[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022182374A1 - Method and apparatus for reading a flash memory device - Google Patents

Method and apparatus for reading a flash memory device Download PDF

Info

Publication number
WO2022182374A1
WO2022182374A1 PCT/US2021/030191 US2021030191W WO2022182374A1 WO 2022182374 A1 WO2022182374 A1 WO 2022182374A1 US 2021030191 W US2021030191 W US 2021030191W WO 2022182374 A1 WO2022182374 A1 WO 2022182374A1
Authority
WO
WIPO (PCT)
Prior art keywords
reliability
state
neural network
read
tvso
Prior art date
Application number
PCT/US2021/030191
Other languages
French (fr)
Inventor
Lorenzo Zuolo
Rino Micheloni
Original Assignee
Microchip Technology Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US17/234,993 external-priority patent/US11514992B2/en
Application filed by Microchip Technology Inc. filed Critical Microchip Technology Inc.
Priority to DE112021005459.7T priority Critical patent/DE112021005459T5/en
Priority to CN202180092032.7A priority patent/CN116830200B/en
Publication of WO2022182374A1 publication Critical patent/WO2022182374A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/26Sensing or reading circuits; Data output circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • G11C11/5621Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using charge storage in a floating gate
    • G11C11/5642Sensing or reading circuits; Data output circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/02Detection or location of defective auxiliary circuits, e.g. defective refresh counters
    • G11C29/021Detection or location of defective auxiliary circuits, e.g. defective refresh counters in voltage or current generators
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/02Detection or location of defective auxiliary circuits, e.g. defective refresh counters
    • G11C29/028Detection or location of defective auxiliary circuits, e.g. defective refresh counters with adaption or trimming of parameters

Definitions

  • SSD Solid State Drives
  • Some Solid State Drives include flash controllers that use threshold-voltage-shift reads for reading flash memory devices to obtain low levels of Uncorrectable Bit Error Rate (UBER) required for client and enterprise SSD’s.
  • Threshold-voltage-shift reads are performed by sending a threshold-voltage-shift read instruction to a flash memory device that is to be read.
  • One or more Threshold-Voltage-Shift Offset (TVSO) value is sent with the threshold-voltage- shift read instruction.
  • the TVSO value indicates the amount by which each threshold voltage that is used to perform the read is to be offset from a corresponding default threshold voltage that is specified by the manufacturer of the flash memory device.
  • Multi-level cell (MLC) flash memory devices store two bits of information in each cell and require three TVSO values for each read; triple level cell (TLC) flash memory devices store three bits of information in each cell and require seven TVSO values for each read; quad level cell (QLC) flash memory devices store four bits of information in each cell and require 15 TVSO values for each read; and penta level cell (PLC) flash memory devices store five bits of information in each cell and require 31 TVSO values for each read.
  • MLC Multi-level cell
  • TLC triple level cell
  • QLC quad level cell
  • PLC penta level cell
  • a flash characterization testing process is performed to identify the best TVSO values to use in performing reads of a particular flash memory device, commonly referred to as Threshold- Voltage-Shift-Offset-minimum (TVSOmin) values.
  • TVSOmin values are usually a set of TVSO values that produce the least errors when reading the flash memory device at testing conditions corresponding to a particular reliability state.
  • Reliability-states are sets of conditions that indicate the age and usage of individual flash memory devices.
  • Flash controllers that use threshold voltage shift read instructions for performing reads typically include firmware for monitoring physical characteristics of the flash memory devices and use the monitored physical characteristics for determining the TVSO values to use in performing reads of each flash memory device.
  • the TVSO values to be used for performing the read (referred to hereinafter as “TVSO Read-Current” values or TVSO-RC values) are typically determined prior to each read by the flash controller based on the physical location to be read (e.g., block/page) and the current physical characteristics of the flash memory device to be read as measured by the flash controller, by performing a look-up operation in a look-up table using the physical location to be read and the current physical characteristics of the flash memory device (e.g., number of program/erase cycles, retention time, number of read disturbs and temperature).
  • the TVSO-RC values are usually one of the sets of TVSOmin values identified in flash characterization testing.
  • a method for reading a flash memory device includes storing configuration files of a plurality of reliability-state Classification Neural Network (CNN) models, configuration files of a plurality of Regression Neural Network (RNN) inference models and a plurality of sets of reliability-state tags.
  • Each set of reliability-state tags are associated with one of a plurality of reliability states and each of the reliability-state CNN models is associated with a range of program and erase (P/E) cycles.
  • the operation of the flash memory device is monitored to identify a current number of program and erase (P/E) cycles of the flash memory device.
  • the one of the reliability-state CNN models associated with a range of P/E cycles corresponding to the current number of P/E cycles is selected and a neural network operation of the selected reliability-state CNN model is performed to identify a predicted reliability state.
  • the set of reliability-state tags associated with the predicted reliability state are identified.
  • the one of the plurality of RNN inference models that corresponds to the predicted reliability state is selected, and a neural network operation of the selected RNN inference model that uses as input the identified reliability-state tags is performed to generate output values indicating the shape of a threshold-voltage-shift read-error (TVS-RE) curve.
  • TVS-RE threshold-voltage-shift read-error
  • a Threshold Voltage Shift Offset (TVSO) value proximate to a minimum value of the generated TVS-RE curve are identified and a read of the flash memory device is performed using a threshold-voltage-shift read at the identified TVSO value(s).
  • TVSO Threshold Voltage Shift Offset
  • a flash controller includes a data storage module configured for storing configuration files of a plurality of reliability-state CNN models, configuration files of at least one RNN inference model and a plurality of sets of reliability-state tags, each set of reliability- state tags associated with one of a plurality of reliability states and each of the reliability-state CNN models associated with a range of program and erase (P/E) cycles.
  • a status module is configured to identify a current number of program and erase cycles.
  • a neural processing module is coupled to the data storage module and to the control module.
  • the neural processing module is configured to perform a neural network operation of the one of the stored reliability- state CNN models associated with a range of P/E cycles corresponding to the current number of P/E cycles to identify a predicted reliability state, and perform neural network operations of the RNN inference models corresponding to the predicted reliability state, using as input to each neural network operation the set of reliability-state tags associated with the predicted reliability state, to generate output indicating the shape of TVS-RE curves for all threshold voltage regions required to read the flash memory device.
  • a minimum function module is configured to identify TVSO values for all threshold voltage regions required to read the flash memory device, each of the identified TVSO values proximate a minimum value of one of the TVS-RE curves.
  • a read module is configured to perform a read of the flash memory device by sending a threshold- voltage-shift read instruction to the flash memory device that includes the identified TVSO values.
  • a Solid State Drive includes a flash memory device and a flash controller coupled to the flash memory device.
  • the flash controller includes a data storage module configured for storing configuration files of a plurality of reliability-state Classification Neural Network (CNN) models, configuration files of a plurality of Regression Neural Network (RNN) inference models and a plurality of sets of reliability-state tags, each set of reliability- state tags associated with one of a plurality of reliability states and each of the reliability-state CNN models associated with a range of program and erase (P/E) cycles.
  • a neural processing module is coupled to the data storage module and to the control module.
  • the neural processing module is configured to perform a neural network operation of the stored reliability-state CNN model associated with a range of P/E cycles corresponding to the current number of P/E cycles to identify a predicted reliability state, and perform neural network operations of the RNN inference models corresponding to the predicted reliability state, using as input to each neural network operation the set of reliability-state tags associated with the predicted reliability state, to generate output indicating the shape of TVS-RE curves for all threshold voltage regions required to read the flash memory device.
  • the flash controller includes a status module configured to identify a current number of program and erase (P/E) cycles.
  • the flash controller includes a neural processing module coupled to the data storage module and to the control module.
  • the flash controller includes a minimum function module configured to identify TVSO values for all threshold voltage regions required to read the flash memory device, each of the identified TVSO values proximate a minimum value of one of the TVS-RE curves, and a read module configured to perform a read of the flash memory device by sending a threshold-voltage-shift read instruction to the flash memory device that includes the identified TVSO values.
  • FIG. l is a diagram illustrating method for performing a read of a flash memory device.
  • FIG. 2 is a graph illustrating exemplary threshold-voltage-shift read-error curves generated using the results from testing of representative flash memory devices in which the number of errors is shown on the y-axis and TVSO is shown on the x-axis.
  • FIG. 3 is a graph illustrating exemplary smoothed threshold-voltage-shift read-error curves generated from the data set illustrated in FIG. 2, in which the number of errors is shown on the y-axis and TVSO is shown on the x-axis.
  • FIG. 4A-4B are block diagrams illustrating reliability-state CNN inference models.
  • FIG. 5A-5B are block diagrams illustrating RNN inference models.
  • FIG. 6 is a block diagram illustrating an SSD.
  • FIG. 1 illustrates a method 100 for reading a flash memory device that includes generating (101) a plurality of reliability-state CNN models.
  • the reliability-state CNN model is generated as shown in US Non-Provisional Patent Application Serial No. 17/213,675 filed on March 26, 2021 that is titled “Method and Apparatus for Determining when Actual Wear of a Flash Memory Device Differs from Reliability States for the Flash Memory Device”, that is incorporated by reference herein in its entirety. Representative flash memory devices are tested to identify the number of errors that occur as the representative flash memory devices age.
  • the representative flash memory devices are devices that are similar to, or identical to, the flash memory devices that are to be read using method 100.
  • representative flash memory devices are inserted into test fixtures of a testing computer system and testing is performed to identify a number of flash characterization testing errors (FCT-ERROR values) for each wordline for each of a plurality of cycling conditions, where each cycling condition corresponds to a particular reliability state.
  • FCT-ERROR values flash characterization testing errors
  • TVSO values are indicated using the format “TVSOn”, where n indicates the threshold voltage region specified by a manufacturer of the flash memory device. More particularly, first TVSO region values (TVSOi) indicate a TVSO value for reading a first threshold voltage region, second TVSO region values (TVSO2) indicate a TVSO value for reading a second threshold voltage region, third TVSO region values (TVSO3) indicate a TVSO value for reading a third threshold voltage region, fourth TVSO region values (TVSO4) indicate a TVSO value for reading a fourth threshold voltage region, fifth TVSO region values (TVSO5) indicate a TVSO value for reading a fifth threshold voltage region specified by a manufacturer of the flash memory, sixth TVSO region values (TVS0 6 ) indicate a TVSO value for reading a sixth threshold voltage region, seventh TVSO region values (TVSO7) indicate a TVSO value for reading a seventh threshold voltage region, and so on.
  • first TVSO region values indicate a TVSO value for reading a first threshold voltage region
  • second TVSO region values indicate a TVSO value
  • a TVSO-region index is defined for each TVSO region, with the TVSO-region index for TVSOi having a value of 1, the TVSO-region index for TVSO2 having a value of 2, the TVSO-region index for TVSO3 having a value of 3 and so forth.
  • Each voltage region is related to a read voltage threshold level, and thus in an SLC only a single region is provided, whereas in MLC a plurality of voltage regions are provided.
  • the TVSO value(s) that are used to perform reads to identify FCT-ERROR values will be referred to as Flash-Characterization-Read-Threshold-Voltage-Shift Offset (FCR-TVSO) values and may be represented in the form FCR-TVSO (TVSOi) for a read of a SLC nonvolatile memory device, FCR-TVSO (TVSOi, TVSO 2 , TVSO 3 ) for a read of a MLC nonvolatile memory device, FCR-TVSO (TVSOi, TVSO2, TVS0 3 ,TVS0 4 , TVSO5, TVSOe, TVSO7) for a read of a TLC nonvolatile memory device; FCR-TVSO (TVSOi, TVSO2, TVS0 3 ,TVS0 4 , TVSO5,
  • each wordline of the representative flash memory devices are performed by a “scanning operation” in which reads are performed at each TVSO value that the particular representative flash memory device is capable of being read at while setting the other TVSO regions to a value of zero (e.g., starting at the lowest TVSO value that the flash memory device is capable of reading at and incrementing by one after each read).
  • each FCR-TVSO value will have a single TVSO n value that is nonzero and the other TVSO n values will have a value of 0.
  • FIG. 2 shows an example of Threshold-Voltage-Shift Read-Error (TVS-RE) curves generated by scanning representative flash memory devices with TVSO values from -24 to +24, each TVS-RE curve identifying a number of errors as a function TVSO values at cycling conditions corresponding to one of the reliability states and corresponding to one of the threshold voltage regions required for reading the flash memory device
  • TVS-RE Threshold-Voltage-Shift Read-Error
  • a smoothing function e.g., an algorithm such as a moving average or multi-polynomial interpolation
  • FCT-ERROR values are adjusted to obtain corresponding smoothed error values (ERROR).
  • Figure 3 shows an example of TVS-RE curves generated from smoothing the FCT-ERROR values of FIG. 2 to obtain ERROR values.
  • the testing and the smoothing generates data records that indicate one or more of the following values for each test (where each test corresponds to a single read): a wordline index value (WORDLINE INDEX) indicating the wordline that is tested, a block index value (BLOCK INDEX) indicating the block that is being tested, a page index value (PAGE INDEX) indicating the page that is being tested, a retention time value (RETENTION TIME) indicating the retention time for the wordline that is being tested, a read disturb value (READ DISTURB) indicating a number of read disturbs for the wordline that is being tested, a temperature value (TEMPERATURE) indicating the cycling temperature for the representative flash memory device being tested, a P/E cycle value (P/E CYCLES) indicating the current number of P/E cycles for the wordline (or block) being tested and an error value (ERROR) indicating the number of errors in the read (as adjusted in the smoothing operation).
  • WORDLINE INDEX
  • FIG. 4A-4B illustrate examples of reliability-state CNN models 40a-40b that may be generated in step 101. It is appreciated that reliability-state models 40a-40b are exemplary, and that many other combinations of inputs, outputs and hidden layers could be used.
  • Reliability- state CNN models 40a, 40b include an input layer 41 that includes input neurons 41a-c and layers 42-44 of hidden neurons.
  • Reliability-state CNN model 40a includes an output layer 45 that includes a single output neuron 45a that indicates a predicted reliability state.
  • a predicted reliability state is the reliability state indicated by the output neurons when a neural network operation of the reliability-state CNN model is performed.
  • 4B includes an output layer 48 that includes one output neuron 48a for each of a plurality of reliability states, denoted respectively RSI, RS2, RS3, RS4, RS5 ... RSn.
  • the number of output neurons 48a is equal to the number of reliability states and each output neuron 48a indicates the probability that the reliability state represented by the particular output neuron is the correct reliability state, where the output neuron 48a having the highest numerical value indicates the predicted reliability state.
  • an activation function is applied to the output (e.g., a softmax activation function) to assure that the probabilities of the respective output neurons of output layer 48 sum to one.
  • Data records from the flash characterization testing are divided by f P/E cycle values and a plurality of reliability-state CNN models are formed, each valid for, and associated with, a particular range of P/E cycle values. More particularly, the training data files that are used for training each reliability-state CNN model include only those training data files for tests having a number of P/E cycles that is within the range of P/E cycle values of the particular reliability-state CNN model.
  • training using training data files for tests performed within a first range of P/E cycle values is used to create a first reliability-state CNN model
  • training using training data files for tests performed at a second range of P/E cycle values is used to create a second reliability-state CNN model.
  • 7 P/E-categorized reliability-state CNN models are generated, including a third reliability-state CNN model (2,001 P/E cycles to 3,000 P/E cycles), a fourth reliability-state CNN model (3,001 P/E cycles to 4,000 P/E cycles), a fifth reliability-state CNN model (4,001 P/E cycles to 5,000 P/E cycles), a sixth reliability-state CNN model (5,001 P/E cycles to 6,000 P/E cycles) and a seventh reliability-state CNN model (6,001 P/E cycles to 7,000 P/E cycles), where 7,000 P/E cycles is considered end of life.
  • a third reliability-state CNN model (2,001 P/E cycles to 3,000 P/E cycles)
  • a fourth reliability-state CNN model (3,001 P/E cycles to 4,000 P/E cycles)
  • a fifth reliability-state CNN model (4,001 P/E cycles to 5,000 P/E cycles)
  • a sixth reliability-state CNN model (5,001 P/E cycles to 6,000 P/E cycles)
  • a seventh reliability-state CNN model
  • a WORDLINE INDEX is input to input neuron 41a
  • a BLOCK INDEX is input into neuron 41b
  • a PAGE INDEX is input into neuron 41c to train the respective CNN model 40a or 40b to recognize a particular reliability state.
  • WORDLINE INDEX, BLOCK INDEX and PAGE INDEX are the features of the resulting reliability-state CNN model 40a or 40b.
  • each resulting reliability-state CNN model is tested to determine whether the resulting model can accurately predict the correct reliability state.
  • training data records are removed and the training is repeated. The process of removing training data records and repeating training is performed until the resulting CNN models, taken together, accurately predict all reliability states.
  • data records corresponding to scans of TVSO regions that are less responsive to a particular current physical characteristic can be selected for removal from the training data set.
  • the training data records corresponding to TVSO values required to read one or more of an upper page (e.g., TVSOi, TVSO3, TVSO5 and TVSO7), a middle page (e.g., TVSO2 and TVS06) or a lower page (e.g., TVSO 4 ) are removed.
  • a plurality of RNN inference models are generated (102).
  • Each RNN inference model is configured to identify the shape of a TVS-RE curve for one of the threshold voltage regions required to read a flash memory device, where each TVS-RE curve identifies a number of errors as a function of TVSO values.
  • the RNN inference model is generated as shown in US Non-Provisional Patent Application Serial No 17/089,891, filed on November 5, 2021, having the title “Regression Neural Network for Identifying Threshold Voltages to be Used in Reads of Flash Memory Devices”, that is incorporated by reference herein in its entirety.
  • step 102 for each reliability state, a RNN inference model is generated for each threshold voltage region required to read flash memory devices 2.
  • Each RNN inference model generates output indicating the shape of a TVS-RE curve corresponding to one of the reliability states and corresponding to one of the threshold voltage regions required for reading each flash memory device 2.
  • Reliability states can be indicated using a numerical value that identifies each reliability state, referred to hereinafter as a Reliability State Index (RSI).
  • RSI Reliability State Index
  • an RSI of 1 identifies a first reliability state
  • an RSI of 2 identifies a second reliability state, and so forth.
  • each RNN model is associated with a corresponding TVSO-region index that indicates the threshold voltage region that the particular RNN inference model represents and is associated with a corresponding RSI.
  • flash memory devices 2 are MLC devices
  • a first RNN inference model is associated a TVSO- region index of 1 and an RSI of 1
  • a second RNN inference model is associated with a TVSO- region index of 2 and an RSI of 1
  • a third RNN inference model is associated with a TVSO- region index of 3 and an RSI of 1.
  • Training can be performed using the same data records that were used to generate the reliability-state CNN models in step 101: however, in addition to using as features WORDLINE INDEX, BLOCK INDEX and PAGE INDEX, one or more of the following additional features are also used: RETENTION TIME, READ DISTURB, TEMPERATURE and PE CYCLES.
  • FIG. 5A shows a diagram of an exemplary RNN inference model 50a that includes a plurality of input neurons 51a-51g, a plurality of output neurons 55a and layers 52-54 of hidden neurons.
  • WORDLINE INDEX is input to input neuron 51a
  • BLOCK INDEX is input into input neuron 51b
  • PAGE INDEX is input into input neuron 51c
  • RETENTION TIME is entered into input neuron 5 Id
  • READ DISTURB is entered into input neuron 51e
  • TEMPERATURE is entered into input neuron 5 If and PE CYCLES is input into input neuron 5 lg.
  • Output neurons 55a generate output in the form of coefficient values that indicate the shape of (and thereby define) a TVS-RE curve for a particular threshold voltage region.
  • the output of RNN inference model 50a is shown to include six coefficients, shown as FIRST COEFFICENT, SECOND COEFFICENT, THIRD COEFFICIENT, FOURTH COEFFICIENT, FIFTH COEFFICENT and SIXTH COEFFICENT. It is appreciated that the RNN inference model 50a can have any number of coefficients, and that the number of coefficients can be altered to achieve a balance between processing time and accuracy.
  • output neurons 55b generate values that indicate the number of errors at locations corresponding to TVSO values.
  • output neurons 55b include an output neuron for each TVSO value (for n TVSO values), such as, for example an output neuron that predicts the error when a first TVSO value is used (PRED-ERR TVSOl), an output neuron that predicts the error when a second TVSO value is used (PRED-ERR TVS02), an output neuron that predicts the error when a third TVSO value is used (PRED-ERR TVS03), an output neuron that predicts the error when a fourth TVSO value is used (PRED-ERR TVS04), an output neuron that predicts the error when a fifth TVSO value is used (PRED-ERR TVS05) and so on, to an output neuron that predicts the error when an n' TVSO value is used (PRED-ERR TVSOn).
  • PRED-ERR TVSOl an output neuron that predicts the error when a first TVSO value is used
  • Exemplary neural network models shown in FIGS 4A-5B include input neurons for receiving a PAGE INDEX, and PAGE INDEX is a feature used for the training of the neural network models shown in FIGS 4A-5B.
  • PAGE INDEX is not used as a feature during the training and each of the neural network models shown in FIGS-4A-5B do not include input neurons 41c and 51c.
  • An SSD 15 is shown in FIG. 6 to include a flash controller 3 coupled to a plurality of flash memory devices 2 for storing data.
  • the flash memory devices 2 are NAND devices and SSD 15 includes one or more circuit boards onto which a host connector receptacle 14, flash controller 3 and flash memory devices 2 are attached.
  • SSD 15 may also include one or more memory device 13 such as a Dynamic Random Access Memory (DRAM), that may be a separate integrated circuit device attached to the one or more circuit boards, and is electrically coupled to flash controller 3.
  • DRAM Dynamic Random Access Memory
  • Flash controller 3 is configured to receive read and write instructions from a host computer through host connector receptacle 14, and to perform program operations, erase operations and read operations on memory cells of flash memory devices 2 to complete the instructions from the host computer. For example, upon receiving a write instruction from the host computer via host connector receptacle 14, flash controller 3 is operable to store data in SSD 15 by performing program operations (and when required, erase operations) to program codewords into on one or more of flash memory devices 2.
  • Flash controller 3 includes data storage module 4, status module 5, read module 6, decode module 7, write module 8, control module 9, neural processing module 10 and minimum function module 11. Control module 9 is coupled to data storage module 4, status module 5, read module 6, decode module 7, write module 8, minimum function module 11 and neural processing module 10.
  • Decode module 7 is further coupled to read module 6and to status module 5.
  • Status module 5 is further coupled to data storage module 4, read module 6, write module 8 and neural processing module 10.
  • Read module 6 is further coupled to data storage module 4, neural procession module 10 and minimum function module 11.
  • Minimum function module 11 is further coupled to data storage module 4, status module 5, control module 9 and neural processing module 10.
  • Neural processing module 10 is further coupled to data storage module 4.
  • Data storage module 4 stores configuration files of Reliability-State CNN models 21, configuration files of RNN inference models 22, reliability-state tags 23 and optional TVSO-RC selection table 27.
  • Optional TVSO-RC selection table 27 is coupled to read module 6.
  • TVSO- RC selection table 27 includes one or more index and corresponding TVSO values to be used in performing reads (e.g., an index corresponding to a block, a wordline and/or a page, and index corresponding to a number of P/E cycles and TVSO values for each threshold voltage region required to perform a read).
  • One or more of the following are stored in SSD 15, either in data storage 4, flash memory devices 2 or in memory device 13: configuration files of Reliability-State CNN models 21, configuration files of RNN inference models 22, reliability-state tags 23, reliability-state CNN selection table 24 and RNN selection table 25, P/E count table 26 and optional TVSO-RC selection table 27.
  • Neural processing module 10 is coupled to data storage module 4 such that configuration files of a reliability-State CNN model 21 and configuration files of an RNN inference model 22 can be loaded thereon.
  • neural processing module 10 includes a specialized hardware module (e.g., a specialized configurable accelerator) specifically configured to perform a neural network operation, sometimes referred to as a neural network engine (e.g., a programmable logic circuit).
  • a neural network engine e.g., a programmable logic circuit
  • neural processing module 10 can include a processor and software for performing neural network operations.
  • flash controller 3 is operable to perform steps 101- 102 by receiving test data that indicates the results from testing representative flash memory devices and flash controller 3 is operable to construct the neural network models and associated configuration files in steps 101-102.
  • Flash controller 3 is an integrated circuit device and some or all of modules 5-11 include circuits that can be dedicated circuits for performing operations, and some or all of modules 5-11 can be firmware that includes instructions that are performed on one or more processor for performing operations of flash controller 3, with the instructions stored in registers of one or more of modules 5-11 and/or stored in data storage module 4 or memory device 13. Some of all of modules 5-11 include processors for performing instructions and instructions are loaded into flash controller 3 (e.g., through host connector receptacle 14) prior to operation of flash controller 3. In one example a firmware image is loaded into flash controller 3 (e.g., through host connector receptacle 14) prior to operation of flash controller 3, the firmware image including instructions to be performed by one or more of modules 5-11.
  • Flash memory devices 2 may be SLC, MLC, TLC QLC or PLC NAND devices. In the present embodiment flash memory devices 2 are capable of performing a wide range of threshold-voltage-shift reads, including reads specified by whole number TVSO values such as - n...-2, -1, 0, +1, +2...n without limitation.
  • Each flash memory device 2 may be a packaged semiconductor die or “chip” that is coupled to flash controller 3 by conductive pathways that couple instructions, data and other information between each flash memory device 2 and flash controller 3.
  • write module 8 Upon receiving a write instruction from a host computer, write module 8 is operable to encode received data into a codeword that is sent to a particular flash memory device 2 along with a corresponding program instruction.
  • Flash memory device 2 is operable to perform the requested program instruction by programming cells of flash memory device 2.
  • each flash memory device 2 includes NAND memory cells that are organized into blocks and pages, with each block composed of NAND strings that share the same group of wordlines.
  • Each logical page is composed of cells belonging to the same wordline.
  • the number of logical pages within each logical block is typically a multiple of 16 (e.g. 64, 128).
  • a logical page is the smallest addressable unit for reading from, and writing to, the NAND memory cells of each flash memory device 2 and a logical block is the smallest erasable unit.
  • programming less than an entire logical page may be possible, depending on the structure of the NAND array.
  • flash memory devices 2 are illustrated as being NAND devices, it is appreciated that flash memory devices 2 may be any type of memory storage device that uses a threshold voltage for reading memory cells of the flash memory device 2.
  • configuration files of the reliability-state CNN models, configuration files of the RNN inference models and tags corresponding to each reliability state are stored (103), that are referred to hereinafter as “reliability-state tags.”
  • Data storage module 4 is configured for storing configuration files of reliability-state CNN models 21 generated in step 101, configuration files of RNN inference models 22 generated in step 102 and reliability-state tags 23 for each of the reliability states of reliability-state CNN models 21.
  • Reliability-state CNN models, RNN inference models and reliability-state tags 23 can be created using the same computing system that is used for performing testing of representative semiconductor devices, and then downloaded and installed into SSD 15 prior to delivery of SSD 15 to a customer.
  • SSD 15 is operable to perform some or all of steps 101-102 to generate reliability-state tags 23 configuration files of reliability-state CNN models 21 and RNN inference models 22.
  • configurations files 21, 22 and reliability-state tags 23 are initially stored in memory device 13 and/or on one or more flash memory devices 2 and configuration files of reliability-state CNN models 21, configuration files of RNN inference models 22, and reliability-state tags 23 are loaded into data storage module 4 either upon start-up of flash controller 3 or when they are required for operations of flash controller 3.
  • the operation of a flash memory device 2 is monitored (104) to identify a current number of P/E cycles of the flash memory device 2.
  • status module 5 is operable to monitor the operation of each flash memory device 2 to identify the number of P/E cycles of flash memory devices 2.
  • the determined number of P/E cycles may be identified by a counter of status module 5, and at times the value of the counter may be stored (e.g., as a table) in data storage module 4, in flash memory devices 2 or in memory device 13 (e.g. stored in flash memory devices 2 on power-down or low power mode of flash controller 3 and/or SSD 15, and loaded into data storage module 4 and/or memory device 13 at startup or when required by flash controller 3).
  • the current number of P/E cycles for the block of the flash memory device to be read in step 112 is stored in P/E count table 26.
  • the reliability state CNN model corresponding to the current number of P/E cycles is selected (105).
  • reliability-state CNN selection table 24 indicates a number of P/E cycles and corresponding values, or pointers, identifying the particular CNN model to be used.
  • Status module 5 is operable to determine a current number of P/E cycles of the block containing the page that is to be read in step 112.
  • the reliability-state CNN model selected is the one of the stored reliability-state CNN models associated with (and that was trained using) the particular range of P/E cycle values that includes the current number of P/E cycles. For example, if the current number of P/E cycles is 500 and training records for tests of exemplary flash memory devices corresponding to a first range of P/E cycles (e.g., 0-1,000 P/E cycles) are used to create a first reliability-state CNN model, the first reliability-state CNN model is selected.
  • a first range of P/E cycles e.g., 0-1,000 P/E cycles
  • reliability-state CNN selection table 24 indicates a number of P/E cycles and a corresponding index identifying a location in memory where the configuration files of the respective reliability-state CNN model 21 is stored and a look-up operation is performed on reliability-state CNN selection table 24 using the current number of P/E cycles identified in step 104 to identify the location in memory where the identified reliability-state CNN model is stored).
  • a neural network operation of the selected reliability-state CNN is performed (106) to identify a predicted reliability state.
  • control module 9 is operable to load the configuration files of the selected reliability-state CNN model 21 into neural processing module 10 to form a reliability-state CNN core.
  • Control module 9 or other circuitry of flash controller 3 couples the input (e.g., feature input vectors) required for the neural network operation to the reliability-state CNN core in neural processing module 10 and a neural network operation is performed by neural processing module 10 on the reliability-state CNN core.
  • control module 9 is operable to receive the output from output neuron 45a and identify the predicted reliability state responsive thereto.
  • a value of one output by output neuron 45a indicates a first reliability state
  • a value of 2 output by output neuron 45a indicates a second reliability state and so forth.
  • control module 9 is operable to receive the output from output neurons 48a and identify the predicted reliability state by identifying the reliability state corresponding to the output neuron 48a having the highest value.
  • Tags associated with the predicted reliability state are identified (107), that may be referred to as “reliability-state tags”.
  • reliability-state tags 23 are stored, either in the form individual tag values, comma separated values or in a tag lookup table that includes indexes corresponding to each reliability state and reliability-state tags associated with the particular reliability state.
  • the reliability-state tags associated with the predicted reliability state can be identified by performing a lookup operation using an index corresponding to the predicted reliability state (e.g., the RSI).
  • the output of output neuron 45a is a value of 1, and if that corresponds to a first reliability state having a first set of reliability-state tags, the first set of reliability-state tags are identified in step 107.
  • the identified reliability-state tags 23 can be coupled to neural processing module 10 and stored in input registers of neural processing module 10.
  • Reliability state tags 23 indicate the testing parameters corresponding to each reliability state.
  • the reliability-state tags include a retention time tag (RTT) indicating a retention time value, a read disturb tag (RDT) indicating a read disturb value and a temperature tag (TT) indicating a temperature value.
  • RTT retention time tag
  • RDT read disturb tag
  • TT temperature tag
  • retention time is divided into two ranges: 0-12 hours and 12-24 hours and the RTT for each reliability state is the midpoint between the two values.
  • Read disturb is divided into two ranges: 0-100,000 disturbs and 100,000-200,000 disturbs and the RDT for each reliability state is the midpoint between the two values.
  • Temperature is divided into two ranges 25-40 degrees Centigrade (C) and 40-70 degrees C and the TT for each reliability state is the midpoint (rounded up to a whole number) between the two values.
  • the following reliability-state tags will be stored for the first reliability-state CNN model (e.g., 0-1,000 P/E cycles), that correspond to a first of eight reliability states, where the last number following the arrow is the RSI that indicates the particular reliability state:
  • the second reliability-state CNN model (e.g., 1001-2,000 P/E cycles) is configured to identify one of eight reliability states (e.g., RSI 8-15) and will include the following eight sets of reliability-state tags:
  • the third reliability-state CNN model (e.g., 2001- 3,000 P/E cycles) is also configured to identify one of eight reliability states (e.g., RSI 16-23) and includes eight corresponding sets of reliability-state tags;
  • the fourth reliability-state CNN model (e.g., 3001-4,000 P/E cycles) is configured to identify one of eight reliability states (e.g., RSI 24-41) and includes another eight sets of reliability-state tags;
  • the fifth reliability-state CNN model (e.g., 4001-5,000 P/E cycles) is configured to identify one of eight reliability states (e.g., RSI 32-39) and includes eight more sets of reliability-state tags;
  • the sixth reliability-state CNN model (e.g., 5001-6,000 P/E cycles) is configured to identify one of eight reliability states (e.g., RSI 40-47) and will include an additional eight sets of reliability-state tags;
  • the seventh reliability-state CNN model (e.g., 6001-7,000 P/E cycles
  • An RNN inference model is selected (108) that corresponds to the predicted reliability state and one of the TVSO regions required to read flash memory device 2.
  • an RNN selection table 25 stored in data storage 4 includes values corresponding to each of the reliability states, values corresponding to each TVSO region required to read each flash memory device 2 (e.g., a TVSO-region index) and corresponding values, or pointers, identifying the particular RNN inference model to be used.
  • a lookup operation is performed on RNN selection table 25 using a value corresponding to the predicted reliability state and a TVSO region index of “1” to identify the RNN inference model to use for predicting the shape of the first threshold voltage region (TVSOi).
  • RNN selection table 25 includes values corresponding to reliability states and TVSO region indexes, and corresponding indexes identifying the location in data storage module 4where the each RNN inference model is stored, and a lookup operation in RNN selection table 25 is performed using as input the output at output neuron 45a and a TVSO region index to identify the location in memory where the corresponding RNN inference model is stored.
  • a value corresponding to the output neuron 48a having the highest value e/g., an RSI
  • a neural network operation of the stored RNN inference model is performed (109) to generate output indicating the shape of a TVS-RE curve. More particularly, a neural network operation of the RNN inference model selected in step 108 is performed.
  • the input for the neural network operation includes the identified reliability-state tags 23 associated with the predicted reliability state.
  • Control module 9 or other circuitry of flash controller 3 is operable to load the configuration files of the selected RNN inference model 22 into neural processing module 10 to form an RNN inference core.
  • Control module 9 or other circuitry of flash controller 3 couples the input required for the neural network operation to the RNN inference core in neural processing module 10.
  • the input that may be referred to as a “feature vector” specifies the values to be applied to the input neurons in the neural network operation. In the example shown in FIG.
  • the input for the RNN inference model 50a includes one or more input corresponding to the page that is to be read, such as a WORDLINE INDEX indicating the page that is to be read in step 112 (that is entered into input neuron 51a), a BLOCK INDEX indicating the block that is to be read in step 112 (that is entered into input neuron 5 lb) and a PAGE INDEX that indicates the page that is to be read in step 112 (that is entered into input neuron 51c).
  • a WORDLINE INDEX indicating the page that is to be read in step 112 (that is entered into input neuron 51a)
  • BLOCK INDEX indicating the block that is to be read in step 112
  • PAGE INDEX indicates the page that is to be read in step 112 (that is entered into input neuron 51c).
  • the input also includes the reliability-state tags identified in step 107, including an RTT that is entered into input neuron 5 Id, an RDT that is entered into input neuron 51e, a TT that is entered into input neuron 5 If.
  • the current number of P/E cycles (for the page being read in step 112) that was identified in step 104, is entered into input neuron 5 lg.
  • a neural network operation is performed by neural processing module 10 on the loaded RNN inference core to indicate the shape of a TVS-RE curve corresponding to the identified current reliability-state tags 23.
  • Output neurons 55a generate output in the form of coefficient values that indicate the shape of a TVS-RE curve.
  • the exemplary output of RNN inference model 50a is shown to include six coefficients, shown as FIRST COEFFICIENT, SECOND COEFFICIENT, THIRD COEFFICIENT, FOURTH COEFFICIENT, FIFTH COEFFICIENT and SIXTH COEFFICIENT. It is appreciated that the RNN inference model 50a may have any number of coefficients, and that the number of coefficients may be altered to achieve a balance between processing time and accuracy.
  • output neurons 55b generate values that indicate the number of errors at locations corresponding to TVSO values, thereby indicating the shape of a TVSO-RE curve.
  • a TVSO value is identified (110) proximate to a minimum value of the generated TVS- RE curve.
  • minimum function module 11 is configured to determine a minimum value for the generated TVS-RE curve and to identify a TVSO value proximate to the determined minimum value. It is appreciated that the identified “minimum value” will not be the exact minimum value as the minimum function module 11 may not have sufficient accuracy to identify the exact minimum. Accordingly, the minimum function module 11 will identify a TVSO value proximate the minimum value.
  • Minimum function module 11 can include software, hardware and/or firmware for receiving the coefficients of the generated TVS-RE curve, identifying a minimum point of the curve and outputting the TVSO value corresponding to the identified minimum point of the curve.
  • minimum function module 11 includes an algorithm for identifying where the minimum value is (e.g., where on the x-axis) and that identifies the TVSO value that is proximate to the identified minimum point on the curve (e.g., the closest whole number TVSO value to the identified minimum point on the curve).
  • each output neuron 55b outputs a value that indicates the magnitude of the number of errors at locations corresponding to TVSO values. This indicates the shape of the TVS-RE curve.
  • each output neuron 55b indicates predicted error when using a particular TVSO value and minimum function module 11 only needs to identify which output neuron 55b generates the lowest output (the lowest predicted error) to determine the TVSO value corresponding to the minimum value of the TVS-RE curve since it is known which TVSO value corresponds to each output neuron.
  • steps 108-110 is repeated (111) to identify a TVSO value for each TVSO region required to read the flash memory device, that may be referred to as TVSO-RC values.
  • multiple neural network operations will be performed (each performed using a different selected RNN inference model) with all of the neural network operations using the same feature vector (a feature vector having the WORDLINE INDEX, BLOCK INDEX and PAGE INDEX to be read, and the RTT, RDT and TT of the particular identified reliability state) for each TVSO region required to read the flash memory device.
  • a read of the flash memory device is then performed (112) using a threshold-voltage- shift read at the identified TVSO-RC values) identified in step 110.
  • steps 104- 112 are performed each time that a read instruction is received from a host computer, in response to receiving the read instruction. More particularly, in response to receiving a read instruction at host connector receptacle 14, steps 105-111 are performed so as to identify TVSO-RC values and read module 6 uses the TVSO-RC values identified in steps 105-111 to perform the read of step 112.
  • the number of PE cycles identified in step 104 is the number of PE cycles of a particular location that is to be read in step 112 and can be the number or PE cycles of the block containing the wordline that is to be read in step 112.
  • step 112 It has been found that the accuracy of the read of step 112 can be improved (and the number of read errors reduced) by performing (121) a read (flash-test read) at predetermined TVSO values (TEST-READ-TVSO VALLES), and identifying the number of errors (122) in the flash-test-read, that may be referred to as the current-read error (CR-ERROR).
  • the neural network operation of step 106 uses as input CR-ERROR and the TEST- READ-TVSO VALUES.
  • the process of steps 104-112 are performed periodically to generate sets of TVSO-RC values that are stored in optional TVSO-RC selection table 27.
  • TVSO-RC selection table 27 includes one or more index corresponding to each set of TVSO-RC values (where each set includes the TVSO-RC values required to perform a read).
  • the one or more index is used to look up the corresponding TVSO values to use in the read (e.g., using the wordline index, block index, page index and current number of PE cycles for the page that is to be read).
  • reliability-state tags that are stored (e.g., reliability-state tags 23) and the stored values of the tags do not change as the flash memory devices 2 age, there is no need to count and maintain a persistent table indicating the number of reads of each block or wordline, no need to count and maintain a persistent table indicating retention time for each block or wordline and no need to identify and maintain a persistent table indicating temperature cycling for each block or wordline.
  • the method and apparatus of the present invention models multiple factors that affect UBER and indicates the shape of a TVS-RE curve that accurately reflects the physical characteristics of the location that is to be read, both the structural characteristics of the location that is to be read (e.g., the wordline and the block that is to be read), the current age/physical degradation of the location that is to be read (e.g., the number of P/E cycles) and the current transitory characteristics of the location that is to be read (e.g., closed-block read disturb and closed-block retention time). Accordingly, the generated TVSO values corresponding to the minimum value of the TVS-RE curve will be the appropriate TVSO value for performing the read.
  • the structural characteristics of the location that is to be read e.g., the wordline and the block that is to be read
  • the current age/physical degradation of the location that is to be read e.g., the number of P/E cycles
  • the current transitory characteristics of the location that is to be read e.g., closed-block read disturb and

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Techniques For Improving Reliability Of Storages (AREA)

Abstract

A method for reading a flash memory device includes storing configuration files of reliability-state Classification Neural Network (CNN) models and Regression Neural Network (RNN) inference models, and storing reliability-state tags corresponding to reliability states. The current number of P/E cycles is identified and a reliability-state CNN model is selected corresponding to the current number of P/E cycles. A neural network operation of the selected reliability-state CNN model is performed to identify a predicted reliability state. Corresponding reliability-state tags are identified and a corresponding RNN inference model is selected. A neural network operation of the selected RNN inference model is performed, using the reliability-state tags as input, to generate output indicating the shape of a threshold-voltage-shift read-error (TVS-RE) curve. Threshold Voltage Shift Offset (TVSO) values are identified corresponding to a minimum value of the TVS-RE curve and a read is performed using a threshold-voltage-shift read at the identified TVSO values.

Description

Method and Apparatus for Reading a Flash Memory Device
CROSS-REFERENCE TO RELATED APPLICATIONS
[001] The present application claims priority to United States Provisional Patent Application Serial No. 63/153,906 filed on February 25, 2021 and United States Non-Provisional Patent Application Serial No. 17/234,993 filed on April 20, 2021, the contents of each of which are incorporated by reference herein in their entirety.
BACKGROUND OF THE INVENTION
[001] Some Solid State Drives (SSD’s) include flash controllers that use threshold-voltage-shift reads for reading flash memory devices to obtain low levels of Uncorrectable Bit Error Rate (UBER) required for client and enterprise SSD’s. Threshold-voltage-shift reads are performed by sending a threshold-voltage-shift read instruction to a flash memory device that is to be read.
One or more Threshold-Voltage-Shift Offset (TVSO) value is sent with the threshold-voltage- shift read instruction. The TVSO value indicates the amount by which each threshold voltage that is used to perform the read is to be offset from a corresponding default threshold voltage that is specified by the manufacturer of the flash memory device. Multi-level cell (MLC) flash memory devices store two bits of information in each cell and require three TVSO values for each read; triple level cell (TLC) flash memory devices store three bits of information in each cell and require seven TVSO values for each read; quad level cell (QLC) flash memory devices store four bits of information in each cell and require 15 TVSO values for each read; and penta level cell (PLC) flash memory devices store five bits of information in each cell and require 31 TVSO values for each read.
[002] A flash characterization testing process is performed to identify the best TVSO values to use in performing reads of a particular flash memory device, commonly referred to as Threshold- Voltage-Shift-Offset-minimum (TVSOmin) values. TVSOmin values are usually a set of TVSO values that produce the least errors when reading the flash memory device at testing conditions corresponding to a particular reliability state. Reliability-states are sets of conditions that indicate the age and usage of individual flash memory devices. There are many different processes for determining TVSOmin values and in many instances the sets of TVSOmin values identified during flash characterization testing are not the actual TVSO values that produce the least errors, but rather they are sets of TVSO values that meet one or more performance metric such as, for example, a particular Raw Bit Error Rate (RBER).
[003] Flash controllers that use threshold voltage shift read instructions for performing reads typically include firmware for monitoring physical characteristics of the flash memory devices and use the monitored physical characteristics for determining the TVSO values to use in performing reads of each flash memory device. The TVSO values to be used for performing the read (referred to hereinafter as “TVSO Read-Current” values or TVSO-RC values) are typically determined prior to each read by the flash controller based on the physical location to be read (e.g., block/page) and the current physical characteristics of the flash memory device to be read as measured by the flash controller, by performing a look-up operation in a look-up table using the physical location to be read and the current physical characteristics of the flash memory device (e.g., number of program/erase cycles, retention time, number of read disturbs and temperature). The TVSO-RC values are usually one of the sets of TVSOmin values identified in flash characterization testing.
[004] The current physical characteristics must be maintained to assure that the correct TVSO value is being used to read each flash memory device, even during a power-down state. In addition, complex tables are required that indicate the various physical characteristics and corresponding TVSO-RC values to use for performing reads. These complex tables also take up a significant amount of storage.
[005] There is therefore a need to identify TVSO values to be used in each read of a flash memory device so as to maintain UBER within acceptable levels during the lifetime of the SSD that reduces the amount of required storage and maintenance of physical characteristics. SUMMARY OF THE INVENTION
[006] A method for reading a flash memory device includes storing configuration files of a plurality of reliability-state Classification Neural Network (CNN) models, configuration files of a plurality of Regression Neural Network (RNN) inference models and a plurality of sets of reliability-state tags. Each set of reliability-state tags are associated with one of a plurality of reliability states and each of the reliability-state CNN models is associated with a range of program and erase (P/E) cycles. The operation of the flash memory device is monitored to identify a current number of program and erase (P/E) cycles of the flash memory device. The one of the reliability-state CNN models associated with a range of P/E cycles corresponding to the current number of P/E cycles is selected and a neural network operation of the selected reliability-state CNN model is performed to identify a predicted reliability state. The set of reliability-state tags associated with the predicted reliability state are identified. The one of the plurality of RNN inference models that corresponds to the predicted reliability state is selected, and a neural network operation of the selected RNN inference model that uses as input the identified reliability-state tags is performed to generate output values indicating the shape of a threshold-voltage-shift read-error (TVS-RE) curve. A Threshold Voltage Shift Offset (TVSO) value proximate to a minimum value of the generated TVS-RE curve are identified and a read of the flash memory device is performed using a threshold-voltage-shift read at the identified TVSO value(s).
[007] A flash controller is disclosed that includes a data storage module configured for storing configuration files of a plurality of reliability-state CNN models, configuration files of at least one RNN inference model and a plurality of sets of reliability-state tags, each set of reliability- state tags associated with one of a plurality of reliability states and each of the reliability-state CNN models associated with a range of program and erase (P/E) cycles. A status module is configured to identify a current number of program and erase cycles. A neural processing module is coupled to the data storage module and to the control module. The neural processing module is configured to perform a neural network operation of the one of the stored reliability- state CNN models associated with a range of P/E cycles corresponding to the current number of P/E cycles to identify a predicted reliability state, and perform neural network operations of the RNN inference models corresponding to the predicted reliability state, using as input to each neural network operation the set of reliability-state tags associated with the predicted reliability state, to generate output indicating the shape of TVS-RE curves for all threshold voltage regions required to read the flash memory device. A minimum function module is configured to identify TVSO values for all threshold voltage regions required to read the flash memory device, each of the identified TVSO values proximate a minimum value of one of the TVS-RE curves. A read module is configured to perform a read of the flash memory device by sending a threshold- voltage-shift read instruction to the flash memory device that includes the identified TVSO values.
[008] A Solid State Drive (SSD) is disclosed that includes a flash memory device and a flash controller coupled to the flash memory device. The flash controller includes a data storage module configured for storing configuration files of a plurality of reliability-state Classification Neural Network (CNN) models, configuration files of a plurality of Regression Neural Network (RNN) inference models and a plurality of sets of reliability-state tags, each set of reliability- state tags associated with one of a plurality of reliability states and each of the reliability-state CNN models associated with a range of program and erase (P/E) cycles. A neural processing module is coupled to the data storage module and to the control module. The neural processing module is configured to perform a neural network operation of the stored reliability-state CNN model associated with a range of P/E cycles corresponding to the current number of P/E cycles to identify a predicted reliability state, and perform neural network operations of the RNN inference models corresponding to the predicted reliability state, using as input to each neural network operation the set of reliability-state tags associated with the predicted reliability state, to generate output indicating the shape of TVS-RE curves for all threshold voltage regions required to read the flash memory device. The flash controller includes a status module configured to identify a current number of program and erase (P/E) cycles. The flash controller includes a neural processing module coupled to the data storage module and to the control module. The flash controller includes a minimum function module configured to identify TVSO values for all threshold voltage regions required to read the flash memory device, each of the identified TVSO values proximate a minimum value of one of the TVS-RE curves, and a read module configured to perform a read of the flash memory device by sending a threshold-voltage-shift read instruction to the flash memory device that includes the identified TVSO values.
BRIEF DESCRIPTION OF THE DRAWINGS
[009] The accompanying drawings are included to provide a further understanding of the invention, and are incorporated in, and constitute a part of, this specification. The drawings illustrate various embodiments . The drawings referred to in this brief description should not be understood as being drawn to scale unless specifically noted.
[0010] FIG. l is a diagram illustrating method for performing a read of a flash memory device.
[0011] FIG. 2 is a graph illustrating exemplary threshold-voltage-shift read-error curves generated using the results from testing of representative flash memory devices in which the number of errors is shown on the y-axis and TVSO is shown on the x-axis.
[0012] FIG. 3 is a graph illustrating exemplary smoothed threshold-voltage-shift read-error curves generated from the data set illustrated in FIG. 2, in which the number of errors is shown on the y-axis and TVSO is shown on the x-axis.
[0013] FIG. 4A-4B are block diagrams illustrating reliability-state CNN inference models. [0014] FIG. 5A-5B are block diagrams illustrating RNN inference models.
[0015] FIG. 6 is a block diagram illustrating an SSD.
DETAILED DESCRIPTION
[0016] FIG. 1 illustrates a method 100 for reading a flash memory device that includes generating (101) a plurality of reliability-state CNN models. The term “reliability-state CNN model,” as used in the present application, includes all CNN models configured to predict a reliability state. In one example, the reliability-state CNN model is generated as shown in US Non-Provisional Patent Application Serial No. 17/213,675 filed on March 26, 2021 that is titled “Method and Apparatus for Determining when Actual Wear of a Flash Memory Device Differs from Reliability States for the Flash Memory Device”, that is incorporated by reference herein in its entirety. Representative flash memory devices are tested to identify the number of errors that occur as the representative flash memory devices age. The representative flash memory devices are devices that are similar to, or identical to, the flash memory devices that are to be read using method 100. In one example, representative flash memory devices are inserted into test fixtures of a testing computer system and testing is performed to identify a number of flash characterization testing errors (FCT-ERROR values) for each wordline for each of a plurality of cycling conditions, where each cycling condition corresponds to a particular reliability state.
[0017] In the following examples TVSO values are indicated using the format “TVSOn”, where n indicates the threshold voltage region specified by a manufacturer of the flash memory device. More particularly, first TVSO region values (TVSOi) indicate a TVSO value for reading a first threshold voltage region, second TVSO region values (TVSO2) indicate a TVSO value for reading a second threshold voltage region, third TVSO region values (TVSO3) indicate a TVSO value for reading a third threshold voltage region, fourth TVSO region values (TVSO4) indicate a TVSO value for reading a fourth threshold voltage region, fifth TVSO region values (TVSO5) indicate a TVSO value for reading a fifth threshold voltage region specified by a manufacturer of the flash memory, sixth TVSO region values (TVS06) indicate a TVSO value for reading a sixth threshold voltage region, seventh TVSO region values (TVSO7) indicate a TVSO value for reading a seventh threshold voltage region, and so on. In one example a TVSO-region index is defined for each TVSO region, with the TVSO-region index for TVSOi having a value of 1, the TVSO-region index for TVSO2 having a value of 2, the TVSO-region index for TVSO3 having a value of 3 and so forth. Each voltage region is related to a read voltage threshold level, and thus in an SLC only a single region is provided, whereas in MLC a plurality of voltage regions are provided.
[0018] The TVSO value(s) that are used to perform reads to identify FCT-ERROR values will be referred to as Flash-Characterization-Read-Threshold-Voltage-Shift Offset (FCR-TVSO) values and may be represented in the form FCR-TVSO (TVSOi) for a read of a SLC nonvolatile memory device, FCR-TVSO (TVSOi, TVSO2, TVSO3) for a read of a MLC nonvolatile memory device, FCR-TVSO (TVSOi, TVSO2, TVS03,TVS04, TVSO5, TVSOe, TVSO7) for a read of a TLC nonvolatile memory device; FCR-TVSO (TVSOi, TVSO2, TVS03,TVS04, TVSO5,
.. TVSO15) for a read of a TLC nonvolatile memory device, and FCR-TVSO (TVSOi, TVSO2, TVS03,TVS04, TVSO5, .. TVS03i) for a read of a PLC nonvolatile memory device. In one example, for SLC nonvolatile memory devices, reads of each wordline of the representative flash memory devices are performed by a “scanning operation” in which reads are performed at each TVSO value that the particular representative flash memory device is capable of being read. In one example, for non-SLC nonvolatile memory devices, reads of each wordline of the representative flash memory devices are performed by a “scanning operation” in which reads are performed at each TVSO value that the particular representative flash memory device is capable of being read at while setting the other TVSO regions to a value of zero (e.g., starting at the lowest TVSO value that the flash memory device is capable of reading at and incrementing by one after each read). Thus, each FCR-TVSO value will have a single TVSOn value that is nonzero and the other TVSOn values will have a value of 0.
[0019] FIG. 2 shows an example of Threshold-Voltage-Shift Read-Error (TVS-RE) curves generated by scanning representative flash memory devices with TVSO values from -24 to +24, each TVS-RE curve identifying a number of errors as a function TVSO values at cycling conditions corresponding to one of the reliability states and corresponding to one of the threshold voltage regions required for reading the flash memory device As can be seen in Fig. 2, because of the nature of the flash read circuitry there are fluctuations (noise) in the number of errors of each curve. This noise may negatively impact the learning process while training the neural network model which may lead to errors in the neural network results. To avoid this problem a smoothing function (e.g., an algorithm such as a moving average or multi-polynomial interpolation) is optionally applied to the testing results to generate a smoothed threshold- voltage-shift-read data set in which FCT-ERROR values are adjusted to obtain corresponding smoothed error values (ERROR). Figure 3 shows an example of TVS-RE curves generated from smoothing the FCT-ERROR values of FIG. 2 to obtain ERROR values.
[0020] In one example, the testing and the smoothing generates data records that indicate one or more of the following values for each test (where each test corresponds to a single read): a wordline index value (WORDLINE INDEX) indicating the wordline that is tested, a block index value (BLOCK INDEX) indicating the block that is being tested, a page index value (PAGE INDEX) indicating the page that is being tested, a retention time value (RETENTION TIME) indicating the retention time for the wordline that is being tested, a read disturb value (READ DISTURB) indicating a number of read disturbs for the wordline that is being tested, a temperature value (TEMPERATURE) indicating the cycling temperature for the representative flash memory device being tested, a P/E cycle value (P/E CYCLES) indicating the current number of P/E cycles for the wordline (or block) being tested and an error value (ERROR) indicating the number of errors in the read (as adjusted in the smoothing operation).
[0021] Figure 4A-4B illustrate examples of reliability-state CNN models 40a-40b that may be generated in step 101. It is appreciated that reliability-state models 40a-40b are exemplary, and that many other combinations of inputs, outputs and hidden layers could be used. Reliability- state CNN models 40a, 40b include an input layer 41 that includes input neurons 41a-c and layers 42-44 of hidden neurons. Reliability-state CNN model 40a includes an output layer 45 that includes a single output neuron 45a that indicates a predicted reliability state. A predicted reliability state is the reliability state indicated by the output neurons when a neural network operation of the reliability-state CNN model is performed. Reliability-state CNN model 40b in FIG. 4B includes an output layer 48 that includes one output neuron 48a for each of a plurality of reliability states, denoted respectively RSI, RS2, RS3, RS4, RS5 ... RSn. In this example the number of output neurons 48a is equal to the number of reliability states and each output neuron 48a indicates the probability that the reliability state represented by the particular output neuron is the correct reliability state, where the output neuron 48a having the highest numerical value indicates the predicted reliability state. In one example an activation function is applied to the output (e.g., a softmax activation function) to assure that the probabilities of the respective output neurons of output layer 48 sum to one. [0022] Data records from the flash characterization testing are divided by f P/E cycle values and a plurality of reliability-state CNN models are formed, each valid for, and associated with, a particular range of P/E cycle values. More particularly, the training data files that are used for training each reliability-state CNN model include only those training data files for tests having a number of P/E cycles that is within the range of P/E cycle values of the particular reliability-state CNN model. In one example, training using training data files for tests performed within a first range of P/E cycle values (e.g., 0-1,000 P/E cycles) is used to create a first reliability-state CNN model, training using training data files for tests performed at a second range of P/E cycle values (e.g., 1001-2,000 P/E cycles) is used to create a second reliability-state CNN model. In one example, 7 P/E-categorized reliability-state CNN models are generated, including a third reliability-state CNN model (2,001 P/E cycles to 3,000 P/E cycles), a fourth reliability-state CNN model (3,001 P/E cycles to 4,000 P/E cycles), a fifth reliability-state CNN model (4,001 P/E cycles to 5,000 P/E cycles), a sixth reliability-state CNN model (5,001 P/E cycles to 6,000 P/E cycles) and a seventh reliability-state CNN model (6,001 P/E cycles to 7,000 P/E cycles), where 7,000 P/E cycles is considered end of life.
[0023] In one example, during training a WORDLINE INDEX is input to input neuron 41a, a BLOCK INDEX is input into neuron 41b and a PAGE INDEX is input into neuron 41c to train the respective CNN model 40a or 40b to recognize a particular reliability state. Thus, WORDLINE INDEX, BLOCK INDEX and PAGE INDEX are the features of the resulting reliability-state CNN model 40a or 40b. After training, each resulting reliability-state CNN model is tested to determine whether the resulting model can accurately predict the correct reliability state. When a model fails to accurately predict the correct class, training data records are removed and the training is repeated. The process of removing training data records and repeating training is performed until the resulting CNN models, taken together, accurately predict all reliability states.
[0024] When a model fails to accurately predict the correct reliability state, data records corresponding to scans of TVSO regions that are less responsive to a particular current physical characteristic can be selected for removal from the training data set. In one example of a TLC, the training data records corresponding to TVSO values required to read one or more of an upper page (e.g., TVSOi, TVSO3, TVSO5 and TVSO7), a middle page (e.g., TVSO2 and TVS06) or a lower page (e.g., TVSO4) are removed. For example, if it is known from the flash characterization testing that the upper page is more sensitive to retention and if the CNN model fails to accurately predict a reliability state in which retention is greater than zero, removal of records having nonzero TVSO values in threshold voltage regions corresponding to the lower and middle pages (e.g., TVSO2, TVSO4 and TVS06) can produce better results. Thereby, data records for reads at threshold voltage regions that primarily add noise to the reliability-state CNN model are removed.
[0025] A plurality of RNN inference models are generated (102). Each RNN inference model is configured to identify the shape of a TVS-RE curve for one of the threshold voltage regions required to read a flash memory device, where each TVS-RE curve identifies a number of errors as a function of TVSO values. In one example, the RNN inference model is generated as shown in US Non-Provisional Patent Application Serial No 17/089,891, filed on November 5, 2021, having the title “Regression Neural Network for Identifying Threshold Voltages to be Used in Reads of Flash Memory Devices”, that is incorporated by reference herein in its entirety.
[0026] In step 102, for each reliability state, a RNN inference model is generated for each threshold voltage region required to read flash memory devices 2. Each RNN inference model generates output indicating the shape of a TVS-RE curve corresponding to one of the reliability states and corresponding to one of the threshold voltage regions required for reading each flash memory device 2.
[0027] Reliability states can be indicated using a numerical value that identifies each reliability state, referred to hereinafter as a Reliability State Index (RSI). In one example, an RSI of 1 identifies a first reliability state, an RSI of 2 identifies a second reliability state, and so forth.
[0028] In one example, each RNN model is associated with a corresponding TVSO-region index that indicates the threshold voltage region that the particular RNN inference model represents and is associated with a corresponding RSI. For example, when flash memory devices 2 are MLC devices, for a first reliability state a first RNN inference model is associated a TVSO- region index of 1 and an RSI of 1; a second RNN inference model is associated with a TVSO- region index of 2 and an RSI of 1; and a third RNN inference model is associated with a TVSO- region index of 3 and an RSI of 1.
[0029] Training can be performed using the same data records that were used to generate the reliability-state CNN models in step 101: however, in addition to using as features WORDLINE INDEX, BLOCK INDEX and PAGE INDEX, one or more of the following additional features are also used: RETENTION TIME, READ DISTURB, TEMPERATURE and PE CYCLES.
[0030] FIG. 5A shows a diagram of an exemplary RNN inference model 50a that includes a plurality of input neurons 51a-51g, a plurality of output neurons 55a and layers 52-54 of hidden neurons. In one example, during training WORDLINE INDEX is input to input neuron 51a, BLOCK INDEX is input into input neuron 51b, PAGE INDEX is input into input neuron 51c, RETENTION TIME is entered into input neuron 5 Id, READ DISTURB is entered into input neuron 51e, TEMPERATURE is entered into input neuron 5 If and PE CYCLES is input into input neuron 5 lg. Output neurons 55a generate output in the form of coefficient values that indicate the shape of (and thereby define) a TVS-RE curve for a particular threshold voltage region. The output of RNN inference model 50a is shown to include six coefficients, shown as FIRST COEFFICENT, SECOND COEFFICENT, THIRD COEFFICIENT, FOURTH COEFFICIENT, FIFTH COEFFICENT and SIXTH COEFFICENT. It is appreciated that the RNN inference model 50a can have any number of coefficients, and that the number of coefficients can be altered to achieve a balance between processing time and accuracy.
[0031] In one example, the coefficients indicate a straight line in the form y = mx + q, where m and q are the two coefficients. In other examples the line can be nonlinear and the coefficients can be in the form y = a + bx + cx2 + cx3 + dx4 + ex5 where a, b, c, d and e are the coefficients (e g., FIRST COEFFICENT ... SIXTH COEFFICENT).
[0032] In the example shown in FIG. 5B, output neurons 55b generate values that indicate the number of errors at locations corresponding to TVSO values. In this example, output neurons 55b include an output neuron for each TVSO value (for n TVSO values), such as, for example an output neuron that predicts the error when a first TVSO value is used (PRED-ERR TVSOl), an output neuron that predicts the error when a second TVSO value is used (PRED-ERR TVS02), an output neuron that predicts the error when a third TVSO value is used (PRED-ERR TVS03), an output neuron that predicts the error when a fourth TVSO value is used (PRED-ERR TVS04), an output neuron that predicts the error when a fifth TVSO value is used (PRED-ERR TVS05) and so on, to an output neuron that predicts the error when an n' TVSO value is used (PRED-ERR TVSOn).
[0033] Exemplary neural network models shown in FIGS 4A-5B include input neurons for receiving a PAGE INDEX, and PAGE INDEX is a feature used for the training of the neural network models shown in FIGS 4A-5B. Alternatively, PAGE INDEX is not used as a feature during the training and each of the neural network models shown in FIGS-4A-5B do not include input neurons 41c and 51c.
[0034] An SSD 15 is shown in FIG. 6 to include a flash controller 3 coupled to a plurality of flash memory devices 2 for storing data. In the present embodiment, the flash memory devices 2 are NAND devices and SSD 15 includes one or more circuit boards onto which a host connector receptacle 14, flash controller 3 and flash memory devices 2 are attached. SSD 15 may also include one or more memory device 13 such as a Dynamic Random Access Memory (DRAM), that may be a separate integrated circuit device attached to the one or more circuit boards, and is electrically coupled to flash controller 3.
[0035] Flash controller 3 is configured to receive read and write instructions from a host computer through host connector receptacle 14, and to perform program operations, erase operations and read operations on memory cells of flash memory devices 2 to complete the instructions from the host computer. For example, upon receiving a write instruction from the host computer via host connector receptacle 14, flash controller 3 is operable to store data in SSD 15 by performing program operations (and when required, erase operations) to program codewords into on one or more of flash memory devices 2. [0036] Flash controller 3 includes data storage module 4, status module 5, read module 6, decode module 7, write module 8, control module 9, neural processing module 10 and minimum function module 11. Control module 9 is coupled to data storage module 4, status module 5, read module 6, decode module 7, write module 8, minimum function module 11 and neural processing module 10. Decode module 7 is further coupled to read module 6and to status module 5. Status module 5 is further coupled to data storage module 4, read module 6, write module 8 and neural processing module 10. Read module 6 is further coupled to data storage module 4, neural procession module 10 and minimum function module 11. Minimum function module 11 is further coupled to data storage module 4, status module 5, control module 9 and neural processing module 10. Neural processing module 10 is further coupled to data storage module 4.
[0037] Data storage module 4 stores configuration files of Reliability-State CNN models 21, configuration files of RNN inference models 22, reliability-state tags 23 and optional TVSO-RC selection table 27. Optional TVSO-RC selection table 27 is coupled to read module 6. TVSO- RC selection table 27 includes one or more index and corresponding TVSO values to be used in performing reads (e.g., an index corresponding to a block, a wordline and/or a page, and index corresponding to a number of P/E cycles and TVSO values for each threshold voltage region required to perform a read).
[0038] One or more of the following are stored in SSD 15, either in data storage 4, flash memory devices 2 or in memory device 13: configuration files of Reliability-State CNN models 21, configuration files of RNN inference models 22, reliability-state tags 23, reliability-state CNN selection table 24 and RNN selection table 25, P/E count table 26 and optional TVSO-RC selection table 27. Neural processing module 10 is coupled to data storage module 4 such that configuration files of a reliability-State CNN model 21 and configuration files of an RNN inference model 22 can be loaded thereon.
[0039] In one example, neural processing module 10 includes a specialized hardware module (e.g., a specialized configurable accelerator) specifically configured to perform a neural network operation, sometimes referred to as a neural network engine (e.g., a programmable logic circuit). Alternatively, neural processing module 10 can include a processor and software for performing neural network operations. In one example, flash controller 3 is operable to perform steps 101- 102 by receiving test data that indicates the results from testing representative flash memory devices and flash controller 3 is operable to construct the neural network models and associated configuration files in steps 101-102.
[0040] Flash controller 3 is an integrated circuit device and some or all of modules 5-11 include circuits that can be dedicated circuits for performing operations, and some or all of modules 5-11 can be firmware that includes instructions that are performed on one or more processor for performing operations of flash controller 3, with the instructions stored in registers of one or more of modules 5-11 and/or stored in data storage module 4 or memory device 13. Some of all of modules 5-11 include processors for performing instructions and instructions are loaded into flash controller 3 (e.g., through host connector receptacle 14) prior to operation of flash controller 3. In one example a firmware image is loaded into flash controller 3 (e.g., through host connector receptacle 14) prior to operation of flash controller 3, the firmware image including instructions to be performed by one or more of modules 5-11.
[0041] Flash memory devices 2 may be SLC, MLC, TLC QLC or PLC NAND devices. In the present embodiment flash memory devices 2 are capable of performing a wide range of threshold-voltage-shift reads, including reads specified by whole number TVSO values such as - n...-2, -1, 0, +1, +2...n without limitation. Each flash memory device 2 may be a packaged semiconductor die or “chip” that is coupled to flash controller 3 by conductive pathways that couple instructions, data and other information between each flash memory device 2 and flash controller 3. Upon receiving a write instruction from a host computer, write module 8 is operable to encode received data into a codeword that is sent to a particular flash memory device 2 along with a corresponding program instruction. Flash memory device 2 is operable to perform the requested program instruction by programming cells of flash memory device 2. In one example, each flash memory device 2 includes NAND memory cells that are organized into blocks and pages, with each block composed of NAND strings that share the same group of wordlines. Each logical page is composed of cells belonging to the same wordline. The number of logical pages within each logical block is typically a multiple of 16 (e.g. 64, 128). In the present example, a logical page is the smallest addressable unit for reading from, and writing to, the NAND memory cells of each flash memory device 2 and a logical block is the smallest erasable unit. However, it is appreciated that programming less than an entire logical page may be possible, depending on the structure of the NAND array. Though flash memory devices 2 are illustrated as being NAND devices, it is appreciated that flash memory devices 2 may be any type of memory storage device that uses a threshold voltage for reading memory cells of the flash memory device 2.
[0042] Referring back to FIG. 1, configuration files of the reliability-state CNN models, configuration files of the RNN inference models and tags corresponding to each reliability state are stored (103), that are referred to hereinafter as “reliability-state tags.” Data storage module 4 is configured for storing configuration files of reliability-state CNN models 21 generated in step 101, configuration files of RNN inference models 22 generated in step 102 and reliability-state tags 23 for each of the reliability states of reliability-state CNN models 21.
[0043] Reliability-state CNN models, RNN inference models and reliability-state tags 23 can be created using the same computing system that is used for performing testing of representative semiconductor devices, and then downloaded and installed into SSD 15 prior to delivery of SSD 15 to a customer. Alternatively, SSD 15 is operable to perform some or all of steps 101-102 to generate reliability-state tags 23 configuration files of reliability-state CNN models 21 and RNN inference models 22.
[0044] In one example, configurations files 21, 22 and reliability-state tags 23 are initially stored in memory device 13 and/or on one or more flash memory devices 2 and configuration files of reliability-state CNN models 21, configuration files of RNN inference models 22, and reliability-state tags 23 are loaded into data storage module 4 either upon start-up of flash controller 3 or when they are required for operations of flash controller 3.
[0045] The operation of a flash memory device 2 is monitored (104) to identify a current number of P/E cycles of the flash memory device 2. In one example, status module 5 is operable to monitor the operation of each flash memory device 2 to identify the number of P/E cycles of flash memory devices 2. The determined number of P/E cycles may be identified by a counter of status module 5, and at times the value of the counter may be stored (e.g., as a table) in data storage module 4, in flash memory devices 2 or in memory device 13 (e.g. stored in flash memory devices 2 on power-down or low power mode of flash controller 3 and/or SSD 15, and loaded into data storage module 4 and/or memory device 13 at startup or when required by flash controller 3). In one example the current number of P/E cycles for the block of the flash memory device to be read in step 112 is stored in P/E count table 26.
[0046] The reliability state CNN model corresponding to the current number of P/E cycles is selected (105). In one example, reliability-state CNN selection table 24 indicates a number of P/E cycles and corresponding values, or pointers, identifying the particular CNN model to be used. Status module 5 is operable to determine a current number of P/E cycles of the block containing the page that is to be read in step 112.
[0047] The reliability-state CNN model selected is the one of the stored reliability-state CNN models associated with (and that was trained using) the particular range of P/E cycle values that includes the current number of P/E cycles. For example, if the current number of P/E cycles is 500 and training records for tests of exemplary flash memory devices corresponding to a first range of P/E cycles (e.g., 0-1,000 P/E cycles) are used to create a first reliability-state CNN model, the first reliability-state CNN model is selected. In one example reliability-state CNN selection table 24 indicates a number of P/E cycles and a corresponding index identifying a location in memory where the configuration files of the respective reliability-state CNN model 21 is stored and a look-up operation is performed on reliability-state CNN selection table 24 using the current number of P/E cycles identified in step 104 to identify the location in memory where the identified reliability-state CNN model is stored).
[0048] A neural network operation of the selected reliability-state CNN is performed (106) to identify a predicted reliability state. In the example of FIG. 6, control module 9 is operable to load the configuration files of the selected reliability-state CNN model 21 into neural processing module 10 to form a reliability-state CNN core. Control module 9 or other circuitry of flash controller 3 couples the input (e.g., feature input vectors) required for the neural network operation to the reliability-state CNN core in neural processing module 10 and a neural network operation is performed by neural processing module 10 on the reliability-state CNN core.
[0049] In the examples shown in FIG 4A, control module 9 is operable to receive the output from output neuron 45a and identify the predicted reliability state responsive thereto. In one example, a value of one output by output neuron 45a indicates a first reliability state, a value of 2 output by output neuron 45a indicates a second reliability state and so forth. In the examples shown in FIG 4B, control module 9 is operable to receive the output from output neurons 48a and identify the predicted reliability state by identifying the reliability state corresponding to the output neuron 48a having the highest value.
[0050] Tags associated with the predicted reliability state are identified (107), that may be referred to as “reliability-state tags”. In one example, reliability-state tags 23 are stored, either in the form individual tag values, comma separated values or in a tag lookup table that includes indexes corresponding to each reliability state and reliability-state tags associated with the particular reliability state. When reliability-state tags 23 are stored in a lookup table, the reliability-state tags associated with the predicted reliability state can be identified by performing a lookup operation using an index corresponding to the predicted reliability state (e.g., the RSI). For example, if the output of output neuron 45a is a value of 1, and if that corresponds to a first reliability state having a first set of reliability-state tags, the first set of reliability-state tags are identified in step 107. The identified reliability-state tags 23 can be coupled to neural processing module 10 and stored in input registers of neural processing module 10.
[0051] Reliability state tags 23 indicate the testing parameters corresponding to each reliability state. In one embodiment the reliability-state tags include a retention time tag (RTT) indicating a retention time value, a read disturb tag (RDT) indicating a read disturb value and a temperature tag (TT) indicating a temperature value.
[0052] In one example, retention time is divided into two ranges: 0-12 hours and 12-24 hours and the RTT for each reliability state is the midpoint between the two values. Read disturb is divided into two ranges: 0-100,000 disturbs and 100,000-200,000 disturbs and the RDT for each reliability state is the midpoint between the two values. Temperature is divided into two ranges 25-40 degrees Centigrade (C) and 40-70 degrees C and the TT for each reliability state is the midpoint (rounded up to a whole number) between the two values. In this example, the following reliability-state tags will be stored for the first reliability-state CNN model (e.g., 0-1,000 P/E cycles), that correspond to a first of eight reliability states, where the last number following the arrow is the RSI that indicates the particular reliability state:
Figure imgf000020_0001
[0053] In this example, the second reliability-state CNN model (e.g., 1001-2,000 P/E cycles) is configured to identify one of eight reliability states (e.g., RSI 8-15) and will include the following eight sets of reliability-state tags:
Figure imgf000020_0002
[0054] Continuing with the above example: the third reliability-state CNN model (e.g., 2001- 3,000 P/E cycles) is also configured to identify one of eight reliability states (e.g., RSI 16-23) and includes eight corresponding sets of reliability-state tags; the fourth reliability-state CNN model (e.g., 3001-4,000 P/E cycles) is configured to identify one of eight reliability states (e.g., RSI 24-41) and includes another eight sets of reliability-state tags; the fifth reliability-state CNN model (e.g., 4001-5,000 P/E cycles) is configured to identify one of eight reliability states (e.g., RSI 32-39) and includes eight more sets of reliability-state tags; the sixth reliability-state CNN model (e.g., 5001-6,000 P/E cycles) is configured to identify one of eight reliability states (e.g., RSI 40-47) and will include an additional eight sets of reliability-state tags; and the seventh reliability-state CNN model (e.g., 6001-7,000 P/E cycles) is configured to identify one of eight reliability states (e.g., RSI 48-56).
[0055] An RNN inference model is selected (108) that corresponds to the predicted reliability state and one of the TVSO regions required to read flash memory device 2. In FIG. 6, an RNN selection table 25 stored in data storage 4 includes values corresponding to each of the reliability states, values corresponding to each TVSO region required to read each flash memory device 2 (e.g., a TVSO-region index) and corresponding values, or pointers, identifying the particular RNN inference model to be used. In one example, a lookup operation is performed on RNN selection table 25 using a value corresponding to the predicted reliability state and a TVSO region index of “1” to identify the RNN inference model to use for predicting the shape of the first threshold voltage region (TVSOi). In one example RNN selection table 25 includes values corresponding to reliability states and TVSO region indexes, and corresponding indexes identifying the location in data storage module 4where the each RNN inference model is stored, and a lookup operation in RNN selection table 25 is performed using as input the output at output neuron 45a and a TVSO region index to identify the location in memory where the corresponding RNN inference model is stored. In the embodiment shown in FIG. 4B a value corresponding to the output neuron 48a having the highest value (e/g., an RSI) is input into RNN selection table 25 to identify the location in memory where the corresponding RNN inference model is stored.
[0056] A neural network operation of the stored RNN inference model is performed (109) to generate output indicating the shape of a TVS-RE curve. More particularly, a neural network operation of the RNN inference model selected in step 108 is performed. The input for the neural network operation includes the identified reliability-state tags 23 associated with the predicted reliability state.
[0057] Control module 9 or other circuitry of flash controller 3 is operable to load the configuration files of the selected RNN inference model 22 into neural processing module 10 to form an RNN inference core. Control module 9 or other circuitry of flash controller 3 couples the input required for the neural network operation to the RNN inference core in neural processing module 10. The input, that may be referred to as a “feature vector” specifies the values to be applied to the input neurons in the neural network operation. In the example shown in FIG. 5 A and 5B the input for the RNN inference model 50a (an input feature vector) includes one or more input corresponding to the page that is to be read, such as a WORDLINE INDEX indicating the page that is to be read in step 112 (that is entered into input neuron 51a), a BLOCK INDEX indicating the block that is to be read in step 112 (that is entered into input neuron 5 lb) and a PAGE INDEX that indicates the page that is to be read in step 112 (that is entered into input neuron 51c). The input also includes the reliability-state tags identified in step 107, including an RTT that is entered into input neuron 5 Id, an RDT that is entered into input neuron 51e, a TT that is entered into input neuron 5 If. The current number of P/E cycles (for the page being read in step 112) that was identified in step 104, is entered into input neuron 5 lg. A neural network operation is performed by neural processing module 10 on the loaded RNN inference core to indicate the shape of a TVS-RE curve corresponding to the identified current reliability-state tags 23.
[0058] Output neurons 55a generate output in the form of coefficient values that indicate the shape of a TVS-RE curve. The exemplary output of RNN inference model 50a is shown to include six coefficients, shown as FIRST COEFFICIENT, SECOND COEFFICIENT, THIRD COEFFICIENT, FOURTH COEFFICIENT, FIFTH COEFFICIENT and SIXTH COEFFICIENT. It is appreciated that the RNN inference model 50a may have any number of coefficients, and that the number of coefficients may be altered to achieve a balance between processing time and accuracy. In the example shown in FIG. 5B, output neurons 55b generate values that indicate the number of errors at locations corresponding to TVSO values, thereby indicating the shape of a TVSO-RE curve.
[0059] A TVSO value is identified (110) proximate to a minimum value of the generated TVS- RE curve. In one example, minimum function module 11 is configured to determine a minimum value for the generated TVS-RE curve and to identify a TVSO value proximate to the determined minimum value. It is appreciated that the identified “minimum value” will not be the exact minimum value as the minimum function module 11 may not have sufficient accuracy to identify the exact minimum. Accordingly, the minimum function module 11 will identify a TVSO value proximate the minimum value. Minimum function module 11 can include software, hardware and/or firmware for receiving the coefficients of the generated TVS-RE curve, identifying a minimum point of the curve and outputting the TVSO value corresponding to the identified minimum point of the curve. When output neurons 55a generate output in the form of coefficients as shown in FIG. 5 A, minimum function module 11 includes an algorithm for identifying where the minimum value is (e.g., where on the x-axis) and that identifies the TVSO value that is proximate to the identified minimum point on the curve (e.g., the closest whole number TVSO value to the identified minimum point on the curve). When RNN model 55b is used, each output neuron 55b outputs a value that indicates the magnitude of the number of errors at locations corresponding to TVSO values. This indicates the shape of the TVS-RE curve. It is not necessary to identify the minimum point in the curve, since each output neuron 55b indicates predicted error when using a particular TVSO value and minimum function module 11 only needs to identify which output neuron 55b generates the lowest output (the lowest predicted error) to determine the TVSO value corresponding to the minimum value of the TVS-RE curve since it is known which TVSO value corresponds to each output neuron.
[0060] The process of steps 108-110 is repeated (111) to identify a TVSO value for each TVSO region required to read the flash memory device, that may be referred to as TVSO-RC values. Thus, multiple neural network operations will be performed (each performed using a different selected RNN inference model) with all of the neural network operations using the same feature vector (a feature vector having the WORDLINE INDEX, BLOCK INDEX and PAGE INDEX to be read, and the RTT, RDT and TT of the particular identified reliability state) for each TVSO region required to read the flash memory device.
[0061] A read of the flash memory device is then performed (112) using a threshold-voltage- shift read at the identified TVSO-RC values) identified in step 110. In one example, steps 104- 112 are performed each time that a read instruction is received from a host computer, in response to receiving the read instruction. More particularly, in response to receiving a read instruction at host connector receptacle 14, steps 105-111 are performed so as to identify TVSO-RC values and read module 6 uses the TVSO-RC values identified in steps 105-111 to perform the read of step 112. In the present example the number of PE cycles identified in step 104 is the number of PE cycles of a particular location that is to be read in step 112 and can be the number or PE cycles of the block containing the wordline that is to be read in step 112.
[0062] It has been found that the accuracy of the read of step 112 can be improved (and the number of read errors reduced) by performing (121) a read (flash-test read) at predetermined TVSO values (TEST-READ-TVSO VALLES), and identifying the number of errors (122) in the flash-test-read, that may be referred to as the current-read error (CR-ERROR). In this optional example, the neural network operation of step 106 uses as input CR-ERROR and the TEST- READ-TVSO VALUES.
[0063] In one embodiment the process of steps 104-112, are performed periodically to generate sets of TVSO-RC values that are stored in optional TVSO-RC selection table 27. TVSO-RC selection table 27 includes one or more index corresponding to each set of TVSO-RC values (where each set includes the TVSO-RC values required to perform a read). In this example, when the read of step 112 is to be performed the one or more index is used to look up the corresponding TVSO values to use in the read (e.g., using the wordline index, block index, page index and current number of PE cycles for the page that is to be read). It is appreciated that only the number of PE cycles is required in addition to the values identifying the wordline/block/page to be read, and that retention time, read disturb and temperature for flash memory devices 2 need not be tracked or used for the lookup since the input vectors for each neural network operation include the associated tags instead of actual current calculated values as are used in prior art processes.
[0064] Since the input into the neural network model for read-disturb, retention time and cycling temperature are reliability-state tags that are stored (e.g., reliability-state tags 23) and the stored values of the tags do not change as the flash memory devices 2 age, there is no need to count and maintain a persistent table indicating the number of reads of each block or wordline, no need to count and maintain a persistent table indicating retention time for each block or wordline and no need to identify and maintain a persistent table indicating temperature cycling for each block or wordline.
[0065] The method and apparatus of the present invention models multiple factors that affect UBER and indicates the shape of a TVS-RE curve that accurately reflects the physical characteristics of the location that is to be read, both the structural characteristics of the location that is to be read (e.g., the wordline and the block that is to be read), the current age/physical degradation of the location that is to be read (e.g., the number of P/E cycles) and the current transitory characteristics of the location that is to be read (e.g., closed-block read disturb and closed-block retention time). Accordingly, the generated TVSO values corresponding to the minimum value of the TVS-RE curve will be the appropriate TVSO value for performing the read.
[0066] In the description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be evident, however, to one of ordinary skill in the art that the present invention may be practiced without these specific details. In some instances, well-known structures and devices are shown in block diagram form, rather than in detail, in order to avoid obscuring the present invention. These embodiments are described in sufficient detail to enable those of ordinary skill in the art to practice the invention, and it is to be understood that other embodiments may be utilized and that logical, mechanical, electrical, and other changes may be made without departing from the scope of the present invention.

Claims

CLAIMS What is claimed is:
1. A method for reading a flash memory device comprising: storing configuration files of a plurality of reliability-state classification neural network (CNN) models, configuration files of a plurality of regression neural network (RNN) inference models and a plurality of sets of reliability-state tags, each set of reliability-state tags associated with one of a plurality of reliability states and each of the reliability-state CNN models associated with a range of program and erase (P/E) cycles; monitoring the operation of the flash memory device to identify a current number of P/E cycles of the flash memory device; selecting one of the reliability-state CNN models associated with a range of P/E cycles corresponding to the current number of P/E cycles; performing a neural network operation of the selected reliability-state CNN model to identify a predicted reliability state; identifying the set of reliability-state tags associated with the predicted reliability state; selecting the one of the plurality of RNN inference models that corresponds to the predicted reliability state; performing a neural network operation of the selected RNN inference model, that uses as input the identified reliability-state tags, to generate output values indicating the shape of a threshold-voltage-shift read-error (TVS-RE) curve; identifying a threshold voltage shift offset (TVSO) value proximate to a minimum value of the TVS-RE curve; repeating the selecting one of the RNN models, the performing of the neural network operation of the selected RNN inference model and the identifying to identify TVSO values for all threshold voltage regions required to read the flash memory device; and performing a read of the flash memory device using a threshold-voltage-shift read at the identified TVSO values.
2. The method of claim 1 wherein the set of reliability-state tags associated with the predicted reliability state include a retention time tag indicating a retention time value, a read-disturb tag indicating a read-disturb value and a temperature tag indicating a temperature value.
3. The method of claim 1 wherein the performing a neural network operation of the identified reliability-state CNN model to identify a predicted reliability state uses as input to the neural network operation a wordline index and a block index.
4. The method of claim 1 wherein the performing a neural network operation of the identified reliability-state CNN model uses as input to the neural network operation a wordline index, a block index and a page index.
5. The method of claim 1 wherein the performing a network operation of the selected RNN inference model uses as input to the neural network operation a wordline index, a block index, a page index, a retention time tag, a read-disturb tag and a temperature tag.
6. The method of claim 1 wherein the output indicating the shape of the TVS-RE curve comprises a plurality of coefficients of the TVS-RE curve and wherein the identifying one or more TVSO values proximate to a minimum value of the generated TVS-RE curve comprises performing a minimum function on the coefficients to identify the TVSO value.
7. The method of claim 1 wherein the output indicating the shape of the TVS-RE curve comprises output values indicating the error corresponding to different TVSO values and wherein the identifying a TVSO value proximate to a minimum value of the generated TVS-RE curve comprises identifying the output value having the lowest error.
8. The method of claim 1 further comprising: generating the plurality of RNN inference models, each of the RNN inference models configured for performing a regression neural network operation to identify coefficients of the TVS-RE curve.
9. The method of claim 1 further comprising: generating the plurality of reliability-state CNN inference models, each of the plurality of reliability-state CNN models generated using data records corresponding to a different range of P/E cycle values.
10. A flash controller comprising: a data storage module configured for storing configuration files of a plurality of reliability-state Classification Neural Network (CNN) models, configuration files of a plurality of Regression Neural Network (RNN) inference models and a plurality of sets of reliability-state tags, each set of reliability-state tags associated with one of a plurality of reliability states and each of the reliability-state CNN models associated with a range of program and erase (P/E) cycles; a status module configured to identify a current number of P/E cycles; a neural processing module coupled to the data storage module and to the control module, the neural processing module configured to: perform a neural network operation of the one of the stored reliability-state CNN models associated with a range of P/E cycles corresponding to the current number of P/E cycles to identify a predicted reliability state, and perform neural network operations of the RNN inference models corresponding to the predicted reliability state, using as input to each neural network operation the set of reliability-state tags associated with the predicted reliability state, to generate output indicating the shape of TVS-RE curves for all threshold voltage regions required to read a flash memory device; a minimum function module configured to identify TVSO values for all threshold voltage regions required to read the flash memory device, each of the identified TVSO values proximate a minimum value of one of the TVS-RE curves; and a read module configured to perform a read of the flash memory device by sending a threshold-voltage-shift read instruction to the flash memory device that includes the identified TVSO values.
11. The flash controller of claim 10 wherein the input for the neural network operation of the reliability-state CNN and the input for the neural network operation of the stored RNN inference model include a wordline index and a block index.
12. The flash controller of claim 10 wherein the input for the neural network operation of the reliability-state CNN and the input for the neural network operation of the stored RNN inference model include a wordline index, a block index and a page index.
13. The flash controller of claim 10 wherein the input for the neural network operation of the RNN inference model includes a wordline index, a block index, a page index, a retention time tag, a read-disturb tag and a temperature tag.
14. A Solid State Drive (SSD) comprising: a flash memory device; a flash controller coupled to the flash memory device, the flash controller including: a data storage module configured for storing configuration files of a plurality of reliability-state classification neural network (CNN) models, configuration files of a plurality of regression neural network (RNN) inference models and a plurality of sets of reliability-state tags, each set of reliability-state tags associated with one of a plurality of reliability states and each of the reliability-state CNN models associated with a range of program and erase (P/E) cycles; a status module configured to identify a current number of P/E cycles; a neural processing module coupled to the data storage module and to the control module, the neural processing module configured to: perform a neural network operation of the one of the stored reliability- state CNN models associated with a range of P/E cycles corresponding to the current number of P/E cycles to identify a predicted reliability state, and perform neural network operations of the RNN inference models corresponding to the predicted reliability state, using as input to each neural network operation the set of reliability-state tags associated with the predicted reliability state, to generate output indicating the shape of TVS-RE curves for all threshold voltage regions required to read the flash memory device; a minimum function module configured to identify TVSO values for all threshold voltage regions required to read the flash memory device, each of the identified TVSO values proximate a minimum value of one of the TVS-RE curves; and a read module configured to perform a read of the flash memory device by sending a threshold-voltage-shift read instruction to the flash memory device that includes the identified TVSO values.
15. The SSD of claim 14 wherein the input for the neural network operation of the reliability- state CNN and the input for the neural network operation of the stored RNN inference model include a wordline index and a block index.
16. The SSD of claim 14 wherein the input for the neural network operation of the reliability- state CNN and the input for the neural network operation of the stored RNN inference model include a wordline index, a block index and a page index.
17. The SSD of claim 14 wherein the input for the neural network operation of the RNN inference model includes a wordline index, a block index, a page index, a retention time tag, a read-disturb tag and a temperature tag.
PCT/US2021/030191 2021-02-25 2021-04-30 Method and apparatus for reading a flash memory device WO2022182374A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112021005459.7T DE112021005459T5 (en) 2021-02-25 2021-04-30 METHOD AND DEVICE FOR READING A FLASH MEMORY DEVICE
CN202180092032.7A CN116830200B (en) 2021-02-25 2021-04-30 Method and apparatus for reading a flash memory device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202163153906P 2021-02-25 2021-02-25
US63/153,906 2021-02-25
US17/234,993 US11514992B2 (en) 2021-02-25 2021-04-20 Method and apparatus for reading a flash memory device
US17/234,993 2021-04-20

Publications (1)

Publication Number Publication Date
WO2022182374A1 true WO2022182374A1 (en) 2022-09-01

Family

ID=76035148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2021/030191 WO2022182374A1 (en) 2021-02-25 2021-04-30 Method and apparatus for reading a flash memory device

Country Status (2)

Country Link
DE (1) DE112021005459T5 (en)
WO (1) WO2022182374A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118657175A (en) * 2024-08-19 2024-09-17 山东云海国创云计算装备产业创新中心有限公司 Model generation method, fault prediction device, equipment, medium and product

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200210831A1 (en) * 2018-12-31 2020-07-02 SK Hynix Inc. Storage device performance optimization using deep learning
US10861562B1 (en) * 2019-06-24 2020-12-08 SK Hynix Inc. Deep learning based regression framework for read thresholds in a NAND flash memory

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200210831A1 (en) * 2018-12-31 2020-07-02 SK Hynix Inc. Storage device performance optimization using deep learning
US10861562B1 (en) * 2019-06-24 2020-12-08 SK Hynix Inc. Deep learning based regression framework for read thresholds in a NAND flash memory

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118657175A (en) * 2024-08-19 2024-09-17 山东云海国创云计算装备产业创新中心有限公司 Model generation method, fault prediction device, equipment, medium and product

Also Published As

Publication number Publication date
DE112021005459T5 (en) 2023-07-27

Similar Documents

Publication Publication Date Title
US11514992B2 (en) Method and apparatus for reading a flash memory device
US11398291B2 (en) Method and apparatus for determining when actual wear of a flash memory device differs from reliability states for the flash memory device
US11721399B2 (en) Memory system with dynamic calibration using a trim management mechanism
US11127471B2 (en) Read retry threshold voltage selection
US7210077B2 (en) System and method for configuring a solid-state storage device with error correction coding
US20220027083A1 (en) Regression Neural Network for Identifying Threshold Voltages to be Used in Reads of Flash Memory Devices
US11699493B2 (en) Method and apparatus for performing a read of a flash memory using predicted retention-and-read-disturb-compensated threshold voltage shift offset values
US20220058488A1 (en) Partitionable Neural Network for Solid State Drives
US11514994B1 (en) Method and apparatus for outlier management
US20220188604A1 (en) Method and Apparatus for Performing a Neural Network Operation
CN108694989A (en) Storage device and its bad block assigning method
US11216696B2 (en) Training data sample selection for use with non-volatile memory and machine learning processor
WO2022182374A1 (en) Method and apparatus for reading a flash memory device
KR100630710B1 (en) Fail bit detection device of semiconductor memory for detecting multiple fail bit
US6634004B1 (en) Threshold analysis system capable of deciding all threshold voltages included in memory device through single processing
US11138039B2 (en) Memory system for removing memory cell fault and method thereof
JP2009289380A (en) Memory test method and memory test system
KR20110010381A (en) Semiconductor memory device comprising self repair operation and self repair method thereof
US7894258B2 (en) Flash memory device for determining most significant bit program
CN116830200B (en) Method and apparatus for reading a flash memory device
US7484147B2 (en) Semiconductor integrated circuit
US12061542B2 (en) Memory device with latch-based neural network weight parity detection and trimming
US20230367497A1 (en) Memory system, operating method and controller
WO2022250722A1 (en) Method and apparatus for performing a read of a flash memory using predicted retention-and-read-disturb-compensated threshold voltage shift offset values
CN118248184A (en) Memory chip, memory device and computing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21727051

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180092032.7

Country of ref document: CN

122 Ep: pct application non-entry in european phase

Ref document number: 21727051

Country of ref document: EP

Kind code of ref document: A1