[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022195664A1 - 医療支援システムおよび医療支援方法 - Google Patents

医療支援システムおよび医療支援方法 Download PDF

Info

Publication number
WO2022195664A1
WO2022195664A1 PCT/JP2021/010349 JP2021010349W WO2022195664A1 WO 2022195664 A1 WO2022195664 A1 WO 2022195664A1 JP 2021010349 W JP2021010349 W JP 2021010349W WO 2022195664 A1 WO2022195664 A1 WO 2022195664A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
patient
examination
time
diagnosis
Prior art date
Application number
PCT/JP2021/010349
Other languages
English (en)
French (fr)
Inventor
俊哉 西村
圭司 奥村
聖 杉本
Original Assignee
オリンパスメディカルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパスメディカルシステムズ株式会社 filed Critical オリンパスメディカルシステムズ株式会社
Priority to PCT/JP2021/010349 priority Critical patent/WO2022195664A1/ja
Publication of WO2022195664A1 publication Critical patent/WO2022195664A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics

Definitions

  • Patent Literature 1 acquires eating information indicating foods ingested by a user, refers to etiological information and eating information that define a degree of food contribution indicating the degree of correlation between a disease and foods, and determines whether the user is affected by the disease.
  • a disease prediction device that predicts diseases that are likely to occur. The disease prediction device proposes optional examinations in health checkups corresponding to predicted diseases.
  • FIG. 1 shows a configuration example of a medical support system 1 according to an embodiment.
  • a medical support system 1 of the embodiment is provided in a medical facility such as a hospital, manages patient information of patients, and includes an information processing device 10 , a storage device 30 and a terminal device 40 .
  • the information processing device 10, the storage device 30 and the terminal device 40 are communicably connected by a network 2 such as a LAN (local area network).
  • the information processing device 10 may be connected via the network 2 to an endoscopy management system (not shown) installed in an endoscopy department within a medical facility.
  • the information processing device 10 includes a patient information acquisition unit 12 , an examination information acquisition unit 14 , a statistical processing unit 16 , an information element identification unit 18 , a determination unit 20 and an examination time derivation unit 22 .
  • the storage device 30 is an auxiliary storage device such as a HDD (Hard Disk Drive) or SSD (Solid State Drive), and has a storage section 32, a statistical data storage section 34, an information element storage section 36, and an examination time storage section .
  • the accumulation unit 32, the statistical data storage unit 34, the information element storage unit 36, and the examination time storage unit 38 may all be configured in the same auxiliary storage device, or may be configured in separate auxiliary storage devices.
  • the information processing device 10 and the storage device 30 are connected to the network 2 in the medical facility.
  • the processing device 10 and the storage device 30 may be communicably connected.
  • the accumulation unit 32 accumulates patient information and examination information during examinations of a plurality of patients. Focusing on one patient, since patient information and examination information in a plurality of past examinations are stored, the accumulated information in the accumulation unit 32 can be used to show how the patient's disease has progressed over time. It can be used as history data (diagnosis history information) shown in series. Therefore, the statistical processing unit 16 of the embodiment has a function of calculating statistical data based on past patient information and past examination information of a plurality of patients accumulated in the accumulation unit 32 .
  • the statistical data storage section 34 stores statistical data calculated by the statistical processing section 16 .
  • the statistical processing unit 16 converts the time intervals calculated for patient A into the following diagnostic intervals. Diagnosis interval when “No abnormality” changed to “Adenoma”: 6 months Diagnosis interval when “Adenoma” changed to “Stomach cancer”: 6 months
  • the statistical processing unit 16 may derive the diagnostic interval based on the 12 months from the date of first diagnosis of adenoma to the date of first diagnosis of gastric cancer. In this case, the statistical processing unit 16 derives the diagnosis interval as 12 months.
  • FIG. 4 shows an example of statistical data stored in the statistical data storage unit 34.
  • FIG. 4 shows data obtained by statistically processing patient information of patients whose diagnosis has changed from “adenomas” to "gastric cancer".
  • the statistical data includes the number and ratio of patients who match the information elements of "diagnosis interval", “age”, “systolic blood pressure", “BMI”, and "H. pylori infection status”.
  • the patient information subject to statistical processing by the statistical processing unit 16 is the patient information before the diagnosis result changes, specifically the patient information when the adenoma was first diagnosed.
  • the number of patients and the ratio of patients (ratio to the number of patients) that match the information elements of "diagnosis interval", "age”, “systolic blood pressure", “BMI”, and “H. pylori infection status” are calculated.
  • Statistical data in the first row includes age 60 to 69 years at the time of diagnosis of adenoma, systolic blood pressure of 130 to 139, BMI of 30 or more, H. pylori infection status positive, and Examination after 6 months shows that the number of patients diagnosed with gastric cancer is 124. These 124 patients account for 62% of the total number of 200 patients. This indicates that a patient aged 60 to 69 years, with a systolic blood pressure of 130 to 139, a BMI of 30 or more, a positive H. It means that if you get tested, you are very likely to be diagnosed with stomach cancer.
  • FIG. 5 shows another example of statistical data stored in the statistical data storage unit 34.
  • FIG. 5 shows data obtained by statistically processing patient information of patients whose diagnosis results have changed from "no abnormality" to "adenomas".
  • the statistical data includes the number and ratio of patients who match the information elements of "diagnosis interval", “age”, “systolic blood pressure", “BMI”, and "H. pylori infection status”.
  • the patient information subject to statistical processing by the statistical processing unit 16 is the most recent patient information before the diagnosis result changes, specifically the patient information when the patient was finally diagnosed as having no abnormality.
  • the statistical processing unit 16 has derived the diagnosis interval for each patient.
  • the number of patients and the ratio of patients (ratio to the number of patients) that match the information elements of "diagnosis interval", "age”, “systolic blood pressure", “BMI”, and "H. pylori infection status" are calculated.
  • the statistical data on the second row includes age 60 to 69 years old, systolic blood pressure of 130 to 139, BMI of 30 or higher, and positive H. pylori infection status at the time of diagnosis of no abnormalities, and no abnormalities were diagnosed.
  • a test 12 months after being treated shows that the number of patients diagnosed with adenoma is 40. These 40 patients account for 10% of the total number of 400 patients.
  • the patient group in the second row has the same systolic blood pressure, BMI, and H. pylori infection status, but the age range is higher.
  • the information on the time interval between two examinations in which the diagnostic results did not change may also be used to calculate the population parameter.
  • FIG. 6 shows an example of combinations of information elements stored in the information element storage unit 36.
  • the information element storage unit 36 stores combinations of diagnostic intervals and one or more information elements in association with diagnostic results. Specifically, the information element storage unit 36 stores a combination of a diagnosis interval in which the percentage of patients whose diagnosis results have changed in the past is higher than a predetermined threshold value and one or more information elements in association with the diagnosis result before the change.
  • the determination unit 20 determines that a plurality of information elements included in the patient information of the target patient for whom the next examination time is to be set are associated with the diagnosis results of the examinations that the patient has undergone in the past in the information element storage unit 36. It is determined whether or not the above information elements are met.
  • the determination unit 20 searches for the latest patient information and examination information of the patient accumulated in the accumulation unit 32, and the information elements of the latest diagnosis result and patient information are stored in the information element storage unit 36 and the diagnosis result and 1 It is determined whether or not the combination of the above information elements is suitable. That is, the determination unit 20 determines the high disease risk of the target patient by determining whether the patient for whom the examination time is to be set is included in the high-risk patient group.
  • the examination time derivation unit 22 adds timing information regarding the next examination time to the most recent examination date as a diagnosis interval, which is an appropriate examination interval predetermined according to the height of the disease risk based on the statistical data. Information may be derived.
  • a diagnosis interval which is an appropriate examination interval predetermined according to the height of the disease risk based on the statistical data. Information may be derived.
  • the diagnostic interval of the high-risk patient group based on statistical data is long, instead of the diagnostic interval based on statistical data, by using the appropriate examination interval determined according to the height of the disease risk as the diagnostic interval, It becomes possible to set the next examination of the target patient at an earlier timing. For example, if the interval between diagnoses for a group of high-risk patients based on statistical data is 24 months, using a shorter appropriate inspection interval (for example, 6 months) will have the effect of setting the next inspection time earlier. be.
  • the examination timing derivation unit 22 may derive examination timing information regarding the next examination timing of the target patient whose examination timing is to be set, based on the degree of disease risk and the past examination execution timing.
  • the past inspection implementation time may be a past inspection date.
  • the determination unit 20 searches for the latest patient information and examination information of the patient stored in the storage unit 32, and the information elements of the latest diagnosis results and patient information are stored in the information element storage unit 36. It was determined whether the combination of the diagnostic results obtained and one or more information elements conformed. In another example, in response to a request from a doctor, the determination unit 20 converts the information elements of the diagnosis result and patient information reported by the doctor into the diagnosis result and one or more pieces of information stored in the information element storage unit 36. It may be determined whether or not the combination of elements is suitable.
  • the doctor uses the terminal device 40 installed in the medical office to enter the examination report.
  • the doctor causes the display of the terminal device 40 to display the report input screen, and inputs the examination results such as the diagnostic results and findings of the endoscopy to the report input screen.
  • the terminal device 40 supplies patient information and examination information to the information processing apparatus 10 in order to acquire information about the next examination time.
  • the determination unit 20 determines that the information elements of the diagnosis result and the patient information reported by the doctor are: It is determined whether or not the combination of the diagnostic result stored in the information element storage unit 36 and one or more information elements is suitable.
  • the judgment unit 20 judges that the information elements of the diagnosis result and patient information inputted in the report match the combination of the diagnosis result and one or more information elements stored in the information element storage unit 36, the examination time
  • the derivation unit 22 derives time information regarding the patient's next examination time and provides it to the terminal device 40 .
  • the test information includes the test date and diagnosis results, but may also include items related to the test results.
  • the information element storage unit 36 may store a combination of a diagnosis interval, one or more information elements of patient information, and one or more test results in association with the diagnosis result. Items related to test results may include at least one of a lesion size item and a lesion site item.
  • the information element storage unit 36 stores a combination of a diagnosis interval, one or more information elements of patient information, and an information element of the size of a lesion or an information element of a lesion site in association with the diagnosis result. good too.
  • the statistical processing unit 16 calculates statistical data, and the determination unit 20 determines the level of the patient's disease risk based on the statistical data. You may For example, the statistical processing unit 16 converts the age-based disease risk level accumulated in the accumulation unit 32 into a function, and the determination unit 20 determines the disease risk level of the patient whose examination time is to be set based on the function. It may be configured to determine the degree of
  • the present disclosure can be used in the technical field of deriving information on the next inspection time.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Pathology (AREA)
  • Epidemiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Medical Treatment And Welfare Office Work (AREA)

Abstract

蓄積部32は、複数の患者の患者情報と、複数の患者の過去の検査実施時期および診断結果を含む過去検査情報を蓄積する。判定部20は、検査時期を設定する対象となる対象患者の患者情報と対象患者の過去検査情報の少なくとも一方と、蓄積部32に蓄積された患者情報および過去検査情報に基づいて、対象患者の病気リスクの高さを判定する。検査時期導出部22は、病気リスクの高さおよび過去の検査実施時期に基づいて、対象患者の次回検査時期に関する検査時期情報を導出する。

Description

医療支援システムおよび医療支援方法
 本開示は、医療支援システムおよび医療支援方法に関する。
 特許文献1は、ユーザが摂取した食品を示す摂食情報を取得し、病気と食品の相関の大きさを示す食品寄与度を定義する病因情報と摂食情報とを参照して、ユーザが罹患する可能性の高い病気を予測する疾病予測装置を開示する。疾病予測装置は、予測した病気に対応して、健康診断におけるオプション検査を提案する。
特開2018-124702号公報
 医療施設は、癌を発症する可能性のある患者(ハイリスク患者)に対して適切なタイミングで内視鏡検査を実施することが好ましいが、検査日程は担当医師の判断により決定されるため、医師によって検査間隔にばらつきが生じる。癌の発症を早期に発見するためには検査を高頻度に実施すればよいが、高頻度な検査は患者にとって負担となり、また医療資源を無駄に使用することになりかねない。本開示はこうした状況に鑑みなされたものであり、その目的は、次回検査時期の設定を支援するための技術を提供することにある。
 上記課題を解決するために、本開示のある態様の医療支援システムは、複数の患者の患者情報と、複数の患者の過去の検査実施時期および診断結果を含む過去検査情報を蓄積する蓄積部と、検査時期を設定する対象となる対象患者の患者情報と対象患者の過去検査情報の少なくとも一方と、蓄積部に蓄積された患者情報および過去検査情報に基づいて、対象患者の病気リスクの高さを判定する判定部と、病気リスクの高さおよび過去の検査実施時期に基づいて、対象患者の次回検査時期に関する検査時期情報を導出する検査時期導出部と、を備える。
 本開示の別の態様の医療支援方法は、複数の患者の患者情報と、複数の患者の過去の検査実施時期および診断結果を含む過去検査情報を蓄積し、検査時期を設定する対象である対象患者の患者情報と対象患者の過去検査情報の少なくとも一方と、蓄積された患者情報および過去検査情報に基づいて、対象患者の病気リスクの高さを判定し、病気リスクの高さおよび過去の検査実施時期に基づいて対象患者の次回検査時期に関する検査時期情報を導出する。
 なお、以上の構成要素の任意の組み合わせ、本開示の表現を方法、装置、システム、記録媒体、コンピュータプログラムなどの間で変換したものもまた、本開示の態様として有効である。
実施形態にかかる医療支援システムの構成例を示す図である。 患者情報および検査情報の例を示す図である。 時間間隔-診断間隔の変換テーブルを示す図である。 統計データの例を示す図である。 統計データの別の例を示す図である。 情報要素の組み合わせの例を示す図である。 通知画面の例を示す図である。
 図1は、実施形態にかかる医療支援システム1の構成例を示す。実施形態の医療支援システム1は病院などの医療施設に設けられ、患者の患者情報を管理し、情報処理装置10、記憶装置30および端末装置40を備える。情報処理装置10、記憶装置30および端末装置40は、LAN(ローカルエリアネットワーク)などのネットワーク2によって通信可能に接続される。情報処理装置10は、ネットワーク2を介して、医療施設内の内視鏡部門に設置された内視鏡検査管理システム(図示せず)に接続してよい。
 情報処理装置10は、患者情報取得部12、検査情報取得部14、統計処理部16、情報要素特定部18、判定部20および検査時期導出部22を備える。記憶装置30は、HDD(ハードディスクドライブ)やSSD(ソリッドステートドライブ)などの補助記憶装置であって、蓄積部32、統計データ記憶部34、情報要素記憶部36および検査時期記憶部38を有する。蓄積部32、統計データ記憶部34、情報要素記憶部36および検査時期記憶部38は、いずれも同じ補助記憶装置に構成されてよいが、別個の補助記憶装置に構成されてもよい。図1に示す構成例では、情報処理装置10および記憶装置30が医療施設内のネットワーク2に接続するが、情報処理装置10および/または記憶装置30がクラウドサーバとして構成されて、インターネット経由で情報処理装置10と記憶装置30とが通信可能に接続してもよい。
 図1に示す医療支援システム1の構成は、ハードウェア的には任意のプロセッサ、メモリ、補助記憶装置、その他のLSIで実現でき、ソフトウェア的にはメモリにロードされたプログラムなどによって実現されるが、ここではそれらの連携によって実現される機能ブロックを描いている。したがって、これらの機能ブロックがハードウェアのみ、ソフトウェアのみ、またはそれらの組合せによっていろいろな形で実現できることは、当業者には理解されるところである。
 患者情報取得部12は患者の患者情報を取得する。患者情報は、患者の年齢、性別等の属性情報や、BMI(Body Mass Index:ボディマス指標)、最大血圧などの健康管理情報、ピロリ菌の感染状態を示す情報を含んでよい。実施例の患者情報は「患者背景情報」とも呼ばれ、通常は、内視鏡検査の前に取得される。
 内視鏡検査前、患者はウェアラブルデバイスを用いて健康状態を測定し、患者情報取得部12は、ウェアラブルデバイスから健康管理情報などの患者情報を取得する。また患者情報取得部12は、患者の属性情報やピロリ菌の感染状態を示す情報を含む患者情報を、医療施設の患者データベースや問診結果などから取得してよい。また患者情報取得部12は、タブレットなどの端末装置から患者情報を取得してよい。患者情報取得部12は、取得した患者情報を、内視鏡検査を識別する検査IDに紐付けて、蓄積部32に記憶させる。
 検査情報取得部14は患者の検査情報を取得する。検査情報は、少なくとも検査実施時期および診断結果を含む。実施例において検査実施時期は、検査が実施された日(検査日)であるが、検査が実施された週や月であってもよい。また実施例において検査情報は、内視鏡検査終了後に医師が内視鏡検査管理システムに登録した結果情報であり、検査情報取得部14は、内視鏡検査管理システムから、内視鏡検査の検査情報を取得する。なお検査情報は、内視鏡検査以外の検査の結果情報であってもよい。検査情報取得部14は、取得した検査情報を、検査IDに紐付けて、蓄積部32に記憶させる。
 図2は、蓄積部32に蓄積された過去の検査時に取得された患者情報および検査情報の例を示す。蓄積部32は、複数の患者の過去の患者情報と、複数の患者の過去の検査実施時期および診断結果を含む過去検査情報を蓄積する。患者情報および検査情報は互いに対応付けられて、過去に実施された検査の検査IDに紐付けて記憶されている。蓄積部32に蓄積される過去の患者情報および検査情報は、1つの医療施設において取得されたものに限らず、複数の医療施設において取得されたものを含んでよい。
 患者情報は、複数の項目についての情報要素を含む。図2に示す例で、患者情報には、「年齢」、「最大血圧」、「BMI」、「ピロリ菌感染状態」の項目が設定され、患者情報は、各項目の情報要素を含んで構成される。実施例において情報要素は、項目に入力される項目値であり、「年齢」には、検査時の年齢が情報要素として登録され、「最大血圧」には、検査前に測定した最高血圧が情報要素として登録され、「BMI」には、検査時のBMIが情報要素として登録され、「ピロリ菌感染状態」の項目には、検査時の感染状態値が情報要素として登録される。なお患者情報には、これらの項目以外に、患者の性別や、既往歴などの項目が設定されてもよい。
 同様に検査情報も、複数の項目についての情報要素を含む。図2に示す例で、検査情報には、「検査日」、「診断結果」の項目が設定され、検査情報は、各項目の情報要素を含んで構成される。「検査日」には、内視鏡検査を実施した日が情報要素として登録される。上記したように、検査の実施日ではなく、検査を実施した週や月を示す時期情報が登録されてもよい。「診断結果」には、医師により診断された病気の診断結果が情報要素として登録される。実施例における「診断結果」には、「異常なし」、「腺腫」、「胃癌」のいずれかが情報要素として登録されるが、他の情報要素が登録されてもよい。なお検査情報には、これらの項目以外に、検査結果を示す病変の大きさ、病変の部位などの項目が設定されてもよい。
 このように蓄積部32には、複数の患者の検査時の患者情報および検査情報が蓄積される。1人の患者に注目すれば、過去の複数回の検査における患者情報および検査情報が記憶されるため、蓄積部32の蓄積情報は、当該患者の病気がどのように進行していったかを時系列的に示す履歴データ(診断履歴情報)として利用できる。そこで実施例の統計処理部16は、蓄積部32に蓄積された複数の患者の過去の患者情報および過去の検査情報にもとづいて、統計データを算出する機能を備える。統計データ記憶部34は、統計処理部16により算出された統計データを記憶する。
 まず統計処理部16は、各患者の過去の検査実施時期に基づいて、検査の時間間隔を算出する。具体的に統計処理部16は、各患者の複数の検査情報に含まれる2つの検査日から、2つの検査の時間間隔を算出する。時間間隔は、2つの検査の間の期間を意味する。たとえば統計処理部16は、2つの検査日から病気の診断結果が変化した時間間隔を算出してよい。統計処理部16は、1人の患者についての過去の複数の検査情報から、診断結果が第1の診断から第2の診断(第2の診断は第1の診断とは異なる)に変化していることを検出すると、第1の診断が行われた検査日と、第1の診断が行われた検査日の次の検査日であって且つ第2の診断が行われた検査日から、2つの検査日の間隔を算出する。たとえば患者Aの検査履歴を参照すると、
 検査日2019/12/1 : 異常なし
 検査日2020/5/1 : 腺腫
 検査日2020/11/1 : 胃癌
 と、診断結果が変化している。そこで統計処理部16は、患者Aについての診断結果が変化したときの時間間隔を以下のように算出する。
 「異常なし」から「腺腫」に変化した時間間隔:5か月
 「腺腫」から「胃癌」に変化した時間間隔  :6か月
 なお統計処理部16は、診断結果が変化した2つの検査の時間間隔だけでなく、診断結果が変化しなかった2つの検査の時間間隔も算出するように構成されてよい。
 統計処理部16は、時間間隔を算出すると、算出した時間間隔から診断間隔を導出する。
 図3は、時間間隔-診断間隔の変換テーブルを示す。統計処理部16は、時間間隔Iを算出すると、図3に示す変換テーブルにしたがって、診断間隔を導出する。たとえば時間間隔Iが4か月である場合、診断間隔は6か月と導出され、時間間隔Iが10か月である場合、診断間隔は12か月と導出される。このように統計処理部16は、第1の診断が行われた検査日と、第1の診断が行われた検査日の次の検査日であって且つ第2の診断が行われた検査日から、診断間隔を導出する。
 患者Aを例に説明すると、統計処理部16は、患者Aについて算出された時間間隔を、以下の診断間隔に変換する。
 「異常なし」から「腺腫」に変化した診断間隔:6か月
 「腺腫」から「胃癌」に変化した診断間隔  :6か月
 統計処理部16は、診断結果が「腺腫」から「胃癌」に変化した検査履歴において、腺腫と診断された最後の検査日と、胃癌と診断された最初の検査日との時間間隔を算出し、当該時間間隔から診断間隔を導出する。なお統計処理部16は、診断結果が「腺腫」から「胃癌」に変化した検査履歴において、腺腫と診断された最初の検査日と、胃癌と診断された最初の検査日との時間間隔を算出し、当該時間間隔から診断間隔を導出してもよい。たとえば、ある患者の検査履歴において、腺腫と診断された検査日の6か月後の検査で再び腺腫と診断され、さらにその6か月後の検査で胃癌と診断されている場合、統計処理部16は、最初に腺腫と診断された検査日から、最初に胃癌と診断された検査日までの12か月をもとに、診断間隔を導出してよい。この場合、統計処理部16は、診断間隔を12か月と導出する。
 統計処理部16は、全ての患者の検査履歴を参照して、病気の診断結果が変化したときの診断間隔を導出する。統計処理部16は、蓄積部32に蓄積された患者情報にもとづいて、導出した診断間隔と、患者情報の1以上の情報要素の組み合わせに関する統計データを算出する。統計処理部16は、算出した統計データを、統計データ記憶部34に記憶させる。
 図4は、統計データ記憶部34に記憶された統計データの例を示す。図4には、診断結果が「腺腫」から「胃癌」に変化した患者の患者情報を統計処理したデータが示されている。統計データは、「診断間隔」、「年齢」、「最大血圧」、「BMI」、「ピロリ菌感染状態」の情報要素に適合する患者の人数および人数比を含んで構成される。なお統計処理部16が統計処理の対象とした患者情報は、診断結果が変化する前の患者情報、具体的には最初に腺腫と診断されたときの患者情報である。この例では、患者情報を蓄積された患者の中に、診断結果が「腺腫」から「胃癌」に変化した患者が200人存在し、統計処理部16は、各患者の診断間隔を導出したうえで、「診断間隔」、「年齢」、「最大血圧」、「BMI」、「ピロリ菌感染状態」の情報要素に適合する患者数および患者の割合(人数比)を算出している。
 一段目の統計データには、腺腫と診断されたときの年齢が60~69歳、最大血圧が130~139、BMIが30以上、ピロリ菌感染状態が陽性であって、腺腫と診断されてから6か月後の検査で、胃癌と診断された患者数が124人であることが示される。この患者数124人は、総数200人に対して62%の割合を占めている。このことは、年齢が60~69歳、最大血圧が130~139、BMIが30以上、ピロリ菌感染状態が陽性であって、検査で腺腫と診断された患者が、6か月後に内視鏡検査を受けると、胃癌と診断される可能性が非常に高いことを意味する。
 二段目の統計データには、腺腫と診断されたときの年齢が60~69歳、最大血圧が120~129、BMIが25~29、ピロリ菌感染状態が陽性であって、腺腫と診断されてから6か月後の検査で、胃癌と診断された患者数が30人であることが示される。この患者数30人は、総数200人に対して15%の割合を占めている。一段目の患者群と比較すると、二段目の患者群は、年齢範囲およびピロリ菌感染状態は同じであるものの、最大血圧およびBMIともに低い数値を示している。また総数200人に対する割合は、一段目の患者群が62%であったのに対し、二段目の患者群は15%であり、一段目の患者群の方が総数に対する割合は大きい。このことから、60~69歳、ピロリ菌感染状態が陽性、診断間隔が6か月であって、最大血圧が130~139、BMIが30以上の患者は、最大血圧が120~129、BMIが25~29の患者と比べて、発癌リスクが高いことが分かる。
 情報要素特定部18は、診断結果が変化した患者の割合が所定の閾値より高い診断間隔と1以上の情報要素の組み合わせを、変化前の診断結果に関連付けて特定し、情報要素記憶部36に記憶する。「腺腫」から「胃癌」に変化した患者の統計データにおいて、変化前の診断結果は「腺腫」である。情報要素特定部18は、統計データにおける「人数比」の項目を参照して、所定の閾値より高い人数比を算出された診断間隔と、患者情報における1以上の情報要素の組み合わせを特定する。ここで、所定の閾値が40%である場合、情報要素特定部18は、図4に示す一段目の統計データで特定される診断間隔および1以上の情報要素の組み合わせを特定する。
 特定した診断間隔および1以上の情報要素の組み合わせを、以下に示す。
 「診断間隔」:6か月
 「年齢」:60~69
 「最大血圧」:130~139
 「BMI」:30≧
 「ピロリ菌感染状態」:陽性
 この組み合わせに該当する患者群の患者数は、124人である。情報要素特定部18は、診断結果が変化した患者の割合が所定の閾値より高い診断間隔と1以上の情報要素の組み合わせを、変化前の診断結果に関連付けて特定し、情報要素記憶部36に記憶させる。
 図4に示す統計データは、「診断間隔」、「年齢」、「最大血圧」、「BMI」、「ピロリ菌感染状態」の情報要素に適合する患者の人数および人数比を含んで構成されるが、統計処理部16は、統計データの算出に用いる患者情報の項目を変更してよい。たとえば統計処理部16は、「ピロリ菌感染状態」の項目を除外して、「診断間隔」、「年齢」、「最大血圧」、「BMI」の情報要素に適合する患者の人数および人数比を算出してもよい。また統計処理部16は、「ピロリ菌感染状態」の項目を除外して、代わりに「性別」の項目を追加し、「診断間隔」、「年齢」、「最大血圧」、「BMI」、「性別」の情報要素に適合する患者の人数および人数比を算出してもよい。統計データの算出に用いる項目は、医療施設ごとに適宜設定されてよい。統計処理部16が、様々な項目の組み合わせで統計データを算出することで、癌を発症する可能性の高い情報要素の組み合わせを探し出すことができるようになる。このように統計処理部16は、複数の診断結果から、病気の進行に関する情報を含む診断履歴情報を特定して、患者情報と診断履歴情報の組み合わせに関する統計データを算出してよい。
 図5は、統計データ記憶部34に記憶された統計データの別の例を示す。図5には、診断結果が「異常なし」から「腺腫」に変化した患者の患者情報を統計処理したデータが示されている。統計データは、「診断間隔」、「年齢」、「最大血圧」、「BMI」、「ピロリ菌感染状態」の情報要素に適合する患者の人数および人数比を含んで構成される。なお統計処理部16が統計処理の対象とした患者情報は、診断結果が変化する前の直近の患者情報、具体的には最後に異常なしと診断されたときの患者情報である。この例では、患者情報を蓄積された患者の中に、診断結果が「異常なし」から「腺腫」に変化した患者が400人存在し、統計処理部16は、各患者の診断間隔を導出したうえで、「診断間隔」、「年齢」、「最大血圧」、「BMI」、「ピロリ菌感染状態」の情報要素に適合する患者数および患者の割合(人数比)を算出している。
 一段目の統計データには、異常なしと診断されたときの年齢が50~59歳、最大血圧が130~139、BMIが30以上、ピロリ菌感染状態が陽性であって、異常なしと診断されてから12か月後の検査で、腺腫と診断された患者数が200人であることが示される。この患者数200人は、総数400人に対して50%の割合を占めている。このことは、年齢が50~59歳、最大血圧が130~139、BMIが30以上、ピロリ菌感染状態が陽性であって、検査で異常なしと診断された患者が、12か月後に内視鏡検査を受けると、腺腫と診断される可能性が非常に高いことを意味する。
 二段目の統計データには、異常なしと診断されたときの年齢が60~69歳、最大血圧が130~139、BMIが30以上、ピロリ菌感染状態が陽性であって、異常なしと診断されてから12か月後の検査で、腺腫と診断された患者数が40人であることが示される。この患者数40人は、総数400人に対して10%の割合を占めている。一段目の患者群と比較すると、二段目の患者群は、最大血圧、BMIおよびピロリ菌感染状態は同じであるものの、年齢範囲が高い。このことから、最大血圧が130~139、BMIが30以上、ピロリ菌感染状態が陽性であって、50~59歳の患者は、60~69歳の患者と比べて、発癌リスクが高いことが分かる。
 なお、割合を算出するときの母数の設定の仕方はこれに限らない。例えば、一段目の統計データでは、異常なしと診断されたときの年齢が50~59歳、最大血圧が130~139、BMIが30以上、ピロリ菌感染状態が陽性であって、異常なしと診断されてから12か月後の検査を受けた患者の総数を母数に設定し、異常なしと診断されてから12か月後の検査で、腺腫と診断された患者数の割合を算出してもよい。異常なしと診断されたときの年齢が50~59歳、最大血圧が130~139、BMIが30以上、ピロリ菌感染状態が陽性であって、異常なしと診断されてから12か月後の検査を受けた患者の総数を母数に設定する場合は、統計処理部16が算出した、診断結果が変化しなかった2つの検査の時間間隔の情報も母数を算出するために使われてよい。
 情報要素特定部18は、診断結果が変化した患者の割合が所定の閾値より高い診断間隔と1以上の情報要素の組み合わせを、変化前の診断結果に関連付けて特定し、情報要素記憶部36に記憶する。「異常なし」から「腺腫」に変化した患者の統計データにおいて、変化前の診断結果は「異常なし」である。情報要素特定部18は、統計データにおける「人数比」の項目を参照して、所定の閾値より高い人数比を算出された診断間隔と、患者情報における1以上の情報要素の組み合わせを特定する。ここで、所定の閾値が40%である場合、情報要素特定部18は、図5に示す一段目の統計データで特定される診断間隔および1以上の情報要素の組み合わせを特定する。
 特定した診断間隔および1以上の情報要素の組み合わせを、以下に示す。
 「診断間隔」:12か月
 「年齢」:50~59
 「最大血圧」:130~139
 「BMI」:30≧
 「ピロリ菌感染状態」:陽性
 情報要素特定部18は、診断結果が変化した患者の割合が所定の閾値より高い診断間隔と1以上の情報要素の組み合わせを、変化前の診断結果に関連付けて特定し、情報要素記憶部36に記憶させる。
 図6は、情報要素記憶部36に記憶された情報要素の組み合わせの例を示す。情報要素記憶部36は、診断間隔と1以上の情報要素との組み合わせを、診断結果に関連付けて記憶する。具体的に情報要素記憶部36は、過去において診断結果が変化した患者の割合が所定の閾値より高い診断間隔と1以上の情報要素との組み合わせを、変化前の診断結果に関連付けて記憶する。
 情報要素記憶部36には、病状が進行する可能性が高い情報要素の組み合わせが記憶される。上記したように、「異常なし」と診断された患者の患者情報が、図6において「異常なし」に関連付けて記憶された「年齢」、「最大血圧」、「BMI」、「ピロリ菌感染状態」の情報要素に該当していれば、当該患者は、12か月後に内視鏡検査を受けると、腺腫と診断される可能性が高い。また「腺腫」と診断された患者の患者情報が、図6において「腺腫」に関連付けて記憶された「年齢」、「最大血圧」、「BMI」、「ピロリ菌感染状態」の情報要素に該当していれば、当該患者は、6か月後に内視鏡検査を受けると、腺腫と診断される可能性が高い。そのため、図6に示す情報要素の組み合わせは、次回検査の時期を導出する際に利用できる有用な統計データとなる。
 判定部20は、次回の検査時期を設定する対象となる対象患者の患者情報に含まれる複数の情報要素が、情報要素記憶部36において患者が過去に受けた検査の診断結果に関連付けられた1以上の情報要素に適合するか否かを判定する。判定部20は、蓄積部32に蓄積された患者の最新の患者情報および検査情報を検索し、最新の診断結果および患者情報の情報要素が、情報要素記憶部36に記憶された診断結果および1以上の情報要素の組み合わせに適合するか否かを判定する。すなわち判定部20は、検査時期を設定する対象となる患者がハイリスク患者群に含まれるか否かを判定することで、当該対象患者の病気リスクの高さを判定する。ハイリスクの患者群に含まれている場合、判定部20は、当該対象患者を、病気リスクが所定の閾値以上に高いハイリスク患者と判定してよい。このことは、判定部20が、検査時期を設定する対象となる対象患者の患者情報と対象患者の過去検査情報の少なくとも一方と、蓄積部32に蓄積された複数の患者の過去の患者情報および過去の検査情報に基づいて、当該対象患者の病気リスクの高さを判定することを意味する。
 図2に示す患者A~Eの患者情報および検査情報を参照すると、患者Eの最新の患者情報および検査情報が、情報要素記憶部36に記憶された「腺腫」に関連付けられた情報要素の組み合わせにマッチしている。具体的に、検査日が2021/2/1である患者Eの最新の患者情報および検査情報は、
 「診断結果」:腺腫
 「年齢」:65歳
 「最大血圧」:135
 「BMI」:35
 「ピロリ菌感染状態」:陽性
 であり、図6に示す「腺腫」に関連付けられた情報要素の組み合わせに適合している。したがって判定部20は、患者Eの患者情報が、情報要素記憶部36に記憶された情報要素の組み合わせに適合していることを判定し、患者Eが、胃癌を発症する可能性のあるハイリスク患者であることを特定する。
 このように判定部20は、複数の患者の患者情報および過去検査情報に基づいて、患者情報の所定の情報要素と過去検査情報の所定の情報要素を持つ対象患者の病気リスクの高さを判定する。なお、実施例では判定部20が、蓄積部32に蓄積された患者の最新の患者情報および検査情報を検索し、最新の診断結果および患者情報の情報要素が、情報要素記憶部36に記憶された診断結果および1以上の情報要素の組み合わせに適合するか否かを判定している。本開示はこれに限らず、判定部20は、最新の診断結果および患者情報の情報要素が、統計データ記憶部34に記憶された統計データにおいて適合する患者群を特定して、病気リスクの高さを判定してもよい。具体的に判定部20は、適合した患者群におけるリスクの高さを示す人数比の情報に基づき、病気リスクの高さを判定してよい。
 たとえば図4に示す統計データにおいて、一段目の患者群の人数比は62%、二段目の患者群の人数比は15%、三段目の患者群の人数比は8%、四段目の患者群の人数比は6%である。人数比が高い患者群は、相対的に病気リスクが高く、人数比が低い患者群は、相対的に病気リスクが低い。したがって、病気リスクは、一段目の患者群が一番高く、二段目の患者群、三段目の患者群、四段目の患者群と順番に下がっていく。判定部20は、検査時期を設定する対象となる対象患者の診断結果および患者情報の情報要素が適合する患者群を特定して、病気リスクの高さを判定してよい。このように判定部20は、対象患者の患者情報と、過去検査情報との少なくとも一方と、統計データ記憶部34に記憶された統計データとに基づいて、対象患者の病気リスクの高さを判定するように構成されてよい。
 検査時期導出部22は、対象患者の病気リスクの高さおよび対象患者の過去の検査実施時期に基づいて、対象患者の次回検査時期に関する検査時期情報を導出する。実施例で、検査時期導出部22は、ハイリスク患者群に含まれることが判定された患者Eの次回検査時期に関する検査時期情報を導出する。例えば、検査時期導出部22は、診断間隔を含む統計データを用いて、次回検査時期に関する検査時期情報を導出してよい。具体的に検査時期導出部22は、患者の直近の検査実施時期に診断間隔を加えた次回検査時期に関する時期情報を導出する。患者Eに関して言えば、直近の検査日が2021/2/1であり、図6に示す「腺腫」に関連付けられた診断間隔が6か月であることから、検査時期導出部22は、患者Eの次回検査日を、2021/8/1と導出する。なお検査時期導出部22は、特定の検査日を導出するのではなく、次回検査時期を期間(たとえば2021年8月中)として導出してもよい。
 また検査時期導出部22は、次回検査時期に関する時期情報を、直近の検査日に、統計データに基づく病気リスクの高さに応じて予め定めた適正検査間隔を診断間隔として加えることで、検査時期情報を導出してもよい。統計データに基づいたハイリスク患者群の診断間隔が長い場合に、統計データにもとづいた診断間隔に代えて、病気リスクの高さに応じて定めた適正検査間隔を診断間隔として利用することで、対象患者の次回検査をより早いタイミングに設定することが可能となる。例えば統計データに基づいたハイリスク患者群の診断間隔が24か月だった場合に、それよりも短い適正検査間隔(たとえば6か月)を用いることで、次回検査時期を早期に設定できる効果がある。このように検査時期導出部22は、病気リスクの高さと過去の検査実施時期に基づいて、検査時期を設定する対象となる対象患者の次回の検査時期に関する検査時期情報を導出してよい。なお過去の検査実施時期は、過去の検査日であってよい。
 検査時期導出部22は、次回検査時期に関する時期情報を導出すると、当該時期情報を、患者IDに紐付けて検査時期記憶部38に記憶させる。たとえば情報処理装置10は、検査時期記憶部38において記憶された時期情報が近づいてくると、患者に対して、内視鏡検査の案内を送付してもよい。
 なお最新の患者情報および検査情報が、情報要素記憶部36に記憶された情報要素の組み合わせにマッチしない患者については、検査時期導出部22は、次回検査時期に関する時期情報を、直近の検査日から所定の期間後に設定してよい。所定の期間は、12か月または24か月など、病院施設において定期検査の期間として予め定められた期間である。このように検査時期導出部22は、判定部20による判定結果に応じて、次回検査時期に関する時期情報を導出してよい。
 上記した例では、判定部20が、蓄積部32に蓄積された患者の最新の患者情報および検査情報を検索し、最新の診断結果および患者情報の情報要素が、情報要素記憶部36に記憶された診断結果および1以上の情報要素の組み合わせに適合するか否かを判定した。別の例では、医師からの要求に応じて、判定部20が、医師によりレポート入力された診断結果および患者情報の情報要素が、情報要素記憶部36に記憶された診断結果および1以上の情報要素の組み合わせに適合するか否かを判定してもよい。
 内視鏡検査が終了すると、医師は、医局に設置された端末装置40を用いて、検査レポートの入力作業を行う。医師は、端末装置40のディスプレイにレポート入力画面を表示させて、内視鏡検査の診断結果および所見などの検査結果を、レポート入力画面に入力する。このとき端末装置40は、次回検査時期に関する情報を取得するために、患者情報および検査情報を情報処理装置10に供給する。
 情報処理装置10において、患者情報取得部12が患者情報を受け取り、検査情報取得部14が検査情報を受け取ると、判定部20が、医師によりレポート入力された診断結果および患者情報の情報要素が、情報要素記憶部36に記憶された診断結果および1以上の情報要素の組み合わせに適合するか否かを判定する。判定部20が、レポート入力された診断結果および患者情報の情報要素が、情報要素記憶部36に記憶された診断結果および1以上の情報要素の組み合わせに適合していることを判定すると、検査時期導出部22が、患者の次回検査時期に関する時期情報を導出して、端末装置40に提供する。
 図7は、レポート入力画面上に表示される通知画面60の例を示す。医師が、患者Eの次回検査予定日を確認し、OKボタンを操作すると、患者Eの次回予定検査日が、検査時期記憶部38に記憶されてよい。
 以上、本開示を複数の実施例をもとに説明した。これらの実施例は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本開示の範囲にあることは当業者に理解されるところである。
 実施例で検査情報は、検査日と診断結果を含んでいるが、さらに検査結果に関する項目を含んでよい。この場合、情報要素記憶部36は、診断結果に関連付けて、診断間隔と、患者情報の1以上の情報要素と、1以上の検査結果の組み合わせを記憶してもよい。検査結果に関する項目は、病変の大きさの項目または病変部位の項目の少なくとも一方を含んでよい。この場合、情報要素記憶部36は、診断結果に関連付けて、診断間隔と、患者情報の1以上の情報要素と、病変の大きさの情報要素または病変部位の情報要素との組み合わせを記憶してもよい。
 患者情報は、主訴に関する項目の情報要素を含んでよい。この場合、情報要素記憶部36は、診断間隔と主訴に関する項目の情報要素との組み合わせを、診断結果に関連付けて記憶してよい。主訴に関する項目の情報要素は、例えば、下腹部の痛み、げっぷ、タール便である。
 実施例では統計処理部16が統計データを算出し、判定部20が統計データに基づいて、患者の病気リスクの高さを判定したが、統計データ以外の手法で、病気リスクの高さを判定してもよい。例えば統計処理部16が、蓄積部32に蓄積された年齢に基づく病気リスクの高さを関数化して、判定部20が、関数に基づいて検査時期を設定する対象となる患者の病気リスクの高さを判定するように構成してもよい。
 本開示は、次回検査時期に関する情報を導出する技術分野に利用できる。
1・・・医療支援システム、10・・・情報処理装置、12・・・患者情報取得部、14・・・検査情報取得部、16・・・統計処理部、18・・・情報要素特定部、20・・・判定部、22・・・検査時期導出部、30・・・記憶装置、32・・・蓄積部、34・・・統計データ記憶部、36・・・情報要素記憶部、38・・・検査時期記憶部。

Claims (19)

  1.  複数の患者の患者情報と、前記複数の患者の過去の検査実施時期および診断結果を含む過去検査情報を蓄積する蓄積部と、
     検査時期を設定する対象となる対象患者の患者情報と前記対象患者の過去検査情報の少なくとも一方と、前記蓄積部に蓄積された前記患者情報および前記過去検査情報に基づいて、前記対象患者の病気リスクの高さを判定する判定部と、
     前記病気リスクの高さおよび前記過去の検査実施時期に基づいて、前記対象患者の次回検査時期に関する検査時期情報を導出する検査時期導出部と、
     を備える医療支援システム。
  2.  前記患者情報は、ウェアラブルデバイスから取得されて、前記蓄積部に蓄積される、
     ことを特徴とする請求項1に記載の医療支援システム。
  3.  前記過去検査情報は、内視鏡検査管理システムから取得されて、前記蓄積部に蓄積される、
     ことを特徴とする請求項1に記載の医療支援システム。
  4.  前記患者情報と、前記過去検査情報とに基づいて、統計データを算出する統計処理部と、
     前記統計処理部により算出された統計データを記憶する統計データ記憶部と、をさらに備え、
     前記判定部は、前記対象患者の前記患者情報と前記対象患者の前記過去検査情報との少なくとも一方と、前記統計データ記憶部に記憶された前記統計データとに基づき、前記対象患者の病気リスクの高さを判定する、
     ことを特徴とする請求項1に記載の医療支援システム。
  5.  前記統計処理部は、前記過去の検査実施時期に基づき、診断間隔を導出して、前記患者情報と前記診断間隔との組み合わせに関する前記統計データを算出し、
     前記検査時期導出部は、前記統計データを用いて前記検査時期情報を導出する、
     ことを特徴とする請求項4に記載の医療支援システム。
  6.  前記統計処理部は、複数の前記診断結果から、病気の進行に関する情報を含む診断履歴情報を特定して、前記患者情報と前記診断履歴情報の組み合わせに関する統計データを算出し、
     前記判定部は、前記対象患者の前記患者情報と、最新の診断結果と、前記統計データとに基づき、前記対象患者の前記病気リスクの高さを判定する、
     ことを特徴とする請求項4に記載の医療支援システム。
  7.  前記患者情報は、端末装置から取得されて、前記蓄積部に蓄積される、
     ことを特徴とする請求項1に記載の医療支援システム。
  8.  前記判定部は、前記病気リスクが所定の閾値以上に高いハイリスク患者を判定する、
     ことを特徴とする請求項1に記載の医療支援システム。
  9.  前記検査時期導出部は、前記過去の検査実施時期に所定の診断間隔を加えた時期を前記検査時期情報として導出する、
     ことを特徴とする請求項1に記載の医療支援システム。
  10.  前記検査時期導出部は、前記病気リスクの高さに応じて前記診断間隔を設定し、前記過去の検査実施時期に前記診断間隔を加えた日付を前記検査時期情報として導出する、
     ことを特徴とする請求項9に記載の医療支援システム。
  11.  前記検査時期導出部が導出した前記検査時期情報を蓄積する検査時期記憶部をさらに備える、
     ことを特徴とする請求項9に記載の医療支援システム。
  12.  前記蓄積部は、前記過去の検査実施時期として、過去の検査日に関する情報要素を蓄積し、
     前記検査時期導出部は、前記病気リスクの高さと前記過去の検査日に基づいて、前記検査時期情報を出力することを特徴とする請求項1に記載の医療支援システム。
  13.  前記患者情報は、ピロリ菌感染状態に関する項目の情報要素を含み、
     前記判定部は、前記蓄積部に蓄積されたピロリ菌感染状態に関する項目の情報要素を含む前記患者情報および前記過去検査情報に基づいて、ピロリ菌感染状態に関する項目の情報要素を含む前記患者情報を持つ前記対象患者の病気リスクの高さを判定する、
     ことを特徴とする請求項1に記載の医療支援システム。
  14.  前記診断結果の情報要素は、腺腫と癌とを含み、
     前記統計処理部は、前記腺腫から前記癌への進行に関する前記統計データを算出し、
     前記判定部は、前記腺腫から前記癌への進行に関する前記統計データに基づき前記対象患者の病気リスクの高さを判定する、
     ことを特徴とする請求項4に記載の医療支援システム。
  15.  前記過去検査情報は、病変の大きさの項目と病変部位の項目の少なくとも一方を含み、
     前記判定部は、前記蓄積部に蓄積された前記病変の大きさの項目と前記病変部位の項目の少なくとも一方に関する前記患者情報および前記過去検査情報に基づいて、前記病変の大きさの項目と前記病変部位の項目の少なくとも一方に関する情報を含む前記患者情報を持つ前記対象患者の病気リスクの高さを判定する、
     ことを特徴とする請求項1に記載の医療支援システム。
  16.  前記患者情報は、主訴に関する項目の情報要素を含み、
     前記判定部は、前記蓄積部に蓄積された前記主訴に関する項目の情報要素を含む前記患者情報および前記過去検査情報に基づいて、前記主訴に関する項目の情報要素を含む前記患者情報を持つ前記対象患者の病気リスクの高さを判定する、
     ことを特徴とする請求項1に記載の医療支援システム。
  17.  前記統計処理部は、2つの検査実施時期から前記診断間隔を導出する、
     ことを特徴とする請求項5に記載の医療支援システム。
  18.  前記統計処理部は、第1の診断が行われた検査日と、前記第1の診断が行われた検査日の次の検査日であって且つ前記第1の診断とは異なる第2の診断が行われた検査日とから、前記診断間隔を導出する、
     ことを特徴とする請求項17に記載の医療支援システム。
  19.  複数の患者の患者情報と、前記複数の患者の過去の検査実施時期および診断結果を含む過去検査情報を蓄積し、
     検査時期を設定する対象である対象患者の患者情報と、前記対象患者の過去検査情報の少なくとも一方と、蓄積された前記患者情報および前記過去検査情報に基づいて、前記対象患者の病気リスクの高さを判定し、
     前記病気リスクの高さおよび前記過去の検査実施時期に基づいて、前記対象患者の次回検査時期に関する検査時期情報を導出する、
     医療支援方法。
PCT/JP2021/010349 2021-03-15 2021-03-15 医療支援システムおよび医療支援方法 WO2022195664A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/010349 WO2022195664A1 (ja) 2021-03-15 2021-03-15 医療支援システムおよび医療支援方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/010349 WO2022195664A1 (ja) 2021-03-15 2021-03-15 医療支援システムおよび医療支援方法

Publications (1)

Publication Number Publication Date
WO2022195664A1 true WO2022195664A1 (ja) 2022-09-22

Family

ID=83319987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/010349 WO2022195664A1 (ja) 2021-03-15 2021-03-15 医療支援システムおよび医療支援方法

Country Status (1)

Country Link
WO (1) WO2022195664A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011253464A (ja) * 2010-06-03 2011-12-15 Olympus Medical Systems Corp 医療業務支援装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011253464A (ja) * 2010-06-03 2011-12-15 Olympus Medical Systems Corp 医療業務支援装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MIKI ADACHI: "The usefulness of endoscopy after surgery for colon cancer. Set the examination interval according to the risk level", JOURNAL OF CLINICAL AND EXPERIMENTAL MEDICINE, vol. 140, no. 12, 21 March 1987 (1987-03-21), JP , pages 892, XP009540012, ISSN: 0039-2359 *

Similar Documents

Publication Publication Date Title
Roerecke et al. Comparing automated office blood pressure readings with other methods of blood pressure measurement for identifying patients with possible hypertension: a systematic review and meta-analysis
Bumgarner et al. Smartwatch algorithm for automated detection of atrial fibrillation
Heneghan et al. Self‐monitoring and self‐management of oral anticoagulation
Pedersen et al. Pulse oximetry for perioperative monitoring
Mumoli et al. General practitioner–performed compression ultrasonography for diagnosis of deep vein thrombosis of the leg: a multicenter, prospective cohort study
US11923094B2 (en) Monitoring predictive models
KR20170028931A (ko) 조영제-기반의 의료 절차에서 부작용을 관리하기 위한 시스템 및 방법
Strøm et al. Hospitalisation in short‐stay units for adults with internal medicine diseases and conditions
Jesionowski et al. Does a provider in triage and rapid medical evaluation help with left without being seen rates and ED crowding?
CN116825359A (zh) Vte风险预警方法、系统、电子设备以及计算机可读介质
JP2007018460A (ja) 診療支援システム
JP2011138376A (ja) 診断支援システム
Minnee et al. Return visits to the emergency department and related hospital admissions by people aged 65 and over
WO2022195664A1 (ja) 医療支援システムおよび医療支援方法
US20090070145A1 (en) Method and system for coronary artery disease care
JP6762061B1 (ja) ソフトウェア
Quigley et al. Registered nurses, patient-engaged video surveillance, and COVID-19 patient outcomes
US20220076842A1 (en) Medical information processing system and method
Astutik et al. Integrated Model of a Family Approach and Local Support in Tuberculosis Case Finding Efforts in People with HIV/AIDS
Fazel-Asgharpour et al. Effect of the implementation of cardiac triage scale on the time indices of patients with chest pain
Loke et al. Evaluation of nurse-physician inter-observer agreement on triage categorization in the emergency department of a Taiwan medical center
JP2022044023A (ja) 医用情報処理システム及び方法
JP7459268B2 (ja) 情報処理装置および情報処理方法
JP5721122B1 (ja) 医療情報提供システム
JP6121789B2 (ja) 医用スケジュール管理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21931420

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21931420

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP