WO2022183761A1 - 一种基于联合标定的的空间位姿实时测调方法 - Google Patents
一种基于联合标定的的空间位姿实时测调方法 Download PDFInfo
- Publication number
- WO2022183761A1 WO2022183761A1 PCT/CN2021/129480 CN2021129480W WO2022183761A1 WO 2022183761 A1 WO2022183761 A1 WO 2022183761A1 CN 2021129480 W CN2021129480 W CN 2021129480W WO 2022183761 A1 WO2022183761 A1 WO 2022183761A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cube mirror
- coordinate system
- adjustment
- theodolite
- cross
- Prior art date
Links
- 238000005259 measurement Methods 0.000 title claims abstract description 51
- 238000000034 method Methods 0.000 title claims abstract description 29
- 238000006243 chemical reaction Methods 0.000 claims abstract description 54
- 230000007246 mechanism Effects 0.000 claims abstract description 27
- 238000006073 displacement reaction Methods 0.000 claims description 12
- 238000004364 calculation method Methods 0.000 claims description 8
- 238000012544 monitoring process Methods 0.000 claims description 7
- 230000008569 process Effects 0.000 claims description 7
- 230000008859 change Effects 0.000 claims description 5
- 230000009466 transformation Effects 0.000 claims description 5
- 238000010276 construction Methods 0.000 claims description 3
- 238000012546 transfer Methods 0.000 abstract description 3
- 238000005516 engineering process Methods 0.000 description 4
- 238000009434 installation Methods 0.000 description 4
- 230000000875 corresponding effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 210000001503 joint Anatomy 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B21/00—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
- G01B21/02—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
- G01B21/04—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness by measuring coordinates of points
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/22—Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
- B64G1/222—Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles for deploying structures between a stowed and deployed state
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B21/00—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
- G01B21/22—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring angles or tapers; for testing the alignment of axes
Definitions
- the invention relates to the assembly and adjustment of space deployment mechanism products, in particular to a measurement and adjustment method for the six-degree-of-freedom space pose of a space deployment mechanism, belonging to the technical field of precise measurement and assembly of satellite structure and mechanism subsystems.
- the space manipulator is an indispensable tool for in-depth manned spaceflight activities.
- the space station system it is responsible for the capture and transfer of cabin sections, the transfer and installation of instruments and equipment, and assisting astronaut operations. It is installed on the outer wall of the space station.
- an antenna deployment arm is a connecting component between a large-diameter loop antenna and a satellite platform. In the space environment, the deployment arm needs to drive the loop antenna to extend to a designated position, maintain the pointing accuracy of the loop antenna, and isolate the satellite and the loop antenna at the same time. mutual disturbance.
- the spatial multi-DOF deployment mechanism usually has the characteristics of large size, high precision and complex deployment trajectory. Their function is to deploy to the specified position in space according to the established requirements, so there is a high requirement for the pointing accuracy of the end of the spatial multi-DOF deployment mechanism. In the stage of ground assembly, it needs to achieve high-precision adjustment of its six degrees of freedom in space.
- the pointing accuracy of the space deployment mechanism is usually represented by a coordinate transformation matrix of three displacements (X, Y, Z) and three angles (RX, RY, RZ). And these six variables are coupled with each other, and a change in one variable may cause changes in all quantities. Therefore, how to precisely control the adjustment sequence and size of each variable is a major difficulty in adjusting the assembly accuracy of the spatial multi-degree-of-freedom deployment mechanism.
- the observed mechanical coordinate system is often blocked or covered, and there is a problem of large size measurement with small benchmarks, resulting in low measurement and adjustment efficiency and poor accuracy.
- the post-assessment detection method of "measurement-adjustment-measurement” is adopted: through measurement, the actual position and attitude of the assembly components are calculated; through analysis, the direction and adjustment of the components to be adjusted are calculated. Then, measure, analyze, and adjust again, and gradually approach the ideal state until the requirements are met. Therefore, the measurement and adjustment operations are completely separated, and the adjustment operation is uncontrollable, resulting in the actual assembly process, especially in the close In the ideal state, the actual state fluctuates back and forth near the ideal value, and the number of repeated adjustments is large.
- the existing measurement and adjustment methods have poor guidance on the operation process and low assembly efficiency.
- the purpose of the present invention is: in order to overcome the deficiencies of the prior art, a method for real-time measurement and adjustment of spatial pose and orientation based on joint calibration is proposed, which can realize the high-precision measurement and precise adjustment of six degrees of freedom of the spatial multi-degree-of-freedom deployment mechanism, and can Significantly improve the assembly efficiency of the space pose of the space multi-free deployment mechanism, and improve the technical level of the assembly and adjustment of the spacecraft space deployment mechanism products.
- a real-time measurement and adjustment method of spatial pose based on joint calibration the steps are as follows:
- step (2) Under the measurement coordinate system established in step (2), four theodolites are used to construct a space measurement system, and the cross cube mirror L1 and the cross cube mirror L2 are collimated and measured to obtain the relative position of the cross cube mirror L2 in the current state.
- step (4) compare the actual coordinate conversion relationship W3 with the theoretical coordinate conversion relationship W0 ' obtained in step (4), obtain the displacement deviation and the angle deviation between the cross cube mirror L1 and the cross cube mirror L2 under the current state;
- step (4) obtain the theoretical state parameter of the theodolite instrument aiming at cross cube mirror L2, and according to this theoretical state parameter, the angle and distance of this theodolite instrument are preset;
- step (7) The monitoring data of the theodolite with the preset parameters in step (7) is transmitted to the computer, and the computer displays the theoretical position of the cross line of the cross cube mirror L2, and at the same time gives the cross of the cross cube mirror L2 in the current state.
- step (9) Keep part A still, and debug part B according to the adjustment direction and adjustment amount obtained in step (8).
- the theodolite always monitors the change of the cross line of the cross cube mirror L2 on part B. When two crosses The adjustment ends when the engraved lines are completely coincident;
- step (4) calculation formula is:
- W0' W0 ⁇ W1 ⁇ W2-1
- step (11) calculation formula is:
- W5 W2 ⁇ W4 ⁇ W1-1
- reference coordinate system O1 is specifically defined as:
- the coordinate system of the cubic mirror L1 is specifically defined as:
- reference coordinate system O2 is specifically defined as:
- the coordinate system of the cubic mirror L2 is specifically defined as:
- theodolite T1 Place the theodolite T1 near the cube mirror L1 to ensure that the front of the cube mirror L1 can be within the field of view of the theodolite T1;
- theodolite T2 Place the theodolite T2 near the cube mirror L1 to ensure that the side of the cube mirror L1 can be within the field of view of the theodolite T2;
- theodolite T3 near the cube mirror L2 to ensure that the front of the cube mirror L2 can be within the field of view of the theodolite T3;
- theodolite T4 near the cube mirror L2 to ensure that the side of the cube mirror L2 can be within the field of view of the theodolite T4;
- theodolites T1, T2, T3, and T4 Align the theodolites T1, T2, T3, and T4 with each other to obtain the angular relationship between the four theodolites, and then use the ruler determined by the aiming length of the theodolites T1 and T3 to construct a spatial measurement system that can measure angles and displacements.
- the present invention adopts the high-precision reference conversion technology, which reduces the measurement error and solves the problem of magnifying the error of small reference measurement and large size.
- the present invention constructs a set of three-coordinate and theodolite joint calibration system, which can realize high-precision calibration of complex structures in a wide range.
- the present invention changes the idea of separating the measurement first and then the adjustment and the adjustment after the six-degree-of-freedom pose adjustment of the space deployment mechanism.
- the deviation value of the six-degree-of-freedom single variable can be given in real time. And the deviation direction, effectively improve the six-degree-of-freedom adjustment efficiency of the space deployment mechanism.
- Fig. 1 is the flow chart of the method of the present invention
- Figure 2 is a schematic diagram of the theodolite alignment
- Figure 3 is a schematic diagram of real-time monitoring guidance.
- the present invention provides a method for real-time measurement and adjustment of spatial pose based on joint calibration, the steps are as follows:
- the reference coordinate system O1 is specifically defined as: take the reference hole O on the surface of the part A as the coordinate origin, take the direction parallel to the short side facing outward as the X direction, take the direction parallel to the long side facing outward as the Y direction, and then press The right hand rule establishes the Z direction.
- the coordinate system of the cube mirror L1 is specifically defined as: taking the center of the cube mirror L1 as the coordinate origin, select a surface to be collimated, take the normal direction of the surface as the X direction, and the normal direction of the adjacent surface as the Y direction, and then press The right hand rule establishes the Z direction.
- the reference coordinate system O2 is specifically defined as: take the reference hole R on the surface of the part B as the coordinate origin, take the direction parallel to the short side facing outward as the X direction, take the direction parallel to the long side facing outward as the Y direction, and then press The right hand rule establishes the Z direction.
- the coordinate system of the cube mirror L2 is specifically defined as: taking the center of the cube mirror L2 as the coordinate origin, select a surface to be collimated, take the normal direction of the surface as the X direction, and the normal direction of the adjacent surface as the Y direction, and then press The right hand rule establishes the Z direction.
- W0' W0 ⁇ W1 ⁇ W2-1
- step (2) Under the measurement coordinate system established in step (2), four theodolites are used to construct a space measurement system, and the cross cube mirror L1 and the cross cube mirror L2 are collimated and measured to obtain the relative position of the cross cube mirror L2 in the current state.
- theodolite T1 Place the theodolite T1 near the cube mirror L1 to ensure that the front of the cube mirror L1 can be within the field of view of the theodolite;
- theodolite T3 near the cube mirror L2 to ensure that the front of the cube mirror L2 can be within the field of view of the theodolite;
- theodolites T1, T2, T3, and T4 Align the theodolites T1, T2, T3, and T4 with each other to obtain the angular relationship between the four theodolites, and then use the ruler determined by the aiming length of the theodolites T1 and T3 to construct a spatial measurement system that can measure angles and displacements.
- step (4) compare the actual coordinate conversion relationship W3 with the theoretical coordinate conversion relationship W0 ' obtained in step (4), obtain the displacement deviation and the angle deviation between the cross cube mirror L1 and the cross cube mirror L2 under the current state;
- step (4) obtain the theoretical state parameter of the theodolite instrument aiming at cross cube mirror L2, and according to this theoretical state parameter, the angle and distance of this theodolite instrument are preset;
- step (7) The monitoring data of the theodolite with the preset parameters in step (7) is transmitted to the computer, and the computer displays the theoretical position of the cross line of the cross cube mirror L2, as shown in Fig. 3, and at the same time gives the current state The actual position of the cross line of the cross cube mirror L2, and determine the adjustment direction and adjustment amount;
- step (9) Keep part A still, and debug part B according to the adjustment direction and adjustment amount obtained in step (8).
- the theodolite always monitors the change of the cross line of the cross cube mirror L2 on part B. When two crosses The adjustment ends when the engraved lines are completely coincident;
- W5 W2 ⁇ W4 ⁇ W1-1
- a large-scale space deployment mechanism includes a root deployment joint A and an end deployment joint B.
- the coordinate system of the output end face of the end deployment joint B is required to satisfy a certain six degrees of freedom in space relative to the coordinate system of the installation end face of the root deployment joint A.
- RX, RY, RZ; X, Y, Z The coordinate relationship (W0) is required, and the angle deviation of the three directions of RX, RY, and RZ is less than 0.02°, and the displacement deviation of the three directions of X, Y, and Z is less than or equal to 0.5mm. .
- step (3) Use a three-coordinate measuring instrument to calibrate the reference hole coordinate system O1 and the cube mirror coordinate system L1 of the installation end face of the root deployment joint A under the measurement coordinate system in step (2), and obtain the coordinate conversion relationship between O1 and L1 W1, use a three-coordinate measuring instrument to calibrate the reference hole coordinate system O2 and the cube mirror coordinate system L2 of the terminal deployment joint B, and obtain the coordinate conversion relationship W2 of O2 relative to L2;
- the step (4) calculation formula is:
- W0' W0 ⁇ W1 ⁇ W2-1
- step (2) Under the unified coordinate system established in step (2), use four theodolites to construct a space measurement system, as shown in Figure 2, perform collimation measurement on the cube mirror L1 and the cube mirror L2, and obtain the relative L2 relative to the current state.
- step (4) according to the theoretical coordinate conversion relation W0 ' obtained in step (4), obtain the theoretical state parameter of the theodolite instrument corresponding to cube mirror L2, and the angle and distance of the theodolite instrument are preset to this theoretical state;
- the theodolite monitoring data in step (7) is transmitted to the computer, and the computer displays the theoretical position of the L2 reticle of the cube mirror, and at the same time gives the actual position of the reticle of the cube mirror L2 in the current state, and displays Display the adjustment direction and adjustment amount, as shown in Figure 3;
- step (9) Keep the root deployment joint A still, and guide the operator to debug the terminal deployment joint B according to the adjustment direction and adjustment amount obtained in step (8).
- the theodolite always monitors the cross engraving of the cube mirror L2 on the terminal joint B. The line changes, and the operator is reminded of the change trend and adjustment amount in real time. When the two cross lines completely overlap, the adjustment ends;
- the step (11) calculation formula is:
- W5 W2 ⁇ W4 ⁇ W1-1
- the invention adopts the high-precision reference conversion technology, reduces the measurement error, and solves the problem of magnifying the error of small reference measurement and large size.
- the invention changes the idea of measuring first and then adjusting, and separating the adjustment when the six-degree-of-freedom position and attitude of the space deployment mechanism is adjusted. Through the real-time monitoring of the measurement system, the deviation value and deviation direction of the six-degree-of-freedom single variable can be given in real time. , effectively improving the six-degree-of-freedom adjustment efficiency of the space deployment mechanism.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Remote Sensing (AREA)
- Aviation & Aerospace Engineering (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Length Measuring Devices With Unspecified Measuring Means (AREA)
Abstract
一种基于联合标定的空间位姿实时测调方法,用于空间多自由度展开机构空间相对位姿的调试,通过联合标定、基准转移、实时测量,可极大提高空间展开机构空间六自由度位姿的调试效率。本方法首先将被测对象的坐标系和立方镜坐标系进行"三坐标+经纬仪"联合标定,通过基准转换,将不易被观测的产品坐标系转换至易观测的立方镜上;再通过多台经纬仪构建联合测量系统,在线实时准直立方镜十字刻线;并通过已经预置的经纬仪理论位姿参数,实时获得立方镜实际位姿六个变量与理论位姿六个变量之间的偏差,从而精确指导空间展开机构的六自由度位姿调试过程。
Description
本申请要求于2021年03月01日提交中国专利局、申请号为202011181196.0、申请名称为“一种基于联合标定的的空间位姿实时测调方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本发明涉及空间展开机构产品的装调,具体涉及一种用于空间展开机构六自由度空间位姿的测量及调试方法,属于卫星结构与机构分系统精密测量与装配技术领域。
随着航天技术的快速发展,空间机械臂、大型可展开天线等空间多自由度展开机构产品正在航天器上得到越来越广泛的应用。例如空间机械臂是深入开展载人航天活动必不可少的工具,它在空间站系统中承担着舱段捕获与转移、仪器设备转移与安装、辅助航天员作业等功能,安装在空间站外壁上,用于按照任务管理系统发出的指令完成相应的动作和任务。再如某天线展开臂是大口径环形天线与卫星平台之间的连接部件,在空间环境中该展开臂需带动环形天线伸展到指定位置,并保持环形天线的指向精度,同时隔离卫星和环形天线间的相互扰动。
空间多自由度展开机构通常具有尺寸大、精度高、展开轨迹复杂的特点,它们的作用是按照既定要求展开至空间指定位置,因此对空间多自由度展开机构末端的指向精度有较高要求,在地面装配阶段需要实现其空间六个自由度的高精度调节。
空间展开机构的指向精度通常用三个位移(X、Y、Z)、三个角度(RX、RY、RZ)的坐标转换矩阵进行表示。而这六个变量是相互耦合的,一个变量的改变可能引起所有量的变化。因此,如何精确控制每个变量的调节顺序和大 小,是空间多自由度展开机构装配精度调节的一大难点。同时,由于空间展开机构的外形结构比较复杂,被观测的机械坐标系往往会被遮挡或覆盖,而且存在小基准测量大尺寸问题,导致测调效率低、精度差。此外,在空间展开机构的装配与测试中,采用“测量-调整-测量”的事后评价的检测方法:通过测量,解算装配组件实际位置及姿态;通过分析,计算出组件待调整方向及调整量,采取相应措施;接着再测量,再分析,再调整,逐步逼近理想状态,直至满足要求,因此测量和调整操作完全分离,调整操作的不可控性,导致实际装配过程中,特别是在接近理想状态时,实际状态在理想值附近往复波动,反复调整次数多,现有测调方法对操作过程的指导性差,装配效率低。
发明内容
本发明的目的是:为了克服现有技术的不足,提出的一种基于联合标定的空间位姿实时测调方法,能够实现空间多自由度展开机构的六自由度高精度测量及精确调节,可显著提高空间多自由展开机构空间位姿的装配效率,提升航天器空间展开机构产品的装调技术水平。
本发明的技术解决方案是:
一种基于联合标定的的空间位姿实时测调方法,步骤如下:
(1)在待测调空间展开机构的零件A上安装十字立方镜L1,在待测调空间展开机构的零件B上安装十字立方镜L2;
(2)将三坐标测量仪和经纬仪分别采集同一公共点数据,使两种测量设备统一到同一个测量坐标系下;
(3)用三坐标测量仪在所述测量坐标系下对零件A的基准坐标系O1和立方镜L1坐标系进行标定,获得基准坐标系O1相对于立方镜L1坐标系的坐标转换关系W1,用三坐标测量仪对零件B的基准坐标系O2和立方镜L2坐标系进行标定,获得基准坐标系O2相对于立方镜L2坐标系的坐标转换关系W2;
(4)根据基准坐标系O2相对于基准坐标系O1的理论坐标转换关系W0以及步骤(3)中得到的坐标转换关系W1和W2,计算获得立方镜L2坐标系 相对于立方镜L1坐标系的理论坐标转换关系W0’;
(5)在步骤(2)建立好的测量坐标系下,利用四台经纬仪构建空间测量系统,对十字立方镜L1和十字立方镜L2进行准直测量,获得当前状态下十字立方镜L2相对于十字立方镜L1的实测坐标转换关系W3;
(6)将实测坐标转换关系W3与步骤(4)中得到的理论坐标转换关系W0’进行比对,获得当前状态下的十字立方镜L1和十字立方镜L2之间的位移偏差和角度偏差;
(7)根据步骤(4)中得到的理论坐标转换关系W0’,得到瞄准十字立方镜L2的经纬仪仪器的理论状态参数,并根据该理论状态参数对该经纬仪仪器的角度和距离进行预置;
(8)将步骤(7)中预置参数的经纬仪的监测数据传输至计算机上,由计算机显示出十字立方镜L2的十字刻线的理论位置,同时给出当前状态下十字立方镜L2的十字刻线的实际位置,并确定出调整方向和调整量;
(9)保持零件A不动,根据步骤(8)获得的调整方向和调整量对零件B进行调试,调试过程,经纬仪始终监测零件B上十字立方镜L2的十字刻线变化,当两个十字刻线完全重合时则调整结束;
(10)用四台经纬仪重新对十字立方镜L1和十字立方镜L2进行准直,从而得到十字立方镜L1和十字立方镜L2最终状态的坐标转换关系W4;
(11)利用步骤(10)中得到的坐标转换关系W4,以及步骤(3)中测得的W1和W2,计算得出零件B的基准坐标系O2相对于零件A的基准坐标系O1的最终实测空间坐标转换关系W5;
(12)将步骤(11)得到的坐标转换关系W5与理论值W0进行对比,得到零件A和零件B之间的位移偏差和角度偏差。
进一步的,所述步骤(4)计算公式为:
W0'=W0×W1×W2
-1
进一步的,所述步骤(11)计算公式为:
W5=W2×W4×W1
-1
进一步的,所述基准坐标系O1具体定义为:
以零件A表面设置的基准孔O为坐标原点,以平行于零件A短边朝外的方向为X向,以平行于零件A长边朝外的方向为Y向,再按右手定则确立Z向。
进一步的,所述立方镜L1坐标系具体定义为:
以立方镜L1的中心为坐标原点,选择一个被准直面,以该面的法向为X向,相邻面的面法向为Y向,再按右手定则确立Z向。
进一步的,所述基准坐标系O2具体定义为:
以零件B表面设置的基准孔R为坐标原点,以平行于零件B短边朝外的方向为X向,以平行于零件B长边朝外的方向为Y向,再按右手定则确立Z向。
进一步的,所述立方镜L2坐标系具体定义为:
以立方镜L2的中心为坐标原点,选择一个被准直面,以该面的法向为X向,相邻面的面法向为Y向,再按右手定则确立Z向。
进一步的,基准坐标系O2相对于基准坐标系O1的理论坐标转换关系W0为已知。
进一步的,所述利用四台经纬仪构建空间测量系统,具体的构建方式如下:
将经纬仪T1放置在立方镜L1附近,确保立方镜L1正面能够在经纬仪T1的视场范围内;
将经纬仪T2放置在立方镜L1附近,确保立方镜L1侧面能够在经纬仪T2的视场范围内;
将经纬仪T3放置在立方镜L2附近,确保立方镜L2正面能够在经纬仪T3的视场范围内;
将经纬仪T4放置在立方镜L2附近,确保立方镜L2侧面能够在经纬仪T4的视场范围内;
将经纬仪T1、T2、T3、T4两两互相准直,获得四台经纬仪相互间的角度关系,再通用经纬仪T1和T3瞄准长度确定的标尺,从而构建出可测量角度和位移的空间测量系统。
本发明与现有技术相比的有益效果是:
(1)本发明采用高精度基准转换技术,降低了测量误差,解决了小基准测量大尺寸误差放大的问题。
(2)本发明构建了一套三坐标、经纬仪联合标定系统,可实现复杂结构大范围的高精度标定。
(3)本发明改变了空间展开机构六自由度位姿装调时,先测后调、调测分离的思路,通过测量系统的实时监测,能够实时给出六个自由度单变量的偏差值及偏差方向,切实提升了空间展开机构的六自由度装调效率。
图1为本发明方法流程图;
图2为经纬仪准直原理图;
图3为实时监测指导原理图。
下面结合附图和实施例对本发明的具体实施方式进行进一步的详细描述。
如图1所示,本发明给出一种基于联合标定的的空间位姿实时测调方法,步骤如下:
(1)在待测调空间展开机构的零件A上安装十字立方镜L1,在待测调空间展开机构的零件B上安装十字立方镜L2;
(2)将三坐标测量仪和经纬仪分别采集同一公共点数据,使两种测量设备统一到同一个测量坐标系下;
(3)用三坐标测量仪在所述测量坐标系下对零件A的基准坐标系O1和立方镜L1坐标系进行标定,获得基准坐标系O1相对于立方镜L1坐标系的坐标转换关系W1,用三坐标测量仪对零件B的基准坐标系O2和立方镜L2坐标系进行标定,获得基准坐标系O2相对于立方镜L2坐标系的坐标转换关系W2;
所述基准坐标系O1具体定义为:以零件A表面的基准孔O为坐标原点,以平行于短边朝外的方向为X向,以平行于长边朝外的方向为Y向,再按右手 定则确立Z向。
所述立方镜L1坐标系具体定义为:以立方镜L1的中心为坐标原点,选择一个被准直面,以该面的法向为X向,相邻面的面法向为Y向,再按右手定则确立Z向。
所述基准坐标系O2具体定义为:以零件B表面的基准孔R为坐标原点,以平行于短边朝外的方向为X向,以平行于长边朝外的方向为Y向,再按右手定则确立Z向。
所述立方镜L2坐标系具体定义为:以立方镜L2的中心为坐标原点,选择一个被准直面,以该面的法向为X向,相邻面的面法向为Y向,再按右手定则确立Z向。
(4)根据基准坐标系O2相对于基准坐标系O1的理论坐标转换关系W0以及步骤(3)中得到的坐标转换关系W1和W2,计算获得立方镜L2坐标系相对于立方镜L1坐标系的理论坐标转换关系W0’;
计算公式为:
W0'=W0×W1×W2
-1
基准坐标系O2相对于基准坐标系O1的理论坐标转换关系W0为已知。
(5)在步骤(2)建立好的测量坐标系下,利用四台经纬仪构建空间测量系统,对十字立方镜L1和十字立方镜L2进行准直测量,获得当前状态下十字立方镜L2相对于十字立方镜L1的实测坐标转换关系W3;
如图2所示,利用四台经纬仪构建空间测量系统,具体的构建方式如下:
将经纬仪T1放置在立方镜L1附近,确保立方镜L1正面能够在经纬仪的视场范围内;
将经纬仪T2放置在立方镜L1附近,确保立方镜L1侧面能够在经纬仪的视场范围内;
将经纬仪T3放置在立方镜L2附近,确保立方镜L2正面能够在经纬仪的视场范围内;
将经纬仪T4放置在立方镜L2附近,确保立方镜L2侧面能够在经纬仪的 视场范围内;
将经纬仪T1、T2、T3、T4两两互相准直,获得四台经纬仪相互间的角度关系,再通用经纬仪T1和T3瞄准长度确定的标尺,从而构建出可测量角度和位移的空间测量系统。
(6)将实测坐标转换关系W3与步骤(4)中得到的理论坐标转换关系W0’进行比对,获得当前状态下的十字立方镜L1和十字立方镜L2之间的位移偏差和角度偏差;
(7)根据步骤(4)中得到的理论坐标转换关系W0’,得到瞄准十字立方镜L2的经纬仪仪器的理论状态参数,并根据该理论状态参数对该经纬仪仪器的角度和距离进行预置;
(8)将步骤(7)中预置参数的经纬仪的监测数据传输至计算机上,由计算机显示出十字立方镜L2的十字刻线的理论位置,如图3所示,同时给出当前状态下十字立方镜L2的十字刻线的实际位置,并确定出调整方向和调整量;
(9)保持零件A不动,根据步骤(8)获得的调整方向和调整量对零件B进行调试,调试过程,经纬仪始终监测零件B上十字立方镜L2的十字刻线变化,当两个十字刻线完全重合时则调整结束;
(10)用四台经纬仪重新对十字立方镜L1和十字立方镜L2进行准直,从而得到十字立方镜L1和十字立方镜L2最终状态的坐标转换关系W4;
(11)利用步骤(10)中得到的坐标转换关系W4,以及步骤(3)中测得的W1和W2,计算得出零件B的基准坐标系O2相对于零件A的基准坐标系O1的最终实测空间坐标转换关系W5;
计算公式为:
W5=W2×W4×W1
-1
(12)将步骤(11)得到的坐标转换关系W5与理论值W0进行对比,得到零件A和零件B之间的位移偏差和角度偏差。
实施例:
某大型空间展开机构包含一个根部展开关节A和一个末端展开关节B,在装配环节要求末端展开关节B输出端面的坐标系相对于根部展开关节A安装端面的坐标系的在空间满足某六自由度(RX、RY、RZ;X、Y、Z)坐标关系(W0)要求,且RX、RY、RZ三个方向的角度偏差小于0.02°,X、Y、Z三个方向的位移偏差≤0.5mm。
应用本方法调试的步骤如下:
(1)在根部展开关节A上粘贴十字立方镜L1,在末端展开关节B上合适位置粘贴十字立方镜L2,粘贴位置需确保立方镜L1和L2的观测光路不被遮挡;
(2)将三坐标测量仪和经纬仪分别采集同一公共点数据,使两种测量设备统一到一个测量坐标系下;
(3)用三坐标测量仪在步骤(2)中的测量坐标系下对根部展开关节A安装端面的基准孔坐标系O1和立方镜坐标系L1进行标定,获得O1相对于L1的坐标转换关系W1,用三坐标测量仪对末端展开关节B的基准孔坐标系O2和立方镜坐标系L2进行标定,获得O2相对于L2坐标转换关系W2;
(4)根据已知的O2相对于O1的理论坐标转换关系W0以及步骤(3)中得到的坐标转换关系W1和W2,计算获得L2相对于L1的理论坐标转换关系W0’;
所述步骤(4)计算公式为:
W0'=W0×W1×W2
-1
(5)在步骤(2)建立好的统一坐标系下,利用四台经纬仪构建空间测量系统,如图2所示,对立方镜L1和立方镜L2进行准直测量,获得当前状态下L2相对于L1的实测坐标转换关系W3;
(6)将实测坐标转换关系W3与步骤(4)中得到的理论坐标转换关系W0’进行比对,获得当前状态下的位移偏差和角度偏差;
(7)根据步骤(4)中得到的理论坐标转换关系W0’,得到立方镜L2对应的经纬仪仪器的理论状态参数,并将经纬仪仪器的角度和距离预置为该理论状态;
(8)将步骤(7)中的经纬仪监测数据传输至计算机上,由计算机显示出立方镜L2十字刻线的理论位置,同时给出当前状态下立方镜L2十字刻线的实际位置,并显示出调整方向和调整量,如图3所示;
(9)保持根部展开关节A不动,根据步骤(8)获得的调整方向和调整量指导操作者对末端展开关节B进行调试,调试过程,经纬仪始终监测末端关节B上立方镜L2的十字刻线变化,并实时提醒操作者变化趋势和调整量,当两个十字刻线完全重合时则调整结束;
(10)用四台经纬仪重新对立方镜L1和立方镜L2进行准直,从而得到立方镜L1和立方镜L2最终状态的坐标转换关系W4;
(11)利用步骤(10)中得到的坐标转换关系W4,以及步骤(3)中测得的W1和W2,计算得出末端展开关节B输出端面坐标系O2相对于根部展开关节A安装端面坐标系O1的最终实测空间坐标转换关系W5;
所述步骤(11)计算公式为:
W5=W2×W4×W1
-1
(12)将步骤(11)得到的坐标转换关系W5与理论值W0进行对比,评价偏差是否满足要求。
本发明采用高精度基准转换技术,降低了测量误差,解决了小基准测量大尺寸误差放大的问题。本发明改变了空间展开机构六自由度位姿装调时,先测后调、调测分离的思路,通过测量系统的实时监测,能够实时给出六个自由度单变量的偏差值及偏差方向,切实提升了空间展开机构的六自由度装调效率。
本发明说明书中未作详细描述的内容属于本领域专业技术人员的公知技术。
Claims (9)
- 一种基于联合标定的的空间位姿实时测调方法,其特征在于步骤如下:(1)在待测调空间展开机构的零件A上安装十字立方镜L1,在待测调空间展开机构的零件B上安装十字立方镜L2;(2)将三坐标测量仪和经纬仪分别采集同一公共点数据,使两种测量设备统一到同一个测量坐标系下;(3)用三坐标测量仪在所述测量坐标系下对零件A的基准坐标系O1和立方镜L1坐标系进行标定,获得基准坐标系O1相对于立方镜L1坐标系的坐标转换关系W1,用三坐标测量仪对零件B的基准坐标系O2和立方镜L2坐标系进行标定,获得基准坐标系O2相对于立方镜L2坐标系的坐标转换关系W2;(4)根据基准坐标系O2相对于基准坐标系O1的理论坐标转换关系W0以及步骤(3)中得到的坐标转换关系W1和W2,计算获得立方镜L2坐标系相对于立方镜L1坐标系的理论坐标转换关系W0’;(5)在步骤(2)建立好的测量坐标系下,利用四台经纬仪构建空间测量系统,对十字立方镜L1和十字立方镜L2进行准直测量,获得当前状态下十字立方镜L2相对于十字立方镜L1的实测坐标转换关系W3;(6)将实测坐标转换关系W3与步骤(4)中得到的理论坐标转换关系W0’进行比对,获得当前状态下的十字立方镜L1和十字立方镜L2之间的位移偏差和角度偏差;(7)根据步骤(4)中得到的理论坐标转换关系W0’,得到瞄准十字立方镜L2的经纬仪仪器的理论状态参数,并根据该理论状态参数对该经纬仪仪器的角度和距离进行预置;(8)将步骤(7)中预置参数的经纬仪的监测数据传输至计算机上,由计算机显示出十字立方镜L2的十字刻线的理论位置,同时给出当前状态下十字 立方镜L2的十字刻线的实际位置,并确定出调整方向和调整量;(9)保持零件A不动,根据步骤(8)获得的调整方向和调整量对零件B进行调试,调试过程,经纬仪始终监测零件B上十字立方镜L2的十字刻线变化,当两个十字刻线完全重合时则调整结束;(10)用四台经纬仪重新对十字立方镜L1和十字立方镜L2进行准直,从而得到十字立方镜L1和十字立方镜L2最终状态的坐标转换关系W4;(11)利用步骤(10)中得到的坐标转换关系W4,以及步骤(3)中测得的W1和W2,计算得出零件B的基准坐标系O2相对于零件A的基准坐标系O1的最终实测空间坐标转换关系W5;(12)将步骤(11)得到的坐标转换关系W5与理论值W0进行对比,得到零件A和零件B之间的位移偏差和角度偏差。
- 根据权利要求1所述的一种基于联合标定的空间位姿实时测调方法,其特征在于:所述步骤(4)计算公式为:W0'=W0×W1×W2 -1
- 根据权利要求1所述的一种基于联合标定的空间位姿实时测调方法,其特征在于:所述步骤(11)计算公式为:W5=W2×W4×W1 -1
- 根据权利要求1所述的一种基于联合标定的空间位姿实时测调方法,其特征在于:所述基准坐标系O1具体定义为:以零件A表面设置的基准孔O为坐标原点,以平行于零件A短边朝外的方向为X向,以平行于零件A长边朝外的方向为Y向,再按右手定则确立Z向。
- 根据权利要求1所述的一种基于联合标定的空间位姿实时测调方法,其特征在于:所述立方镜L1坐标系具体定义为:以立方镜L1的中心为坐标原点,选择一个被准直面,以该面的法向为X向,相邻面的面法向为Y向,再按右手定则确立Z向。
- 根据权利要求1所述的一种基于联合标定的空间位姿实时测调方法, 其特征在于:所述基准坐标系O2具体定义为:以零件B表面设置的基准孔R为坐标原点,以平行于零件B短边朝外的方向为X向,以平行于零件B长边朝外的方向为Y向,再按右手定则确立Z向。
- 根据权利要求1所述的一种基于联合标定的空间位姿实时测调方法,其特征在于:所述立方镜L2坐标系具体定义为:以立方镜L2的中心为坐标原点,选择一个被准直面,以该面的法向为X向,相邻面的面法向为Y向,再按右手定则确立Z向。
- 根据权利要求1所述的一种基于联合标定的空间位姿实时测调方法,其特征在于:基准坐标系O2相对于基准坐标系O1的理论坐标转换关系W0为已知。
- 根据权利要求1所述的一种基于联合标定的空间位姿实时测调方法,其特征在于:所述利用四台经纬仪构建空间测量系统,具体的构建方式如下:将经纬仪T1放置在立方镜L1附近,确保立方镜L1正面能够在经纬仪T1的视场范围内;将经纬仪T2放置在立方镜L1附近,确保立方镜L1侧面能够在经纬仪T2的视场范围内;将经纬仪T3放置在立方镜L2附近,确保立方镜L2正面能够在经纬仪T3的视场范围内;将经纬仪T4放置在立方镜L2附近,确保立方镜L2侧面能够在经纬仪T4的视场范围内;将经纬仪T1、T2、T3、T4两两互相准直,获得四台经纬仪相互间的角度关系,再通用经纬仪T1和T3瞄准长度确定的标尺,从而构建出可测量角度和位移的空间测量系统。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011181196.0 | 2021-03-01 | ||
CN202011181196.0A CN112648956B (zh) | 2021-03-01 | 2021-03-01 | 一种基于联合标定的空间位姿实时测调方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022183761A1 true WO2022183761A1 (zh) | 2022-09-09 |
Family
ID=75346801
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/129480 WO2022183761A1 (zh) | 2021-03-01 | 2021-11-09 | 一种基于联合标定的的空间位姿实时测调方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112648956B (zh) |
WO (1) | WO2022183761A1 (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112648956B (zh) * | 2021-03-01 | 2022-10-14 | 北京卫星制造厂有限公司 | 一种基于联合标定的空间位姿实时测调方法 |
CN113310351B (zh) * | 2021-05-29 | 2021-12-10 | 北京波谱华光科技有限公司 | 一种电子分划装表精度标定方法及系统 |
CN113446985B (zh) * | 2021-07-07 | 2023-03-28 | 上海航天测控通信研究所 | 一种反射面天线电轴指向标定方法 |
CN113804429B (zh) * | 2021-10-28 | 2023-11-10 | 北京卫星环境工程研究所 | 航天器密封舱在轨压差环境舱内设备精度补偿方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103363949A (zh) * | 2013-07-19 | 2013-10-23 | 北京卫星制造厂 | 一种卫星天线混合测量分析的方法 |
US20150015700A1 (en) * | 2013-07-03 | 2015-01-15 | Faro Technologies, Inc. | Laser tracker that cooperates with a remote camera bar and coordinate measurement device |
CN104504240A (zh) * | 2014-11-27 | 2015-04-08 | 上海卫星装备研究所 | 航天器总装精度测量计算方法 |
CN107782293A (zh) * | 2017-11-09 | 2018-03-09 | 北京卫星环境工程研究所 | 基于六自由度激光跟踪靶的航天器设备位姿信息测量方法 |
CN111046584A (zh) * | 2019-12-27 | 2020-04-21 | 哈尔滨工业大学 | 星载仪器设备的精密调整方法 |
CN112648956A (zh) * | 2021-03-01 | 2021-04-13 | 北京卫星制造厂有限公司 | 一种基于联合标定的空间位姿实时测调方法 |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2555368B2 (ja) * | 1987-08-14 | 1996-11-20 | 日本電信電話株式会社 | パタ−ン投影器の位置姿勢校正法 |
CN1078703C (zh) * | 1999-07-02 | 2002-01-30 | 清华大学 | 目标空间位置及姿态激光跟踪测量系统及其测量 |
DE19947674A1 (de) * | 1999-10-04 | 2001-05-10 | Andreas Naumann | Funk-Theodolit-Meßsystem |
US20050102063A1 (en) * | 2003-11-12 | 2005-05-12 | Pierre Bierre | 3D point locator system |
CN101750012A (zh) * | 2008-12-19 | 2010-06-23 | 中国科学院沈阳自动化研究所 | 一种测量物体六维位姿的装置 |
CN101876555B (zh) * | 2009-11-04 | 2011-12-21 | 北京控制工程研究所 | 一种月球车双目视觉导航系统标定方法 |
US8583371B1 (en) * | 2010-12-23 | 2013-11-12 | Lockheed Martin Corporation | Autonomous gyro temperature calibration |
CN102735210B (zh) * | 2012-06-28 | 2014-11-19 | 北京卫星制造厂 | 天线装配检测方法 |
CN103673976A (zh) * | 2013-12-03 | 2014-03-26 | 上海卫星装备研究所 | 复合式精度测量坐标系的转换与统一方法及系统 |
CN103737433B (zh) * | 2013-12-03 | 2016-07-27 | 上海卫星装备研究所 | 大尺寸构件复合式精度测量方法 |
CN104089594B (zh) * | 2014-07-25 | 2017-10-17 | 北京卫星环境工程研究所 | 卫星大尺寸平面阵列sar天线自动化精测方法 |
CN104502887B (zh) * | 2014-12-25 | 2017-04-12 | 湖南航天电子科技有限公司 | 一种基于卫星定向的方位标定方法 |
CN104613929A (zh) * | 2015-01-07 | 2015-05-13 | 北京卫星环境工程研究所 | 基于机器视觉自动准直立方镜的方法 |
CN105203103B (zh) * | 2015-07-28 | 2017-12-08 | 上海卫星装备研究所 | 地面航天器相对地理方位关系的实时测量方法 |
WO2018090323A1 (zh) * | 2016-11-18 | 2018-05-24 | 深圳配天智能技术研究院有限公司 | 一种坐标系标定方法、系统及装置 |
CN107543495B (zh) * | 2017-02-17 | 2019-02-22 | 北京卫星环境工程研究所 | 航天器设备自动准直测量系统、准直方法与测量方法 |
CN107639635B (zh) * | 2017-09-30 | 2020-02-07 | 杨聚庆 | 一种机械臂位姿误差标定方法及系统 |
DE102019111531B3 (de) * | 2019-05-03 | 2020-10-22 | Trimble Jena Gmbh | Vermessungsinstrument und Spiegelanordnung |
CN110471436B (zh) * | 2019-08-08 | 2022-05-03 | 南京航空航天大学 | 一种挠性航天器的姿态控制方法 |
CN112033434A (zh) * | 2020-07-17 | 2020-12-04 | 成都飞机工业(集团)有限责任公司 | 一种再入轨飞行器在竖直状态下的联合标定方法 |
-
2021
- 2021-03-01 CN CN202011181196.0A patent/CN112648956B/zh active Active
- 2021-11-09 WO PCT/CN2021/129480 patent/WO2022183761A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150015700A1 (en) * | 2013-07-03 | 2015-01-15 | Faro Technologies, Inc. | Laser tracker that cooperates with a remote camera bar and coordinate measurement device |
CN103363949A (zh) * | 2013-07-19 | 2013-10-23 | 北京卫星制造厂 | 一种卫星天线混合测量分析的方法 |
CN104504240A (zh) * | 2014-11-27 | 2015-04-08 | 上海卫星装备研究所 | 航天器总装精度测量计算方法 |
CN107782293A (zh) * | 2017-11-09 | 2018-03-09 | 北京卫星环境工程研究所 | 基于六自由度激光跟踪靶的航天器设备位姿信息测量方法 |
CN111046584A (zh) * | 2019-12-27 | 2020-04-21 | 哈尔滨工业大学 | 星载仪器设备的精密调整方法 |
CN112648956A (zh) * | 2021-03-01 | 2021-04-13 | 北京卫星制造厂有限公司 | 一种基于联合标定的空间位姿实时测调方法 |
Also Published As
Publication number | Publication date |
---|---|
CN112648956B (zh) | 2022-10-14 |
CN112648956A (zh) | 2021-04-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022183761A1 (zh) | 一种基于联合标定的的空间位姿实时测调方法 | |
CN109822574B (zh) | 一种工业机器人末端六维力传感器标定的方法 | |
CN102825602B (zh) | 一种基于psd的工业机器人自标定方法及装置 | |
CN111203861B (zh) | 一种机器人工具坐标系的标定方法及标定系统 | |
CN107717993B (zh) | 一种高效便捷的简易机器人标定方法 | |
CN110757504B (zh) | 高精度可移动机器人的定位误差补偿方法 | |
CN108759798B (zh) | 一种高精度航天器精度测量的实现方法 | |
CN109163675B (zh) | 一种基于激光跟踪仪检测角摆轴位置精度的方法 | |
CN102654387B (zh) | 一种基于空间曲面约束的工业机器人在线标定装置及其实现方法 | |
CN102601684B (zh) | 基于间接测量法的高精度制孔机器人的工具参数标定方法 | |
CN113160334B (zh) | 一种基于手眼相机的双机器人系统标定方法 | |
CN107639635A (zh) | 一种机械臂位姿误差标定方法及系统 | |
Zhou et al. | A combined calibration method of a mobile robotic measurement system for large-sized components | |
CN105015800A (zh) | 航天器舱段在地面上的自动化装配系统 | |
CN104880205B (zh) | 非正交轴系激光经纬仪测量系统标定方法 | |
CN110001998B (zh) | 一种基于激光测距的飞机大部件框式结构对接引导装置与方法 | |
CN103673976A (zh) | 复合式精度测量坐标系的转换与统一方法及系统 | |
CN105091746A (zh) | 应用于航天器舱段地面对接的空间坐标系标定方法 | |
CN114905511B (zh) | 一种工业机器人装配误差检测与精度补偿系统标定方法 | |
CN113211445A (zh) | 一种机器人参数标定方法、装置、设备及存储介质 | |
CN103737433A (zh) | 大尺寸构件复合式精度测量方法 | |
CN102538726A (zh) | 一种电子经纬仪确定目标物位置与姿态的测试系统及其使用方法 | |
CN112828878B (zh) | 一种大型设备对接过程三维测量与跟踪方法 | |
CN110211175B (zh) | 准直激光器光束空间位姿标定方法 | |
CN115493616B (zh) | 一种激光跟踪姿态角现场精度的评定方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21928835 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21928835 Country of ref document: EP Kind code of ref document: A1 |