[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022196523A1 - Fluorine-containing compound and contrast agent - Google Patents

Fluorine-containing compound and contrast agent Download PDF

Info

Publication number
WO2022196523A1
WO2022196523A1 PCT/JP2022/010632 JP2022010632W WO2022196523A1 WO 2022196523 A1 WO2022196523 A1 WO 2022196523A1 JP 2022010632 W JP2022010632 W JP 2022010632W WO 2022196523 A1 WO2022196523 A1 WO 2022196523A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorine
formula
containing compound
carbon atoms
alkyl group
Prior art date
Application number
PCT/JP2022/010632
Other languages
French (fr)
Japanese (ja)
Inventor
直子 矢内
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Publication of WO2022196523A1 publication Critical patent/WO2022196523A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D211/00Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
    • C07D211/92Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with a hetero atom directly attached to the ring nitrogen atom
    • C07D211/94Oxygen atom, e.g. piperidine N-oxide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D221/00Heterocyclic compounds containing six-membered rings having one nitrogen atom as the only ring hetero atom, not provided for by groups C07D211/00 - C07D219/00
    • C07D221/02Heterocyclic compounds containing six-membered rings having one nitrogen atom as the only ring hetero atom, not provided for by groups C07D211/00 - C07D219/00 condensed with carbocyclic rings or ring systems
    • C07D221/20Spiro-condensed ring systems

Definitions

  • the present invention relates to fluorine-containing compounds and contrast agents.
  • This application claims priority based on Japanese Patent Application No. 2021-043736 filed in Japan on March 17, 2021, the contents of which are incorporated herein.
  • Magnetic resonance imaging (hereinafter sometimes referred to as "MRI") diagnosis is widely used in the medical field for both basic research and clinical application as one of the diagnostic imaging methods along with X-ray diagnosis and ultrasound (US) diagnosis. It is
  • 1 H-MRI using protons ( 1 H) as detection nuclei is used for medical MRI.
  • 1 H-MRI captures and images the magnetic environment of water molecules present in vivo. A difference occurs in the magnetic environment of protons between diseased tissue and normal tissue in vivo. This appears as a difference in 1 H-MRI and serves as diagnostic information. Moreover, water molecules are present almost everywhere in the living body. Therefore, 1 H-MRI can be used for whole-body imaging.
  • Nuclides detectable by MRI include 19 F, 23 Na, 31 P, 15 N, 13 C, etc., in addition to 1 H.
  • MRI using these elements as detection nuclei provides different information from 1 H-MRI.
  • MRI using 19 F as a detection nucleus is expected to be used as a next-generation diagnostic method following 1 H-MRI diagnosis.
  • Fluorine is an inexpensive element with a natural abundance ratio of 100%, the detection sensitivity of 19 F is as high as 83% of 1 H, and the gyromagnetic ratio of 19 F is close to that of protons. This is because imaging is possible.
  • 19 F detectable by MRI is almost non-existent in vivo. Therefore, by using a fluorine atom-containing compound as a contrast agent, 19 F-MRI diagnosis using 19 F as a tracer is possible. For example, positional information of lesions can be obtained from 19 F-MRI using a fluorine compound that recognizes and accumulates endogenous changes caused by a disease as a contrast medium. This method is useful for diagnosing lesions that do not cause morphological changes that could not be detected by conventional diagnostic imaging methods.
  • Nuclear medicine techniques use radiopharmaceuticals that utilize radioactive isotopes.
  • nuclear medicine techniques include Positron Emission Tomography (PET) examination and Single Photon Emission Computed Tomography (SPECT) examination.
  • PET Positron Emission Tomography
  • SPECT Single Photon Emission Computed Tomography
  • the nuclear medicine technique has problems such as a large-scale apparatus for synthesizing radioisotopes and the risk of radiation exposure.
  • 19 F-MRI diagnostics do not suffer from the above problems in nuclear medicine procedures. Further, in 19 F-MRI diagnosis, by extracting information such as chemical shift, diffusion, and relaxation time, more diagnostic information can be obtained in addition to the positional information of the lesion. In addition, 19 F-MRI and 1 H-MRI are simultaneously imaged in one diagnosis, and useful diagnostic information in which anatomical information and functional information coexist can be obtained by superimposing the respective images. It is possible.
  • Contrast agents for MRI diagnosis using fluorine as a detection nucleus are disclosed, for example, in Patent Document 1 and Patent Document 2.
  • US Pat. No. 5,300,001 describes lactic acid-co-glycolic acid (PLGA) particles containing perfluorocrown ether and gadolinium complexes.
  • Patent Document 2 describes a fluorine-containing porphyrin complex and a contrast agent compound that can be used in MRI using fluorine as a detection nucleus.
  • the contrast agents described in Patent Documents 1 and 2 contain metal ions, there are concerns about their in vivo safety.
  • Patent Document 3 describes a compound having a nitroxide covalently bonded to a fluorine-containing compound.
  • the fluorine-containing compound described in Patent Document 3 is easily reduced by a reducing agent such as ascorbic acid (see, for example, Non-Patent Document 1), so there is a problem with in vivo stability.
  • the present invention has been made in view of the above circumstances, and by using fluorine as a contrast agent material for magnetic resonance imaging diagnosis using fluorine as a detection nucleus, a highly sensitive magnetic resonance image can be obtained, and in vivo
  • An object of the present invention is to provide a fluorine-containing compound having high stability of
  • the present invention also provides a contrast agent for magnetic resonance imaging diagnosis, containing the fluorine-containing compound of the present invention, having high stability in vivo and capable of obtaining highly sensitive images, and having fluorine as a detection nucleus. for the purpose.
  • R 1 , R 2 , R 3 and R 4 are any one of the following (1-1) to (1-4), and R 1 , R 2 , R 3 and R 4 is (1-3) below, or one or both of R 1 and R 2 , R 3 and R 4 are (1-4).
  • R 1 , R 2 , R 3 and R 4 are any one of the following (1-1) to (1-4), and R 1 , R 2 , R 3 and R 4 is (1-3) below, or one or both of R 1 and R 2 , R 3 and R 4 are (1-4)
  • X is a hydrogen atom or a fluorine atom It is either a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms with a substituent that does not contain (1-1) an alkyl group having 1 to 10 carbon atoms substituted or unsubstituted with a substituent containing no fluorine atom; (1-2) a cyclic alkyl group having 5 to 7 carbon
  • the fluorine-containing compound of the present invention is a compound represented by the above general formula (1) or the following general formula (2). Therefore, the in vivo stability is high.
  • the fluorine-containing compound of the present invention can be used as a contrast agent material for magnetic resonance imaging diagnosis using fluorine as a detection nucleus to obtain a highly sensitive magnetic resonance image.
  • the contrast agent of the present invention contains the fluorine-containing compound of the present invention. Therefore, the contrast agent of the present invention has high in vivo stability.
  • the contrast agent of the present invention can be used as a contrast agent for magnetic resonance imaging diagnosis using fluorine as a detection nucleus to obtain a highly sensitive magnetic resonance image.
  • T1 is a 19 F spin-lattice relaxation time (T1) weighted image of 19 F-MRI of Example 1 (compound 11).
  • 19 is a 19 F spin-lattice relaxation time (T1)-enhanced image of 19 F-MRI of Comparative Example 1 (Compound A1).
  • the fluorine-containing compound and contrast agent of the present invention are described in detail below.
  • the fluorine-containing compound of this embodiment is represented by the following general formula (1) or the following general formula (2).
  • R 1 , R 2 , R 3 and R 4 are any one of the following (1-1) to (1-4), and R 1 , R 2 , R 3 and R 4 is (1-3) below, or one or both of R 1 and R 2 , R 3 and R 4 are (1-4).
  • R 1 , R 2 , R 3 and R 4 are any one of the following (1-1) to (1-4), and R 1 , R 2 , R 3 and R 4 is (1-3) below, or one or both of R 1 and R 2 , R 3 and R 4 are (1-4)
  • X is a hydrogen atom or a fluorine atom It is either a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms with a substituent that does not contain (1-1) an alkyl group having 1 to 10 carbon atoms substituted or unsubstituted with a substituent containing no fluorine atom; (1-2) a cyclic alkyl group having 5 to 7 carbon
  • the contrast agent containing the fluorine-containing compound of the present embodiment is used as a contrast agent for MRI diagnosis using fluorine as a detection nucleus, high stability in vivo and high sensitivity magnetic resonance imaging (MRI) is obtained.
  • the 19 F spin-lattice relaxation time (T1) and 19 F spin-spin relaxation time (T2) of fluorine-containing compounds are affected by the paramagnetic relaxation enhancement (PRE) effect.
  • the PRE effect is a phenomenon in which T1 and T2 of MRI observation nuclei in the vicinity of unpaired electron spins are shortened by unpaired electron spins possessed by a paramagnetic material.
  • the PRE effect is inversely proportional to the sixth power of the distance between the paramagnetic substance and the MRI observation nuclei (fluorine atoms in this embodiment) relaxed by the paramagnetic substance. Therefore, in the fluorine-containing compound represented by Formula (1) or Formula (2) of the present embodiment, T1 and T2 become shorter as the distance between the paramagnetic nitroxide radical and the fluorine atom becomes shorter.
  • the fluorine-containing compound represented by formula (1) or formula (2) at the 2- and / or 6-position carbon of the piperidine ring, one or more trifluoromethyl groups having 1 to 10 carbon atoms An alkyl group or a cyclic alkyl group having 5 to 7 carbon atoms having one or more trifluoromethyl groups is bonded.
  • the distance between the nitroxide radical and the fluorine atom is appropriate, T1 is sufficiently short, and T2 is sufficiently secured. Therefore, by using the fluorine-containing compound represented by formula (1) or formula (2) as a contrast agent for MRI diagnosis using fluorine as a detection nucleus, a highly sensitive magnetic resonance image can be obtained.
  • organic radicals have a semi-occupied orbital (SOMO) containing an unpaired electron between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO).
  • SOMO semi-occupied orbital
  • the redox process of organic radicals corresponds to the electron transfer process in SOMO.
  • the reduction reaction of organic radicals by a reducing agent such as ascorbic acid is more likely to occur when the energy difference between the HOMO of the reducing agent and the SOMO of the organic radicals is smaller. Therefore, the lower the SOMO energy level of the organic radical, the easier it is to be reduced.
  • the nitrogen atom of the piperidine ring and one or more trifluoromethyl groups in formula (1) or formula (2) three or more carbon atoms are arranged between
  • the nitroxide radical and the fluorine atom are arranged at sufficiently distant positions, and the nitroxide radical is electronically affected by the fluorine atom. is considered to be difficult to receive. Therefore, in the fluorine-containing compound represented by formula (1) or (2), the SOMO energy level of the nitroxide radical does not decrease due to the fluorine atom, which is an electron-withdrawing group.
  • the SOMO of the nitroxide radical in the fluorine-containing compound of the present embodiment has a sufficiently large energy difference from the HOMO of a reducing agent such as ascorbic acid. Therefore, the fluorine-containing compound represented by Formula (1) or Formula (2) is less likely to be reduced in vivo and has high in vivo stability.
  • the fluorine-containing compound represented by Formula (1) or Formula (2) of the present embodiment is a nonmetallic compound that does not contain metal, it is less effective in vivo than contrast agents containing metal ions. High safety. Therefore, the fluorine-containing compound of the present embodiment is suitable as a material for a contrast medium for magnetic resonance imaging using fluorine as a detection nucleus.
  • the fluorine-containing compound represented by formula (1) or formula (2) of the present embodiment is a compound having a piperidine ring and is highly safe in vivo. ,6,6-tetramethylpiperidine 1-oxyl free radical (TEMPOL). Therefore, the fluorine-containing compound represented by formula (1) or formula (2) of the present embodiment is presumed to have higher in vivo stability than, for example, a fluorine-containing compound having a pyrrolidine ring. be done.
  • R 1 , R 2 , R 3 and R 4 are any one of (1-1) to (1-4) be.
  • one or more of R 1 , R 2 , R 3 and R 4 in formula (1) or formula (2) is (1-3), or one of R 1 and R 2 , R 3 and R 4 or Both are (1-4).
  • R 1 , R 2 , R 3 and R 4 When one or more of R 1 , R 2 , R 3 and R 4 is (1-3), the number of fluorine atoms showing a single 19 F-MRI peak increases, so that R 1 , R 2 , Two or all of R 3 and R 4 are preferably (1-3). when two of R 1 , R 2 , R 3 and R 4 are (1-3), then one of R 1 and R 2 and one of R 3 and R 4 is (1-3) and, among R 1 , R 2 , R 3 and R 4 , those other than (1-3) are preferably (1-1).
  • R 1 and R 2 and R 3 and R 4 When one or both of R 1 and R 2 and R 3 and R 4 are (1-4), the number of fluorine atoms showing a single 19 F-MRI peak increases, so that R 1 and R 2 and R It is preferred that both 3 and R 4 are (1-4). When only one of R 1 and R 2 , R 3 and R 4 is (1-4), R 1 and R 2 , R 3 and R 4 that are not (1-4) are (1- 1) or (1-2).
  • the (1-1) alkyl group having 1 to 10 carbon atoms substituted or unsubstituted with a fluorine atom-free substituent is moderately bulky. Therefore, it is possible to prevent the approach of the reducing agent to the nitroxide radical. In addition, since the alkyl group of (1-1) has 10 or less carbon atoms, synthesis of the fluorine-containing compound represented by formula (1) or formula (2) is facilitated.
  • (1-1) is a chain alkyl group having 1 to 5 carbon atoms substituted or unsubstituted with a substituent containing no fluorine atom, a fluorine-containing compound represented by formula (1) or formula (2) is easier to synthesize, which is preferable.
  • (1-1) is preferably a methyl group or an ethyl group, and more preferably a methyl group for ease of synthesis.
  • (1-1) is an alkyl group having 1 to 10 carbon atoms substituted with a substituent containing no fluorine atom
  • the substituent containing no fluorine atom may be, for example, a methyl group or an ethyl group. can be done.
  • the group formed by is moderately bulky. Therefore, it is possible to prevent the approach of the reducing agent to the nitroxide radical.
  • the cyclic alkyl group since the cyclic alkyl group has 5 to 7 carbon atoms, synthesis of the fluorine-containing compound represented by formula (1) or formula (2) is facilitated.
  • the number of carbon atoms in the cyclic alkyl group (1-2) is preferably 5 or 6 for ease of synthesis.
  • (1-2) is a cyclohexyl group substituted or unsubstituted with a substituent containing no fluorine atom, wherein R 1 and R 2 or R 3 and R 4 are bonded to each other; With this, the synthesis of the fluorine-containing compound represented by the formula (1) or (2) becomes easier, which is preferable.
  • (1-2) is an unsubstituted cyclohexyl group, most preferably a group formed by bonding R 1 and R 2 or R 3 and R 4 together.
  • (1-2) is a cyclic alkyl group having 5 to 7 carbon atoms substituted with a substituent containing no fluorine atom, wherein R 1 and R 2 or R 3 and R 4 are bonded to each other;
  • a group containing a fluorine atom for example, a cyclopentyl group, a cyclohexyl group, and a cycloheptyl group can be used as the substituent containing no fluorine atom.
  • the fluorine atom of the alkyl group having 1 to 10 carbon atoms and having one or more trifluoromethyl groups (1-3) has an appropriate distance from the nitroxide radical. Therefore, the fluorine-containing compound represented by the formula (1) or (2) in which one or more of R 1 , R 2 , R 3 and R 4 is (1-3) has a sufficiently short T1. , and T2 can be sufficiently secured. Also, since the distance between the nitroxide radical and the fluorine atom is appropriate, the nitroxide radical is less likely to be electronically affected by the fluorine atom. Moreover, since the formula (1-3) is bulky, the approach of the reducing agent to the nitroxide radical is sterically blocked and prevented. Therefore, the fluorine-containing compound represented by Formula (1) or Formula (2) is less likely to be reduced in vivo and has high in vivo stability.
  • (1-3) facilitates the synthesis of the fluorine-containing compound represented by formula (1) or formula (2), so a chain alkyl having 1 to 5 carbon atoms and having one or more trifluoromethyl groups It is preferably a group. Further, the number of carbon atoms in the alkyl group (1-3) is preferably 1 or 2 for ease of synthesis. The number of trifluoromethyl groups that (1-3) has is 1 or more, and a single 19 F-MRI peak is obtained, so it is preferably 1 to 3, more preferably 1 preferable. When (1-3) has one trifluoromethyl group, it is preferably located at the terminal because synthesis is easy.
  • (1-3) may have a substituent other than the trifluoromethyl group, if necessary.
  • Substituents different from the trifluoromethyl group include, for example, a 2,2,2-trifluoroethoxy group, a (1,1,1,3,3,3-hexafluoropropan-2-yl)oxy group, A ((1,1,1,3,3,3-hexafluoro-2-(trifluoromethyl)propan-2-yl)oxy group can be used.
  • the fluorine-containing compound represented by the formula (1) or (2) in which one or both of R 1 and R 2 and R 3 and R 4 are (1-4) has a sufficiently short T1, And T2 can be sufficiently secured. Also, since the distance between the nitroxide radical and the fluorine atom is appropriate, the nitroxide radical is less likely to be electronically affected by the fluorine atom.
  • (1-4) preferably has a cyclic alkyl group with 5 or 6 carbon atoms, since it facilitates the synthesis of the fluorine-containing compound represented by formula (1) or formula (2). and R 1 and R 2 or R 3 and R 4 are more preferably a group formed by bonding with each other.
  • the number of trifluoromethyl groups that (1-4) has is 1 or more, and a single 19 F-MRI peak is obtained, so it is preferably 1 to 2, more preferably 1 preferable.
  • the desired product can be obtained in good yield in the synthesis reaction, so the carbon at the 2-position and / or 6-position of the piperidine ring is farthest away. It is preferably attached to the other carbon.
  • R 1 and R 3 are preferably the same, and R 2 and R 4 are preferably the same.
  • Such a fluorine-containing compound exhibits a single 19 F-MRI peak when used as a contrast agent for magnetic resonance imaging diagnosis using fluorine as a detection nucleus. Therefore, high-quality 19 F-MRI with suppressed chemical shift artifacts can be obtained.
  • X is either a hydrogen atom or an alkyl group having 1 to 10 carbon atoms substituted or unsubstituted with a substituent containing no fluorine atom. , a hydrogen atom, or a chain alkyl group having 1 to 5 carbon atoms substituted or unsubstituted with a substituent containing no fluorine atom.
  • X in the fluorine-containing compound represented by formula (2) is bonded to the 4-position of the piperidine ring via an ether bond (--O--).
  • the fluorine-containing compound represented by formula (2) Since X in the fluorine-containing compound represented by formula (2) is bonded via an ether bond, it has higher stability against oxidation-reduction reaction than the fluorine-containing compound represented by formula (1) having a carbonyl group. high. Therefore, the fluorine-containing compound represented by formula (2) is presumed to have higher in vivo stability than the fluorine-containing compound represented by formula (1).
  • the number of carbon atoms in the alkyl group of X is 10 or less, so synthesis of the fluorine-containing compound represented by formula (2) is easy. . When the number of carbon atoms in the alkyl group of X is 5 or less, synthesis of the fluorine-containing compound represented by formula (1) becomes easier, which is preferable.
  • the fluorine-containing compound represented by formula (1) is preferably any fluorine-containing compound represented by the following formulas (11) to (16), (23), and (24).
  • the fluorine-containing compound represented by the formula (2) is preferably any one of the fluorine-containing compounds represented by the following formulas (17) to (22) and (25).
  • the fluorine-containing compound of the present embodiment represented by formula (1) can be produced, for example, using the production method shown below.
  • a first intermediate compound is synthesized in which two methyl groups are bonded to each of the 2- and 6-positions of the piperidine ring, an oxygen atom is bonded to the 4-position, and a methyl group is bonded to the nitrogen atom.
  • the first intermediate compound is reacted with a compound having (1-1) to (1-4) corresponding to R 1 , R 2 , R 3 and R 4 .
  • R 1 , R 2 , R 3 , and R 4 each of (1-1) to (1-4) are bound to the 2- and 6-positions of the piperidine ring, and piperidine A second intermediate compound in which a hydrogen atom is attached to a ring nitrogen atom. After that, the hydrogen atom attached to the nitrogen atom of the piperidine ring of the second intermediate compound is removed and converted to a nitroxide radical.
  • the fluorine-containing compound represented by formula (1) is obtained.
  • the fluorine-containing compound of the present embodiment represented by formula (2) can be produced, for example, using the production method shown below.
  • a second intermediate compound is synthesized in the same manner as in the method for producing the fluorine-containing compound represented by formula (1) described above.
  • the second intermediate compound and di-tert-butyl dicarbonate are reacted to bind a tertiary butoxycarbonyl group (t-Boc group) which is a protecting group to the nitrogen atom of the piperidine ring, 3 intermediate compounds.
  • sodium borohydride is used to reduce the third intermediate compound to give a fourth intermediate compound in which a hydroxyl group is bonded to the 4-position of the piperidine ring.
  • a compound having a group corresponding to X in the fluorine-containing compound represented by formula (2) is reacted with the fourth intermediate compound to give X is a fifth intermediate compound to which a group corresponding to is bonded.
  • X is a fifth intermediate compound to which a group corresponding to is bonded.
  • dichloromethane and trifluoroacetic acid the nitrogen atom forming the piperidine ring of the fifth intermediate compound is converted to a nitroxide radical by removing the tertiary-butoxycarbonyl group as a protective group.
  • the fluorine-containing compound represented by Formula (2) is obtained by the above method.
  • the fluorine-containing compound of the present embodiment represented by formula (2) can be produced, for example, using the method shown below.
  • a fluorine-containing compound represented by formula (1) is produced by the method described above. Then, the fluorine-containing compound represented by formula (1) is reacted with sodium borohydride to obtain a fluorine-containing compound represented by formula (2) in which a hydroxyl group is bonded to the 4-position of the piperidine ring.
  • the contrast agent of this embodiment contains the fluorine-containing compound of this embodiment.
  • the contrast agent of this embodiment is a contrast agent for magnetic resonance imaging diagnosis using fluorine as a detection nucleus.
  • the contrast agent of the present embodiment can be produced by formulating the fluorine-containing compound of the present embodiment into a solid formulation, powder formulation, liquid formulation, or the like using a known formulation technique.
  • the contrast agent of the present embodiment includes, in addition to the fluorine-containing compound of the present embodiment, additives used in known formulations such as excipients, stabilizers, surfactants, buffers, electrolytes, etc. may contain one or more. Since the contrast agent of this embodiment contains the fluorine-containing compound of the present invention, it has high in vivo stability. Further, by using the contrast agent of the present embodiment as a contrast agent for magnetic resonance imaging diagnosis using fluorine as a detection nucleus, a highly sensitive magnetic resonance image can be obtained.
  • Example 1 Synthesis of Compound 11
  • Example 2 Synthesis of 1,2,2,6,6-pentamethyl-4-piperidone (1-7)>
  • 15.524 g (100 mmol) of 2,2,6,6-tetramethylpiperidin-4-one, 23.288 g (150 mmol) of paraformaldehyde and 100 ml of toluene were mixed and heated to 90°C.
  • 5.70 ml (150 mmol) of formic acid was added dropwise over 30 minutes and heated at 100° C. for 12 hours to react.
  • Example 2 Synthesis of compound 12
  • a target compound represented by formula (12) was synthesized in the same manner as in Example 1, except that 3-(trifluoromethyl)cyclohexanone was used instead of 4-(trifluoromethyl)cyclohexanone.
  • Example 3 Synthesis of compound 13
  • 3-(trifluoromethyl)cyclopentanone was used instead of 4-(trifluoromethyl)cyclohexanone
  • the target compound represented by formula (13) was obtained.
  • Example 4" Synthesis of compound 14
  • Example 5" Synthesis of compound 15
  • Example 6 Synthesis of compound 16
  • Example 7 (Synthesis of compound 17) ⁇ Synthesis of 3,11-bis(trifluoromethyl)-15-hydroxy-7-azadispiro[5.1.5.3]hexadec-7-yloxy (17)> Under an argon stream, 1.158 g (3 .00 mmol) was dissolved in 10 ml of ethanol (EtOH) and cooled in an ice bath. 0.057 g (1.50 mmol) of sodium borohydride was slowly added and stirred at room temperature for 6 hours to react.
  • Example 8 Synthesis of compound 18 A compound represented by formula (14) was used in place of 3,11-bis(trifluoromethyl)-15-oxo-7-azadispiro[5.1.5.3]hexadec-7-yloxy (11). In the same manner as in Example 7, except for the above, the target compound represented by formula (18) was synthesized.
  • Example 9 Synthesis of compound 19
  • a compound represented by formula (16) was used in place of 3,11-bis(trifluoromethyl)-15-oxo-7-azadispiro[5.1.5.3]hexadec-7-yloxy (11)
  • the target compound represented by formula (19) was synthesized.
  • Example 10 Synthesis of compound 20
  • THF tetrahydrofuran
  • tert-butyl-15-hydroxy-3,11-bis(trifluoromethyl)-7-azadispiro[5.1.5.3]hexadecane-7-carboxylic acid ester (2-3) obtained by the above reaction 10 ml of a tetrahydrofuran solution of 3.260 g (6.89 mmol) was added over 20 minutes and stirred for 30 minutes. Furthermore, 10 ml of a tetrahydrofuran solution of 1.172 g (8.26 mmol) of methyl iodide (MeI) was added over 10 minutes, and the mixture was stirred at room temperature for 12 hours to react.
  • MeI methyl iodide
  • Example 11 (Synthesis of compound 21) Pipette of the compound represented by formula (14) was carried out in the same manner as in Example 1, except that 4,4,4-trifluoro-2-butanone was used instead of 4-(trifluoromethyl)cyclohexanone.
  • An intermediate compound was synthesized in which a hydrogen atom was attached to the nitrogen atom of the lysine ring. Then, instead of 3,11-bis(trifluoromethyl)-7-azadispiro[5.1.5.3]hexadecan-15-one (2-1), using the above intermediate compound, methyl iodide
  • the target compound represented by formula (21) was synthesized in the same manner as in Example 10, except that 1-bromobutane was used instead.
  • Example 12 Synthesis of compound 22
  • 1,1,1,7,7,7-hexafluoro-4-heptanone was used instead of 4-(trifluoromethyl)cyclohexanone
  • An intermediate compound was synthesized in which a hydrogen atom was attached to the nitrogen atom of the piperidine ring of the indicated compound.
  • 3,11-bis(trifluoromethyl)-7-azadispiro[5.1.5.3]hexadecan-15-one (2-1) instead of using the above intermediate compound,
  • the target compound represented by formula (22) was synthesized.
  • Example 13 (Synthesis of compound 23) ⁇ Synthesis of 2,2,6-trimethyl-6-(2,2,2-trifluoromethyl)piperidin-4-one (2-6)> Under an argon stream, 1.695 g (10.0 mmol) of 1,2,2,6,6-pentamethyl-4-piperidone (1-7) obtained by the above reaction, 4,4,4-trifluorobutane- 1.891 g (15.0 mmol) of 2-one was dissolved in 10 ml of dimethylsulfoxide (DMSO), and 1.605 g (30.0 mmol) of ammonium chloride was added over 20 minutes to react.
  • DMSO dimethylsulfoxide
  • Example 14 Synthesis of compound 24
  • 1,1,1,7,7,7-hexafluoro-4-heptanone was used instead of 4,4,4-trifluorobutan-2-one.
  • Example 15 (Synthesis of compound 25) ⁇ Synthesis of 2,2-dimethyl-4-hydroxy-6,6-bis(3,3,3-trifluoropropyl)piperidine-1-oxyl (25)> Under an argon stream, 0.334 g of 2,2-dimethyl-4-oxo-6,6-bis(3,3,3-trifluoropropyl)piperidine-1-oxyl (24) (1. 00 mmol) was dissolved in 5 ml of ethanol (EtOH) and cooled in an ice bath. 0.019 g (0.50 mmol) of sodium borohydride was slowly added and stirred at room temperature for 6 hours to react.
  • EtOH ethanol
  • the 19 F spin-lattice relaxation time (T1) of the compounds of Examples 1 to 15 and Comparative Examples 1 and 2 thus obtained was measured by the method described below. Table 1 shows the results.
  • the compounds of Examples 1 to 15 had shorter 19 F spin-lattice relaxation times (T1) than the compounds of Comparative Examples 1 and 2.
  • the compounds of Examples 1 to 15 had higher energy levels of semi-occupied molecular orbitals (SOMO) than the compound of Comparative Example 3.
  • SOMO semi-occupied molecular orbitals
  • Comparative Example 3 (Compound A3) has only one carbon atom between the carbon atoms at positions 2 and 5 of the pyrrolidine ring and the fluorine atom, and the compounds of Examples 1 to 15 This is because the distance between the nitroxide radical and the fluorine atom is short compared to .
  • the nitroxide radical contained in Comparative Example 3 (Compound A3) is easily affected electronically by the fluorine atom, and the effect of the fluorine atom as an electron-withdrawing group is thought to have reduced the SOMO energy level. Presumed.
  • Example 1 and Comparative Example 1 a 5 mM deuterated chloroform solution and a 10 mM deuterated chloroform solution were prepared, and T1-weighted images (phantom images) were obtained under the following imaging conditions.
  • FIG. 1 is a 19 F spin-lattice relaxation time (T1) weighted image of 19 F-MRI of Example 1 (compound 11).
  • FIG. 2 is a 19 F spin-lattice relaxation time (T1) weighted image of 19 F-MRI of Comparative Example 1 (compound A1).
  • the image of Example 1 (Compound 11) shown in FIG. 1 is the same as that of Comparative Example 1 (Compound A1) shown in FIG. It was brighter than the image of Further, from FIG. 1, it can be confirmed that by using Example 1 (compound 11) as a contrast agent for MRI diagnosis using fluorine as a detection nucleus, high-sensitivity images that are sufficiently clinically applicable can be obtained. rice field.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The present invention provides a fluorine-containing compound which is represented by formula (1) or formula (2). (In the formulae, R1, R2, R3 and R4 represent one of the groups (1-1) to (1-4) described below.) (1-1) an alkyl group having 1 to 10 carbon atoms (1-2) a cyclic alkyl group having 5 to 7 carbon atoms, the cyclic alkyl group being formed of R1 and R2 combined with each other, or R3 and R4 combined with each other (1-3) an alkyl group having one or more trifluoromethyl groups, while having 1 to 10 carbon atoms (1-4) a cyclic alkyl group having one or more trifluoromethyl groups, while having 5 to 7 carbon atoms, the cyclic alkyl group being formed of R1 and R2 combined with each other, or R3 and R4 combined with each other

Description

含フッ素化合物および造影剤Fluorine-containing compounds and contrast agents
 本発明は、含フッ素化合物および造影剤に関する。
 本願は、2021年3月17日に日本に出願された特願2021-043736号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to fluorine-containing compounds and contrast agents.
This application claims priority based on Japanese Patent Application No. 2021-043736 filed in Japan on March 17, 2021, the contents of which are incorporated herein.
 磁気共鳴画像(以下「MRI」という場合がある。)診断は、X線診断、超音波(US)診断と並ぶ画像診断法の1つとして、基礎研究および臨床応用の両方において医療分野で広く用いられている。 Magnetic resonance imaging (hereinafter sometimes referred to as "MRI") diagnosis is widely used in the medical field for both basic research and clinical application as one of the diagnostic imaging methods along with X-ray diagnosis and ultrasound (US) diagnosis. It is
 現在、医療用のMRIには、プロトン(H)を検出核として用いるH-MRIが用いられている。H-MRIは、生体内に存在する水分子の磁気的環境をとらえて画像化したものである。生体内における病変組織と正常組織とでは、プロトンの磁気的環境に違いが生じる。これが、H-MRIの違いとして現れ、診断情報となる。また、水分子は生体内のほぼ全域に存在する。このため、H-MRIは、全身のイメージングに用いることができる。 Currently, 1 H-MRI using protons ( 1 H) as detection nuclei is used for medical MRI. 1 H-MRI captures and images the magnetic environment of water molecules present in vivo. A difference occurs in the magnetic environment of protons between diseased tissue and normal tissue in vivo. This appears as a difference in 1 H-MRI and serves as diagnostic information. Moreover, water molecules are present almost everywhere in the living body. Therefore, 1 H-MRI can be used for whole-body imaging.
 MRIで検出可能な核種には、Hの他に、19F、23Na、31P、15N、13C等がある。これらの元素を検出核とするMRIでは、それぞれH-MRIとは異なった情報が得られる。
 これらの中でも検出核として19Fを用いるMRIは、H-MRI診断に続く次世代の診断法に利用することが期待されている。それは、フッ素が天然存在比100%の安価な元素であり、19Fの検出感度がHの83%と高く、19Fの磁気回転比がプロトンと近いことから従来のH-MRI装置で撮像可能であるためである。
Nuclides detectable by MRI include 19 F, 23 Na, 31 P, 15 N, 13 C, etc., in addition to 1 H. MRI using these elements as detection nuclei provides different information from 1 H-MRI.
Among these, MRI using 19 F as a detection nucleus is expected to be used as a next-generation diagnostic method following 1 H-MRI diagnosis. Fluorine is an inexpensive element with a natural abundance ratio of 100%, the detection sensitivity of 19 F is as high as 83% of 1 H, and the gyromagnetic ratio of 19 F is close to that of protons. This is because imaging is possible.
 また、MRIで検出可能な19Fは、生体内にほとんど存在しない。このため、フッ素原子を含有する化合物を造影剤として用いることにより、19Fをトレーサーとした19F-MRI診断が可能である。例えば、疾病に起因する内因的変化を認識して集積するフッ素化合物を造影剤として用いることで、19F-MRIから病変部の位置的情報が得られる。この方法は、これまでの画像診断法では検出できなかった形態的変化を生じない病変部の診断に有用である。 In addition, 19 F detectable by MRI is almost non-existent in vivo. Therefore, by using a fluorine atom-containing compound as a contrast agent, 19 F-MRI diagnosis using 19 F as a tracer is possible. For example, positional information of lesions can be obtained from 19 F-MRI using a fluorine compound that recognizes and accumulates endogenous changes caused by a disease as a contrast medium. This method is useful for diagnosing lesions that do not cause morphological changes that could not be detected by conventional diagnostic imaging methods.
 現在、病変部に特異的な画像情報を得る方法として、核医学的手法がある。核医学的手法では、放射性同位元素を利用した放射性医薬品を用いる。具体的には、核医学的手法として、Positron Emission Tomography(PET)検査、Single Photon Emission Computed Tomography(SPECT)検査がある。しかし、核医学的手法には、放射線同位体を合成するための装置が大掛かりであること、被曝のリスクがあること等の問題がある。 Currently, there is a nuclear medicine method as a method of obtaining image information specific to the lesion. Nuclear medicine techniques use radiopharmaceuticals that utilize radioactive isotopes. Specifically, nuclear medicine techniques include Positron Emission Tomography (PET) examination and Single Photon Emission Computed Tomography (SPECT) examination. However, the nuclear medicine technique has problems such as a large-scale apparatus for synthesizing radioisotopes and the risk of radiation exposure.
 19F-MRI診断では、核医学的手法における上記の問題が生じない。また、19F-MRI診断では、ケミカルシフト、拡散、緩和時間等の情報を取り出すことにより、病変部の位置的情報だけでなく、更に多くの診断情報が得られる。また、一回の診断で19F-MRIとH-MRIを同時に撮像し、各々の画像を重ね合わせることにより、解剖学的情報と機能的情報とが共存する有用な診断情報を得ることも可能である。 19 F-MRI diagnostics do not suffer from the above problems in nuclear medicine procedures. Further, in 19 F-MRI diagnosis, by extracting information such as chemical shift, diffusion, and relaxation time, more diagnostic information can be obtained in addition to the positional information of the lesion. In addition, 19 F-MRI and 1 H-MRI are simultaneously imaged in one diagnosis, and useful diagnostic information in which anatomical information and functional information coexist can be obtained by superimposing the respective images. It is possible.
 フッ素を検出核とするMRI診断用の造影剤としては、例えば、特許文献1および特許文献2に記載されたものがある。
 特許文献1には、パーフルオロクラウンエーテルおよびガドリニウム錯体を含む乳酸-グリコール酸共重合体(PLGA)粒子が記載されている。また、特許文献2には、フッ素を検出核とするMRIに用いることができる含フッ素ポルフィリン錯体、および造影剤化合物が記載されている。
 しかし、特許文献1および特許文献2に記載された造影剤は、金属イオンを含むため、生体内での安全性が危惧される。
Contrast agents for MRI diagnosis using fluorine as a detection nucleus are disclosed, for example, in Patent Document 1 and Patent Document 2.
US Pat. No. 5,300,001 describes lactic acid-co-glycolic acid (PLGA) particles containing perfluorocrown ether and gadolinium complexes. Further, Patent Document 2 describes a fluorine-containing porphyrin complex and a contrast agent compound that can be used in MRI using fluorine as a detection nucleus.
However, since the contrast agents described in Patent Documents 1 and 2 contain metal ions, there are concerns about their in vivo safety.
 また、特許文献3には、フッ素含有化合物に共有結合したニトロキシドを有する化合物が記載されている。しかし、特許文献3に記載されたフッ素含有化合物は、アスコルビン酸等の還元剤によって容易に還元される(例えば、非特許文献1参照。)ため、生体内での安定性に課題がある。 In addition, Patent Document 3 describes a compound having a nitroxide covalently bonded to a fluorine-containing compound. However, the fluorine-containing compound described in Patent Document 3 is easily reduced by a reducing agent such as ascorbic acid (see, for example, Non-Patent Document 1), so there is a problem with in vivo stability.
日本国特表2015-534549号公報(A)Japanese special table 2015-534549 (A) 日本国特開平11-217385号公報(A)Japanese Patent Laid-Open No. 11-217385 (A) 米国特許第5362477号明細書(B)U.S. Pat. No. 5,362,477 (B)
 従来のフッ素を検出核とするMRI診断用の造影剤は、高感度のMRIが得られ、かつ生体内での安定性が高いものではなかった。
 本発明は、上記事情に鑑みてなされたものであり、フッ素を検出核とする磁気共鳴画像診断用の造影剤の材料として用いることにより、高感度の磁気共鳴画像が得られ、かつ生体内での安定性が高い含フッ素化合物を提供することを目的とする。
 また、本発明は、本発明の含フッ素化合物を含有し、生体内での安定性が高く、高感度の画像が得られる、フッ素を検出核とする磁気共鳴画像診断用の造影剤を提供することを目的とする。
Conventional contrast agents for MRI diagnosis using fluorine as a detection nucleus do not provide high-sensitivity MRI and are not highly stable in vivo.
The present invention has been made in view of the above circumstances, and by using fluorine as a contrast agent material for magnetic resonance imaging diagnosis using fluorine as a detection nucleus, a highly sensitive magnetic resonance image can be obtained, and in vivo An object of the present invention is to provide a fluorine-containing compound having high stability of
The present invention also provides a contrast agent for magnetic resonance imaging diagnosis, containing the fluorine-containing compound of the present invention, having high stability in vivo and capable of obtaining highly sensitive images, and having fluorine as a detection nucleus. for the purpose.
[1]下記一般式(1)または下記一般式(2)で表されることを特徴とする含フッ素化合物。 [1] A fluorine-containing compound represented by the following general formula (1) or (2).
Figure JPOXMLDOC01-appb-C000002

(一般式(1)において、R、R、R、Rは、下記(1-1)~(1-4)のいずれかであって、R、R、R、Rのうち1つ以上が下記(1-3)である、またはRとR、RとRの一方または両方が(1-4)である。)
(一般式(2)において、R、R、R、Rは、下記(1-1)~(1-4)のいずれかであって、R、R、R、Rのうち1つ以上が下記(1-3)である、またはRとR、RとRの一方または両方が(1-4)である。Xは、水素原子、またはフッ素原子を含まない置換基で置換もしくは無置換の炭素数1~10のアルキル基のいずれかである。)
(1-1)フッ素原子を含まない置換基で置換もしくは無置換の炭素数1~10のアルキル基である。
(1-2)フッ素原子を含まない置換基で置換もしくは無置換の炭素数5~7の環状アルキル基であって、RとR、またはRとRが、互いに結合して形成された基である。
(1-3)1つ以上のトリフルオロメチル基を有する炭素数1~10のアルキル基である。
(1-4)1つ以上のトリフルオロメチル基を有する炭素数5~7の環状アルキル基であって、RとR、またはRとRが、互いに結合して形成された基である。
Figure JPOXMLDOC01-appb-C000002

(In general formula (1), R 1 , R 2 , R 3 and R 4 are any one of the following (1-1) to (1-4), and R 1 , R 2 , R 3 and R 4 is (1-3) below, or one or both of R 1 and R 2 , R 3 and R 4 are (1-4).)
(In general formula (2), R 1 , R 2 , R 3 and R 4 are any one of the following (1-1) to (1-4), and R 1 , R 2 , R 3 and R 4 is (1-3) below, or one or both of R 1 and R 2 , R 3 and R 4 are (1-4), X is a hydrogen atom or a fluorine atom It is either a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms with a substituent that does not contain
(1-1) an alkyl group having 1 to 10 carbon atoms substituted or unsubstituted with a substituent containing no fluorine atom;
(1-2) a cyclic alkyl group having 5 to 7 carbon atoms substituted or unsubstituted with a substituent containing no fluorine atom, wherein R 1 and R 2 or R 3 and R 4 are bonded to each other; It is the basis of
(1-3) an alkyl group having 1 to 10 carbon atoms and having one or more trifluoromethyl groups;
(1-4) a cyclic alkyl group having 5 to 7 carbon atoms and having one or more trifluoromethyl groups, wherein R 1 and R 2 or R 3 and R 4 are bonded to each other; is.
[2]前記(1-1)が、フッ素原子を含まない置換基で置換もしくは無置換の炭素数1~5の鎖状アルキル基である、[1]に記載の含フッ素化合物。
[3]前記(1-2)が、フッ素原子を含まない置換基で置換もしくは無置換のシクロヘキシル基であって、RとR、またはRとRが、互いに結合して形成された基である、[1]または[2]に記載の含フッ素化合物。
[2] The fluorine-containing compound according to [1], wherein (1-1) is a chain alkyl group having 1 to 5 carbon atoms substituted or unsubstituted with a fluorine atom-free substituent.
[3] The above (1-2) is a cyclohexyl group substituted or unsubstituted with a substituent containing no fluorine atom, wherein R 1 and R 2 or R 3 and R 4 are bonded to each other; The fluorine-containing compound according to [1] or [2], which is a group.
[4]前記(1-3)が、1つ以上のトリフルオロメチル基を有する炭素数1~5の鎖状アルキル基である、[1]~[3]のいずれかに記載の含フッ素化合物。
[5]前記(1-4)が、1つ以上のトリフルオロメチル基を有するシクロヘキシル基であって、RとR、またはRとRが、互いに結合して形成された基である、[1]~[4]のいずれかに記載の含フッ素化合物。
[4] The fluorine-containing compound according to any one of [1] to [3], wherein (1-3) is a chain alkyl group having 1 to 5 carbon atoms and having one or more trifluoromethyl groups. .
[5] The above (1-4) is a cyclohexyl group having one or more trifluoromethyl groups, wherein R 1 and R 2 or R 3 and R 4 are combined to form The fluorine-containing compound according to any one of [1] to [4].
[6]前記一般式(1)または前記一般式(2)におけるRとRとが同じであって、かつRとRとが同じである、[1]~[5]のいずれかに記載の含フッ素化合物。
[7]前記一般式(2)におけるXが、水素原子と、またはフッ素原子を含まない置換基で置換もしくは無置換の炭素数1~5の鎖状アルキル基のいずれかである、[1]に記載の含フッ素化合物。
[6] Any one of [1] to [5], wherein R 1 and R 3 in the general formula (1) or the general formula (2) are the same, and R 2 and R 4 are the same The fluorine-containing compound according to 1.
[7] X in the general formula (2) is either a hydrogen atom or a chain alkyl group having 1 to 5 carbon atoms substituted or unsubstituted with a substituent containing no fluorine atom, [1] The fluorine-containing compound according to .
[8]フッ素を検出核とする磁気共鳴画像診断用の造影剤に用いられる、[1]~[7]のいずれかに記載の含フッ素化合物。
[9]フッ素を検出核とする磁気共鳴画像診断用の造影剤であり、
 [1]~[8]のいずれかに記載の含フッ素化合物を含有する造影剤。
[8] The fluorine-containing compound according to any one of [1] to [7], which is used as a contrast agent for magnetic resonance imaging diagnosis using fluorine as a detection nucleus.
[9] A contrast agent for magnetic resonance imaging diagnosis using fluorine as a detection nucleus,
A contrast agent containing the fluorine-containing compound according to any one of [1] to [8].
 本発明の含フッ素化合物は、上記一般式(1)または下記一般式(2)で表される化合物である。このため、生体内での安定性が高い。また、本発明の含フッ素化合物は、フッ素を検出核とする磁気共鳴画像診断用の造影剤の材料として用いることにより、高感度の磁気共鳴画像が得られる。
 本発明の造影剤は、本発明の含フッ素化合物を含有する。このため、本発明の造影剤は、生体内での安定性が高い。また、本発明の造影剤は、フッ素を検出核とする磁気共鳴画像診断用の造影剤として用いることにより、高感度の磁気共鳴画像が得られる。
The fluorine-containing compound of the present invention is a compound represented by the above general formula (1) or the following general formula (2). Therefore, the in vivo stability is high. In addition, the fluorine-containing compound of the present invention can be used as a contrast agent material for magnetic resonance imaging diagnosis using fluorine as a detection nucleus to obtain a highly sensitive magnetic resonance image.
The contrast agent of the present invention contains the fluorine-containing compound of the present invention. Therefore, the contrast agent of the present invention has high in vivo stability. Further, the contrast agent of the present invention can be used as a contrast agent for magnetic resonance imaging diagnosis using fluorine as a detection nucleus to obtain a highly sensitive magnetic resonance image.
実施例1(化合物11)の19F-MRIの19Fスピン-格子緩和時間(T1)強調画像である。1 is a 19 F spin-lattice relaxation time (T1) weighted image of 19 F-MRI of Example 1 (compound 11). 比較例1(化合物A1)の19F-MRIの19Fスピン-格子緩和時間(T1)強調画像である。19 is a 19 F spin-lattice relaxation time (T1)-enhanced image of 19 F-MRI of Comparative Example 1 (Compound A1).
 以下、本発明の含フッ素化合物および造影剤について、詳細に説明する。
[含フッ素化合物]
 本実施形態の含フッ素化合物は、下記一般式(1)または下記一般式(2)で表される。
The fluorine-containing compound and contrast agent of the present invention are described in detail below.
[Fluorine-containing compound]
The fluorine-containing compound of this embodiment is represented by the following general formula (1) or the following general formula (2).
Figure JPOXMLDOC01-appb-C000003
(一般式(1)において、R、R、R、Rは、下記(1-1)~(1-4)のいずれかであって、R、R、R、Rのうち1つ以上が下記(1-3)である、またはRとR、RとRの一方または両方が(1-4)である。)
(一般式(2)において、R、R、R、Rは、下記(1-1)~(1-4)のいずれかであって、R、R、R、Rのうち1つ以上が下記(1-3)である、またはRとR、RとRの一方または両方が(1-4)である。Xは、水素原子、またはフッ素原子を含まない置換基で置換もしくは無置換の炭素数1~10のアルキル基のいずれかである。)
(1-1)フッ素原子を含まない置換基で置換もしくは無置換の炭素数1~10のアルキル基である。
(1-2)フッ素原子を含まない置換基で置換もしくは無置換の炭素数5~7の環状アルキル基であって、RとR、またはRとRが、互いに結合して形成された基である。
(1-3)1つ以上のトリフルオロメチル基を有する炭素数1~10のアルキル基である。
(1-4)1つ以上のトリフルオロメチル基を有する炭素数5~7の環状アルキル基であって、RとR、またはRとRが、互いに結合して形成された基である。
Figure JPOXMLDOC01-appb-C000003
(In general formula (1), R 1 , R 2 , R 3 and R 4 are any one of the following (1-1) to (1-4), and R 1 , R 2 , R 3 and R 4 is (1-3) below, or one or both of R 1 and R 2 , R 3 and R 4 are (1-4).)
(In general formula (2), R 1 , R 2 , R 3 and R 4 are any one of the following (1-1) to (1-4), and R 1 , R 2 , R 3 and R 4 is (1-3) below, or one or both of R 1 and R 2 , R 3 and R 4 are (1-4), X is a hydrogen atom or a fluorine atom It is either a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms with a substituent that does not contain
(1-1) an alkyl group having 1 to 10 carbon atoms substituted or unsubstituted with a substituent containing no fluorine atom;
(1-2) a cyclic alkyl group having 5 to 7 carbon atoms substituted or unsubstituted with a substituent containing no fluorine atom, wherein R 1 and R 2 or R 3 and R 4 are bonded to each other; It is the basis of
(1-3) an alkyl group having 1 to 10 carbon atoms and having one or more trifluoromethyl groups;
(1-4) a cyclic alkyl group having 5 to 7 carbon atoms and having one or more trifluoromethyl groups, wherein R 1 and R 2 or R 3 and R 4 are bonded to each other; is.
 ここで、本実施形態の含フッ素化合物を含む造影剤を、フッ素を検出核とするMRI診断用の造影剤として用いた場合に、生体内での安定性が高く、高感度の磁気共鳴画像(MRI)が得られる理由について説明する。 Here, when the contrast agent containing the fluorine-containing compound of the present embodiment is used as a contrast agent for MRI diagnosis using fluorine as a detection nucleus, high stability in vivo and high sensitivity magnetic resonance imaging ( MRI) is obtained.
 高感度の19F-MRIを得るためには、造影剤に含まれる含フッ素化合物として、19Fスピン-格子緩和時間(T1)の短いものを用いることが好ましい。含フッ素化合物のT1が短いほど、繰り返し時間を短く設定できる。このため、単位時間あたりに得られる信号量が多くなり、高感度の画像が得られるからである。一方、含フッ素化合物の19Fスピン-スピン緩和時間(T2)が短すぎると、信号強度が低下する。 In order to obtain 19 F-MRI with high sensitivity, it is preferable to use a fluorine-containing compound contained in the contrast agent having a short 19 F spin-lattice relaxation time (T1). The shorter the T1 of the fluorine-containing compound, the shorter the repetition time can be set. Therefore, the amount of signal obtained per unit time is increased, and a highly sensitive image can be obtained. On the other hand, if the 19 F spin-spin relaxation time (T2) of the fluorine-containing compound is too short, the signal intensity will decrease.
 含フッ素化合物の19Fスピン-格子緩和時間(T1)および19Fスピン-スピン緩和時間(T2)は、常磁性緩和促進(PRE)効果の影響を受ける。PRE効果とは、常磁性体の有する不対電子スピンによって、不対電子スピン近傍のMRI観測核のT1およびT2が短縮する現象である。 The 19 F spin-lattice relaxation time (T1) and 19 F spin-spin relaxation time (T2) of fluorine-containing compounds are affected by the paramagnetic relaxation enhancement (PRE) effect. The PRE effect is a phenomenon in which T1 and T2 of MRI observation nuclei in the vicinity of unpaired electron spins are shortened by unpaired electron spins possessed by a paramagnetic material.
 PRE効果は、常磁性体と常磁性体に緩和されるMRI観測核(本実施形態では、フッ素原子)との距離の6乗に反比例する。したがって、本実施形態の式(1)または式(2)で表される含フッ素化合物においては、常磁性体であるニトロキシドラジカルとフッ素原子との距離が近い程、T1およびT2が短くなる。式(1)または式(2)で表される含フッ素化合物では、ピぺリジン環の2位および/または6位の炭素に、1つ以上のトリフルオロメチル基を有する炭素数1~10のアルキル基、または1つ以上のトリフルオロメチル基を有する炭素数5~7の環状アルキル基が結合している。このため、ニトロキシドラジカルとフッ素原子との距離が適正であり、T1が十分に短く、かつT2を十分に確保できる。よって、式(1)または式(2)で表される含フッ素化合物を、フッ素を検出核とするMRI診断用の造影剤として用いることにより、高感度の磁気共鳴画像が得られる。 The PRE effect is inversely proportional to the sixth power of the distance between the paramagnetic substance and the MRI observation nuclei (fluorine atoms in this embodiment) relaxed by the paramagnetic substance. Therefore, in the fluorine-containing compound represented by Formula (1) or Formula (2) of the present embodiment, T1 and T2 become shorter as the distance between the paramagnetic nitroxide radical and the fluorine atom becomes shorter. In the fluorine-containing compound represented by formula (1) or formula (2), at the 2- and / or 6-position carbon of the piperidine ring, one or more trifluoromethyl groups having 1 to 10 carbon atoms An alkyl group or a cyclic alkyl group having 5 to 7 carbon atoms having one or more trifluoromethyl groups is bonded. Therefore, the distance between the nitroxide radical and the fluorine atom is appropriate, T1 is sufficiently short, and T2 is sufficiently secured. Therefore, by using the fluorine-containing compound represented by formula (1) or formula (2) as a contrast agent for MRI diagnosis using fluorine as a detection nucleus, a highly sensitive magnetic resonance image can be obtained.
 また、有機ラジカルは、閉殻種と異なり、最高被占軌道(HOMO)と最低空軌道(LUMO)との間に、不対電子の入った半占軌道(SOMO)を有する。有機ラジカルの酸化還元過程は、SOMOにおける電子授受の過程に対応する。アスコルビン酸等の還元剤による有機ラジカルの還元反応は、還元剤のHOMOと有機ラジカルのSOMOとのエネルギー差が小さいほど生じやすい。したがって、有機ラジカルのSOMOのエネルギーレベルが低いほど、還元されやすい。 In addition, unlike closed-shell species, organic radicals have a semi-occupied orbital (SOMO) containing an unpaired electron between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO). The redox process of organic radicals corresponds to the electron transfer process in SOMO. The reduction reaction of organic radicals by a reducing agent such as ascorbic acid is more likely to occur when the energy difference between the HOMO of the reducing agent and the SOMO of the organic radicals is smaller. Therefore, the lower the SOMO energy level of the organic radical, the easier it is to be reduced.
 本実施形態の式(1)または式(2)で表される含フッ素化合物では、ピぺリジン環の窒素原子と式(1)または式(2)中の1つ以上のトリフルオロメチル基との間に、3つ以上の炭素原子が配置されている。このことにより、式(1)または式(2)で表される含フッ素化合物では、ニトロキシドラジカルとフッ素原子とが十分に離れた位置に配置され、ニトロキシドラジカルが、フッ素原子からの電子的な影響を受けにくいものとされている。したがって、式(1)または式(2)で表される含フッ素化合物では、電子吸引基であるフッ素原子に起因するニトロキシドラジカルのSOMOのエネルギーレベルの低下が生じない。よって、本実施形態の含フッ素化合物におけるニトロキシドラジカルのSOMOは、アスコルビン酸等の還元剤のHOMOとのエネルギー差が十分に大きい。したがって、式(1)または式(2)で表される含フッ素化合物は、生体内で還元されにくく、生体内での安定性が高い。 In the fluorine-containing compound represented by formula (1) or formula (2) of the present embodiment, the nitrogen atom of the piperidine ring and one or more trifluoromethyl groups in formula (1) or formula (2) three or more carbon atoms are arranged between As a result, in the fluorine-containing compound represented by formula (1) or (2), the nitroxide radical and the fluorine atom are arranged at sufficiently distant positions, and the nitroxide radical is electronically affected by the fluorine atom. is considered to be difficult to receive. Therefore, in the fluorine-containing compound represented by formula (1) or (2), the SOMO energy level of the nitroxide radical does not decrease due to the fluorine atom, which is an electron-withdrawing group. Therefore, the SOMO of the nitroxide radical in the fluorine-containing compound of the present embodiment has a sufficiently large energy difference from the HOMO of a reducing agent such as ascorbic acid. Therefore, the fluorine-containing compound represented by Formula (1) or Formula (2) is less likely to be reduced in vivo and has high in vivo stability.
 また、式(1)または式(2)で表される含フッ素化合物では、ピぺリジン環の2位および6位の炭素に、立体的に嵩高い置換基(式(1)および式(2)中のR、R、R、R)が結合している。これにより、式(1)または式(2)で表される含フッ素化合物では、ニトロキシドラジカルへの還元剤の接近が、R、R、R、Rによって、立体的に遮蔽されて妨げられる。このことから、式(1)または式(2)で表される含フッ素化合物は、生体内で還元されにくく、生体内での安定性が高い。 In addition, in the fluorine-containing compound represented by formula (1) or formula (2), sterically bulky substituents (formula (1) and formula (2 ) in which R 1 , R 2 , R 3 , and R 4 ) are bonded. Accordingly, in the fluorine-containing compound represented by formula (1) or (2), the approach of the reducing agent to the nitroxide radical is sterically blocked by R 1 , R 2 , R 3 and R 4 . Hindered. Therefore, the fluorine-containing compound represented by formula (1) or (2) is difficult to be reduced in vivo and has high stability in vivo.
 しかも、本実施形態の式(1)または式(2)で表される含フッ素化合物は、金属を含まない非金属化合物であるので、金属イオンを含む造影剤と比較して、生体内での安全性が高い。したがって、本実施形態の含フッ素化合物は、フッ素を検出核とする磁気共鳴画像診断用の造影剤の材料として好適である。
 また、本実施形態の式(1)または式(2)で表される含フッ素化合物は、ピぺリジン環を有する化合物であって、生体内での安全性が高い4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン1-オキシルフリーラジカル(TEMPOL)に類似する構造を有する。このため、本実施形態の式(1)または式(2)で表される含フッ素化合物は、例えば、ピロリジン環を有する含フッ素化合物と比較して、生体内での安定性が高いものと推定される。
Moreover, since the fluorine-containing compound represented by Formula (1) or Formula (2) of the present embodiment is a nonmetallic compound that does not contain metal, it is less effective in vivo than contrast agents containing metal ions. High safety. Therefore, the fluorine-containing compound of the present embodiment is suitable as a material for a contrast medium for magnetic resonance imaging using fluorine as a detection nucleus.
In addition, the fluorine-containing compound represented by formula (1) or formula (2) of the present embodiment is a compound having a piperidine ring and is highly safe in vivo. ,6,6-tetramethylpiperidine 1-oxyl free radical (TEMPOL). Therefore, the fluorine-containing compound represented by formula (1) or formula (2) of the present embodiment is presumed to have higher in vivo stability than, for example, a fluorine-containing compound having a pyrrolidine ring. be done.
 本実施形態の式(1)または式(2)で表される含フッ素化合物において、R、R、R、Rは、(1-1)~(1-4)のいずれかである。式(1)または式(2)におけるR、R、R、Rのうち1つ以上が(1-3)である、またはRとR、RとRの一方または両方が(1-4)である。 In the fluorine-containing compound represented by Formula (1) or Formula (2) of the present embodiment, R 1 , R 2 , R 3 and R 4 are any one of (1-1) to (1-4) be. one or more of R 1 , R 2 , R 3 and R 4 in formula (1) or formula (2) is (1-3), or one of R 1 and R 2 , R 3 and R 4 or Both are (1-4).
 R、R、R、Rのうち1つ以上が(1-3)である場合、単一の19F-MRIピークを示すフッ素原子数が多くなるため、R、R、R、Rのうち、2つまたは全部が(1-3)であることが好ましい。R、R、R、Rのうち2つが(1-3)である場合、RとRのうちの一方、およびRとRのうちの一方が(1-3)であって、R、R、R、Rのうち(1-3)でないものが(1-1)であることが好ましい。 When one or more of R 1 , R 2 , R 3 and R 4 is (1-3), the number of fluorine atoms showing a single 19 F-MRI peak increases, so that R 1 , R 2 , Two or all of R 3 and R 4 are preferably (1-3). when two of R 1 , R 2 , R 3 and R 4 are (1-3), then one of R 1 and R 2 and one of R 3 and R 4 is (1-3) and, among R 1 , R 2 , R 3 and R 4 , those other than (1-3) are preferably (1-1).
 RとR、RとRの一方または両方が(1-4)である場合、単一の19F-MRIピークを示すフッ素原子数が多くなるため、RとR、RとRの両方が(1-4)であることが好ましい。RとR、RとRのうち一方のみが(1-4)である場合、RとR、RとRのうち(1-4)でないものは、(1-1)であってもよいし(1-2)であってもよい。 When one or both of R 1 and R 2 and R 3 and R 4 are (1-4), the number of fluorine atoms showing a single 19 F-MRI peak increases, so that R 1 and R 2 and R It is preferred that both 3 and R 4 are (1-4). When only one of R 1 and R 2 , R 3 and R 4 is (1-4), R 1 and R 2 , R 3 and R 4 that are not (1-4) are (1- 1) or (1-2).
 (1-1)であるフッ素原子を含まない置換基で置換もしくは無置換の炭素数1~10のアルキル基は、適度に嵩高い。このため、ニトロキシドラジカルへの還元剤の接近を妨げることができる。また、(1-1)は、アルキル基の炭素数が10以下であるので、式(1)または式(2)で表される含フッ素化合物の合成が容易となる。(1-1)が、フッ素原子を含まない置換基で置換もしくは無置換の炭素数1~5の鎖状アルキル基であると、式(1)または式(2)で表される含フッ素化合物の合成がより一層容易となり、好ましい。(1-1)は、具体的には、メチル基またはエチル基であることが好ましく、合成が容易であるため、メチル基であることがより好ましい。 The (1-1) alkyl group having 1 to 10 carbon atoms substituted or unsubstituted with a fluorine atom-free substituent is moderately bulky. Therefore, it is possible to prevent the approach of the reducing agent to the nitroxide radical. In addition, since the alkyl group of (1-1) has 10 or less carbon atoms, synthesis of the fluorine-containing compound represented by formula (1) or formula (2) is facilitated. (1-1) is a chain alkyl group having 1 to 5 carbon atoms substituted or unsubstituted with a substituent containing no fluorine atom, a fluorine-containing compound represented by formula (1) or formula (2) is easier to synthesize, which is preferable. Specifically, (1-1) is preferably a methyl group or an ethyl group, and more preferably a methyl group for ease of synthesis.
 (1-1)が、フッ素原子を含まない置換基で置換された炭素数1~10のアルキル基である場合、フッ素原子を含まない置換基としては、例えば、メチル基またはエチル基を用いることができる。 When (1-1) is an alkyl group having 1 to 10 carbon atoms substituted with a substituent containing no fluorine atom, the substituent containing no fluorine atom may be, for example, a methyl group or an ethyl group. can be done.
 (1-2)であるフッ素原子を含まない置換基で置換もしくは無置換の炭素数5~7の環状アルキル基であって、RとR、またはRとRが、互いに結合して形成された基は、適度に嵩高い。このため、ニトロキシドラジカルへの還元剤の接近を妨げることができる。また、(1-2)は、環状アルキル基の炭素数が5~7であるので、式(1)または式(2)で表される含フッ素化合物の合成が容易となる。(1-2)の環状アルキル基の炭素数は、合成が容易であるため、5または6であることが好ましい。(1-2)が、フッ素原子を含まない置換基で置換もしくは無置換のシクロヘキシル基であって、RとR、またはRとRが、互いに結合して形成された基であると、式(1)または式(2)で表される含フッ素化合物の合成がより一層容易となり、好ましい。(1-2)は、無置換のシクロヘキシル基であって、RとR、またはRとRが、互いに結合して形成された基であることが最も好ましい。 (1-2), a cyclic alkyl group having 5 to 7 carbon atoms substituted or unsubstituted with a fluorine atom-free substituent, wherein R 1 and R 2 or R 3 and R 4 are bonded to each other; The group formed by is moderately bulky. Therefore, it is possible to prevent the approach of the reducing agent to the nitroxide radical. In (1-2), since the cyclic alkyl group has 5 to 7 carbon atoms, synthesis of the fluorine-containing compound represented by formula (1) or formula (2) is facilitated. The number of carbon atoms in the cyclic alkyl group (1-2) is preferably 5 or 6 for ease of synthesis. (1-2) is a cyclohexyl group substituted or unsubstituted with a substituent containing no fluorine atom, wherein R 1 and R 2 or R 3 and R 4 are bonded to each other; With this, the synthesis of the fluorine-containing compound represented by the formula (1) or (2) becomes easier, which is preferable. (1-2) is an unsubstituted cyclohexyl group, most preferably a group formed by bonding R 1 and R 2 or R 3 and R 4 together.
 (1-2)が、フッ素原子を含まない置換基で置換された炭素数5~7の環状アルキル基であって、RとR、またはRとRが、互いに結合して形成された基である場合、フッ素原子を含まない置換基としては、例えば、シクロペンチル基、シクロヘキシル基、シクロヘプチル基を用いることができる。 (1-2) is a cyclic alkyl group having 5 to 7 carbon atoms substituted with a substituent containing no fluorine atom, wherein R 1 and R 2 or R 3 and R 4 are bonded to each other; In the case of a group containing a fluorine atom, for example, a cyclopentyl group, a cyclohexyl group, and a cycloheptyl group can be used as the substituent containing no fluorine atom.
 (1-3)である1つ以上のトリフルオロメチル基を有する炭素数1~10のアルキル基の有するフッ素原子は、ニトロキシドラジカルとの距離が適正である。このため、R、R、R、Rのうち1つ以上が(1-3)である式(1)または式(2)で表される含フッ素化合物は、T1が十分に短く、かつT2を十分に確保できる。また、ニトロキシドラジカルとフッ素原子との距離が適正であるので、ニトロキシドラジカルが、フッ素原子からの電子的な影響を受けにくい。しかも、式(1-3)が嵩高いため、ニトロキシドラジカルへの還元剤の接近が立体的に遮蔽されて妨げられる。したがって、式(1)または式(2)で表される含フッ素化合物は、生体内で還元されにくく、生体内での安定性が高いものとなる。 The fluorine atom of the alkyl group having 1 to 10 carbon atoms and having one or more trifluoromethyl groups (1-3) has an appropriate distance from the nitroxide radical. Therefore, the fluorine-containing compound represented by the formula (1) or (2) in which one or more of R 1 , R 2 , R 3 and R 4 is (1-3) has a sufficiently short T1. , and T2 can be sufficiently secured. Also, since the distance between the nitroxide radical and the fluorine atom is appropriate, the nitroxide radical is less likely to be electronically affected by the fluorine atom. Moreover, since the formula (1-3) is bulky, the approach of the reducing agent to the nitroxide radical is sterically blocked and prevented. Therefore, the fluorine-containing compound represented by Formula (1) or Formula (2) is less likely to be reduced in vivo and has high in vivo stability.
 (1-3)は、式(1)または式(2)で表される含フッ素化合物の合成が容易となるため、1つ以上のトリフルオロメチル基を有する炭素数1~5の鎖状アルキル基であることが好ましい。さらに合成が容易となるため、(1-3)のアルキル基の炭素数は、1または2であることが好ましい。
 (1-3)の有するトリフルオロメチル基の数は、1つ以上であり、単一の19F-MRIピークが得られるため、1~3であることが好ましく、1つであることがより好ましい。(1-3)の有するトリフルオロメチル基が1つである場合、合成が容易であるため、末端に配置されていることが好ましい。
(1-3) facilitates the synthesis of the fluorine-containing compound represented by formula (1) or formula (2), so a chain alkyl having 1 to 5 carbon atoms and having one or more trifluoromethyl groups It is preferably a group. Further, the number of carbon atoms in the alkyl group (1-3) is preferably 1 or 2 for ease of synthesis.
The number of trifluoromethyl groups that (1-3) has is 1 or more, and a single 19 F-MRI peak is obtained, so it is preferably 1 to 3, more preferably 1 preferable. When (1-3) has one trifluoromethyl group, it is preferably located at the terminal because synthesis is easy.
 (1-3)は、必要に応じて、トリフルオロメチル基とは別の置換基を有していてもよい。トリフルオロメチル基とは別の置換基としては、例えば、2,2,2-トリフルオロエトキシ基、(1,1,1,3,3,3-ヘキサフルオロプロパン-2-イル)オキシ基、((1,1,1,3,3,3-ヘキサフルオロ-2-(トリフルオロメチル)プロパン-2-イル)オキシ基を用いることができる。 (1-3) may have a substituent other than the trifluoromethyl group, if necessary. Substituents different from the trifluoromethyl group include, for example, a 2,2,2-trifluoroethoxy group, a (1,1,1,3,3,3-hexafluoropropan-2-yl)oxy group, A ((1,1,1,3,3,3-hexafluoro-2-(trifluoromethyl)propan-2-yl)oxy group can be used.
 (1-4)である1つ以上のトリフルオロメチル基を有する炭素数5~7の環状アルキル基であって、RとR、またはRとRが、互いに結合して形成された基の有するフッ素原子は、ニトロキシドラジカルとの距離が適正である。このため、RとR、RとRの一方または両方が(1-4)である式(1)または式(2)で表される含フッ素化合物は、T1が十分に短く、かつT2を十分に確保できる。また、ニトロキシドラジカルとフッ素原子との距離が適正であるので、ニトロキシドラジカルが、フッ素原子からの電子的な影響を受けにくい。しかも、式(1-4)が嵩高いため、ニトロキシドラジカルへの還元剤の接近が立体的に遮蔽されて妨げられる。したがって、式(1)または式(2)で表される含フッ素化合物は、生体内で還元されにくく、生体内での安定性が高いものとなる。 (1-4), a cyclic alkyl group having 5 to 7 carbon atoms and having one or more trifluoromethyl groups, wherein R 1 and R 2 or R 3 and R 4 are bonded to form The fluorine atom possessed by the group is properly spaced from the nitroxide radical. Therefore, the fluorine-containing compound represented by the formula (1) or (2) in which one or both of R 1 and R 2 and R 3 and R 4 are (1-4) has a sufficiently short T1, And T2 can be sufficiently secured. Also, since the distance between the nitroxide radical and the fluorine atom is appropriate, the nitroxide radical is less likely to be electronically affected by the fluorine atom. Moreover, since the formula (1-4) is bulky, the approach of the reducing agent to the nitroxide radical is sterically blocked and prevented. Therefore, the fluorine-containing compound represented by Formula (1) or Formula (2) is less likely to be reduced in vivo and has high in vivo stability.
 (1-4)は、式(1)または式(2)で表される含フッ素化合物の合成が容易となるため、環状アルキル基の炭素数が5または6であることが好ましく、1つ以上のトリフルオロメチル基を有するシクロヘキシル基であって、RとR、またはRとRが、互いに結合して形成された基であることがより好ましい。
 (1-4)の有するトリフルオロメチル基の数は、1つ以上であり、単一の19F-MRIピークが得られるため、1~2であることが好ましく、1つであることがより好ましい。(1-4)の有するトリフルオロメチル基が1つである場合、合成反応において目的の生成物が収率良く得られるため、ピぺリジン環の2位および/または6位の炭素から最も離れた炭素に結合されていることが好ましい。
(1-4) preferably has a cyclic alkyl group with 5 or 6 carbon atoms, since it facilitates the synthesis of the fluorine-containing compound represented by formula (1) or formula (2). and R 1 and R 2 or R 3 and R 4 are more preferably a group formed by bonding with each other.
The number of trifluoromethyl groups that (1-4) has is 1 or more, and a single 19 F-MRI peak is obtained, so it is preferably 1 to 2, more preferably 1 preferable. When (1-4) has one trifluoromethyl group, the desired product can be obtained in good yield in the synthesis reaction, so the carbon at the 2-position and / or 6-position of the piperidine ring is farthest away. It is preferably attached to the other carbon.
 本実施形態の式(1)または式(2)で表される含フッ素化合物は、RとRとが同じであって、かつRとRとが同じであることが好ましい。このような含フッ素化合物は、フッ素を検出核とする磁気共鳴画像診断用の造影剤として用いた場合、単一の19F-MRIピークを示す。このため、ケミカルシフトアーチファクトが抑制された高画質の19F-MRIが得られる。 In the fluorine-containing compound represented by Formula (1) or Formula (2) of the present embodiment, R 1 and R 3 are preferably the same, and R 2 and R 4 are preferably the same. Such a fluorine-containing compound exhibits a single 19 F-MRI peak when used as a contrast agent for magnetic resonance imaging diagnosis using fluorine as a detection nucleus. Therefore, high-quality 19 F-MRI with suppressed chemical shift artifacts can be obtained.
 本実施形態の式(2)で表される含フッ素化合物において、Xは、水素原子、またはフッ素原子を含まない置換基で置換もしくは無置換の炭素数1~10のアルキル基のいずれかであり、水素原子、またはフッ素原子を含まない置換基で置換もしくは無置換の炭素数1~5の鎖状アルキル基のいずれかであることが好ましい。
 式(2)で表される含フッ素化合物におけるXは、ピぺリジン環の4位とエーテル結合(-O-)により結合されている。式(2)で表される含フッ素化合物におけるXは、エーテル結合により結合されているので、カルボニル基を有する式(1)で表される含フッ素化合物と比較して酸化還元反応に対する安定性が高い。このため、式(2)で表される含フッ素化合物は、式(1)で表される含フッ素化合物と比較して、生体内での安定性が高いものと推定される。
 また、本実施形態の式(2)で表される含フッ素化合物では、Xのアルキル基の炭素数が10以下であるので、式(2)で表される含フッ素化合物の合成が容易である。Xのアルキル基の炭素数が5以下であると、式(1)で表される含フッ素化合物の合成がより一層容易となり、好ましい。
In the fluorine-containing compound represented by formula (2) of the present embodiment, X is either a hydrogen atom or an alkyl group having 1 to 10 carbon atoms substituted or unsubstituted with a substituent containing no fluorine atom. , a hydrogen atom, or a chain alkyl group having 1 to 5 carbon atoms substituted or unsubstituted with a substituent containing no fluorine atom.
X in the fluorine-containing compound represented by formula (2) is bonded to the 4-position of the piperidine ring via an ether bond (--O--). Since X in the fluorine-containing compound represented by formula (2) is bonded via an ether bond, it has higher stability against oxidation-reduction reaction than the fluorine-containing compound represented by formula (1) having a carbonyl group. high. Therefore, the fluorine-containing compound represented by formula (2) is presumed to have higher in vivo stability than the fluorine-containing compound represented by formula (1).
In addition, in the fluorine-containing compound represented by formula (2) of the present embodiment, the number of carbon atoms in the alkyl group of X is 10 or less, so synthesis of the fluorine-containing compound represented by formula (2) is easy. . When the number of carbon atoms in the alkyl group of X is 5 or less, synthesis of the fluorine-containing compound represented by formula (1) becomes easier, which is preferable.
 式(1)で表される含フッ素化合物は、具体的には、下記式(11)~(16)(23)(24)で表されるいずれかの含フッ素化合物であることが好ましい。
 式(2)で表される含フッ素化合物は、具体的には、下記式(17)~(22)(25)で表されるいずれかの含フッ素化合物であることが好ましい。
Specifically, the fluorine-containing compound represented by formula (1) is preferably any fluorine-containing compound represented by the following formulas (11) to (16), (23), and (24).
Specifically, the fluorine-containing compound represented by the formula (2) is preferably any one of the fluorine-containing compounds represented by the following formulas (17) to (22) and (25).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
[含フッ素化合物の製造方法]
 次に、式(1)または式(2)で表される本実施形態の含フッ素化合物の製造方法について、例を挙げて説明する。
 本実施形態の含フッ素化合物の製造方法は、特に限定されるものではなく、従来公知の製造方法を用いて製造できる。
[Method for producing fluorine-containing compound]
Next, the method for producing the fluorine-containing compound of the present embodiment represented by formula (1) or formula (2) will be described with examples.
The method for producing the fluorine-containing compound of the present embodiment is not particularly limited, and it can be produced using a conventionally known production method.
 式(1)で表される本実施形態の含フッ素化合物は、例えば、以下に示す製造方法を用いて製造できる。
 まず、ピぺリジン環の2位と6位にそれぞれ2つずつメチル基が結合され、4位に酸素原子が結合され、窒素原子にメチル基が結合された第1中間体化合物を合成する。次に、第1中間体化合物と、R、R、R、Rに対応する(1-1)~(1-4)を有する化合物とを反応させる。このことにより、ピぺリジン環の2位と6位にそれぞれ(1-1)~(1-4)のいずれかであるR、R、R、Rが結合され、ピぺリジン環の窒素原子に水素原子が結合した第2中間体化合物とする。その後、第2中間体化合物のピぺリジン環の窒素原子に結合した水素原子を除去し、ニトロキシドラジカルに変換する。 以上の方法により、式(1)で表される含フッ素化合物が得られる。
The fluorine-containing compound of the present embodiment represented by formula (1) can be produced, for example, using the production method shown below.
First, a first intermediate compound is synthesized in which two methyl groups are bonded to each of the 2- and 6-positions of the piperidine ring, an oxygen atom is bonded to the 4-position, and a methyl group is bonded to the nitrogen atom. Next, the first intermediate compound is reacted with a compound having (1-1) to (1-4) corresponding to R 1 , R 2 , R 3 and R 4 . As a result, R 1 , R 2 , R 3 , and R 4 each of (1-1) to (1-4) are bound to the 2- and 6-positions of the piperidine ring, and piperidine A second intermediate compound in which a hydrogen atom is attached to a ring nitrogen atom. After that, the hydrogen atom attached to the nitrogen atom of the piperidine ring of the second intermediate compound is removed and converted to a nitroxide radical. By the above method, the fluorine-containing compound represented by formula (1) is obtained.
 式(2)で表される本実施形態の含フッ素化合物は、例えば、以下に示す製造方法を用いて製造できる。
 まず、上述した式(1)で表される含フッ素化合物の製造方法と同様にして、第2中間体化合物を合成する。次に、第2中間体化合物とジ-tert-ブチルジカーボネートとを反応させて、ピぺリジン環の窒素原子に保護基であるターシャリーブトキシカルボニル基(t-Boc基)を結合し、第3中間体化合物とする。次に、水素化ホウ素ナトリウムを用いて第3中間体化合物を還元し、ピぺリジン環の4位に水酸基が結合した第4中間体化合物とする。
The fluorine-containing compound of the present embodiment represented by formula (2) can be produced, for example, using the production method shown below.
First, a second intermediate compound is synthesized in the same manner as in the method for producing the fluorine-containing compound represented by formula (1) described above. Next, the second intermediate compound and di-tert-butyl dicarbonate are reacted to bind a tertiary butoxycarbonyl group (t-Boc group) which is a protecting group to the nitrogen atom of the piperidine ring, 3 intermediate compounds. Next, sodium borohydride is used to reduce the third intermediate compound to give a fourth intermediate compound in which a hydroxyl group is bonded to the 4-position of the piperidine ring.
 次に、式(2)で表される含フッ素化合物におけるXに対応する基を有する化合物と、第4中間体化合物とを反応させて、ピぺリジン環の4位に結合した酸素原子にXに対応する基が結合した第5中間体化合物とする。その後、ジクロロメタンとトリフルオロ酢酸とを用いて、第5中間体化合物のピぺリジン環を形成している窒素原子から、保護基であるターシャリーブトキシカルボニル基を除去し、ニトロキシドラジカルに変換する。
 以上の方法により、式(2)で表される含フッ素化合物が得られる。
Next, a compound having a group corresponding to X in the fluorine-containing compound represented by formula (2) is reacted with the fourth intermediate compound to give X is a fifth intermediate compound to which a group corresponding to is bonded. Thereafter, using dichloromethane and trifluoroacetic acid, the nitrogen atom forming the piperidine ring of the fifth intermediate compound is converted to a nitroxide radical by removing the tertiary-butoxycarbonyl group as a protective group.
The fluorine-containing compound represented by Formula (2) is obtained by the above method.
 式(2)で表される本実施形態の含フッ素化合物は、Xが水素原子である場合、例えば、以下に示す方法を用いて製造できる。
 上述した方法により式(1)で表される含フッ素化合物を製造する。そして、式(1)で表される含フッ素化合物と水素化ホウ素ナトリウムとを反応させて、ピぺリジン環の4位に水酸基が結合した式(2)で表される含フッ素化合物とする。
When X is a hydrogen atom, the fluorine-containing compound of the present embodiment represented by formula (2) can be produced, for example, using the method shown below.
A fluorine-containing compound represented by formula (1) is produced by the method described above. Then, the fluorine-containing compound represented by formula (1) is reacted with sodium borohydride to obtain a fluorine-containing compound represented by formula (2) in which a hydroxyl group is bonded to the 4-position of the piperidine ring.
「造影剤」
 本実施形態の造影剤は、本実施形態の含フッ素化合物を含有する。本実施形態の造影剤は、フッ素を検出核とする磁気共鳴画像診断用の造影剤である。
 本実施形態の造影剤は、本実施形態の含フッ素化合物を、公知の製剤化技術を用いて、例えば、固形製剤、粉末製剤、液剤等の形態に製剤化する方法により、製造できる。
 本実施形態の造影剤は、本実施形態の含フッ素化合物の他に、必要に応じて、賦形剤、安定剤、界面活性剤、緩衝剤、電解質等の公知の製剤に使用される添加物を1種または2種以上含むものであってもよい。
 本実施形態の造影剤は、本発明の含フッ素化合物を含有するため、生体内での安定性が高い。また、本実施形態の造影剤は、フッ素を検出核とする磁気共鳴画像診断用の造影剤として用いることにより、高感度の磁気共鳴画像が得られる。
"contrast agent"
The contrast agent of this embodiment contains the fluorine-containing compound of this embodiment. The contrast agent of this embodiment is a contrast agent for magnetic resonance imaging diagnosis using fluorine as a detection nucleus.
The contrast agent of the present embodiment can be produced by formulating the fluorine-containing compound of the present embodiment into a solid formulation, powder formulation, liquid formulation, or the like using a known formulation technique.
The contrast agent of the present embodiment includes, in addition to the fluorine-containing compound of the present embodiment, additives used in known formulations such as excipients, stabilizers, surfactants, buffers, electrolytes, etc. may contain one or more.
Since the contrast agent of this embodiment contains the fluorine-containing compound of the present invention, it has high in vivo stability. Further, by using the contrast agent of the present embodiment as a contrast agent for magnetic resonance imaging diagnosis using fluorine as a detection nucleus, a highly sensitive magnetic resonance image can be obtained.
 以上、本発明の実施形態について詳述したが、各実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換、及びその他の変更が可能である。 The embodiments of the present invention have been described in detail above, but each configuration and combination thereof in each embodiment are examples, and additions, omissions, replacements, and other modifications of the configuration can be made without departing from the scope of the present invention. can be changed.
「実施例1」
(化合物11の合成)
<1,2,2,6,6-ペンタメチル-4-ピペリドン(1-7)の合成>
 アルゴン気流下、2,2,6,6-テトラメチルピペリジン-4-オン15.524g(100mmol)、パラホルムアルデヒド23.288g(150mmol)、トルエン100mlを混合し、90℃に加熱した。ギ酸5.70ml(150mmol)を30分かけて滴下し、100℃で12時間加熱し、反応させた。
"Example 1"
(Synthesis of Compound 11)
<Synthesis of 1,2,2,6,6-pentamethyl-4-piperidone (1-7)>
Under an argon stream, 15.524 g (100 mmol) of 2,2,6,6-tetramethylpiperidin-4-one, 23.288 g (150 mmol) of paraformaldehyde and 100 ml of toluene were mixed and heated to 90°C. 5.70 ml (150 mmol) of formic acid was added dropwise over 30 minutes and heated at 100° C. for 12 hours to react.
 反応溶液を室温まで冷却し、水酸化ナトリウム2.000g(50mmol)を加えて、一時間攪拌した後、吸引濾過を行い、濾液を減圧下で濃縮した。得られた濃縮物を減圧蒸留(70-72℃/2mmHg)し、目的物である式(1-7)で示される1,2,2,6,6-ペンタメチル-4-ピペリドンを得た(収量13.532g、収率80%)。 The reaction solution was cooled to room temperature, 2.000 g (50 mmol) of sodium hydroxide was added, and after stirring for 1 hour, suction filtration was performed, and the filtrate was concentrated under reduced pressure. The resulting concentrate was distilled under reduced pressure (70-72° C./2 mmHg) to obtain the desired product, 1,2,2,6,6-pentamethyl-4-piperidone represented by formula (1-7) ( Yield 13.532 g, 80% yield).
<3,11-ビス(トリフルオロメチル)-7-アザジスピロ[5.1.5.3]ヘキサデカン-15-オン(2-1)の合成>
 アルゴン気流下、上記の反応により得られた1,2,2,6,6-ペンタメチル-4-ピペリドン(1-7)1.695g(10.0mmol)、4-(トリフルオロメチル)シクロヘキサノン4.10ml(30.0mmol)をジメチルスルホキシド(DMSO)20mlに溶解し、塩化アンモニウム3.209g(60.0mmol)を20分間かけて加えた。反応混合物を60℃で5時間攪拌し、室温まで冷却した後に水を加え、1N-塩酸で中和した。ジエチルエーテルで抽出した後、水槽を10%炭酸カリウム水溶液でPH9に調製し、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄後、硫酸マグネシウムで乾燥し、減圧下で濃縮した。
<Synthesis of 3,11-bis(trifluoromethyl)-7-azadispiro[5.1.5.3]hexadecane-15-one (2-1)>
1.695 g (10.0 mmol) of 1,2,2,6,6-pentamethyl-4-piperidone (1-7) obtained by the above reaction, 4-(trifluoromethyl)cyclohexanone4. 10 ml (30.0 mmol) was dissolved in 20 ml of dimethylsulfoxide (DMSO) and 3.209 g (60.0 mmol) of ammonium chloride was added over 20 minutes. The reaction mixture was stirred at 60° C. for 5 hours, cooled to room temperature, added with water, and neutralized with 1N-hydrochloric acid. After extraction with diethyl ether, the water bath was adjusted to pH 9 with a 10% potassium carbonate aqueous solution and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over magnesium sulfate, and concentrated under reduced pressure.
 得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=9:1)で精製し、目的物である式(2-1)で示される3,11-ビス(トリフルオロメチル)-7-アザジスピロ[5.1.5.3]ヘキサデカン-15-オンを得た(収量1.596g、収率43%)。 The resulting crude product was purified by silica gel column chromatography (hexane:ethyl acetate=9:1) to give the desired product, 3,11-bis(trifluoromethyl)-7 represented by formula (2-1). -Azadispiro[5.1.5.3]hexadecan-15-one (yield 1.596 g, 43% yield).
<3,11-ビス(トリフルオロメチル)-15-オキソ-7-アザジスピロ[5.1.5.3]ヘキサデカ-7-イルオキシ(11)の合成>
 上記の反応により得られた3,11-ビス(トリフルオロメチル)-7-アザジスピロ[5.1.5.3]ヘキサデカン-15-オン(2-1)1.596g(4.30mmol)、タングステン酸ナトリウム二水和物0.132g(0.40mmol)、エタノール(EtOH)5mlを混合し、氷浴にて冷却した。30%過酸化水素水15ml(143mmol)をゆっくり加え、室温で24時間攪拌し、反応させた。
<Synthesis of 3,11-bis(trifluoromethyl)-15-oxo-7-azadispiro[5.1.5.3]hexadec-7-yloxy (11)>
1.596 g (4.30 mmol) of 3,11-bis(trifluoromethyl)-7-azadispiro[5.1.5.3]hexadecan-15-one (2-1) obtained by the above reaction, tungsten 0.132 g (0.40 mmol) of sodium acid dihydrate and 5 ml of ethanol (EtOH) were mixed and cooled in an ice bath. 15 ml (143 mmol) of 30% hydrogen peroxide solution was slowly added, and the mixture was stirred at room temperature for 24 hours to react.
 反応溶液に炭酸カリウムを加え、クロロホルムで抽出し、硫酸マグネシウムで乾燥した。減圧下で濃縮後、得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=9:1)で精製し、目的物である式(11)で示される3,11-ビス(トリフルオロメチル)-15-オキソ-7-アザジスピロ[5.1.5.3]ヘキサデカ-7-イルオキシを得た(収量0.996g、収率60%)。 Potassium carbonate was added to the reaction solution, extracted with chloroform, and dried over magnesium sulfate. After concentration under reduced pressure, the resulting crude product was purified by silica gel column chromatography (hexane:ethyl acetate=9:1) to give the desired product, 3,11-bis(trifluoro Methyl)-15-oxo-7-azadispiro[5.1.5.3]hexadec-7-yloxy was obtained (yield 0.996 g, 60% yield).
 得られた化合物の質量分析を行ったところ、m/z=386(M)にピークが確認された。このことから、合成した化合物が、式(11)で示される化合物であることが確認できた。また、高速液体クロマトグラフィー(HPLC)により確認した式(11)で示される化合物の純度は95.8%であった。 Mass spectrometry of the obtained compound confirmed a peak at m/z=386 (M + ). From this, it was confirmed that the synthesized compound was the compound represented by formula (11). The purity of the compound represented by formula (11) confirmed by high performance liquid chromatography (HPLC) was 95.8%.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
「実施例2」
(化合物12の合成)
 4-(トリフルオロメチル)シクロヘキサノンに代えて、3-(トリフルオロメチル)シクロヘキサノンを用いたこと以外は、実施例1と同様にして、目的物である式(12)で示される化合物を合成した。
 得られた化合物の質量分析を行ったところ、m/z=386(M)にピークが確認された。このことから、合成した化合物が、式(12)で示される化合物であることが確認できた。また、高速液体クロマトグラフィー(HPLC)により確認した式(12)で示される化合物の純度は94.5%であった。
"Example 2"
(Synthesis of compound 12)
A target compound represented by formula (12) was synthesized in the same manner as in Example 1, except that 3-(trifluoromethyl)cyclohexanone was used instead of 4-(trifluoromethyl)cyclohexanone. .
Mass spectrometry of the obtained compound confirmed a peak at m/z=386 (M + ). From this, it was confirmed that the synthesized compound was the compound represented by formula (12). The purity of the compound represented by formula (12) confirmed by high performance liquid chromatography (HPLC) was 94.5%.
「実施例3」
(化合物13の合成)
 4-(トリフルオロメチル)シクロヘキサノンに代えて、3-(トリフルオロメチル)シクロペンタノンを用いたこと以外は、実施例1と同様にして、目的物である式(13)で示される化合物を合成した。
 得られた化合物の質量分析を行ったところ、m/z=358(M)にピークが確認された。このことから、合成した化合物が、式(13)で示される化合物であることが確認できた。また、高速液体クロマトグラフィー(HPLC)により確認した式(13)で示される化合物の純度は95.3%であった。
"Example 3"
(Synthesis of compound 13)
In the same manner as in Example 1, except that 3-(trifluoromethyl)cyclopentanone was used instead of 4-(trifluoromethyl)cyclohexanone, the target compound represented by formula (13) was obtained. Synthesized.
Mass spectrometry of the obtained compound confirmed a peak at m/z=358 (M + ). From this, it was confirmed that the synthesized compound was the compound represented by formula (13). The purity of the compound represented by formula (13) confirmed by high performance liquid chromatography (HPLC) was 95.3%.
「実施例4」
(化合物14の合成)
 4-(トリフルオロメチル)シクロヘキサノンに代えて、4,4,4-トリフルオロ-2-ブタノンを用いたこと以外は、実施例1と同様にして、目的物である式(14)で示される化合物を合成した。
 得られた化合物の質量分析を行ったところ、m/z=306(M)にピークが確認された。このことから、合成した化合物が、式(14)で示される化合物であることが確認できた。また、高速液体クロマトグラフィー(HPLC)により確認した式(14)で示される化合物の純度は95.2%であった。
"Example 4"
(Synthesis of compound 14)
In the same manner as in Example 1, except that 4,4,4-trifluoro-2-butanone was used instead of 4-(trifluoromethyl)cyclohexanone, the target product represented by formula (14) A compound was synthesized.
Mass spectrometry of the obtained compound confirmed a peak at m/z=306 (M + ). From this, it was confirmed that the synthesized compound was the compound represented by formula (14). The purity of the compound represented by formula (14) confirmed by high performance liquid chromatography (HPLC) was 95.2%.
「実施例5」
(化合物15の合成)
 4-(トリフルオロメチル)シクロヘキサノンに代えて、5,5,5-トリフルオロ-2-ペンタノンを用いたこと以外は、実施例1と同様にして、目的物である式(15)で示される化合物を合成した。
 得られた化合物の質量分析を行ったところ、m/z=334(M)にピークが確認された。このことから、合成した化合物が、式(15)で示される化合物であることが確認できた。また、高速液体クロマトグラフィー(HPLC)により確認した式(15)で示される化合物の純度は96.0%であった。
"Example 5"
(Synthesis of compound 15)
In the same manner as in Example 1, except that 5,5,5-trifluoro-2-pentanone was used in place of 4-(trifluoromethyl)cyclohexanone, the target product represented by formula (15) A compound was synthesized.
Mass spectrometry of the obtained compound confirmed a peak at m/z=334 (M + ). From this, it was confirmed that the synthesized compound was the compound represented by formula (15). The purity of the compound represented by formula (15) confirmed by high performance liquid chromatography (HPLC) was 96.0%.
「実施例6」
(化合物16の合成)
 4-(トリフルオロメチル)シクロヘキサノンに代えて、1,1,1,7,7,7-ヘキサフルオロ-4-ヘプタノンを用いたこと以外は、実施例1と同様にして、目的物である式(16)で示される化合物を合成した。
 得られた化合物の質量分析を行ったところ、m/z=498(M)にピークが確認された。このことから、合成した化合物が、式(16)で示される化合物であることが確認できた。また、高速液体クロマトグラフィー(HPLC)により確認した式(16)で示される化合物の純度は96.4%であった。
"Example 6"
(Synthesis of compound 16)
The target product of the formula A compound represented by (16) was synthesized.
Mass spectrometry of the obtained compound confirmed a peak at m/z=498 (M + ). From this, it was confirmed that the synthesized compound was the compound represented by formula (16). The purity of the compound represented by formula (16) confirmed by high performance liquid chromatography (HPLC) was 96.4%.
「実施例7」
(化合物17の合成)
<3,11-ビス(トリフルオロメチル)-15-ヒドロキシ-7-アザジスピロ[5.1.5.3]ヘキサデカ-7-イルオキシ(17)の合成>
 アルゴン気流下、上記の反応により合成した3,11-ビス(トリフルオロメチル)-15-オキソ-7-アザジスピロ[5.1.5.3]ヘキサデカ-7-イルオキシ(11)1.158g(3.00mmol)をエタノール(EtOH)10mlに溶解し、氷浴にて冷却した。水素化ホウ素ナトリウム0.057g(1.50mmol)をゆっくり加え、室温で6時間攪拌し、反応させた。
"Example 7"
(Synthesis of compound 17)
<Synthesis of 3,11-bis(trifluoromethyl)-15-hydroxy-7-azadispiro[5.1.5.3]hexadec-7-yloxy (17)>
Under an argon stream, 1.158 g (3 .00 mmol) was dissolved in 10 ml of ethanol (EtOH) and cooled in an ice bath. 0.057 g (1.50 mmol) of sodium borohydride was slowly added and stirred at room temperature for 6 hours to react.
 反応溶液に飽和食塩水を加え、酢酸エチルで抽出し、硫酸マグネシウムで乾燥した。減圧下で濃縮後、シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=4:1)で精製し、目的物である式(17)で示される3,11-ビス(トリフルオロメチル)-15-ヒドロキシ-7-アザジスピロ[5.1.5.3]ヘキサデカ-7-イルオキシを得た(収量0.909g、収率78%)。 Saturated saline was added to the reaction solution, extracted with ethyl acetate, and dried over magnesium sulfate. After concentration under reduced pressure, it was purified by silica gel column chromatography (hexane:ethyl acetate=4:1) to obtain the desired product, 3,11-bis(trifluoromethyl)-15-hydroxy- represented by formula (17). 7-Azadispiro[5.1.5.3]hexadec-7-yloxy was obtained (yield 0.909 g, 78% yield).
 得られた化合物の質量分析を行ったところ、m/z=388(M)にピークが確認された。このことから、合成した化合物が、式(17)で示される化合物であることが確認できた。また、高速液体クロマトグラフィー(HPLC)により確認した式(17)で示される化合物の純度は96.0%であった。 Mass spectrometry of the obtained compound confirmed a peak at m/z=388 (M + ). From this, it was confirmed that the synthesized compound was the compound represented by formula (17). The purity of the compound represented by formula (17) confirmed by high performance liquid chromatography (HPLC) was 96.0%.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
「実施例8」
(化合物18の合成)
 3,11-ビス(トリフルオロメチル)-15-オキソ-7-アザジスピロ[5.1.5.3]ヘキサデカ-7-イルオキシ(11)に代えて、式(14)で示される化合物を用いたこと以外は、実施例7と同様にして、目的物である式(18)で示される化合物を合成した。
"Example 8"
(Synthesis of compound 18)
A compound represented by formula (14) was used in place of 3,11-bis(trifluoromethyl)-15-oxo-7-azadispiro[5.1.5.3]hexadec-7-yloxy (11). In the same manner as in Example 7, except for the above, the target compound represented by formula (18) was synthesized.
 得られた化合物の質量分析を行ったところ、m/z=308(M)にピークが確認された。このことから、合成した化合物が、式(18)で示される化合物であることが確認できた。また、高速液体クロマトグラフィー(HPLC)により確認した式(18)で示される化合物の純度は95.5%であった。 Mass spectrometry of the obtained compound confirmed a peak at m/z=308 (M + ). From this, it was confirmed that the synthesized compound was the compound represented by formula (18). The purity of the compound represented by formula (18) confirmed by high performance liquid chromatography (HPLC) was 95.5%.
「実施例9」
(化合物19の合成)
 3,11-ビス(トリフルオロメチル)-15-オキソ-7-アザジスピロ[5.1.5.3]ヘキサデカ-7-イルオキシ(11)に代えて、式(16)で示される化合物を用いたこと以外は、実施例7と同様にして、目的物である式(19)で示される化合物を合成した。
"Example 9"
(Synthesis of compound 19)
A compound represented by formula (16) was used in place of 3,11-bis(trifluoromethyl)-15-oxo-7-azadispiro[5.1.5.3]hexadec-7-yloxy (11) In the same manner as in Example 7, except for the above, the target compound represented by formula (19) was synthesized.
 得られた化合物の質量分析を行ったところ、m/z=500(M)にピークが確認された。このことから、合成した化合物が、式(19)で示される化合物であることが確認できた。また、高速液体クロマトグラフィー(HPLC)により確認した式(19)で示される化合物の純度は96.4%であった。 Mass spectrometry of the obtained compound confirmed a peak at m/z=500 (M + ). From this, it was confirmed that the synthesized compound was the compound represented by formula (19). The purity of the compound represented by formula (19) confirmed by high performance liquid chromatography (HPLC) was 96.4%.
「実施例10」
(化合物20の合成)
<tert-ブチル-15-オキソ-3,11-ビス(トリフルオロメチル)-7-アザジスピロ[5.1.5.3]ヘキサデカン-7-カルボン酸エステル(2-2)の合成>
 上記の反応により合成した3,11-ビス(トリフルオロメチル)-7-アザジスピロ[5.1.5.3]ヘキサデカン-15-オン(2-1)3.712g(10.0mmol)をテトラヒドロフラン(THF)10mlに溶解し、氷浴にて冷却した。トリエチルアミン(EtN)2.92ml(21.0mmol)およびジ-tert-ブチルジカーボネート(BocO)2.292g(10.5mmol)のテトラヒドロフラン溶液10mlを加え、室温で2時間攪拌し、反応させた。
"Example 10"
(Synthesis of compound 20)
<Synthesis of tert-butyl-15-oxo-3,11-bis(trifluoromethyl)-7-azadispiro[5.1.5.3]hexadecane-7-carboxylic acid ester (2-2)>
3.712 g (10.0 mmol) of 3,11-bis(trifluoromethyl)-7-azadispiro[5.1.5.3]hexadecan-15-one (2-1) synthesized by the above reaction was added to tetrahydrofuran ( THF) (10 ml) and cooled in an ice bath. 10 ml of a tetrahydrofuran solution of 2.92 ml (21.0 mmol) of triethylamine (Et 3 N) and 2.292 g (10.5 mmol) of di-tert-butyl dicarbonate (Boc 2 O) was added and stirred at room temperature for 2 hours to complete the reaction. let me
 反応溶液を減圧下で濃縮し、ヘキサンを加えた。得られた固体を濾別後、ヘキサンで洗浄し、目的物である式(2-2)で示されるtert-ブチル-15-オキソ-3,11-ビス(トリフルオロメチル)-7-アザジスピロ[5.1.5.3]ヘキサデカン-7-カルボン酸エステルを得た(収量3.819g、収率81%)。 The reaction solution was concentrated under reduced pressure, and hexane was added. The resulting solid was separated by filtration, washed with hexane, and the desired product, tert-butyl-15-oxo-3,11-bis(trifluoromethyl)-7-azadispiro represented by formula (2-2) [ 5.1.5.3]Hexadecane-7-carboxylic acid ester was obtained (yield 3.819 g, yield 81%).
<tert-ブチル-15-ヒドロキシ-3,11-ビス(トリフルオロメチル)-7-アザジスピロ[5.1.5.3]ヘキサデカン-7-カルボン酸エステル(2-3)の合成>
 アルゴン気流下、上記の反応により得られたtert-ブチル-15-オキソ-3,11-ビス(トリフルオロメチル)-7-アザジスピロ[5.1.5.3]ヘキサデカン-7-カルボン酸エステル(2-2)3.819g(8.10mmol)をエタノール(EtOH)10mlに溶解し、氷浴にて冷却した。水素化ホウ素ナトリウム0.153g(4.05mmol)をゆっくり加え、室温で6時間攪拌し、反応させた。
<Synthesis of tert-butyl-15-hydroxy-3,11-bis(trifluoromethyl)-7-azadispiro[5.1.5.3]hexadecane-7-carboxylic acid ester (2-3)>
Under an argon stream, tert-butyl-15-oxo-3,11-bis(trifluoromethyl)-7-azadispiro[5.1.5.3]hexadecane-7-carboxylic acid ester obtained by the above reaction ( 2-2) 3.819 g (8.10 mmol) was dissolved in 10 ml of ethanol (EtOH) and cooled in an ice bath. 0.153 g (4.05 mmol) of sodium borohydride was slowly added and stirred at room temperature for 6 hours to react.
 反応溶液に飽和食塩水を加え、酢酸エチルで抽出し、硫酸マグネシウムで乾燥した。減圧下で濃縮し、目的物である式(2-3)で示されるtert-ブチル-15-ヒドロキシ-3,11-ビス(トリフルオロメチル)-7-アザジスピロ[5.1.5.3]ヘキサデカン-7-カルボン酸エステルを得た(収量3.260g、収率85%)。 Saturated saline was added to the reaction solution, extracted with ethyl acetate, and dried over magnesium sulfate. Concentrate under reduced pressure to obtain the desired product, tert-butyl-15-hydroxy-3,11-bis(trifluoromethyl)-7-azadispiro represented by formula (2-3) [5.1.5.3]. Hexadecane-7-carboxylic acid ester was obtained (yield 3.260 g, yield 85%).
<tert-ブチル-15-メトキシ-3,11-ビス(トリフルオロメチル)-7-アザジスピロ[5.1.5.3]ヘキサデカン-7-カルボン酸エステル(2-4)の合成>
 アルゴン気流下、55%水素化ナトリウム0.360g(8.26mmol)にテトラヒドロフラン(THF)5mlを加え、氷浴にて冷却した。上記の反応により得られたtert-ブチル-15-ヒドロキシ-3,11-ビス(トリフルオロメチル)-7-アザジスピロ[5.1.5.3]ヘキサデカン-7-カルボン酸エステル(2-3)3.260g(6.89mmol)のテトラヒドロフラン溶液10mlを20分間かけて加え、30分攪拌した。さらに、ヨウ化メチル(MeI)1.172g(8.26mmol)のテトラヒドロフラン溶液10mlを10分間かけて加え、室温で12時間攪拌し、反応させた。
<Synthesis of tert-butyl-15-methoxy-3,11-bis(trifluoromethyl)-7-azadispiro[5.1.5.3]hexadecane-7-carboxylic acid ester (2-4)>
Under an argon stream, 5 ml of tetrahydrofuran (THF) was added to 0.360 g (8.26 mmol) of 55% sodium hydride, and the mixture was cooled in an ice bath. tert-butyl-15-hydroxy-3,11-bis(trifluoromethyl)-7-azadispiro[5.1.5.3]hexadecane-7-carboxylic acid ester (2-3) obtained by the above reaction 10 ml of a tetrahydrofuran solution of 3.260 g (6.89 mmol) was added over 20 minutes and stirred for 30 minutes. Furthermore, 10 ml of a tetrahydrofuran solution of 1.172 g (8.26 mmol) of methyl iodide (MeI) was added over 10 minutes, and the mixture was stirred at room temperature for 12 hours to react.
 反応溶液に水を加え、ジエチルエーテルで抽出し、硫酸マグネシウムで乾燥した。減圧下で濃縮し、得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=9:1~4:1)で精製し、目的物である式(2-4)で示されるtert-ブチル-15-メトキシ-3,11-ビス(トリフルオロメチル)-7-アザジスピロ[5.1.5.3]ヘキサデカン-7-カルボン酸エステルを得た(収量2.537g、収率63%)。 Water was added to the reaction solution, extracted with diethyl ether, and dried over magnesium sulfate. After concentrating under reduced pressure, the resulting crude product was purified by silica gel column chromatography (hexane:ethyl acetate=9:1-4:1) to give the target product of formula (2-4), tert- Butyl-15-methoxy-3,11-bis(trifluoromethyl)-7-azadispiro[5.1.5.3]hexadecane-7-carboxylic acid ester was obtained (yield 2.537 g, yield 63%). .
<15-メトキシ-3,11-ビス(トリフルオロメチル)-7-アザジスピロ[5.1.5.3]ヘキサデカン(2-5)の合成>
 上記の反応により得られたtert-ブチル-15-メトキシ-3,11-ビス(トリフルオロメチル)-7-アザジスピロ[5.1.5.3]ヘキサデカン-7-カルボン酸エステル(2-4)2.537g(5.20mmol)をジクロロメタン15mlに溶解し、トリフルオロ酢酸(TFA)3.1ml(40.0mmol)を加え、室温で18時間攪拌し、反応させた。
<Synthesis of 15-methoxy-3,11-bis(trifluoromethyl)-7-azadispiro[5.1.5.3]hexadecane (2-5)>
tert-butyl-15-methoxy-3,11-bis(trifluoromethyl)-7-azadispiro[5.1.5.3]hexadecane-7-carboxylic acid ester (2-4) obtained by the above reaction 2.537 g (5.20 mmol) was dissolved in 15 ml of dichloromethane, 3.1 ml (40.0 mmol) of trifluoroacetic acid (TFA) was added, and the mixture was stirred at room temperature for 18 hours to react.
 反応溶液を減圧下で濃縮後、水を加え、有機層を炭酸水素ナトリウム水溶液で中和した。ジエチルエーテルで抽出後、有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。減圧下で濃縮し、目的物である式(2-5)で示される15-メトキシ-3,11-ビス(トリフルオロメチル)-7-アザジスピロ[5.1.5.3]ヘキサデカンを得た(収量1.793g、収率89%)。 After concentrating the reaction solution under reduced pressure, water was added, and the organic layer was neutralized with an aqueous sodium hydrogencarbonate solution. After extraction with diethyl ether, the organic layer was washed with saturated brine and dried over magnesium sulfate. Concentration under reduced pressure gave the desired product, 15-methoxy-3,11-bis(trifluoromethyl)-7-azadispiro[5.1.5.3]hexadecane represented by formula (2-5). (Yield 1.793 g, 89% yield).
<3,11-ビス(トリフルオロメチル)-15-メトキシ-7-アザジスピロ[5.1.5.3]ヘキサデカ-7-イルオキシ(20)の合成>
 上記の反応により得られた15-メトキシ-3,11-ビス(トリフルオロメチル)-7-アザジスピロ[5.1.5.3]ヘキサデカン(2-5)1.793g(4.63mmol)、タングステン酸ナトリウム二水和物0.165g(0.50mmol)、エタノール(EtOH)5mlを混合し、氷浴にて冷却した。30%過酸化水素水15ml(143mmol)をゆっくり加え、室温で24時間攪拌し、反応させた。
<Synthesis of 3,11-bis(trifluoromethyl)-15-methoxy-7-azadispiro[5.1.5.3]hexadec-7-yloxy (20)>
1.793 g (4.63 mmol) of 15-methoxy-3,11-bis(trifluoromethyl)-7-azadispiro[5.1.5.3]hexadecane (2-5) obtained by the above reaction, tungsten 0.165 g (0.50 mmol) of sodium acid dihydrate and 5 ml of ethanol (EtOH) were mixed and cooled in an ice bath. 15 ml (143 mmol) of 30% hydrogen peroxide solution was slowly added, and the mixture was stirred at room temperature for 24 hours to react.
 反応溶液に炭酸カリウムを加え、クロロホルムで抽出し、硫酸マグネシウムで乾燥した。減圧下で濃縮後、得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=9:1)で精製し、目的物である式(20)で示される3,11-ビス(トリフルオロメチル)-15-メトキシ-7-アザジスピロ[5.1.5.3]ヘキサデカ-7-イルオキシを得た(収量1.025g、収率55%)。 Potassium carbonate was added to the reaction solution, extracted with chloroform, and dried over magnesium sulfate. After concentration under reduced pressure, the resulting crude product was purified by silica gel column chromatography (hexane:ethyl acetate=9:1) to give the desired product, 3,11-bis(trifluoro Methyl)-15-methoxy-7-azadispiro[5.1.5.3]hexadec-7-yloxy was obtained (1.025 g, 55% yield).
 得られた化合物の質量分析を行ったところ、m/z=402(M)にピークが確認された。このことから、合成した化合物が、式(20)で示される化合物であることが確認できた。また、高速液体クロマトグラフィー(HPLC)により確認した式(20)で示される化合物の純度は96.7%であった。 Mass spectrometry of the obtained compound confirmed a peak at m/z=402 (M + ). From this, it was confirmed that the synthesized compound was the compound represented by formula (20). The purity of the compound represented by formula (20) confirmed by high performance liquid chromatography (HPLC) was 96.7%.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
「実施例11」
(化合物21の合成)
 4-(トリフルオロメチル)シクロヘキサノンに代えて、4,4,4-トリフルオロ-2-ブタノンを用いたこと以外は、実施例1と同様にして、式(14)で示される化合物のピぺリジン環の窒素原子に水素原子が結合した中間体化合物を合成した。
 そして、3,11-ビス(トリフルオロメチル)-7-アザジスピロ[5.1.5.3]ヘキサデカン-15-オン(2-1)に代えて、上記中間体化合物を用い、ヨウ化メチルに代えて、1-ブロモブタンを用いたこと以外は、実施例10と同様にして、目的物である式(21)で示される化合物を合成した。
"Example 11"
(Synthesis of compound 21)
Pipette of the compound represented by formula (14) was carried out in the same manner as in Example 1, except that 4,4,4-trifluoro-2-butanone was used instead of 4-(trifluoromethyl)cyclohexanone. An intermediate compound was synthesized in which a hydrogen atom was attached to the nitrogen atom of the lysine ring.
Then, instead of 3,11-bis(trifluoromethyl)-7-azadispiro[5.1.5.3]hexadecan-15-one (2-1), using the above intermediate compound, methyl iodide The target compound represented by formula (21) was synthesized in the same manner as in Example 10, except that 1-bromobutane was used instead.
 得られた化合物の質量分析を行ったところ、m/z=364(M)にピークが確認された。このことから、合成した化合物が、式(21)で示される化合物であることが確認できた。また、高速液体クロマトグラフィー(HPLC)により確認した式(21)で示される化合物の純度は96.0%であった。 Mass spectrometry of the obtained compound confirmed a peak at m/z=364 (M + ). From this, it was confirmed that the synthesized compound was the compound represented by the formula (21). The purity of the compound represented by formula (21) confirmed by high performance liquid chromatography (HPLC) was 96.0%.
「実施例12」
(化合物22の合成)
 4-(トリフルオロメチル)シクロヘキサノンに代えて、1,1,1,7,7,7-ヘキサフルオロ-4-ヘプタノンを用いたこと以外は、実施例1と同様にして、式(16)で示される化合物のピぺリジン環の窒素原子に水素原子が結合した中間体化合物を合成した。
 そして、3,11-ビス(トリフルオロメチル)-7-アザジスピロ[5.1.5.3]ヘキサデカン-15-オン(2-1)に代えて、上記中間体化合物を用いたこと以外は、実施例10と同様にして、目的物である式(22)で示される化合物を合成した。
"Example 12"
(Synthesis of compound 22)
In the same manner as in Example 1, except that 1,1,1,7,7,7-hexafluoro-4-heptanone was used instead of 4-(trifluoromethyl)cyclohexanone, An intermediate compound was synthesized in which a hydrogen atom was attached to the nitrogen atom of the piperidine ring of the indicated compound.
And, instead of 3,11-bis(trifluoromethyl)-7-azadispiro[5.1.5.3]hexadecan-15-one (2-1), except for using the above intermediate compound, In the same manner as in Example 10, the target compound represented by formula (22) was synthesized.
 得られた化合物の質量分析を行ったところ、m/z=514(M)にピークが確認された。このことから、合成した化合物が、式(22)で示される化合物であることが確認できた。また、高速液体クロマトグラフィー(HPLC)により確認した式(22)で示される化合物の純度は95.5%であった。 Mass spectrometry of the obtained compound confirmed a peak at m/z=514 (M + ). From this, it was confirmed that the synthesized compound was the compound represented by the formula (22). The purity of the compound represented by formula (22) confirmed by high performance liquid chromatography (HPLC) was 95.5%.
「実施例13」
(化合物23の合成)
<2,2,6-トリメチル-6-(2,2,2-トリフルオロメチル)ピペリジン-4-オン(2-6)の合成>
 アルゴン気流下、上記の反応により得られた1,2,2,6,6-ペンタメチル-4-ピペリドン(1-7)1.695g(10.0mmol)、4,4,4-トリフルオロブタン-2-オン1.891g(15.0mmol)をジメチルスルホキシド(DMSO)10mlに溶解し、塩化アンモニウム1.605g(30.0mmol)を20分間かけて加え、反応させた。
"Example 13"
(Synthesis of compound 23)
<Synthesis of 2,2,6-trimethyl-6-(2,2,2-trifluoromethyl)piperidin-4-one (2-6)>
Under an argon stream, 1.695 g (10.0 mmol) of 1,2,2,6,6-pentamethyl-4-piperidone (1-7) obtained by the above reaction, 4,4,4-trifluorobutane- 1.891 g (15.0 mmol) of 2-one was dissolved in 10 ml of dimethylsulfoxide (DMSO), and 1.605 g (30.0 mmol) of ammonium chloride was added over 20 minutes to react.
 反応混合物を60℃で5時間攪拌し、室温まで冷却した後、水を加え、1N-塩酸で中和した。ジエチルエーテルで抽出後、水槽を10%炭酸カリウム水溶液でPH9に調製し、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄後、硫酸マグネシウムで乾燥し、減圧下で濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=9:1)で精製し、目的物である式(2-6)で示される2,2,6-トリメチル-6-(2,2,2-トリフルオロメチル)ピペリジン-4-オンを得た(収量0.290g、収率13%)。 The reaction mixture was stirred at 60°C for 5 hours, cooled to room temperature, water was added, and neutralized with 1N-hydrochloric acid. After extraction with diethyl ether, the water bath was adjusted to pH 9 with a 10% potassium carbonate aqueous solution and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over magnesium sulfate, and concentrated under reduced pressure. The resulting crude product was purified by silica gel column chromatography (hexane:ethyl acetate=9:1) to give the desired product, 2,2,6-trimethyl-6-(2) represented by formula (2-6). ,2,2-trifluoromethyl)piperidin-4-one was obtained (0.290 g, 13% yield).
<2,2,6-トリメチル-4-オキソ-6-(2,2,2-トリフルオロメチル)ピペリジン-1-オキシル(23)の合成>
 上記の反応により得られた2,2,6-トリメチル-6-(2,2,2-トリフルオロメチル)ピペリジン-4-オン(2-6)0.290g(1.30mmol)、タングステン酸ナトリウム二水和物0.066g(0.200mmol)、エタノール(EtOH)5mlを混合し、氷浴にて冷却した。30%過酸化水素水2ml(19mmol)をゆっくり加え、室温で24時間攪拌し、反応させた。
<Synthesis of 2,2,6-trimethyl-4-oxo-6-(2,2,2-trifluoromethyl)piperidine-1-oxyl (23)>
0.290 g (1.30 mmol) of 2,2,6-trimethyl-6-(2,2,2-trifluoromethyl)piperidin-4-one (2-6) obtained by the above reaction, sodium tungstate 0.066 g (0.200 mmol) of dihydrate and 5 ml of ethanol (EtOH) were mixed and cooled in an ice bath. 2 ml (19 mmol) of 30% hydrogen peroxide water was slowly added, and the mixture was stirred at room temperature for 24 hours to react.
 反応溶液に炭酸カリウムを加え、クロロホルムで抽出し、硫酸マグネシウムで乾燥した。減圧下で濃縮後、得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=9:1)で精製し、目的物である式(23)で示される2,2,6-トリメチル-4-オキソ-6-(2,2,2-トリフルオロメチル)ピペリジン-1-オキシルを得た(収量0.219g、収率71%)。 Potassium carbonate was added to the reaction solution, extracted with chloroform, and dried over magnesium sulfate. After concentration under reduced pressure, the resulting crude product was purified by silica gel column chromatography (hexane:ethyl acetate=9:1) to obtain the desired product, 2,2,6-trimethyl- 4-oxo-6-(2,2,2-trifluoromethyl)piperidine-1-oxyl was obtained (0.219 g, 71% yield).
 得られた化合物の質量分析を行ったところ、m/z=238(M)にピークが確認された。このことから、合成した化合物が、式(23)で示される化合物であることが確認できた。また、高速液体クロマトグラフィー(HPLC)により確認した式(23)で示される化合物の純度は95.9%であった。 Mass spectrometry of the resulting compound confirmed a peak at m/z=238 (M + ). From this, it was confirmed that the synthesized compound was the compound represented by the formula (23). The purity of the compound represented by formula (23) confirmed by high performance liquid chromatography (HPLC) was 95.9%.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
「実施例14」
(化合物24の合成)
 4,4,4-トリフルオロブタン-2-オンに代えて、1,1,1,7,7,7-ヘキサフルオロ-4-ヘプタノンを用いたこと以外は、実施例13と同様にして、目的物である式(24)で示される2,2-ジメチル-4-オキソ-6,6-ビス(3,3,3-トリフルオロプロピル)ピペリジン-1-オキシルを合成した。
"Example 14"
(Synthesis of compound 24)
In the same manner as in Example 13, except that 1,1,1,7,7,7-hexafluoro-4-heptanone was used instead of 4,4,4-trifluorobutan-2-one. 2,2-Dimethyl-4-oxo-6,6-bis(3,3,3-trifluoropropyl)piperidine-1-oxyl represented by the formula (24), which is the desired product, was synthesized.
 得られた化合物の質量分析を行ったところ、m/z=334(M)にピークが確認された。このことから、合成した化合物が、式(24)で示される化合物であることが確認できた。また、高速液体クロマトグラフィー(HPLC)により確認した式(24)で示される化合物の純度は96.6%であった。 Mass spectrometry of the obtained compound confirmed a peak at m/z=334 (M + ). From this, it was confirmed that the synthesized compound was the compound represented by the formula (24). The purity of the compound represented by formula (24) confirmed by high performance liquid chromatography (HPLC) was 96.6%.
「実施例15」
(化合物25の合成)
<2,2-ジメチル-4-ヒドロキシ-6,6-ビス(3,3,3-トリフルオロプロピル)ピペリジン-1-オキシル(25)の合成>
 アルゴン気流下、上記の反応により合成した2,2-ジメチル-4-オキソ-6,6-ビス(3,3,3-トリフルオロプロピル)ピペリジン-1-オキシル(24)0.334g(1.00mmol)をエタノール(EtOH)5mlに溶解し、氷浴にて冷却した。水素化ホウ素ナトリウム0.019g(0.50mmol)をゆっくり加え、室温で6時間攪拌し、反応させた。
"Example 15"
(Synthesis of compound 25)
<Synthesis of 2,2-dimethyl-4-hydroxy-6,6-bis(3,3,3-trifluoropropyl)piperidine-1-oxyl (25)>
Under an argon stream, 0.334 g of 2,2-dimethyl-4-oxo-6,6-bis(3,3,3-trifluoropropyl)piperidine-1-oxyl (24) (1. 00 mmol) was dissolved in 5 ml of ethanol (EtOH) and cooled in an ice bath. 0.019 g (0.50 mmol) of sodium borohydride was slowly added and stirred at room temperature for 6 hours to react.
 反応溶液に飽和食塩水を加え、酢酸エチルで抽出し、硫酸マグネシウムで乾燥した。減圧下で濃縮後、シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=4:1)で精製し、目的物である式(25)で示される2,2-ジメチル-4-ヒドロキシ-6,6-ビス(3,3,3-トリフルオロプロピル)ピペリジン-1-オキシルを得た(収量0.269g、収率80%)。 Saturated saline was added to the reaction solution, extracted with ethyl acetate, and dried over magnesium sulfate. After concentration under reduced pressure, it was purified by silica gel column chromatography (hexane:ethyl acetate=4:1) to obtain the desired product, 2,2-dimethyl-4-hydroxy-6,6-bis represented by formula (25). (3,3,3-Trifluoropropyl)piperidine-1-oxyl was obtained (0.269 g, 80% yield).
 得られた化合物の質量分析を行ったところ、m/z=336(M)にピークが確認された。このことから、合成した化合物が、式(25)で示される化合物であることが確認できた。また、高速液体クロマトグラフィー(HPLC)により確認した式(25)で示される化合物の純度は95.2%であった。 Mass spectrometry of the obtained compound confirmed a peak at m/z=336 (M + ). From this, it was confirmed that the synthesized compound was the compound represented by the formula (25). The purity of the compound represented by formula (25) confirmed by high performance liquid chromatography (HPLC) was 95.2%.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
「比較例1」
 下記式(A1)で示されるトリフルオロメチルベンゼンを用意した。
「比較例2」
(化合物A2の合成)
 式(A1)で示されるトリフルオロメチルベンゼンと、下記式(A2)で示される4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン1-オキシルフリーラジカル(TEMPOL)(東京化成株式会社製)とを、モル比((A1):(A2))で1:1の割合で混合し、比較例2の化合物とした。
"Comparative Example 1"
A trifluoromethylbenzene represented by the following formula (A1) was prepared.
"Comparative Example 2"
(Synthesis of compound A2)
Trifluoromethylbenzene represented by formula (A1) and 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl free radical (TEMPOL) represented by formula (A2) below (manufactured by Tokyo Chemical Co., Ltd. ) were mixed at a molar ratio ((A1):(A2)) of 1:1 to obtain a compound of Comparative Example 2.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 このようにして得られた実施例1~実施例15、比較例1および比較例2の化合物について、それぞれ以下に示す方法により、19Fスピン-格子緩和時間(T1)を測定した。その結果を表1に示す。 The 19 F spin-lattice relaxation time (T1) of the compounds of Examples 1 to 15 and Comparative Examples 1 and 2 thus obtained was measured by the method described below. Table 1 shows the results.
19Fスピン-格子緩和時間(T1)の測定)
 化合物を50mMの濃度で重クロロホルム溶液に溶解し、500MHzのNMR装置を用いて、反復回転法により、以下に示す条件で19F核の縦緩和時間(T1)を測定した。
(測定条件)
NMR装置:JNM-ECA500(JOEL社製)
測定温度:36℃
パルス系列:double_pulse
 relaxation_delay:10[s]
 tau_interval:4,3,2,1,0.8,0.6,0.4,0.2,0.1[s],80,60,40,20,10,8,6,4,2[ms]
 積算回数:16回
(Measurement of 19 F spin-lattice relaxation time (T1))
The compound was dissolved in a deuterated chloroform solution at a concentration of 50 mM, and the longitudinal relaxation time (T1) of the 19 F nucleus was measured by the repeated rotation method using a 500 MHz NMR device under the conditions shown below.
(Measurement condition)
NMR equipment: JNM-ECA500 (manufactured by JOEL)
Measurement temperature: 36°C
Pulse sequence: double_pulse
relaxation_delay: 10 [s]
tau_interval: 4, 3, 2, 1, 0.8, 0.6, 0.4, 0.2, 0.1 [s], 80, 60, 40, 20, 10, 8, 6, 4, 2 [ms]
Accumulated times: 16 times
 また、実施例1~実施例15の化合物、および上記式(A3)で示される比較例3の化合物について、それぞれ以下に示す方法により、半占軌道(SOMO)のエネルギー準位を算出した。その結果を表1に示す。 In addition, for the compounds of Examples 1 to 15 and the compound of Comparative Example 3 represented by the above formula (A3), the energy level of the half-occupied orbital (SOMO) was calculated by the method shown below. Table 1 shows the results.
(SOMOのエネルギー準位の算出)
 米国Gaussian社製のGaussian09を使用して、化合物の分子軌道計算を実施した。汎関数としてB3LYP、基底関数として6-31+G(d,p)を用いた密度汎関数法(DFT)による構造最適化計算により、半占軌道(SOMO)のエネルギー準位を算出した。
(Calculation of SOMO energy level)
Molecular orbital calculations of compounds were performed using Gaussian09 manufactured by Gaussian, USA. The energy level of the half-occupied orbital (SOMO) was calculated by structure optimization calculation by the density functional theory (DFT) using B3LYP as the functional and 6-31+G(d, p) as the basis function.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 表1に示すように、実施例1~実施例15の化合物は、比較例1および比較例2の化合物と比較して、19Fスピン-格子緩和時間(T1)が短いものであった。
 また、実施例1~実施例15の化合物は、比較例3の化合物と比較して、半占軌道(SOMO)のエネルギー準位が高いものであった。
As shown in Table 1, the compounds of Examples 1 to 15 had shorter 19 F spin-lattice relaxation times (T1) than the compounds of Comparative Examples 1 and 2.
In addition, the compounds of Examples 1 to 15 had higher energy levels of semi-occupied molecular orbitals (SOMO) than the compound of Comparative Example 3.
 これは、比較例3(化合物A3)は、ピロリジン環の2位および5位の炭素とフッ素原子との間に、1つの炭素原子しか存在しておらず、実施例1~実施例15の化合物と比較して、ニトロキシドラジカルとフッ素原子との距離が近いためである。その結果、比較例3(化合物A3)に含まれるニトロキシドラジカルは、フッ素原子からの電子的な影響を受けやすく、フッ素原子の電子吸引基としての効果により、SOMOのエネルギーレベルが低下されたものと推定される。 This is because Comparative Example 3 (Compound A3) has only one carbon atom between the carbon atoms at positions 2 and 5 of the pyrrolidine ring and the fluorine atom, and the compounds of Examples 1 to 15 This is because the distance between the nitroxide radical and the fluorine atom is short compared to . As a result, the nitroxide radical contained in Comparative Example 3 (Compound A3) is easily affected electronically by the fluorine atom, and the effect of the fluorine atom as an electron-withdrawing group is thought to have reduced the SOMO energy level. Presumed.
 また、実施例1および比較例1の化合物について、それぞれ5mMの重クロロホルム溶液と、10mMの重クロロホルム溶液とを調整し、以下の撮像条件でT1強調画像(ファントム画像)を得た。
(撮像条件)
撮像装置:MRI BioSpec117/11(Burker社製)
パルスシークエンス:RAREVTR
繰り返し時間:TR=1500ms
エコー時間:TE=12ms
積算回数:36回
総撮像時間:16分33秒
Further, for the compounds of Example 1 and Comparative Example 1, a 5 mM deuterated chloroform solution and a 10 mM deuterated chloroform solution were prepared, and T1-weighted images (phantom images) were obtained under the following imaging conditions.
(imaging conditions)
Imaging device: MRI BioSpec117/11 (manufactured by Burker)
Pulse sequence: RARE VTR
Repeat time: TR=1500ms
Echo time: TE=12ms
Accumulation times: 36 times Total imaging time: 16 minutes 33 seconds
 図1は、実施例1(化合物11)の19F-MRIの19Fスピン-格子緩和時間(T1)強調画像である。図2は、比較例1(化合物A1)の19F-MRIの19Fスピン-格子緩和時間(T1)強調画像である。
 図1に示す実施例1(化合物11)の画像は、5mMの重クロロホルム溶液の場合であっても、10mMの重クロロホルム溶液の場合であっても、図2に示す比較例1(化合物A1)の画像と比較して、高輝度であった。
 また、図1より、実施例1(化合物11)を、フッ素を検出核とするMRI診断用の造影剤として用いることにより、十分に臨床応用可能である高感度の画像が得られることが確認できた。
FIG. 1 is a 19 F spin-lattice relaxation time (T1) weighted image of 19 F-MRI of Example 1 (compound 11). FIG. 2 is a 19 F spin-lattice relaxation time (T1) weighted image of 19 F-MRI of Comparative Example 1 (compound A1).
The image of Example 1 (Compound 11) shown in FIG. 1 is the same as that of Comparative Example 1 (Compound A1) shown in FIG. It was brighter than the image of
Further, from FIG. 1, it can be confirmed that by using Example 1 (compound 11) as a contrast agent for MRI diagnosis using fluorine as a detection nucleus, high-sensitivity images that are sufficiently clinically applicable can be obtained. rice field.
 生体内で安定性が高い造影剤を提供することができる。また、高感度の磁気共鳴画像を得ることができる。 It is possible to provide a highly stable contrast agent in vivo. Also, a highly sensitive magnetic resonance image can be obtained.

Claims (9)

  1.  下記一般式(1)または下記一般式(2)で表されることを特徴とする含フッ素化合物。
    Figure JPOXMLDOC01-appb-C000001

    (一般式(1)において、R、R、R、Rは、下記(1-1)~(1-4)のいずれかであって、R、R、R、Rのうち1つ以上が下記(1-3)である、またはRとR、RとRの一方または両方が(1-4)である。)
    (一般式(2)において、R、R、R、Rは、下記(1-1)~(1-4)のいずれかであって、R、R、R、Rのうち1つ以上が下記(1-3)である、またはRとR、RとRの一方または両方が(1-4)である。Xは、水素原子、またはフッ素原子を含まない置換基で置換もしくは無置換の炭素数1~10のアルキル基のいずれかである。)
    (1-1)フッ素原子を含まない置換基で置換もしくは無置換の炭素数1~10のアルキル基である。
    (1-2)フッ素原子を含まない置換基で置換もしくは無置換の炭素数5~7の環状アルキル基であって、RとR、またはRとRが、互いに結合して形成された基である。
    (1-3)1つ以上のトリフルオロメチル基を有する炭素数1~10のアルキル基である。
    (1-4)1つ以上のトリフルオロメチル基を有する炭素数5~7の環状アルキル基であって、RとR、またはRとRが、互いに結合して形成された基である。
    A fluorine-containing compound represented by the following general formula (1) or (2).
    Figure JPOXMLDOC01-appb-C000001

    (In general formula (1), R 1 , R 2 , R 3 and R 4 are any one of the following (1-1) to (1-4), and R 1 , R 2 , R 3 and R 4 are (1-3) below, or one or both of R 1 and R 2 , R 3 and R 4 are (1-4).)
    (In general formula (2), R 1 , R 2 , R 3 and R 4 are any one of the following (1-1) to (1-4), and R 1 , R 2 , R 3 and R 4 is (1-3) below, or one or both of R 1 and R 2 , R 3 and R 4 are (1-4), X is a hydrogen atom or a fluorine atom It is either a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms with a substituent that does not contain
    (1-1) an alkyl group having 1 to 10 carbon atoms substituted or unsubstituted with a substituent containing no fluorine atom;
    (1-2) a cyclic alkyl group having 5 to 7 carbon atoms substituted or unsubstituted with a substituent containing no fluorine atom, wherein R 1 and R 2 or R 3 and R 4 are bonded to each other; It is the basis of
    (1-3) an alkyl group having 1 to 10 carbon atoms and having one or more trifluoromethyl groups;
    (1-4) a cyclic alkyl group having 5 to 7 carbon atoms and having one or more trifluoromethyl groups, wherein R 1 and R 2 or R 3 and R 4 are bonded to each other; is.
  2.  前記(1-1)が、フッ素原子を含まない置換基で置換もしくは無置換の炭素数1~5の鎖状アルキル基である、請求項1に記載の含フッ素化合物。 The fluorine-containing compound according to claim 1, wherein (1-1) is a chain alkyl group having 1 to 5 carbon atoms substituted or unsubstituted with a fluorine atom-free substituent.
  3.  前記(1-2)が、フッ素原子を含まない置換基で置換もしくは無置換のシクロヘキシル基であって、RとR、またはRとRが、互いに結合して形成された基である、請求項1または請求項2に記載の含フッ素化合物。 (1-2) is a cyclohexyl group substituted or unsubstituted with a substituent containing no fluorine atom, wherein R 1 and R 2 or R 3 and R 4 are bonded to each other; 3. The fluorine-containing compound according to claim 1 or claim 2.
  4.  前記(1-3)が、1つ以上のトリフルオロメチル基を有する炭素数1~5の鎖状アルキル基である、請求項1~請求項3のいずれか一項に記載の含フッ素化合物。 The fluorine-containing compound according to any one of claims 1 to 3, wherein (1-3) is a chain alkyl group having 1 to 5 carbon atoms and having one or more trifluoromethyl groups.
  5.  前記(1-4)が、1つ以上のトリフルオロメチル基を有するシクロヘキシル基であって、RとR、またはRとRが、互いに結合して形成された基である、請求項1~請求項4のいずれか一項に記載の含フッ素化合物。 wherein (1-4) is a cyclohexyl group having one or more trifluoromethyl groups, and R 1 and R 2 or R 3 and R 4 are a group formed by bonding together; The fluorine-containing compound according to any one of claims 1 to 4.
  6.  前記一般式(1)または前記一般式(2)におけるRとRとが同じであって、かつRとRとが同じである、請求項1~請求項5のいずれか一項に記載の含フッ素化合物。 Any one of claims 1 to 5, wherein R 1 and R 3 in the general formula (1) or the general formula (2) are the same, and R 2 and R 4 are the same. The fluorine-containing compound according to .
  7.  前記一般式(2)におけるXが、水素原子と、またはフッ素原子を含まない置換基で置換もしくは無置換の炭素数1~5の鎖状アルキル基のいずれかである、請求項1に記載の含フッ素化合物。 2. The formula according to claim 1, wherein X in the general formula (2) is either a hydrogen atom or a chain alkyl group having 1 to 5 carbon atoms substituted or unsubstituted with a substituent containing no fluorine atom. Fluorine-containing compound.
  8.  フッ素を検出核とする磁気共鳴画像診断用の造影剤に用いられる、請求項1~請求項7のいずれか一項に記載の含フッ素化合物。 The fluorine-containing compound according to any one of claims 1 to 7, which is used as a contrast agent for magnetic resonance imaging diagnosis using fluorine as a detection nucleus.
  9.  フッ素を検出核とする磁気共鳴画像診断用の造影剤であり、
     請求項1~請求項8のいずれか一項に記載の含フッ素化合物を含有する造影剤。
    A contrast agent for magnetic resonance imaging diagnosis using fluorine as a detection nucleus,
    A contrast agent containing the fluorine-containing compound according to any one of claims 1 to 8.
PCT/JP2022/010632 2021-03-17 2022-03-10 Fluorine-containing compound and contrast agent WO2022196523A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021043736A JP2024069732A (en) 2021-03-17 2021-03-17 Fluorine-containing compound and contrast agent
JP2021-043736 2021-03-17

Publications (1)

Publication Number Publication Date
WO2022196523A1 true WO2022196523A1 (en) 2022-09-22

Family

ID=83320592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/010632 WO2022196523A1 (en) 2021-03-17 2022-03-10 Fluorine-containing compound and contrast agent

Country Status (2)

Country Link
JP (1) JP2024069732A (en)
WO (1) WO2022196523A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5362477A (en) * 1991-10-25 1994-11-08 Mallinckrodt Medical, Inc. 19F magnetic resonance imaging agents which include a nitroxide moiety
WO2008093881A1 (en) * 2007-01-31 2008-08-07 Kyushu University, National University Corporation Method for synthesis of nitroxyl radical

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5362477A (en) * 1991-10-25 1994-11-08 Mallinckrodt Medical, Inc. 19F magnetic resonance imaging agents which include a nitroxide moiety
WO2008093881A1 (en) * 2007-01-31 2008-08-07 Kyushu University, National University Corporation Method for synthesis of nitroxyl radical

Also Published As

Publication number Publication date
JP2024069732A (en) 2024-05-22

Similar Documents

Publication Publication Date Title
CN108368067B (en) Dimeric contrast agents
US5077037A (en) Novel compositions for magnetic resonance imaging
KR102724256B1 (en) Dimer contrast agent
KR20210074237A (en) Method for producing an intermediate gadolinium-based ionic contrast agent and its use
KR101336071B1 (en) Dual MRI/CT contrast agent and a process for the preparation thereof
WO2007009638A2 (en) Complexes containing perfluoroalkyl, method for the production and use thereof
WO2022196523A1 (en) Fluorine-containing compound and contrast agent
JPH11217385A (en) Fluorine-containing porphyrin complex and contrast medium containing the same
CN110357828B (en) Nuclear magnetic resonance contrast agent and preparation method and application thereof
WO2022196621A1 (en) Fluorine-containing compound and contrast medium
US7407644B2 (en) Conjugates of antioxidants with metal chelating ligands for use in diagnostic and therapeutic applications
WO2023084859A1 (en) Fluorine-containing compound and contrast agent
WO2022196734A1 (en) Fluorine-containing compound and contrast medium
KR102040476B1 (en) Efficient synthesis of ethylenedicysteine-sugar conjugates for imaging and therapy
JP5451041B2 (en) Dendrimer compounds, dendrimer complexes and MRI contrast agents
WO1993022662A1 (en) Hydrophilic free radicals for magnetic resonance imaging
CN116940554A (en) Fluorine-containing compound and contrast agent
WO2023135846A1 (en) Fluorinated compound and contrast medium
KR101336073B1 (en) Composition for Dual SPECT/MRI contrast and a process for obtaining SPECT/MRI dual image using the same
US6916930B2 (en) Radioactive iodine-labeled compound
KR101239129B1 (en) Dual SPECT/MRI contrast agent and a process for the preparation thereof
KR101239130B1 (en) Magnetic resonance imaging contrast agent and a process for the preparation thereof
EP4015509A1 (en) Organometallic compounds and their use as multimodal contrasting media for imaging diagnosis
JP2023135198A (en) Fluorine-containing compound and contrast medium
KR20120092760A (en) Dual contrast composition for mri and nuclear medicine imaging

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22771274

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22771274

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP