[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022185458A1 - 紫外光照射システム及び紫外光照射方法 - Google Patents

紫外光照射システム及び紫外光照射方法 Download PDF

Info

Publication number
WO2022185458A1
WO2022185458A1 PCT/JP2021/008270 JP2021008270W WO2022185458A1 WO 2022185458 A1 WO2022185458 A1 WO 2022185458A1 JP 2021008270 W JP2021008270 W JP 2021008270W WO 2022185458 A1 WO2022185458 A1 WO 2022185458A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultraviolet light
optical fiber
section
core
core optical
Prior art date
Application number
PCT/JP2021/008270
Other languages
English (en)
French (fr)
Inventor
友宏 谷口
聖 成川
亜弥子 岩城
誉人 桐原
和秀 中島
隆 松井
信智 半澤
悠途 寒河江
千里 深井
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to US18/279,424 priority Critical patent/US20240181099A1/en
Priority to PCT/JP2021/008270 priority patent/WO2022185458A1/ja
Priority to JP2023503268A priority patent/JP7574911B2/ja
Publication of WO2022185458A1 publication Critical patent/WO2022185458A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/10Ultraviolet radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/26Accessories or devices or components used for biocidal treatment
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/10Apparatus features
    • A61L2202/11Apparatus for generating biocidal substances, e.g. vaporisers, UV lamps
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02042Multicore optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/102Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type for infrared and ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4249Packages, e.g. shape, construction, internal or external details comprising arrays of active devices and fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4296Coupling light guides with opto-electronic elements coupling with sources of high radiant energy, e.g. high power lasers, high temperature light sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the present disclosure relates to an ultraviolet light irradiation system and a decontamination method that perform sterilization and virus inactivation using ultraviolet light.
  • Mobile sterilization robot is an autonomous mobile robot that emits ultraviolet light.
  • a mobile sterilization robot can automatically decontaminate a wide area in a building such as a hospital room by irradiating ultraviolet light while moving in the room without human intervention. For example, see the website of Kantum Ushikata Co., Ltd. (https://www.kantum.co.jp/product/sakkin_robot/sakkinn_robot/UVD_robot).
  • Stationary air purifier is a device that is installed on the ceiling or in a predetermined place in a room and decontaminates while circulating the air in the room.
  • Stationary air purifiers do not irradiate ultraviolet light to the outside and have no effect on the human body, so decontamination can be performed with a high degree of safety.
  • Iwasaki Electric Co., Ltd. website https://www.iwasaki.co.jp/optics/sterilization/air/air03.html.
  • Portable Sterilizer A portable sterilizer is a portable device equipped with an ultraviolet light source such as a fluorescent lamp, a mercury lamp, or an LED. A user brings the portable sterilizer to an area to be decontaminated and irradiates it with ultraviolet light.
  • the portable sterilizer can be used in various places. For example, see Funakoshi Co., Ltd. website (https://www.funakoshi.co.jp/contents/68182).
  • the prior art has the following difficulties. (1) Since the mobile sterilization robot irradiates high-output ultraviolet light, the device is large-scaled and expensive. Therefore, the mobile sterilization robot has a problem that it is difficult to realize it economically. (2) A stationary air purifier is a method of sterilizing circulated indoor air, so there is a problem that it is difficult to immediately decontaminate clothes and bacteria and viruses emitted by carriers. (3) Portable sterilizers have the problem that the irradiated ultraviolet light is relatively weak, making it difficult to decontaminate in a short period of time. In addition, even if a high-output mercury lamp or fluorescent lamp is used, these are generally large and short-lived. difficult to apply to
  • a system using an optical fiber can be considered for the above-mentioned problems (1) to (3).
  • By transmitting the ultraviolet light from the light source using a thin and flexible optical fiber it is possible to have the flexibility to irradiate the area to be decontaminated with the ultraviolet light output from the tip of the fiber with pinpoint accuracy.
  • Non-Patent Document 1 Transmitting high-energy light in the ultraviolet region causes defects in the core glass, degrading the transmission loss characteristics over time, and as a result reducing the power of the ultraviolet light emitted from the output end of the optical fiber.
  • the decontamination effect cannot be obtained.
  • it is possible to adopt an operation method of replacing the optical fiber that has deteriorated frequent replacement may occur depending on the usage conditions, which may complicate the operation, and an efficient countermeasure is an issue.
  • the conventional decontamination system using an optical fiber has a problem that, when the power of the ultraviolet light is large, the power of the irradiated ultraviolet light is reduced due to deterioration of the transmission loss characteristic over time.
  • the present invention is an ultraviolet light irradiation system and an ultraviolet light irradiation method capable of reducing deterioration over time of the transmission loss characteristics of an optical fiber due to ultraviolet light and preventing a decrease in the power of the irradiated ultraviolet light. intended to provide
  • the ultraviolet light irradiation system uses a space division multiplexing (SDM) method to transmit a part of the ultraviolet light propagation section.
  • SDM space division multiplexing
  • the ultraviolet light irradiation system includes: an ultraviolet light source that generates ultraviolet light; N irradiation units (N is a natural number) for irradiating a desired portion with the ultraviolet light;
  • An ultraviolet light irradiation system comprising A propagation section and a supply section are provided between the ultraviolet light source section and the irradiation section, In the propagation section, the ultraviolet light generated by the ultraviolet light source is propagated by a space division multiplexing method, In the supply section, the ultraviolet light in the propagation section, which is spatially division multiplexed, is combined, and the combined ultraviolet light is propagated to the irradiation section through a single-core optical fiber.
  • the ultraviolet light irradiation method according to the present invention is an ultraviolet light irradiation method for irradiating a desired portion with N (N is a natural number) ultraviolet light generated by an ultraviolet light source unit,
  • N is a natural number
  • a propagation section and a supply section are provided between the ultraviolet light source section and the irradiation section,
  • the ultraviolet light generated by the ultraviolet light source is propagated by a space division multiplexing method
  • the ultraviolet light in the propagation section which is spatially division multiplexed, is combined, and the combined ultraviolet light is propagated to the irradiation section through a single-core optical fiber.
  • This UV light irradiation system disperses and transmits the high energy density UV light from the UV light source through multiple fibers, etc., thereby mitigating damage to the transmission path, and by synthesizing the output light from multiple fibers, etc.
  • Ultraviolet light with sufficient decontamination power can be applied to decontamination locations. Therefore, the present invention can provide an ultraviolet light irradiation system and an ultraviolet light irradiation method that can reduce deterioration of transmission loss characteristics of an optical fiber due to ultraviolet light over time and prevent a decrease in the power of irradiated ultraviolet light.
  • the ultraviolet light source section of the ultraviolet light irradiation system according to the present invention has a plurality of light sources, and can space-division multiplex the ultraviolet light output from each of the light sources in the propagation section.
  • the ultraviolet light source section of the ultraviolet light irradiation system may have a light branching section for branching the ultraviolet light, and may space-division multiplex each branched ultraviolet light in the propagation section.
  • the ultraviolet light propagated through the propagation section after being space-division multiplexed is divided into N groups between the propagation section and the supply section.
  • a light combining/dividing unit may be further provided for dividing the ultraviolet light, combining the ultraviolet light for each group, and injecting the ultraviolet light into the N single-core optical fibers.
  • the photosynthesis distribution units may be connected in multiple stages.
  • the propagation section of the ultraviolet light irradiation system includes a solid-core optical fiber, a hole-assisted optical fiber, a hole-structured optical fiber, a hollow-core optical fiber, a coupled-core optical fiber, a solid-core multi-core optical fiber, and a hollow fiber.
  • the present invention can provide an ultraviolet light irradiation system and an ultraviolet light irradiation method that can reduce deterioration over time of the transmission loss characteristics of an optical fiber due to ultraviolet light and prevent a decrease in the power of the irradiated ultraviolet light.
  • FIGS. 1 and 6 are diagrams for explaining the ultraviolet light irradiation system of the present invention.
  • the ultraviolet light source unit 11 and the irradiation unit 13 installed near the target location Ar to be decontaminated are connected via the light combining unit 15 or the light combining/distributing unit 16 .
  • an optical cable in which a plurality of optical fibers (single core or multicore) are bundled, or a multicore optical fiber is used for connection.
  • the transmission loss in the propagation section 50 reduces the optical power of the ultraviolet rays. Therefore, the supply section 51 from the light combiner 15/light combiner/distributor 16 to the irradiation section 13 can be connected by a single-core optical fiber.
  • the light combiner 15 combines output lights from a plurality of optical fibers or cores and inputs the combined light into a single core optical fiber (see Embodiment 1 below).
  • the light combiner/divider 16 combines output light from a plurality of optical fibers or cores, distributes the combined light, and inputs it to a plurality of single-core optical fibers (see Embodiment 2 below). ).
  • the entire power is dispersed and transmitted to a plurality of optical fibers or cores, thereby alleviating the problem of deterioration of the characteristics of each optical fiber or core. Efficient operation becomes possible. Furthermore, in the supply section 51, a simple structure and thin single-core optical fiber are used, so that it is possible to realize a system that is economical and can be laid even in a narrow space.
  • FIG. 1 is a diagram illustrating an ultraviolet light irradiation system 301 of this embodiment.
  • the ultraviolet light irradiation system 301 is an ultraviolet light source unit 11 that generates ultraviolet light; N irradiation units 13 (N is a natural number) that irradiate the desired location Ar with the ultraviolet light;
  • An ultraviolet light irradiation system comprising There are a propagation section 50 and a supply section 51 between the ultraviolet light source section 11 and the irradiation section 13, In the propagation section 50, the ultraviolet light generated by the ultraviolet light source unit 11 is propagated by space division multiplexing,
  • the supply section 51 is characterized by combining the spatially-division-multiplexed ultraviolet light in the propagation section 50 and propagating the combined ultraviolet light to the irradiation section 13 through a single-core optical fiber.
  • FIG. 2 is a diagram for explaining the optical cable or multi-core optical fiber that constitutes the propagation section 50.
  • FIG. FIG. 2A shows an optical cable in which a plurality of single-core optical fibers 21 are bundled.
  • FIG. 2B shows a multi-core optical fiber having multiple cores 22 .
  • FIG. 2C shows an optical cable in which a plurality of multi-core optical fibers 23 are bundled.
  • FIG. 3 is a diagram illustrating cross sections of the above-described single-core optical fiber and multi-core optical fiber. That is, the single-core optical fiber or multi-core optical fiber optical cable shown in FIG. 3 or the multi-core optical fiber can be used as the propagation section 50 .
  • the optical fiber having the hole structure shown in FIGS. It may be a multi-core optical fiber having a plurality of core regions described in 6) or an optical fiber having a structure combining them (FIGS. 3(7) to 3(10)).
  • This optical fiber has one solid core 52 in the clad 60 having a higher refractive index than the clad 60 .
  • “Full” means “not hollow”.
  • the solid core can also be realized by forming an annular low refractive index region in the clad.
  • (2) Hole-assisted optical fiber This optical fiber has a solid core 52 in the clad 60 and a plurality of holes 53 arranged around the core.
  • the medium of the holes 53 is air, and the refractive index of air is sufficiently smaller than that of quartz-based glass. Therefore, the hole-assisted optical fiber has a function of returning light leaking from the core 52 due to bending or the like back to the core 52, and is characterized by a small bending loss.
  • Hole structure optical fiber This optical fiber has a hole group 53a of a plurality of holes 53 in the clad 60, and has an effective refractive index lower than that of the host material (glass or the like).
  • This structure is called a photonic crystal fiber.
  • This structure can take a structure in which a high-refractive-index core with a changed refractive index does not exist, and light can be confined using the region 52a surrounded by the holes 53 as an effective core region.
  • photonic crystal fibers can reduce the effects of absorption and scattering losses due to additives in the core. Optical characteristics that cannot be realized can be realized.
  • Hollow core optical fiber This optical fiber has a core region made of air.
  • Light can be confined in the core region by forming a photonic bandgap structure with a plurality of holes in the cladding region or an anti-resonant structure with glass wires.
  • This optical fiber has low nonlinear effects and is capable of delivering high power or high energy lasers.
  • a plurality of solid cores 52 having a high refractive index are closely arranged in a clad 60 . This optical fiber guides light by optical wave coupling between solid cores 52 .
  • Coupling-core type optical fibers can disperse and send light as many times as the number of cores, so high power can be used for efficient sterilization.Coupling-core type optical fibers mitigate fiber deterioration due to ultraviolet rays and have a long life. It has the advantage of being able to (6) Solid-core type multi-core optical fiber In this optical fiber, a plurality of solid cores 52 with a high refractive index are spaced apart in a clad 60 . This optical fiber guides light in such a manner that the optical wave coupling between the solid cores 52 is sufficiently small so that the effect of the optical wave coupling can be ignored. Therefore, the solid-core multi-core optical fiber has the advantage that each core can be treated as an independent waveguide.
  • Hole-Assisted Multi-Core Optical Fiber This optical fiber has a structure in which a plurality of hole structures and core regions of (2) above are arranged in a clad 60 .
  • Hole structure type multi-core optical fiber This optical fiber has a structure in which a plurality of the hole structures of (3) above are arranged in the clad 60 .
  • Hollow-core multi-core optical fiber This optical fiber has a structure in which a plurality of the hole structures of (4) above are arranged in the clad 60 .
  • Coupling-core type multi-core optical fiber This optical fiber has a structure in which a plurality of coupling-core structures of (5) above are arranged in a clad 60 .
  • propagation mode in these optical fibers may be not only single mode but also multimode.
  • FIG. 4A is a diagram illustrating an example of the configuration of the ultraviolet light source section 11.
  • the ultraviolet light source unit 11 has a plurality of light sources 11 a and spatially multiplexes the ultraviolet light output from each light source 11 a to the propagation section 50 .
  • the light source 11a is a semiconductor light source such as a laser diode (LD) or a light emitting diode (LED), a light source using nonlinear optics as described in the following references, or a lamp light source.
  • LD laser diode
  • LED light emitting diode
  • the optical system 11b is, for example, a lens.
  • the optical system 11b inputs the output light of each light source 11a into the optical fiber or core of the propagation section 50.
  • the propagation path 50a is one fiber in an optical cable or one core in a multi-core optical fiber.
  • the ultraviolet light source unit 11 when the ultraviolet light source unit 11 has a configuration having a plurality of light sources 11a, the system is not limited to the output level of a single light source and can transmit a high total power. be able to.
  • FIG. 4B is a diagram illustrating another example of the configuration of the ultraviolet light source section 11.
  • the ultraviolet light source unit 11 has an optical branching unit 11 d that branches the ultraviolet light, and spatially multiplexes the branched ultraviolet light to the propagation section 50 .
  • the light source 11a there is one light source 11a.
  • the light source 11a, optical system 11b, and transmission line 50a are the same as the light source, optical system, and transmission line described with reference to FIG. 4A, respectively.
  • the light splitter 11d splits the ultraviolet light output from the light source 11a and enters the plurality of optical systems 11b.
  • the ultraviolet light source unit 11 when the ultraviolet light source unit 11 is configured to branch the output of a single light source 11a, the ultraviolet light source unit 11 has a simple configuration because there is only one single light source. can be done.
  • FIG. 5 is a diagram illustrating an example of the configuration of the light combining section 15.
  • the light combiner 15 has an optical system 15a for each transmission line 50a, a beam combiner 15b for each transmission line 50a, and one optical system 15c.
  • the optical system 15a is, for example, a lens, collimates the ultraviolet light from the transmission path 50a, and outputs the collimated light to the beam combiner 15b.
  • the beam combiner 15b has a function of synthesizing the transmitted light and the reflected light, and combines the ultraviolet light from each optical system 15a and outputs it to the optical system 15c.
  • the optical system 15 c is, for example, a lens, and enters the combined ultraviolet light into the single-core optical fiber of the supply section 51 . That is, the light combiner 15 combines ultraviolet light from a plurality of optical fibers or cores and inputs the combined ultraviolet light into a single-core optical fiber.
  • the supply section 51 transmits ultraviolet light to the irradiation section 13 .
  • the supply section 51 is a single-core optical fiber, which has a simple structure, is excellent in economic efficiency, and can be laid even in a narrow space because it is thin.
  • the single-core optical fiber of the supply section 51 the optical fibers described in (1) to (5) of FIG. 3 can be used.
  • the irradiation unit 13 irradiates a predetermined sterilization target location Ar with ultraviolet light transmitted by an optical cable or a multi-core optical fiber.
  • the irradiation unit 13 is composed of an optical system such as a lens designed for wavelengths in the ultraviolet region.
  • the ultraviolet light irradiation system 301 can reduce deterioration over time of the transmission loss characteristics of the optical fiber due to ultraviolet light, and can prevent a decrease in the power of the irradiated ultraviolet light.
  • FIG. 6 is a diagram illustrating the ultraviolet light irradiation system 302 of this embodiment.
  • the ultraviolet light irradiation system 302 is an ultraviolet light source unit 11 that generates ultraviolet light; N irradiation units 13 (N is a natural number) that irradiate the desired location Ar with the ultraviolet light;
  • An ultraviolet light irradiation system comprising There are a propagation section 50 and a supply section 51 between the ultraviolet light source section 11 and the irradiation section 13, In the propagation section 50, the ultraviolet light generated by the ultraviolet light source unit 11 is propagated by space division multiplexing,
  • the supply section 51 is characterized by combining the spatially-division-multiplexed ultraviolet light in the propagation section 50 and propagating the combined ultraviolet light to the irradiation section 13 through a single-core optical fiber.
  • the ultraviolet light irradiation system 301 is a case where N>2, and divides the ultraviolet light that has been spatially division multiplexed and propagated through the propagation section 50 between the propagation section 50 and the supply section 51 into N groups, It further comprises a light combiner/divider 16 that multiplexes the ultraviolet light for each group and enters the N single-core optical fibers.
  • the ultraviolet light irradiation system 302 has a plurality of decontamination locations Ar, it can be provided with a plurality of irradiation units 13, and can be provided with a photosynthesis distribution unit 16 that distributes the ultraviolet light propagated in the propagation section 50 to each irradiation unit 13. , is different from the ultraviolet light irradiation system 301 .
  • FIG. 7 is a diagram illustrating an example of the configuration of the light combining/dividing section 16.
  • the light combining/distributing unit 16 has N light combining units 15 as described with reference to FIG.
  • Each light combiner 15 multiplexes the ultraviolet light from a plurality of transmission lines 50 a and outputs the combined light to one single-core optical fiber in the supply section 51 . That is, the light combining/dividing unit 16 combines the output lights from a plurality of optical fibers or cores for each group, and inputs the combined light into a single core optical fiber corresponding to the group.
  • the ultraviolet light irradiation system 302 can reduce deterioration over time of the transmission loss characteristics of optical fibers caused by ultraviolet light, and can prevent a decrease in the power of the irradiated ultraviolet light.
  • the ultraviolet light irradiation system 302 is economically advantageous because a single ultraviolet light source can irradiate a plurality of decontamination locations with ultraviolet light.
  • FIG. 8 is a diagram illustrating the ultraviolet light irradiation system 303 of this embodiment.
  • the ultraviolet light irradiation system 303 differs from the ultraviolet light irradiation system 302 in FIG. 6 in that the photosynthesis/distribution units 16 are connected in multiple stages.
  • FIG. 8 shows an example in which the light combining/dividing section 16 has two stages.
  • the light combining/dividing section 16-1 and the light combining/dividing section 16-2 in each stage have the same configuration as the light combining/dividing section 16 described in FIG.
  • the optical combining/dividing unit 16-1 and the optical combining/dividing unit 16-2 are connected by the optical cable or multi-core optical fiber (propagation section 52) described in FIG.
  • the optical combiner/divider 16-1 multiplexes the ultraviolet light in the propagation section 50 for each group, and inputs each group into the optical fiber of the optical cable in the propagation section 52 or the core of the multi-core optical fiber.
  • the ultraviolet light irradiation system 303 can reduce degradation over time of the transmission loss characteristics of the optical fiber due to ultraviolet light, and can prevent a decrease in the power of the irradiated ultraviolet light.
  • the ultraviolet light irradiation system 303 can irradiate a plurality of decontamination locations with ultraviolet light from a single ultraviolet light source, which is economically advantageous.
  • FIG. 9 is a flow chart illustrating an ultraviolet light irradiation method using the ultraviolet light irradiation system (301 to 303) of this embodiment.
  • This ultraviolet light irradiation method is an ultraviolet light irradiation method in which N (N is a natural number) ultraviolet light generated by the ultraviolet light source unit 11 is irradiated to a desired location Ar from the irradiation unit 13, There are a propagation section 50 and a supply section 51 between the ultraviolet light source section 11 and the irradiation section 13, In the propagation section 50, the ultraviolet light generated by the ultraviolet light source unit 11 is propagated by a space division multiplexing method (step S01); and propagating the multiplexed ultraviolet light to the irradiation unit 13 through a single-core optical fiber (step S02).
  • Ultraviolet light source unit 11a Light source 11b: Optical system 11d: Light branching unit 13: Irradiation unit 15: Light combining unit 15a: Optical system 15b: Beam combiner 15c: Optical system 50: Propagation section 50a: Transmission line 51: Supply section 52 : Solid core 52a: Region 53: Hole 53a: Hole group 60: Cladding 301-303: Ultraviolet light irradiation system

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

本発明は、紫外光による光ファイバの伝送損失特性の経時劣化を低減し、照射される紫外光パワーの低下を防止できる紫外光照射システム及び紫外光照射方法を提供することを目的とする。 本発明に係る紫外光照射システム301は、紫外光を発生させる紫外光源部11と、前記紫外光を所望箇所Arに照射するN個(Nは自然数)の照射部13と、を備える紫外光照射システムであって、紫外光源部11と照射部13との間に伝搬区間50と供給区間51があり、伝搬区間50では、紫外光源部11が発生した前記紫外光を空間分割多重方式で伝搬し、供給区間51では、空間分割多重された伝搬区間50の前記紫外光を合波し、合波した前記紫外光を単一コア光ファイバで照射部13へ伝搬することを特徴とする。

Description

紫外光照射システム及び紫外光照射方法
 本開示は、紫外光を用いて殺菌およびウィルスの不活性化を行う紫外光照射システム及び除染方法に関する。
 感染症予防などの目的から、紫外光を用いた紫外光を用いて殺菌およびウィルスの不活性化を行うシステムの需要が高まっている。なお、本実施形態では、「除染」の記載には、殺菌およびウィルスの不活性化が含まれるものとする。
 除染のシステムには、大きく3つのカテゴリの製品がある。
(1)移動型殺菌ロボット
 移動型殺菌ロボットは、紫外光を照射する自律移動型のロボットである。移動型殺菌ロボットは、病室などの建物内において、部屋の中を移動しながら紫外光を照射することで、人手を介さず、自動で広い範囲の除染ができる。例えば、カンタム・ウシカタ株式会社ウェブサイト(https://www.kantum.co.jp/product/sakkin_robot/sakkinn_robot/UVD_robot)を参照。
(2)据え置き型空気清浄機
 据え置き型空気清浄機は、天井や室内の所定の場所に設置し、室内の空気を循環させながら除染する装置である。据え置き型空気清浄機は、外部へ紫外光を照射せず、人体への影響がないため、安全性の高い除染が可能である。例えば、岩崎電気株式会社ウェブサイト(https://www.iwasaki.co.jp/optics/sterilization/air/air03.html)を参照。
(3)ポータブル型殺菌装置
 ポータブル型殺菌装置は、蛍光灯や水銀ランプ、LEDの紫外光源を搭載したポータブル型の装置である。ユーザは、ポータブル型殺菌装置を除染を行いたいエリアに持って行き、紫外光を照射する。このように、ポータブル型殺菌装置は、様々な場所で使用可能である。例えば、フナコシ株式会社ウェブサイト(https://www.funakoshi.co.jp/contents/68182)を参照。
馬場ら, 「紫外専用耐熱光ファイバの開発(2)」, 三菱電線工業時報, 第100号, pp.84-88, 2003年4月
 従来技術には、次のような困難性がある。
(1)移動型殺菌ロボットは、高出力の紫外光を照射するため、装置が大掛かりとなりで高価である。このため、移動型殺菌ロボットには、経済的に実現することが困難という課題がある。
(2)据え置き型空気清浄機は、循環させた室内の空気を殺菌する方法のため、衣類等の除染や保菌者から発せられる菌やウィルスの即時除染が困難という課題がある。
(3)ポータブル型殺菌装置は、照射される紫外光が比較的弱く、短時間の除染が困難という課題がある。また高出力な水銀ランプや蛍光灯を使用したとしても、これらは一般的に大型かつ短寿命であり、かつ距離の2乗に比例して光が拡散しパワーが低減するため、ポータブル型殺菌装置に適用することは難しい。
 上述した課題(1)~(3)に対して、光ファイバを用いたシステムが考えられる。細くて曲げやすい光ファイバを用いて光源からの紫外光を伝送することで、ファイバ先端から出力される紫外光をピンポイントで除染したい場所へ照射する柔軟性を備えることが可能となる。また、FTTHで用いられるようなP-MP側のシステム構成とすることで、単一の光源をシェアすることにより経済化が期待できる。
 しかしながら、光ファイバを用いたシステムでは、紫外光の伝送によるファイバの伝送特性劣化の問題がある(例えば、非特許文献1を参照。)。紫外領域の高エネルギの光を伝送することで、コアガラス内に欠陥が発生し、伝送損失特性が経時劣化し、結果として光ファイバ出力端から照射される紫外光パワーが低減するため、十分な除染効果が得られなくなる。劣化が生じた光ファイバを取り換えるという運用方法も取り得るが、使用状況によっては頻繁な取り換えが発生し、運用が煩雑になる可能性があり、効率的な対策が課題である。
 つまり、従来の光ファイバを用いた除染システムには、紫外光パワーが大きい場合に伝送損失特性の経時劣化により照射される紫外光パワーが低減するという課題があった。
 そこで、本発明は、上記課題を解決するために、紫外光による光ファイバの伝送損失特性の経時劣化を低減し、照射される紫外光パワーの低下を防止できる紫外光照射システム及び紫外光照射方法を提供することを目的とする。
 上記目的を達成するために、本発明に係る紫外光照射システムは、紫外光を伝搬する一部の区間を空間分割多重方式(SDM:Space Division Multiplexing)で伝送することとした。
 具体的には、本発明に係る紫外光照射システムは、
 紫外光を発生させる紫外光源部と、
 前記紫外光を所望箇所に照射するN個(Nは自然数)の照射部と、
を備える紫外光照射システムであって、
 前記紫外光源部と前記照射部との間に伝搬区間と供給区間があり、
 前記伝搬区間では、前記紫外光源部が発生した前記紫外光を空間分割多重方式で伝搬し、
 前記供給区間では、空間分割多重された前記伝搬区間の前記紫外光を合波し、合波した前記紫外光を単一コア光ファイバで前記照射部へ伝搬する
ことを特徴とする。
 また、本発明に係る紫外光照射方法は、紫外光源部で発生した紫外光をN個(Nは自然数)の照射部から所望箇所に照射する紫外光照射方法であって、
 前記紫外光源部と前記照射部との間に伝搬区間と供給区間があり、
 前記伝搬区間では、前記紫外光源部が発生した前記紫外光を空間分割多重方式で伝搬し、
 前記供給区間では、空間分割多重された前記伝搬区間の前記紫外光を合波し、合波した前記紫外光を単一コア光ファイバで前記照射部へ伝搬する
ことを特徴とする。
 本紫外光照射システムは、紫外光源からの高いエネルギー密度の紫外光を複数ファイバ等で分散して伝送することで伝送経路へのダメージを緩和しつつ、複数ファイバ等の出力光を合成することで除染箇所に対して十分な除染パワーの紫外光を照射できる。従って、本発明は、紫外光による光ファイバの伝送損失特性の経時劣化を低減し、照射される紫外光パワーの低下を防止できる紫外光照射システム及び紫外光照射方法を提供することができる。
 本発明に係る紫外光照射システムの前記紫外光源部は、複数の光源を有し、それぞれの前記光源から出力された前記紫外光を前記伝搬区間において空間分割多重することができる。
 本発明に係る紫外光照射システムの前記紫外光源部は、前記紫外光を分岐する光分岐部を有し、分岐されたそれぞれの前記紫外光を前記伝搬区間において空間分割多重するとしてもよい。
 本発明に係る紫外光照射システムは、N=1である場合、前記伝搬区間と前記供給区間との間に、空間分割多重されて前記伝搬区間を伝搬された前記紫外光を全て合波する光合成部をさらに備えることができる。
 本発明に係る紫外光照射システムは、N>2である場合、前記伝搬区間と前記供給区間との間に、空間分割多重されて前記伝搬区間を伝搬された前記紫外光をN個のグループに分け、前記グループごとに前記紫外光を合波し、N個の前記単一コア光ファイバへ入射する光合成分配部をさらに備えることができる。
 本発明に係る紫外光照射システムは、前記光合成分配部が多段に接続されていてもよい。
 本発明に係る紫外光照射システムの前記伝搬区間は、充実コア光ファイバ、空孔アシスト光ファイバ、空孔構造光ファイバ、中空コア光ファイバ、結合コア型光ファイバ、充実コア型マルチコア光ファイバ、空孔アシスト型マルチコア光ファイバ、空孔構造型マルチコア光ファイバ、中空コア型マルチコア光ファイバ、及び結合コア型マルチコア光ファイバのいずれかを束ねた光ケーブル、又は充実コア型マルチコア光ファイバ、空孔アシスト型マルチコア光ファイバ、空孔構造型マルチコア光ファイバ、中空コア型マルチコア光ファイバ、及び結合コア型マルチコア光ファイバのいずれかであることを特徴とする。
 なお、上記各発明は、可能な限り組み合わせることができる。
 本発明は、紫外光による光ファイバの伝送損失特性の経時劣化を低減し、照射される紫外光パワーの低下を防止できる紫外光照射システム及び紫外光照射方法を提供することができる。
本発明に係る紫外光照射システムを説明する図である。 本発明に係る紫外光照射システムの伝搬区間を説明する図である。 光ファイバの断面を説明する図である。 本発明に係る紫外光照射システムの紫外光源部を説明する図である。 本発明に係る紫外光照射システムの光合成部を説明する図である。 本発明に係る紫外光照射システムを説明する図である。 本発明に係る紫外光照射システムの光合成分配部を説明する図である。 本発明に係る紫外光照射システムを説明する図である。 本発明に係る紫外光照射方法を説明する図である。
 添付の図面を参照して本発明の実施形態を説明する。以下に説明する実施形態は本発明の実施例であり、本発明は、以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。
(発明の趣旨)
 図1及び図6は、本発明の紫外光照射システムを説明する図である。
 紫外光源部11と、除染する対象箇所Arの付近に設置する照射部13とを光合成部15もしくは光合成分配部16を介して接続する。紫外光源部11から光合成部15/光合成分配部16までの紫外線の光パワーが大きい伝搬区間50では複数の光ファイバ(単一コアもしくはマルチコア)を束ねた光ケーブル、もしくは、マルチコア光ファイバで接続する。伝搬区間50での伝送損失により紫外線の光パワーは低下する。このため、光合成部15/光合成分配部16から照射部13までの供給区間51は単一コア光ファイバで接続できる。
 ここで、光合成部15は、複数の光ファイバもしくはコアからの出力光を合成して、単一コア光ファイバに入力する(後述の実施形態1を参照。)。
 また、光合成分配部16は、複数の光ファイバもしくはコアからの出力光を合成するとともに、合成した光を分配して複数の単一コアの光ファイバに入力する(後述の実施形態2を参照。)。
 この構成により、紫外線の光パワーが大きい伝搬区間50では、全体のパワーを複数の光ファイバもしくはコアに分散させて伝送することで、それぞれの光ファイバもしくはコアの特性劣化の問題を緩和して、効率的な運用が可能となる。
 更に、供給区間51では、シンプルな構成でかつ細い単一コア光ファイバを用いることで、経済性に優れ、かつ、狭隘部などにも敷設可能なシステムを実現することができる。
(実施形態1)
 図1は、本実施形態の紫外光照射システム301を説明する図である。紫外光照射システム301は、
 紫外光を発生させる紫外光源部11と、
 前記紫外光を所望箇所Arに照射するN個(Nは自然数)の照射部13と、
を備える紫外光照射システムであって、
 紫外光源部11と照射部13との間に伝搬区間50と供給区間51があり、
 伝搬区間50では、紫外光源部11が発生した前記紫外光を空間分割多重方式で伝搬し、
 供給区間51では、空間分割多重された伝搬区間50の前記紫外光を合波し、合波した前記紫外光を単一コア光ファイバで照射部13へ伝搬することを特徴とする。
 紫外光照射システム301は、N=1の場合であり、伝搬区間50と供給区間51との間に、空間分割多重されて伝搬区間50を伝搬された前記紫外光を全て合波する光合成部15をさらに備える。
 図2は、伝搬区間50を構成する光ケーブルもしくはマルチコア光ファイバを説明する図である。図2(A)は、複数の単一コア光ファイバ21を束ねた光ケーブルである。図2(B)は、複数のコア22を有するマルチコア光ファイバである。図2(C)は、複数の複数のマルチコア光ファイバ23を束ねた光ケーブルである。
 図3は、上述した単一コア光ファイバ及びマルチコア光ファイバの断面を説明する図である。
 つまり、図3に示した単一コア光ファイバ又はマルチコア光ファイバの光ケーブル、もしくはマルチコア光ファイバを伝搬区間50として使用できる。図3(1)のような一般的な添加物を用いた充実型光ファイバの他、図3(2)~(4)に記載した空孔構造を有する光ファイバ、図3(5)、(6)に記載した複数のコア領域を有するマルチコア光ファイバ、もしくはそれらを組み合わせた構造を有する光ファイバ(図3(7)~(10))であっても良い。
(1)充実コア光ファイバ
 この光ファイバは、クラッド60の中にクラッド60より高屈折率である1つの充実コア52を有する。「充実」とは「空洞ではない」という意味である。尚、充実コアは、クラッド内に円環状の低屈折率領域を形成することでも実現できる。
(2)空孔アシスト光ファイバ
 この光ファイバは、クラッド60の中に充実コア52とその外周に配置された複数の空孔53を有する。空孔53の媒質は空気であり、空気の屈折率は石英系ガラスに比べ十分小さい。このため、空孔アシスト光ファイバは、曲げなどでコア52から漏れた光を再びコア52に戻す機能があり、曲げ損失が小さいという特徴がある。
(3)空孔構造光ファイバ
この光ファイバは、クラッド60の中に複数の空孔53の空孔群53aを有し、ホスト材料(ガラス等)よりも実効的に屈折率が低い。本構造は、フォトニック結晶ファイバと呼ばれる。本構造には、屈折率を変化させた高屈折率コアが存在しない構造をとることができ、空孔53に取り囲まれた領域52aを実効的なコア領域として、光を閉じ込めることができる。充実コアを有する光ファイバに比べ、フォトニック結晶ファイバは、コアの添加剤による吸収や散乱損失の影響を低減することができるとともに、曲げ損失の低減や非線形効果の制御等、充実型光ファイバでは実現し得ない光学特性を実現できる。
(4)中空コア光ファイバ
この光ファイバは、コア領域が空気で形成される。クラッド領域に複数の空孔によるフォトニックバンドギャップ構造もしくはガラス細線によるアンチレゾナント構造をとることによって光をコア領域に閉じ込めることができる。この光ファイバは、非線形効果が小さく、高出力または高エネルギーレーザ供給が可能である。
(5)結合コア型光ファイバ
 この光ファイバは、クラッド60の中に複数の高屈折率である充実コア52が近接して配置される。この光ファイバは、充実コア52間で光波結合で光を導波する。結合コア型光ファイバは、コア数分だけ光を分散して送れるので、その分ハイパワー化して効率的な殺菌ができる、また、結合コア型光ファイバは、紫外線によるファイバ劣化を緩和し長寿命化できるというメリットがある。
(6)充実コア型マルチコア光ファイバ
 この光ファイバは、クラッド60の中に複数の高屈折率である充実コア52が離れて配置される。この光ファイバは、充実コア52間で光波結合を十分小さくして光波結合の影響が無視できる状態で光を導波する。このため、充実コア型マルチコア光ファイバは、各コアを独立な導波路として扱えるというメリットがある。
(7)空孔アシスト型マルチコア光ファイバ
 この光ファイバは、クラッド60の中に上記(2)の空孔構造およびコア領域が複数配置された構造である。
(8)空孔構造型マルチコア光ファイバ
 この光ファイバは、クラッド60の中に上記(3)の空孔構造が複数配置された構造である。
(9)中空コア型マルチコア光ファイバ
 この光ファイバは、クラッド60の中に上記(4)の空孔構造が複数配置された構造である。
(10)結合コア型マルチコア光ファイバ
 この光ファイバは、クラッド60の中に上記(5)の結合コア構造が複数配置された構造である。
 なお、これらの光ファイバにおける伝搬モードについては、シングルモードだけではなくマルチモードでも良い。
 図4(A)は、紫外光源部11の構成の一例を説明する図である。紫外光源部11は、複数の光源11aを有し、それぞれの光源11aから出力された紫外光を伝搬区間50に空間分割多重する。
 光源11aは、レーザダイオード(LD)や発光ダイオード(LED)などの半導体光源、次の参考文献のような非線形光学を用いた光源、あるいはランプ光源である。
[参考文献]ウシオ電機株式会社ウェブサイト、https://www.ushio.co.jp/jp/technology/lightedge/200012/100236.html
 光学系11bは、例えば、レンズである。光学系11bは、それぞれの光源11aの出力光を伝搬区間50の光ファイバもしくはコアに入力する。
 伝搬路50aは、光ケーブル内の1つのファイバ、もしくは、マルチコア光ファイバ内の1つのコアである。
 図4(A)のように、紫外光源部11が複数の光源11aを有する構成である場合、単一の光源の出力レベルに制限されず、トータルで高いパワーの伝送が可能であるシステムとすることができる。
 図4(B)は、紫外光源部11の構成の他の例を説明する図である。紫外光源部11は、前記紫外光を分岐する光分岐部11dを有し、分岐されたそれぞれの前記紫外光を伝搬区間50に空間分割多重する。
 本構成の場合、光源11aは一つである。光源11a、光学系11b、及び伝送路50aは、それぞれ図4(A)で説明した光源、光学系、及び伝送路と同じである。
 光分岐部11dは、光源11aが出力した紫外光を分岐して複数の光学系11bに入射する。
 図4(B)のように、紫外光源部11が単一の光源11aの出力を分岐する構成である場合、単一の光源が一つであるため簡素な構成の紫外光源部11とすることができる。
 図5は、光合成部15の構成の一例を説明する図である。光合成部15は、伝送路50a毎の光学系15a、伝送路50a毎のビームコンバイナ15b、及び1つの光学系15cを有する。光学系15aは、例えばレンズであり、伝送路50aからの紫外光をコリメートしてビームコンバイナ15bに出力する。ビームコンバイナ15bは透過光と反射光とを合成する機能を持ち、各光学系15aからの紫外光を合波して光学系15cに出力する。光学系15cは、例えばレンズであり、合波された紫外光を供給区間51の単一コア光ファイバに入射する。つまり、光合成部15は、複数の光ファイバもしくはコアからの紫外光を合成して、単一コアの光ファイバに入力する。
 供給区間51は、紫外光を照射部13まで伝送する。供給区間51は単一コア光ファイバであり、シンプルな構成で経済性に優れ、かつ、細いため狭隘部などにも敷設可能である。なお、供給区間51の単一コア光ファイバとして、図3の(1)から(5)で説明した光ファイバを利用することができる。
 照射部13は、光ケーブルもしくはマルチコア光ファイバで伝送された紫外光を、所定の殺菌対象箇所Arに照射する。照射部13は、紫外領域の波長に対して設計されたレンズなどの光学系で構成される。
 紫外光照射システム301は、上述した構成により、紫外光による光ファイバの伝送損失特性の経時劣化を低減し、照射される紫外光パワーの低下を防止することができる。
(実施形態2)
 図6は、本実施形態の紫外光照射システム302を説明する図である。紫外光照射システム302は、
 紫外光を発生させる紫外光源部11と、
 前記紫外光を所望箇所Arに照射するN個(Nは自然数)の照射部13と、
を備える紫外光照射システムであって、
 紫外光源部11と照射部13との間に伝搬区間50と供給区間51があり、
 伝搬区間50では、紫外光源部11が発生した前記紫外光を空間分割多重方式で伝搬し、
 供給区間51では、空間分割多重された伝搬区間50の前記紫外光を合波し、合波した前記紫外光を単一コア光ファイバで照射部13へ伝搬することを特徴とする。
 紫外光照射システム301は、N>2の場合であり、伝搬区間50と供給区間51との間に、空間分割多重されて伝搬区間50を伝搬された前記紫外光をN個のグループに分け、前記グループごとに前記紫外光を合波し、N個の前記単一コア光ファイバへ入射する光合成分配部16をさらに備える。
 本実施形態では、図1で説明した紫外光照射システム301と異なる構成だけ説明する。紫外光照射システム302は、除染箇所Arが複数であるので照射部13も複数備えること、及び伝搬区間50で伝搬された紫外光を各照射部13へ分配する光合成分配部16を備えることが、紫外光照射システム301と相違する。
 図7は、光合成分配部16の構成の一例を説明する図である。光合成分配部16は、図5で説明したような光合成部15をN個有する。それぞれの光合成部15は、複数の伝送路50aからの紫外光を合波し、供給区間51にある一つの単一コア光ファイバに出力する。つまり、光合成分配部16は、複数の光ファイバもしくはコアからの出力光をグループごとに合成し、当該グループに対応する単一コア光ファイバに入力する。
 紫外光照射システム302は、上述した構成により、紫外光による光ファイバの伝送損失特性の経時劣化を低減し、照射される紫外光パワーの低下を防止することができる。また、紫外光照射システム302は、一つの紫外光源部で複数の除染箇所に紫外光を照射できるため、経済的なメリットがある。
(実施形態3)
 図8は、本実施形態の紫外光照射システム303を説明する図である。紫外光照射システム303は、光合成分配部16が多段に接続されていることが図6の紫外光照射システム302との相違点である。図8は、光合成分配部16が2段である例である。それぞれの段の光合成分配部16-1及び光合成分配部16-2は、図7で説明した光合成分配部16の構成と同じである。ただし、光合成分配部16-1及び光合成分配部16-2とは図2で説明した光ケーブルもしくはマルチコア光ファイバ(伝搬区間52)で接続されている。光合成分配部16-1は、伝搬区間50の紫外光をグループごとに合波し、それぞれを伝搬区間52の光ケーブルの光ファイバもしくはマルチコア光ファイバのコアに入力する。
 紫外光照射システム303は、上述した構成により、紫外光による光ファイバの伝送損失特性の経時劣化を低減し、照射される紫外光パワーの低下を防止することができる。また、紫外光照射システム303は、一つの紫外光源部で複数の除染箇所に紫外光を照射できるため、経済的なメリットがある。
(実施形態4)
 図9は、本実施形態の紫外光照射システム(301~303)を用いた紫外光照射方法を説明するフローチャートである。本紫外光照射方法は、紫外光源部11で発生した紫外光をN個(Nは自然数)の照射部13から所望箇所Arに照射する紫外光照射方法であって、
 紫外光源部11と照射部13との間に伝搬区間50と供給区間51があり、
 伝搬区間50では、紫外光源部11が発生した前記紫外光を空間分割多重方式で伝搬すること(ステップS01)、及び
 供給区間51では、空間分割多重された前記伝搬区間の前記紫外光を合波し、合波した前記紫外光を単一コア光ファイバで照射部13へ伝搬すること(ステップS02)を特徴とする。
11:紫外光源部
11a:光源
11b:光学系
11d:光分岐部
13:照射部
15:光合成部
15a:光学系
15b:ビームコンバイナ
15c:光学系
50:伝搬区間
50a:伝送路
51:供給区間
52:充実コア
52a:領域
53:空孔
53a:空孔群
60:クラッド
301~303:紫外光照射システム

Claims (8)

  1.  紫外光を発生させる紫外光源部と、
     前記紫外光を所望箇所に照射するN個(Nは自然数)の照射部と、
    を備える紫外光照射システムであって、
     前記紫外光源部と前記照射部との間に伝搬区間と供給区間があり、
     前記伝搬区間では、前記紫外光源部が発生した前記紫外光を空間分割多重方式で伝搬し、
     前記供給区間では、空間分割多重された前記伝搬区間の前記紫外光を合波し、合波した前記紫外光を単一コア光ファイバで前記照射部へ伝搬する
    ことを特徴とする紫外光照射システム。
  2.  前記紫外光源部は、
     複数の光源を有し、
     それぞれの前記光源から出力された前記紫外光を空間分割多重することを特徴とする請求項1に記載の紫外光照射システム。
  3.  前記紫外光源部は、
     前記紫外光を分岐する光分岐部を有し、
     分岐されたそれぞれの前記紫外光を空間分割多重することを特徴とする請求項1に記載の紫外光照射システム。
  4.  N=1である場合、前記伝搬区間と前記供給区間との間に、空間分割多重されて前記伝搬区間を伝搬された前記紫外光を全て合波する光合成部をさらに備えることを特徴とする請求項1から3のいずれかに記載の紫外光照射システム。
  5.  N>2である場合、前記伝搬区間と前記供給区間との間に、空間分割多重されて前記伝搬区間を伝搬された前記紫外光をN個のグループに分け、前記グループごとに前記紫外光を合波し、N個の前記単一コア光ファイバへ入射する光合成分配部をさらに備えることを特徴とする請求項1から3のいずれかに記載の紫外光照射システム。
  6.  前記光合成分配部が多段に接続されていることを特徴とする請求項5に記載の紫外光照射システム。
  7.  前記伝搬区間は、充実コア光ファイバ、空孔アシスト光ファイバ、空孔構造光ファイバ、中空コア光ファイバ、結合コア型光ファイバ、充実コア型マルチコア光ファイバ、空孔アシスト型マルチコア光ファイバ、空孔構造型マルチコア光ファイバ、中空コア型マルチコア光ファイバ、及び結合コア型マルチコア光ファイバのいずれかを束ねた光ケーブル、又は充実コア型マルチコア光ファイバ、空孔アシスト型マルチコア光ファイバ、空孔構造型マルチコア光ファイバ、中空コア型マルチコア光ファイバ、及び結合コア型マルチコア光ファイバのいずれかであることを特徴とする請求項1から6のいずれかに記載の紫外光照射システム。
  8.  紫外光源部で発生した紫外光をN個(Nは自然数)の照射部から所望箇所に照射する紫外光照射方法であって、
     前記紫外光源部と前記照射部との間に伝搬区間と供給区間があり、
     前記伝搬区間では、前記紫外光源部が発生した前記紫外光を空間分割多重方式で伝搬し、
     前記供給区間では、空間分割多重された前記伝搬区間の前記紫外光を合波し、合波した前記紫外光を単一コア光ファイバで前記照射部へ伝搬する
    ことを特徴とする紫外光照射方法。
PCT/JP2021/008270 2021-03-03 2021-03-03 紫外光照射システム及び紫外光照射方法 WO2022185458A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/279,424 US20240181099A1 (en) 2021-03-03 2021-03-03 Ultraviolet light irradiation system and ultraviolet light irradiation method
PCT/JP2021/008270 WO2022185458A1 (ja) 2021-03-03 2021-03-03 紫外光照射システム及び紫外光照射方法
JP2023503268A JP7574911B2 (ja) 2021-03-03 2021-03-03 紫外光照射システム及び紫外光照射方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/008270 WO2022185458A1 (ja) 2021-03-03 2021-03-03 紫外光照射システム及び紫外光照射方法

Publications (1)

Publication Number Publication Date
WO2022185458A1 true WO2022185458A1 (ja) 2022-09-09

Family

ID=83155172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/008270 WO2022185458A1 (ja) 2021-03-03 2021-03-03 紫外光照射システム及び紫外光照射方法

Country Status (3)

Country Link
US (1) US20240181099A1 (ja)
JP (1) JP7574911B2 (ja)
WO (1) WO2022185458A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5651713A (en) * 1979-10-04 1981-05-09 Mitsubishi Electric Corp System for utilizing solar light
JPH10257026A (ja) * 1997-03-07 1998-09-25 Sumitomo Electric Ind Ltd 波長多重光通信システム
JP2001524354A (ja) * 1997-12-01 2001-12-04 トリベルスキー、ツァミール 液体およびガスを滅菌する方法およびそれを用いたデバイス
JP2005013723A (ja) * 2003-06-05 2005-01-20 Atsuyoshi Murakami 光ファイバー殺菌消毒装置
JP2005043673A (ja) * 2003-07-22 2005-02-17 Sumitomo Electric Ind Ltd 光ファイバおよび光伝送媒体
JP2006337399A (ja) * 2005-05-31 2006-12-14 Fujifilm Holdings Corp 合波光源
JP2007007232A (ja) * 2005-07-01 2007-01-18 Mitsubishi Electric Corp 光殺菌装置及び光殺菌システム
JP2020513268A (ja) * 2016-11-30 2020-05-14 コポネン、 リストKOPONEN, Risto 微生物を破壊する紫外光を光源から標的に伝送する方法および装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112011104813B4 (de) 2011-02-01 2017-02-23 Osg Corporation Hartlaminarbeschichtung

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5651713A (en) * 1979-10-04 1981-05-09 Mitsubishi Electric Corp System for utilizing solar light
JPH10257026A (ja) * 1997-03-07 1998-09-25 Sumitomo Electric Ind Ltd 波長多重光通信システム
JP2001524354A (ja) * 1997-12-01 2001-12-04 トリベルスキー、ツァミール 液体およびガスを滅菌する方法およびそれを用いたデバイス
JP2005013723A (ja) * 2003-06-05 2005-01-20 Atsuyoshi Murakami 光ファイバー殺菌消毒装置
JP2005043673A (ja) * 2003-07-22 2005-02-17 Sumitomo Electric Ind Ltd 光ファイバおよび光伝送媒体
JP2006337399A (ja) * 2005-05-31 2006-12-14 Fujifilm Holdings Corp 合波光源
JP2007007232A (ja) * 2005-07-01 2007-01-18 Mitsubishi Electric Corp 光殺菌装置及び光殺菌システム
JP2020513268A (ja) * 2016-11-30 2020-05-14 コポネン、 リストKOPONEN, Risto 微生物を破壊する紫外光を光源から標的に伝送する方法および装置

Also Published As

Publication number Publication date
JP7574911B2 (ja) 2024-10-29
US20240181099A1 (en) 2024-06-06
JPWO2022185458A1 (ja) 2022-09-09

Similar Documents

Publication Publication Date Title
JP2017502717A (ja) 照射される包帯および創傷を殺菌する方法
JP2024059974A (ja) 紫外光照射システム
WO2022185458A1 (ja) 紫外光照射システム及び紫外光照射方法
WO2022085123A1 (ja) 紫外光照射システム及び紫外光照射方法
US20230408761A1 (en) Ultraviolet light irradiation system and method
JP7548315B2 (ja) 紫外光照射システム及び除染方法
JP7571789B2 (ja) 紫外光照射システム
WO2023058144A1 (ja) 紫外光照射システム及び紫外光照射方法
WO2023084677A1 (ja) 紫外光照射システム
US20240157003A1 (en) Ultraviolet light irradiation system and ultraviolet light irradiation method
JP7524960B2 (ja) 紫外光照射システム及び紫外光照射方法
WO2023157281A1 (ja) 光伝送装置、光照射システム、及び光伝送方法
WO2023073771A1 (ja) 紫外光照射システム
WO2023084668A1 (ja) 紫外光照射システム及び制御方法
WO2024084561A1 (ja) 光伝送システムの設計方法及び設計装置
WO2024105873A1 (ja) 光スポット整形器及び光伝送システム
WO2023084675A1 (ja) 紫外光照射システム
WO2023073774A1 (ja) 紫外光照射システム
US20240216559A1 (en) Ultraviolet light irradiation system and ultraviolet light irradiation method
WO2023276148A1 (ja) 紫外光照射システム及び制御方法
WO2024084562A1 (ja) バンドル光ファイバ
WO2023073885A1 (ja) 紫外光照射システム
JP7552700B2 (ja) 紫外光照射システム及び除染方法
WO2024100862A1 (ja) 光伝送システム
WO2024105875A1 (ja) 光伝送システム及び光伝送方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21929034

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023503268

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18279424

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21929034

Country of ref document: EP

Kind code of ref document: A1