[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022181841A1 - 含フッ素共重合体 - Google Patents

含フッ素共重合体 Download PDF

Info

Publication number
WO2022181841A1
WO2022181841A1 PCT/JP2022/008459 JP2022008459W WO2022181841A1 WO 2022181841 A1 WO2022181841 A1 WO 2022181841A1 JP 2022008459 W JP2022008459 W JP 2022008459W WO 2022181841 A1 WO2022181841 A1 WO 2022181841A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorine
containing copolymer
polymerization
units
present disclosure
Prior art date
Application number
PCT/JP2022/008459
Other languages
English (en)
French (fr)
Inventor
忠晴 井坂
佑美 善家
有香里 山本
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN202280016661.6A priority Critical patent/CN116997582A/zh
Priority to EP22759874.5A priority patent/EP4299629A1/en
Publication of WO2022181841A1 publication Critical patent/WO2022181841A1/ja
Priority to US18/449,977 priority patent/US20230399427A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • C08F214/262Tetrafluoroethene with fluorinated vinyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/28Hexyfluoropropene
    • C08F214/282Hexyfluoropropene with fluorinated vinyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/18Introducing halogen atoms or halogen-containing groups
    • C08F8/20Halogenation
    • C08F8/22Halogenation by reaction with free halogens
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/12Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C09D127/18Homopolymers or copolymers of tetrafluoroethene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/443Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from vinylhalogenides or other halogenoethylenic compounds
    • H01B3/445Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from vinylhalogenides or other halogenoethylenic compounds from vinylfluorides or other fluoroethylenic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene

Definitions

  • the present disclosure relates to fluorine-containing copolymers.
  • U.S. Pat. No. 5,301,003 discloses (a) tetrafluoroethylene, (b) hexafluoropropylene in an amount of from about 4 to about 12 weight percent based on the weight of the terpolymer, and (c) about 0.5 weight percent based on the weight of the terpolymer.
  • Terpolymers containing from to about 3% by weight of perfluoro(ethyl vinyl ether) or perfluoro(n-propyl vinyl ether), in copolymerized form, are described.
  • a beautiful injection molded body can be obtained by molding at a high injection speed by an injection molding method, and a thin coating can be obtained on a cord with a small diameter at a high speed by molding by an extrusion molding method.
  • a fluorine-containing copolymer containing tetrafluoroethylene units, hexafluoropropylene units and perfluoro(propyl vinyl ether) units wherein the content of hexafluoropropylene units is On the other hand, it is 9.4 to 10.3% by mass, and the content of perfluoro (propyl vinyl ether) units is 1.6 to 2.9% by mass with respect to the total monomer units, and the temperature is 372 ° C.
  • a fluorine-containing copolymer having a melt flow rate of 9.0 to 17.0 g/10 minutes is provided.
  • the content of hexafluoropropylene units is preferably 9.6 to 10.2% by mass with respect to all monomer units.
  • the content of perfluoro(propyl vinyl ether) units is preferably 1.8 to 2.4% by mass based on the total monomer units.
  • the melt flow rate at 372° C. is preferably 10.0-16.0 g/10 minutes.
  • the number of —CF 2 H is preferably 100 or less per 10 6 main chain carbon atoms.
  • an injection-molded article containing the fluorine-containing copolymer is provided.
  • a covered electric wire that includes a covering layer containing the fluorine-containing copolymer.
  • a molded article containing the fluorine-containing copolymer wherein the molded article is a joint, tube, film or wire coating.
  • a polymer can be provided.
  • the fluorine-containing copolymer of the present disclosure contains tetrafluoroethylene (TFE) units, hexafluoropropylene (HFP) units and perfluoro(propyl vinyl ether) (PPVE) units.
  • TFE tetrafluoroethylene
  • HFP hexafluoropropylene
  • PPVE perfluoro(propyl vinyl ether)
  • Patent Document 1 proposes the above-described terpolymer as a fluorocarbon polymer that overcomes these drawbacks.
  • Patent Document 2 proposes to improve the stress crack resistance and moldability of a fluorine-containing copolymer by using a perfluorovinyl ether having a relatively long side chain.
  • the fluorine-containing copolymer of the present disclosure can be used not only as a material for joints and tubes, but also for a wide range of applications such as films and wire coatings.
  • the fluorocopolymer of the present disclosure is a melt-processable fluororesin.
  • Melt processability means that the polymer can be melt processed using conventional processing equipment such as extruders and injection molding machines.
  • the content of HFP units in the fluorine-containing copolymer is 9.4 to 10.3% by mass, preferably 9.5% by mass or more, more preferably 9.5% by mass or more, based on the total monomer units. It is 6% by mass or more, preferably 10.2% by mass or less. If the content of the HFP units is too low, it is not possible to obtain a molded article with excellent 25° C. abrasion resistance. If the content of HFP units is too high, it is not possible to obtain a molded article that has excellent 110° C. tensile creep resistance and durability against repeated loads.
  • the content of PPVE units in the fluorine-containing copolymer is 1.6 to 2.9% by mass, preferably 1.7% by mass or more, more preferably 1.7% by mass or more, based on the total monomer units. 8% by mass or more, more preferably 1.9% by mass or more, particularly preferably 2.0% by mass or more, preferably 2.8% by mass or less, more preferably 2.7% by mass or less, more preferably 2.6% by mass or less, particularly preferably 2.5% by mass or less, and most preferably 2.4% by mass or less.
  • the content of the PPVE unit is within the above range, it is possible to obtain a molded article having excellent wear resistance at 25°C, solvent crack resistance, low air permeability, tensile creep resistance at 110°C, and durability against repeated loads. can. If the content of PPVE units is too low, it is not possible to obtain a molded article having excellent 25° C. abrasion resistance and solvent crack resistance.
  • the content of TFE units in the fluorine-containing copolymer is preferably 86.8% by mass or more, more preferably 86.9% by mass or more, and still more preferably 87.8% by mass or more, based on the total monomer units. 1% by mass or more, more preferably 87.2% by mass or more, particularly preferably 87.3% by mass or more, most preferably 87.4% by mass or more, preferably 89.0% by mass % or less, more preferably 88.8 mass % or less, and still more preferably 88.6 mass % or less. Also, the content of TFE units may be selected so that the total content of HFP units, PPVE units, TFE units and other monomer units is 100% by mass.
  • the fluorine-containing copolymer of the present disclosure contains the above three monomer units, even if it is a copolymer containing only the above three monomer units, the above three It may be a copolymer containing monomeric units and other monomeric units.
  • Other monomers are not particularly limited as long as they are copolymerizable with TFE, HFP and PPVE, and may be fluoromonomers or fluorine-free monomers.
  • Fluorine-free monomers include hydrocarbon-based monomers copolymerizable with TFE, HFP and PPVE.
  • hydrocarbon-based monomers include alkenes such as ethylene, propylene, butylene, and isobutylene; alkyl vinyl ethers such as ethyl vinyl ether, propyl vinyl ether, butyl vinyl ether, isobutyl vinyl ether, and cyclohexyl vinyl ether; vinyl acetate, vinyl propionate, n- Vinyl butyrate, vinyl isobutyrate, vinyl valerate, vinyl pivalate, vinyl caproate, vinyl caprylate, vinyl caprate, vinyl versatate, vinyl laurate, vinyl myristate, vinyl palmitate, vinyl stearate, vinyl benzoate , vinyl para-t-butylbenzoate, vinyl cyclohexanecarboxylate, vinyl monochloroacetate, vinyl adipate, vinyl acrylate, vinyl methacrylate, vinyl crotonate
  • the non-fluorine-containing monomer may also be a functional group-containing hydrocarbon-based monomer copolymerizable with TFE, HFP and PPVE.
  • functional group-containing hydrocarbon monomers include hydroxyalkyl vinyl ethers such as hydroxyethyl vinyl ether, hydroxypropyl vinyl ether, hydroxybutyl vinyl ether, hydroxyisobutyl vinyl ether, and hydroxycyclohexyl vinyl ether; glycidyl group-containing monomers such as glycidyl vinyl ether and glycidyl allyl ether.
  • fluorine-free monomers fluorine-free monomers having an amino group such as aminoalkyl vinyl ether and aminoalkyl allyl ether; fluorine-free monomers having an amide group such as (meth)acrylamide and methylolacrylamide; bromine-containing olefins, iodine-containing olefins, bromine-containing vinyl ethers, iodine-containing vinyl ethers; non-fluorine-containing monomers having a nitrile group;
  • the content of other monomer units in the fluorine-containing copolymer of the present disclosure is preferably 0 to 2.2% by mass, more preferably 1.0% by mass, based on the total monomer units. or less, more preferably 0.5% by mass or less, and particularly preferably 0.1% by mass or less.
  • the melt flow rate (MFR) of the fluorine-containing copolymer is 9.0 to 17.0 g/10 minutes, preferably 9.1 g/10 minutes or more, more preferably 9.6 g/10 minutes or more. more preferably 10.0 g/10 min or more, still more preferably 11.0 g/10 min or more, even more preferably 12.0 g/10 min or more, particularly preferably 13.0 g/10 min or more 10 minutes or more, most preferably 14.0 g/10 minutes or more, preferably 16.9 g/10 minutes or less, more preferably 16.5 g/10 minutes or less, still more preferably 16.0 g /10 minutes or less. If the MFR is too low, a molded article with excellent low air permeability cannot be obtained.
  • the MFR is too low, it becomes difficult to obtain a beautiful injection-molded body by molding at a high injection speed by an injection molding method. At high speeds, it becomes difficult to form a thin coating layer. If the MFR is too high, a molded article having excellent 110° C. tensile creep resistance cannot be obtained.
  • the melt flow rate is measured in accordance with ASTM D-1238 using a melt indexer G-01 (manufactured by Toyo Seiki Seisakusho) at 372°C under a load of 5 kg from a die with an inner diameter of 2 mm and a length of 8 mm. The value is given as the mass of polymer that flows out per 10 minutes (g/10 minutes).
  • the MFR can be adjusted by adjusting the type and amount of the polymerization initiator and the type and amount of the chain transfer agent used when polymerizing the monomers.
  • the fluorocopolymer of the present disclosure may or may not have —COF, —COOH or —CH 2 OH.
  • the total number of —COF, —COOH and —CH 2 OH is preferably 100 or less per 10 6 main chain carbon atoms.
  • the total number of —COF, —COOH and —CH 2 OH is, in order of preference, 90 or less, 70 or less, 50 or less, 40 or less, 30 or less, 20 or less, 15 or less, and less than 6 is.
  • the total number of —COF, —COOH and —CH 2 OH can be adjusted, for example, by appropriately selecting the type of polymerization initiator or chain transfer agent, or by wet heat treatment or fluorination treatment of the fluorine-containing copolymer described later. can be adjusted.
  • the total number of carbonyl group-containing terminal groups, —CF ⁇ CF 2 and —CH 2 OH can be adjusted, for example, by appropriately selecting the type of polymerization initiator or chain transfer agent, or by wet heat treatment of the fluorine-containing copolymer described later. Alternatively, it can be adjusted by fluorination treatment.
  • the fluorine-containing copolymer of the present disclosure may or may not have —O(C ⁇ O)OR (R is an alkyl group).
  • the total number of —O(C ⁇ O)OR (R is an alkyl group) is preferably 100 or less per 10 6 carbon atoms in the main chain.
  • the total number of —O(C ⁇ O)OR (R is an alkyl group) is, in order of preference, 90 or less, 70 or less, 50 or less, 40 or less, 30 or less, 20 or less, 15 , and may be less than the limit of quantitation (ND).
  • the total number of —O(C ⁇ O)OR (R is an alkyl group) can be adjusted, for example, by appropriately selecting the type of polymerization initiator or chain transfer agent, or by wet heat treatment of the fluorine-containing copolymer described later. Alternatively, it can be adjusted by fluorination treatment.
  • the fluorine-containing copolymer of the present disclosure may or may not have —CF 2 H.
  • the number of —CF 2 H groups in the fluorine-containing copolymer is preferably 100 or less per 10 6 carbon atoms in the main chain.
  • the number of —CF 2 H is 90 or less, 70 or less, 50 or less, 40 or less, 30 or less, 20 or less, 15 or less, and less than 9 in the order of preference.
  • the number of —CF 2 H can be adjusted, for example, by appropriately selecting the type of polymerization initiator or chain transfer agent, or by subjecting the fluorine-containing copolymer to wet heat treatment or fluorination treatment, which will be described later.
  • Infrared spectroscopic analysis can be used to identify the types of functional groups and measure the number of functional groups.
  • the number of functional groups is measured by the following method.
  • the fluorine-containing copolymer is cold-pressed to form a film having a thickness of 0.25 to 0.30 mm.
  • This film is analyzed by Fourier transform infrared spectroscopy to obtain the infrared absorption spectrum of the fluorine-containing copolymer, and the difference spectrum from the completely fluorinated base spectrum in which no functional groups are present. From the absorption peak of the specific functional group appearing in this difference spectrum, the number N of functional groups per 1 ⁇ 10 6 carbon atoms in the fluorine-containing copolymer is calculated according to the following formula (A).
  • N I ⁇ K/t (A) I: Absorbance K: Correction coefficient t: Film thickness (mm)
  • Table 1 shows absorption frequencies, molar extinction coefficients and correction factors for some functional groups. Also, the molar extinction coefficient was determined from the FT-IR measurement data of the low-molecular-weight model compound.
  • the absorption frequencies of —CH 2 CF 2 H, —CH 2 COF, —CH 2 COOH, —CH 2 COOCH 3 and —CH 2 CONH 2 are shown in the table, respectively, —CF 2 H, —COF and —COOH free.
  • the absorption frequency of -COOH bonded, -COOCH 3 and -CONH 2 is several tens of Kaiser (cm -1 ) lower than that of -CONH 2 .
  • the number of functional groups of —COF is determined from the number of functional groups obtained from the absorption peak at an absorption frequency of 1883 cm ⁇ 1 due to —CF 2 COF and from the absorption peak at an absorption frequency of 1840 cm ⁇ 1 due to —CH 2 COF. It is the sum of the number of functional groups.
  • the number of -CF 2 H groups can also be obtained from the peak integration value of -CF 2 H groups by performing 19 F-NMR measurement using a nuclear magnetic resonance apparatus at a measurement temperature of (the melting point of the polymer +20) °C. can be done.
  • a functional group such as a —CF 2 H group is a functional group present at the main chain end or side chain end of the fluorine-containing copolymer, and a functional group present in the main chain or side chain.
  • These functional groups are introduced into the fluorocopolymer by, for example, a chain transfer agent or a polymerization initiator used in producing the fluorocopolymer.
  • a chain transfer agent or a polymerization initiator used in producing the fluorocopolymer.
  • —CH 2 OH is introduced at the main chain end of the fluorine-containing copolymer.
  • the functional group is introduced into the side chain end of the fluorine-containing copolymer.
  • a fluorine-containing copolymer having the number of functional groups within the above range can be obtained by subjecting the fluorine-containing copolymer having such functional groups to treatment such as wet heat treatment and fluorination treatment.
  • the fluorocopolymer of the present disclosure is preferably subjected to wet heat treatment or fluorination treatment, more preferably fluorination treatment.
  • the fluorine-containing copolymer of the present disclosure also preferably has a —CF 3 terminal group.
  • the melting point of the fluorine-containing copolymer is preferably 220-290°C, more preferably 240-280°C. When the melting point is within the above range, it is possible to obtain a molded article having even better wear resistance at 25°C, solvent crack resistance, low air permeability, tensile creep resistance at 110°C, and durability against repeated loads.
  • the melting point can be measured using a differential scanning calorimeter [DSC].
  • the air permeability coefficient of the fluorine-containing copolymer is preferably 390 cm 3 ⁇ mm/(m 2 ⁇ 24h ⁇ atm) or less.
  • the fluorine-containing copolymer of the present disclosure has excellent low air permeability because the content of HFP units and PPVE units and the melt flow rate (MFR) are appropriately adjusted. Therefore, for example, a joint obtained by using the fluorocopolymer of the present disclosure can be suitably used for anaerobic chemical distribution.
  • the air permeability coefficient can be measured under the conditions of a test temperature of 70°C and a test humidity of 0% RH.
  • a specific measurement of the air permeability coefficient can be performed by the method described in Examples.
  • the amount of eluted fluorine ions detected in an immersion test in hydrogen peroxide water is preferably 4.0 ppm or less, more preferably 3.0 ppm or less, on a mass basis. , more preferably 2.8 ppm or less.
  • the amount of eluted fluorine ions is within the above range, a molded article is obtained using the fluorine-containing copolymer of the present disclosure, and the obtained molded article is used as a joint for circulating anaerobic chemicals. In addition, elution of fluorine ions into the chemical solution can be suppressed.
  • the immersion test in hydrogen peroxide water is performed by using a fluorine-containing copolymer to prepare a test piece having a weight equivalent to 10 molded articles (15 mm ⁇ 15 mm ⁇ 0.2 mm). and 15 g of a 3% by mass aqueous hydrogen peroxide solution are placed in a constant temperature bath at 95° C. and allowed to stand for 20 hours.
  • the fluorine-containing copolymer of the present disclosure can be produced by any polymerization method such as bulk polymerization, solution polymerization, suspension polymerization, and emulsion polymerization.
  • conditions such as temperature and pressure, polymerization initiator, chain transfer agent, solvent and other additives can be appropriately set according to the desired composition and amount of the fluorine-containing copolymer. .
  • an oil-soluble radical polymerization initiator or a water-soluble radical initiator can be used as the polymerization initiator.
  • Oil-soluble radical polymerization initiators may be known oil-soluble peroxides, for example, Dialkyl peroxycarbonates such as di-n-propyl peroxydicarbonate, diisopropyl peroxydicarbonate, di-sec-butyl peroxydicarbonate; Peroxyesters such as t-butyl peroxyisobutyrate and t-butyl peroxypivalate; Dialkyl peroxides such as di-t-butyl peroxide; Di[fluoro (or fluorochloro) acyl] peroxides; etc. are typical examples.
  • Dialkyl peroxycarbonates such as di-n-propyl peroxydicarbonate, diisopropyl peroxydicarbonate, di-sec-butyl peroxydicarbonate
  • Peroxyesters such as t-butyl peroxyisobutyrate and t-butyl peroxypivalate
  • Dialkyl peroxides such as di-
  • Di[fluoro(or fluorochloro)acyl] peroxides include diacyl represented by [(RfCOO)-] 2 (Rf is a perfluoroalkyl group, ⁇ -hydroperfluoroalkyl group or fluorochloroalkyl group) peroxides.
  • Di[fluoro(or fluorochloro)acyl] peroxides include, for example, di( ⁇ -hydro-dodecafluorohexanoyl) peroxide, di( ⁇ -hydro-tetradecafluoroheptanoyl) peroxide, di( ⁇ -hydro-hexadecafluorononanoyl)peroxide, di(perfluorobutyryl)peroxide, di(perfluoropareryl)peroxide, di(perfluorohexanoyl)peroxide, di(perfluoroheptanoyl)peroxide oxide, di(perfluorooctanoyl) peroxide, di(perfluorononanoyl) peroxide, di( ⁇ -chloro-hexafluorobutyryl) peroxide, di( ⁇ -chloro-decafluorohexanoyl) peroxide, Di( ⁇ -chloro-tetrade
  • the water-soluble radical polymerization initiator may be a known water-soluble peroxide, for example, ammonium salts, potassium salts, sodium salts of persulfuric acid, perboric acid, perchloric acid, perphosphoric acid, percarbonate, etc. , t-butyl permaleate, t-butyl hydroperoxide and the like.
  • a reducing agent such as sulfites may also be included, and the amount used may be 0.1 to 20 times that of the peroxide.
  • an oil-soluble radical polymerization initiator When an oil-soluble radical polymerization initiator is used as the polymerization initiator, the formation of —COF and —COOH can be avoided, and the total number of —COF and —COOH in the fluorine-containing copolymer can be easily adjusted within the above range. preferable.
  • the use of an oil-soluble radical polymerization initiator tends to facilitate adjustment of the carbonyl group-containing terminal group and —CH 2 OH within the ranges described above.
  • the oil-soluble radical polymerization initiator is preferably at least one selected from the group consisting of dialkylperoxycarbonates and di[fluoro(or fluorochloro)acyl]peroxides, di-n-propyl peroxydicarbonate, diisopropyl At least one selected from the group consisting of peroxydicarbonate and di( ⁇ -hydro-dodecafluoroheptanoyl) peroxide is more preferred.
  • chain transfer agents examples include hydrocarbons such as ethane, isopentane, n-hexane and cyclohexane; aromatics such as toluene and xylene; ketones such as acetone; acetic esters such as ethyl acetate and butyl acetate; , ethanol, 2,2,2-trifluoroethanol and other alcohols; methyl mercaptan and other mercaptans; carbon tetrachloride, chloroform, methylene chloride, methyl chloride and other halogenated hydrocarbons; 3-fluorobenzotrifluoride and the like mentioned.
  • the amount to be added may vary depending on the magnitude of the chain transfer constant of the compound used, but it is usually used in the range of 0.01 to 20 parts by weight per 100 parts by weight of the solvent.
  • the molecular weight of the resulting fluorine-containing copolymer becomes too high, resulting in a desired melt flow rate.
  • chain transfer agents can be used to control the molecular weight.
  • the solvent examples include water, a mixed solvent of water and alcohol, and the like.
  • the monomer used for the polymerization of the fluorine-containing copolymer of the present disclosure can also be used as a solvent.
  • a fluorinated solvent may be used in addition to water.
  • Hydrochlorofluoroalkanes such as CH 3 CClF 2 , CH 3 CCl 2 F, CF 3 CF 2 CCl 2 H, CF 2 ClCF 2 CFHCl; CF 2 ClCFClCF 2 CF 3 , CF 3 CFClCFClCF 3 , etc. chlorofluoroalkanes ; perfluoroalkanes such as perfluorocyclobutane , CF3CF2CF2CF3 , CF3CF2CF2CF2CF3 , CF3CF2CF2CF2CF2CF3 , etc. _ Among them, perfluoroalkanes are preferred.
  • the amount of fluorine-based solvent to be used is preferably 10 to 100 parts by mass per 100 parts by mass of the solvent, from the viewpoint of suspendability and economy.
  • the polymerization temperature is not particularly limited, and may be 0 to 100°C.
  • the polymerization initiator may be reduced from 0 to It is preferred to employ a relatively low polymerization temperature, such as in the range of 35°C.
  • the polymerization pressure is appropriately determined according to other polymerization conditions such as the type of solvent used, the amount of solvent, the vapor pressure, and the polymerization temperature, but usually it may be 0 to 9.8 MPaG.
  • the polymerization pressure is preferably 0.1 to 5 MPaG, more preferably 0.5 to 2 MPaG, still more preferably 0.5 to 1.5 MPaG. Moreover, when the polymerization pressure is 1.5 MPaG or more, the production efficiency can be improved.
  • Additives in polymerization include, for example, suspension stabilizers.
  • the suspension stabilizer is not particularly limited as long as it is a conventionally known one, and methyl cellulose, polyvinyl alcohol and the like can be used.
  • a suspension stabilizer is used, the suspended particles generated by the polymerization reaction are stably dispersed in the aqueous medium. Suspended particles are less likely to adhere to Therefore, since a reactor that can withstand high pressure can be used, polymerization can be performed under high pressure, and production efficiency can be improved.
  • suspension stabilizer when polymerization is carried out without using a suspension stabilizer, if a SUS reaction tank that has not been subjected to an anti-adhesion treatment is used, suspended particles may adhere, resulting in a decrease in production efficiency.
  • concentration of the suspension stabilizer in the aqueous medium can be appropriately adjusted depending on the conditions.
  • the dry fluoropolymer may be recovered by coagulating the fluorine-containing copolymer contained in the aqueous dispersion, washing, and drying. Moreover, when the fluorine-containing copolymer is obtained as a slurry by the polymerization reaction, the slurry may be taken out from the reaction vessel, washed and dried to recover the dried fluoropolymer. By drying, the fluorine-containing copolymer can be recovered in the form of powder.
  • the fluorine-containing copolymer obtained by polymerization may be molded into pellets.
  • a molding method for molding into pellets is not particularly limited, and conventionally known methods can be used. For example, a method of melt extruding a fluorine-containing copolymer using a single-screw extruder, twin-screw extruder, or tandem extruder, cutting it into a predetermined length, and molding it into a pellet can be used.
  • the extrusion temperature for melt extrusion must be changed according to the melt viscosity of the fluorine-containing copolymer and the production method, and is preferably from the melting point of the fluorine-containing copolymer +20°C to the melting point of the fluorine-containing copolymer +140°C.
  • the method for cutting the fluorine-containing copolymer is not particularly limited, and conventionally known methods such as a strand cut method, a hot cut method, an underwater cut method, and a sheet cut method can be employed.
  • the obtained pellets may be heated to remove volatile matter in the pellets (deaeration treatment).
  • the obtained pellets may be treated by contacting them with warm water of 30-200°C, steam of 100-200°C, or hot air of 40-200°C.
  • a fluorine-containing copolymer obtained by polymerization may be heated to a temperature of 100° C. or higher in the presence of air and water (wet heat treatment).
  • wet heat treatment methods include a method in which an extruder is used to melt and extrude the fluorine-containing copolymer obtained by polymerization while supplying air and water.
  • the thermally unstable functional groups such as —COF and —COOH of the fluorocopolymer can be converted to relatively thermally stable —CF 2 H, and the fluorocopolymer
  • the total number of —COF and —COOH, and the total number of carbonyl group-containing end groups and —CH 2 OH can be easily adjusted within the ranges described above.
  • the fluorine-containing copolymer obtained by polymerization may or may not be fluorinated. It is preferable to fluorinate the fluorine-containing copolymer from the viewpoint of obtaining a molded article from which fluorine ions are less likely to be eluted in a chemical solution such as hydrogen peroxide solution.
  • the fluorination treatment can be carried out by contacting the unfluorinated fluorocopolymer with a fluorine-containing compound.
  • the fluorination treatment removes the carbonyl group-containing terminal groups of the fluorine-containing copolymer, thermally unstable functional groups such as —CH 2 OH, and thermally relatively stable functional groups such as —CF 2 H.
  • the fluorine-containing compound is not particularly limited, but includes fluorine radical sources that generate fluorine radicals under fluorination treatment conditions.
  • fluorine radical source include F 2 gas, CoF 3 , AgF 2 , UF 6 , OF 2 , N 2 F 2 , CF 3 OF, halogen fluoride (eg IF 5 , ClF 3 ), and the like.
  • the fluorine radical source such as F 2 gas may have a concentration of 100%, but from the viewpoint of safety, it is preferable to mix it with an inert gas and dilute it to 5 to 50% by mass before use. It is more preferable to dilute to 30% by mass before use.
  • the inert gas include nitrogen gas, helium gas, argon gas, etc. Nitrogen gas is preferable from an economical point of view.
  • Conditions for the fluorination treatment are not particularly limited, and the melted fluorine-containing copolymer may be brought into contact with the fluorine-containing compound. It can be carried out at a temperature of 220°C, more preferably from 100 to 200°C.
  • the fluorination treatment is generally carried out for 1 to 30 hours, preferably 5 to 25 hours.
  • the fluorination treatment is preferably carried out by contacting a fluorine-containing copolymer that has not been fluorinated with fluorine gas ( F2 gas).
  • a composition may be obtained by mixing the fluorine-containing copolymer of the present disclosure with other components, if necessary.
  • Other components include fillers, plasticizers, processing aids, release agents, pigments, flame retardants, lubricants, light stabilizers, weather stabilizers, conductive agents, antistatic agents, ultraviolet absorbers, antioxidants, Foaming agents, fragrances, oils, softening agents, dehydrofluorination agents and the like can be mentioned.
  • fillers include silica, kaolin, clay, organic clay, talc, mica, alumina, calcium carbonate, calcium terephthalate, titanium oxide, calcium phosphate, calcium fluoride, lithium fluoride, crosslinked polystyrene, potassium titanate, Examples include carbon, boron nitride, carbon nanotubes, glass fibers, and the like.
  • the conductive agent include carbon black and the like.
  • plasticizers include dioctylphthalic acid and pentaerythritol.
  • processing aids include carnauba wax, sulfone compounds, low-molecular-weight polyethylene, fluorine-based aids, and the like.
  • dehydrofluorination agents include organic oniums and amidines.
  • polymers other than the fluorine-containing copolymers described above may be used as the other components.
  • Other polymers include fluororesins, fluororubbers, and non-fluorinated polymers other than the above fluorocopolymers.
  • Examples of the method for producing the composition include a method of dry mixing the fluorocopolymer and other components, or a method of premixing the fluorocopolymer and other components in a mixer, followed by kneading and melting. A method of melt-kneading with an extruder or the like can be mentioned.
  • the fluorine-containing copolymer of the present disclosure or the composition described above can be used as a processing aid, molding material, etc., but is preferably used as a molding material.
  • Aqueous dispersions, solutions, suspensions, and copolymer/solvent systems of the fluorocopolymers of the present disclosure are also available, which can be applied as coatings, encapsulated, impregnated, flowed into films. It can be used for spreading.
  • the fluorine-containing copolymer of the present disclosure has the properties described above, it is preferably used as the molding material.
  • a molded article may be obtained by molding the fluorine-containing copolymer of the present disclosure or the above composition.
  • the method for molding the fluorine-containing copolymer or composition is not particularly limited, and injection molding, extrusion molding, compression molding, blow molding, transfer molding, roto molding, roto lining molding, and the like can be used. mentioned.
  • extrusion molding, compression molding, injection molding, or transfer molding is preferable, and injection molding, extrusion, or transfer molding is more preferable because it can produce molded articles with high productivity.
  • the injection molding method is preferably an extrusion molded article, a compression molded article, an injection molded article or a transfer molded article. is more preferred, and an injection molded article is even more preferred.
  • a beautiful molded article can be obtained by molding the fluorine-containing copolymer of the present disclosure by an injection molding method.
  • Molded articles containing the fluorocopolymer of the present disclosure include, for example, nuts, bolts, joints, films, bottles, gaskets, wire coatings, tubes, hoses, pipes, valves, sheets, seals, packings, tanks, and rollers. , vessels, cocks, connectors, filter housings, filter cages, flow meters, pumps, wafer carriers, wafer boxes, and the like.
  • the fluorine-containing copolymer of the present disclosure, the above composition, or the above molding can be used, for example, in the following applications.
  • Films for food packaging, lining materials for fluid transfer lines used in food manufacturing processes, packings, sealing materials, and fluid transfer members for food manufacturing equipment such as sheets
  • Drug stoppers for drugs, packaging films, lining materials for fluid transfer lines used in the process of manufacturing drugs, packings, sealing materials, and chemical liquid transfer members such as sheets
  • Inner lining members for chemical tanks and piping in chemical plants and semiconductor factories O (square) rings, tubes, packings, valve core materials, hoses, sealing materials, etc. used in automobile fuel systems and peripheral devices; fuel transfer members such as hoses, sealing materials, etc.
  • Coating and ink components such as coating rolls, hoses, tubes, and ink containers for coating equipment; Tubes for food and drink or tubes such as food and drink hoses, hoses, belts, packings, food and drink transfer members such as joints, food packaging materials, glass cooking equipment; Parts for transporting waste liquid such as tubes and hoses for transporting waste liquid; Parts for transporting high-temperature liquids, such as tubes and hoses for transporting high-temperature liquids; Steam piping members such as steam piping tubes and hoses; Anti-corrosion tape for piping such as tape to be wrapped around piping on ship decks; Various coating materials such as wire coating materials, optical fiber coating materials, transparent surface coating materials and back coating materials provided on the light incident side surface of photovoltaic elements of solar cells; Sliding members such as diaphragms of diaphragm pumps and various packings; Agricultural films, weather-resistant covers for various roofing materials and side walls; Interior materials used in the construction field, coating materials for glasses such
  • fuel transfer members used in the fuel system of automobiles include fuel hoses, filler hoses, and evaporation hoses.
  • the above-mentioned fuel transfer member can also be used as a fuel transfer member for sour gasoline-resistant fuel, alcohol-resistant fuel, and fuel containing gasoline additives such as methyl tert-butyl ether and amine-resistant fuel.
  • the above drug stoppers and packaging films for drugs have excellent chemical resistance against acids and the like.
  • an anticorrosive tape to be wound around chemical plant pipes can also be mentioned.
  • Examples of the above molded bodies also include automobile radiator tanks, chemical liquid tanks, bellows, spacers, rollers, gasoline tanks, containers for transporting waste liquids, containers for transporting high-temperature liquids, fisheries and fish farming tanks, and the like.
  • Examples of the molded article include automobile bumpers, door trims, instrument panels, food processing equipment, cooking equipment, water- and oil-repellent glass, lighting-related equipment, display panels and housings for OA equipment, illuminated signboards, displays, and liquid crystals.
  • Members used for displays, mobile phones, printed circuit boards, electrical and electronic parts, miscellaneous goods, trash cans, bathtubs, unit baths, ventilation fans, lighting frames and the like are also included.
  • Molded articles containing the fluorine-containing copolymer of the present disclosure are excellent in wear resistance at 25°C, solvent crack resistance, low air permeability, tensile creep resistance at 110°C, and durability against repeated loads. It can be suitably used for joints, tubes, films, wire coatings, and the like.
  • a molded article containing the fluorine-containing copolymer of the present disclosure can be suitably used as a member to be compressed such as gaskets and packings.
  • the compressible member of the present disclosure may be a gasket or packing.
  • the size and shape of the member to be compressed of the present disclosure may be appropriately set according to the application, and are not particularly limited.
  • the shape of the compressible member of the present disclosure may be annular, for example.
  • the member to be compressed of the present disclosure may have a shape such as a circle, an oval, or a rectangle with rounded corners in a plan view, and may have a through hole in the center thereof.
  • the member to be compressed of the present disclosure is preferably used as a member for configuring a non-aqueous electrolyte battery.
  • the member to be compressed of the present disclosure is particularly suitable as a member used in contact with the non-aqueous electrolyte in the non-aqueous electrolyte battery. That is, the member to be compressed of the present disclosure may have a liquid contact surface with the non-aqueous electrolyte in the non-aqueous electrolyte battery.
  • the non-aqueous electrolyte battery is not particularly limited as long as it is a battery with a non-aqueous electrolyte, and examples thereof include lithium ion secondary batteries and lithium ion capacitors. Further, examples of members constituting the non-aqueous electrolyte battery include a sealing member and an insulating member.
  • the non-aqueous electrolyte is not particularly limited, but includes propylene carbonate, ethylene carbonate, butylene carbonate, ⁇ -butyl lactone, 1,2-dimethoxyethane, 1,2-diethoxyethane, dimethyl carbonate, and diethyl carbonate. , ethyl methyl carbonate and the like can be used.
  • the nonaqueous electrolyte battery may further include an electrolyte.
  • the electrolyte is not particularly limited, but LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiCl, LiBr, CH 3 SO 3 Li, CF 3 SO 3 Li, cesium carbonate, or the like can be used.
  • the member to be compressed of the present disclosure can be suitably used as, for example, a sealing member such as a sealing gasket and sealing packing, and an insulating member such as an insulating gasket and insulating packing.
  • a sealing member is a member used to prevent leakage of liquid or gas or intrusion of liquid or gas from the outside.
  • An insulating member is a member used to insulate electricity.
  • Compressed members of the present disclosure may be members used for both sealing and insulating purposes.
  • the member to be compressed of the present disclosure can be suitably used as a sealing member for non-aqueous electrolyte batteries or an insulating member for non-aqueous electrolyte batteries.
  • the member to be compressed of the present disclosure contains the fluorine-containing copolymer, it has excellent insulating properties. Therefore, when the compressible member of the present disclosure is used as an insulating member, it adheres tightly to two or more conductive members to prevent short circuits over time.
  • the fluorine-containing copolymer of the present disclosure can be suitably used as a material for forming wire coatings.
  • a covered electric wire provided with a covering layer containing the fluorine-containing copolymer of the present disclosure has excellent electrical properties because there is almost no variation in outer diameter.
  • a covered electric wire includes a core wire and a coating layer provided around the core wire and containing the fluorine-containing copolymer of the present disclosure.
  • the coating layer can be an extruded product obtained by melt extruding the fluorine-containing copolymer of the present disclosure on the core wire.
  • the coated electric wire is suitable for LAN cables (Ethernet Cable), high frequency transmission cables, flat cables, heat resistant cables, etc., and particularly suitable for transmission cables such as LAN cables (Eathnet Cable) and high frequency transmission cables.
  • the core wire for example, a metal conductor material such as copper or aluminum can be used.
  • the core wire preferably has a diameter of 0.02 to 3 mm.
  • the diameter of the cord is more preferably 0.04 mm or more, still more preferably 0.05 mm or more, and particularly preferably 0.1 mm or more.
  • the diameter of the cord is more preferably 2 mm or less.
  • core wires include AWG (American Wire Gauge)-46 (solid copper wire with a diameter of 40 micrometers), AWG-26 (solid copper wire with a diameter of 404 micrometers), AWG-24 (diameter 510 micrometer solid copper wire), AWG-22 (635 micrometer diameter solid copper wire), etc. may be used.
  • AWG American Wire Gauge
  • AWG-46 solid copper wire with a diameter of 40 micrometers
  • AWG-26 solid copper wire with a diameter of 404 micrometers
  • AWG-24 diameter 510 micrometer solid copper wire
  • AWG-22 (635 micrometer diameter solid copper wire), etc.
  • the thickness of the coating layer is preferably 0.1 to 3.0 mm. It is also preferable that the thickness of the coating layer is 2.0 mm or less.
  • a coaxial cable is an example of a high-frequency transmission cable.
  • a coaxial cable generally has a structure in which an inner conductor, an insulating coating layer, an outer conductor layer and a protective coating layer are laminated in order from the core to the outer periphery.
  • a molded article containing the fluorocopolymer of the present disclosure can be suitably used as an insulating coating layer containing the fluorocopolymer.
  • the thickness of each layer in the above structure is not particularly limited, but usually the inner conductor has a diameter of about 0.1 to 3 mm, the insulating coating layer has a thickness of about 0.3 to 3 mm, and the outer conductor layer has a thickness of about 0.5-10 mm, the protective coating layer is about 0.5-2 mm thick.
  • the coating layer may contain air bubbles, and it is preferable that the air bubbles are uniformly distributed in the coating layer.
  • the average bubble diameter of the bubbles is not limited, for example, it is preferably 60 ⁇ m or less, more preferably 45 ⁇ m or less, even more preferably 35 ⁇ m or less, and even more preferably 30 ⁇ m or less. It is preferably 25 ⁇ m or less, particularly preferably 23 ⁇ m or less, and most preferably 23 ⁇ m or less. Also, the average bubble diameter is preferably 0.1 ⁇ m or more, more preferably 1 ⁇ m or more. The average bubble diameter can be obtained by taking an electron microscope image of the cross section of the electric wire, calculating the diameter of each bubble by image processing, and averaging the diameters.
  • the coating layer may have an expansion rate of 20% or more. It is more preferably 30% or more, still more preferably 33% or more, and even more preferably 35% or more.
  • the upper limit is not particularly limited, it is, for example, 80%.
  • the upper limit of the expansion rate may be 60%.
  • the foaming rate is a value obtained by ((specific gravity of wire coating material ⁇ specific gravity of coating layer)/specific gravity of wire coating material) ⁇ 100. The foaming rate can be appropriately adjusted depending on the application, for example, by adjusting the amount of gas inserted into the extruder, which will be described later, or by selecting the type of gas to be dissolved.
  • the covered electric wire may have another layer between the core wire and the covering layer, and may have another layer (outer layer) around the covering layer.
  • the electric wire of the present disclosure has a two-layer structure (skin-foam) in which a non-foaming layer is inserted between the core wire and the covering layer, or a two-layer structure in which the outer layer is covered with a non-foaming layer. (foam-skin), or a three-layer structure (skin-foam-skin) in which the outer layer of skin-foam is covered with a non-foamed layer.
  • the non-foamed layer is not particularly limited, and includes TFE/HFP copolymers, TFE/PAVE copolymers, TFE/ethylene copolymers, vinylidene fluoride polymers, polyolefin resins such as polyethylene [PE], polychlorinated It may be a resin layer made of a resin such as vinyl [PVC].
  • a covered electric wire can be produced, for example, by heating a fluorine-containing copolymer using an extruder and extruding the melted fluorine-containing copolymer onto a core wire to form a coating layer.
  • the fluorocopolymer is heated and a gas is introduced into the fluorocopolymer in a molten state to form the coating layer containing air bubbles.
  • a gas such as chlorodifluoromethane, nitrogen, carbon dioxide, or a mixture of the above gases can be used.
  • the gas may be introduced as a pressurized gas into the heated fluorocopolymer, or may be generated by incorporating a chemical blowing agent into the fluorocopolymer. The gas dissolves in the molten fluorine-containing copolymer.
  • the fluorine-containing copolymer of the present disclosure can be suitably used as a material for high-frequency signal transmission products.
  • the product for high-frequency signal transmission is not particularly limited as long as it is a product used for high-frequency signal transmission. Molded bodies such as high-frequency vacuum tube bases and antenna covers, (3) coated electric wires such as coaxial cables and LAN cables, and the like.
  • the above products for high-frequency signal transmission can be suitably used in equipment that uses microwaves, particularly microwaves of 3 to 30 GHz, such as satellite communication equipment and mobile phone base stations.
  • the fluorine-containing copolymer of the present disclosure can be suitably used as an insulator because of its low dielectric loss tangent.
  • a printed wiring board is preferable in terms of obtaining good electrical characteristics.
  • the printed wiring board include, but are not particularly limited to, printed wiring boards for electronic circuits such as mobile phones, various computers, and communication devices.
  • an antenna cover is preferable in terms of low dielectric loss.
  • the fluorocopolymer of the present disclosure can be suitably used for films.
  • the film of the present disclosure is useful as a release film.
  • the release film can be produced by molding the fluorine-containing copolymer of the present disclosure by melt extrusion molding, calendar molding, press molding, casting molding, or the like. From the viewpoint of obtaining a uniform thin film, the release film can be produced by melt extrusion molding.
  • the film of the present disclosure can be applied to the surface of rolls used in OA equipment.
  • the fluorine-containing copolymer of the present disclosure is molded into a required shape by extrusion molding, compression molding, press molding, etc., and is molded into a sheet, film, or tube, and is used for OA equipment rolls, OA equipment belts, and the like.
  • thin-walled tubes and films can be produced by melt extrusion.
  • the fluorine-containing copolymer of the present disclosure can also be suitably used for tubes, bottles, and the like.
  • each monomer unit of the fluorine-containing copolymer is measured using an NMR spectrometer (for example, AVANCE300 high temperature probe, manufactured by Bruker Biospin) or an infrared absorption measuring device (Spectrum One, manufactured by PerkinElmer). was measured using an NMR spectrometer (for example, AVANCE300 high temperature probe, manufactured by Bruker Biospin) or an infrared absorption measuring device (Spectrum One, manufactured by PerkinElmer). was measured using an NMR spectrometer (for example, AVANCE300 high temperature probe, manufactured by Bruker Biospin) or an infrared absorption measuring device (Spectrum One, manufactured by PerkinElmer). was measured using an NMR spectrometer (for example, AVANCE300 high temperature probe, manufactured by Bruker Biospin) or an infrared absorption measuring device (Spectrum One, manufactured by PerkinElmer). was measured using an NMR spectrometer (for example, AVANCE300 high temperature probe, manufactured
  • MFR Melt flow rate
  • the number of —CF 2 H groups in the fluorine-containing copolymer is measured by 19 F-NMR using a nuclear magnetic resonance apparatus AVANCE-300 (manufactured by Bruker Biospin) at a temperature of (the melting point of the polymer +20)°C. , was obtained from the peak integration value of the —CF 2 H group.
  • N I ⁇ K/t (A) I: Absorbance K: Correction coefficient t: Film thickness (mm)
  • Table 2 shows the absorption frequencies, molar extinction coefficients, and correction coefficients for the functional groups in the examples. Also, the molar extinction coefficient was determined from the FT-IR measurement data of the low-molecular-weight model compound.
  • melting point The melting point of the fluorine-containing copolymer was measured using a differential scanning calorimeter (trade name: X-DSC7000, manufactured by Hitachi High-Tech Science Co., Ltd.) at a heating rate of 10°C/min from 200°C to 350°C for the first time. followed by cooling from 350°C to 200°C at a cooling rate of 10°C/min; The melting point was determined from the peak of the melting curve that occurred during the second heating process.
  • Comparative example 1 40.25 kg of deionized water and 0.276 kg of methanol were put into an autoclave with a volume of 174 L and equipped with a stirrer, and the inside of the autoclave was sufficiently replaced with vacuum nitrogen. After that, the inside of the autoclave was evacuated, 40.25 kg of HFP and 0.88 kg of PPVE were put into the vacuumed autoclave, and the autoclave was heated to 25.5°C. Subsequently, TFE was added until the internal pressure of the autoclave reached 0.843 MPa, and then 1.25 kg of 8 mass% di( ⁇ -hydroperfluorohexanoyl) peroxide solution (hereinafter abbreviated as DHP) was added to the autoclave.
  • DHP di( ⁇ -hydroperfluorohexanoyl) peroxide solution
  • the internal pressure of the autoclave at the start of polymerization was set to 0.843 MPa, and the set pressure was maintained by continuously adding TFE. After 1.5 hours from the initiation of polymerization, 0.276 kg of methanol was added. After 2 hours and 4 hours from the start of polymerization, 1.25 kg of DHP was added and the internal pressure was lowered by 0.002 MPa. After 6 hours, 0.96 kg was added and the internal pressure was lowered by 0.002 MPa. Thereafter, 0.25 kg of DHP was added every 2 hours until the reaction was completed, and the internal pressure was lowered by 0.002 MPa each time.
  • the resulting powder was melt extruded at 370°C with a screw extruder (trade name: PCM46, manufactured by Ikegai Co., Ltd.) to obtain copolymer pellets.
  • a screw extruder (trade name: PCM46, manufactured by Ikegai Co., Ltd.) to obtain copolymer pellets.
  • various physical properties were measured by the methods described above. Table 3 shows the results.
  • Comparative example 2 40.25 kg of deionized water and 0.158 kg of methanol were put into an autoclave with a volume of 174 L and equipped with a stirrer, and the inside of the autoclave was sufficiently replaced with vacuum nitrogen. After that, the inside of the autoclave was evacuated, 40.25 kg of HFP and 0.70 kg of PPVE were put into the vacuumed autoclave, and the autoclave was heated to 30.0°C. Subsequently, TFE was added until the internal pressure of the autoclave reached 0.897 MPa, and then 0.63 kg of 8 mass% di( ⁇ -hydroperfluorohexanoyl) peroxide solution (hereinafter abbreviated as DHP) was added to the autoclave.
  • DHP di( ⁇ -hydroperfluorohexanoyl) peroxide solution
  • the internal pressure of the autoclave at the start of polymerization was set to 0.897 MPa, and the set pressure was maintained by continuously adding TFE. After 1.5 hours from the initiation of polymerization, 0.158 kg of methanol was added. After 2 hours and 4 hours from the start of polymerization, 0.63 kg of DHP was added and the internal pressure was lowered by 0.001 MPa. After 6 hours, 0.48 kg was added and the internal pressure was lowered by 0.001 MPa. Thereafter, 0.13 kg of DHP was added every 2 hours until the reaction was completed, and the internal pressure was lowered by 0.001 MPa each time.
  • the resulting powder was melt extruded at 370°C with a screw extruder (trade name: PCM46, manufactured by Ikegai Co., Ltd.) to obtain copolymer pellets.
  • a screw extruder (trade name: PCM46, manufactured by Ikegai Co., Ltd.) to obtain copolymer pellets.
  • the HFP content and PPVE content were measured by the methods described above. Table 3 shows the results.
  • the obtained pellets were degassed in an electric furnace at 200°C for 72 hours, then placed in a vacuum vibration reactor VVD-30 (manufactured by Okawara Seisakusho) and heated to 110°C. After evacuation, F2 gas diluted to 20 % by volume with N2 gas was introduced to atmospheric pressure. After 0.5 hours from the introduction of the F2 gas, the chamber was once evacuated, and the F2 gas was introduced again. Further, after 0.5 hours, the chamber was evacuated again and F 2 gas was introduced again. Thereafter, the F 2 gas introduction and evacuation operations were continued once an hour, and the reaction was carried out at a temperature of 110° C. for 8 hours. After completion of the reaction, the interior of the reactor was sufficiently replaced with N 2 gas to complete the fluorination reaction and obtain pellets. Using the obtained pellets, various physical properties were measured by the methods described above. Table 3 shows the results.
  • Comparative example 3 The amount of methanol charged before the start of polymerization was changed to 0.285 kg, the amount of methanol charged separately after the start of polymerization was changed to 0.285 kg, and the amount of PPVE charged before the start of polymerization was changed to 1.5 kg. 05 kg, the amount of PPVE to be separately added after the start of polymerization was changed to 0.29 kg, and the set pressure inside the autoclave before and after the start of polymerization was changed to 0.933 MPa. to obtain copolymer pellets. Using the obtained pellets, various physical properties were measured by the methods described above. Table 3 shows the results.
  • Comparative example 4 The amount of methanol charged before the initiation of polymerization was changed to 0.020 kg, the amount of methanol charged separately after the initiation of polymerization was changed to 0.020 kg, and the amount of PPVE charged before initiation of polymerization was changed to 0.020 kg.
  • the obtained pellets were degassed in an electric furnace at 200°C for 8 hours, then placed in a vacuum vibration reactor VVD-30 (manufactured by Okawara Seisakusho Co., Ltd.) and heated to 200°C. After evacuation, F2 gas diluted to 20 % by volume with N2 gas was introduced to atmospheric pressure. After 0.5 hours from the introduction of the F2 gas, the chamber was once evacuated, and the F2 gas was introduced again. Further, after 0.5 hours, the chamber was evacuated again and F 2 gas was introduced again. Thereafter, the F 2 gas introduction and evacuation operations were continued once an hour, and the reaction was carried out at a temperature of 200° C. for 8 hours. After completion of the reaction, the interior of the reactor was sufficiently replaced with N 2 gas to complete the fluorination reaction and obtain pellets. Using the obtained pellets, various physical properties were measured by the methods described above. Table 3 shows the results.
  • Comparative example 5 The amount of methanol charged before the start of polymerization was changed to 0.305 kg, the amount of methanol charged separately after the start of polymerization was changed to 0.305 kg, and the amount of PPVE charged before the start of polymerization was changed to 0.305 kg.
  • Example 1 The amount of methanol charged before the initiation of polymerization was changed to 0.275 kg, the amount of methanol charged separately after the initiation of polymerization was changed to 0.275 kg, and the amount of PPVE charged before initiation of polymerization was changed to 0.275 kg.
  • the obtained pellets were fluorinated in the same manner as in Comparative Example 4. Using the obtained pellets, various physical properties were measured by the methods described above. Table 3 shows the results.
  • Example 2 The amount of methanol charged before the initiation of polymerization was changed to 0.273 kg, the amount of methanol charged separately after the initiation of polymerization was changed to 0.273 kg, and the amount of PPVE charged before initiation of polymerization was changed to 0.273 kg.
  • Example 3 The amount of methanol charged before the initiation of polymerization was changed to 0.229 kg, the amount of methanol charged separately after the initiation of polymerization was changed to 0.229 kg, and the amount of PPVE charged before initiation of polymerization was changed to 0.229 kg.
  • the obtained pellets were fluorinated in the same manner as in Comparative Example 4. Using the obtained pellets, various physical properties were measured by the methods described above. Table 3 shows the results.
  • Example 4 The amount of methanol charged before the start of polymerization was changed to 0.199 kg, the amount of methanol charged separately after the initiation of polymerization was changed to 0.199 kg, and the amount of PPVE charged before the start of polymerization was changed to 0.199 kg.
  • the obtained pellets were fluorinated in the same manner as in Comparative Example 2. Using the obtained pellets, various physical properties were measured by the methods described above. Table 3 shows the results.
  • the description “ ⁇ 9” in Table 3 means that the number of —CF 2 H groups (total number) is less than nine.
  • the description “ ⁇ 6” in Table 3 means that the number of target functional groups (total number) is less than six.
  • the description of "ND” in Table 3 means that no quantifiable peak could be confirmed for the target functional group.
  • the weight of the test piece was measured after 1000 rotations, and the weight of the test piece was measured after an additional 10000 rotations of the same test piece.
  • the resulting three notch test pieces were attached to a stress crack test jig according to ASTM D1693, heated in an electric furnace at 200 ° C. for 24 hours, and then the notches and their surroundings were visually observed to count the number of cracks. rice field.
  • a crack-free sheet has excellent solvent crack resistance.
  • The number of cracks is 0
  • The number of cracks is 1 or more
  • Air permeability coefficient A sheet-like specimen having a thickness of about 0.1 mm was produced using a pellet and heat press molding machine. Using the obtained test piece, according to the method described in JIS K7126-1: 2006, the air permeability is measured using a differential pressure type gas permeation meter (L100-5000 type gas permeation meter, manufactured by Systech Illinois). did Air permeability values were obtained at a permeation area of 50.24 cm 2 , test temperature of 70° C., and test humidity of 0% RH. Using the obtained air permeability and thickness of the test piece, the air permeability coefficient was calculated from the following equation.
  • Air permeability coefficient (cm 3 ⁇ mm / (m 2 ⁇ 24h ⁇ atm)) GTR x d
  • GTR air permeability (cm 3 /(m 2 ⁇ 24 h ⁇ atm))
  • d test piece thickness (mm)
  • Tensile creep strain was measured using TMA-7100 manufactured by Hitachi High-Tech Science. Using a pellet and heat press molding machine, a sheet having a thickness of about 0.1 mm was produced, and a sample having a width of 2 mm and a length of 22 mm was produced from the sheet. The sample was attached to the measurement jig with a distance between the jigs of 10 mm. A load is applied to the sample so that the cross-sectional load is 4.49 N / mm 2 , left at 110 ° C., and the length of the sample from 90 minutes after the start of the test to 900 minutes after the start of the test.
  • the displacement (mm) was measured, and the ratio of the length displacement (mm) to the initial sample length (10 mm) (tensile creep strain (%)) was calculated.
  • a sheet with a small tensile creep strain (%) measured under conditions of 110°C for 900 minutes does not stretch easily even when a tensile load is applied for a long time in a high-temperature environment, and has excellent high-temperature tensile creep resistance (110°C).
  • a sheet with high tensile strength after 30,000 cycles maintains high tensile strength even after 30,000 loads are applied, and has excellent durability (110°C) against repeated loads.
  • a copper conductor having a conductor diameter of 0.50 mm was extruded and coated with a fluorine-containing copolymer with the following coating thickness using a 30 mm diameter wire coating molding machine (manufactured by Tanabe Plastic Machine Co., Ltd.) to obtain a coated wire.
  • the wire covering extrusion molding conditions are as follows.
  • spark A spark tester (DENSOK HIGH FREQ SPARK TESTER) was installed online in the wire coating line, and the presence or absence of defects in the wire coating was evaluated at a voltage of 1500V. After continuous molding for 1 hour, the number of sparks was counted.
  • the extrusion molding of the fluorine-containing copolymer was continued until the fluorine-containing copolymer could be stably extruded from the molding machine. Subsequently, by extruding the fluorine-containing copolymer, a film having a length of 11 m or more and a thickness of 0.10 mm (width of 70 mm) was produced. A portion of 10 to 11 m from the edge of the obtained film was cut to prepare a test piece (length 1 m, width 70 mm) for measuring variation in thickness. The thickness was measured at a total of three points, namely, the central point in the width direction of the edge of the produced film and two points separated from the central point in the width direction by 25 mm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Insulated Conductors (AREA)

Abstract

テトラフルオロエチレン単位、ヘキサフルオロプロピレン単位およびパーフルオロ(プロピルビニルエーテル)単位を含有する含フッ素共重合体であって、ヘキサフルオロプロピレン単位の含有量が、全単量体単位に対して、9.4~10.3質量%であり、パーフルオロ(プロピルビニルエーテル)単位の含有量が、全単量体単位に対して、1.6~2.9質量%であり、372℃におけるメルトフローレートが、9.0~17.0g/10分である含フッ素共重合体を提供する。

Description

含フッ素共重合体
 本開示は、含フッ素共重合体に関する。
 特許文献1には、(a)テトラフルオロエチレン、(b)ターポリマーの重量に基づいて約4~約12重量%のヘキサフルオロプロピレン、および(c)ターポリマーの重量に基づいて約0.5~約3重量%のパーフルオロ(エチルビニルエーテル)またはパーフルオロ(n-プロピルビニルエーテル)、を共重合した形で含有するターポリマーが記載されている。
 特許文献2には、(a)テトラフルオロエチレン95.8~80重量%、(b)ヘキサフルオロプロペン4~14重量%、および(c)一般式:CF=CF-(OCFCFCF-O-CFCFCF(式中、nは1~4の数を表す。)で示されるパーフルオロビニルエーテル0.2~6重量%の各共重合体単位から成ることを特徴とする含フッ素共重合体が記載されている。
特開昭52-109588号公報 特開昭58-69213号公報
 本開示では、射出成形法により高い射出速度で成形することにより、美麗な射出成形体を得ることができ、押出成形法により成形することによって、径の小さい心線上に、高い速度で、薄い被覆層を形成することができ、25℃耐摩耗性、耐ソルベントクラック性、空気低透過性、110℃耐引張クリープ特性、繰り返し荷重に対する耐久性に優れる成形体を得ることができる含フッ素共重合体を提供することを目的とする。
 本開示によれば、テトラフルオロエチレン単位、ヘキサフルオロプロピレン単位およびパーフルオロ(プロピルビニルエーテル)単位を含有する含フッ素共重合体であって、ヘキサフルオロプロピレン単位の含有量が、全単量体単位に対して、9.4~10.3質量%であり、パーフルオロ(プロピルビニルエーテル)単位の含有量が、全単量体単位に対して、1.6~2.9質量%であり、372℃におけるメルトフローレートが、9.0~17.0g/10分である含フッ素共重合体が提供される。
 ヘキサフルオロプロピレン単位の含有量が、全単量体単位に対して、9.6~10.2質量%であることが好ましい。
 パーフルオロ(プロピルビニルエーテル)単位の含有量が、全単量体単位に対して、1.8~2.4質量%であることが好ましい。
 372℃におけるメルトフローレートが、10.0~16.0g/10分であることが好ましい。
 カルボニル基含有末端基、-CF=CFおよび-CHOHの合計数が、主鎖炭素数10個当たり、100個以下であることが好ましい。
 -CFHの数が、主鎖炭素数10個当たり、100個以下であることが好ましい。
 また、本開示によれば、上記の含フッ素共重合体を含有する射出成形体が提供される。
 また、本開示によれば、上記の含フッ素共重合体を含有する被覆層を備える被覆電線が提供される。
 また、本開示によれば、上記の含フッ素共重合体を含有する成形体であって、前記成形体が、継手、チューブ、フィルムまたは電線被覆である成形体が提供される。
 本開示によれば、射出成形法により高い射出速度で成形することにより、美麗な射出成形体を得ることができ、押出成形法により成形することによって、径の小さい心線上に、高い速度で、薄い被覆層を形成することができ、25℃耐摩耗性、耐ソルベントクラック性、空気低透過性、110℃耐引張クリープ特性、繰り返し荷重に対する耐久性に優れる成形体を得ることができる含フッ素共重合体を提供することができる。
 以下、本開示の具体的な実施形態について詳細に説明するが、本開示は、以下の実施形態に限定されるものではない。
 本開示の含フッ素共重合体は、テトラフルオロエチレン(TFE)単位、ヘキサフルオロプロピレン(HFP)単位およびパーフルオロ(プロピルビニルエーテル)(PPVE)単位を含有する。
 フッ素樹脂としては、ポリテトラフルオロエチレン(PTFE)などの非溶融加工性のフッ素樹脂と、溶融加工性のフッ素樹脂とが知られている。PTFEは、優れた特性を有しているが、溶融加工が極めて困難であるという欠点がある。一方、溶融加工性のフッ素樹脂としては、TFE/HFP共重合体(FEP)、TFE/PPVE共重合体(PFA)などが知られているが、PTFEよりも耐熱性などに劣る欠点がある。そこで、特許文献1では、これらの欠点を改良したフルオロカーボンポリマーとして、上述したターポリマーが提案されている。さらに、特許文献2では、側鎖がある程度長いパーフルオロビニルエーテルを用いることにより、含フッ素共重合体の耐ストレスクラック性および成形性を向上させることが提案されている。
 しかしながら、従来のターポリマーでは、25℃耐摩耗性、耐ソルベントクラック性、110℃耐引張クリープ特性および繰り返し荷重に対する耐久性を高いレベルで有しながら、優れた空気低透過性を有する成形体を得ることが困難である問題がある。特に、嫌気性の薬品を流通する配管の継手やチューブに用いた場合でも、継手やチューブからの空気の侵入を十分に抑制し、嫌気性の薬品の品質を保つことができる含フッ素共重合体が求められる。
 TFE単位、HFP単位およびPPVE単位を含有する含フッ素共重合体のHFP単位およびPPVE単位の含有量、ならびに、メルトフローレートを極めて限定された範囲内に調整することによって、含フッ素共重合体から得られる成形体の25℃耐摩耗性、耐ソルベントクラック性、空気低透過性、110℃耐引張クリープ特性、繰り返し荷重に対する耐久性が著しく向上することが見出された。
 さらに、本開示の含フッ素共重合体を、射出成形法により高い射出速度で成形することにより、美麗な射出成形体を得ることができる。また、本開示の含フッ素共重合体を押出成形法により成形することによって、径の小さい心線上に、高い速度で、薄い被覆層を形成することができ、厚みの均一な薄いフィルムに高い成形速度で成形することができる。このように、本開示の含フッ素共重合体は、継手、チューブの材料として利用できるだけではなく、フィルムまたは電線被覆などの幅広い用途に利用することができる。
 本開示の含フッ素共重合体は溶融加工性のフッ素樹脂である。溶融加工性とは、押出機および射出成形機などの従来の加工機器を用いて、ポリマーを溶融して加工することが可能であることを意味する。
 含フッ素共重合体のHFP単位の含有量は、全単量体単位に対して、9.4~10.3質量%であり、好ましくは9.5質量%以上であり、より好ましくは9.6質量%以上であり、好ましくは10.2質量%以下である。HFP単位の含有量が少なすぎると、25℃耐摩耗性に優れる成形体を得ることができない。HFP単位の含有量が多すぎると、110℃耐引張クリープ特性、繰り返し荷重に対する耐久性に優れる成形体を得ることができない。
 含フッ素共重合体のPPVE単位の含有量は、全単量体単位に対して、1.6~2.9質量%であり、好ましくは1.7質量%以上であり、より好ましくは1.8質量%以上であり、さらに好ましくは1.9質量%以上であり、特に好ましくは2.0質量%以上であり、好ましくは2.8質量%以下であり、より好ましくは2.7質量%以下であり、さらに好ましくは2.6質量%以下であり、特に好ましくは2.5質量%以下であり、最も好ましくは2.4質量%以下である。PPVE単位の含有量が上記範囲内にあることにより、25℃耐摩耗性、耐ソルベントクラック性、空気低透過性、110℃耐引張クリープ特性、繰り返し荷重に対する耐久性に優れる成形体を得ることができる。PPVE単位の含有量が少なすぎると、25℃耐摩耗性、耐ソルベントクラック性に優れる成形体を得ることができない。
 含フッ素共重合体のTFE単位の含有量は、全単量体単位に対して、好ましくは86.8質量%以上であり、より好ましくは86.9質量%以上であり、さらに好ましくは87.1質量%以上であり、尚さらに好ましくは87.2質量%以上であり、特に好ましくは87.3質量%以上であり、最も好ましくは87.4質量%以上であり、好ましくは89.0質量%以下であり、より好ましくは88.8質量%以下であり、さらに好ましくは88.6質量%以下である。また、HFP単位、PPVE単位、TFE単位およびその他の単量体単位の含有量の合計が100質量%となるように、TFE単位の含有量を選択してもよい。
 本開示の含フッ素共重合体は、上記の3つの単量体単位を含有するものであれば、上記の3つの単量体単位のみを含有する共重合体であっても、上記の3つの単量体単位およびその他の単量体単位を含有する共重合体であってもよい。
 その他の単量体としては、TFE、HFPおよびPPVEと共重合可能な単量体であれば特に限定されず、フルオロモノマーであっても、フッ素非含有モノマーであってもよい。
 フルオロモノマーとしては、クロロトリフルオロエチレン、フッ化ビニル、フッ化ビニリデン、トリフルオロエチレン、ヘキサフルオロイソブチレン、CH=CZ(CF(式中、ZはHまたはF、ZはH、FまたはCl、nは1~10の整数である)で表される単量体、CF=CF-ORf(式中、Rfは炭素数1~8のパーフルオロアルキル基)で表されるパーフルオロ(アルキルビニルエーテル)〔PAVE〕(ただし、PPVEを除く)、CF=CF-O-CH-Rf(式中、Rfは、炭素数1~5のパーフルオロアルキル基)で表されるアルキルパーフルオロビニルエーテル誘導体、パーフルオロ-2,2-ジメチル-1,3-ジオキソール〔PDD〕、および、パーフルオロ-2-メチレン-4-メチル-1,3-ジオキソラン〔PMD〕からなる群より選択される少なくとも1種であることが好ましい。
 CH=CZ(CFで表される単量体としては、CH=CFCF、CH=CH-C、CH=CH-C13、CH=CF-CHなどが挙げられる。
 CF=CF-ORfで表されるパーフルオロ(アルキルビニルエーテル)としては、CF=CF-OCF、CF=CF-OCFCFなどが挙げられる。
 フッ素非含有モノマーとしては、TFE、HFPおよびPPVEと共重合可能な炭化水素系モノマーなどが挙げられる。炭化水素系モノマーとしては、たとえば、エチレン、プロピレン、ブチレン、イソブチレン等のアルケン類;エチルビニルエーテル、プロピルビニルエーテル、ブチルビニルエーテル、イソブチルビニルエーテル、シクロヘキシルビニルエーテル等のアルキルビニルエーテル類;酢酸ビニル、プロピオン酸ビニル、n-酪酸ビニル、イソ酪酸ビニル、吉草酸ビニル、ピバリン酸ビニル、カプロン酸ビニル、カプリル酸ビニル、カプリン酸ビニル、バーサチック酸ビニル、ラウリン酸ビニル、ミリスチン酸ビニル、パルミチン酸ビニル、ステアリン酸ビニル、安息香酸ビニル、パラ-t-ブチル安息香酸ビニル、シクロヘキサンカルボン酸ビニル、モノクロル酢酸ビニル、アジピン酸ビニル、アクリル酸ビニル、メタクリル酸ビニル、クロトン酸ビニル、ソルビン酸ビニル、桂皮酸ビニル、ウンデシレン酸ビニル、ヒドロキシ酢酸ビニル、ヒドロキシプロピオン酸ビニル、ヒドロキシ酪酸ビニル、ヒドロキシ吉草酸ビニル、ヒドロキシイソ酪酸ビニル、ヒドロキシシクロヘキサンカルボン酸ビニル等のビニルエステル類;エチルアリルエーテル、プロピルアリルエーテル、ブチルアリルエーテル、イソブチルアリルエーテル、シクロヘキシルアリルエーテル等のアルキルアリルエーテル類;エチルアリルエステル、プロピルアリルエステル、ブチルアリルエステル、イソブチルアリルエステル、シクロヘキシルアリルエステル等のアルキルアリルエステル類等が挙げられる。
 フッ素非含有モノマーとしては、また、TFE、HFPおよびPPVEと共重合可能な官能基含有炭化水素系モノマーであってもよい。官能基含有炭化水素系モノマーとしては、例えば、ヒドロキシエチルビニルエーテル、ヒドロキシプロピルビニルエーテル、ヒドロキシブチルビニルエーテル、ヒドロキシイソブチルビニルエーテル、ヒドロキシシクロヘキシルビニルエーテル等のヒドロキシアルキルビニルエーテル類;グリシジルビニルエーテル、グリシジルアリルエーテル等のグリシジル基を有するフッ素非含有モノマー;アミノアルキルビニルエーテル、アミノアルキルアリルエーテル等のアミノ基を有するフッ素非含有モノマー;(メタ)アクリルアミド、メチロールアクリルアミド等のアミド基を有するフッ素非含有モノマー;臭素含有オレフィン、ヨウ素含有オレフィン、臭素含有ビニルエーテル、ヨウ素含有ビニルエーテル;ニトリル基を有するフッ素非含有モノマー等が挙げられる。
 本開示の含フッ素共重合体におけるその他の単量体単位の含有量としては、全単量体単位に対して、好ましくは0~2.2質量%であり、より好ましくは1.0質量%以下であり、さらに好ましくは0.5質量%以下であり、特に好ましくは0.1質量%以下である。
 含フッ素共重合体のメルトフローレート(MFR)は、9.0~17.0g/10分であり、好ましくは9.1g/10分以上であり、より好ましくは9.6g/10分以上であり、さらに好ましくは10.0g/10分以上であり、尚さらに好ましくは11.0g/10分以上であり、殊さらに好ましくは12.0g/10分以上であり、特に好ましくは13.0g/10分以上であり、最も好ましくは14.0g/10分以上であり、好ましくは16.9g/10分以下であり、より好ましくは16.5g/10分以下であり、さらに好ましくは16.0g/10分以下である。MFRが低すぎると、空気低透過性に優れる成形体を得ることができない。また、MFRが低すぎると、射出成形法により高い射出速度で成形することにより、美麗な射出成形体を得ることが困難となり、押出成形法により成形することによって、径の小さい心線上に、高い速度で、薄い被覆層を形成することが困難となる。MFRが高すぎると、110℃耐引張クリープ特性に優れる成形体を得ることができない。
 本開示において、メルトフローレートは、ASTM D-1238に準拠して、メルトインデクサーG-01(東洋精機製作所製)を用い、372℃、5kg荷重下で、内径2mm、長さ8mmのダイから10分間あたりに流出するポリマーの質量(g/10分)として得られる値である。
 MFRは、単量体を重合する際に用いる重合開始剤の種類および量、連鎖移動剤の種類および量などを調整することによって、調整することができる。
 本開示の含フッ素共重合体は、-COF、-COOHまたは-CHOHを有していてもよいし、有していなくてもよい。本開示の含フッ素共重合体は、-COF、-COOHおよび-CHOHの合計数が、主鎖炭素数10個当たり、100個以下であることが好ましい。-COF、-COOHおよび-CHOHの合計数は、好ましくなる順に、90個以下、70個以下、50個以下、40個以下、30個以下、20個以下、15個以下、6個未満である。-COF、-COOHおよび-CHOHの合計数を上記範囲内とすることにより、過酸化水素水などの薬液にフッ素イオンを溶出させにくい成形体を得ることができる。-COF、-COOHおよび-CHOHの合計数は、たとえば、重合開始剤または連鎖移動剤の種類の適切な選択により、あるいは、後述する含フッ素共重合体の湿潤熱処理またはフッ素化処理により、調整することができる。
 本開示の含フッ素共重合体は、カルボニル基含有末端基、-CF=CFまたは-CHOHを有していてもよいし、有してなくてもよい。本開示の含フッ素共重合体は、カルボニル基含有末端基、-CF=CFおよび-CHOHの合計数が、主鎖炭素数10個当たり、100個以下であることが好ましい。カルボニル基含有末端基、-CF=CFおよび-CHOHの合計数は、好ましくなる順に、90個以下、70個以下、50個以下、40個以下、30個以下、20個以下、15個以下、12個未満である。カルボニル基含有末端基、-CF=CFおよび-CHOHの合計数を上記範囲内とすることにより、過酸化水素水などの薬液にフッ素イオンを溶出させにくい成形体を得ることができる。カルボニル基含有末端基、-CF=CFおよび-CHOHの合計数は、たとえば、重合開始剤または連鎖移動剤の種類の適切な選択により、あるいは、後述する含フッ素共重合体の湿潤熱処理またはフッ素化処理により、調整することができる。
 カルボニル基含有末端基は、たとえば、-COF、-COOH、-COOR(Rはアルキル基)、-CONH、および、-O(C=O)O-R(Rはアルキル基)である。-COORおよび-O(C=O)O-Rが有するアルキル基(R)の種類は、含フッ素共重合体を製造する際に用いた重合開始剤、連鎖移動剤などにより決まり、たとえば、-CHなどの炭素数1~6のアルキル基である。
 本開示の含フッ素共重合体は、-O(C=O)O-R(Rはアルキル基)を有していてもよいし、有してなくてもよい。本開示の含フッ素共重合体は、-O(C=O)O-R(Rはアルキル基)の合計数が、主鎖炭素数10個当たり、100個以下であることが好ましい。-O(C=O)O-R(Rはアルキル基)の合計数は、好ましくなる順に、90個以下、70個以下、50個以下、40個以下、30個以下、20個以下、15個以下であり、定量限界未満(ND)であってよい。-O(C=O)O-R(Rはアルキル基)の合計数は、たとえば、重合開始剤または連鎖移動剤の種類の適切な選択により、あるいは、後述する含フッ素共重合体の湿潤熱処理またはフッ素化処理により、調整することができる。
 本開示の含フッ素共重合体は、-CFHを有していてもよいし、有してなくてもよい。含フッ素共重合体の-CFHの数は、主鎖炭素数10個当たり、100個以下であることが好ましい。-CFHの数は、好ましくなる順に、90個以下、70個以下、50個以下、40個以下、30個以下、20個以下、15個以下、9個未満である。-CFHの数を上記範囲内とすることにより、過酸化水素水などの薬液にフッ素イオンを溶出させにくい成形体を得ることができる。-CFHの数は、たとえば、重合開始剤または連鎖移動剤の種類の適切な選択により、あるいは、後述する含フッ素共重合体の湿潤熱処理またはフッ素化処理により、調整することができる。
 上記官能基の種類の同定および官能基数の測定には、赤外分光分析法を用いることができる。
 官能基数については、具体的には、以下の方法で測定する。まず、上記含フッ素共重合体をコールドプレスにより成形して、厚さ0.25~0.30mmのフィルムを作製する。このフィルムをフーリエ変換赤外分光分析により分析して、上記含フッ素共重合体の赤外吸収スペクトルを得、完全にフッ素化されて官能基が存在しないベーススペクトルとの差スペクトルを得る。この差スペクトルに現れる特定の官能基の吸収ピークから、下記式(A)に従って、上記含フッ素共重合体における炭素原子1×10個あたりの官能基数Nを算出する。
   N=I×K/t  (A)
    I:吸光度
    K:補正係数
    t:フィルムの厚さ(mm)
 参考までに、いくつかの官能基について、吸収周波数、モル吸光係数および補正係数を表1に示す。また、モル吸光係数は低分子モデル化合物のFT-IR測定データから決定したものである。
Figure JPOXMLDOC01-appb-T000001
 -CHCFH、-CHCOF、-CHCOOH、-CHCOOCH、-CHCONHの吸収周波数は、それぞれ表中に示す、-CFH、-COF、-COOH freeと-COOH bonded、-COOCH、-CONHの吸収周波数から数十カイザー(cm-1)低くなる。
 たとえば、-COFの官能基数とは、-CFCOFに起因する吸収周波数1883cm-1の吸収ピークから求めた官能基数と、-CHCOFに起因する吸収周波数1840cm-1の吸収ピークから求めた官能基数との合計である。
 また、-CFH基の数は、核磁気共鳴装置を用い、測定温度を(ポリマーの融点+20)℃として19F-NMR測定を行い、-CFH基のピーク積分値からも求めることができる。
 -CFH基などの官能基は、含フッ素共重合体の主鎖末端または側鎖末端に存在する官能基、および、主鎖中または側鎖中に存在する官能基である。これらの官能基は、たとえば、含フッ素共重合体を製造する際に用いた連鎖移動剤や重合開始剤によって、含フッ素共重合体に導入される。たとえば、連鎖移動剤としてアルコールを使用する、あるいは重合開始剤として-CHOHの構造を有する過酸化物を使用した場合、含フッ素共重合体の主鎖末端に-CHOHが導入される。また、官能基を有する単量体を重合することによって、上記官能基が含フッ素共重合体の側鎖末端に導入される。
 このような官能基を有する含フッ素共重合体に対して、湿潤熱処理、フッ素化処理などの処理をすることによって、上記範囲内の官能基数を有する含フッ素共重合体を得ることができる。本開示の含フッ素共重合体は、湿潤熱処理またはフッ素化処理されたものであることが好ましく、フッ素化処理されたものであることがより好ましい。本開示の含フッ素共重合体は、-CF末端基を有することも好ましい。
 含フッ素共重合体の融点は、好ましくは220~290℃であり、より好ましくは240~280℃である。融点が上記範囲内にあることにより、25℃耐摩耗性、耐ソルベントクラック性、空気低透過性、110℃耐引張クリープ特性、繰り返し荷重に対する耐久性に一層優れる成形体を得ることができる。
 本開示において、融点は、示差走査熱量計〔DSC〕を用いて測定できる。
 含フッ素共重合体の空気透過係数は、好ましくは390cm・mm/(m・24h・atm)以下である。本開示の含フッ素共重合体は、HFP単位およびPPVE単位の含有量ならびにメルトフローレート(MFR)が適切に調整されていることから、優れた空気低透過性を有している。そのため、たとえば、本開示の含フッ素共重合体を用いて得られる継手を、嫌気性の薬液の流通用に好適に用いることができる。
 本開示において、空気透過係数は、試験温度70℃、試験湿度0%RHの条件で、測定できる。空気透過係数の具体的な測定は、実施例に記載の方法により行うことができる。
 本開示の含フッ素共重合体は、過酸化水素水への浸漬試験において検出される溶出フッ素イオン量が、質量基準で、好ましくは4.0ppm以下であり、より好ましくは3.0ppm以下であり、より好ましくは2.8ppm以下である。溶出フッ素イオン量が上記範囲内にあることにより、本開示の含フッ素共重合体を用いて成形体を得て、得られた成形体を、嫌気性の薬液の流通用の継手として用いた場合に、薬液へのフッ素イオンの溶出を抑制することができる。
 本開示において、過酸化水素水への浸漬試験は、含フッ素共重合体を用いて、成形体(15mm×15mm×0.2mm)10枚に相当する重量を有する試験片を作製し、試験片と15gの3質量%過酸化水素水溶液とを入れたポリプロピレン製ボトルを、95℃の恒温槽に入れて、20時間放置することにより、行うことができる。
 本開示の含フッ素共重合体は、塊状重合、溶液重合、懸濁重合、乳化重合などのいずれの重合方法によっても製造することができる。これらの重合方法において、温度、圧力等の各条件、重合開始剤、連鎖移動剤、溶媒やその他の添加剤は、所望の含フッ素共重合体の組成や量に応じて適宜設定することができる。
 重合開始剤としては、油溶性ラジカル重合開始剤または水溶性ラジカル開始剤を使用できる。
 油溶性ラジカル重合開始剤としては、公知の油溶性の過酸化物であってよく、たとえば、
 ジノルマルプロピルパーオキシジカーボネート、ジイソプロピルパーオキシジカーボネート、ジsec-ブチルパーオキシジカーボネートなどのジアルキルパーオキシカーボネート類;
 t-ブチルパーオキシイソブチレート、t-ブチルパーオキシピバレートなどのパーオキシエステル類;
 ジt-ブチルパーオキサイドなどのジアルキルパーオキサイド類;
 ジ[フルオロ(またはフルオロクロロ)アシル]パーオキサイド類;
などが代表的なものとしてあげられる。
 ジ[フルオロ(またはフルオロクロロ)アシル]パーオキサイド類としては、[(RfCOO)-](Rfは、パーフルオロアルキル基、ω-ハイドロパーフルオロアルキル基またはフルオロクロロアルキル基)で表されるジアシルパーオキサイドが挙げられる。
 ジ[フルオロ(またはフルオロクロロ)アシル]パーオキサイド類としては、たとえば、ジ(ω-ハイドロ-ドデカフルオロヘキサノイル)パーオキサイド、ジ(ω-ハイドロ-テトラデカフルオロヘプタノイル)パーオキサイド、ジ(ω-ハイドロ-ヘキサデカフルオロノナノイル)パーオキサイド、ジ(パーフルオロブチリル)パーオキサイド、ジ(パーフルオロパレリル)パーオキサイド、ジ(パーフルオロヘキサノイル)パーオキサイド、ジ(パーフルオロヘプタノイル)パーオキサイド、ジ(パーフルオロオクタノイル)パーオキサイド、ジ(パーフルオロノナノイル)パーオキサイド、ジ(ω-クロロ-ヘキサフルオロブチリル)パーオキサイド、ジ(ω-クロロ-デカフルオロヘキサノイル)パーオキサイド、ジ(ω-クロロ-テトラデカフルオロオクタノイル)パーオキサイド、ω-ハイドロードデカフルオロヘプタノイルーω-ハイドロヘキサデカフルオロノナノイル-パーオキサイド、ω-クロローヘキサフルオロブチリルーω-クロローデカフルオロヘキサノイルーパーオキサイド、ω-ハイドロドデカフルオロヘプタノイルーパーフルオロブチリルーパーオキサイド、ジ(ジクロロペンタフルオロブタノイル)パーオキサイド、ジ(トリクロロオクタフルオロヘキサノイル)パーオキサイド、ジ(テトラクロロウンデカフルオロオクタノイル)パーオキサイド、ジ(ペンタクロロテトラデカフルオロデカノイル)パーオキサイド、ジ(ウンデカクロロトリアコンタフルオロドコサノイル)パーオキサイドなどが挙げられる。
 水溶性ラジカル重合開始剤としては、公知の水溶性過酸化物であってよく、たとえば、過硫酸、過ホウ素酸、過塩素酸、過リン酸、過炭酸などのアンモニウム塩、カリウム塩、ナトリウム塩、t-ブチルパーマレエート、t-ブチルハイドロパーオキサイドなどがあげられる。亜硫酸塩類のような還元剤も併せて含んでもよく、その使用量は過酸化物に対して0.1~20倍であってよい。
 重合開始剤として、油溶性ラジカル重合開始剤を用いると、-COFおよび-COOHの生成を回避でき、含フッ素共重合体の-COFおよび-COOHの合計数を容易に上述した範囲に調整できることから好ましい。また、油溶性ラジカル重合開始剤を用いると、カルボニル基含有末端基および-CHOHを上述した範囲に調整することも容易になる傾向がある。特に、油溶性ラジカル重合開始剤を用いた懸濁重合により、含フッ素共重合体を製造することが好適である。油溶性ラジカル重合開始剤としては、ジアルキルパーオキシカーボネート類およびジ[フルオロ(またはフルオロクロロ)アシル]パーオキサイド類からなる群より選択される少なくとも1種が好ましく、ジノルマルプロピルパーオキシジカーボネート、ジイソプロピルパーオキシジカーボネートおよびジ(ω-ハイドロ-ドデカフルオロヘプタノイル)パーオキサイドからなる群より選択される少なくとも1種がより好ましい。
 連鎖移動剤としては、たとえば、エタン、イソペンタン、n-ヘキサン、シクロヘキサン等の炭化水素類;トルエン、キシレン等の芳香族類;アセトン等のケトン類;酢酸エチル、酢酸ブチル等の酢酸エステル類;メタノール、エタノール、2,2,2-トリフルオロエタノール等のアルコール類;メチルメルカプタン等のメルカプタン類;四塩化炭素、クロロホルム、塩化メチレン、塩化メチル等のハロゲン化炭化水素;3-フルオロベンゾトリフルオライド等が挙げられる。添加量は用いる化合物の連鎖移動定数の大きさにより変わりうるが、通常、溶媒100質量部に対して0.01~20質量部の範囲で使用される。
 たとえば、重合開始剤として、ジアルキルパーオキシカーボネート類、ジ[フルオロ(またはフルオロクロロ)アシル]パーオキサイド類などを用いる場合、得られる含フッ素共重合体の分子量が高くなりすぎ、所望のメルトフローレートに調整することが容易でない場合があるが、連鎖移動剤を用いて、分子量を調整することができる。特に、アルコール類などの連鎖移動剤および油溶性ラジカル重合開始剤を用いた懸濁重合により、含フッ素共重合体を製造することが好適である。
 溶媒としては、水、水とアルコールとの混合溶媒等が挙げられる。また、本開示の含フッ素共重合体の重合に用いるモノマーを、溶媒として用いることもできる。
 懸濁重合では、水に加えて、フッ素系溶媒を使用してもよい。フッ素系溶媒としては、CHCClF、CHCClF、CFCFCClH、CFClCFCFHCl等のハイドロクロロフルオロアルカン類;CFClCFClCFCF、CFCFClCFClCF等のクロロフルオロアルカン類;パーフルオロシクロブタン、CFCFCFCF、CFCFCFCFCF、CFCFCFCFCFCF等のパーフルオロアルカン類等が挙げられ、なかでも、パーフルオロアルカン類が好ましい。フッ素系溶媒の使用量は、懸濁性および経済性の面から、溶媒100質量部に対して、10~100質量部が好ましい。
 重合温度としては特に限定されず、0~100℃であってよい。また、重合開始剤として、ジアルキルパーオキシカーボネート類、ジ[フルオロ(またはフルオロクロロ)アシル]パーオキサイド類などを用いる場合など、重合開始剤の分解速度が速すぎる場合には、重合温度を0~35℃の範囲とするなど、比較的低温の重合温度を採用することが好ましい。
 重合圧力は、用いる溶媒の種類、溶媒の量、蒸気圧、重合温度などの他の重合条件に応じて適宜定められるが、通常、0~9.8MPaGであってよい。重合圧力は、好ましくは0.1~5MPaG、より好ましくは0.5~2MPaG、さらに好ましくは0.5~1.5MPaGである。また、重合圧力を1.5MPaG以上とすると、生産効率を向上させることができる。
 重合における添加剤としては、たとえば、懸濁安定剤が挙げられる。懸濁安定剤としては、従来公知のものであれば特に限定されず、メチルセルロース、ポリビニルアルコール等を使用することができる。懸濁安定剤を用いると、重合反応により生成する懸濁粒子が水性媒体に安定に分散するので、グラスライニングなどの付着防止処理を施していないSUS製の反応槽を使用しても、反応槽に懸濁粒子が付着しにくい。したがって、高圧に耐える反応槽を使用することができるので、高圧下での重合が可能となり、生産効率を向上させることができる。これに対し、懸濁安定剤を用いずに重合を行った場合、付着防止処理を施していないSUS製の反応槽を使用すると、懸濁粒子が付着して生産効率が低下するおそれがある。懸濁安定剤の水性媒体に対する濃度は、条件によって適宜調節することができる。
 重合反応によりフルオロポリマーを含む水性分散液が得られる場合は、水性分散液中に含まれる含フッ素共重合体を凝析させ、洗浄し、乾燥することにより乾燥フルオロポリマーを回収してもよい。また、重合反応により含フッ素共重合体がスラリーとして得られる場合は、反応容器からスラリーを取り出し、洗浄し、乾燥することにより乾燥フルオロポリマーを回収してもよい。乾燥することによりパウダーの形状で含フッ素共重合体を回収できる。
 重合により得られた含フッ素共重合体を、ペレットに成形してもよい。ペレットに成形する成形方法としては、特に限定はなく、従来公知の方法を用いることができる。たとえば、単軸押出機、二軸押出機、タンデム押出機を用いて含フッ素共重合体を溶融押出しし、所定長さに切断してペレット状に成形する方法などが挙げられる。溶融押出しする際の押出温度は、含フッ素共重合体の溶融粘度や製造方法により変える必要があり、好ましくは含フッ素共重合体の融点+20℃~含フッ素共重合体の融点+140℃である。含フッ素共重合体の切断方法は、特に限定は無く、ストランドカット方式、ホットカット方式、アンダーウオーターカット方式、シートカット方式などの従来公知の方法を採用できる。得られたペレットを、加熱することにより、ペレット中の揮発分を除去してもよい(脱気処理)。得られたペレットを、30~200℃の温水、100~200℃の水蒸気、または、40~200℃の温風と接触させて処理してもよい。
 重合により得られた含フッ素共重合体を、空気および水の存在下で、100℃以上の温度に加熱してもよい(湿潤熱処理)。湿潤熱処理の方法としては、たとえば、押出機を用いて、空気および水を供給しながら、重合により得られた含フッ素共重合体を溶融させ、押し出す方法が挙げられる。湿潤熱処理により、含フッ素共重合体の-COF、-COOHなどの熱的に不安定な官能基を、熱的に比較的安定な-CFHに変換することができ、含フッ素共重合体の-COFおよび-COOHの合計数、ならびに、カルボニル基含有末端基および-CHOHの合計数を容易に上述した範囲に調整できる。空気および水に加えて、アルカリ金属塩の存在下で、含フッ素共重合体を加熱することにより、-CFHへの変換反応を促進することができる。しかしながら、含フッ素共重合体の用途によっては、アルカリ金属塩による汚染を回避すべきであることに留意すべきである。
 重合により得られた含フッ素共重合体を、フッ素化処理してもよいし、フッ素化処理しなくてもよい。過酸化水素水などの薬液にフッ素イオンを溶出させにくい成形体を得る観点から、含フッ素共重合体をフッ素化処理することが好ましい。フッ素化処理は、フッ素化処理されていない含フッ素共重合体とフッ素含有化合物とを接触させることにより行うことができる。フッ素化処理により、含フッ素共重合体のカルボニル基含有末端基、-CHOHなどの熱的に不安定な官能基、および、熱的に比較的安定な-CFHなどの官能基を、熱的に極めて安定な-CFに変換することができる。結果として、含フッ素共重合体のカルボニル基含有末端基および-CHOHの合計数を容易に上述した範囲に調整できる。
 フッ素含有化合物としては特に限定されないが、フッ素化処理条件下にてフッ素ラジカルを発生するフッ素ラジカル源が挙げられる。上記フッ素ラジカル源としては、Fガス、CoF、AgF、UF、OF、N、CFOF、フッ化ハロゲン(たとえばIF、ClF)などが挙げられる。
 Fガスなどのフッ素ラジカル源は、100%濃度のものであってもよいが、安全性の面から不活性ガスと混合し、5~50質量%に希釈して使用することが好ましく、15~30質量%に希釈して使用することがより好ましい。上記不活性ガスとしては、窒素ガス、ヘリウムガス、アルゴンガスなどが挙げられるが、経済的な面より窒素ガスが好ましい。
 フッ素化処理の条件は、特に限定されず、溶融させた状態の含フッ素共重合体とフッ素含有化合物とを接触させてもよいが、通常、含フッ素共重合体の融点以下、好ましくは20~220℃、より好ましくは100~200℃の温度下で行うことができる。上記フッ素化処理は、一般に1~30時間、好ましくは5~25時間行う。フッ素化処理は、フッ素化処理されていない含フッ素共重合体をフッ素ガス(Fガス)と接触させるものが好ましい。
 本開示の含フッ素共重合体と、必要に応じてその他の成分とを混合し、組成物を得てもよい。その他の成分としては、充填剤、可塑剤、加工助剤、離型剤、顔料、難燃剤、滑剤、光安定剤、耐候安定剤、導電剤、帯電防止剤、紫外線吸収剤、酸化防止剤、発泡剤、香料、オイル、柔軟化剤、脱フッ化水素剤等を挙げることができる。
 充填剤としては、たとえば、シリカ、カオリン、クレー、有機化クレー、タルク、マイカ、アルミナ、炭酸カルシウム、テレフタル酸カルシウム、酸化チタン、リン酸カルシウム、フッ化カルシウム、フッ化リチウム、架橋ポリスチレン、チタン酸カリウム、カーボン、チッ化ホウ素、カーボンナノチューブ、ガラス繊維等が挙げられる。導電剤としてはカーボンブラック等があげられる。可塑剤としては、ジオクチルフタル酸、ペンタエリスリトール等があげられる。加工助剤としては、カルナバワックス、スルホン化合物、低分子量ポリエチレン、フッ素系助剤等があげられる。脱フッ化水素剤としては有機オニウム、アミジン類等があげられる。
 また、上記その他の成分として、上記した含フッ素共重合体以外のその他のポリマーを用いてもよい。その他のポリマーとしては、上記した含フッ素共重合体以外のフッ素樹脂、フッ素ゴム、非フッ素化ポリマーなどが挙げられる。
 上記組成物の製造方法としては、含フッ素共重合体とその他の成分とを乾式で混合する方法や、含フッ素共重合体とその他の成分とを予め混合機で混合し、次いで、ニーダー、溶融押出し機等で溶融混練する方法等を挙げることができる。
 本開示の含フッ素共重合体または上記の組成物は、加工助剤、成形材料等として使用できるが、成形材料として使用することが好適である。また、本開示の含フッ素共重合体の水性分散液、溶液、懸濁液、および共重合体/溶媒系も利用可能であり、これらは塗料として塗布したり、包封、含浸、フィルムの流延に使用したりできる。しかし、本開示の含フッ素共重合体は上述した特性を有するものであるので、上記成形材料として使用することが好ましい。
 本開示の含フッ素共重合体または上記の組成物を成形して、成形体を得てもよい。
 上記含フッ素共重合体または上記組成物を成形する方法は特に限定されず、射出成形法、押出成形法、圧縮成形法、ブロー成形法、トランスファー成形法、ロト成形法、ロトライニング成形法等が挙げられる。成形方法としては、なかでも、押出成形法、圧縮成形法、射出成形法またはトランスファー成形法が好ましく、高い生産性で成形体を生産できることから、射出成形法、押出成形法またはトランスファー成形法がより好ましく、射出成形法がさらに好ましい。すなわち、成形体としては、押出成形体、圧縮成形体、射出成形体またはトランスファー成形体であることが好ましく、高い生産性で生産できることから、射出成形体、押出成形体またはトランスファー成形体であることがより好ましく、射出成形体であることがさらに好ましい。本開示の含フッ素共重合体を射出成形法により成形することにより、美麗な成形体を得ることができる。
 本開示の含フッ素共重合体を含有する成形体としては、たとえば、ナット、ボルト、継手、フィルム、ボトル、ガスケット、電線被覆、チューブ、ホース、パイプ、バルブ、シート、シール、パッキン、タンク、ローラー、容器、コック、コネクタ、フィルターハウジング、フィルターケージ、流量計、ポンプ、ウェハーキャリア、ウェハーボックス等であってもよい。
 本開示の含フッ素共重合体、上記の組成物、または上記の成形体は、例えば、次の用途に使用できる。
食品包装用フィルム、食品製造工程で使用する流体移送ラインのライニング材、パッキン、シール材、シート等の食品製造装置用流体移送部材;
薬品用の薬栓、包装フィルム、薬品製造工程で使用される流体移送ラインのライニング材、パッキン、シール材、シート等の薬液移送部材;
化学プラントや半導体工場の薬液タンクや配管の内面ライニング部材;
自動車の燃料系統並びに周辺装置に用いられるO(角)リング・チューブ・パッキン、バルブ芯材、ホース、シール材等、自動車のAT装置に用いられるホース、シール材等の燃料移送部材;
自動車のエンジン並びに周辺装置に用いられるキャブレターのフランジガスケット、シャフトシール、バルブステムシール、シール材、ホース等、自動車のブレーキホース、エアコンホース、ラジエーターホース、電線被覆材等のその他の自動車部材;
半導体製造装置のO(角)リング、チューブ、パッキン、バルブ芯材、ホース、シール材、ロール、ガスケット、ダイヤフラム、継手等の半導体装置用薬液移送部材;
塗装設備用の塗装ロール、ホース、チューブ、インク用容器等の塗装・インク用部材;
飲食物用のチューブ又は飲食物用ホース等のチューブ、ホース、ベルト、パッキン、継手等の飲食物移送部材、食品包装材、ガラス調理機器;
廃液輸送用のチューブ、ホース等の廃液輸送用部材;
高温液体輸送用のチューブ、ホース等の高温液体輸送用部材;
スチーム配管用のチューブ、ホース等のスチーム配管用部材;
船舶のデッキ等の配管に巻き付けるテープ等の配管用防食テープ;
電線被覆材、光ファイバー被覆材、太陽電池の光起電素子の光入射側表面に設ける透明な表面被覆材および裏面剤等の各種被覆材;
ダイヤフラムポンプのダイヤフラムや各種パッキン類等の摺動部材;
農業用フィルム、各種屋根材・側壁等の耐侯性カバー;
建築分野で使用される内装材、不燃性防火安全ガラス等のガラス類の被覆材;
家電分野等で使用されるラミネート鋼板等のライニング材;
 上記自動車の燃料系統に用いられる燃料移送部材としては、更に、燃料ホース、フィラーホース、エバポホース等が挙げられる。上記燃料移送部材は、耐サワーガソリン用、耐アルコール燃料用、耐メチルターシャルブチルエーテル・耐アミン等ガソリン添加剤入燃料用の燃料移送部材として使用することもできる。
 上記薬品用の薬栓・包装フィルムは、酸等に対し優れた耐薬品性を有する。また、上記薬液移送部材として、化学プラント配管に巻き付ける防食テープも挙げることができる。
 上記成形体としては、また、自動車のラジエータタンク、薬液タンク、ベロース、スペーサ、ローラー、ガソリンタンク、廃液輸送用容器、高温液体輸送用容器、漁業・養魚タンク等が挙げられる。
 上記成形体としては、更に、自動車のバンパー、ドアトリム、計器板、食品加工装置、調理機器、撥水撥油性ガラス、照明関連機器、OA機器の表示盤・ハウジング、電照式看板、ディスプレイ、液晶ディスプレイ、携帯電話、プリント基盤、電気電子部品、雑貨、ごみ箱、浴槽、ユニットバス、換気扇、照明枠等に用いられる部材も挙げられる。
 本開示の含フッ素共重合体を含有する成形体は、25℃耐摩耗性、耐ソルベントクラック性、空気低透過性、110℃耐引張クリープ特性、繰り返し荷重に対する耐久性に優れていることから、継手、チューブ、フィルムまたは電線被覆などに好適に利用することができる。
 本開示の含フッ素共重合体を含有する成形体は、ガスケット、パッキンなどの被圧縮部材として好適に利用することができる。本開示の被圧縮部材は、ガスケットまたはパッキンであってよい。
 本開示の被圧縮部材の大きさや形状は用途に応じて適宜設定すればよく、特に限定されない。本開示の被圧縮部材の形状は、たとえば、環状であってよい。また、本開示の被圧縮部材は、平面視で円形、長円形、角を丸めた四角形などの形状を有し、かつその中央部に貫通孔を有するものであってよい。
 本開示の被圧縮部材は、非水電解液電池を構成するための部材として用いることが好ましい。本開示の被圧縮部材は、非水電解液電池中の非水電解液と接する状態で用いられる部材として、特に好適である。すなわち、本開示の被圧縮部材は、非水電解液電池中の非水電解液との接液面を有するものであってもよい。
 非水電解液電池としては、非水電解液を備える電池であれば特に限定されず、たとえば、リチウムイオン二次電池、リチウムイオンキャパシタなどが挙げられる。また、非水電解液電池を構成する部材としては、封止部材、絶縁部材などが挙げられる。
 上記非水電解液は、特に限定されるものではないが、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、γ-ブチルラクトン、1,2-ジメトキシエタン、1,2-ジエトキシエタン、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートなどの公知の溶媒の1種もしくは2種以上が使用できる。非水電解液電池は、電解質をさらに備えてもよい。上記電解質は、特に限定されるものではないが、LiClO、LiAsF、LiPF、LiBF、LiCl、LiBr、CHSOLi、CFSOLi、炭酸セシウムなどを用いることができる。
 本開示の被圧縮部材は、たとえば、封止ガスケット、封止パッキンなどの封止部材、絶縁ガスケット、絶縁パッキンなどの絶縁部材として、好適に利用できる。封止部材は、液体もしくは気体の漏出または外部からの液体もしくは気体の侵入を防止するために用いられる部材である。絶縁部材は、電気を絶縁するために用いられる部材である。本開示の被圧縮部材は、封止および絶縁の両方の目的のために用いられる部材であってもよい。
 本開示の被圧縮部材は、非水電解液電池用封止部材または非水電解液電池用絶縁部材として好適に使用できる。また、本開示の被圧縮部材は、上記の含フッ素共重合体を含有することから、優れた絶縁特性を有している。したがって、本開示の被圧縮部材を絶縁部材として使用した場合には、2以上の導電部材にしっかりと密着して、短絡を長期間に渡って防止する。
 本開示の含フッ素共重合体は、電線被覆を形成するための材料として好適に利用することができる。本開示の含フッ素共重合体を含有する被覆層を備える被覆電線は、外径の変動がほとんどないことから、電気特性に優れている。
 被覆電線は、心線と、前記心線の周囲に設けられており、本開示の含フッ素共重合体を含有する被覆層と、を備えるものである。例えば、心線上に本開示の含フッ素共重合体を溶融押出成形した押出成形体を上記被覆層とすることができる。被覆電線は、LANケーブル(Eathernet Cable)、高周波伝送ケーブル、フラットケーブル、耐熱ケーブル等に好適であり、なかでも、LANケーブル(Eathernet Cable)、高周波伝送ケーブルなどの伝送ケーブルに好適である。
 心線の材料としては、例えば、銅、アルミ等の金属導体材料を用いることができる。心線は、直径0.02~3mmであるものが好ましい。心線の直径は、0.04mm以上であることがより好ましく、0.05mm以上が更に好ましく、0.1mm以上が特に好ましい。心線の直径は、2mm以下がより好ましい。
 心線の具体例としては、例えば、AWG(アメリカンワイヤゲージ)-46(直径40マイクロメートルの中実銅製ワイヤー)、AWG-26(直径404マイクロメートルの中実銅製ワイヤー)、AWG-24(直径510マイクロメートルの中実銅製ワイヤー)、AWG-22(直径635マイクロメートルの中実銅製ワイヤー)等を用いてもよい。
 被覆層の厚みは、0.1~3.0mmであるものが好ましい。被覆層の厚みは、2.0mm以下であることも好ましい。
 高周波伝送ケーブルとしては、同軸ケーブルが挙げられる。同軸ケーブルは、一般に、内部導体、絶縁被覆層、外部導体層および保護被覆層が芯部より外周部に順に積層することからなる構造を有する。本開示の含フッ素共重合体を含有する成形体は、含フッ素共重合体を含有する絶縁被覆層として、好適に利用することができる。上記構造における各層の厚さは特に限定されないが、通常、内部導体は直径約0.1~3mmであり、絶縁被覆層は、厚さ約0.3~3mm、外部導体層は、厚さ約0.5~10mm、保護被覆層は、厚さ約0.5~2mmである。
 被覆層は、気泡を含有するものであってもよく、気泡が被覆層中に均一に分布しているものが好ましい。
 気泡の平均泡径は限定されるものではないが、例えば、60μm以下であることが好ましく、45μm以下であることがより好ましく、35μm以下であることが更に好ましく、30μm以下であることが更により好ましく、25μm以下であることが特に好ましく、23μm以下であることが殊更に好ましい。また、平均泡径は、0.1μm以上であることが好ましく、1μm以上であることがより好ましい。平均泡径は、電線断面の電子顕微鏡画像を取り、画像処理により各泡の直径を算出し、平均することにより求めることができる。
 被覆層は、発泡率が20%以上であってもよい。より好ましくは30%以上であり、更に好ましくは33%以上であり、更により好ましくは35%以上である。上限は特に限定されないが、例えば、80%である。発泡率の上限は60%であってもよい。発泡率は、((電線被覆材の比重-被覆層の比重)/電線被覆材の比重)×100として求める値である。発泡率は、例えば後述する押出機中のガスの挿入量の調節等により、あるいは、溶解するガスの種類を選択することにより、用途に応じて適宜調整することができる。
 被覆電線は、上記心線と上記被覆層との間に別の層を備えていてもよく、被覆層の周囲に更に別の層(外層)を備えていてもよい。被覆層が気泡を含有する場合、本開示の電線は、心線と被覆層の間に非発泡層を挿入した2層構造(スキン-フォーム)や、外層に非発泡層を被覆した2層構造(フォーム-スキン)、更にはスキン-フォームの外層に非発泡層を被覆した3層構造(スキン-フォーム-スキン)であってもよい。非発泡層は特に限定されず、TFE/HFP系共重合体、TFE/PAVE共重合体、TFE/エチレン系共重合体、フッ化ビニリデン系重合体、ポリエチレン〔PE〕等のポリオレフィン樹脂、ポリ塩化ビニル〔PVC〕等の樹脂からなる樹脂層であってよい。
 被覆電線は、たとえば、押出機を用いて、含フッ素共重合体を加熱し、含フッ素共重合体が溶融した状態で心線上に押し出し、被覆層を形成することにより製造することができる。
 被覆層の形成に際しては、含フッ素共重合体を加熱し、含フッ素共重合体が溶融した状態で、含フッ素共重合体中にガスを導入することにより、気泡を含有する上記被覆層を形成することもできる。ガスとしては、たとえば、クロロジフルオロメタン、窒素、二酸化炭素等のガス又は上記ガスの混合物を用いることができる。ガスは、加熱した含フッ素共重合体中に加圧気体として導入してもよいし、化学的発泡剤を含フッ素共重合体中に混和させることにより発生させてもよい。ガスは、溶融状態の含フッ素共重合体中に溶解する。
 また、本開示の含フッ素共重合体は、高周波信号伝送用製品の材料として、好適に利用することができる。
 上記高周波信号伝送用製品としては、高周波信号の伝送に用いる製品であれば特に限定されず、(1)高周波回路の絶縁板、接続部品の絶縁物、プリント配線基板等の成形板、(2)高周波用真空管のベース、アンテナカバー等の成形体、(3)同軸ケーブル、LANケーブル等の被覆電線等が挙げられる。上記高周波信号伝送用製品は、衛星通信機器、携帯電話基地局などのマイクロ波、特に3~30GHzのマイクロ波を利用する機器に、好適に使用することができる。
 上記高周波信号伝送用製品において、本開示の含フッ素共重合体は、誘電正接が低い点で、絶縁体として好適に用いることができる。
 上記(1)成形板としては、良好な電気特性が得られる点で、プリント配線基板が好ましい。上記プリント配線基板としては特に限定されないが、例えば、携帯電話、各種コンピューター、通信機器等の電子回路のプリント配線基板が挙げられる。上記(2)成形体としては、誘電損失が低い点で、アンテナカバーが好ましい。
 本開示の含フッ素共重合体は、フィルムに好適に利用することができる。
 本開示のフィルムは、離型フィルムとして有用である。離型フィルムは、本開示の含フッ素共重合体を、溶融押出成形、カレンダー成形、プレス成形、流延成形等により成形して製造することができる。均一な薄膜が得られる観点から、溶融押出成形により離型フィルムを製造することができる。
 本開示のフィルムは、OA機器に用いるロールの表面に適用することができる。また、本開示の含フッ素共重合体を、押出成形、圧縮成形、プレス成形などにより必要な形状に成形してシート状やフィルム状、チューブ状に成形し、OA機器ロールまたはOA機器ベルト等の表面材料に使用することができる。特に溶融押出成形法により薄肉のチューブやフィルムを製造することができる。
 本開示の含フッ素共重合体は、チューブ、ボトルなどにも好適に利用することができる。
 以上、実施形態を説明したが、特許請求の範囲の趣旨および範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。
 つぎに本開示の実施形態について実施例をあげて説明するが、本開示はかかる実施例のみに限定されるものではない。
 実施例の各数値は以下の方法により測定した。
(単量体単位の含有量)
 含フッ素共重合体の各単量体単位の含有量は、NMR分析装置(たとえば、ブルカーバイオスピン社製、AVANCE300 高温プローブ)、または、赤外吸収測定装置(パーキンエルマー社製、Spectrum One)を用いて測定した。
(メルトフローレート(MFR))
 含フッ素共重合体のMFRは、ASTM D-1238に準拠して、メルトインデクサーG-01(東洋精機製作所製)を用い、372℃、5kg荷重下で、内径2mm、長さ8mmのダイから10分間あたりに流出するポリマーの質量(g/10分)を測定することにより、求めた。
(-CFHの数)
 含フッ素共重合体の-CFH基の数は、核磁気共鳴装置AVANCE-300(ブルカーバイオスピン社製)を用い、測定温度を(ポリマーの融点+20)℃として19F-NMR測定を行い、-CFH基のピーク積分値から求めた。
(-COOH、-COOCH、-CHOH、-COF、-CF=CF、-CONHの数)
 実施例および比較例で得られた乾燥粉体もしくはペレットを、コールドプレスにより成形して、厚さ0.25~0.3mmのフィルムを作製した。このフィルムをフーリエ変換赤外分光分析装置〔FT-IR(Spectrum One、パーキンエルマー社製)〕により40回スキャンし、分析して赤外吸収スペクトルを得た。得られた赤外吸収スペクトルを、既知のフィルムの赤外吸収スペクトルと比較して末端基の種類を決定した。また、得られた赤外吸収スペクトルと、既知のフィルムの赤外吸収スペクトルとの差スペクトルに現れる特定の官能基の吸収ピークから、下記式(A)に従って試料における炭素原子1×10個あたりの官能基数Nを算出した。
   N=I×K/t    (A)
    I:吸光度
    K:補正係数
    t:フィルムの厚さ(mm)
 参考までに、実施例における官能基について、吸収周波数、モル吸光係数および補正係数を表2に示す。また、モル吸光係数は低分子モデル化合物のFT-IR測定データから決定したものである。
Figure JPOXMLDOC01-appb-T000002
(-OC(=O)O-R(カーボネート基)の数)
 国際公開第2019/220850号に記載の方法にて分析を行った。吸収周波数を1817cm-1、モル吸光度係数を170(l/cm/mol)、補正係数を1426とした以外は、官能基数Nの算出方法と同様にして、-OC(=O)O-R(カーボネート基)の数を算出した。
(融点)
 含フッ素共重合体の融点は、示差走査熱量計(商品名:X-DSC7000、日立ハイテクサイエンス社製)を用いて、昇温速度10℃/分で200℃から350℃までの1度目の昇温を行い、続けて、冷却速度10℃/分で350℃から200℃まで冷却し、再度、昇温速度10℃/分で200℃から350℃までの2度目の昇温を行 い、2度目の昇温過程で生ずる溶融曲線ピークから融点を求めた。
比較例1
 容積174Lの攪拌機付きオートクレーブに脱イオン水40.25kgとメタノール0.276kgを投入し、オートクレーブ内を十分に真空窒素置換した。その後、オートクレーブ内を真空脱気し、真空状態となったオートクレーブ内にHFP40.25kgとPPVE0.88kgを投入し、オートクレーブを25.5℃に加温した。続けて、オートクレーブの内部圧力が0.843MPaになるまでTFEを投入し、次に8質量%のジ(ω-ヒドロパーフルオロヘキサノイル)パーオキサイド溶液(以下DHPと略す)1.25kgをオートクレーブ内に投入して重合を開始した。重合開始時点のオートクレーブの内部圧力を0.843MPaに設定し、TFEを連続追加することで設定圧力を保つようにした。重合開始から1.5時間後にメタノール0.276kgを追加投入した。重合開始から2時間後、4時間後、にDHP1.25kgを追加投入するとともに内部圧力を0.002MPa下げ、6時間後に0.96kgを投入するとともに内部圧力を0.002MPa下げた。以降、反応が終了するまで2時間ごとにDHP0.25kgを追加投入し、その都度内部圧力を0.002MPa下げた。
 なお、PPVEはTFEの連続追加投入量が8.1kg、16.2kg、24.3kgに達した時点でそれぞれ0.22kg追加投入した。 また、TFEの追加投入量が6.0kg、18.1kgに達した時点でそれぞれ0.276kgのメタノールをオートクレーブ内に追加投入した。 そして、TFEの追加投入量が40.25kgに達したところで重合を終了させた。重合終了後、未反応のTFE及びHFPを放出し、湿潤粉体を得た。そしてこの湿潤粉体を純水で洗浄した後、150℃で10時間乾燥し、45.7kgの乾燥粉体を得た。
 得られた粉末を、スクリュー押出機(商品名:PCM46、池貝社製)により370℃にて溶融押出して、共重合体のペレットを得た。得られたペレットを用いて、上記した方法により各種物性を測定した。結果を表3に示す。
比較例2
 容積174Lの攪拌機付きオートクレーブに脱イオン水40.25kgとメタノール0.158kgを投入し、オートクレーブ内を十分に真空窒素置換した。その後、オートクレーブ内を真空脱気し、真空状態となったオートクレーブ内にHFP40.25kgとPPVE0.70kgを投入し、オートクレーブを30.0℃に加温した。続けて、オートクレーブの内部圧力が0.897MPaになるまでTFEを投入し、次に8質量%のジ(ω-ヒドロパーフルオロヘキサノイル)パーオキサイド溶液(以下DHPと略す)0.63kgをオートクレーブ内に投入して重合を開始した。重合開始時点のオートクレーブの内部圧力を0.897MPaに設定し、TFEを連続追加することで設定圧力を保つようにした。重合開始から1.5時間後にメタノール0.158kgを追加投入した。重合開始から2時間後、4時間後、にDHP0.63kgを追加投入するとともに内部圧力を0.001MPa下げ、6時間後に0.48kgを投入するとともに内部圧力を0.001MPa下げた。以降、反応が終了するまで2時間ごとにDHP0.13kgを追加投入し、その都度内部圧力を0.001MPa下げた。
 なお、PPVEはTFEの連続追加投入量が8.1kg、16.2kg、24.3kgに達した時点でそれぞれ0.22kg追加投入した。 また、TFEの追加投入量が6.0kg、18.1kgに達した時点でそれぞれ0.158kgのメタノールをオートクレーブ内に追加投入した。 そして、TFEの追加投入量が40.25kgに達したところで重合を終了させた。重合終了後、未反応のTFE及びHFPを放出し、湿潤粉体を得た。そしてこの湿潤粉体を純水で洗浄した後、150℃で10時間乾燥し、47.0kgの乾燥粉体を得た。
 得られた粉末を、スクリュー押出機(商品名:PCM46、池貝社製)により370℃にて溶融押出して、共重合体のペレットを得た。得られたペレットを用いて上記した方法によりHFP含有量とPPVE含有量を測定した。結果を表3に示す。
 得られたペレットを、電気炉にて200℃で72時間脱気した後、真空振動式反応装置VVD-30(大川原製作所社製)に入れ、110℃に昇温した。真空引き後、Nガスで20体積%に希釈したFガスを大気圧まで導入した。Fガス導入時から0.5時間後、いったん真空引きし、再度Fガスを導入した。さらにその0.5時間後、再度真空引きし、再度Fガスを導入した。以降、上記Fガス導入及び真空引きの操作を1時間に1回行い続け、110℃の温度下で8時間反応を行った。反応終了後、反応器内をNガスに十分に置換して、フッ素化反応を終了し、ペレットを得た。得られたペレットを用いて、上記した方法により各種物性を測定した。結果を表3に示す。
比較例3
 重合開始前に投入するメタノールの量を0.285kgに変更し、重合開始後に分割して追加投入するメタノールの量をそれぞれ0.285kgに変更し、重合開始前に投入するPPVEの量を1.05kgに変更し、重合開始後に分割して追加投入するPPVEの量をそれぞれ0.29kgに変更し、重合開始前後のオートクレーブ内部の設定圧力を0.933MPaに変更した以外は、比較例2と同様にして共重合体ペレットを得た。得られたペレットを用いて、上記した方法により各種物性を測定した。結果を表3に示す。
比較例4
 重合開始前に投入するメタノールの量を0.020kgに変更し、重合開始後に分割して追加投入するメタノールの量をそれぞれ0.020kgに変更し、重合開始前に投入するPPVEの量を0.88kgに変更し、重合開始後に分割して追加投入するPPVEの量をそれぞれ0.22kgに変更し、重合開始前後のオートクレーブ内部の設定圧力を0.843MPaに変更した以外は、比較例1と同様にして共重合体ペレットを得た。得られたペレットを用いて上記した方法によりHFP含有量とPPVE含有量を測定した。結果を表3に示す。
 得られたペレットを、電気炉にて200℃で8時間脱気した後、真空振動式反応装置VVD-30(大川原製作所社製)に入れ、200℃に昇温した。真空引き後、Nガスで20体積%に希釈したFガスを大気圧まで導入した。Fガス導入時から0.5時間後、いったん真空引きし、再度Fガスを導入した。さらにその0.5時間後、再度真空引きし、再度Fガスを導入した。以降、上記Fガス導入及び真空引きの操作を1時間に1回行い続け、200℃の温度下で8時間反応を行った。反応終了後、反応器内をNガスに十分に置換して、フッ素化反応を終了し、ペレットを得た。得られたペレットを用いて、上記した方法により各種物性を測定した。結果を表3に示す。
比較例5
 重合開始前に投入するメタノールの量を0.305kgに変更し、重合開始後に分割して追加投入するメタノールの量をそれぞれ0.305kgに変更し、重合開始前に投入するPPVEの量を0.48kgに変更し、重合開始後に分割して追加投入するPPVEの量をそれぞれ0.13kgに変更し、重合開始前後のオートクレーブ内部の設定圧力を0.928MPaに変更した以外は、比較例2と同様にして共重合体ペレットを得た。得られたペレットを用いて、上記した方法により各種物性を測定した。結果を表3に示す。
実施例1
 重合開始前に投入するメタノールの量を0.275kgに変更し、重合開始後に分割して追加投入するメタノールの量をそれぞれ0.275kgに変更し、重合開始前に投入するPPVEの量を0.99kgに変更し、重合開始後に分割して追加投入するPPVEの量をそれぞれ0.27kgに変更し、重合開始前後のオートクレーブ内部の設定圧力を0.937MPaに変更した以外は、比較例2と同様にして共重合体ペレットを得た。得られたペレットを用いて上記した方法によりHFP含有量とPPVE含有量を測定した。結果を表3に示す。
 得られたペレットを、比較例4と同様にしてフッ素化をした。得られたペレットを用いて、上記した方法により各種物性を測定した。結果を表3に示す。
実施例2
 重合開始前に投入するメタノールの量を0.273kgに変更し、重合開始後に分割して追加投入するメタノールの量をそれぞれ0.273kgに変更し、重合開始前に投入するPPVEの量を0.89kgに変更し、重合開始後に分割して追加投入するPPVEの量をそれぞれ0.24kgに変更し、重合開始前後のオートクレーブ内部の設定圧力を0.933MPaに変更した以外は、比較例2と同様にして共重合体ペレットを得た。得られたペレットを用いて、上記した方法により各種物性を測定した。結果を表3に示す。
実施例3
 重合開始前に投入するメタノールの量を0.229kgに変更し、重合開始後に分割して追加投入するメタノールの量をそれぞれ0.229kgに変更し、重合開始前に投入するPPVEの量を0.80kgに変更し、重合開始後に分割して追加投入するPPVEの量をそれぞれ0.22kgに変更し、重合開始前後のオートクレーブ内部の設定圧力を0.928MPaに変更した以外は、比較例2と同様にして共重合体ペレットを得た。得られたペレットを用いて上記した方法によりHFP含有量とPPVE含有量を測定した。結果を表3に示す。
 得られたペレットを、比較例4と同様にしてフッ素化をした。得られたペレットを用いて、上記した方法により各種物性を測定した。結果を表3に示す。
実施例4
 重合開始前に投入するメタノールの量を0.199kgに変更し、重合開始後に分割して追加投入するメタノールの量をそれぞれ0.199kgに変更し、重合開始前に投入するPPVEの量を0.70kgに変更し、重合開始後に分割して追加投入するPPVEの量をそれぞれ0.20kgに変更し、重合開始前後のオートクレーブ内部の設定圧力を0.923MPaに変更した以外は、比較例2と同様にして共重合体ペレットを得た。得られたペレットを用いて上記した方法によりHFP含有量とPPVE含有量を測定した。結果を表3に示す。
 得られたペレットを、比較例2と同様にしてフッ素化をした。得られたペレットを用いて、上記した方法により各種物性を測定した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3中の「その他(個/C10)」との記載は、-COOCH、-CF=CFおよび-CONHの合計数を表す。表3中の「<9」との記載は、-CFH基の数(合計数)が9個未満であること意味する。表3中の「<6」との記載は、対象の官能基の数(合計数)が6個未満であることを意味する。表3中の「ND」との記載は、対象の官能基について、定量できる程度のピークを確認できなかったことを意味する。
 次に得られたペレットを用いて、下記の特性を評価した。結果を表4に示す。
(摩耗試験)
 ペレットおよびヒートプレス成形機を用いて、厚さ約0.2mmのシート状試験片を作製し、これから10cm×10cmの試験片を切り出した。テーバー摩耗試験機(No.101 特型テーバー式アブレーションテスター、安田精機製作所社製)の試験台に作製した試験片を固定し、温度25℃、荷重500g、摩耗輪CS-10(研磨紙#240で20回転研磨したもの)、回転速度60rpmの条件で、テーバー摩耗試験機を用いて摩耗試験を行った。1000回転後の試験片重量を計量し、同じ試験片でさらに10000回転試験後に試験片重量を計量した。次式により、摩耗量を求めた。
   摩耗量(mg)=M1-M2
   M1:1000回転後の試験片重量(mg)
   M2:10000回転後の試験片重量(mg)
(薬液浸漬クラック試験)
 ペレットおよびヒートプレス成形機を用いて、厚み約2mmのシート状成形体を作製した。13.5mm×38mmの長方形ダンベルを用いて、得られたシートを打ち抜くことにより、3個の試験片を得た。得られた各試験片の長辺の中心に、ASTM D1693に準じて、19mm×0.45mmの刃でノッチを入れた。100mLポリプロピレン製ボトルに、ノッチ試験片3個とプロピレンカーボネート25gを入れ、電気炉にて150℃で8時間加熱後、ノッチ試験片を取り出した。得られたノッチ試験片3個をASTM D1693に準じた応力亀裂試験治具に取り付け、電気炉にて200℃で24時間加熱した後、ノッチおよびその周辺を目視で観察し、亀裂の数を数えた。亀裂が生じないシートは、耐ソルベントクラック性が優れている。
   ○:亀裂の数が0個である
   ×:亀裂の数が1個以上である
(空気透過係数)
ペレットおよびヒートプレス成形機を用いて、厚さ約0.1mmのシート状試験片を作製した。得られた試験片を用い、JIS K7126-1:2006に記載の方法に従って、差圧式ガス透過度計(L100-5000型ガス透過度計、Systech illinois社製)を用いて、空気透過度の測定を行った。透過面積50.24cm、試験温度70℃、試験湿度0%RHでの空気透過度の数値を得た。得られた空気透過度と試験片厚みを用いて、次式より空気透過係数を算出した。
   空気透過係数(cm・mm/(m・24h・atm))=GTR×d
      GTR:空気透過度(cm/(m・24h・atm))
      d:試験片厚み(mm)
(引張クリープ試験)
 日立ハイテクサイエンス社製TMA-7100を用いて引張クリープ歪を測定した。ペレットおよびヒートプレス成形機を用いて、厚さ約0.1mmのシートを作製し、シートから幅2mm、長さ22mmのサンプルを作製した。サンプルを治具間距離10mmで測定治具に装着した。サンプルに対して、断面荷重が4.49N/mmになるように荷重を負荷し、110℃に放置し、試験開始後90分の時点から試験開始後900分の時点までのサンプルの長さの変位(mm)を測定し、初期のサンプル長(10mm)に対する長さの変位(mm)の割合(引張クリープ歪(%))を算出した。110℃、900分間の条件で測定する引張クリープ歪(%)が小さいシートは、高温の環境中で引張荷重が長時間負荷されても伸びにくく、高温耐引張クリープ特性(110℃)に優れている。
(3万回サイクル後引張強度)
 島津製作所社製疲労試験機MMT-250NV-10を用いて3万回サイクル後引張強度を測定した。ペレットおよびヒートプレス成形機を用いて、厚さ約2.4mmのシートを作製し、ASTM D1708マイクロダンベル用いて、ダンベル形状(厚み2.4mm、幅5.0mm、測定部長さ22mm)のサンプルを作製した。サンプルを測定治具に装着し、サンプルを装着した状態で測定治具を110℃の恒温槽中に設置した。ストローク0.2mm、周波数100Hzで、一軸方向への引張りを繰り返し、引張り毎の引張強度(ストロークが+0.2mmの時の引張強度、単位:N)を測定した。
 3万回サイクル後引張強度が高いシートは、荷重を3万回負荷した後でも高い引張強度を維持しており、繰り返し荷重に対する耐久性(110℃)に優れている。
(過酸化水素水への浸漬試験)
 ペレットおよびヒートプレス成形機を用いて、厚さ約0.2mmのシートを作製し、15mm四方の試験片を作製した。50mLポリプロピレン製ボトルに、試験片10枚と3質量%過酸化水素水溶液15gを入れ、電気炉にて95℃で20時間加熱後、室温まで冷却した。過酸化水素水溶液から試験片を取り出し、残った過酸化水素水溶液にTISAB溶液(10)(関東化学社製)を添加し、得られた過酸化水素水溶液中のフッ素イオン濃度を、フッ素イオンメーターにて測定した。得られた測定値から、下記式にしたがって、シート重量当たりのフッ素イオン濃度(溶出フッ素イオン濃度)を算出した。
   溶出フッ素イオン濃度(質量ppm)=測定値(ppm)×過酸化水素水溶液量(g)/試験片重量(g)
(射出成形性)
・条件
 射出成形機(住友重機械工業社製、SE50EV-A)を使用し、シリンダ温度を385℃、金型温度を180℃、射出速度20mm/sとして、共重合体を射出成形した。金型として、HPM38にCrめっきを施した金型(100mm×100mm×2.0mmt、フィルムゲート、ゲートからの流動長100mm)を用いた。得られた射出成形体を観察し、以下の基準により評価した。白濁の有無は、目視により確認した。表面の荒れの有無は、射出成形体の表面を触ることにより、確認した。
   3:射出成形体全体が透明であり、かつ、表面全体が平滑である
   2:金型のゲートが位置していた箇所から1cmの範囲内に白濁が観察され、かつ、表面全体が平滑である
   1:金型のゲートが位置していた箇所から1cmの範囲内に白濁が観察され、かつ、金型のゲートが位置していた箇所から1cmの範囲内の表面に荒れが確認される
   0:金型全体に共重合体が充填されず、所望の形状の成形体が得られない
(電線被覆成形条件)
 30mmφ電線被覆成形機(田辺プラスチック機械社製)を用いて、導体径0.50mmの銅導体上に、下記被覆厚みで含フッ素共重合体を押出被覆し、被覆電線を得た。電線被覆押出成形条件は以下の通りである。
a)心導体:導体径0.50mm
b)被覆厚み:0.20mm
c)被覆電線径:0.90mm
d)電線引取速度:70m/分
e)押出条件:
 ・シリンダー軸径=30mm,L/D=22の単軸押出成形機
 ・ダイ(内径)/チップ(外形)=9.0mm/5.0mm
押出機の設定温度:バレル部C-1(320℃)、バレル部C-2(350℃)、バレル部C-3(370℃)、ヘッド部H(380℃)、ダイ部D-1(380℃)、ダイ部D-2(380℃)。心線予備加熱は80℃に設定した。
(被覆切れ)
 電線府被覆成形を連続的に行い、1時間で1回以上、被覆切れが起こった場合を連続成形不可(×)、被覆切れが起こらなかった場合、連続成形可(○)とした。
(スパーク)
 電線被覆ラインにオンラインでスパークテスタ(DENSOK HIGH FREQ SPARK TESTER)を設置し、電圧1500Vで、電線被覆の欠損の有無を評価した。1時間連続成形してスパーク回数を数えた。
(フィルム成形性)
 φ14mm押出機(井元製作所製)およびTダイを用いて、ペレットを成形し、フィルムを作製した。押出成形条件は以下の通りである。
a)巻き取り速度:1m/分
b)ロール温度:120℃
c)フィルム幅:70mm
d)厚み:0.10mm
e)押出条件:
 ・シリンダー軸径=14mm,L/D=20の単軸押出成形機
押出機の設定温度:バレル部C-1(330℃)、バレル部C-2(350℃)、バレル部C-3(365℃)、Tダイ部(370℃)
 含フッ素共重合体を安定して成形機から押し出せるようになるまで、含フッ素共重合体の押出成形を続けた。引き続き、含フッ素共重合体を押出成形することにより、厚みが0.10mmになるように、長さが11m以上のフィルム(幅70mm)を作製した。得られたフィルムの端から10~11mの部分を切り取り、厚みの変動を測定するための試験片(長さ1m、幅70mm)を作製した。作製したフィルムの端部の幅方向の中心点および該中心点から幅方向に25mm離れた2つの地点の合計3地点の厚みを測定した。さらに、フィルムの端部の幅方向の中心点から他方の端部に向かって25cmずつの間隔で並ぶ3つの中心点および各中心点から幅方向に25mm離れた2つの地点の合計9つの地点の厚みを測定した。合計12の測定値のうち、0.10mmの±10%の範囲外にある測定値の数が1以下である場合を〇とし、0.10mmの±10%の範囲外にある測定値の数が2以上である場合を×とした。
Figure JPOXMLDOC01-appb-T000004

Claims (9)

  1.  テトラフルオロエチレン単位、ヘキサフルオロプロピレン単位およびパーフルオロ(プロピルビニルエーテル)単位を含有する含フッ素共重合体であって、
     ヘキサフルオロプロピレン単位の含有量が、全単量体単位に対して、9.4~10.3質量%であり、
     パーフルオロ(プロピルビニルエーテル)単位の含有量が、全単量体単位に対して、1.6~2.9質量%であり、
     372℃におけるメルトフローレートが、9.0~17.0g/10分である
    含フッ素共重合体。
  2.  ヘキサフルオロプロピレン単位の含有量が、全単量体単位に対して、9.6~10.2質量%である請求項1に記載の含フッ素共重合体。
  3.  パーフルオロ(プロピルビニルエーテル)単位の含有量が、全単量体単位に対して、1.8~2.4質量%である請求項1または2に記載の含フッ素共重合体。
  4.  372℃におけるメルトフローレートが、10.0~16.0g/10分である請求項1~3のいずれかに記載の含フッ素共重合体。
  5.  カルボニル基含有末端基、-CF=CFおよび-CHOHの合計数が、主鎖炭素数10個当たり、100個以下である請求項1~4のいずれかに記載の含フッ素共重合体。
  6.  -CFHの数が、主鎖炭素数10個当たり、100個以下である請求項1~4のいずれかに記載の含フッ素共重合体。
  7.  請求項1~6のいずれかに記載の含フッ素共重合体を含有する射出成形体。
  8.  請求項1~6のいずれかに記載の含フッ素共重合体を含有する被覆層を備える被覆電線。
  9.  請求項1~6のいずれかに記載の含フッ素共重合体を含有する成形体であって、前記成形体が、継手、チューブ、フィルムまたは電線被覆である成形体。
PCT/JP2022/008459 2021-02-26 2022-02-28 含フッ素共重合体 WO2022181841A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280016661.6A CN116997582A (zh) 2021-02-26 2022-02-28 含氟共聚物
EP22759874.5A EP4299629A1 (en) 2021-02-26 2022-02-28 Fluorine-containing copolymer
US18/449,977 US20230399427A1 (en) 2021-02-26 2023-08-15 Fluorine-containing copolymer

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2021031109 2021-02-26
JP2021031100 2021-02-26
JP2021031098 2021-02-26
JP2021031110 2021-02-26
JP2021-031098 2021-02-26
JP2021-031102 2021-02-26
JP2021-031110 2021-02-26
JP2021031102 2021-02-26
JP2021-031109 2021-02-26
JP2021-031100 2021-02-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/449,977 Continuation US20230399427A1 (en) 2021-02-26 2023-08-15 Fluorine-containing copolymer

Publications (1)

Publication Number Publication Date
WO2022181841A1 true WO2022181841A1 (ja) 2022-09-01

Family

ID=83049407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/008459 WO2022181841A1 (ja) 2021-02-26 2022-02-28 含フッ素共重合体

Country Status (4)

Country Link
US (1) US20230399427A1 (ja)
EP (1) EP4299629A1 (ja)
JP (1) JP7265210B2 (ja)
WO (1) WO2022181841A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7244790B2 (ja) * 2021-02-26 2023-03-23 ダイキン工業株式会社 含フッ素共重合体
WO2023190961A1 (ja) * 2022-03-30 2023-10-05 ダイキン工業株式会社 含フッ素共重合体

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4029868A (en) * 1976-03-10 1977-06-14 E. I. Du Pont De Nemours And Company Tetrafluoroethylene terpolymers
JPS5869213A (ja) 1981-09-21 1983-04-25 Daikin Ind Ltd 含フツ素共重合体
JPS62192411A (ja) * 1986-02-18 1987-08-24 イ−・アイ・デユポン・デ・ニモアス・アンド・カンパニ− ペルフルオロプロピルビニルエ−テルで改質したテトラフルオロエチレン−ヘキサフルオロプロピレン共重合体
WO2001018076A1 (fr) * 1999-09-08 2001-03-15 Daikin Industries, Ltd. Fluoropolymere, et fil et cable electrique enrobe dudit fluoropolymere
WO2006135091A1 (ja) * 2005-06-17 2006-12-21 Daikin Industries, Ltd. 積層体
JP2017503052A (ja) * 2013-12-20 2017-01-26 ザ ケマーズ カンパニー エフシー リミテッド ライアビリティ カンパニー 配向フルオロポリマーフィルム
WO2019220850A1 (ja) 2018-05-14 2019-11-21 ダイキン工業株式会社 積層体およびチューブ
JP2020100823A (ja) * 2018-12-21 2020-07-02 ダイキン工業株式会社 フルオロポリマー組成物、成形品および射出成形品

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4299623A1 (en) * 2021-02-26 2024-01-03 Daikin Industries, Ltd. Fluorine-containing copolymer
WO2022181825A1 (ja) * 2021-02-26 2022-09-01 ダイキン工業株式会社 含フッ素共重合体
JP7244790B2 (ja) * 2021-02-26 2023-03-23 ダイキン工業株式会社 含フッ素共重合体

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4029868A (en) * 1976-03-10 1977-06-14 E. I. Du Pont De Nemours And Company Tetrafluoroethylene terpolymers
JPS52109588A (en) 1976-03-10 1977-09-13 Du Pont Fluorinated terpolymers
JPS5869213A (ja) 1981-09-21 1983-04-25 Daikin Ind Ltd 含フツ素共重合体
JPS62192411A (ja) * 1986-02-18 1987-08-24 イ−・アイ・デユポン・デ・ニモアス・アンド・カンパニ− ペルフルオロプロピルビニルエ−テルで改質したテトラフルオロエチレン−ヘキサフルオロプロピレン共重合体
WO2001018076A1 (fr) * 1999-09-08 2001-03-15 Daikin Industries, Ltd. Fluoropolymere, et fil et cable electrique enrobe dudit fluoropolymere
WO2006135091A1 (ja) * 2005-06-17 2006-12-21 Daikin Industries, Ltd. 積層体
JP2017503052A (ja) * 2013-12-20 2017-01-26 ザ ケマーズ カンパニー エフシー リミテッド ライアビリティ カンパニー 配向フルオロポリマーフィルム
WO2019220850A1 (ja) 2018-05-14 2019-11-21 ダイキン工業株式会社 積層体およびチューブ
JP2020100823A (ja) * 2018-12-21 2020-07-02 ダイキン工業株式会社 フルオロポリマー組成物、成形品および射出成形品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
EZHOV V. K.: "Investigation of permeability of fluorine and certain fluorinated gases through nonporous fluorine-resistant polymers", PETROLEUM CHEMISTRY, PLEIADES PUBLISHING, MOSCOW, vol. 54, no. 8, 7 January 2015 (2015-01-07), Moscow, pages 608 - 611, XP035421678, ISSN: 0965-5441, DOI: 10.1134/S0965544114080052 *

Also Published As

Publication number Publication date
JP7265210B2 (ja) 2023-04-26
JP2022132225A (ja) 2022-09-07
US20230399427A1 (en) 2023-12-14
EP4299629A1 (en) 2024-01-03

Similar Documents

Publication Publication Date Title
JP7177377B2 (ja) 含フッ素共重合体
JP7112014B1 (ja) 含フッ素共重合体
JP7121327B1 (ja) 含フッ素共重合体
JP7193768B2 (ja) 含フッ素共重合体
JP7265210B2 (ja) 含フッ素共重合体
JP2023106429A (ja) 含フッ素共重合体
JP7277843B2 (ja) 含フッ素共重合体
JP7219410B2 (ja) 含フッ素共重合体
JP7280539B2 (ja) 含フッ素共重合体
WO2022181837A1 (ja) 含フッ素共重合体
WO2022181833A1 (ja) 含フッ素共重合体
JP7265209B2 (ja) 含フッ素共重合体
JP7193764B2 (ja) 含フッ素共重合体
JP7121326B1 (ja) 含フッ素共重合体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22759874

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280016661.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022759874

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022759874

Country of ref document: EP

Effective date: 20230926