WO2022190601A1 - Titanium green compact production method and titanium sintered body production method - Google Patents
Titanium green compact production method and titanium sintered body production method Download PDFInfo
- Publication number
- WO2022190601A1 WO2022190601A1 PCT/JP2022/000148 JP2022000148W WO2022190601A1 WO 2022190601 A1 WO2022190601 A1 WO 2022190601A1 JP 2022000148 W JP2022000148 W JP 2022000148W WO 2022190601 A1 WO2022190601 A1 WO 2022190601A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- titanium
- core material
- mold
- core
- producing
- Prior art date
Links
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 title claims abstract description 144
- 239000010936 titanium Substances 0.000 title claims abstract description 138
- 229910052719 titanium Inorganic materials 0.000 title claims abstract description 137
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 48
- 239000011162 core material Substances 0.000 claims abstract description 193
- 239000000843 powder Substances 0.000 claims abstract description 65
- 239000000463 material Substances 0.000 claims abstract description 54
- 229920005989 resin Polymers 0.000 claims abstract description 42
- 239000011347 resin Substances 0.000 claims abstract description 42
- 239000002994 raw material Substances 0.000 claims abstract description 31
- 238000000465 moulding Methods 0.000 claims abstract description 14
- 238000009694 cold isostatic pressing Methods 0.000 claims description 23
- 239000000470 constituent Substances 0.000 claims description 21
- 239000004927 clay Substances 0.000 claims description 12
- 238000011049 filling Methods 0.000 claims description 10
- 238000005245 sintering Methods 0.000 claims description 10
- 239000002344 surface layer Substances 0.000 claims description 10
- 229920005992 thermoplastic resin Polymers 0.000 claims description 5
- 230000002706 hydrostatic effect Effects 0.000 claims description 4
- 238000003825 pressing Methods 0.000 claims description 3
- 150000003608 titanium Chemical class 0.000 abstract description 4
- 238000000034 method Methods 0.000 description 24
- 230000000052 comparative effect Effects 0.000 description 22
- 229910001069 Ti alloy Inorganic materials 0.000 description 11
- 229910045601 alloy Inorganic materials 0.000 description 8
- 239000000956 alloy Substances 0.000 description 8
- 238000001513 hot isostatic pressing Methods 0.000 description 8
- 238000001723 curing Methods 0.000 description 7
- 229920001296 polysiloxane Polymers 0.000 description 7
- 238000005275 alloying Methods 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 238000007789 sealing Methods 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 239000004626 polylactic acid Substances 0.000 description 4
- 229910000883 Ti6Al4V Inorganic materials 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 229920001971 elastomer Polymers 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 238000003475 lamination Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000013008 moisture curing Methods 0.000 description 3
- 230000000149 penetrating effect Effects 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 238000004663 powder metallurgy Methods 0.000 description 3
- 239000004590 silicone sealant Substances 0.000 description 3
- 239000004925 Acrylic resin Substances 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 241000209094 Oryza Species 0.000 description 2
- 235000007164 Oryza sativa Nutrition 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229920000747 poly(lactic acid) Polymers 0.000 description 2
- 229920001021 polysulfide Polymers 0.000 description 2
- 239000005077 polysulfide Substances 0.000 description 2
- 150000008117 polysulfides Polymers 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 235000009566 rice Nutrition 0.000 description 2
- 229920002050 silicone resin Polymers 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- -1 titanium hydride Chemical compound 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229920002367 Polyisobutene Polymers 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 229910002065 alloy metal Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 239000012943 hotmelt Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 102220043159 rs587780996 Human genes 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000000790 scattering method Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910000048 titanium hydride Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/02—Compacting only
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/02—Compacting only
- B22F3/04—Compacting only by applying fluid pressure, e.g. by cold isostatic pressing [CIP]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/12—Both compacting and sintering
- B22F3/14—Both compacting and sintering simultaneously
- B22F3/15—Hot isostatic pressing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F5/00—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
- B22F5/10—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C14/00—Alloys based on titanium
Definitions
- the present invention relates to a method for manufacturing a titanium-based compact and a method for manufacturing a titanium-based sintered body.
- Titanium and titanium alloys are being considered for use in various parts because of certain excellent properties such as fatigue resistance, corrosion resistance, light weight and high specific strength.
- manufacturing parts made of titanium or titanium alloys generally involves a number of steps, such as melting by electron beam melting, vacuum arc melting, etc., casting, and in some cases hot rolling, heat treatment and machining, welding, and the like. required, which increases manufacturing costs. Due to such high costs, it is difficult to say that the application range of titanium and titanium alloys has been sufficiently widened.
- raw material powder containing titanium is filled in a resin mold, and cold isostatic pressing is applied to the raw material powder to form a predetermined shape.
- a powder metallurgy method for obtaining a titanium-based compact has attracted attention. In the powder metallurgy method, after cold isostatic pressing, sintering and/or hot isostatic pressing may be performed as necessary to increase the density.
- Patent Document 1 discloses "In a method for producing a compacted body in which a rubber mold filled with a raw material powder is pressed uniaxially in a mold to form a compacted body of the raw material powder, the above-mentioned A method for producing a compacted body, characterized in that a portion of the outer surface of the compacted body that is substantially perpendicular to the pressurizing direction is formed by a highly rigid mold member disposed in the rubber mold. It is
- Patent Document 2 describes, "In a method for producing a sintered titanium alloy by a raw powder mixing method, instead of titanium powder, titanium powder, (Ti—H) alloy powder, and titanium hydride powder are mixed with hydrogen: titanium.
- a method for producing a sintered titanium alloy characterized in that a powder blended so that the mass ratio is 0.002 or more and less than 0.030 is used as a raw material powder.
- Patent Document 1 uses a high-rigidity core that is a cylindrical member made of steel (see paragraph 0035).
- the core when manufacturing a titanium-based green compact having a complicated shape such as a shape in which the width of the concave portion changes in the middle of the depth direction, or a shape in which the concave portion has a curved portion or a bent portion, the core to be used
- the core has high rigidity, it may be difficult to arrange the core at a predetermined position in the mold before filling the raw material powder.
- a highly rigid core with a separable structure can accommodate recesses of a somewhat complicated shape. It may not be possible to form with high accuracy.
- cold isostatic pressing is applied to the titanium-based powder, it is necessary to apply a relatively large pressure, and the divided high-rigidity core is likely to be displaced. Therefore, the high-rigidity core as a core material for forming the concave portion of the titanium-based compact cannot be used for manufacturing various titanium-based compacts due to the restriction of the shape of the concave portion. can be said to be poor.
- Patent Document 2 does not pay attention to the specific shape of the concave portion of the titanium-based compact or the core material to be placed in the mold.
- An object of the present invention is to provide a method for manufacturing a titanium-based green compact and a titanium-based sintered body, which are capable of manufacturing a titanium-based green compact having recesses having a somewhat complicated shape by a relatively simple technique. It is to provide a method.
- the inventor proposed using a core constituent material that can be poured into the core arrangement space when arranging the core in the core arrangement space corresponding to the concave portion of the titanium-based compact in the resin mold. I put it out.
- a core constituent material that can be poured into the core arrangement space when arranging the core in the core arrangement space corresponding to the concave portion of the titanium-based compact in the resin mold. I put it out.
- a fluid core constituent material it is possible to spread it sufficiently in the core arrangement space. For example, by injecting the core constituent material from the opening of the core arrangement space so that the core constituent material is gradually filled from the deep part of the core arrangement space to the opening side, the inside of the core arrangement space The material constituting the core material spreads sufficiently to form a core material (core).
- the core material can function as a core material.
- the core material can be appropriately deformed as the raw material powder in the resin mold is compacted during cold isostatic pressing. That is, in the case of divided high-rigidity cores, only the contact portions of the respective cores are extremely likely to move, resulting in displacement of the cores. This makes it possible to form concave portions having complicated shapes in the titanium-based green compact.
- a method for producing a titanium-based compact according to the present invention is a method for producing a titanium-based compact having a concave portion, wherein the concave portion of the titanium-based compact forms at least a part of the central axis of the concave portion.
- the cross sections including, at least a part of the recess in the central axis direction has a shape that changes in width, and/or a shape that includes a curved portion and/or a bent portion of the central axis of the recess,
- the inner surface of the concave portion of the titanium-based compact may include a stepped portion, and the core material arrangement space may include a stepped portion.
- the concave portion of the titanium-based compact has a relatively wide wide portion in at least one of the cross sections, and a relatively wide width portion.
- the core material placement space has a wide portion forming the wide portion of the recess and a narrow portion forming the narrow portion of the recess.
- a cured resin or clay as the material constituting the core material.
- a cured resin when the core material constituting material is filled in the core material arrangement space, at least the core material constituting the core material arrangement used for the injection of the core material constituting material It is preferable to harden the surface layer portion present in the opening on one end side of the space or the opening on the other end side.
- the mold it is preferable to use a mold made of a thermoplastic resin having a Shore D hardness within the range of 30 to 120. Moreover, it is preferable to use a mold produced using a three-dimensional modeling apparatus as the mold. In the cold isostatic pressing, it is preferable to apply a pressure of 400 MPa or more to the mold.
- the titanium-based compact produced by any one of the above-described methods for producing a titanium-based compact is subjected to sintering and/or hot isostatic pressing. It includes the step of performing
- FIG. 1 is a perspective view showing an example of a resin mold that can be used in a method for producing a titanium-based green compact according to one embodiment of the present invention
- FIG. FIG. 2 is a cross-sectional view along the central axis of the mold, showing a state in which a core constituent material is poured into the core arrangement space of the mold of FIG. 1
- FIG. 3 is a cross-sectional view showing the mold of FIG. 1 together with a core material formed of the material constituting the core material of FIG. 2
- FIG. 4 is a cross-sectional view along the central axis of the recess, showing a titanium-based compact manufactured using the mold and core material of FIG. 3 ;
- FIG. 4 is a cross-sectional view schematically showing a state in which cold isostatic pressing is performed using the mold and core material of FIG. 3 ;
- FIG. 6 is a cross-sectional view showing the titanium-based green compact obtained by the cold isostatic pressing of FIG. 5 before removing a part of the core material and the mold.
- FIG. 10 is a cross-sectional view showing another example of a resin mold;
- FIG. 10 is a cross-sectional view showing another example of a resin mold;
- FIG. 10 is a cross-sectional view showing another example of a resin mold;
- FIG. 10 is a cross-sectional view showing another example of a resin mold;
- FIG. 10 is a cross-sectional view showing another example of a resin mold;
- FIG. 10 is a cross-sectional view showing another example of a resin mold;
- FIG. 10 is a cross-sectional view showing another example of a resin mold;
- FIG. 10 is a cross-sectional view showing another example
- a method for producing a titanium-based compact uses, for example, a resin mold 1 and a core material 11 as shown in FIGS. It includes a step of filling raw material powder and applying cold isostatic pressure, and manufactures, for example, a titanium-based green compact 101 as shown in FIG.
- the term "titanium-based” as used herein includes not only titanium made of pure titanium but also titanium alloy.
- a titanium-based green compact 101 shown in FIG. 4 has a substantially cylindrical shape as a whole, and recesses 102 having openings 102a and 102b are formed on the outer surface (upper and lower end surfaces in FIG. 4). It is
- the concave portion 102 formed in the titanium-based green compact 101 is aligned with the central axis Cc of the concave portion 102 that coincides with the vertical direction in FIG. It has a shape in which the width perpendicular to the central axis Cc changes at least partly in the direction along (also referred to as the "central axis direction"). More specifically, the recess 102 has a width Wa on the side of the opening 102a of one end face, which is the lower side in FIG. The width decreases through 102c, and becomes width Wb at the opening 102b on the other end face side.
- the recess 102 has a wide portion 102d having a relatively wide width Wa between the opening 102a and the stepped portion 102c on one end surface, and the opening 102b and the stepped portion 102c on the other end surface. and a narrow portion 102e having a width Wb and relatively narrower than the wide portion 102d.
- the shape of the concave portion is not limited to this, and can be appropriately changed according to the use of the titanium-based compact.
- the mold 1 used in the cold isostatic pressing has a shape corresponding to the shape of the titanium-based green compact 101. It has a space 2.
- the mold 1 has a cylindrical outer cylinder wall portion 3 having an inner peripheral surface that matches the outer peripheral surface of the titanium-based compact 101, and a molding space 2 defined outside between the outer cylinder wall portion 3 and the outer cylinder wall portion 3. provided at one end (lower end in FIG.
- a core material arrangement space 5a corresponding to the shape of the concave portion 102 of the titanium-based compact 101 described above is defined.
- the core material arranging space 5a has a shape in which the width perpendicular to the central axis Cm of the core material arranging space 5a changes through a step in the illustrated cross section.
- a wide portion that forms the wide portion 102d of the recess 102 and is located on one end side of the portion 3 and a narrow portion of the recess 102 that is adjacent to the wide portion and is located on the other end side (upper end portion in FIG. 2). and a narrowed portion forming 102e.
- central axis Cm of the core material arrangement space 5a and the central axis Cc of the recess 102 described above are the same as those of the core material arrangement space 5a inside the inner cylinder wall 5 or the recess 102 inside the titanium-based compact 101.
- a cross section extending along the extending direction and orthogonal to the central axis Cm or Cc passes through the center or centroid of the core material arrangement space 5a or the recess 102 .
- the high-rigidity core may not be used appropriately due to reasons such as difficulty in placement and inability to form the recessed portion 102 of the titanium-based compact 101 with high accuracy.
- a core made of a highly rigid material such as stainless steel which has a considerably high melting point is difficult to deform during cold isostatic pressurization, and thus may cause misalignment. If the core is misaligned, the concave portion of the titanium-based green compact cannot be formed into a desired shape.
- the core material is injected into the core arrangement space 5a of the mold 1 from an injection tool 111 or the like containing a fluid core material. to flow and fill.
- a sealing member such as a plate.
- the core constituent material can be filled by pushing the core constituent material into the core arrangement space 5a or the like. By flowing and filling the core constituent material in this way, as shown in FIG. .
- the molding space 2 of the mold 1 Before or after placing the core material 11 in the core material placement space 5a of the mold 1, the molding space 2 of the mold 1 is filled with raw material powder, and the other end of the outer cylinder wall portion 3 of the mold 1 is attached to a disk-shaped member. Seal with 6b. It does not matter whether the step of arranging the core material 11 in the core material arranging space 5a or the step of filling the molding space 2 of the mold 1 with raw material powder is carried out before or after, and either step may be carried out first. Then, in a state where the core material 11 is arranged in the core material arrangement space 5a, the mold 1 is pressed from the outside of the mold 1 inside a cold isostatic pressing device (not shown) as shown in FIG. Cold isostatic pressing (CIP) is performed to compress and compact the raw powder.
- CIP Cold isostatic pressing
- the pressure applied to the mold 1 by cold isostatic pressing is set to 300 MPa or more, preferably 400 MPa or more. If the applied pressure is less than 300 MPa, the raw material powder is not sufficiently compressed, and the shape accuracy in the recesses of the titanium-based compact becomes insufficient.
- the applied pressure may be, for example, 600 MPa or less, typically 500 MPa or less.
- the holding time at such pressure may be, for example, 0.5 to 30 minutes.
- the raw material powder in the molding space 2 of the mold 1 is pressurized and compacted by cold isostatic pressing to form a titanium-based compact 101 . In the cold isostatic pressurization, the mold 1 is pressurized isostatically (hydrostatic pressure) by the surrounding fluid.
- the titanium-based compact 101 can be manufactured using molds 1 of various shapes. Further, here, the material constituting the core material filling the core material arrangement space 5a and constituting the core material 11 can deform following the raw material powder and the mold 1 when the isotropic pressure of the fluid is applied.
- the core material arrangement space 5a can be made into various arbitrary shapes. As a result, titanium-based compacts 101 having recesses 102 of various shapes can be manufactured.
- the titanium-based compact 101 is taken out from the cold isostatic pressing device together with the mold 1 and the core material 11 . Thereafter, the outer cylinder wall portion 3, the annular wall portion 4, the sealing member 6a and the disk-shaped member 6b around the titanium-based compact 101 are removed, and as shown in FIG. The inner core material 11 and the inner cylinder wall portion 5 are taken out. The core material 11 may be taken out before removing the outer cylinder wall portion 3 and the like. Thereby, the titanium-based compact 101 can be manufactured.
- a step of subjecting the titanium-based compact 101 to sintering and/or hot isostatic pressing (HIP) after cold isostatic pressing is included.
- the titanium-based compact 101 can be heated at a temperature of, for example, 1200° C. to 1300° C. for 1 to 3 hours depending on the material of the titanium-based compact 101 .
- the hot isostatic pressurization for example, at a temperature of 800° C. to 1000° C., an isostatic pressure of about 100 MPa to 200 MPa is applied to the titanium-based compact 101 with a pressure medium such as argon gas for 30 minutes to 90 minutes. It can work for minutes.
- a titanium-based sintered body can be produced.
- hot isostatic pressing sintering generally progresses due to the treatment at a high temperature. Therefore, a titanium-based sintered body obtained by subjecting the titanium-based compact 101 only to hot isostatic pressing is also referred to herein as a titanium-based sintered body.
- the order is not particularly limited. For example, hot isostatic pressing can be performed after sintering.
- the material constituting the core material used in the above-described manufacturing method should be a material that has fluidity at least when the core material arrangement space 5a is filled. If the material constituting the core material is a material that has fluidity not only when it is filled into the core material arrangement space 5a but also after cold isostatic pressing, the core material 11 is a titanium-based compact. It can be easily taken out by letting it flow out from the concave portion 102 of 101 .
- the material constituting the core material can be a non-curing resin such as an oil-based caulking material.
- Clay is preferred.
- the core material 11 exhibits fluidity when filled into the core material arrangement space 5a, and is hardened after that and when cold isostatic pressure is applied, the core material 11 exhibits It becomes easier for the desired characteristics to be exhibited.
- moisture-curable resins that cure by reacting with moisture in the air include silicone-based, modified silicone-based, polyurethane-based, and polysulfide-based resins. Dry-hardening resins are those that harden when solvent or water evaporates and dry.
- the mixed reaction curing resin is cured by a chemical reaction caused by mixing a main agent and a curing agent, and examples thereof include modified silicones, polyurethanes, polysulfides, silicones, and polyisobutylenes.
- the photocurable resin is cured by being irradiated with light of a specific wavelength such as ultraviolet rays, and includes radical polymerizable acrylate photocurable resins, cationic polymerizable epoxy photocurable resins, and the like.
- silicone-based moisture-curable resins silicone-based moisture-curable resins (silicone resins, silicone sealants, etc.) are particularly preferred as core material constituent materials because the portions exposed to moisture cure easily and quickly, and are also suitable in terms of cost.
- Clay is an aggregate of artificial or natural soil or particles containing soil, sand, oil, pulp, etc., and having a predetermined stickiness.
- oil clay, paper clay, etc. can be used.
- the core constituent materials may be used singly or in combination. Further, when a plurality of core material arrangement spaces exist in one mold, the core material constituent materials used in the respective core material arrangement spaces may be the same or different from each other.
- the core material constituting material is a cured resin as described above
- at least the core material composing material fills the core material arranging space 5a used for injecting the core material composing material. It is preferable to harden the surface layer portion present in the opening on one end side or the opening on the other end side. Moisture-curing or dry-curing curable resins are suitable for such partial curing of the surface layer.
- a space for arranging the core until at least the surface layer portion of the material forming the core in the space for arranging the core 5a is cured, and the opening at one end or the opening at the other end is sealed with the disk-shaped member 6b or the like.
- Leakage of the core constituent material from within 5a can be suppressed.
- the opening can be properly closed without using the disk-shaped member 6b.
- the surface layer portion is peeled off after cold isostatic pressing, and the core material 11 is discharged from the recess 102 using the fluidity of the core material 11 . Therefore, the core material 11 can be easily taken out. Curing of the surface layer portion of the core-constituting material filled in the core-arranging space 5a can be carried out in an appropriate manner according to the type of the cured resin constituting the core-constituting material.
- Some silicone-based or modified silicone-based moisture-curing resins cure at the surface layer in about 1 to 2 hours due to contact with air after being filled into the core arrangement space 5a.
- the surface layer portion of the core constituent material can be a portion extending from the opening on one end side or the opening on the other end side to a depth of 3 mm inside the core material arrangement space 5a along the direction of the central axis Cm. .
- the clay exhibits appropriate fluidity when filled into the core placement space 5a, and exhibits appropriate viscosity after filling, and remains in the recess 102. Therefore, in some cases, there is no need to take special measures to close the opening of the core material placement space 5a filled with clay. It can be subjected to inter-isostatic pressurization.
- the resin mold 1 in which the core material 11 is arranged is preferably made of a thermoplastic resin, and is particularly preferably made of an acrylic resin, an acrylic resin containing an elastomer, a polylactic acid (PLA) resin, or the like. is.
- the resin mold 1 is preferably made of a thermoplastic resin having a Shore D hardness within the range of 30 to 120 in order to secure the required strength and maintain its shape even when the raw material powder is filled. It may be a thermoplastic resin within the range of ⁇ 85. Shore D hardness can be measured by a test method conforming to JIS K7215 (1986). From the same point of view, it is preferable that the resin mold 1 has a thickness of 0.5 mm to 2.0 mm.
- the resin mold 1 can be produced by various methods, it is preferably produced using a three-dimensional modeling apparatus (so-called 3D printer). Thereby, the mold 1 of various shapes can be easily produced.
- the modeling method of the three-dimensional modeling apparatus is not particularly limited, and may be, for example, a stereolithography method, an inkjet method, an inkjet powder lamination method, a powder sintering lamination method, a hot-melt lamination method, or a powder fixing method.
- molds 21, 31, 41, 51, 61, 71, and 81 illustrated in FIGS. 7 to 13 can also be used.
- the concave portions of the titanium-based green powder produced by the molds 21 and 31 of FIGS. It has a shape in which the width changes at least partially in the axial direction, and the mode of width change is different from that of the concave portion 102 of the titanium-based compact 101 formed by the mold 1 in FIGS. .
- the core material placement space 25a defined inside the inner cylindrical wall portion 25 is positioned at one end side and the other end side of the outer cylindrical wall portion 23, and has wide openings. , and a narrow portion that is narrow relative to the wide portion and is provided between the wide portions. Each wide portion and the narrow portion are communicated with each other via a step.
- the titanium-based powder compact molded by the mold 21 in FIG. and includes a narrow portion extending between the wide portions.
- the inner cylindrical wall portion 35 has a wide portion provided in a substantially central region in the direction of the central axis Cm and an outer cylindrical wall portion separated from the wide portion in the direction of the central axis Cm.
- a core material placement space 35a having narrow width portions that are positioned on both sides of the portion 33 on one end side and on the other end side and are respectively opened is defined.
- the recessed portion of the titanium-based powder compact formed by the mold 31 includes a narrow width portion connected to each opening on one end surface side and the other end surface side, and a stepped portion on the inner surface around the center region between the narrow width portions in the central axis direction. and a wide portion of which the width increases through.
- the titanium-based green compact molded by the mold 41 of FIG. 9 also has a shape in which the width of the concave portion changes at least partially in the direction of the central axis. It has a tapered shape in which the width gradually decreases toward the opening on the end face side. It can be said that this concave portion also includes a relatively wide width portion on the side of the opening on the one end surface side and a relatively narrow width portion on the side of the opening on the other end surface side.
- the inner cylinder wall portion 45 of the mold 41 has a core material placement space 45a whose width gradually decreases from one end side to the other end side of the outer cylinder wall portion 43 .
- the center axis Cm of the core material arrangement space 55a having a constant width is crossed at three points in the width direction (horizontal direction in FIG. 10) between one end side and the other end side. It alternately bends and meanders in the direction of protruding outward.
- the recessed portion of the titanium-based green compact thus formed has a shape including the curved portion of the central axis of the recessed portion.
- the core material arrangement space 65a has a constant width and has a central axis Cm like a crank which is bent at right angles at two points on the way from one end to the other end.
- the concave portion of the titanium-based compact that can be molded by the mold 61 includes two curved portions of the central axis. Note that the numbers, curvatures, angles, and other aspects of curved portions and bent portions in FIGS. 10 and 11 can be changed as appropriate.
- the mold 71 in FIG. is to manufacture a titanium-based green compact having non-penetrating recessed recesses.
- the core material arrangement space 75a is recessed from the annular wall portion 74 on the one end side of the outer cylinder wall portion 73 in the cross section shown in the drawing, and the width of the one end portion of the outer cylinder wall portion 73 is It has a wide portion and narrow portions at both ends separated from the center of the deepest portion in the width direction.
- the concave portion of the titanium-based compact formed by the mold 71 has a width that changes at the deepest portion, and includes a wide portion communicating with the opening on one end surface side and narrow portions on both sides in the width direction of the deepest portion. . It can also be said that this titanium-based green compact includes a bent portion of the central axis before the deepest portion of the concave portion.
- a core material placement space 85a penetrates from one end side to the other end side of the outer cylinder wall portion 83 and extends in the width direction along the way to open the outer cylinder wall portion 83. It is.
- the portion extending in the width direction can be regarded as a wide portion where the width in the direction orthogonal to the central axis Cm is wide, and can also be regarded as a bending portion where the central axis Cm is bent at right angles.
- the concave portion of the titanium-based compact molded by the mold 81 has a narrow width portion connected to the opening portion on the one end surface side and the opening portion on the other end surface side, and a width difference between the narrow width portions via a step. and a wide portion that extends in the direction and opens to the outer peripheral surface. Further, the concave portion has a shape including a bent portion of the central axis in a portion transitioning from the narrow width portion to the wide width portion.
- the recesses provided in the titanium-based green compact can be in the form of through holes or in the form of non-penetrating depressions having bottoms. Further, the number of concave portions of the titanium-based compact is not limited to one, and may be plural.
- the titanium-based green compact when cut along the central axis, a specific cross section can be obtained. , resulting in cross-sections different from the above specific cross-sections.
- the titanium-based green compact has a large number of cross sections corresponding to the cutting positions. And those cross sections may have cross-sectional shapes different from each other.
- at least one of the many cross sections has a shape in which the width changes in at least part of the central axis direction of the recess and/or a curved portion of the central axis of the recess, as in the above example. And/or any shape that includes a bent portion is included in the present invention.
- Such recesses have a complicated shape, and in order to manufacture a titanium-based green compact having such recesses, the material forming the core is made to flow into the core arrangement space of the mold as in the embodiment of the present invention. It is effective to fill
- the pure titanium powder means a powder mainly containing titanium
- the alloy element powder means a powder containing a single alloy element such as a titanium alloy
- the master alloy powder means a powder containing a plurality of elements.
- Pure titanium powder may contain not more than 5% by mass of hydrogen in addition to titanium.
- the average particle size of the raw material powder is preferably 10 ⁇ m to 150 ⁇ m.
- the average particle diameter means the particle diameter D50 (median diameter) of the particle size distribution (volume basis) obtained by the laser diffraction scattering method.
- Known powders such as pulverized powders and atomized powders can be used as raw material powders.
- titanium made of pure titanium Ti-5Al-1Fe, Ti-5Al-2Fe, Ti-6Al-4V, Ti-6Al-6V-2Sn, Ti-6Al -2Sn-4Zr-2Mo, Ti-6Al-2Sn-4Zr-6Mo, Ti-10V-2Fe-3Al titanium-based compacts and titanium-based sintered bodies made of titanium alloys can be produced.
- titanium-based compacts and titanium-based sintered bodies made of titanium alloys such as Ti-3Al-2.5V can be produced.
- the number before each alloy metal indicates the content (% by mass).
- Ti-6Al-4V refers to a titanium alloy containing 6% by mass of Al and 4% by mass of V as alloying metals.
- the titanium-based green compact of the present invention was produced on a trial basis, which will be described below.
- the description herein is for illustrative purposes only and is not intended to be limiting.
- ⁇ Test Example 1> (Production method) Using a 3D printer, a mold having a cylindrical outer contour and the shape shown in FIG. 11 was fabricated.
- the resin material forming the mold was polylactic acid (PLA) with a Shore D hardness of 83.
- the thickness of the mold was 1 mm.
- the space for arranging the core material provided in the mold has a crank shape that is bent at two points on the way from one end to the other end of the mold in the cross section of the figure.
- This core material placement space has a square opening with a side length of 15 mm, and a cross-sectional shape orthogonal to the central axis is rectangular at any position from one end to the other end. rice field.
- the outer diameter of the cylindrical outer cylinder wall portion of the mold was set to 62 mm.
- the core material is arranged in the core material arrangement space, the molding space is filled with raw material powder, the molding space is sealed, and cold isostatic pressing (CIP) is performed by hydrostatic pressurization. rice field.
- CIP cold isostatic pressing
- Examples 1 to 6 and Comparative Examples 1 to 3 a PLA sheet was attached to the end face of one end of the mold (lower end of FIG. 11), and the opening of the core material arrangement space on the one end side was closed. Then, from the opening on the side of the other end (upper end in FIG. 11) into the space for arranging the core, a predetermined core constituent material was flowed and filled to form the core.
- Examples 1 and 2 and Comparative Example 1 a moisture-curable resin silicone sealant (Cemedine 8000 silicone sealant, manufactured by Cemedine Co., Ltd.) was used, and in Examples 3 and 4 and Comparative Example 2, clay (Kanto Air putty manufactured by Kizai Kogyo Co., Ltd.) was used, and in Examples 5 and 6 and Comparative Example 3, a mixing reaction curing type silicone resin (KE-12 manufactured by Shin-Etsu Chemical Co., Ltd.) was used.
- Comparative Examples 4 to 6 a core made of SUS as a core material and a split mold were used. More specifically, the mold is split along the cross section shown in FIG.
- the pressurization time by cold isostatic pressurization was 1 minute in any of Examples 1-6 and Comparative Examples 1-6.
- Such ease of taking out the core material is due to the fluidity of the core material even after molding of the titanium-based compact.
- O means that a green compact was obtained through a two-step process of taking out a certain amount of the core material and then peeling off the mold. The reason why the mold could not be removed without taking out a certain amount of the core material was that the core material, which had fluidity at the time of placement, had completely hardened.
- X means that it was impossible to take out the core material while maintaining the shape of the green compact. In Examples 5 and 6 and Comparative Example 3, since the inside of the core material was completely hardened, the removability was evaluated as "Good".
- each titanium-based green compact was cut along the central axis so that the cross section shown in FIG. was formed.
- "o" means that the corner was right-angled
- "x” means that the corner was chipped or chamfered.
- all of the titanium-based compacts of Examples 1 to 6 had good corner portions.
- the titanium-based compacts of Comparative Examples 1 to 6 had chipped or chamfered corners.
- Comparative Examples 4 to 6 the core material could not be separated unless the titanium-based green compact was dismantled, so it can be said that these are examples in which the formation of the desired concave portions in the production of the titanium-based green compact failed.
- a Ti-5Al-1Fe titanium-based compact was produced.
- Other manufacturing conditions were the same as in Example 2.
- This titanium-based compact was evaluated for appearance, core removal efficiency, and recess moldability in the same manner as in Test Example 1. "A” and moldability of the concave portion were "O".
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Optics & Photonics (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Powder Metallurgy (AREA)
Abstract
This titanium green compact production method produces a titanium green compact 101 that has a recessed section 102. The recessed section 102 of the titanium green compact 101 has a shape whereby, in at least one cross section that includes at least part of the central axis CC of the recessed section 102, the width changes in at least part of the central axis direction of the recessed section 102 and/or has a shape that includes a curved section and/or a bent section of the central axis Cc of the recessed section 102. The titanium green compact production method includes: a step in which a core material-constituting material is caused to flow into and fill a core material arrangement space 5a that corresponds to the recessed section 102 in a resin mold 1 and a core material 11 that has a shape corresponding to the recessed section 102 is arranged; a step in which a raw material powder is filled in a molding space 2 of the mold 1; and a step in which cold isostatic pressurization is performed at an isostatic pressure of at least 300 MPa on the mold 1 which has the raw material powder filled into the molding space 2, in a state in which the core material 11 is arranged inside the core material arrangement space 5a.
Description
この発明は、チタン系圧粉体の製造方法及び、チタン系焼結体の製造方法に関する。
The present invention relates to a method for manufacturing a titanium-based compact and a method for manufacturing a titanium-based sintered body.
たとえばチタンやチタン合金は、耐疲労性、耐食性、軽量かつ高い比強度といった所定の優れた特性の故に、種々の部品に用いることが検討されている。
しかるに、チタン又はチタン合金からなる部品を製造するには一般に、電子ビーム溶解や真空アーク溶解等による溶解、鋳造、場合によってはさらに熱間圧延、熱処理及び機械加工、溶接等の多数の工程を行う必要があり、それに伴って製造コストが嵩む。このような高コストに起因して、チタンやチタン合金の適用範囲が十分に広がっているとは言い難い。 Titanium and titanium alloys, for example, are being considered for use in various parts because of certain excellent properties such as fatigue resistance, corrosion resistance, light weight and high specific strength.
However, manufacturing parts made of titanium or titanium alloys generally involves a number of steps, such as melting by electron beam melting, vacuum arc melting, etc., casting, and in some cases hot rolling, heat treatment and machining, welding, and the like. required, which increases manufacturing costs. Due to such high costs, it is difficult to say that the application range of titanium and titanium alloys has been sufficiently widened.
しかるに、チタン又はチタン合金からなる部品を製造するには一般に、電子ビーム溶解や真空アーク溶解等による溶解、鋳造、場合によってはさらに熱間圧延、熱処理及び機械加工、溶接等の多数の工程を行う必要があり、それに伴って製造コストが嵩む。このような高コストに起因して、チタンやチタン合金の適用範囲が十分に広がっているとは言い難い。 Titanium and titanium alloys, for example, are being considered for use in various parts because of certain excellent properties such as fatigue resistance, corrosion resistance, light weight and high specific strength.
However, manufacturing parts made of titanium or titanium alloys generally involves a number of steps, such as melting by electron beam melting, vacuum arc melting, etc., casting, and in some cases hot rolling, heat treatment and machining, welding, and the like. required, which increases manufacturing costs. Due to such high costs, it is difficult to say that the application range of titanium and titanium alloys has been sufficiently widened.
かかる状況の下、近年は、いわゆるニアネットシェイプとして、チタンを含む原料粉末を樹脂製のモールド内に充填して、当該原料粉末に対して冷間等方圧加圧を施し、所定の形状のチタン系圧粉体を得る粉末冶金法が注目されている。粉末冶金法では、冷間等方圧加圧の後、必要に応じて焼結及び/又は熱間等方圧加圧を施し、密度を高めることが行われる場合がある。
Under such circumstances, in recent years, as a so-called near net shape, raw material powder containing titanium is filled in a resin mold, and cold isostatic pressing is applied to the raw material powder to form a predetermined shape. A powder metallurgy method for obtaining a titanium-based compact has attracted attention. In the powder metallurgy method, after cold isostatic pressing, sintering and/or hot isostatic pressing may be performed as necessary to increase the density.
これに関する技術として、特許文献1には、「原料粉末を充填したゴム型を金型内で一軸方向に加圧することにより該原料粉末の圧密成形体を成形する圧密成形体の製造方法において、前記加圧方向と略直角方向にある前記圧密成形体の外表面の一部が前記ゴム型に配設された高剛性型部材により形成されることを特徴とする圧密成形体の製造方法」が記載されている。
As a technology related to this, Patent Document 1 discloses "In a method for producing a compacted body in which a rubber mold filled with a raw material powder is pressed uniaxially in a mold to form a compacted body of the raw material powder, the above-mentioned A method for producing a compacted body, characterized in that a portion of the outer surface of the compacted body that is substantially perpendicular to the pressurizing direction is formed by a highly rigid mold member disposed in the rubber mold. It is
また、特許文献2には、「素粉末混合法によって焼結チタン合金を製造する方法において、チタン粉末の代わりに、チタン粉末及び(Ti-H)合金粉末及び水素化チタン粉末を水素:チタンが質量比で0.002以上で0.030未満となるように配合した粉末を原料粉末として使用することを特徴とする焼結チタン合金の製造方法」が提案されている。
In addition, Patent Document 2 describes, "In a method for producing a sintered titanium alloy by a raw powder mixing method, instead of titanium powder, titanium powder, (Ti—H) alloy powder, and titanium hydride powder are mixed with hydrogen: titanium. A method for producing a sintered titanium alloy, characterized in that a powder blended so that the mass ratio is 0.002 or more and less than 0.030 is used as a raw material powder.
ところで、貫通孔又は非貫通の窪み等の凹部を有するチタン系圧粉体を、上述した粉末冶金法により製造するには、その凹部に対応する樹脂製のモールドの箇所に中子等の芯材を配置し、モールド内に充填した原料粉末に対して冷間等方圧加圧を行うことがある。そのような中子等の芯材として、特許文献1では、スチール製の円筒状部材である高剛性中子を用いている(段落0035参照)。
By the way, in order to manufacture a titanium-based compact having recesses such as through holes or non-penetrating recesses by the above-described powder metallurgy method, a core material such as a core is placed in a resin mold corresponding to the recesses. is placed, and cold isostatic pressure is sometimes applied to the raw material powder filled in the mold. As a core material for such a core, Patent Document 1 uses a high-rigidity core that is a cylindrical member made of steel (see paragraph 0035).
ここで、凹部が深さ方向の途中で幅が変化する形状や、凹部に湾曲部分ないし屈曲部分が存在する形状等の複雑な形状を有するチタン系圧粉体を製造する場合、使用する中子が高剛性中子では、原料粉末を充填する前のモールドの所定の箇所への前記中子の配置が困難になる場合がある。分割可能な構造の高剛性中子とすれば、ある程度の複雑な形状の凹部に対応することができるが、分割された中子は加圧成形中の位置ずれが生じうるので、凹部を所要の高い精度で形成できないことがある。また、チタン系粉末に冷間等方圧加圧を施す際は比較的大きな圧力をかける必要があり、分割された高剛性中子が位置ずれを起こしやすい。それ故に、チタン系圧粉体の凹部を形成する芯材としての高剛性中子は、凹部の形状の制約を受けて種々のチタン系圧粉体の製造に用いることができず、汎用性に乏しいといえる。
Here, when manufacturing a titanium-based green compact having a complicated shape such as a shape in which the width of the concave portion changes in the middle of the depth direction, or a shape in which the concave portion has a curved portion or a bent portion, the core to be used However, if the core has high rigidity, it may be difficult to arrange the core at a predetermined position in the mold before filling the raw material powder. A highly rigid core with a separable structure can accommodate recesses of a somewhat complicated shape. It may not be possible to form with high accuracy. In addition, when cold isostatic pressing is applied to the titanium-based powder, it is necessary to apply a relatively large pressure, and the divided high-rigidity core is likely to be displaced. Therefore, the high-rigidity core as a core material for forming the concave portion of the titanium-based compact cannot be used for manufacturing various titanium-based compacts due to the restriction of the shape of the concave portion. can be said to be poor.
特許文献2は、チタン系圧粉体の凹部等の具体的な形状や、モールドに配置する芯材について何ら着目されていない。
Patent Document 2 does not pay attention to the specific shape of the concave portion of the titanium-based compact or the core material to be placed in the mold.
この発明の目的は、比較的簡易な手法にて、ある程度複雑な形状の凹部を有するチタン系圧粉体を製造することができるチタン系圧粉体の製造方法及び、チタン系焼結体の製造方法を提供することにある。
An object of the present invention is to provide a method for manufacturing a titanium-based green compact and a titanium-based sintered body, which are capable of manufacturing a titanium-based green compact having recesses having a somewhat complicated shape by a relatively simple technique. It is to provide a method.
発明者は、樹脂製のモールドにおけるチタン系圧粉体の凹部に対応する芯材配置スペースに芯材を配置するに当り、芯材配置スペースに流し込むことができる芯材構成材料を用いることを案出した。このような流動性のある芯材構成材料であれば、芯材配置スペース内に十分に行き渡らせることができる。例えば、芯材配置スペースの開口部から芯材構成材料を注入し、芯材配置スペースの深部から開口部側に徐々に芯材構成材料が充填されるようにすれば、芯材配置スペース内で芯材構成材料が十分に行き渡って芯材(中子)となる。なお必要に応じて、冷間等方圧加圧前に開口部を閉じることにより、仮に冷間等方圧加圧時にも芯材構成材料が流動性を有する場合であっても、当該芯材構成材料を芯材として機能させることができる。この場合、冷間等方圧加圧時に芯材は樹脂製のモールド内の原料粉末の締固めに伴い適切に変形し得る。すなわち、分割した高剛性中子では各中子の接触部位のみ極端に移動しやすいため中子のずれが生じるが、流動性のある芯材構成材料ではこういった不具合を回避できる。これにより、チタン系圧粉体に複雑な形状の凹部を形成することが可能となる。
The inventor proposed using a core constituent material that can be poured into the core arrangement space when arranging the core in the core arrangement space corresponding to the concave portion of the titanium-based compact in the resin mold. I put it out. With such a fluid core constituent material, it is possible to spread it sufficiently in the core arrangement space. For example, by injecting the core constituent material from the opening of the core arrangement space so that the core constituent material is gradually filled from the deep part of the core arrangement space to the opening side, the inside of the core arrangement space The material constituting the core material spreads sufficiently to form a core material (core). If necessary, by closing the opening before the cold isostatic pressurization, even if the core constituent material has fluidity even during the cold isostatic pressurization, the core material The constituent material can function as a core material. In this case, the core material can be appropriately deformed as the raw material powder in the resin mold is compacted during cold isostatic pressing. That is, in the case of divided high-rigidity cores, only the contact portions of the respective cores are extremely likely to move, resulting in displacement of the cores. This makes it possible to form concave portions having complicated shapes in the titanium-based green compact.
この発明のチタン系圧粉体の製造方法は、凹部を有するチタン系圧粉体を製造する方法であって、前記チタン系圧粉体の前記凹部が、当該凹部の中心軸の少なくとも一部を含む断面の一つ以上にて、当該凹部の中心軸方向の少なくとも一部で幅が変化する形状、並びに/あるいは、当該凹部の中心軸の湾曲部分及び/又は屈曲部分を含む形状を有し、樹脂製のモールドにおける前記凹部に対応する芯材配置スペース内に、芯材構成材料を流動させて充填し、前記凹部に対応する形状の芯材を配置する工程と、前記モールドの成形空間に原料粉末を充填する工程と、前記芯材配置スペース内に前記芯材が配置された状態で、前記成形空間に前記原料粉末を充填した前記モールドに対して300MPa以上の静水圧加圧にて冷間等方圧加圧を行う工程とを含むものである。
A method for producing a titanium-based compact according to the present invention is a method for producing a titanium-based compact having a concave portion, wherein the concave portion of the titanium-based compact forms at least a part of the central axis of the concave portion. In one or more of the cross sections including, at least a part of the recess in the central axis direction has a shape that changes in width, and/or a shape that includes a curved portion and/or a bent portion of the central axis of the recess, A step of filling a core material arranging space corresponding to the recess in a resin mold with a core material forming material so as to arrange a core material having a shape corresponding to the recess; a step of filling the powder, and in a state in which the core material is arranged in the core material arrangement space, the mold filled with the raw material powder in the molding space is subjected to cold pressing at a hydrostatic pressure of 300 MPa or more. and a step of applying isotropic pressure.
上述したチタン系圧粉体の製造方法では、前記チタン系圧粉体の前記凹部の内面が段差部を含み、前記芯材配置スペースが段差を含むことがある。
また、上述したチタン系圧粉体の製造方法では、前記チタン系圧粉体の前記凹部が、前記断面の少なくとも一つにて、相対的に幅の広い広幅部と、前記広幅部に対して相対的に前記幅の狭い狭幅部とを含み、前記芯材配置スペースが、前記凹部の前記広幅部を形成する広幅箇所と、前記凹部の前記狭幅部を形成する狭幅箇所とを有することがある。 In the method for manufacturing the titanium-based compact described above, the inner surface of the concave portion of the titanium-based compact may include a stepped portion, and the core material arrangement space may include a stepped portion.
Further, in the above-described method for manufacturing a titanium-based compact, the concave portion of the titanium-based compact has a relatively wide wide portion in at least one of the cross sections, and a relatively wide width portion. The core material placement space has a wide portion forming the wide portion of the recess and a narrow portion forming the narrow portion of the recess. Sometimes.
また、上述したチタン系圧粉体の製造方法では、前記チタン系圧粉体の前記凹部が、前記断面の少なくとも一つにて、相対的に幅の広い広幅部と、前記広幅部に対して相対的に前記幅の狭い狭幅部とを含み、前記芯材配置スペースが、前記凹部の前記広幅部を形成する広幅箇所と、前記凹部の前記狭幅部を形成する狭幅箇所とを有することがある。 In the method for manufacturing the titanium-based compact described above, the inner surface of the concave portion of the titanium-based compact may include a stepped portion, and the core material arrangement space may include a stepped portion.
Further, in the above-described method for manufacturing a titanium-based compact, the concave portion of the titanium-based compact has a relatively wide wide portion in at least one of the cross sections, and a relatively wide width portion. The core material placement space has a wide portion forming the wide portion of the recess and a narrow portion forming the narrow portion of the recess. Sometimes.
この発明のチタン系圧粉体の製造方法では、前記芯材構成材料として、硬化樹脂または粘土を用いることが好ましい。
前記芯材構成材料として硬化樹脂を使用した場合、前記芯材構成材料を前記芯材配置スペース内に充填したとき、芯材構成材料の少なくとも、芯材構成材料の注入に用いられた芯材配置スペースの一端側の開口又は他端側の開口に存在する表層部分を硬化させることが好ましい。 In the method for producing a titanium-based compact according to the present invention, it is preferable to use a cured resin or clay as the material constituting the core material.
In the case where a cured resin is used as the core material constituting material, when the core material constituting material is filled in the core material arrangement space, at least the core material constituting the core material arrangement used for the injection of the core material constituting material It is preferable to harden the surface layer portion present in the opening on one end side of the space or the opening on the other end side.
前記芯材構成材料として硬化樹脂を使用した場合、前記芯材構成材料を前記芯材配置スペース内に充填したとき、芯材構成材料の少なくとも、芯材構成材料の注入に用いられた芯材配置スペースの一端側の開口又は他端側の開口に存在する表層部分を硬化させることが好ましい。 In the method for producing a titanium-based compact according to the present invention, it is preferable to use a cured resin or clay as the material constituting the core material.
In the case where a cured resin is used as the core material constituting material, when the core material constituting material is filled in the core material arrangement space, at least the core material constituting the core material arrangement used for the injection of the core material constituting material It is preferable to harden the surface layer portion present in the opening on one end side of the space or the opening on the other end side.
前記モールドとしては、ショアD硬さが30~120の範囲内である熱可塑性樹脂からなるモールドを用いることが好ましい。
また、前記モールドとしては、三次元造形装置を用いて作製されたモールドを用いることが好ましい。
前記冷間等方圧加圧では、前記モールドに対して400MPa以上の加圧力を作用させることが好ましい。 As the mold, it is preferable to use a mold made of a thermoplastic resin having a Shore D hardness within the range of 30 to 120.
Moreover, it is preferable to use a mold produced using a three-dimensional modeling apparatus as the mold.
In the cold isostatic pressing, it is preferable to apply a pressure of 400 MPa or more to the mold.
また、前記モールドとしては、三次元造形装置を用いて作製されたモールドを用いることが好ましい。
前記冷間等方圧加圧では、前記モールドに対して400MPa以上の加圧力を作用させることが好ましい。 As the mold, it is preferable to use a mold made of a thermoplastic resin having a Shore D hardness within the range of 30 to 120.
Moreover, it is preferable to use a mold produced using a three-dimensional modeling apparatus as the mold.
In the cold isostatic pressing, it is preferable to apply a pressure of 400 MPa or more to the mold.
この発明のチタン系焼結体の製造方法は、上記のいずれかのチタン系圧粉体の製造方法により製造されたチタン系圧粉体に対し、焼結及び/又は熱間等方圧加圧を行う工程を含むものである。
In the method for producing a titanium-based sintered body of the present invention, the titanium-based compact produced by any one of the above-described methods for producing a titanium-based compact is subjected to sintering and/or hot isostatic pressing. It includes the step of performing
この発明のチタン系圧粉体の製造方法によれば、比較的簡易な手法にて、ある程度複雑な形状の凹部を有するチタン系圧粉体を製造することができる。
According to the method for producing a titanium-based compact according to the present invention, it is possible to produce a titanium-based compact having recesses having somewhat complicated shapes by a relatively simple method.
以下に図面を参照しながら、この発明の実施の形態について詳細に説明する。
この発明の一の実施形態に係るチタン系圧粉体の製造方法は、たとえば、図1~3に示すような樹脂製のモールド1及び、芯材11を用いて、モールド1の成形空間2に原料粉末を充填して冷間等方圧加圧を行う工程を含み、たとえば図4に示すようなチタン系圧粉体101を製造するというものである。ここでいう「チタン系」には、純チタンからなるチタン製だけでなくチタン合金製も含まれるものとする。 Embodiments of the present invention will be described in detail below with reference to the drawings.
A method for producing a titanium-based compact according to one embodiment of the present invention uses, for example, aresin mold 1 and a core material 11 as shown in FIGS. It includes a step of filling raw material powder and applying cold isostatic pressure, and manufactures, for example, a titanium-based green compact 101 as shown in FIG. The term "titanium-based" as used herein includes not only titanium made of pure titanium but also titanium alloy.
この発明の一の実施形態に係るチタン系圧粉体の製造方法は、たとえば、図1~3に示すような樹脂製のモールド1及び、芯材11を用いて、モールド1の成形空間2に原料粉末を充填して冷間等方圧加圧を行う工程を含み、たとえば図4に示すようなチタン系圧粉体101を製造するというものである。ここでいう「チタン系」には、純チタンからなるチタン製だけでなくチタン合金製も含まれるものとする。 Embodiments of the present invention will be described in detail below with reference to the drawings.
A method for producing a titanium-based compact according to one embodiment of the present invention uses, for example, a
図4に示すチタン系圧粉体101は、全体としてほぼ円筒状の形状を有するとともに、外表面(図4では上方側及び下方側の各端面)に開口部102a、102bを有する凹部102が形成されている。
A titanium-based green compact 101 shown in FIG. 4 has a substantially cylindrical shape as a whole, and recesses 102 having openings 102a and 102b are formed on the outer surface (upper and lower end surfaces in FIG. 4). It is
チタン系圧粉体101に形成する凹部102は、この例では、当該凹部102の中心軸Ccの少なくとも一部を含む断面にて、図4の上下方向と一致する当該凹部102の中心軸Ccに沿う方向(「中心軸方向」ともいう。)の少なくとも一部で、その中心軸Ccに直交する幅が変化する形状を有する。より詳細には、この凹部102は、図4の下方側である一端面の開口部102a側では幅Waを有するが、上方側である他端面の開口部102b側に向かう途中で内面の段差部102cを介して幅が減少し、他端面側の開口部102bでは幅Wbになる。つまり、凹部102はこの断面にて、一端面の開口部102aと段差部102cとの間の、幅Waで相対的に幅が広い広幅部102dと、他端面の開口部102bと段差部102cとの間の、幅Wbを有して広幅部102dに比して相対的に幅が狭い狭幅部102eとを含むものである。但し、後述するように、凹部の形状はこれに限らず、チタン系圧粉体の用途等に応じて適宜変更され得る。
In this example, the concave portion 102 formed in the titanium-based green compact 101 is aligned with the central axis Cc of the concave portion 102 that coincides with the vertical direction in FIG. It has a shape in which the width perpendicular to the central axis Cc changes at least partly in the direction along (also referred to as the "central axis direction"). More specifically, the recess 102 has a width Wa on the side of the opening 102a of one end face, which is the lower side in FIG. The width decreases through 102c, and becomes width Wb at the opening 102b on the other end face side. That is, in this cross section, the recess 102 has a wide portion 102d having a relatively wide width Wa between the opening 102a and the stepped portion 102c on one end surface, and the opening 102b and the stepped portion 102c on the other end surface. and a narrow portion 102e having a width Wb and relatively narrower than the wide portion 102d. However, as will be described later, the shape of the concave portion is not limited to this, and can be appropriately changed according to the use of the titanium-based compact.
このような複雑な形状の凹部102を有するチタン系圧粉体101を製造するため、冷間等方圧加圧で用いるモールド1は、当該チタン系圧粉体101の形状に対応する形状の成形空間2を有する。このモールド1は、チタン系圧粉体101の外周面に整合する内周面を有する円筒状の外筒壁部3と、外側で外筒壁部3との間に成形空間2が区画されるとともに内側に芯材配置スペース5aを区画する内筒壁部5と、外筒壁部3の一端部(図2では下端部)に設けられ、その一端部側で外筒壁部3と内筒壁部5とを連結する円環状の環状壁部4とを備えるものである。
In order to manufacture the titanium-based green compact 101 having the concave portion 102 of such a complicated shape, the mold 1 used in the cold isostatic pressing has a shape corresponding to the shape of the titanium-based green compact 101. It has a space 2. The mold 1 has a cylindrical outer cylinder wall portion 3 having an inner peripheral surface that matches the outer peripheral surface of the titanium-based compact 101, and a molding space 2 defined outside between the outer cylinder wall portion 3 and the outer cylinder wall portion 3. provided at one end (lower end in FIG. 2) of the inner cylinder wall portion 5 and the outer cylinder wall portion 3, which divides the core material arrangement space 5a inside and the outer cylinder wall portion 3 and the inner cylinder at the one end side It is provided with an annular wall portion 4 that connects with the wall portion 5 .
モールド1の内筒壁部5の内側には、先述したチタン系圧粉体101の凹部102の形状に対応する芯材配置スペース5aが区画されている。芯材配置スペース5aは、この例では、図示の断面にて、芯材配置スペース5aの中心軸Cmに直交する幅が段差を介して変化する形状であり、中心軸Cmの方向で外筒壁部3の一端部側に位置して凹部102の広幅部102dを形成する広幅箇所と、広幅箇所に隣接して他端部側(図2では上端部)に位置し、凹部102の狭幅部102eを形成する狭幅箇所とを有する。なお、芯材配置スペース5aの中心軸Cmや、先述した凹部102の中心軸Ccは、内筒壁部5の内側の芯材配置スペース5a又は、チタン系圧粉体101の内部の凹部102の延びる方向に沿っており、当該中心軸Cm又はCcに直交する断面で、芯材配置スペース5a又は凹部102の中心ないし図心を通るものとする。
Inside the inner cylindrical wall portion 5 of the mold 1, a core material arrangement space 5a corresponding to the shape of the concave portion 102 of the titanium-based compact 101 described above is defined. In this example, the core material arranging space 5a has a shape in which the width perpendicular to the central axis Cm of the core material arranging space 5a changes through a step in the illustrated cross section. A wide portion that forms the wide portion 102d of the recess 102 and is located on one end side of the portion 3, and a narrow portion of the recess 102 that is adjacent to the wide portion and is located on the other end side (upper end portion in FIG. 2). and a narrowed portion forming 102e. Note that the central axis Cm of the core material arrangement space 5a and the central axis Cc of the recess 102 described above are the same as those of the core material arrangement space 5a inside the inner cylinder wall 5 or the recess 102 inside the titanium-based compact 101. A cross section extending along the extending direction and orthogonal to the central axis Cm or Cc passes through the center or centroid of the core material arrangement space 5a or the recess 102 .
かかる芯材配置スペース5aでは、高剛性中子は、配置が困難であることや、チタン系圧粉体101の凹部102を高精度に形成できないこと等の理由より適切に使用できない場合がある。例えば、ステンレス鋼等の融点が相当に高くかつ高剛性の材質の中子は、冷間等方圧加圧の際に変形しにくいため位置ずれを起こすおそれがある。中子が位置ずれを起こすとチタン系圧粉体の凹部は所望の形状に成形できない。
In the core material placement space 5a, the high-rigidity core may not be used appropriately due to reasons such as difficulty in placement and inability to form the recessed portion 102 of the titanium-based compact 101 with high accuracy. For example, a core made of a highly rigid material such as stainless steel which has a considerably high melting point is difficult to deform during cold isostatic pressurization, and thus may cause misalignment. If the core is misaligned, the concave portion of the titanium-based green compact cannot be formed into a desired shape.
これに対し、この実施形態では、図2に示すように、たとえば、流動性を有する芯材構成材料が入っている注入器具111等からモールド1の芯材配置スペース5a内に、芯材構成材料を流動させて充填する。このとき、内筒壁部5の芯材配置スペース5aの一端側の開口又は他端側の開口のいずれか一方(図2では下方側である一端側の開口)を、板状等の密閉部材6aで予め密閉しておき、他方の開口(図2では上方側である他端側の開口)から芯材構成材料を流し込むことができる。またたとえば、芯材構成材料が後述の硬化樹脂または粘土のいずれであっても、当該芯材構成材料を芯材配置スペース5a内に押し込んだりすること等により充填することが可能である。このように芯材構成材料を流動させて充填することにより、図3に示すように、モールド1の芯材配置スペース5a内に、凹部102の形状に対応する芯材11を配置することができる。
On the other hand, in this embodiment, as shown in FIG. 2, for example, the core material is injected into the core arrangement space 5a of the mold 1 from an injection tool 111 or the like containing a fluid core material. to flow and fill. At this time, either one of the opening on the one end side and the opening on the other end side of the core material arrangement space 5a of the inner cylindrical wall portion 5 (opening on the one end side, which is the lower side in FIG. 2) is covered with a sealing member such as a plate. After sealing in advance at 6a, the material constituting the core can be poured from the other opening (opening on the other end side, which is the upper side in FIG. 2). Further, for example, regardless of whether the core constituent material is a cured resin or clay, which will be described later, the core constituent material can be filled by pushing the core constituent material into the core arrangement space 5a or the like. By flowing and filling the core constituent material in this way, as shown in FIG. .
モールド1の芯材配置スペース5a内への芯材11の配置前又は配置後、モールド1の成形空間2に原料粉末を充填し、モールド1の外筒壁部3の他端部を円盤状部材6bで密閉する。芯材配置スペース5a内に芯材11を配置する工程と、モールド1の成形空間2に原料粉末を充填する工程を行う順序の先後は問わず、いずれの工程を先に行ってもよい。そして、芯材配置スペース5a内に芯材11が配置された状態で、図示しない冷間等方圧加圧装置の内部にて、図5に示すように、モールド1の外側からモールド1を加圧し、原料粉末を圧縮させる冷間等方圧加圧(CIP)を行う。なおここでは、密閉部材6a及び円盤状部材6bはモールド1の一部を構成するものとする。
Before or after placing the core material 11 in the core material placement space 5a of the mold 1, the molding space 2 of the mold 1 is filled with raw material powder, and the other end of the outer cylinder wall portion 3 of the mold 1 is attached to a disk-shaped member. Seal with 6b. It does not matter whether the step of arranging the core material 11 in the core material arranging space 5a or the step of filling the molding space 2 of the mold 1 with raw material powder is carried out before or after, and either step may be carried out first. Then, in a state where the core material 11 is arranged in the core material arrangement space 5a, the mold 1 is pressed from the outside of the mold 1 inside a cold isostatic pressing device (not shown) as shown in FIG. Cold isostatic pressing (CIP) is performed to compress and compact the raw powder. Here, it is assumed that the sealing member 6a and the disk-shaped member 6b form part of the mold 1. As shown in FIG.
冷間等方圧加圧でモールド1に作用させる加圧力は、300MPa以上とし、好ましくは400MPa以上である。加圧力を300MPa未満にすると、原料粉末が十分に圧縮されず、チタン系圧粉体の凹部内の形状精度が不十分となる。なお加圧力は、たとえば600MPa以下、典型的には500MPa以下とすることがある。また、そのような加圧力での保持時間は、たとえば0.5分~30分とする場合がある。冷間等方圧加圧により、モールド1の成形空間2の原料粉末は加圧されて締め固められ、チタン系圧粉体101になる。
なお、冷間等方圧加圧では、モールド1は、その周囲の流体により等方圧(静水圧)で加圧される。そのため、冷間等方圧加圧によると、種々の形状のモールド1を用いてチタン系圧粉体101を製造することができる。またここでは、芯材配置スペース5a内に充填されて芯材11を構成する芯材構成材料は、上記の流体による等方圧の作用に際し、原料粉末及びモールド1に追従して変形できるので、芯材配置スペース5aを様々な任意の形状にすることができる。その結果、多様な形状の凹部102を有するチタン系圧粉体101を製造することができる。 The pressure applied to themold 1 by cold isostatic pressing is set to 300 MPa or more, preferably 400 MPa or more. If the applied pressure is less than 300 MPa, the raw material powder is not sufficiently compressed, and the shape accuracy in the recesses of the titanium-based compact becomes insufficient. The applied pressure may be, for example, 600 MPa or less, typically 500 MPa or less. Also, the holding time at such pressure may be, for example, 0.5 to 30 minutes. The raw material powder in the molding space 2 of the mold 1 is pressurized and compacted by cold isostatic pressing to form a titanium-based compact 101 .
In the cold isostatic pressurization, themold 1 is pressurized isostatically (hydrostatic pressure) by the surrounding fluid. Therefore, according to cold isostatic pressing, the titanium-based compact 101 can be manufactured using molds 1 of various shapes. Further, here, the material constituting the core material filling the core material arrangement space 5a and constituting the core material 11 can deform following the raw material powder and the mold 1 when the isotropic pressure of the fluid is applied. The core material arrangement space 5a can be made into various arbitrary shapes. As a result, titanium-based compacts 101 having recesses 102 of various shapes can be manufactured.
なお、冷間等方圧加圧では、モールド1は、その周囲の流体により等方圧(静水圧)で加圧される。そのため、冷間等方圧加圧によると、種々の形状のモールド1を用いてチタン系圧粉体101を製造することができる。またここでは、芯材配置スペース5a内に充填されて芯材11を構成する芯材構成材料は、上記の流体による等方圧の作用に際し、原料粉末及びモールド1に追従して変形できるので、芯材配置スペース5aを様々な任意の形状にすることができる。その結果、多様な形状の凹部102を有するチタン系圧粉体101を製造することができる。 The pressure applied to the
In the cold isostatic pressurization, the
冷間等方圧加圧で加圧した後は、冷間等方圧加圧装置からチタン系圧粉体101をモールド1及び芯材11とともに取り出す。その後、チタン系圧粉体101の周囲の外筒壁部3、環状壁部4、密閉部材6a及び円盤状部材6bを除去し、図6に示すように、チタン系圧粉体101の凹部102内の芯材11及び内筒壁部5を取り出す。外筒壁部3等を除去する前に芯材11を取り出してもよい。これにより、チタン系圧粉体101を製造することができる。
After pressing by cold isostatic pressing, the titanium-based compact 101 is taken out from the cold isostatic pressing device together with the mold 1 and the core material 11 . Thereafter, the outer cylinder wall portion 3, the annular wall portion 4, the sealing member 6a and the disk-shaped member 6b around the titanium-based compact 101 are removed, and as shown in FIG. The inner core material 11 and the inner cylinder wall portion 5 are taken out. The core material 11 may be taken out before removing the outer cylinder wall portion 3 and the like. Thereby, the titanium-based compact 101 can be manufactured.
チタン系焼結体を製造する場合、冷間等方圧加圧の後に、チタン系圧粉体101に対し、焼結及び/又は熱間等方圧加圧(HIP)を行う工程が含まれる。焼結では、チタン系圧粉体101の材質に応じて、たとえば1200℃~1300℃の温度にて1時間~3時間にわたって、チタン系圧粉体101を加熱することができる。熱間等方圧加圧では、たとえば、800℃~1000℃の温度にて、チタン系圧粉体101に対し、アルゴンガス等の圧力媒体により100MPa~200MPa程度の等方圧を30分~90分にわたって作用させることができる。これにより、チタン系焼結体を製造することができる。なお、熱間等方圧加圧では一般に、高温で処理することから焼結が進行する。それ故に、ここでは、チタン系圧粉体101に対して熱間等方圧加圧のみを行って得られたものについても、チタン系焼結体という。焼結及び熱間等方圧加圧の両方を行う場合は、その順序は特に問わないが、たとえば焼結の後に熱間等方圧加圧を行うことができる。
When manufacturing a titanium-based sintered body, a step of subjecting the titanium-based compact 101 to sintering and/or hot isostatic pressing (HIP) after cold isostatic pressing is included. . In the sintering, the titanium-based compact 101 can be heated at a temperature of, for example, 1200° C. to 1300° C. for 1 to 3 hours depending on the material of the titanium-based compact 101 . In the hot isostatic pressurization, for example, at a temperature of 800° C. to 1000° C., an isostatic pressure of about 100 MPa to 200 MPa is applied to the titanium-based compact 101 with a pressure medium such as argon gas for 30 minutes to 90 minutes. It can work for minutes. Thereby, a titanium-based sintered body can be produced. In hot isostatic pressing, sintering generally progresses due to the treatment at a high temperature. Therefore, a titanium-based sintered body obtained by subjecting the titanium-based compact 101 only to hot isostatic pressing is also referred to herein as a titanium-based sintered body. When both sintering and hot isostatic pressing are performed, the order is not particularly limited. For example, hot isostatic pressing can be performed after sintering.
上述したような製造方法で用いる芯材構成材料は、少なくとも芯材配置スペース5a内への充填時に流動性を有する材料とする。仮に芯材構成材料が芯材配置スペース5a内への充填時のみならず、冷間等方圧加圧後も流動性を有するような材料である場合、芯材11は、チタン系圧粉体101の凹部102内から流出させることにより容易に取り出すことができる。
The material constituting the core material used in the above-described manufacturing method should be a material that has fluidity at least when the core material arrangement space 5a is filled. If the material constituting the core material is a material that has fluidity not only when it is filled into the core material arrangement space 5a but also after cold isostatic pressing, the core material 11 is a titanium-based compact. It can be easily taken out by letting it flow out from the concave portion 102 of 101 .
より具体的には、芯材構成材料は、油性コーキング材等の非硬化樹脂とすることも可能であるが、湿気硬化型、乾燥硬化型、混合反応硬化型又は光硬化型等の硬化樹脂や粘土とすることが好ましい。このような硬化樹脂や粘土を使用することにより、芯材配置スペース5a内への充填時は流動性を示しつつ、その後に硬化して冷間等方圧加圧時は、芯材11に求められる所要の特性が発揮されやすくなる。空気中の水分等と反応して硬化する湿気硬化樹脂としては、たとえば、シリコーン系、変成シリコーン系、ポリウレタン系、ポリサルファイド系等を挙げることができる。乾燥硬化樹脂は、溶剤や水が揮発して乾燥することにより硬化するものであり、たとえば、アクリル系、ブチルゴム系等がある。混合反応硬化樹脂は、主剤と硬化剤との混合による化学反応で硬化するものであり、たとえば、変成シリコーン系、ポリウレタン系、ポリサルファイド系、シリコーン系、ポリイソブチレン等が挙げられる。光硬化樹脂は、紫外線等の特定の波長の光が照射されることにより硬化するものであり、ラジカル重合型のアクリレート系光硬化樹脂、カチオン重合型のエポキシ系光硬化樹脂等がある。なかでもシリコーン系の湿気硬化樹脂(シリコーン樹脂、シリコーンシーラント等)は、湿気にさらされる部位が容易かつ迅速に硬化するので芯材構成材料として特に好ましく、また価格面からも好適である。粘土とは、土、砂、油脂、パルプ等を含み所定の粘着性を有する人工もしくは自然の土又は粒子の集合体であり、たとえば油粘土や紙粘土等を使用可能である。
芯材構成材料は単独で使用してもよいし、複数を同時に使用してもよい。また、一つのモールドに複数の芯材配置スペースが存在する場合、各芯材配置スペースに使用される芯材構成材料は同一でもよいし、互いに異なっていてもよい。 More specifically, the material constituting the core material can be a non-curing resin such as an oil-based caulking material. Clay is preferred. By using such a hardened resin or clay, thecore material 11 exhibits fluidity when filled into the core material arrangement space 5a, and is hardened after that and when cold isostatic pressure is applied, the core material 11 exhibits It becomes easier for the desired characteristics to be exhibited. Examples of moisture-curable resins that cure by reacting with moisture in the air include silicone-based, modified silicone-based, polyurethane-based, and polysulfide-based resins. Dry-hardening resins are those that harden when solvent or water evaporates and dry. The mixed reaction curing resin is cured by a chemical reaction caused by mixing a main agent and a curing agent, and examples thereof include modified silicones, polyurethanes, polysulfides, silicones, and polyisobutylenes. The photocurable resin is cured by being irradiated with light of a specific wavelength such as ultraviolet rays, and includes radical polymerizable acrylate photocurable resins, cationic polymerizable epoxy photocurable resins, and the like. Of these, silicone-based moisture-curable resins (silicone resins, silicone sealants, etc.) are particularly preferred as core material constituent materials because the portions exposed to moisture cure easily and quickly, and are also suitable in terms of cost. Clay is an aggregate of artificial or natural soil or particles containing soil, sand, oil, pulp, etc., and having a predetermined stickiness. For example, oil clay, paper clay, etc. can be used.
The core constituent materials may be used singly or in combination. Further, when a plurality of core material arrangement spaces exist in one mold, the core material constituent materials used in the respective core material arrangement spaces may be the same or different from each other.
芯材構成材料は単独で使用してもよいし、複数を同時に使用してもよい。また、一つのモールドに複数の芯材配置スペースが存在する場合、各芯材配置スペースに使用される芯材構成材料は同一でもよいし、互いに異なっていてもよい。 More specifically, the material constituting the core material can be a non-curing resin such as an oil-based caulking material. Clay is preferred. By using such a hardened resin or clay, the
The core constituent materials may be used singly or in combination. Further, when a plurality of core material arrangement spaces exist in one mold, the core material constituent materials used in the respective core material arrangement spaces may be the same or different from each other.
芯材構成材料を上述したような硬化樹脂とした場合、芯材配置スペース5a内に充填したときに、芯材構成材料の少なくとも、芯材構成材料の注入に用いられた芯材配置スペース5aの一端側の開口又は他端側の開口に存在する表層部分を硬化させることが好適である。湿気硬化型や乾燥硬化型の硬化樹脂はこのような表層部分硬化に対応でき好適である。芯材配置スペース5a内の芯材構成材料の少なくとも表層部分を硬化させることにより、その一端側の開口又は他端側の開口を円盤状部材6b等で密閉するまでの間の、芯材配置スペース5a内からの芯材構成材料の漏出を抑制することができる。なお、円盤状部材6bを用いなくとも開口を適切に閉じることができる場合もある。また、芯材構成材料の表層部分だけを硬化させた場合は、冷間等方圧加圧後、当該表層部分を剥がすことにより、凹部102内から芯材11の流動性を利用して排出させることができるので、芯材11の取出しが容易になる。芯材配置スペース5a内に充填した後の芯材構成材料の表層部分の硬化は、その芯材構成材料を構成する硬化樹脂の種類に応じた適切な態様にて行うことができる。なお、シリコーン系や変成シリコーン系の湿気硬化樹脂には、芯材配置スペース5a内へ充填したときから、空気との接触により1時間~2時間程度で表層部分が硬化するものがある。芯材構成材料の表層部分は、一端側の開口又は他端側の開口から、中心軸Cmの方向に沿って芯材配置スペース5aの内部に3mmの距離の深さまでの部分とすることができる。
芯材構成材料を上述したような粘土とした場合、芯材配置スペース5aへの充填時には適切な流動性を示し、充填後には適切な粘性を示して凹部102内に粘土が残留する。このため、粘土を充填した芯材配置スペース5aの開口を閉じるための特段の手段をしなくてもよい場合がある他、ビニールテープ等で開口を覆うというような簡便な処置を施すだけで冷間等方圧加圧に供することができる。 When the core material constituting material is a cured resin as described above, when filled in the corematerial arranging space 5a, at least the core material composing material fills the core material arranging space 5a used for injecting the core material composing material. It is preferable to harden the surface layer portion present in the opening on one end side or the opening on the other end side. Moisture-curing or dry-curing curable resins are suitable for such partial curing of the surface layer. A space for arranging the core until at least the surface layer portion of the material forming the core in the space for arranging the core 5a is cured, and the opening at one end or the opening at the other end is sealed with the disk-shaped member 6b or the like. Leakage of the core constituent material from within 5a can be suppressed. In some cases, the opening can be properly closed without using the disk-shaped member 6b. In addition, when only the surface layer portion of the core constituent material is cured, the surface layer portion is peeled off after cold isostatic pressing, and the core material 11 is discharged from the recess 102 using the fluidity of the core material 11 . Therefore, the core material 11 can be easily taken out. Curing of the surface layer portion of the core-constituting material filled in the core-arranging space 5a can be carried out in an appropriate manner according to the type of the cured resin constituting the core-constituting material. Some silicone-based or modified silicone-based moisture-curing resins cure at the surface layer in about 1 to 2 hours due to contact with air after being filled into the core arrangement space 5a. The surface layer portion of the core constituent material can be a portion extending from the opening on one end side or the opening on the other end side to a depth of 3 mm inside the core material arrangement space 5a along the direction of the central axis Cm. .
When the above-described clay is used as the core constituent material, the clay exhibits appropriate fluidity when filled into thecore placement space 5a, and exhibits appropriate viscosity after filling, and remains in the recess 102. Therefore, in some cases, there is no need to take special measures to close the opening of the core material placement space 5a filled with clay. It can be subjected to inter-isostatic pressurization.
芯材構成材料を上述したような粘土とした場合、芯材配置スペース5aへの充填時には適切な流動性を示し、充填後には適切な粘性を示して凹部102内に粘土が残留する。このため、粘土を充填した芯材配置スペース5aの開口を閉じるための特段の手段をしなくてもよい場合がある他、ビニールテープ等で開口を覆うというような簡便な処置を施すだけで冷間等方圧加圧に供することができる。 When the core material constituting material is a cured resin as described above, when filled in the core
When the above-described clay is used as the core constituent material, the clay exhibits appropriate fluidity when filled into the
芯材11が配置される樹脂製のモールド1は、好ましくは熱可塑性樹脂製とし、特にアクリル樹脂、エラストマーを含有するアクリル樹脂、ポリ乳酸(PLA)樹脂等で形成されたものとすることが好適である。樹脂製のモールド1は、所要の強度を確保して原料粉末の充填時にもその形状を維持するため、ショアD硬さが30~120の範囲内である熱可塑性樹脂からなることが好ましく、30~85の範囲内である熱可塑性樹脂としてもよい。ショアD硬さは、JIS K7215(1986)に準拠する試験方法によって測定することができる。また同様の観点から、樹脂製のモールド1の厚みは、0.5mm~2.0mmであるものとすることが好ましい。
The resin mold 1 in which the core material 11 is arranged is preferably made of a thermoplastic resin, and is particularly preferably made of an acrylic resin, an acrylic resin containing an elastomer, a polylactic acid (PLA) resin, or the like. is. The resin mold 1 is preferably made of a thermoplastic resin having a Shore D hardness within the range of 30 to 120 in order to secure the required strength and maintain its shape even when the raw material powder is filled. It may be a thermoplastic resin within the range of ∼85. Shore D hardness can be measured by a test method conforming to JIS K7215 (1986). From the same point of view, it is preferable that the resin mold 1 has a thickness of 0.5 mm to 2.0 mm.
樹脂製のモールド1は種々の方法により作製することが可能であるが、三次元造形装置(いわゆる3Dプリンタ)を用いて作製されたものであることが好ましい。これにより、様々な形状のモールド1を容易に作製することができる。三次元造形装置の造形方式は特に問わず、たとえば光造形方式、インクジェット方式、インクジェット粉末積層方式、粉末焼結積層造形方式、熱溶解積層方式又は粉末固着方式等のいずれであってもよい。
Although the resin mold 1 can be produced by various methods, it is preferably produced using a three-dimensional modeling apparatus (so-called 3D printer). Thereby, the mold 1 of various shapes can be easily produced. The modeling method of the three-dimensional modeling apparatus is not particularly limited, and may be, for example, a stereolithography method, an inkjet method, an inkjet powder lamination method, a powder sintering lamination method, a hot-melt lamination method, or a powder fixing method.
図1~3に示すモールド1の他、たとえば、図7~13に例示するモールド21、31、41、51、61、71、81とすることもできる。
In addition to the mold 1 shown in FIGS. 1 to 3, for example, molds 21, 31, 41, 51, 61, 71, and 81 illustrated in FIGS. 7 to 13 can also be used.
図7、8のモールド21、31により製造されるチタン系圧粉体の凹部は、チタン系圧粉体の外表面上での凹部の開口部を含む平面に直交する断面にて、凹部の中心軸方向の少なくとも一部で幅が変化する形状を有するものであり、図1~3のモールド1によるチタン系圧粉体の101の凹部102とは、その幅の変化の態様が異なるものになる。
The concave portions of the titanium-based green powder produced by the molds 21 and 31 of FIGS. It has a shape in which the width changes at least partially in the axial direction, and the mode of width change is different from that of the concave portion 102 of the titanium-based compact 101 formed by the mold 1 in FIGS. .
図7のモールド21では、内筒壁部25の内側に区画される芯材配置スペース25aが、外筒壁部23の一端部側及び他端部側のそれぞれに位置して開口する広幅箇所と、該広幅箇所に対して相対的に幅が狭く、それらの広幅箇所の間に設けられた狭幅箇所とを有する。広幅箇所のそれぞれと狭幅箇所とは段差を介して連通されている。これにより、図7のモールド21により成形されるチタン系圧粉体は、一端面側及び他端面側の各開口部でそれぞれ開口する広幅部と、各広幅部との間にて内面の段差部で幅が狭くなり、それらの広幅部間に延びる狭幅部とを含むものとなる。
In the mold 21 shown in FIG. 7, the core material placement space 25a defined inside the inner cylindrical wall portion 25 is positioned at one end side and the other end side of the outer cylindrical wall portion 23, and has wide openings. , and a narrow portion that is narrow relative to the wide portion and is provided between the wide portions. Each wide portion and the narrow portion are communicated with each other via a step. As a result, the titanium-based powder compact molded by the mold 21 in FIG. , and includes a narrow portion extending between the wide portions.
図8のモールド31では、内筒壁部35はその内側に、中心軸Cmの方向のほぼ中央域に設けられた広幅箇所と、中心軸Cmの方向で、その広幅箇所を隔てて外筒壁部33の一端部側及び他端部側の両側に位置してそれぞれ開口する狭幅箇所とを有する芯材配置スペース35aが区画されている。このモールド31によるチタン系圧粉体の凹部は、一端面側及び他端面側の各開口部につながる狭幅部と、それらの狭幅部間の中心軸方向の中央域あたりで内面の段差部を介して幅が増大する広幅部とを含むものになる。
In the mold 31 shown in FIG. 8, the inner cylindrical wall portion 35 has a wide portion provided in a substantially central region in the direction of the central axis Cm and an outer cylindrical wall portion separated from the wide portion in the direction of the central axis Cm. A core material placement space 35a having narrow width portions that are positioned on both sides of the portion 33 on one end side and on the other end side and are respectively opened is defined. The recessed portion of the titanium-based powder compact formed by the mold 31 includes a narrow width portion connected to each opening on one end surface side and the other end surface side, and a stepped portion on the inner surface around the center region between the narrow width portions in the central axis direction. and a wide portion of which the width increases through.
図9のモールド41で成形されるチタン系圧粉体も、凹部が中心軸方向の少なくとも一部で幅が変化する形状を有するものであるが、この凹部は、一端面側の開口部から他端面側の開口部に向かうに従って幅が漸減するテーパ状になる。この凹部も、一端面側の開口部側の相対的に幅が広い広幅部と、他端面側の開口部の相対的に幅が狭い狭幅部とを含むものであるといえる。これに応じてモールド41の内筒壁部45は、外筒壁部43の一端部側から他端部側にかけて幅が次第に減少する芯材配置スペース45aを有する。
The titanium-based green compact molded by the mold 41 of FIG. 9 also has a shape in which the width of the concave portion changes at least partially in the direction of the central axis. It has a tapered shape in which the width gradually decreases toward the opening on the end face side. It can be said that this concave portion also includes a relatively wide width portion on the side of the opening on the one end surface side and a relatively narrow width portion on the side of the opening on the other end surface side. Correspondingly, the inner cylinder wall portion 45 of the mold 41 has a core material placement space 45a whose width gradually decreases from one end side to the other end side of the outer cylinder wall portion 43 .
図10に示すモールド51は、一定の幅を有する芯材配置スペース55aの中心軸Cmが一端部側と他端部側との間にて、三か所で幅方向(図10の左右方向)の外側に突き出る向きに交互に曲がって蛇行している。これにより成形されるチタン系圧粉体の凹部は、凹部の中心軸の湾曲部分を含む形状になる。
図11のモールド61では、芯材配置スペース65aが一定の幅にて、一端部から他端部に至る途中の二箇所で直角に折れ曲がるクランク状のような中心軸Cmを有する。このモールド61で成形可能なチタン系圧粉体の凹部は、中心軸の二箇所の屈曲部分を含むものになる。
なお、図10や図11の湾曲部分や屈曲部分の個数や、曲率ないし角度その他の態様は、適宜変更することが可能である。 In themold 51 shown in FIG. 10, the center axis Cm of the core material arrangement space 55a having a constant width is crossed at three points in the width direction (horizontal direction in FIG. 10) between one end side and the other end side. It alternately bends and meanders in the direction of protruding outward. The recessed portion of the titanium-based green compact thus formed has a shape including the curved portion of the central axis of the recessed portion.
In themold 61 of FIG. 11, the core material arrangement space 65a has a constant width and has a central axis Cm like a crank which is bent at right angles at two points on the way from one end to the other end. The concave portion of the titanium-based compact that can be molded by the mold 61 includes two curved portions of the central axis.
Note that the numbers, curvatures, angles, and other aspects of curved portions and bent portions in FIGS. 10 and 11 can be changed as appropriate.
図11のモールド61では、芯材配置スペース65aが一定の幅にて、一端部から他端部に至る途中の二箇所で直角に折れ曲がるクランク状のような中心軸Cmを有する。このモールド61で成形可能なチタン系圧粉体の凹部は、中心軸の二箇所の屈曲部分を含むものになる。
なお、図10や図11の湾曲部分や屈曲部分の個数や、曲率ないし角度その他の態様は、適宜変更することが可能である。 In the
In the
Note that the numbers, curvatures, angles, and other aspects of curved portions and bent portions in FIGS. 10 and 11 can be changed as appropriate.
上述したところでは、一端面側の開口部から他端面側の開口部まで延びる貫通孔状の凹部を有するチタン系圧粉体を製造するモールドについて説明したが、図12のモールド71は、それらとは異なり、非貫通の窪み状の凹部を有するチタン系圧粉体を製造するものである。このモールド71は、芯材配置スペース75aが図示の断面にて、外筒壁部73の一端部側で環状壁部74から窪むものであって、外筒壁部73の一端部側の幅が広い広幅箇所と、最深部の幅方向中央を隔てた両端側の狭幅箇所とを有するものである。モールド71によるチタン系圧粉体の凹部は、最深部で幅が変化するものになり、一端面側の開口部に連通する広幅部と、最深部の幅方向両端側の狭幅部とを含む。このチタン系圧粉体は、凹部が最深部の手前で中心軸の屈曲部分を含むものであるともいえる。
In the above description, a mold for manufacturing a titanium-based green compact having a through-hole-shaped recess extending from the opening on one end surface to the opening on the other end surface has been described, but the mold 71 in FIG. is to manufacture a titanium-based green compact having non-penetrating recessed recesses. In this mold 71, the core material arrangement space 75a is recessed from the annular wall portion 74 on the one end side of the outer cylinder wall portion 73 in the cross section shown in the drawing, and the width of the one end portion of the outer cylinder wall portion 73 is It has a wide portion and narrow portions at both ends separated from the center of the deepest portion in the width direction. The concave portion of the titanium-based compact formed by the mold 71 has a width that changes at the deepest portion, and includes a wide portion communicating with the opening on one end surface side and narrow portions on both sides in the width direction of the deepest portion. . It can also be said that this titanium-based green compact includes a bent portion of the central axis before the deepest portion of the concave portion.
図13に示すモールド81は、芯材配置スペース85aが、外筒壁部83の一端部側から他端部側まで貫通するとともに、その途中に幅方向に延びて外筒壁部83に開口するものである。この芯材配置スペース85aでは、幅方向に延びる箇所を、中心軸Cmに直交する方向の幅が広い広幅箇所とみなすことができる他、中心軸Cmが直角に折れ曲がる屈曲箇所ということもできる。モールド81で成形されるチタン系圧粉体の凹部は、一端面側の開口部及び他端面側の開口部のそれぞれにつながる狭幅部と、それらの狭幅部の間で段差を介して幅方向に延びて外周面に開口する広幅部とを有するものとなる。また、当該凹部は、狭幅部から広幅部に移行する部分に、中心軸の屈曲部分を含む形状になる。
In the mold 81 shown in FIG. 13, a core material placement space 85a penetrates from one end side to the other end side of the outer cylinder wall portion 83 and extends in the width direction along the way to open the outer cylinder wall portion 83. It is. In the core material arrangement space 85a, the portion extending in the width direction can be regarded as a wide portion where the width in the direction orthogonal to the central axis Cm is wide, and can also be regarded as a bending portion where the central axis Cm is bent at right angles. The concave portion of the titanium-based compact molded by the mold 81 has a narrow width portion connected to the opening portion on the one end surface side and the opening portion on the other end surface side, and a width difference between the narrow width portions via a step. and a wide portion that extends in the direction and opens to the outer peripheral surface. Further, the concave portion has a shape including a bent portion of the central axis in a portion transitioning from the narrow width portion to the wide width portion.
上述したように、チタン系圧粉体に設ける凹部は、貫通孔状又は、底を有する非貫通の窪み状等とすることができる。また、チタン系圧粉体の凹部の個数は一個とする場合に限らず、複数個とすることもできる。
As described above, the recesses provided in the titanium-based green compact can be in the form of through holes or in the form of non-penetrating depressions having bottoms. Further, the number of concave portions of the titanium-based compact is not limited to one, and may be plural.
なおチタン系圧粉体は、例えば中心軸に沿って切断すると特定の断面が得られ、また例えば、チタン系圧粉体を中心軸周りに回転させた所定の位置で中心軸に沿って切断すると、上記の特定の断面とは異なる断面が得られる。このようにチタン系圧粉体は、切断する位置に応じた多数の断面が存在する。そして、それらの断面は互いに異なる断面形状になることがある。この場合、多数の断面のうちの少なくとも一つにて、上述した例のように、凹部の中心軸方向の少なくとも一部で幅が変化する形状、並びに/あるいは、当該凹部の中心軸の湾曲部分及び/又は屈曲部分を含む形状を有するものであれば、この発明に含まれる。そのような凹部は複雑な形状であり、当該凹部を有するチタン系圧粉体を製造するには、この発明の実施形態のように、モールドの芯材配置スペース内に芯材構成材料を流動させて充填することが有効である。
For example, when the titanium-based green compact is cut along the central axis, a specific cross section can be obtained. , resulting in cross-sections different from the above specific cross-sections. As described above, the titanium-based green compact has a large number of cross sections corresponding to the cutting positions. And those cross sections may have cross-sectional shapes different from each other. In this case, at least one of the many cross sections has a shape in which the width changes in at least part of the central axis direction of the recess and/or a curved portion of the central axis of the recess, as in the above example. And/or any shape that includes a bent portion is included in the present invention. Such recesses have a complicated shape, and in order to manufacture a titanium-based green compact having such recesses, the material forming the core is made to flow into the core arrangement space of the mold as in the embodiment of the present invention. It is effective to fill
以上に述べた方法でチタン系圧粉体もしくはチタン系焼結体を製造する場合、原料粉末として、純チタン粉末、合金元素粉末、母合金粉末等の様々な粉末を、必要に応じて組み合わせて用いることができる。ここでいう純チタン粉末は主としてチタンを含む粉末、合金元素粉末はチタン合金等の合金元素を単独で含む粉末、母合金粉末は複数の元素を含む粉末をそれぞれ意味する。純チタン粉末は、チタンの他、5質量%以下の水素を含む場合がある。原料粉末は、たとえば、純チタン粉末のみとすることができる他、純チタン粉末に、鉄、アルミニウム、バナジウム、ジルコニウム、錫、モリブデン、銅及びニッケルからなる群から選択される一種の合金元素粉末及び/又は、それらの二種以上の元素を含む母合金粉末を混合させたものとしてもよい。あるいは、チタンと合金元素を含む粉末を原料粉末とすることも可能である。なお、純チタンとは、金属元素としてのチタン含有量が99質量%以上であることが好ましい。原料粉末における金属の質量比はチタン:合金元素=100:0~75:25とすることができ、チタン:合金元素=90:10とすることができる。
When a titanium-based green compact or a titanium-based sintered body is produced by the method described above, various powders such as pure titanium powder, alloying element powder, and mother alloy powder are used in combination as needed as raw material powders. can be used. Here, the pure titanium powder means a powder mainly containing titanium, the alloy element powder means a powder containing a single alloy element such as a titanium alloy, and the master alloy powder means a powder containing a plurality of elements. Pure titanium powder may contain not more than 5% by mass of hydrogen in addition to titanium. The raw material powder can be, for example, only pure titanium powder, or pure titanium powder and one kind of alloy element powder selected from the group consisting of iron, aluminum, vanadium, zirconium, tin, molybdenum, copper and nickel. Alternatively, a mixture of master alloy powders containing two or more of these elements may be used. Alternatively, a powder containing titanium and an alloying element can be used as the raw material powder. It should be noted that pure titanium preferably has a titanium content of 99% by mass or more as a metal element. The mass ratio of metals in the raw material powder can be titanium:alloying element=100:0 to 75:25, and can be titanium:alloying element=90:10.
原料粉末の平均粒径は、10μm~150μmとすることが好ましい。このように比較的微細な粒子を使用することにより、冷間等方圧加圧後のチタン系圧粉体、さらには焼結又は熱間等方圧加圧後のチタン系焼結体の圧縮密度を向上させることができる。平均粒径は、レーザー回折散乱法によって得られた粒度分布(体積基準)の粒子径D50(メジアン径)を意味する。
原料粉末には、粉砕粉末やアトマイズ粉末等の公知の粉末を使用可能である。 The average particle size of the raw material powder is preferably 10 μm to 150 μm. By using such relatively fine particles, titanium-based green compacts after cold isostatic pressing and compression of titanium-based sintered compacts after sintering or hot isostatic pressing can be obtained. Density can be improved. The average particle diameter means the particle diameter D50 (median diameter) of the particle size distribution (volume basis) obtained by the laser diffraction scattering method.
Known powders such as pulverized powders and atomized powders can be used as raw material powders.
原料粉末には、粉砕粉末やアトマイズ粉末等の公知の粉末を使用可能である。 The average particle size of the raw material powder is preferably 10 μm to 150 μm. By using such relatively fine particles, titanium-based green compacts after cold isostatic pressing and compression of titanium-based sintered compacts after sintering or hot isostatic pressing can be obtained. Density can be improved. The average particle diameter means the particle diameter D50 (median diameter) of the particle size distribution (volume basis) obtained by the laser diffraction scattering method.
Known powders such as pulverized powders and atomized powders can be used as raw material powders.
このような原料粉末を用いることにより、たとえば、純チタンからなるチタン製、又は、Ti-5Al-1Fe、Ti-5Al-2Fe、Ti-6Al-4V、Ti-6Al-6V-2Sn、Ti-6Al-2Sn-4Zr-2Mo、Ti-6Al-2Sn-4Zr-6Moもしくは、Ti-10V-2Fe-3Al等からなるチタン合金製のチタン系圧粉体、チタン系焼結体が製造され得る。また、Ti-3Al-2.5V等からなるチタン合金製のチタン系圧粉体、チタン系焼結体が製造され得る。なお、上記において、各合金金属の前に付されている数字は、含有量(質量%)を指す。例えば、「Ti-6Al-4V」とは、合金金属としては、6質量%のAlと4質量%のVとを含有するチタン合金を指す。
By using such raw material powder, for example, titanium made of pure titanium, Ti-5Al-1Fe, Ti-5Al-2Fe, Ti-6Al-4V, Ti-6Al-6V-2Sn, Ti-6Al -2Sn-4Zr-2Mo, Ti-6Al-2Sn-4Zr-6Mo, Ti-10V-2Fe-3Al titanium-based compacts and titanium-based sintered bodies made of titanium alloys can be produced. In addition, titanium-based compacts and titanium-based sintered bodies made of titanium alloys such as Ti-3Al-2.5V can be produced. In the above description, the number before each alloy metal indicates the content (% by mass). For example, “Ti-6Al-4V” refers to a titanium alloy containing 6% by mass of Al and 4% by mass of V as alloying metals.
次に、この発明のチタン系圧粉体を試験的に製造したので以下に説明する。但し、ここでの説明は単なる例示を目的とするものであり、これに限定されることを意図するものではない。
Next, the titanium-based green compact of the present invention was produced on a trial basis, which will be described below. However, the description herein is for illustrative purposes only and is not intended to be limiting.
<試験例1>
(製造方法)
3Dプリンタを用いて、外輪郭が円柱状で図11に示す形状を有するモールドを造形した。モールドを構成する樹脂材料は、ポリ乳酸(PLA)とし、ショアD硬さが83であった。モールドの厚みは1mmとした。モールドに設けた芯材配置スペースは、図11に示すように、同図の断面で、モールドの一端部から他端部に至る途中の二箇所で折れ曲がるクランク状とした。この芯材配置スペースは、一辺の長さが15mmの正方形状の開口部を有し、その中心軸に直交する断面形状が、一端部から他端部までのいずれの位置においても矩形状であった。モールドの円筒状の外筒壁部の外径は62mmとした。 <Test Example 1>
(Production method)
Using a 3D printer, a mold having a cylindrical outer contour and the shape shown in FIG. 11 was fabricated. The resin material forming the mold was polylactic acid (PLA) with a Shore D hardness of 83. The thickness of the mold was 1 mm. As shown in FIG. 11, the space for arranging the core material provided in the mold has a crank shape that is bent at two points on the way from one end to the other end of the mold in the cross section of the figure. This core material placement space has a square opening with a side length of 15 mm, and a cross-sectional shape orthogonal to the central axis is rectangular at any position from one end to the other end. rice field. The outer diameter of the cylindrical outer cylinder wall portion of the mold was set to 62 mm.
(製造方法)
3Dプリンタを用いて、外輪郭が円柱状で図11に示す形状を有するモールドを造形した。モールドを構成する樹脂材料は、ポリ乳酸(PLA)とし、ショアD硬さが83であった。モールドの厚みは1mmとした。モールドに設けた芯材配置スペースは、図11に示すように、同図の断面で、モールドの一端部から他端部に至る途中の二箇所で折れ曲がるクランク状とした。この芯材配置スペースは、一辺の長さが15mmの正方形状の開口部を有し、その中心軸に直交する断面形状が、一端部から他端部までのいずれの位置においても矩形状であった。モールドの円筒状の外筒壁部の外径は62mmとした。 <Test Example 1>
(Production method)
Using a 3D printer, a mold having a cylindrical outer contour and the shape shown in FIG. 11 was fabricated. The resin material forming the mold was polylactic acid (PLA) with a Shore D hardness of 83. The thickness of the mold was 1 mm. As shown in FIG. 11, the space for arranging the core material provided in the mold has a crank shape that is bent at two points on the way from one end to the other end of the mold in the cross section of the figure. This core material placement space has a square opening with a side length of 15 mm, and a cross-sectional shape orthogonal to the central axis is rectangular at any position from one end to the other end. rice field. The outer diameter of the cylindrical outer cylinder wall portion of the mold was set to 62 mm.
このモールドを用いて、芯材配置スペースに芯材を配置し、成形空間に原料粉末を充填した後に成形空間を密閉し、静水圧加圧にて冷間等方圧加圧(CIP)を行った。なお原料粉末には、トーホーテック株式会社製のHDH純チタン粉末TC-150(D50=66μm)を用いた。実施例1~6及び比較例1~6の条件を表1に示す。
Using this mold, the core material is arranged in the core material arrangement space, the molding space is filled with raw material powder, the molding space is sealed, and cold isostatic pressing (CIP) is performed by hydrostatic pressurization. rice field. As the raw material powder, HDH pure titanium powder TC-150 (D50=66 μm) manufactured by Toho Tech Co., Ltd. was used. Table 1 shows the conditions of Examples 1-6 and Comparative Examples 1-6.
実施例1~6及び比較例1~3では、モールドの一端部(図11の下端部)側の端面にPLA製シートを貼り付けて、芯材配置スペースの一端部側の開口を塞いだ状態で、他端部(図11の上端部)側の開口から芯材配置スペース内に、所定の芯材構成材料を流動させて充填し、芯材を構成した。芯材として、実施例1及び2ならびに比較例1では湿気硬化型樹脂であるシリコーンシーラント(セメダイン株式会社製、セメダイン8000シリコーンシーラント)を使用し、実施例3及び4ならびに比較例2では粘土(関東器材工業株式会社製、エアコンパテ)を使用し、実施例5及び6ならびに比較例3では混合反応硬化型のシリコーン樹脂(信越化学工業株式会社製KE-12)を使用した。
比較例4~6では、芯材としてのSUS製の中子及び、分割モールドを用いた。より詳細には、モールドを図11に示す断面に沿って分割した分割モールドとし、分割モールドの一方の半部における芯材配置スペースに中子を配置した後、その一方の半部に他方の半部を合わせて他方の半部の芯材配置スペースに上記の中子を嵌め込み、半部どうしを接着した。なお、比較例4~6では中子は三分割されたSUS製の角柱材を組み合わせて使用したため、前記接着後モールドの開口部を、PLA製シートを貼り付けて閉じた。 In Examples 1 to 6 and Comparative Examples 1 to 3, a PLA sheet was attached to the end face of one end of the mold (lower end of FIG. 11), and the opening of the core material arrangement space on the one end side was closed. Then, from the opening on the side of the other end (upper end in FIG. 11) into the space for arranging the core, a predetermined core constituent material was flowed and filled to form the core. As the core material, in Examples 1 and 2 and Comparative Example 1, a moisture-curable resin silicone sealant (Cemedine 8000 silicone sealant, manufactured by Cemedine Co., Ltd.) was used, and in Examples 3 and 4 and Comparative Example 2, clay (Kanto Air putty manufactured by Kizai Kogyo Co., Ltd.) was used, and in Examples 5 and 6 and Comparative Example 3, a mixing reaction curing type silicone resin (KE-12 manufactured by Shin-Etsu Chemical Co., Ltd.) was used.
In Comparative Examples 4 to 6, a core made of SUS as a core material and a split mold were used. More specifically, the mold is split along the cross section shown in FIG. The two halves were joined together by fitting the core into the space for arranging the core material in the other half. In Comparative Examples 4 to 6, since the core was used by combining three-part SUS prismatic materials, the opening of the mold was closed by pasting a PLA sheet after the adhesion.
比較例4~6では、芯材としてのSUS製の中子及び、分割モールドを用いた。より詳細には、モールドを図11に示す断面に沿って分割した分割モールドとし、分割モールドの一方の半部における芯材配置スペースに中子を配置した後、その一方の半部に他方の半部を合わせて他方の半部の芯材配置スペースに上記の中子を嵌め込み、半部どうしを接着した。なお、比較例4~6では中子は三分割されたSUS製の角柱材を組み合わせて使用したため、前記接着後モールドの開口部を、PLA製シートを貼り付けて閉じた。 In Examples 1 to 6 and Comparative Examples 1 to 3, a PLA sheet was attached to the end face of one end of the mold (lower end of FIG. 11), and the opening of the core material arrangement space on the one end side was closed. Then, from the opening on the side of the other end (upper end in FIG. 11) into the space for arranging the core, a predetermined core constituent material was flowed and filled to form the core. As the core material, in Examples 1 and 2 and Comparative Example 1, a moisture-curable resin silicone sealant (Cemedine 8000 silicone sealant, manufactured by Cemedine Co., Ltd.) was used, and in Examples 3 and 4 and Comparative Example 2, clay (Kanto Air putty manufactured by Kizai Kogyo Co., Ltd.) was used, and in Examples 5 and 6 and Comparative Example 3, a mixing reaction curing type silicone resin (KE-12 manufactured by Shin-Etsu Chemical Co., Ltd.) was used.
In Comparative Examples 4 to 6, a core made of SUS as a core material and a split mold were used. More specifically, the mold is split along the cross section shown in FIG. The two halves were joined together by fitting the core into the space for arranging the core material in the other half. In Comparative Examples 4 to 6, since the core was used by combining three-part SUS prismatic materials, the opening of the mold was closed by pasting a PLA sheet after the adhesion.
冷間等方圧加圧による加圧時間は、いずれの実施例1~6及び比較例1~6でも1分とした。
The pressurization time by cold isostatic pressurization was 1 minute in any of Examples 1-6 and Comparative Examples 1-6.
(評価)
モールドの芯材配置スペースへの芯材の配置の容易さについて、所定の芯材構成材料を用いた実施例1~6及び比較例1~3では容易であったが、SUS製の中子を用いた比較例4~6では、モールドを分割しなければ中子を配置できなかった。よって、比較例4~6は、実施例1~6及び比較例1~3に対し中子の配置のしやすさが大きく劣る結果となった。すなわち、中子の配置のしやすさの評価では、比較例4~6は不合格、実施例1~6及び比較例1~3は合格であった。 (evaluation)
Regarding the ease of arranging the core material in the core material arrangement space of the mold, it was easy in Examples 1 to 6 and Comparative Examples 1 to 3 using the predetermined core material constituting material, but the core made of SUS was used. In Comparative Examples 4 to 6 used, the core could not be placed without dividing the mold. Therefore, Comparative Examples 4 to 6 were significantly inferior to Examples 1 to 6 and Comparative Examples 1 to 3 in ease of placement of cores. In other words, in the evaluation of ease of placement of cores, Comparative Examples 4 to 6 failed, and Examples 1 to 6 and Comparative Examples 1 to 3 passed.
モールドの芯材配置スペースへの芯材の配置の容易さについて、所定の芯材構成材料を用いた実施例1~6及び比較例1~3では容易であったが、SUS製の中子を用いた比較例4~6では、モールドを分割しなければ中子を配置できなかった。よって、比較例4~6は、実施例1~6及び比較例1~3に対し中子の配置のしやすさが大きく劣る結果となった。すなわち、中子の配置のしやすさの評価では、比較例4~6は不合格、実施例1~6及び比較例1~3は合格であった。 (evaluation)
Regarding the ease of arranging the core material in the core material arrangement space of the mold, it was easy in Examples 1 to 6 and Comparative Examples 1 to 3 using the predetermined core material constituting material, but the core made of SUS was used. In Comparative Examples 4 to 6 used, the core could not be placed without dividing the mold. Therefore, Comparative Examples 4 to 6 were significantly inferior to Examples 1 to 6 and Comparative Examples 1 to 3 in ease of placement of cores. In other words, in the evaluation of ease of placement of cores, Comparative Examples 4 to 6 failed, and Examples 1 to 6 and Comparative Examples 1 to 3 passed.
実施例1~6及び比較例1~6のそれぞれにより得られた各チタン系圧粉体の外観(凹部内面を含まない外表面の様子)を観察した。その結果を表1に示す。ここで、「◎」は、ひびも割れも無かったことを意味する。「〇」は、当該外表面の端部に欠けがあったが、外表面の主要な部分に目立った割れがなかったことを意味する。「×」は、ひびまたは割れがあったことを意味する。表1から解かるように、比較例4のチタン系圧粉体を除き、概ね良好な外観であった。
The appearance of each titanium-based compact obtained in Examples 1 to 6 and Comparative Examples 1 to 6 (state of the outer surface not including the inner surface of the concave portion) was observed. Table 1 shows the results. Here, "⊚" means that there was no crack or split. "O" means that there was chipping at the edge of the outer surface, but there was no noticeable crack in the main portion of the outer surface. "X" means that there was a crack or split. As can be seen from Table 1, except for the titanium-based compact of Comparative Example 4, the external appearance was generally good.
実施例1~6及び比較例1~6のそれぞれについて、CIP後のチタン系圧粉体からの芯材の取出し性を評価した。その結果を表1に示す。
なお、芯材を使用せずに圧粉体を成形する通常のプロセスでは、CIP後のサンプルを約100℃で加熱してモールドを軟化・除去して圧粉体を得る。一方、実施例1~6及び比較例1~6では、芯材を使用したことから、その芯材の材質によって、モールドを除去するとともに該芯材を取り出す工程が必要となり、その取出しに要する負荷が実施例及び比較例のそれぞれで異なっていた。
表1中、「◎」は、モールドの除去と同時に芯材を取り出せたことを意味する。このような芯材取出しの容易さは、チタン系圧粉体の成形後も芯材が流動性を有することに起因する。「〇」は、ある程度の芯材を取り出してから、モールドを剥がすという二段階の工程を経て圧粉体が得られたことを意味する。ある程度の芯材を取り出さないとモールドを剥がせない理由は、配置時には流動性を有していた芯材が完全に硬化したことによるものであった。「×」は、圧粉体の形状を維持しつつ芯材を取り出すことが不可能であったことを意味する。なお、実施例5及び6ならびに比較例3では、芯材内部が完全に硬化していたため、取出し性が「〇」となった。 For each of Examples 1 to 6 and Comparative Examples 1 to 6, the removability of the core material from the titanium-based compact after CIP was evaluated. Table 1 shows the results.
In a normal process for molding a green compact without using a core material, the sample after CIP is heated at about 100° C. to soften and remove the mold to obtain a green compact. On the other hand, in Examples 1 to 6 and Comparative Examples 1 to 6, since the core material was used, it was necessary to remove the mold and take out the core material depending on the material of the core material. was different between the examples and the comparative examples.
In Table 1, "⊚" means that the core material could be taken out at the same time as the mold was removed. Such ease of taking out the core material is due to the fluidity of the core material even after molding of the titanium-based compact. "O" means that a green compact was obtained through a two-step process of taking out a certain amount of the core material and then peeling off the mold. The reason why the mold could not be removed without taking out a certain amount of the core material was that the core material, which had fluidity at the time of placement, had completely hardened. "X" means that it was impossible to take out the core material while maintaining the shape of the green compact. In Examples 5 and 6 and Comparative Example 3, since the inside of the core material was completely hardened, the removability was evaluated as "Good".
なお、芯材を使用せずに圧粉体を成形する通常のプロセスでは、CIP後のサンプルを約100℃で加熱してモールドを軟化・除去して圧粉体を得る。一方、実施例1~6及び比較例1~6では、芯材を使用したことから、その芯材の材質によって、モールドを除去するとともに該芯材を取り出す工程が必要となり、その取出しに要する負荷が実施例及び比較例のそれぞれで異なっていた。
表1中、「◎」は、モールドの除去と同時に芯材を取り出せたことを意味する。このような芯材取出しの容易さは、チタン系圧粉体の成形後も芯材が流動性を有することに起因する。「〇」は、ある程度の芯材を取り出してから、モールドを剥がすという二段階の工程を経て圧粉体が得られたことを意味する。ある程度の芯材を取り出さないとモールドを剥がせない理由は、配置時には流動性を有していた芯材が完全に硬化したことによるものであった。「×」は、圧粉体の形状を維持しつつ芯材を取り出すことが不可能であったことを意味する。なお、実施例5及び6ならびに比較例3では、芯材内部が完全に硬化していたため、取出し性が「〇」となった。 For each of Examples 1 to 6 and Comparative Examples 1 to 6, the removability of the core material from the titanium-based compact after CIP was evaluated. Table 1 shows the results.
In a normal process for molding a green compact without using a core material, the sample after CIP is heated at about 100° C. to soften and remove the mold to obtain a green compact. On the other hand, in Examples 1 to 6 and Comparative Examples 1 to 6, since the core material was used, it was necessary to remove the mold and take out the core material depending on the material of the core material. was different between the examples and the comparative examples.
In Table 1, "⊚" means that the core material could be taken out at the same time as the mold was removed. Such ease of taking out the core material is due to the fluidity of the core material even after molding of the titanium-based compact. "O" means that a green compact was obtained through a two-step process of taking out a certain amount of the core material and then peeling off the mold. The reason why the mold could not be removed without taking out a certain amount of the core material was that the core material, which had fluidity at the time of placement, had completely hardened. "X" means that it was impossible to take out the core material while maintaining the shape of the green compact. In Examples 5 and 6 and Comparative Example 3, since the inside of the core material was completely hardened, the removability was evaluated as "Good".
凹部の成形性を評価するため、各チタン系圧粉体を、図11に示す断面が現れるように中心軸に沿って切断し、凹部の折れ曲がり箇所を形作る角部が、所期したとおりの直角に形成されているかどうかを確認した。表1中、「〇」は、角部が直角であったことを意味し、「×」は、角部に欠けがあるか又は面取りされた形状になっていたことを意味する。表1に示すように、実施例1~6のチタン系圧粉体はいずれも、角部が良好であった。一方、比較例1~6のチタン系圧粉体は、角部に欠けがあり又は面取りがなされていた。比較例4~6は、チタン系圧粉体を解体しなければ芯材を分離できなかったので、チタン系圧粉体の製造において所望する凹部の形成に失敗した例であるとも言える。
In order to evaluate the moldability of the recess, each titanium-based green compact was cut along the central axis so that the cross section shown in FIG. was formed. In Table 1, "o" means that the corner was right-angled, and "x" means that the corner was chipped or chamfered. As shown in Table 1, all of the titanium-based compacts of Examples 1 to 6 had good corner portions. On the other hand, the titanium-based compacts of Comparative Examples 1 to 6 had chipped or chamfered corners. In Comparative Examples 4 to 6, the core material could not be separated unless the titanium-based green compact was dismantled, so it can be said that these are examples in which the formation of the desired concave portions in the production of the titanium-based green compact failed.
<試験例2>
原料粉末として、上記のHDH純チタン粉末と、60Al-40Vの母合金粉末(D50=55μm、粉砕粉末)とを9:1の質量比で混合させた混合粉末を用いて、Ti-6Al-4V製のチタン系圧粉体を製造した。他の製造条件は、実施例2と同様とした。このチタン系圧粉体について、試験例1と同様にして外観、芯材取出し性及び、凹部の成形性を評価した結果、実施例2と同様に、外観は「◎」、芯材取出し性は「◎」、凹部の成形性は「〇」であった。 <Test Example 2>
As a raw material powder, a mixed powder obtained by mixing the above HDH pure titanium powder and a 60Al-40V mother alloy powder (D50 = 55 µm, pulverized powder) at a mass ratio of 9:1 was used to obtain Ti-6Al-4V. A titanium-based green compact was produced. Other manufacturing conditions were the same as in Example 2. This titanium-based compact was evaluated for appearance, core removal efficiency, and recess moldability in the same manner as in Test Example 1. "A" and moldability of the concave portion were "O".
原料粉末として、上記のHDH純チタン粉末と、60Al-40Vの母合金粉末(D50=55μm、粉砕粉末)とを9:1の質量比で混合させた混合粉末を用いて、Ti-6Al-4V製のチタン系圧粉体を製造した。他の製造条件は、実施例2と同様とした。このチタン系圧粉体について、試験例1と同様にして外観、芯材取出し性及び、凹部の成形性を評価した結果、実施例2と同様に、外観は「◎」、芯材取出し性は「◎」、凹部の成形性は「〇」であった。 <Test Example 2>
As a raw material powder, a mixed powder obtained by mixing the above HDH pure titanium powder and a 60Al-40V mother alloy powder (D50 = 55 µm, pulverized powder) at a mass ratio of 9:1 was used to obtain Ti-6Al-4V. A titanium-based green compact was produced. Other manufacturing conditions were the same as in Example 2. This titanium-based compact was evaluated for appearance, core removal efficiency, and recess moldability in the same manner as in Test Example 1. "A" and moldability of the concave portion were "O".
また、原料粉末として、上記のHDH純チタン粉末と、アルミニウム製のアトマイズ粉末(D50=30μm)と、鉄製の球状粉末(D50=30μm)とを94:5:1の質量比で混合させた混合粉末を用いて、Ti-5Al-1Fe製のチタン系圧粉体を製造した。他の製造条件は、実施例2と同様とした。このチタン系圧粉体について、試験例1と同様にして外観、芯材取出し性及び、凹部の成形性を評価した結果、実施例2と同様に、外観は「◎」、芯材取出し性は「◎」、凹部の成形性は「〇」であった。
As raw material powders, the above HDH pure titanium powder, aluminum atomized powder (D50 = 30 µm), and iron spherical powder (D50 = 30 µm) were mixed at a mass ratio of 94:5:1. Using the powder, a Ti-5Al-1Fe titanium-based compact was produced. Other manufacturing conditions were the same as in Example 2. This titanium-based compact was evaluated for appearance, core removal efficiency, and recess moldability in the same manner as in Test Example 1. "A" and moldability of the concave portion were "O".
1、21、31、41、51、61、71、81 モールド
2、22、32、42、52、62、72、82 成形空間
3、23、33、43、53、63、73、83 外筒壁部
4、24、34、44、54、64、74、84 環状壁部
5、25、35、45、55、65、75、85 内筒壁部
5a、25a、35a、45a、55a、65a、75a、85a 芯材配置スペース
6a 密閉部材
6b 円盤状部材
11 芯材
101 チタン系圧粉体
102 凹部
102a、102b 開口部
102c 段差部
102d 広幅部
102e 狭幅部
111 注入器具
Cm 芯材配置スペースの中心軸
Cc 凹部の中心軸
Wa、Wb 幅 1, 21, 31, 41, 51, 61, 71, 81 mold 2, 22, 32, 42, 52, 62, 72, 82 molding space 3, 23, 33, 43, 53, 63, 73, 83 outer cylinder Wall portions 4, 24, 34, 44, 54, 64, 74, 84 Annular wall portions 5, 25, 35, 45, 55, 65, 75, 85 Inner cylinder wall portions 5a, 25a, 35a, 45a, 55a, 65a , 75a, 85a core material arrangement space 6a sealing member 6b disk-shaped member 11 core material 101 titanium-based powder compact 102 concave portion 102a, 102b opening 102c stepped portion 102d wide portion 102e narrow portion 111 injection device Cm of core material arrangement space Central axis Cc Central axis of recess Wa, Wb Width
2、22、32、42、52、62、72、82 成形空間
3、23、33、43、53、63、73、83 外筒壁部
4、24、34、44、54、64、74、84 環状壁部
5、25、35、45、55、65、75、85 内筒壁部
5a、25a、35a、45a、55a、65a、75a、85a 芯材配置スペース
6a 密閉部材
6b 円盤状部材
11 芯材
101 チタン系圧粉体
102 凹部
102a、102b 開口部
102c 段差部
102d 広幅部
102e 狭幅部
111 注入器具
Cm 芯材配置スペースの中心軸
Cc 凹部の中心軸
Wa、Wb 幅 1, 21, 31, 41, 51, 61, 71, 81
Claims (9)
- 凹部を有するチタン系圧粉体を製造する方法であって、
前記チタン系圧粉体の前記凹部が、当該凹部の中心軸の少なくとも一部を含む断面の一つ以上にて、当該凹部の中心軸方向の少なくとも一部で幅が変化する形状、並びに/あるいは、当該凹部の中心軸の湾曲部分及び/又は屈曲部分を含む形状を有し、
樹脂製のモールドにおける前記凹部に対応する芯材配置スペース内に、芯材構成材料を流動させて充填し、前記凹部に対応する形状の芯材を配置する工程と、
前記モールドの成形空間に原料粉末を充填する工程と、
前記芯材配置スペース内に前記芯材が配置された状態で、前記成形空間に前記原料粉末を充填した前記モールドに対して300MPa以上の静水圧加圧にて冷間等方圧加圧を行う工程とを含む、チタン系圧粉体の製造方法。 A method for producing a titanium-based compact having recesses, comprising:
The concave portion of the titanium-based compact has a shape in which the width changes in at least part of the central axis direction of the concave portion in one or more cross sections including at least part of the central axis of the concave portion, and/or , having a shape including a curved portion and/or a bent portion of the central axis of the recess,
A step of filling a core material arranging space corresponding to the recess in a resin mold by flowing a material constituting the core, and arranging a core material having a shape corresponding to the recess;
filling the molding space of the mold with raw material powder;
In a state where the core material is arranged in the core material arrangement space, the mold filled with the raw material powder in the molding space is subjected to cold isostatic pressurization with a hydrostatic pressure of 300 MPa or more. A method for producing a titanium-based compact, comprising: - 前記チタン系圧粉体の前記凹部の内面が段差部を含み、
前記芯材配置スペースが段差を含む、請求項1に記載のチタン系圧粉体の製造方法。 the inner surface of the recessed portion of the titanium-based compact includes a stepped portion,
2. The method for producing a titanium-based compact according to claim 1, wherein said core material placement space includes a step. - 前記チタン系圧粉体の前記凹部が、前記断面の少なくとも一つにて、相対的に幅の広い広幅部と、前記広幅部に対して相対的に前記幅の狭い狭幅部とを含み、
前記芯材配置スペースが、前記凹部の前記広幅部を形成する広幅箇所と、前記凹部の前記狭幅部を形成する狭幅箇所とを有する、請求項1又は2に記載のチタン系圧粉体の製造方法。 wherein the recessed portion of the titanium-based green powder includes a wide portion having a relatively wide width and a narrow portion having a relatively narrow width with respect to the wide portion in at least one of the cross sections;
3. The titanium-based compact according to claim 1, wherein the core material arrangement space has a wide portion forming the wide portion of the recess and a narrow portion forming the narrow portion of the recess. manufacturing method. - 前記芯材構成材料として、硬化樹脂または粘土を用いる、請求項1~3のいずれか一項に記載のチタン系圧粉体の製造方法。 The method for producing a titanium-based green compact according to any one of claims 1 to 3, wherein a cured resin or clay is used as the core constituent material.
- 前記芯材構成材料として前記硬化樹脂を使用し、
前記芯材構成材料を前記芯材配置スペース内に充填したとき、芯材構成材料の少なくとも、芯材構成材料の注入に用いられた芯材配置スペースの一端側の開口又は他端側の開口に存在する表層部分を硬化させる、請求項4に記載のチタン系圧粉体の製造方法。 using the cured resin as the core constituent material,
When the core material constituting material is filled in the core material arranging space, at least the core material composing material fills the opening on the one end side or the opening on the other end side of the core material arranging space used for injecting the core material composing material. 5. The method for producing a titanium-based compact according to claim 4, wherein the existing surface layer portion is hardened. - 前記モールドとして、ショアD硬さが30~120の範囲内である熱可塑性樹脂からなるモールドを用いる、請求項1~5のいずれか一項に記載のチタン系圧粉体の製造方法。 The method for producing a titanium-based compact according to any one of claims 1 to 5, wherein a mold made of a thermoplastic resin having a Shore D hardness within the range of 30 to 120 is used as the mold.
- 前記モールドとして、三次元造形装置を用いて作製されたモールドを用いる、請求項1~6のいずれか一項に記載のチタン系圧粉体の製造方法。 The method for producing a titanium-based compact according to any one of claims 1 to 6, wherein a mold manufactured using a three-dimensional modeling apparatus is used as the mold.
- 前記冷間等方圧加圧で前記モールドに対して400MPa以上の加圧力を作用させる、請求項1~7のいずれか一項に記載のチタン系圧粉体の製造方法。 The method for producing a titanium-based compact according to any one of claims 1 to 7, wherein a pressure of 400 MPa or more is applied to the mold by the cold isostatic pressing.
- チタン系焼結体を製造する方法であって、
請求項1~8のいずれか一項に記載のチタン系圧粉体の製造方法により製造されたチタン系圧粉体に対し、焼結及び/又は熱間等方圧加圧を行う工程を含む、チタン系焼結体の製造方法。 A method for producing a titanium-based sintered body, comprising:
A step of sintering and/or hot isostatically pressing the titanium-based compact produced by the method for producing a titanium-based compact according to any one of claims 1 to 8. , a method for producing a titanium-based sintered body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022524725A JP7177302B1 (en) | 2021-03-12 | 2022-01-05 | Method for producing titanium-based green compact and method for producing titanium-based sintered compact |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021040624 | 2021-03-12 | ||
JP2021-040624 | 2021-03-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022190601A1 true WO2022190601A1 (en) | 2022-09-15 |
Family
ID=83226613
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/000148 WO2022190601A1 (en) | 2021-03-12 | 2022-01-05 | Titanium green compact production method and titanium sintered body production method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7177302B1 (en) |
WO (1) | WO2022190601A1 (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6163399A (en) * | 1984-09-05 | 1986-04-01 | Hitachi Ltd | Thin wall pipe forming method utilizing powder |
JPH06330104A (en) * | 1993-05-21 | 1994-11-29 | Toyota Central Res & Dev Lab Inc | Production of core for production member having hollow part and production of member having hollow part |
JPH0790313A (en) * | 1993-09-21 | 1995-04-04 | Nippon Steel Corp | Hydrostatic press forming method of titanium powder |
JP2016175202A (en) * | 2015-03-18 | 2016-10-06 | 株式会社東芝 | Three-dimensional molding method |
WO2019054303A1 (en) * | 2017-09-14 | 2019-03-21 | 東邦チタニウム株式会社 | Production method for titanium or titanium alloy green compact |
WO2019054306A1 (en) * | 2017-09-14 | 2019-03-21 | 東邦チタニウム株式会社 | Production method for titanium or titanium alloy green compact |
JP2019108595A (en) * | 2017-12-19 | 2019-07-04 | 東邦チタニウム株式会社 | Method for manufacturing titanium or titanium alloy green compact |
US20200016661A1 (en) * | 2018-07-12 | 2020-01-16 | Rolls-Royce Plc | Fabricating hollow components |
-
2022
- 2022-01-05 WO PCT/JP2022/000148 patent/WO2022190601A1/en active Application Filing
- 2022-01-05 JP JP2022524725A patent/JP7177302B1/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6163399A (en) * | 1984-09-05 | 1986-04-01 | Hitachi Ltd | Thin wall pipe forming method utilizing powder |
JPH06330104A (en) * | 1993-05-21 | 1994-11-29 | Toyota Central Res & Dev Lab Inc | Production of core for production member having hollow part and production of member having hollow part |
JPH0790313A (en) * | 1993-09-21 | 1995-04-04 | Nippon Steel Corp | Hydrostatic press forming method of titanium powder |
JP2016175202A (en) * | 2015-03-18 | 2016-10-06 | 株式会社東芝 | Three-dimensional molding method |
WO2019054303A1 (en) * | 2017-09-14 | 2019-03-21 | 東邦チタニウム株式会社 | Production method for titanium or titanium alloy green compact |
WO2019054306A1 (en) * | 2017-09-14 | 2019-03-21 | 東邦チタニウム株式会社 | Production method for titanium or titanium alloy green compact |
JP2019108595A (en) * | 2017-12-19 | 2019-07-04 | 東邦チタニウム株式会社 | Method for manufacturing titanium or titanium alloy green compact |
US20200016661A1 (en) * | 2018-07-12 | 2020-01-16 | Rolls-Royce Plc | Fabricating hollow components |
Also Published As
Publication number | Publication date |
---|---|
JP7177302B1 (en) | 2022-11-22 |
JPWO2022190601A1 (en) | 2022-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2509727B1 (en) | Waxless precision casting process | |
RU2311984C2 (en) | Casting method and equipment for performing the same | |
EP2991787B1 (en) | Investment casting utilizing flexible wax pattern tool for supporting a ceramic core along its length during wax injection | |
EP2509726B1 (en) | Investment casting utilizing flexible wax pattern tool | |
US6042780A (en) | Method for manufacturing high performance components | |
KR100987556B1 (en) | Sintered composite machine part and manufacturing method thereof | |
US20100047557A1 (en) | Ceramic and/or powder-metallurgical composite shaped body and method for the production thereof | |
CA2228721A1 (en) | Method and apparatus for constructing three-dimensional bodies from laminations | |
CN104628393A (en) | Preparation method of high-performance ceramic | |
CA2250955C (en) | Net shaped dies and molds and method for producing the same | |
US6592807B2 (en) | Method of making a porous tire tread mold | |
Nishiyabu | Micro metal powder injection molding | |
JP7177302B1 (en) | Method for producing titanium-based green compact and method for producing titanium-based sintered compact | |
US20070077534A1 (en) | Blank and intermediate article for the production of a dental prosthetic item and process for the production thereof | |
US7946035B2 (en) | Method of manufacturing a hollow article | |
WO2021060363A1 (en) | Method for producing green compact and method for producing sintered body | |
JP7266285B2 (en) | Manufacturing method and manufacturing device for blank for dental processing with multilayer structure | |
JP2022553878A (en) | Method for manufacturing moldings, in particular dental moldings | |
WO2023203892A1 (en) | Method for manufacturing titanium compact and method for manufacturing titanium sintered body | |
EP0163718A1 (en) | A method for manufacturing a tool suitable for cutting and/or shaping work, and a tool which has preferably been manufactured in accordance with the method | |
JP7525133B2 (en) | Method for manufacturing mold kit and dental processing blank | |
JP7525129B2 (en) | Manufacturing method of dental processing blanks | |
DE19703032C1 (en) | Flat structured ceramic or powder metallurgical parts production | |
KR20050115738A (en) | Menufacturing method for metal casting moulds | |
JP2008272780A (en) | Die, and compression molded body molded by the die |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2022524725 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22766569 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22766569 Country of ref document: EP Kind code of ref document: A1 |