレベルではない。また、Fe-Si-B系アモルファス材料の厚板化を可能とする先行技術は、軟磁気特性の低下を招来するか、生産性やコストに問題がある。このため、合金組成に因らずFe-Si-B系アモルファス材料の厚板化が可能であり、かつ安価で高性能なFe-Si-B系アモルファス材料からなる合金薄帯を量産する方法が、電子部品市場において強く望まれている。
 そこで、本発明は、モータ等の積層鉄心として好適なFe-Si-B系厚板急冷凝固合金薄帯を低コストで容易に量産することができるFe-Si-B系厚板急冷凝固合金薄帯の製造方法の提供を目的とする。
 図6は、従来のFe-Si-B系急冷凝固合金薄帯の製造方法に用いる装置の概略構成図である。図6に示すように、溶湯容器51のノズル52から冷却ロール54の表面に供給された合金溶湯は、冷却ロール54上で急冷を受けた後に冷却ロール54から剥離されることで、Fe-Si-B系溶湯急冷合金薄帯が得られる。冷却ロール54の表面においては、合金の融点とガラス転移温度の間を素早く通過させて結晶化が起こらないように、合金溶湯を急冷してアモルファス組織を得る一次冷却が行われる。一次冷却が行われた急冷凝固合金は、過冷却状態であるため、凝固潜熱による自己発熱によって再結晶化するおそれがある。
 このため、従来のFe-Si-B系急冷凝固合金の量産工程では、冷却ロール54の表面に噴出された溶湯が、冷却ロール54の表面に半周程度貼り付いた状態で一次冷却が行われて凝固潜熱が取り除かれる。一次冷却により形成されたアモルファス組織からなる急冷凝固合金薄帯55は、固相の状態で二次冷却が行われて冷却ロール54から剥離される。
 上記の従来技術において、溶湯を冷却ロール54の半周程度に接触させているのは、急冷凝固合金薄帯55を急冷凝固の直後に冷却ロール54から剥離すると、過冷却状態の急冷凝固合金薄帯55が持つ凝固潜熱が開放されて再結晶化するのを防止するためである。ところが、このように冷却ロール54の表面における溶湯の供給位置から剥離位置までの距離を長くすると、冷却ロール54の回転により剥離位置に溶湯が再度供給されるまでの時間が短くなるため、単位時間当たりの溶湯供給レートが高くなると、冷却ロール54の表面温度が十分低下しない状態で冷却ロール54への溶湯供給が繰り返されることになる。この結果、冷却ロール54の表面温度が上がり過ぎて、溶湯急冷が継続できないおそれがあった。
 本発明は、凝固潜熱の開放による再結晶化が起こらないような急冷凝固合金組織を形成するために、冷却ロールに要求される抜熱能力を種々の試験を通じて明らかにしたものである。すなわち、本発明は、急冷凝固合金薄帯のサイズに応じて、冷却ロールの表面速度、曲率、冷却水量および冷却水温の好ましい条件を明らかにすることで、製造装置の構成を複雑化することなく、モータ等の積層鉄心用として好適に用いることができるFe-Si-B系溶湯急冷合金薄帯を低コストで容易に量産可能にしたものである。
 本発明の前記目的は、鉄(Fe)、硼素(B)および珪素(Si)を必須とするFe-Si-B系合金溶湯を出湯ノズルから冷却ロールの表面に噴出し、前記冷却ロールを表面速度が15m/sec以上50m/sec以下となるように回転させて、前記冷却ロールの表面上で前記合金溶湯を急冷することにより、合金薄帯を製造する方法であって、前記出湯ノズルは、幅0.2mm以上1.2mm未満のスリットが、合金薄帯の形成方向に沿って2列以上4列以下で形成されており、前記冷却ロールは、曲率が8×10-4以上2×10-3未満であり、5℃以上60℃未満の冷却水を、0.3 m3/min以上20 m3/min未満の冷却水量で前記冷却ロールに通水することにより、平均厚みが30μm以上70μm未満、平均幅が50mm以上200mm未満でアモルファス合金組織を90体積%以上含む急冷凝固合金薄帯を製造するFe-Si-B系厚板急冷凝固合金薄帯の製造方法により達成される。このFe-Si-B系厚板急冷凝固合金薄帯の製造方法において、前記出湯ノズルの前記各スリットは、45mm以上200mm未満の範囲で互いに同じ長さであり、それぞれの間隔が0.5mm以上5.0mm未満であることが好ましく、前記出湯ノズルの先端から前記冷却ロールの表面までの距離が、0.15mm以上30mm未満であることが好ましい。
 あるいは、本発明の前記目的は、鉄(Fe)、硼素(B)および珪素(Si)を必須とするFe-Si-B系合金溶湯を出湯ノズルから冷却ロールの表面に噴出し、前記冷却ロールを表面速度が15m/sec以上50m/sec以下となるように回転させて、前記冷却ロールの表面上で前記合金溶湯を急冷することにより、合金薄帯を製造する方法であって、前記出湯ノズルは、幅0.5mm以上1.5mm未満の単一のスリットが形成されており、前記冷却ロールは、曲率が8×10-4以上4.0×10-3未満であり、5℃以上60℃未満の冷却水を、0.05 m3/min以上0.3 m3/min未満の冷却水量で前記冷却ロールに通水することにより、平均厚みが30μm以上70μm未満、平均幅が5mm以上50mm未満でアモルファス合金組織を90体積%以上含む急冷凝固合金薄帯を製造するFe-Si-B系厚板急冷凝固合金薄帯の製造方法により達成される。このFe-Si-B系厚板急冷凝固合金薄帯の製造方法において、前記出湯ノズルの前記スリットの長さは、4mm以上50mm未満であることが好ましく、前記出湯ノズルの先端から前記冷却ロールの表面までの距離が、0.15mm以上30mm未満であることが好ましい。
 上述したFe-Si-B系厚板急冷凝固合金薄帯の各製造方法において、前記冷却ロールは、Cu、MoまたはWのいずれかを主成分とする材料からなり、表面の算術平均粗さRaが10nm以上20μm未満であり、長さが前記スリットの長さよりも50mm以上400mm未満長くなるように形成され、表面から冷却水の流路までの厚みが5mm以上50mm未満であることが好ましい。
 前記スリットから噴出される前記合金溶湯の出湯圧力は、2kPa以上60kPa未満であることが好ましい。
 前記合金溶湯は、組成式がTloo-x-y-z-n QSiyMn(TはFe、CoおよびNiからなる群から選択された少なくとも1種の元素であって、Feを必ず含む遷移金属元素、QはB、Cからなる群から選択されBを必ず含む1種以上の元素、MはP、Al、Ti、V、Cr、Mn、Nb、Cu、Zn、Ga、Mo、Ag、Hf、Zr、Ta、W、Pt、AuおよびPbからなる群から選択された1種以上の元素)で表現され、組成比率x、yおよびnが、それぞれ5≦x<20原子%、2≦y<15原子%、0≦n<10原子%、Qの組成比C/(B+C)が0以上0.2未満を満足することが好ましい。
 上記のFe-Si-B系厚板急冷凝固合金薄帯の製造方法により、モータ等への適用が容易な積層鉄心として使用することが可能な厚み30μm以上70μm未満のアモルファス組織を90体積%以上含むFe-Si-B系厚板急冷凝固合金薄帯を得ることができる。
 また、上記のFe-Si-B系厚板急冷凝固合金薄帯を打抜き加工、あるいはワイヤーカットやレーザーカット等により所望の形状に加工した後、樹脂接着やカシメ等の方法を用いて積層鉄芯を得ることができる。作製した積層鉄心は、ワイヤーカットやレーザーカット等により更に加工することで、モータ向けに利用可能な分割鉄心を得ることもできる。
 本発明のFe-Si-B系厚板急冷凝固合金薄帯の製造方法によれば、モータ等の積層鉄心として好適なFe-Si-B系厚板急冷凝固合金薄帯を低コストで容易に量産することができる。
本発明の一実施形態に係るFe-Si-B系厚板急冷凝固合金薄帯の製造方法に用いる装置の概略構成図である。 図1に示す装置の要部を示す拡大図であり、(a)は断面図、(b)は底面図である。 本発明の一実施形態に係るFe-Si-B系厚板急冷凝固合金薄帯の製造方法の詳細を説明するための模式図である。 図1に示す装置の他の要部を示す拡大図であり、(a)は縦断面図、(b)は(a)のA-A断面図である。 本発明の他の実施形態に係るFe-Si-B系厚板急冷凝固合金薄帯の製造方法に用いる装置の要部拡大図であり、(a)は断面図、(b)は底面図である。 従来のFe-Si-B系急冷凝固合金薄帯の製造方法に用いる装置の概略構成図である。 本発明の一実施例で得られたFe-Si-B系急冷凝固合金薄帯のX線回折パターンである。 本発明の他の実施例で得られたFe-Si-B系急冷凝固合金薄帯のX線回折パターンである。 本発明の更に他の実施例で得られたFe-Si-B系急冷凝固合金薄帯のX線回折パターンである。 本発明の一比較例で得られたFe-Si-B系急冷凝固合金薄帯のX線回折パターンである。 本発明の他の比較例で得られたFe-Si-B系急冷凝固合金薄帯のX線回折パターンである。 本発明の更に他の比較例で得られたFe-Si-B系急冷凝固合金薄帯のX線回折パターンである。
 [合金組成]
 本実施形態のFe-Si-B系厚板急冷凝固合金薄帯の製造方法に使用される合金溶湯は、組成式がTloo-x-y-z-n QSiyMnで表される。QはB、Cからなる群から選択されBを必ず含む1種以上の元素である。また、MはP、Al、Ti、V、Cr、Mn、Nb、Cu、Zn、Ga、Mo、Ag、Hf、Zr、Ta、W、Pt、AuおよびPbからなる群から選択された1種以上の元素である。組成比率x、yおよびnは、それぞれ5≦x<20原子%、2≦y<15原子%、0≦n<10原子%である。また、Qの組成比C/(B+C)は、0以上0.2未満である。
 Feを必須元素として含む遷移金属Tは、Q、SiおよびMの含有残余を占める。Feの一部を、Feと同じく強磁性元素であるCoおよびNiの一種または二種で置換しても、所望の硬磁気特性を得ることができる。ただし、Feに対する置換量が30%を超えると、磁束密度の大幅な低下を招来するため、置換量は0%~30%の範囲に限定される。
 Q(=B+C)の組成比率xが5原子%未満になると、アモルファス生成能が大きく低下して、溶湯急冷凝固の際にα-Feが析出する一方、軟磁性組成の場合、組成比率xが20原子%を超えるとFeの成分比率が低下することから、磁束密度が低下して高性能な軟磁性材料を得ることが困難になる。このため、組成比率xは、5原子%以上20原子%未満である。組成比率xは、7原子%以上19原子%未満であることが好ましく、8原子%以上19原子%未満であることが更に好ましい。
 QにおけるBに対するCの置換率が増すと、合金溶湯の融点が低くなり急冷凝固の際に用いる耐火物の損耗量が減るため、急冷凝固に係る工程費用を抑制することができる。但し、C/(B+C)が0.2を超えると、アモルファス生成能が低下し、急冷凝固合金のロール面側表層に不均一核生成によりα-Feが析出する。この際、α-Feが急冷凝固合金薄帯の面内に配向し、α-Fe(200)のピークが大きくなることから、α-Feの体積比率が10体積%以下で残部がアモルファス組織であっても打抜き加工時に割れ欠けの起点となるため好ましくない。このため、C/(B+C)は、0以上0.2未満であり、好ましくは0以上0.15未満であり、更に好ましくは0以上0.1未満である。
 Siは、FeおよびBと同時添加することでアモルファス生成能を向上すると共に鉄基硼素系急冷凝固合金の透磁率を高める元素として有効であるが、Siの添加量yが15原子%を超えると飽和磁束密度Bsが大幅に低下するため、yは15原子%未満とする。また、yは透磁率の向上の観点から2原子%以上が好ましい。yは2.5原子%以上12原子%未満がより好ましい。
 Mの添加により、アモルファス生成能の向上や、急冷凝固金属組織の微細化等により、急冷凝固時の生産性の向上が得られる。ただし、Mの組成比率nが10原子%を超えると、飽和磁束密度Bsの低下を招くため、nは0原子%以上10原子%未満に限定される。nは、0原子%以上7原子%未満であることが好ましく、0原子%以上5原子%未満であることがより好ましい。
 [合金溶湯の急冷凝固装置(単ロール溶湯急冷装置)]
 図1は、本発明の一実施形態に係るFe-Si-B系厚板急冷凝固合金薄帯の製造方法に用いる単ロール溶湯急冷装置の概略構成図である。図1に示す単ロール溶湯急冷装置1は、溶解炉2と、貯湯容器5と、冷却ロール8とを備えている。
 溶解炉2は、原料を溶解した合金溶湯3を、傾動軸4の回動により貯湯容器5に供給する。貯湯容器5は、底部に出湯ノズル6を備えており、出湯ノズル6の下端に形成されたスリット7から冷却ロール8の表面(外周面)に合金溶湯3を噴出する。冷却ロール8は、内部に冷却水が供給されることにより、表面に接触する合金溶湯を急冷し、急冷凝固合金薄帯9を形成する。
 この単ロール溶湯急冷装置1において、出湯ノズル6のスリット7は、急冷凝固合金薄帯9の形成方向に沿って2列に形成されたマルチスリットである。このようなマルチスリットを備える単ロール溶湯急冷装置1は、厚みが30μm以上70μm未満で、幅が50mm以上200mm未満のFe-Si-B系厚板急冷凝固合金薄帯の作製に好ましく使用される。このようなサイズの急冷凝固合金薄帯は、例えば、EV向けモータ、コンプレッサー、発電機等に適用される積層鉄心の製造用として好適である。
 図2は、図1に示す装置の出湯ノズル6を示す拡大図であり、(a)は断面図、(b)は底面図である。図2(a)に示すスリット7の幅W1は、0.2mm以上1.2mm未満に設定される。幅が0.2mm未満の場合は、スリット7を通過する溶湯の流れが阻害されてノズル閉塞の可能性が高くなる。一方、幅が1.2mm以上では、冷却ロールに供給される溶湯出湯レートが大きくなり過ぎて、冷却ロールによる溶湯冷却が十分行えないことから、所望のアモルファス組織が得られないおそれがある。スリットの加工性および精度を考慮すると、スリット7の幅W1は、0.3mm以上1.0mm未満がより好ましく、0.3mm以上0.8mm未満が更に好ましい。複数のスリット7の幅W1は、互いに同じであってもよく、あるいは互いに相違してもよい。
 図2(b)に示すスリット7の長さL1は、冷却ロールの幅や、必要となるモータ等の鉄心サイズにより適宜選択され、必ずしも制限されないが、長さが45mm未満では、積層鉄心としての応用分野が限られる一方、長さが200mm以上では、冷却ロール8へ供給される溶湯出湯レートが大きくなり過ぎて、冷却ロール8による溶湯冷却が十分行えないことから、所望のアモルファス組織が得られないおそれがある。したがって、スリット7の長さL1は、45mm以上200mm未満が好ましく、ランニングコストを含む生産性や、単ロール溶湯急冷装置のコストを考慮すると、45mm以上170mm未満がより好ましく、45mm以上150mm未満が更に好ましい。複数のスリット7の長さL1は、互いに同じであることが好ましい。
 図2(a)に示すスリット7の深さD1は、出湯ノズル6の底部の厚みに基づき決定されるが、2mm未満では底部の強度不足が生じ易い一方、15mm以上ではスリット7を通過する溶湯の温度低下によりノズル閉塞の可能性が高くなる。したがって、スリット7の深さD1は、2mm以上15mm未満が好ましく、出湯の安定性(直進性)を考慮すると3mm以上12mm未満がより好ましく、3mm以上10mm未満が更に好ましい。
 本実施形態においては、スリット7を2列に配置しているが、急冷凝固合金薄帯9の形成方向に沿って3列または4列に配置してもよい。スリット7を4列よりも多く配置すると、各スリット7を合算したトータルの溶湯出湯レートが大き過ぎるため、冷却ロールによる溶湯冷却が十分行えずアモルファス組織を得難くなることから、スリット7の数は2列以上4列以下が好ましい。急冷凝固組織の均質性を考慮すると、スリット7の数は、2列以上3列以下がより好ましく、溶湯レートの制御性や連続操業を想定した生産効率を考慮すると、2列にすることが更に好ましい。
 図2(b)に示すスリット7の間隔S1は、0.5mm未満では加工が難しい一方、5mm以上では所望の厚みを有する急冷凝固合金薄帯を得るのが困難になる。したがって、スリット7の間隔S1は、0.5mm以上5.0mm未満が好ましく、溶湯出湯時のスリット脱落の可能性を考慮すると、1.0mm以上5.0mm以下が好ましく、急冷凝固合金組織の均質性を考慮すると1.0mm以上3.0mm以下がより好ましい。
 図1において、出湯ノズル6から冷却ロール8に供給された溶湯は、冷却ロール8の表面で湯溜まり(パドル)を形成して溶湯急冷凝固反応が生じるため、適切なパドルの生成は重要である。出湯ノズル6の先端から冷却ロール8の表面までの距離dは、30mm以上であるとパドルの生成が安定しない一方、0.15mm未満では冷却ロール8の熱膨張も要因となって、距離dを一定に保つことが困難である。したがって、距離dは、0.15mm以上30mm未満が好ましい。距離dを精密に制御するための設備コストも考慮すると、距離dは、0.3mm以上30mm未満がより好ましく、急冷凝固合金組織の均質性を考慮すると、0.3mm以上20mm未満が更に好ましい。
 図4に示すように、冷却ロール8の表面に供給された溶湯は、冷却ロール8の回転により、出湯ノズル6のスリット7直下の注湯位置Pから、急冷凝固合金薄帯9となって冷却ロール8から剥離される剥離位置Qまで移動する間に、合金溶湯を過冷却液体状態まで急冷する一次冷却と、過冷却液体が持つ凝固潜熱を抜熱して再結晶を起こさせないための二次冷却とが行われる。注湯位置Pから剥離位置Qまでの距離Δsは、上記の一次冷却および二次冷却を完了するのに必要な距離を確保する必要があるが、剥離位置Qが再び注湯位置Pまで回転する間に冷却ロール54の表面温度を十分低下させる必要があるから、注湯位置Pから剥離位置Qまでの冷却ロール8の回転角度Δαは、注湯位置Pから剥離位置Qまでの間が直線とみなせる程度に小さいことが好ましい。この場合、冷却ロール8の半径Rは、下式で求められる。
R=limΔs→0 |Δs/Δα|=|ds/dα|
 冷却ロール8を、表面速度が15m/sec以上50m/sec以下となるように回転させる場合、一次冷却および二次冷却に必要な時間からΔsを求めることができ、これによって好ましい冷却ロール8の直径2Rの数値範囲が定まる。好ましいΔsの値は、急冷凝固合金薄帯9のサイズに依存し、平均厚みが30μm以上70μm未満であり、平均幅が50mm以上200mm未満の急冷凝固合金薄帯9を得る場合、冷却ロール8の直径2Rは、1000mm以上2500mm未満であり、急冷凝固合金組織の均質性を考慮すると1500mm以上2500mm未満が好ましく、鍛造法等により製造される冷却ロールの加工装置上の制約や製造コストを考慮すると1500mm以上2300mm未満がより好ましい。
 冷却ロール8の曲率κは、半径Rの逆数であるから、平均厚みが30μm以上70μm未満であり、平均幅が50mm以上200mm未満の急冷凝固合金薄帯9を得る場合の曲率κは、8×10-4以上2×10-3未満であり、8×10-4以上1.3×10-3未満が好ましく、9×10-4以上1.3×10-3未満がより好ましい。
 上記の距離Δsの間に一次冷却および二次冷却を完了するには、冷却ロール8の冷却水の水量や温度も重要な要素になる。図4は、冷却ロール8の一例を示す概略構成図であり、(a)は縦断面図、(b)はA-A断面図である。冷却ロール8の回転軸81に一端側(IN側)から供給された冷却水は、流路82に沿って放射状に広がり、冷却ロール8の表面全体を冷却した後に合流されて、回転軸81の他端側(OUT側)から排出される。平均厚みが30μm以上70μm未満であり、平均幅が50mm以上200mm未満の急冷凝固合金薄帯9を得る場合、冷却水量が0.3 m3/min未満になると、冷却ロール8の表面における一次冷却および二次冷却の完了が困難になる一方、冷却水量が20 m3/min以上になると、溶湯冷却中の冷却ロール8の表面温度が上昇せず、冷却ロール8のIN側の温度とOUT側の温度差ΔTが小さいために(例えば1℃以下)、冷却ロール8の表面に生成するパドルが不安定な状態になる。したがって、冷却水量は、0.3 m3/min以上20 m3/min未満であり、連続操業を想定した量産対応可能な単ロール溶湯急冷装置1では、0.5 m3/min以上20 m3/min未満が好ましく、0.5 m3/min以上15 m3/min未満が更に好ましい。
 冷却ロール8の冷却水の温度は、合金溶湯と冷却ロール8との密着性に影響を与える。冷却水の温度が5℃未満になると、合金溶湯と冷却ロール8との密着性が損なわれて、冷却ロール8による合金溶湯の抜熱能力が低下する一方、60℃以上では、冷却水を冷却ロール8に供給するポンプの故障を誘発する可能性があることから、冷却水の温度は5℃以上60℃未満である。合金溶湯と冷却ロール8との密着性をより向上するには、冷却水温度の下限値が特に重要であり、15℃以上60℃未満が好ましく、30℃以上60℃未満がより好ましい。
 また、合金溶湯と冷却ロール8との密着性は、冷却ロール8の素材にも影響される。素材の熱伝導や融点を考慮すると、冷却ロール8は、Cu、MoまたはWのいずれかを主成分とする材料からなることが好ましく、更に設備コストやランニングコストを考慮すると、Cuを主成分とする材料が好ましい。Cuを主成分とは、Cuの含有割合が50質量%を超える合金の他に、純銅も含まれる(MoやWを主成分とする材料についても同様)。
 冷却ロール8の表面の表面粗さも、合金溶湯と冷却ロール8との密着性に影響することから、冷却ロール表面の算術平均粗さRaを10nm以上20μm未満とすることが好ましく、生産効率と品質を考慮すると、Raは50nm以上10μm未満がより好ましく、100nm以上10μm未満が更に好ましい。
 図4(a)に示す冷却ロール8の軸方向の長さL2は、図2(b)に示すスリット7の長さよりも50mm以上400mm未満長いことが好ましく、冷却能力や冷却ロールの調達コストを考慮すると、スリット7の長さよりも100mm以上300mm未満長いことがより好ましく、100mm以上200mm未満長いことが更に好ましい。
 冷却ロール8による合金溶湯の抜熱能力は、図4(a)に示す冷却ロール8の表面から流路82までの厚みT2にも影響される。厚みT2が5mm未満になると、冷却ロール8の機械的強度を維持するのが困難になる一方、厚みT2が50mm以上になると、合金溶湯と接触する冷却ロール8の表面温度が局所的に融点以上になることで、冷却ロール8の表面に急冷凝固合金が溶着して溶湯急冷を継続できなくなるおそれがある。したがって、冷却ロール8の厚みT2は、5mm以上50mm未満が好ましい。溶湯急冷処理後のロール研磨作業による損耗を考えると、厚みT2は、10mm以上50mm未満がより好ましく、溶湯急冷工程の操業安定性を考慮すると、10mm以上40mm未満が更に好ましい。
 出湯ノズル6のスリット7から噴出される合金溶湯は、冷却ロール8の表面に押し付けられることで、上述したようにパドルが生成されるが、合金溶湯の押し付け圧が低いと、冷却ロール8の表面に所望のパドルが生成され難いことから、スリット7からの合金溶湯の出湯圧力は、2kPa以上60kPa未満であることが好ましい。この出湯圧力は、パドルをより安定生成するために、10kPa以上40kPa未満がより好ましく、10kPa以上30kPa未満が更に好ましい。出湯圧力は、図1に示す貯湯容器5内のヘッド圧や加圧力により調整することができる。
 以上の説明は、平均厚みが30μm以上70μm未満、平均幅が50mm以上200mm未満のFe-Si-B系厚板急冷凝固合金薄帯を製造する際の好ましい装置構成や冷却条件を示すものであり、これによって、アモルファス合金組織を90体積%以上含む急冷凝固合金薄帯を得ることができる。これに対し、平均厚みが30μm以上70μm未満、平均幅が5mm以上50mm未満のFe-Si-B系厚板急冷凝固合金薄帯を製造する場合には、図1に示す単ロール溶湯急冷装置1の出湯ノズル6として、図5に示すようにスリット7が単一のシングルスリットノズルを使用する。この場合の好ましい条件として、上記の説明と異なる点のみを説明すると、下記のとおりである。
 まず、冷却ロール8の直径2Rは、500mm以上2500mm未満であり、急冷凝固合金組織の均質性を考慮すると570mm以上2500mm未満が好ましく、鍛造法等により製造される冷却ロールの加工装置上の制約や製造コストを考慮すると570mm以上1500mm未満がより好ましい。すなわち、冷却ロール8の曲率κは、8×10-4以上4×10-3未満であり、8×10-4以上3.5×10-3未満が好ましく、1.3×10-3以上3.5×10-3未満がより好ましい。
 冷却水量は、0.05 m3/min未満になると、冷却ロール8の表面における一次冷却および二次冷却の完了が困難になる一方、冷却水量が0.3 m3/min以上になると、冷却ロール8の表面に生成するパドルが不安定な状態になることから、0.05 m3/min以上0.3 m3/min未満が好ましく、0.05 m3/min以上0.2 m3/min未満がより好ましい。
 図5(a)に示すスリット7の幅W2は、0.5mm以上1.5mm未満に設定される。幅が0.5mm未満の場合は、スリット7を通過する溶湯の流れが阻害されてノズル閉塞の可能性が高くなる。一方、幅が1.5mm以上では、冷却ロールに供給される溶湯出湯レートが大きくなり過ぎて、冷却ロールによる溶湯冷却が十分行えないことから、所望のアモルファス組織が得られないおそれがある。スリットの加工性および精度を考慮すると、スリット7の幅W2は、0.5mm以上1.2mm未満がより好ましく、0.6mm以上1.0mm未満が更に好ましい。
 図5(b)に示すスリット7の長さL2は、冷却ロールの幅や、必要となるモータ等の鉄心サイズにより適宜選択され、必ずしも制限されないが、長さが4mm未満では、積層鉄心としての応用分野が限られる一方、長さが50mm以上では、冷却ロール8へ供給される溶湯出湯レートが大きくなり過ぎて、冷却ロール8による溶湯冷却が十分行えないことから、所望のアモルファス組織が得られないおそれがある。したがって、スリット7の長さL2は、4mm以上50mm未満が好ましく、ランニングコストを含む生産性や、単ロール溶湯急冷装置のコストを考慮すると、7mm以上50mm未満がより好ましく、10mm以上50mm未満が更に好ましい。
 以下、本発明を実施例により更に具体的に説明する。但し、本発明は、以下の実施例に限定されるものではない。
 下記表1の実施例1-12および比較例13-21に示す合金組成となるように、純度99.5%以上のB、C、Si、Nb、CuおよびFeの各元素を配合した素原料200kgをアルミナ製坩堝に収容し、高周波誘導加熱により溶解して合金溶湯を形成した。この合金溶湯50kgを、表1に示すスリットを有するBN製の出湯ノズルを底部に備える内径200mm×高さ400mmのアルミナ製貯湯容器に注いだ。この後、貯湯容器の周囲に設置された高周波加熱用コイルへ通電することで合金溶湯50kgをさらに加熱し、合金溶湯の温度が配合組成合金の融点より50℃以上高温に到達した後、出湯ノズルの上部に配したアルミナ製溶湯ストッパーを引き抜いた。これにより、出湯ノズルから直下の冷却ロール表面に合金溶湯を噴出した。冷却ロールの大きさおよび操業パラメータは、表2に示すとおりである。また、溶湯の平均出湯レートを表3に示す。
 冷却ロールの表面に接触した合金溶湯は、冷却ロール表面上でパドルを形成し、パドルと冷却ロールの界面にて急冷凝固することで、薄帯状の急冷凝固合金を得た。この急冷凝固合金薄帯の平均厚みおよび平均幅は、表3に示すとおりである。
 得られた急冷凝固合金薄帯について、冷却ロール表面と接触していた面(ロール面)、および、冷却ロール表面と接触していない反対側の面(自由面)のX線回折パターンを測定し、組織評価を行った。この結果を表3にアモルファス組織の体積比率として示す。表3に示すように、実施例1-12については、アモルファス単相組織、もしくはアモルファス組織が大半を占め、自由面側にα-Feと判断される微細な結晶を含む組織であることを確認した。実施例の急冷凝固合金薄帯のロール面および自由面におけるX線回折パターンの代表例として、実施例2を図7に、実施例5を図8に、実施例10を図9に、それぞれ示す。
 一方、比較例13-21については、表3に示すように、急冷能力不足により実施例1-12と比較してアモルファス組織の体積比率が減少した。比較例の急冷凝固合金薄帯のロール面および自由面におけるX線回折パターンの代表例として、比較例13を図10に、比較例17を図11に、それぞれ示す。
 図10に示す比較例13は、アモルファス組織に見られる45度付近を中心とした鉄基アモルファス合金を示すハローパターンが見られず、ロール面、自由面共に、α-Fe(200)に非常に強い結晶性を示すピークが観察されることから、急冷凝固合金薄帯の面内方向に配向したα-Feの結晶が存在していると推定される。また、図11に示した比較例17は、強いα-Feの結晶ピークが確認され、アモルファス組織が得られていないと判断される。
 図12に示す比較例21は、冷却ロールの冷却水温度以外は、実施例10と同様の条件で作製した急冷凝固合金薄帯のX線回折パターンを示している。溶湯急冷時に冷却ロールと合金溶湯の密着性が悪く、溶湯急冷が不均一になることで全体の溶湯急冷速度が低下し、自由面側のα-Fe (200)に非常に強い結晶性を示すピークが観察されている。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 本発明により得られるFe-Si-B系厚板急冷凝固合金薄帯は、リアクトル、各種モータ、発電機等への適用が容易な低鉄損積層鉄心として好適に使用することができる。また、各種トランスやモータ等に広く利用されている電磁鋼板に代わり、低鉄損で高透磁率を特長とする積層鉄心向けに利用可能なFe-Si-B系アモルファス合金を、量産規模で安価に市場へ提供できる。
 1 単ロール溶湯急冷装置
 2 溶解炉
 3 合金溶湯
 4 傾動軸
 5 貯湯容器
 6 出湯ノズル
 7 スリット
 8 冷却ロール
 9 急冷凝固合金薄帯

Claims (8)

  1.  鉄(Fe)、硼素(B)および珪素(Si)を必須とするFe-Si-B系合金溶湯を出湯ノズルから冷却ロールの表面に噴出し、前記冷却ロールを表面速度が15m/sec以上50m/sec以下となるように回転させて、前記冷却ロールの表面上で前記合金溶湯を急冷することにより、合金薄帯を製造する方法であって、
     前記出湯ノズルは、幅0.2mm以上1.2mm未満のスリットが、合金薄帯の形成方向に沿って2列以上4列以下で形成されており、
     前記冷却ロールは、曲率が8×10-4以上2×10-3未満であり、
     5℃以上60℃未満の冷却水を、0.3 m3/min以上20 m3/min未満の冷却水量で前記冷却ロールに通水することにより、平均厚みが30μm以上70μm未満、平均幅が50mm以上200mm未満でアモルファス合金組織を90体積%以上含む急冷凝固合金薄帯を製造するFe-Si-B系厚板急冷凝固合金薄帯の製造方法。
  2.  前記出湯ノズルの前記各スリットは、45mm以上200mm未満の範囲で互いに同じ長さであり、それぞれの間隔が0.5mm以上5.0mm未満であり、
     前記出湯ノズルの先端から前記冷却ロールの表面までの距離が、0.15mm以上30mm未満である請求項1に記載のFe-Si-B系厚板急冷凝固合金薄帯の製造方法。
  3.  鉄(Fe)、硼素(B)および珪素(Si)を必須とするFe-Si-B系合金溶湯を出湯ノズルから冷却ロールの表面に噴出し、前記冷却ロールを表面速度が15m/sec以上50m/sec以下となるように回転させて、前記冷却ロールの表面上で前記合金溶湯を急冷することにより、合金薄帯を製造する方法であって、
     前記出湯ノズルは、幅0.5mm以上1.5mm未満の単一のスリットが形成されており、
     前記冷却ロールは、曲率が8×10-4以上4.0×10-3未満であり、
     5℃以上60℃未満の冷却水を、0.05 m3/min以上0.3 m3/min未満の冷却水量で前記冷却ロールに通水することにより、平均厚みが30μm以上70μm未満、平均幅が5mm以上50mm未満でアモルファス合金組織を90体積%以上含む急冷凝固合金薄帯を製造するFe-Si-B系厚板急冷凝固合金薄帯の製造方法。
  4.  前記出湯ノズルの前記スリットの長さは、4mm以上50mm未満であり、
     前記出湯ノズルの先端から前記冷却ロールの表面までの距離が、0.15mm以上30mm未満である請求項3に記載のFe-Si-B系厚板急冷凝固合金薄帯の製造方法。
  5.  前記冷却ロールは、Cu、MoまたはWのいずれかを主成分とする材料からなり、表面の算術平均粗さRaが10nm以上20μm未満であり、長さが前記スリットの長さよりも50mm以上400mm未満長くなるように形成され、表面から冷却水の流路までの厚みが5mm以上50mm未満である請求項1または3に記載のFe-Si-B系厚板急冷凝固合金薄帯の製造方法。
  6.  前記スリットから噴出される前記合金溶湯の出湯圧力が2kPa以上60kPa未満である請求項1または3に記載のFe-Si-B系厚板急冷凝固合金薄帯の製造方法。
  7.  前記合金溶湯の組成式がTloo-x-y-z-n QSiyMn(TはFe、CoおよびNiからなる群から選択された少なくとも1種の元素であって、Feを必ず含む遷移金属元素、QはB、Cからなる群から選択されBを必ず含む1種以上の元素、MはP、Al、Ti、V、Cr、Mn、Nb、Cu、Zn、Ga、Mo、Ag、Hf、Zr、Ta、W、Pt、AuおよびPbからなる群から選択された1種以上の元素)で表現され、組成比率x、yおよびnが、それぞれ5≦x<20原子%、2≦y<15原子%、0≦n<10原子%、Qの組成比C/(B+C)が0以上0.2未満を満足する請求項1または3に記載のFe-Si-B系厚板急冷凝固合金薄帯の製造方法。
  8.  請求項1または3に記載のFe-Si-B系厚板急冷凝固合金薄帯の製造方法により製造されたFe-Si-B系厚板急冷凝固合金薄帯を所望の形状に加工して作製された積層鉄心。
PCT/JP2022/011505 2021-03-17 2022-03-15 Fe-Si-B系厚板急冷凝固合金薄帯の製造方法 WO2022196672A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023507122A JPWO2022196672A1 (ja) 2021-03-17 2022-03-15

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021043113 2021-03-17
JP2021-043113 2021-03-17

Publications (1)

Publication Number Publication Date
WO2022196672A1 true WO2022196672A1 (ja) 2022-09-22

Family

ID=83321035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/011505 WO2022196672A1 (ja) 2021-03-17 2022-03-15 Fe-Si-B系厚板急冷凝固合金薄帯の製造方法

Country Status (2)

Country Link
JP (1) JPWO2022196672A1 (ja)
WO (1) WO2022196672A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7429078B1 (ja) 2023-07-21 2024-02-07 Hilltop株式会社 鉄基結晶合金の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6368250A (ja) * 1986-09-06 1988-03-28 Kawasaki Steel Corp 急冷金属薄帯製造用の冷却ロ−ル
JPH07100599A (ja) * 1993-10-07 1995-04-18 Nippon Steel Corp 金属・合金薄帯の製造方法
JP2001001113A (ja) * 1999-04-15 2001-01-09 Hitachi Metals Ltd 合金薄帯並びにそれを用いた部材、及びその製造方法
JP2001269753A (ja) * 2000-03-29 2001-10-02 Nippon Steel Corp 急冷凝固薄帯鋳造用ノズルおよび急冷凝固薄帯の製造方法
WO2012102379A1 (ja) * 2011-01-28 2012-08-02 日立金属株式会社 急冷Fe基軟磁性合金薄帯及びその製造方法、並びに鉄心
WO2020235097A1 (ja) * 2019-05-23 2020-11-26 Okubo Yasuhiko 冷却ロール

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6368250A (ja) * 1986-09-06 1988-03-28 Kawasaki Steel Corp 急冷金属薄帯製造用の冷却ロ−ル
JPH07100599A (ja) * 1993-10-07 1995-04-18 Nippon Steel Corp 金属・合金薄帯の製造方法
JP2001001113A (ja) * 1999-04-15 2001-01-09 Hitachi Metals Ltd 合金薄帯並びにそれを用いた部材、及びその製造方法
JP2001269753A (ja) * 2000-03-29 2001-10-02 Nippon Steel Corp 急冷凝固薄帯鋳造用ノズルおよび急冷凝固薄帯の製造方法
WO2012102379A1 (ja) * 2011-01-28 2012-08-02 日立金属株式会社 急冷Fe基軟磁性合金薄帯及びその製造方法、並びに鉄心
WO2020235097A1 (ja) * 2019-05-23 2020-11-26 Okubo Yasuhiko 冷却ロール

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7429078B1 (ja) 2023-07-21 2024-02-07 Hilltop株式会社 鉄基結晶合金の製造方法

Also Published As

Publication number Publication date
JPWO2022196672A1 (ja) 2022-09-22

Similar Documents

Publication Publication Date Title
KR101461537B1 (ko) 철계 무정형 합금 광폭 리본 및 그의 제조방법
JP2018167298A (ja) Fe−Si−B系ナノ結晶合金の製造方法
CN108907123B (zh) 非晶态合金薄带的制造方法
CN114411069A (zh) 纳米晶合金的前体的宽的铁基非晶态合金
JP3594123B2 (ja) 合金薄帯並びにそれを用いた部材、及びその製造方法
KR20200010574A (ko) 아몰퍼스 합금 박대
KR102451085B1 (ko) Fe기 나노 결정 합금용의 Fe기 아몰퍼스 합금 리본 및 그 제조 방법
KR20150054912A (ko) 초미결정 합금 박대, 미결정 연자성 합금 박대 및 이것을 사용한 자성 부품
KR20010030411A (ko) 나노컴포지트 자석분말 및 자석의 제조방법
WO2022196672A1 (ja) Fe-Si-B系厚板急冷凝固合金薄帯の製造方法
JP2012174824A (ja) 超急冷Fe基軟磁性合金薄帯および磁心
JP2004353090A (ja) 合金薄帯並びにそれを用いた部材
US8105446B2 (en) Process for producing alloy slab for rare-earth sintered magnet, alloy slab for rare-earth sintered magnet and rare-earth sintered magnet
WO2023022002A1 (ja) Fe-Si-B系厚板急冷凝固合金薄帯の製造方法
JP6855053B2 (ja) 鉄基硼素系合金の製造方法
JP4529106B2 (ja) アモルファス合金薄帯の製造方法
JP2002322546A (ja) Fe基軟磁性合金およびそれを用いた磁心
JP6855054B2 (ja) Fe−Si−B系急冷凝固合金薄帯の製造方法
WO2018062037A1 (ja) Fe基アモルファス合金薄帯
JP7584780B2 (ja) Fe-Si-B系急冷凝固合金およびその製造方法
KR20210083203A (ko) 연자성 합금, 연자성 합금 리본, 연자성 합금 리본의 제조방법, 자성 코어, 및 부품
JP2020146714A (ja) アモルファス系軟磁性材料の製造方法
JP4969808B2 (ja) 磁気特性に優れた鉄系非晶質薄帯の製造方法及び製造装置
CN114574783B (zh) 一种非晶纳米晶合金带材及其制备方法
JP2000117399A (ja) 非晶質軟磁性合金薄帯の製造方法及び非晶質軟磁性合金薄帯の製造装置及び非晶質軟磁性合金薄帯及び非晶質軟磁性合金部材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22771417

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023507122

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22771417

Country of ref document: EP

Kind code of ref document: A1