[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022181762A1 - ポリプロピレン系樹脂押出発泡粒子およびポリプロピレン系樹脂発泡成形体 - Google Patents

ポリプロピレン系樹脂押出発泡粒子およびポリプロピレン系樹脂発泡成形体 Download PDF

Info

Publication number
WO2022181762A1
WO2022181762A1 PCT/JP2022/007863 JP2022007863W WO2022181762A1 WO 2022181762 A1 WO2022181762 A1 WO 2022181762A1 JP 2022007863 W JP2022007863 W JP 2022007863W WO 2022181762 A1 WO2022181762 A1 WO 2022181762A1
Authority
WO
WIPO (PCT)
Prior art keywords
extruded
polypropylene
resin
foam
particles
Prior art date
Application number
PCT/JP2022/007863
Other languages
English (en)
French (fr)
Inventor
清敬 中山
ナンシー ラエヴェレン
Original Assignee
株式会社カネカ
カネカ ベルギー ナムローゼ フェンノートシャップ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ, カネカ ベルギー ナムローゼ フェンノートシャップ filed Critical 株式会社カネカ
Priority to EP22759796.0A priority Critical patent/EP4299665A1/en
Priority to JP2023502535A priority patent/JPWO2022181762A1/ja
Publication of WO2022181762A1 publication Critical patent/WO2022181762A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/04Particle-shaped
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • C08J9/18Making expandable particles by impregnating polymer particles with the blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/228Forming foamed products
    • C08J9/232Forming foamed products by sintering expandable particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • B29K2105/048Expandable particles, beads or granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2623/00Use of polyalkenes or derivatives thereof for preformed parts, e.g. for inserts
    • B29K2623/10Polymers of propylene
    • B29K2623/12PP, i.e. polypropylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/03Extrusion of the foamable blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/06CO2, N2 or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/044Micropores, i.e. average diameter being between 0,1 micrometer and 0,1 millimeter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/052Closed cells, i.e. more than 50% of the pores are closed
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/04Homopolymers or copolymers of ethene
    • C08J2423/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/16Ethene-propene or ethene-propene-diene copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/18Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
    • C08J2423/20Homopolymers or copolymers of hydrocarbons having four or more carbon atoms having four to nine carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2251Oxides; Hydroxides of metals of chromium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2265Oxides; Hydroxides of metals of iron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2289Oxides; Hydroxides of metals of cobalt
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/14Applications used for foams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/04Thermoplastic elastomer

Definitions

  • the present invention relates to extruded polypropylene resin foam particles and polypropylene resin foam molded articles.
  • a polypropylene resin foam molded product obtained using polypropylene resin expanded particles has the advantages of foam molded products such as arbitrariness of shape, cushioning properties, light weight, and heat insulating properties.
  • Examples of methods for producing expanded polypropylene resin particles include a batch foaming method, which is a discontinuous process, and an extrusion foaming method, which is a continuous process. Extrusion foaming has many advantages, such as efficiency and environmental aspects.
  • Patent Documents 1 and 2 are examples of techniques for obtaining expanded polypropylene resin particles by extrusion foaming.
  • Patent Document 1 discloses polypropylene-based resin pre-expanded particles that are characterized by being made of a polypropylene-based resin that satisfies a specific relational expression between the loss tangent and the melt-breaking take-up speed.
  • Patent Document 2 (a) a random polypropylene resin having a specific configuration, (b) a conjugated diene compound, and (c) a mixture of a radical polymerization initiator having a specific configuration are melt-kneaded to obtain a modified polypropylene.
  • a method for producing a modified polypropylene resin includes a melt-kneading step to obtain the resin.
  • One embodiment of the present invention has been made in view of the above problems, and an object thereof is to provide extruded polypropylene resin expanded particles having excellent moldability and a polypropylene resin expanded molded article having excellent breakage resistance. is.
  • the extruded polypropylene resin particles according to one embodiment of the present invention include a base resin containing a polypropylene resin having a branched structure, and the melt tension of the polypropylene resin having a branched structure is 5 cN to 50 cN.
  • the base resin further contains a thermoplastic elastomer and an inorganic colorant.
  • the structural units include a structural unit derived from the X1 monomer, a structural unit derived from the X2 monomer, ... and an Xn monomer (where n is Integer of 3 or more) is also referred to as "X 1 /X 2 /.../X n copolymer".
  • the X 1 /X 2 /.../X n copolymer is not particularly limited in its polymerization mode unless otherwise specified, and may be a random copolymer or a block copolymer. may be a graft copolymer.
  • the molecular chains of the resin in the foam-molded product have many crosslinked portions (also referred to as "branching").
  • the cross-linked portions (branching) become entangled and can act to prevent the foam-molded article from extending any further.
  • the cross-linked portion (branch) is entangled and does not extend, it is thought that the molecular chain must be cut. That is, the inventors of the present invention believe that the reason for the above is that the flexibility of the foamed molded article is reduced, the foamed molded article becomes difficult to stretch, and specifically, the tensile elongation at break of the foamed molded article tends to decrease. I guessed.
  • Patent Literatures 1 and 2 above have room for further improvement from the viewpoint of the fracture resistance of foam molded articles.
  • the present inventors have made extensive studies in order to provide extruded foamed particles that can provide foamed molded articles with excellent breakage resistance.
  • the inventors of the present invention have surprisingly found the following new finding independently: By using a polypropylene resin having a branched structure together with a linear polypropylene resin having no branched structure, It is possible to provide extruded foamed particles that can provide foamed molded articles having excellent breakage resistance.
  • the present inventors obtained colored extruded expanded particles by using an inorganic colorant and using a combination of a polypropylene resin having a branched structure and a linear polypropylene resin having no branched structure. An attempt was made to obtain a colored foamed molded article from the extruded foamed particles.
  • the present inventors have surprisingly found that (a) the colored extruded particles thus obtained have a remarkably narrow molding width for obtaining a good foam molded product, and (b) It was independently found that the colored foamed molded article barely obtained had remarkably low resistance to breakage.
  • the present inventors have made further intensive studies in order to provide both extruded polypropylene resin foam particles with excellent moldability and polypropylene resin foam molded articles with excellent breakage resistance.
  • the inventors of the present invention have surprisingly found the following new findings uniquely and completed the present invention:
  • a polypropylene resin having a branched structure and a thermoplastic elastomer together Even when an inorganic colorant is used, it is possible to provide both (a) extruded polypropylene resin expanded particles with excellent moldability and (b) polypropylene resin expanded molded articles with excellent breakage resistance. can.
  • the extruded polypropylene resin particles according to one embodiment of the present invention include a base resin containing a polypropylene resin having a branched structure, and the polypropylene resin having a branched structure has a melt tension of 5 cN to 50 cN,
  • the base resin further contains a thermoplastic elastomer and an inorganic colorant.
  • extruded polypropylene resin particles can be made into a polypropylene resin foamed product by molding the extruded polypropylene resin particles (for example, in-mold expansion molding).
  • extruded polypropylene resin expanded particles may be referred to as “extruded expanded particles”
  • extruded polypropylene resin expanded particles according to one embodiment of the present invention may be referred to as “extruded expanded particles”.
  • a "polypropylene-based resin foam-molded article” may be referred to as a "foam-molded article”
  • a "polypropylene-based resin foam-molded article according to one embodiment of the present invention” may be referred to as a "present foam-molded article”.
  • the present extruded foamed particles have the above-described structure, they have the advantage of (a) being excellent in moldability and (b) being able to provide a foamed molded article having excellent rupture resistance.
  • the moldability of the extruded expanded beads is evaluated by the molding width of the extruded expanded beads. The molding width will be described later.
  • the resistance to breakage of the present foam molded article is evaluated by the tensile elongation at break of the foam molded article. The tensile elongation at break will be described later.
  • the base resin contains (a) a polypropylene resin having a branched structure, (b) a thermoplastic elastomer and an inorganic colorant.
  • the base resin may further optionally contain additives such as cell nucleating agents.
  • polypropylene resin having a branched structure refers to (a) a polypropylene resin obtained by partially cross-linking the molecules of a polypropylene resin to which no branched structure has been introduced, and (b) A polypropylene resin in which a diene compound other than (poly)propylene or the like is introduced as a branched chain is intended for a polypropylene resin in which no branched structure is introduced.
  • polypropylene-based resin into which no branched structure is introduced may be referred to as "linear polypropylene-based resin", and the "polypropylene-based resin having a branched structure” is referred to as "branched polypropylene-based resin”.
  • linear polypropylene resin and branched polypropylene resin may be collectively referred to as “polypropylene resin”.
  • the linear polypropylene-based resin can also be said to be a raw material for the branched polypropylene-based resin.
  • the polypropylene-based resin means a resin containing 50 mol% or more of structural units derived from a propylene monomer out of 100 mol% of all structural units contained in the resin.
  • structural unit derived from propylene monomer may be referred to as "propylene unit”.
  • the linear polypropylene-based resin may be (a) a homopolymer of propylene, or (b) a block copolymer or random copolymer of propylene and a monomer other than propylene, or (c) A mixture of two or more of these may be used.
  • the linear polypropylene resin may have one or more structural units derived from a monomer other than the propylene monomer, or may have one or more types.
  • “Monomers other than propylene monomers” used in the production of linear polypropylene resins are sometimes referred to as “comonomers”, and “monomers other than propylene monomers” contained in linear polypropylene resins Structural unit derived from” may be referred to as "comonomer unit".
  • Comonomers include monomers such as: (a) ethylene, 1-butene, isobutene, 1-pentene, 3-methyl-1-butene, 1-hexene, 4-methyl-1-pentene, ⁇ -olefins having 2 or 4 to 12 carbon atoms such as 3,4-dimethyl-1-butene, 1-heptene, 3-methyl-1-hexene, 1-octene, 1-decene, (b) cyclopentene, norbornene, Cyclic olefins such as tetracyclo[6,2,11,8,13,6]-4-dodecene, (c) 5-methylene-2-norbornene, 5-ethylidene-2-norbornene, 1,4-hexadiene, methyl- dienes such as 1,4-hexadiene, 7-methyl-1,6-octadiene, and (d) vinyl chloride, vinylidene chloride, acrylonitrile, meth
  • Acrylic esters include methyl acrylate, ethyl acrylate, butyl acrylate, hexyl acrylate, 2-ethylhexyl acrylate, lauryl acrylate, stearyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate and and glycidyl acrylate.
  • Methacrylates include methyl methacrylate, ethyl methacrylate, butyl methacrylate, hexyl methacrylate, 2-ethylhexyl methacrylate, lauryl methacrylate, stearyl methacrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate and and glycidyl methacrylate.
  • Styrenic monomers include styrene, methylstyrene, dimethylstyrene, alphamethylstyrene, paramethylstyrene, ethylstyrene, diethylstyrene, isopropylstyrene, t-butylstyrene, bromostyrene, dibromostyrene, tribromostyrene, chlorostyrene. , dichlorostyrene and trichlorostyrene.
  • Linear polypropylene resin as a comonomer unit, preferably has a structural unit derived from an ⁇ -olefin having 2 or 4 to 12 carbon atoms, ethylene, 1-butene, isobutene, 1-pentene, 3-methyl-1 -butene, 1-hexene, 4-methyl-1-pentene, 3,4-dimethyl-1-butene, 1-heptene, 3-methyl-1-hexene, 1-octene and/or 1-decene, etc.
  • this configuration (a) the advantage that a branched polypropylene resin having a high melt tension and a low gel fraction can be obtained, and (b) the obtained branched polypropylene resin has excellent moldability. It has the advantage of being able to provide particles.
  • the linear polypropylene-based resin is preferably a propylene homopolymer, a polypropylene-based block copolymer and/or a polypropylene-based random copolymer, and is preferably a propylene homopolymer and/or a polypropylene-based random copolymer. more preferred.
  • a branched polypropylene resin having a high melt tension and a low gel fraction can be obtained
  • the obtained branched polypropylene resin has excellent moldability. It has the advantage of being able to provide particles.
  • the linear polypropylene resin preferably contains 90 mol% or more of propylene units, more preferably 93 mol% or more, and 95 mol% or more of all 100 mol% of the total structural units contained in the linear polypropylene resin. It is more preferable to contain it, and it is particularly preferable to contain it in an amount of 97 mol % or more. This configuration has the advantage of obtaining a branched polypropylene resin having a high melt tension and a low gel fraction.
  • the melting point of the linear polypropylene resin is not particularly limited.
  • the melting point of the linear polypropylene resin is, for example, preferably 130° C. to 165° C., more preferably 135° C. to 164° C., even more preferably 138° C. to 163° C., and 140° C. to 162° C. °C is particularly preferred.
  • the melting point of the linear polypropylene-based resin is within the range described above, (a) the advantage that the obtained extruded expanded particles are excellent in moldability, and (b) the extruded expanded particles can be used to form a foamed molded article with excellent breakage resistance.
  • the melting point of the linear polypropylene-based resin is a value obtained by measuring with a differential scanning calorimeter method (hereinafter referred to as "DSC method").
  • the specific operating procedure is as follows: (1) By raising the temperature of 5 to 6 mg of linear polypropylene resin from 40° C. to 220° C. at a rate of 10° C./min. (2) Then, the linear polypropylene resin is lowered from 220° C. to 40° C. at a rate of 10° C./min. (3) Then, the temperature of the crystallized linear polypropylene resin is further increased from 40°C to 220°C at a rate of 10°C/min.
  • the temperature of the peak (melting peak) of the DSC curve of the linear polypropylene-based resin obtained during the second heating can be obtained as the melting point of the linear polypropylene-based resin. If there are multiple peaks (melting peaks) in the DSC curve of the linear polypropylene resin obtained during the second heating by the above method, the temperature of the peak (melting peak) with the maximum amount of heat of fusion is , the melting point of the linear polypropylene resin.
  • the differential scanning calorimeter for example, DSC6200 type manufactured by Seiko Instruments Inc. can be used.
  • the melt flow rate (MFR) of the linear polypropylene resin is not particularly limited.
  • the MFR of the linear polypropylene resin is, for example, preferably 0.5 g/10 min to 20.0 g/10 min, more preferably 1.0 g/10 min to 15.0 g/10 min, It is more preferably 2.0 g/10 minutes to 12.0 g/10 minutes, and particularly preferably 2.0 g/10 minutes to 10.0 g/10 minutes.
  • the MFR of a linear polypropylene resin is a value obtained by measuring under conditions of a temperature of 230°C and a load of 2.16 kg according to ISO 1133.
  • a polypropylene-based resin having a branched structure can be obtained by introducing a branched structure into a linear polypropylene-based resin.
  • the method for introducing a branched structure into the linear polypropylene resin is not particularly limited, but for example, (a1) a method of irradiating the linear polypropylene resin, and (a2) a linear polypropylene resin and a conjugated diene compound and a method of melt kneading a mixture containing a radical polymerization initiator.
  • the polypropylene-based resin having a branched structure is obtained by melt-kneading the resin obtained by the method (a2), that is, a mixture containing a linear polypropylene-based resin, a conjugated diene compound, and a radical polymerization initiator. It is preferably a polypropylene-based resin having a structure.
  • the method (a2) will be further explained.
  • the following (i) to (iv) are performed in order to obtain a branched polypropylene resin: (i) a linear polypropylene resin, a conjugated diene compound, and a radical polymerization initiator (ii) extruding the obtained melt-kneaded material from the die; (iii) cooling the extruded melt-kneaded material (also referred to as a strand) (iv) chopping the strands simultaneously with and after cooling the strands.
  • Specific examples of the method (a2) include the method described in WO2020/004429.
  • branched structure can be stably introduced into a linear polypropylene-based resin, and the reproducibility of the introduction of the branched structure is high; and/or (ii) no complicated equipment is required and high productivity Since a branched polypropylene-based resin can be obtained, in one embodiment of the present invention, the branched polypropylene-based resin is preferably a branched polypropylene-based resin obtained by the method (a2) described above.
  • the melt tension of branched polypropylene-based resins can be higher than the melt tension of linear polypropylene-based resins.
  • the melt tension of the branched polypropylene resin is 5 cN to 50 cN, preferably 6 cN to 40 cN, more preferably 7 cN to 30 cN, even more preferably 8 cN to 25 cN, and 10 cN to 20 cN. is particularly preferred.
  • the melt tension of the branched polypropylene-based resin is 5 cN or more
  • the tension of the composition becomes sufficiently high, and the resulting extrusion foaming Cell rupture in the particles can be prevented.
  • the extruded expanded beads obtained have the advantage of being excellent in moldability
  • the extruded expanded beads have the advantage of being able to provide a foam molded article having excellent resistance to breakage.
  • the melt tension of the branched polypropylene resin is measured using Capilograph 1D (manufactured by Toyo Seiki Seisakusho Co., Ltd., Japan). Specifically, it is as follows (1) to (5): (1) A sample resin (branched polypropylene resin) for measurement is placed in a barrel with a diameter of 9.55 mm heated to the test temperature (200 ° C.).
  • the MFR of the branched polypropylene resin is not particularly limited.
  • the MFR of the branched polypropylene resin is, for example, preferably 0.5 g/10 min to 20.0 g/10 min, more preferably 1.0 g/10 min to 15.0 g/10 min, It is more preferably 2.0 g/10 minutes to 12.0 g/10 minutes, and particularly preferably 2.0 g/10 minutes to 10.0 g/10 minutes.
  • the MFR of the branched polypropylene-based resin is within the range described above, (a) the extruded foamed particles obtained have the advantage of being excellent in moldability, and (b) the extruded foamed particles form a foamed molded article with excellent breakage resistance.
  • the MFR of the branched polypropylene-based resin is (a) 0.5 g/10 minutes or more, the extruded expanded particles obtained from the branched polypropylene-based resin have little deformation and good surface properties (beautiful). It has the advantage of being able to provide a foamed molded article, and (b) when it is 20.0 g / 10 minutes or less, the composition containing the extruded foamed particles obtained from the branched polypropylene resin has foamability during extrusion foaming has the advantage of being better
  • the MFR of a branched polypropylene resin is a value obtained by measuring under conditions of a temperature of 230°C and a load of 2.16 kg according to ISO 1133.
  • the melting point of the branched polypropylene resin is not particularly limited.
  • the melting point of the branched polypropylene-based resin is, for example, preferably 130°C to 165°C, more preferably 135°C to 164°C.
  • the melting point of the branched polypropylene-based resin is within the range described above, (a) the extruded expanded particles obtained have the advantage of being excellent in moldability, and (b) the extruded expanded particles produce a foamed molded article with excellent breakage resistance. have the advantage of being able to provide
  • the melting point of the branched polypropylene-based resin is a value obtained by measuring by the DSC method in the same manner as the melting point of the linear polypropylene-based resin.
  • the base resin preferably contains 64.5% to 94.5% by weight, and preferably 64.5% to 90.0% by weight, of a branched polypropylene resin in 100% by weight of the base resin. is more preferable, and it is even more preferable to contain 65.0% by weight to 90.0% by weight.
  • This configuration has the advantage of (a) that the obtained extruded expanded beads are excellent in moldability, and (b) the advantage that the extruded expanded beads can provide a foamed molded article with excellent breakage resistance.
  • the content of the branched polypropylene-based resin in the base resin can also be said to be the amount of the branched polypropylene-based resin used in the production of the extruded expanded particles.
  • thermoplastic elastomer As used herein, a thermoplastic elastomer is intended to have a Shore A of 20 to 95 as measured by ISO 868. A thermoplastic elastomer can also be said to be a resin having a thermoplastic resin as a hard segment and a rubber component as a soft segment.
  • thermoplastic elastomers examples include polyolefin elastomers, polyolefin plastomers, polystyrene elastomers, polyvinyl chloride elastomers, polyester elastomers, polyurethane elastomers, and polyamide elastomers.
  • polyolefin elastomers examples include TAFMER (registered trademark), MILASTOMER (registered trademark) (Mitsui Chemicals, Inc.), LUCENE (registered trademark) (LG Chem), VERSIFY (registered trademark) (Dow Inc.), ESPOLEX ( (registered trademark) (Sumitomo Chemical Co., Ltd.), MULTIUSE LEOSTOMER (registered trademark) (Riken Technos) and Vistamaxx (registered trademark) (Exxon Mobil) and the like.
  • TAFMER registered trademark
  • MILASTOMER registered trademark
  • LUCENE registered trademark
  • VERSIFY registered trademark
  • ESPOLEX (registered trademark) (Sumitomo Chemical Co., Ltd.)
  • MULTIUSE LEOSTOMER registered trademark
  • Vistamaxx registered trademark
  • polyolefin-based plastomers examples include Excellen (registered trademark) FX, Tafselene (registered trademark) (Sumitomo Chemical Co., Ltd.), AFFINITY (registered trademark) (Dow Inc.), and Queo (registered trademark) (Borealis). mentioned. These thermoplastic elastomers may be used singly or in combination of two or more.
  • the thermoplastic elastomer is preferably a polyolefin-based elastomer and/or a polyolefin-based plastomer, more preferably a polyolefin-based elastomer, from the viewpoint of high elastic performance and compatibility with the polypropylene resin.
  • the thermoplastic elastomer is preferably a thermoplastic elastomer having (a) a polyolefin such as polypropylene or polyethylene as a hard segment and (b) a rubber component such as ethylene/ ⁇ -olefin rubber as a soft segment in one molecule. .
  • Thermoplastic elastomers having polypropylene or polyethylene as hard segments have high compatibility with polypropylene-based resins.
  • thermoplastic elastomer having at least one selected from the group consisting of ethylene/propylene rubber, ethylene/1-butene rubber, ethylene/propylene/diene rubber and ethylene/1-octene rubber as a soft segment is more compatible with polypropylene resin. Higher compatibility. Therefore, thermoplastic elastomers include (a) thermoplastic elastomers having polypropylene or polyethylene as hard segments, and (b) ethylene/propylene rubbers, ethylene/1-butene rubbers, ethylene/propylene/diene rubbers and ethylene/1-butene rubbers as soft segments.
  • thermoplastic elastomer having one or more selected from the group consisting of octene rubber, or (c) having (i) a polyolefin such as polypropylene or polyethylene as a hard segment and (ii) an ethylene- Thermoplastic elastomers having a rubber component such as ⁇ -olefin rubber are particularly preferred.
  • the tensile elongation at break of the thermoplastic elastomer is preferably 500% or more, more preferably 600% or more, even more preferably 650% or more, and particularly preferably 700% or more.
  • the tensile elongation at break of the thermoplastic elastomer is preferably 10000% or less, more preferably 5000% or less. According to this configuration, the flexibility of the branched polypropylene-based resin, the extruded foamed particles, and the foamed molded product is improved, and there is an advantage that they are less likely to break when deformed due to the application of force.
  • the tensile elongation at break of a thermoplastic elastomer is a value obtained by measuring a thermoplastic elastomer as a sample according to ASTM D638.
  • thermoplastic elastomer There are no particular restrictions on the melting point of the thermoplastic elastomer.
  • the melting point of the thermoplastic elastomer is, for example, preferably 40°C to 110°C, more preferably 50°C to 90°C, and particularly preferably 60°C to 80°C.
  • This configuration improves the flexibility of the extruded foamed particles and the foamed molded product. As a result, there is an advantage that the resulting foamed molded article is less likely to break when force is applied to it and deformed.
  • the melting point of a thermoplastic elastomer is a value obtained by measuring by the DSC method.
  • the DSC curve of the thermoplastic elastomer can be obtained by the same method as for measuring the melting point of the linear polypropylene-based resin, except that the thermoplastic elastomer is used instead of the linear polypropylene-based resin.
  • the melting point of the thermoplastic elastomer can be determined from the DSC curve of the thermoplastic elastomer in the same manner as the melting point of the linear polypropylene resin.
  • the MFR of the thermoplastic elastomer is preferably 0.3 g/10 minutes to 10.0 g/10 minutes, more preferably 0.5 g/10 minutes to 8.0 g/10 minutes, and 0.7 g/10 minutes. It is more preferably 10 minutes to 6.0 g/10 minutes, more preferably 1.0 g/10 minutes to 5.0 g/10 minutes. According to this configuration, the compatibility between the thermoplastic elastomer and the branched polypropylene-based resin is enhanced, and the flexibility of the resulting extruded expanded particles and expanded molded article is improved. As a result, there is an advantage that the resulting foamed molded article is less likely to break when force is applied to it and deformed.
  • the MFR of a thermoplastic elastomer is a value obtained by measuring under conditions of a temperature of 230°C and a load of 2.16 kg according to ISO 1133.
  • the flexural modulus of the thermoplastic elastomer is preferably 10 MPa to 200 MPa, more preferably 15 MPa to 100 MPa, more preferably 20 MPa to 80 MPa, and particularly preferably 25 MPa to 70 MPa.
  • This configuration improves the flexibility of the extruded foamed particles and the foamed molded product. As a result, there is an advantage that the resulting foamed molded article is less likely to break when force is applied to it and deformed.
  • the flexural modulus of a thermoplastic elastomer is a value obtained by measuring a thermoplastic elastomer as a sample in accordance with ISO 178.
  • thermoplastic elastomer Commercially available products can also be used as the thermoplastic elastomer.
  • thermoplastic elastomers that can be suitably used in one embodiment of the present invention include "LUCENE LC180” manufactured by LG Chem, which is a polyolefin elastomer, and "VERSIFY 2300” manufactured by Dow Inc.
  • the base resin preferably contains 5.0% to 35.0% by weight, more preferably 6.0% to 30.0% by weight, of a thermoplastic elastomer in 100% by weight of the base resin. Preferably, it contains 8.0% to 25.0% by weight, more preferably 10.0% to 25.0% by weight, and 12.0% to 20.0% by weight. Especially preferred.
  • This configuration has the advantage of (a) that the obtained extruded expanded beads are excellent in moldability, and (b) the advantage that the extruded expanded beads can provide a foamed molded article with excellent breakage resistance.
  • the content of the thermoplastic elastomer in the base resin can also be said to be the amount of the thermoplastic elastomer used in the production of the extruded expanded beads.
  • Inorganic colorants may include white colorants in addition to black, red, green, blue, and yellow colorants.
  • examples of inorganic colorants include carbon black, red clay, ocher, green clay, titanium oxide, cobalt blue, Prussian blue, and chromium oxide green. These inorganic colorants may be used singly or in combination of two or more.
  • the inorganic colorant preferably contains one or more selected from the group consisting of carbon black, red clay, ocher, green clay, titanium oxide, cobalt blue, Prussian blue, and chromium oxide green, and one selected from the group. It is more preferable to be above. Carbon black is particularly preferable as the inorganic colorant from the viewpoint of ultraviolet absorption performance.
  • the base resin preferably contains 0.5% to 5.0% by weight, more preferably 0.5% to 4.5% by weight, of an inorganic colorant based on 100% by weight of the base resin. More preferably, 0.5 wt% to 4.0 wt%, more preferably 1.0 wt% to 3.5 wt%, more preferably 1.0 wt% to 3.0 wt% is particularly preferred. According to this configuration, there is an advantage that the open cell rate of the extruded foamed particles obtained by the extrusion foaming method tends to be low.
  • the content of the inorganic coloring agent in the base resin can also be said to be the amount of the inorganic coloring agent used in the production of the extruded expanded beads.
  • the base resin further contains a resin other than the branched polypropylene-based resin and the thermoplastic elastomer (sometimes referred to as other resin) or rubber within a range that does not impair the effects of one embodiment of the present invention.
  • Resins other than branched polypropylene resins include (a) linear polypropylene resins such as ethylene/propylene random copolymers, ethylene/propylene block copolymers, and propylene homopolymers; Polyethylene, medium density polyethylene, low density polyethylene, linear low density polyethylene, linear ultra low density polyethylene, ethylene/vinyl acetate copolymer, ethylene/acrylic acid copolymer, and ethylene/methacrylic acid copolymer and (c) styrene resins such as polystyrene, styrene/maleic anhydride copolymers, and styrene/ethylene copolymers.
  • linear polypropylene resins such as ethylene/propylene random copolymers, ethylene/propylene block copolymers, and propylene homopolymers
  • Polyethylene medium density polyethylene, low density polyethylene, linear low density polyethylene, linear ultra low density polyethylene, ethylene/vinyl a
  • the rubber examples include olefin rubbers such as ethylene/propylene rubber, ethylene/butene rubber, ethylene/hexene rubber, and ethylene/octene rubber.
  • the base resin preferably contains 0 wt % to 20 wt % of the other resin in 100 wt % of the base resin.
  • the base resin may contain a cell nucleating agent.
  • cell nucleating agents may be used in making the extruded foam particles. By using a cell nucleating agent, the cell number and cell shape of the resulting extruded foam particles can be controlled.
  • Bubble nucleating agents include sodium bicarbonate-citric acid mixture, monosodium citrate, talc, and calcium carbonate. One of these cell nucleating agents may be used alone, or two or more thereof may be used in combination.
  • the content of the cell nucleating agent in the base resin in other words, the amount of cell nucleating agent used in the production of the extruded expanded beads, is not particularly limited.
  • the content of the cell nucleating agent is, for example, preferably 0.01 to 5.00 parts by weight, preferably 0.01 to 3.50 parts by weight, with respect to 100 parts by weight of the polypropylene resin. more preferably 0.01 to 1.00 parts by weight, particularly preferably 0.01 to 0.50 parts by weight.
  • the cell size (average cell diameter) and cell shape of the extruded foamed particles become uniform, and as a result, there is an advantage that the foamability during extrusion foaming tends to be stable.
  • “cell” intends "bubble".
  • the base resin may contain an organic colorant within a range that does not impair the effects of one embodiment of the present invention.
  • organic colorants include perylene organic pigments, azo organic pigments, quinacridone organic pigments, phthalocyanine organic pigments, threne organic pigments, dioxazine organic pigments, and isoindoline organic pigments. These organic colorants may be used singly or in combination of two or more.
  • the content of the organic colorant in the base resin is not particularly limited.
  • the base resin may contain other components such as (a) an antioxidant, a metal deactivator, a phosphorus-based processing stabilizer, an ultraviolet absorber, an ultraviolet stabilizer, a fluorescent brightener, a metallic soap, and an antacid.
  • Stabilizers such as adsorbents and/or
  • additives such as lubricants, plasticizers, fillers, reinforcements, flame retardants, and antistatic agents may also be included.
  • the base resin contained in the extruded expanded beads or the base resin contained in the expanded molded article obtained from the extruded expanded beads that is, the base resin that substantially constitutes the extruded expanded beads or the expanded molded article , branched polypropylene resins, thermoplastic elastomers, inorganic colorants and other resins or rubbers are determined by the operation of melting the extruded foamed particles or the foamed molded article under reduced pressure to return it to a resin mass. does not change substantially.
  • the process of melting the extruded foamed particles or the foamed molded article obtained from the extruded foamed particles under reduced pressure to obtain a resin lump may be referred to as "returning the resin".
  • a resin lump may be called "returned resin.”
  • the type and amount of branched polypropylene resin, thermoplastic elastomer, inorganic colorant and other resins or rubbers contained in the returned resin are , thermoplastic elastomers, inorganic colorants and other resins or rubbers.
  • the type and amount of branched polypropylene resin, thermoplastic elastomer, inorganic colorant and other resins or rubbers contained in the returned resin can be confirmed by analyzing the returned resin by any known method. can be done.
  • a specific method for returning the resin is not particularly limited, but an example is a method in which the following (b1) to (b5) are performed in order: (b1) a dryer adjusted to the melting point of the extruded foamed particles or foamed product +10°C; (b2) Then, using a vacuum pump over 5 to 10 minutes, the pressure in the dryer is reduced from -0.05 MPa (cage pressure) to -0.10 MPa. (cage pressure); (b3) then leave the extruded foamed particles or foamed molded body in the dryer for 30 minutes to prepare a resin mass (returned resin); (b4) then in the dryer (b5) After that, the resin mass is taken out from the dryer.
  • the melting point of the extruded foamed particles or foamed product is a value determined by measuring by the DSC method. Specifically, the DSC curve of the extruded foamed particles or the foamed molded product was measured by the same method as the melting point measurement method of the linear polypropylene resin, except that the extruded foamed particles or the foamed molded product was used instead of the linear polypropylene resin. can be obtained. As with the melting point of the linear polypropylene resin, the melting point of the extruded expanded particles or foamed article can be obtained from the DSC curve of the extruded expanded particles or expanded article.
  • a method for producing the present extruded foamed particles is not particularly limited, and a known extrusion foaming method can be employed.
  • One aspect of the method for producing the present extruded expanded particles includes, for example, the following aspects: Extrusion foaming method using branched polypropylene resin, thermoplastic elastomer, inorganic colorant, and foaming agent
  • Extrusion foaming method using branched polypropylene resin, thermoplastic elastomer, inorganic colorant, and foaming agent A polypropylene-based resin extrusion foaming process comprising a first step of producing an extruded foam, and a second step of producing extruded foamed particles by cutting the extruded foam obtained in the first step into a particle shape. Particle production method.
  • the first step will be specifically described.
  • a specific example of the first step includes a step of performing the following (c1) and (c2) in order: (c1) a resin mixture containing a branched polypropylene resin, a thermoplastic elastomer and an inorganic colorant, and foaming; and (c2) a melt-kneading step of obtaining a melt-kneaded product by melt-kneading the composition containing the agent in a device equipped with a die; An extrusion foaming step in which the melt-kneaded product is extruded to obtain an extruded foam.
  • a bubble nucleating agent e.g., an antioxidant, a metal deactivator, a phosphorus-based processing stabilizer, an ultraviolet absorber, an ultraviolet stabilizer , optical brighteners, metallic soaps, and antacid adsorbents, etc.
  • a stabilizer e.g., an antioxidant, a metal deactivator, a phosphorus-based processing stabilizer, an ultraviolet absorber, an ultraviolet stabilizer , optical brighteners, metallic soaps, and antacid adsorbents, etc.
  • additives e.g., colorants, lubricants, plasticizers, fillers, reinforcing agents, pigments, dyes, flame retardants, and antistatic agents, etc.
  • the resin mixture in (c1) can also be said to be a base resin.
  • the branched polypropylene resin, thermoplastic elastomer, inorganic colorant and foaming agent, as well as optionally used other resins, cell nucleating agents and other components are , or may be mixed in the device.
  • the composition may be supplied to the device, and the composition may be prepared (completed) in the device.
  • the inorganic colorant may be blended (used) as a masterbatch.
  • a masterbatch of an inorganic colorant can be obtained by mixing an inorganic colorant and an arbitrary resin (for example, a polypropylene-based resin) in an arbitrary ratio.
  • concentration of the inorganic colorant in the masterbatch is not particularly limited.
  • the masterbatch may contain 40% by weight of the inorganic colorant in 100% by weight of the masterbatch.
  • the melt-kneaded material may be cooled before extruding the melt-kneaded material into the low-pressure region.
  • the foaming agent used in one embodiment of the present invention is not particularly limited, and known organic foaming agents and inorganic foaming agents can be used.
  • organic foaming agents include aliphatic hydrocarbons such as propane and fluorohydrocarbons such as difluoroethane.
  • inorganic foaming agents include carbon dioxide, air, inorganic gases such as nitrogen, and water.
  • the foaming agents described above may be used alone or in combination of two or more.
  • the extruded polypropylene resin particles are obtained using, as a blowing agent, one or more selected from the group consisting of aliphatic hydrocarbons, fluorocarbons, carbon dioxide gas, air, nitrogen and water.
  • the amount of the foaming agent used in the first step may be appropriately adjusted according to the type of the foaming agent and the target expansion ratio of the extruded polypropylene-based resin expanded particles.
  • the second step is a step of cutting the extruded foam obtained in the first step into particles to produce extruded foamed particles. "Cut into particles” is also referred to as "shredding".
  • the extruded expanded particles obtained in the second step are extruded expanded particles of polypropylene resin.
  • the shredding method in the second step is preferably a cold cut method or a hot cut method.
  • the cold cut method includes a strand cut method.
  • the hot cut method includes an under water cut method and a water ring cut method.
  • the extruded foam obtained in the first step may be completely foamed before being cut into particles in the second step, or may be in the middle of being foamed. That is, in the second step, the completely foamed extruded foam may be cut into particles, or the extruded foam in the middle of foaming may be cut into particles.
  • the extruded foam obtained in the first step includes not only the extruded foam that has been completely foamed but also the extruded foam that is being foamed.
  • the extruded foam may be cooled before, at the same time as, or after cutting the extruded foam into particles.
  • the open cell ratio of the present extruded expanded particles is preferably as low as possible.
  • the open cell ratio of the extruded expanded beads is preferably 15% or less, more preferably 10% or less, even more preferably 7% or less, and particularly preferably 5% or less.
  • the lower limit of the open cell content of the extruded polypropylene-based resin particles is not particularly limited, and is, for example, 0.0% or more.
  • the extruded expanded beads when the extruded expanded beads are molded, the cells hardly break and shrink, so the advantage that the extruded expanded beads are excellent in moldability, and (b) the extruded expanded beads are
  • the foamed molded article obtained by using it has the advantage that characteristics such as shape arbitrariness, cushioning properties, light weight, compressive strength and heat insulating properties are more exhibited.
  • the open cell ratio of the extruded polypropylene resin expanded particles is described in ASTM D2856-87 Procedure C (PROCEDURE C) using an air comparison type hydrometer [manufactured by Tokyo Science Co., Ltd., model 1000].
  • the average cell diameter of the extruded expanded particles is preferably 100 ⁇ m to 500 ⁇ m, more preferably 100 ⁇ m to 400 ⁇ m, even more preferably 120 ⁇ m to 350 ⁇ m, and particularly preferably 150 ⁇ m to 300 ⁇ m. According to this configuration, the extruded foamed beads have an advantage of excellent moldability because the cells are hardly broken and contracted when the extruded foamed beads are molded.
  • the bulk density of the extruded expanded particles is preferably 60 g/L or more, more preferably 70 g/L or more, still more preferably 80 g/L or more, and particularly preferably 90 g/L or more. preferable.
  • the upper limit of the bulk density of the extruded expanded particles is not particularly limited, and is, for example, 300 g/L or less. As described above, regarding the tendency of cracks due to deformation in the foam molded product, the lower the extruded foam particles that are the material of the foam molded product, the lower the tensile elongation at break of the obtained foam molded product. be.
  • the extruded expanded particles have the above-described structure, even if the magnification is low enough to have a bulk density of 60 g/L or more, the tensile elongation at break is high, that is, it is possible to provide a foamed molded article with excellent breaking resistance.
  • the bulk density of the extruded expanded particles is within the above range, the polypropylene-based resin foamed molded article obtained using the extruded expanded particles has properties such as shape arbitrariness, cushioning properties, lightness, and heat insulation properties. It also has the advantage that the characteristics are exhibited more.
  • the inside of the obtained extruded expanded beads is pressurized with an inert gas, and then the extrusion is performed.
  • a method of heating expanded beads to increase the expansion ratio (for example, the method described in JP-A-10-237212) can also be used.
  • the extruded foam particles have the advantage of a wide molding width (eg greater than 0). In the present specification, it is intended that the larger the molding width of the extruded expanded beads, the better the moldability of the extruded expanded beads.
  • the term "forming width of extruded foam particles” refers to the vapor pressure (gauge pressure ) is intended to have a width of: (x1) sufficient fusion between the extruded foam particles (for example, fusion rate of 80% or more), (x2) sufficient gaps between the extruded foam particles, and (x3)
  • the surface is beautiful, (x4) the surface is not melted, and (x5) the mold used for in-mold foam molding does not shrink by 5% or more with respect to the dimensions of the mold.
  • the foamed molded article sticks to the mold and cannot be taken out, it is determined that the foamed molded article cannot be obtained.
  • vapor pressure is too low for the extruded expanded particles, (a) the fusion between the extruded expanded particles is insufficient, (b) the gaps between the extruded expanded particles are not sufficiently filled, and (c) the surface and/or (d) shrinkage. If the vapor pressure is too high for the extruded foam particles, foamed articles with (a) melted surfaces and/or (b) insufficient compressive strength may be obtained.
  • the applicable vapor pressure range of the extruded expanded particles is not particularly limited. It is preferable that the molding width of the extruded expanded particles is as wide as possible.
  • the molding width of the extruded expanded beads is more preferably 0.02 MPa or more, more preferably 0.03 MPa or more, still more preferably 0.04 MPa or more, and preferably 0.05 MPa or more. Especially preferred.
  • the extruded expanded beads obtained by the extrusion foaming method are characterized by having one crystal peak in the DSC curve of the extruded expanded beads obtained by DSC measurement.
  • the polypropylene-based resin expanded beads having one crystal peak in the DSC curve of the extruded expanded beads obtained by DSC measurement were obtained by the extrusion expansion method.
  • This extruded expanded bead can also have one crystal peak in the DSC curve of the extruded expanded bead obtained by DSC measurement.
  • the DSC curve of the extruded expanded particles used for calculating the crystal peak is obtained by raising the temperature of 5 to 6 mg of the extruded expanded particles from 40 ° C. to 220 ° C. at a heating rate of 10 ° C./min by DSC measurement. is the curve obtained while
  • a polypropylene-based resin foam molded article includes extruded expanded particles containing a base resin containing 64.5% by weight or more of a polypropylene-based resin having a branched structure in 100% by weight of the base resin.
  • the extruded foamed particles have an open cell rate of 15% or less, the density of the foamed molding is 60 g/L to 300 g/L, and the tensile elongation at break of the foamed molding is 10%. That's it.
  • the method for molding the extruded foamed particles is not particularly limited, but an example thereof includes in-mold foam molding using a mold equipped with a fixed mold that cannot be driven and a movable mold that can be driven.
  • the in-mold foam molding method is not particularly limited, and a known method can be employed.
  • the density of the present foam molded product is 60 g/L to 300 g/L, preferably 70 g/L to 300 g/L, more preferably 80 g/L to 300 g/L, and 90 g/L to 300 g. /L is more preferred.
  • the foam molded article has a density of 60 g/L or more, a tensile elongation at break of 10% or more, that is, a low tensile strength, and has excellent resistance to breakage.
  • the foamed molding has the advantage of exhibiting more features such as shape arbitrariness, cushioning properties, light weight, and heat insulating properties.
  • the density of the polypropylene-based resin foam-molded product is calculated by performing the following (1) to (3) in order: (1) Measure the weight W1 (g) of the polypropylene-based resin foam-molded product. (2) Measure the volume V1 (L) of the polypropylene resin foam molded product whose weight W1 was measured; (3) Divide W1 by V1 and calculate the obtained value as the density of the polypropylene resin foam molded product (g /L).
  • the method for measuring the volume of the foam molded article is not particularly limited.
  • the volume V1 can be obtained by submerging the foam molded article in a container filled with water and measuring the amount of overflowing water.
  • the foam molded article is plate-shaped, the length, width, and thickness of the foam molded article may be measured, and the volume V1 may be calculated from these lengths.
  • density measurement a foamed molded product that has been sufficiently dried after molding and left in an environment of room temperature of 23° C. and humidity of 50% for 24 hours or more may be used.
  • the present foam molded article has an advantage of high tensile elongation at break.
  • the tensile elongation at break of the foamed molded product is preferably 10% or more, more preferably 12% or more, more preferably 13% or more, and particularly preferably 15% or more.
  • the tensile elongation at break of a polypropylene-based resin foam molded product is a value obtained by performing a tensile elongation test based on ISO 1798 and measuring it. Specifically, the tensile elongation at break of the foam molded product is calculated by performing the following (1) to (4) in order: (1) A dumbbell-shaped foam molded product specified in ISO 1798 is produced, (2) Fix both ends of the test piece; (3) Pull one side of the test piece until the test piece breaks; (4) Test piece The tensile elongation at break of the foam molded product is defined as the elongation percentage of the test piece when it breaks.
  • the polypropylene-based resin foam molded article according to another embodiment of the present invention may have the following configuration: [2. Extruded expanded polypropylene resin particles].
  • An embodiment of the present invention may have the following configuration.
  • a base resin containing a polypropylene-based resin having a branched structure is included, and the melt tension of the polypropylene-based resin having a branched structure is 5 cN to 50 cN, and the base resin further includes a thermoplastic elastomer and an inorganic A polypropylene-based resin extruded expanded particle containing a colorant.
  • the base resin contains 64.5% to 94.5% by weight of the polypropylene-based resin having the branched structure in 100% by weight of the base resin. foam particles.
  • the inorganic colorant is one or more selected from the group consisting of carbon black, red clay, ocher, green clay, titanium oxide, cobalt blue, Prussian blue, and chromium oxide green, [1] to [4 ].
  • thermoplastic elastomer is a polyolefin elastomer.
  • thermoplastic elastomer has a tensile elongation at break of 500% to 1000%.
  • thermoplastic elastomer has a melting point of 40°C to 110°C.
  • the polypropylene resin having a branched structure is a polypropylene resin having a branched structure obtained by melt-kneading a mixture containing a linear polypropylene resin, a conjugated diene compound and a radical polymerization initiator, [1 ] to [10].
  • the extruded polypropylene resin particles are obtained by using, as a blowing agent, one or more selected from the group consisting of aliphatic hydrocarbons, fluorocarbons, carbon dioxide, air, nitrogen, and water.
  • the polypropylene-based resin extruded foamed particles according to any one of [1] to [11], which are obtained from the present invention.
  • melt tension of polypropylene resin having a branched structure was measured using Capilograph 1D (manufactured by Toyo Seiki Seisakusho, Ltd., Japan). Specifically, (1) to (5) were as follows: (1) A barrel with a diameter of 9.55 mm heated to 200° C. was filled with the branched polypropylene resin used in Examples and Comparative Examples.
  • the width of the steam pressure (gauge pressure) during in-mold foam molding was determined to obtain a polypropylene-based resin foam molded article that satisfies the following: (x1) sufficient fusion between extruded foam particles (internal (x2) the gaps between the extruded expanded particles are sufficiently filled, (x3) the surface is beautiful, (x4) the surface is not melted, and (x5) A foam-molded article in which the shape of the mold used for in-mold foam molding is transferred without shrinking by 5% or more with respect to the dimensions of the mold.
  • a foamed molded article was used which was dried in a 75 to 80° C. dryer for 12 to 24 hours after molding and allowed to pass in an environment of 23° C. and humidity of 50% for 24 hours or longer.
  • the polypropylene resin foam molding was hit near the notch with a hammer or the like to break the polypropylene resin foam molding along the notch; Visually observe a certain range, excluding the notch portion and including the center in the thickness direction, to find all the extruded expanded particles present within the range, and the extruded expanded particles within the range that are broken outside the particle interface.
  • the density of the foam molded body was calculated by performing the following (1) to (3) in order: (1) the weight W1 (g) of the foam molded body was measured; (2) the foam molded body whose weight W1 was measured The length, width, thickness, and length of each were measured, and the volume V1 (L) of the foamed molding was calculated from those lengths; (3) W1 was divided by V1, and the obtained value was the foamed
  • the density (g/L) of the compact was used.
  • a foamed molded article was used which had been sufficiently dried after molding and allowed to stand at room temperature of 23° C. and humidity of 50% for 24 hours or more.
  • ⁇ Tensile elongation at break> A tensile elongation test based on ISO 1798 was performed to measure the tensile elongation at break of the foam molded product. Specifically, the tensile elongation at break of the foam molded product was calculated by performing the following (1) to (4) in order: (1) A dumbbell-shaped foam molded product specified in ISO 1798 was produced, (2) Both ends of the test piece were fixed; (3) One side of the test piece was pulled until the test piece broke; (4) The test piece The tensile elongation at break of the foam molded product was defined as the elongation of the test piece when the foam was broken. The values obtained are listed in Tables 1-3.
  • test piece density ⁇ Density measurement of test piece used in tensile breaking elongation test> The volume Ld of the test piece (dumbbell-shaped foam molded article) used in the tensile elongation test was determined. Next, the weight Wd (g) of the test piece was measured with an electronic balance. Then, Wd was divided by Ld to obtain the density of the test piece used in the tensile elongation test. The obtained values are listed in the column of "test piece density" in Tables 1 to 3.
  • ⁇ Comprehensive evaluation> Comprehensive evaluations based on the following criteria are shown in Tables 1-3.
  • Polypropylene-based resin having a branched structure As a polypropylene resin having a branched structure and having a melt tension of 10 cN or more and 50 cN or less, "WB140HMS” manufactured by Borealis (measured melt tension of 14 cN and melting point of 161° C.) was used.
  • the measured value of the melt tension of the branched polypropylene resin was measured using Capilograph 1D (manufactured by Toyo Seiki Seisakusho Co., Ltd., Japan). Specifically, it was as follows (1) to (5): (1) A sample resin for measurement (branched polypropylene resin) was placed in a barrel with a diameter of 9.55 mm heated to the test temperature (200 ° C.) (2) the sample resin was then heated for 10 minutes in a barrel heated to the test temperature (200° C.); (3) then through a capillary die (1.0 mm bore, 10 mm length) At a constant piston descent speed (10 mm/min), the sample resin was drawn out in the form of a string, and the string was passed through a tension detection pulley located 350 mm below the capillary die, and then wound.
  • Capilograph 1D manufactured by Toyo Seiki Seisakusho Co., Ltd., Japan. Specifically, it was as follows (1) to (5): (1) A sample resin for measurement (branched polypropylene
  • the winding speed of the string-like material was kept constant from an initial speed of 1.0 m/min until reaching a speed of 200 m/min in 4 minutes.
  • the load applied to the pulley with a load cell when the string broke was measured as melt tension.
  • the melting point of the branched polypropylene-based resin was a value obtained by measuring by the DSC method in the same manner as the melting point of the linear polypropylene-based resin, except that a thermoplastic elastomer was used instead of the linear polypropylene-based resin. .
  • thermoplastic elastomer A polyolefin elastomer resin (“LUCENE LC180”, abbreviation E1, manufactured by LG Chem) or a polyolefin elastomer resin (“VERSIFY 2300,” abbreviation E2, manufactured by Dow Inc) was used as the thermoplastic elastomer.
  • E1 has a tensile elongation at break of 850%, a melting point of 73° C., and an MFR of 2.3 g/10 minutes.
  • E2 has a tensile elongation at break of 730%, a melting point of 66° C., and an MFR of 2.0 g/10 minutes.
  • the tensile elongation at break of E1 and E2 was a value obtained by measuring E1 and E2 as samples according to ASTM D638.
  • the melting points of E1 and E2 were values measured by the DSC method in the same manner as the melting point of the linear polypropylene resin described above, except that a thermoplastic elastomer was used instead of the linear polypropylene resin.
  • the MFRs of E1 and E2 were values obtained by measuring under the conditions of a temperature of 230° C. and a load of 2.16 kg according to ISO 1133, like the MFR of the linear polypropylene resin.
  • Carbon black was used as an inorganic colorant.
  • the carbon black was used as a carbon black masterbatch with a carbon black concentration of 40%.
  • a carbon black masterbatch was prepared as follows. Carbon black was blended with the polypropylene resin having a branched structure so as to have a concentration of 40%, melt-kneaded with an extruder, and the resulting melt-kneaded product was extruded into water and cut.
  • the column of "inorganic colorant” shows the numbers outside the parentheses and the numbers inside the parentheses. The numbers outside the parentheses indicate the amount of the carbon black masterbatch blended, and the numbers in the parentheses indicate the amount of carbon black actually blended.
  • Examples and comparative examples are described below.
  • an apparatus in which a twin-screw extruder with a shaft diameter of ⁇ 26 mm, a melt cooler, a diverter valve, and a die were connected in series was used as an apparatus used for producing extruded expanded particles.
  • Examples 1 to 9, Comparative Example 1 and Reference Examples 1 to 4 (a) a polypropylene resin having a branched structure, (b) a thermoplastic elastomer and/or an ethylene-propylene random copolymer shown in Tables 1 to 3, and (c) an inorganic colorant (carbon black concentration of 40 % carbon black masterbatch) and (d) cell nucleating agent were mixed in the amounts shown in Tables 1 to 3 to prepare a resin mixture. Then, the resin mixture was supplied to a twin-screw extruder and melt-kneaded at a cylinder temperature of 210°C.
  • the resulting melt-kneaded material was cooled by passing through a melt cooler that was connected to the tip of the twin-screw extruder and set to 185°C. After that, the melt-kneaded material was extruded from a die attached to the tip of the melt cooler into a region filled with water at a pressure lower than the internal pressure of the apparatus to foam. In the region filled with water, a rotary cutter attached to the tip of the die cut the composition immediately after passing through the die to obtain extruded polypropylene resin expanded particles. The temperature of the melt-kneaded product (composition) immediately before entering the die was 205°C.
  • the temperature of the melt-kneaded material immediately before entering the die is the temperature set in contact with the composition near the outlet of the diverter valve, specifically, at a point 10 mm upstream from the inlet of the die along the extrusion direction. measured by a meter.
  • the pressure of water against the composition was 0.35 MPa (gauge pressure) in Examples 1 to 7 and Comparative Example 1, and 0.40 MPa (gauge pressure) in Reference Examples 1 to 4. there were.
  • the obtained extruded foamed particles were measured for open cell ratio, average cell diameter and bulk density, and the results are shown in Tables 1 to 3. Further, the formed width was evaluated using the obtained extruded expanded particles, and the obtained results are shown in the columns of "steam pressure range” and "formed width” in Tables 1 to 3.
  • a block-shaped mold (length 400 mm ⁇ width 300 mm ⁇ thickness variable) was set to a thickness of 52 mm (cracking rate 30%).
  • the mold was compressed to a thickness of 40 mm.
  • the air in the mold is expelled with steam of 0.10 MPa (gauge pressure), and then heat molding is performed for 10 seconds using steam exhibiting a steam pressure of 0.20 MPa (gauge pressure) to perform foam molding.
  • melt-kneaded product was extruded in a strand shape from a die.
  • the extruded strands were then water cooled in a water bath.
  • the water-cooled strand was cut to produce polypropylene resin particles (1.80 mg/particle).
  • the valve at the bottom of the container was opened to release the aqueous dispersion to atmospheric pressure through an orifice plate with an opening diameter of 4.0 mm ⁇ .
  • foamed polypropylene resin particles were obtained.
  • the obtained expanded polypropylene resin particles were washed with a 1% hydrochloric acid solution, thoroughly washed with water, and then dried.
  • the expanded polypropylene resin particles thus obtained were measured for open cell ratio, average cell diameter and bulk density, and the results are shown in Table 3.
  • the molding width was evaluated using the expanded polypropylene resin particles obtained, and the obtained results are shown in the columns of "Vapor Pressure Width" and "Molding Width” in Table 3.
  • a polypropylene resin foam molded article was produced in the same manner as described above.
  • the density of the foamed polypropylene resin article, the density of the test piece, and the tensile elongation at break of the obtained foamed polypropylene resin article were measured, and the results are shown in Table 3. Further, based on the evaluation criteria described above, a comprehensive evaluation was performed, and the results are shown in Table 3.
  • the tensile elongation at break is 10% or more. It can be seen that the molding width is 0.04 MPa or more, and the breakage resistance and moldability are improved.
  • extruded expanded particles with excellent moldability can be provided. Therefore, one embodiment of the present invention can be suitably used to obtain a foam molded article having excellent breakage resistance. Therefore, one embodiment of the present invention can be suitably used in fields such as automobile interior parts, cushioning materials, packaging materials, and heat insulating materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

成形性に優れるポリプロピレン系樹脂押出発泡粒子、および耐破断性に優れるポリプロピレン系樹脂発泡成形体を提供すること。基材樹脂を発泡してなり、基材樹脂は、特定の構成を有する分岐構造を有するポリプロピレン系樹脂、熱可塑性エラストマーおよび無機系着色剤を各々特定量含む、ポリプロピレン系樹脂押出発泡粒子とする。

Description

ポリプロピレン系樹脂押出発泡粒子およびポリプロピレン系樹脂発泡成形体
 本発明は、ポリプロピレン系樹脂押出発泡粒子およびポリプロピレン系樹脂発泡成形体に関する。
 ポリプロピレン系樹脂発泡粒子を用いて得られるポリプロピレン系樹脂発泡成形体は、発泡成形体の長所である形状の任意性、緩衝性、軽量性、および断熱性などの特徴を有する。
 ポリプロピレン系樹脂発泡粒子の製造方法としては、不連続プロセスであるバッチ発泡法、および連続プロセスである押出発泡法等が挙げられる。押出発泡法は、効率面および環境面等において多くの利点を有する。
 押出発泡法にてポリプロピレン系樹脂発泡粒子を得る技術として、特許文献1および2に記載の技術が挙げられる。
 特許文献1には、損失正接と溶融破断引取速度とが特定の関係式を満たすポリプロピレン系樹脂からなることを特徴とする、ポリプロピレン系樹脂予備発泡粒子、が開示されている。
 特許文献2には、(a)特定の構成を有するランダムポリプロピレン樹脂と、(b)共役ジエン化合物と、(c)特定の構成を有するラジカル重合開始剤の混合物とを溶融混練して改質ポリプロピレン樹脂を得る溶融混練工程を含む、改質ポリプロピレン樹脂の製造方法が開示されている。
国際公開公報WO2018/016399号 国際公開公報WO2020/004429号
 しかしながら、上述のような従来技術は、ポリプロピレン系樹脂押出発泡粒子の成形性、およびポリプロピレン系樹脂発泡成形体の耐破断性の観点から十分なものでなく、さらなる改善の余地があった。
 本発明の一実施形態は、前記問題点に鑑みなされたものであり、その目的は、成形性に優れるポリプロピレン系樹脂押出発泡粒子、および耐破断性に優れるポリプロピレン系樹脂発泡成形体を提供することである。
 すなわち本発明の一実施形態に係るポリプロピレン系樹脂押出発泡粒子は、分岐構造を有するポリプロピレン系樹脂を含有する基材樹脂を含み、前記分岐構造を有するポリプロピレン系樹脂の溶融張力は5cN~50cNであり、前記基材樹脂は、さらに、熱可塑性エラストマーおよび無機系着色剤を含有する。
 本発明の一実施形態によれば、成形性に優れるポリプロピレン系樹脂押出発泡粒子、および耐破断性に優れるポリプロピレン系樹脂発泡成形体を提供することができるという効果を奏する。
 本発明の一実施形態について以下に説明するが、本発明はこれに限定されるものではない。本発明は、以下に説明する各構成に限定されるものではなく、請求の範囲に示した範囲で種々の変更が可能である。また、異なる実施形態または実施例にそれぞれ開示された技術的手段を組み合わせて得られる実施形態または実施例についても、本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。なお、本明細書中に記載された学術文献および特許文献の全てが、本明細書中において参考文献として援用される。また、本明細書において特記しない限り、数値範囲を表す「A~B」は、「A以上(Aを含みかつAより大きい)B以下(Bを含みかつBより小さい)」を意図する。
 また、本明細書において特記しない限り、構造単位として、X単量体に由来する構造単位と、X単量体に由来する構造単位と、・・・およびX単量体(nは3以上の整数)とを含む共重合体を、「X/X/・・・/X共重合体」とも称する。X/X/・・・/X共重合体としては、明示されている場合を除き、重合様式は特に限定されず、ランダム共重合体であってもよく、ブロック共重合体であってもよく、グラフト共重合体であってもよい。
 〔1.本発明の一実施形態の技術的思想〕
 押出発泡法にてポリプロピレン系樹脂押出発泡粒子を製造する場合、完全溶融状態の樹脂組成物を発泡する必要がある。それ故、分岐構造を有していない線状ポリプロピレン系樹脂を用いて押出発泡法にてポリプロピレン系樹脂押出発泡粒子を製造する場合、発泡時の樹脂組成物の粘度が低く、樹脂組成物が発泡力に耐えられないため、セルが破泡し得る。そして、得られる押出発泡粒子の連続気泡率が高いため、成形時に収縮し、良品の発泡成形体が得られない場合がある。この問題を解決するための技術として、特許文献1および2に記載のような、架橋構造を導入したポリプロピレン樹脂が提案されている。
 しかしながら、本発明者らは、分岐構造を有するポリプロピレン樹脂を用いて得られた押出発泡粒子を型内発泡成形した場合、得られた発泡成形体は、衝撃を受けたときなど、少しの変形により割れてしまう傾向があることを独自に見出した。分岐構造を有するポリプロピレン樹脂を押出発泡して成る押出発泡粒子から得られる発泡成形体における、変形に起因する割れの傾向は、特に、低倍の押出発泡粒子を用いた低倍の発泡成形体において、顕著であった。これらの理由は定かではないが、本発明者らは以下のように推察した:発泡成形体中の樹脂の分子鎖の中には、架橋部分(「分岐」ともいえる)が多い。発泡成形体が延伸されるとき、当該架橋部分(分岐)が絡み合って、発泡成形体がそれ以上延びないように作用し得る。架橋部分(分岐)が絡んで延びないため、分子鎖が切れるしかなくなるとも考えられる。すなわち、本発明者らは上述の理由を、発泡成形体の柔軟性が低下し、発泡成形体が伸びにくくなり、具体的には発泡成形体の引張破断伸び率が低下する傾向にあるため、と推察した。
 すなわち、上述した特許文献1および2に記載の技術には、発泡成形体の耐破断性の観点から、さらなる改善の余地があった。
 そこで、本発明者らは、耐破断性に優れる発泡成形体を提供し得る押出発泡粒子を提供するため、鋭意検討を行った。その結果、本発明者らは、驚くべきことに、以下の新規知見を独自に見出した:分岐構造を有するポリプロピレン系樹脂と分岐構造を有していない線状ポリプロピレン系樹脂とを併用することにより、耐破断性に優れる発泡成形体を提供し得る押出発泡粒子を提供できる。
 ところで、発泡成形体の使用用途によっては適した色(有色)が存在する、発泡成形体表面の汚れを目立たなくする、および発泡成形体に耐光性を付与するなどの理由から、有色の発泡成形体が要求される場合がある。本発明者らは、無機系着色剤を使用し、かつ分岐構造を有するポリプロピレン系樹脂と分岐構造を有していない線状ポリプロピレン系樹脂とを併用して有色の押出発泡粒子を得、さらに有色の押出発泡粒子から有色の発泡成形体を得ようと試みた。その結果、本発明者らは、驚くべきことに、(a)このようにして得られた有色の押出発泡粒子は、発泡成形体の良品を得るための成形幅が著しく狭く、かつ(b)辛うじて得られた有色の発泡成形体は、耐破断性が著しく低いことを独自に見出した。
 そこで、本発明者らは、成形性に優れるポリプロピレン系樹脂押出発泡粒子、および耐破断性に優れるポリプロピレン系樹脂発泡成形体の両方を提供するため、さらに鋭意検討を行った。その結果、本発明者らは、驚くべきことに、以下の新規知見を独自に見出し、本発明を完成させるに至った:分岐構造を有するポリプロピレン系樹脂と熱可塑性エラストマーとを併用することにより、無機系着色剤を使用した場合であっても、(a)成形性に優れるポリプロピレン系樹脂押出発泡粒子、および(b)耐破断性に優れるポリプロピレン系樹脂発泡成形体、の両方を提供することができる。
 〔2.ポリプロピレン系樹脂押出発泡粒子〕
 本発明の一実施形態に係るポリプロピレン系樹脂押出発泡粒子は、分岐構造を有するポリプロピレン系樹脂を含有する基材樹脂を含み、前記分岐構造を有するポリプロピレン系樹脂の溶融張力は5cN~50cNであり、前記基材樹脂は、さらに、熱可塑性エラストマーおよび無機系着色剤を含有する。
 ポリプロピレン系樹脂押出発泡粒子は、当該ポリプロピレン系樹脂押出発泡粒子を成形(例えば、型内発泡成形)することにより、ポリプロピレン系樹脂発泡成形体とすることができる。本明細書において、「ポリプロピレン系樹脂押出発泡粒子」を「押出発泡粒子」と称する場合があり、「本発明の一実施形態に係るポリプロピレン系樹脂押出発泡粒子」を「本押出発泡粒子」と称する場合がある。「ポリプロピレン系樹脂発泡成形体」を「発泡成形体」と称する場合があり、「本発明の一実施形態に係るポリプロピレン系樹脂発泡成形体」を「本発泡成形体」と称する場合がある。
 本押出発泡粒子は、上述した構成を有するため、(a)成形性に優れるという利点を有し、かつ(b)耐破断性に優れる発泡成形体を提供できるという利点を有する。なお、本明細書において、本押出発泡粒子の成形性は、当該押出発泡粒子の成形幅によって評価される。成形幅については後述する。また、本明細書において、本発泡成形体の耐破断性は、当該発泡成形体の引張破断伸び率によって評価される。引張破断伸び率については後述する。
 (2-1.基材樹脂)
 基材樹脂は、(a)分岐構造を有するポリプロピレン系樹脂、(b)熱可塑性エラストマーおよび無機系着色剤を含む。基材樹脂は、さらに任意で気泡核形成剤等の添加剤を含み得る。
 本明細書において、「分岐構造を有するポリプロピレン系樹脂」とは、(a)分岐構造が導入されていないポリプロピレン系樹脂の分子同士を分子間で一部架橋させたポリプロピレン系樹脂、および(b)分岐構造が導入されていないポリプロピレン系樹脂に対して、(ポリ)プロピレン以外のジエン化合物等を分岐鎖として導入したポリプロピレン系樹脂を意図する。本明細書において、「分岐構造が導入されていないポリプロピレン系樹脂」を「線状ポリプロピレン系樹脂」と称する場合があり、「分岐構造を有するポリプロピレン系樹脂」を「分岐状ポリプロピレン系樹脂」と称する場合があり、「線状ポリプロピレン系樹脂」および「分岐状ポリプロピレン系樹脂」をまとめて「ポリプロピレン系樹脂」と称する場合がある。線状ポリプロピレン系樹脂は、分岐状ポリプロピレン系樹脂の原料ともいえる。
 本明細書において、ポリプロピレン系樹脂とは、樹脂に含まれる全構造単位100モル%中、プロピレン単量体に由来する構造単位を50モル%以上含む樹脂を意図する。本明細書において、「プロピレン単量体に由来する構造単位」を「プロピレン単位」と称する場合がある。
 (線状ポリプロピレン系樹脂)
 線状ポリプロピレン系樹脂は、(a)プロピレンの単独重合体であってもよく、(b)プロピレンとプロピレン以外の単量体とのブロック共重合体もしくはランダム共重合体であってもよく、または(c)これらの2種以上の混合物であってもよい。
 線状ポリプロピレン系樹脂は、プロピレン単位に加えて、プロピレン単量体以外の単量体に由来する構造単位を1単位以上有していてもよく、1種以上有していてもよい。線状ポリプロピレン系樹脂の製造で使用される「プロピレン単量体以外の単量体」を「コモノマー」と称する場合もあり、線状ポリプロピレン系樹脂に含まれる「プロピレン単量体以外の単量体に由来する構造単位」を「コモノマー単位」と称する場合もある。
 コモノマーとしては、以下のような単量体が挙げられる:(a)エチレン、1-ブテン、イソブテン、1-ペンテン、3-メチル-1-ブテン、1-ヘキセン、4-メチル-1-ペンテン、3,4-ジメチル-1-ブテン、1-ヘプテン、3-メチル-1-ヘキセン、1-オクテン、1-デセンなどの炭素数2または4~12のα-オレフィン、(b)シクロペンテン、ノルボルネン、テトラシクロ[6,2,11,8,13,6]-4-ドデセンなどの環状オレフィン、(c)5-メチレン-2-ノルボルネン、5-エチリデン-2-ノルボルネン、1,4-ヘキサジエン、メチル-1,4-ヘキサジエン、7-メチル-1,6-オクタジエンなどのジエン、並びに(d)塩化ビニル、塩化ビニリデン、アクリロニトリル、メタクリロニトリル、酢酸ビニル、アクリル酸、アクリル酸エステル、メタクリル酸、メタクリル酸エステル、マレイン酸、無水マレイン酸、スチレン系単量体、ビニルトルエン、ジビニルベンゼンなどのビニル系単量体、など。
 アクリル酸エステルとしては、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸ヘキシル、アクリル酸2-エチルヘキシル、アクリル酸ラウリル、アクリル酸ステアリル、アクリル酸2-ヒドロキシエチル、アクリル酸2-ヒドロキシプロピルおよびアクリル酸グリシジルなどが挙げられる。
 メタクリル酸エステルとしては、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸ヘキシル、メタクリル酸2-エチルヘキシル、メタクリル酸ラウリル、メタクリル酸ステアリル、メタクリル酸2-ヒドロキシエチル、メタクリル酸2-ヒドロキシプロピルおよびメタクリル酸グリシジルなどが挙げられる。
 スチレン系単量体としては、スチレン、メチルスチレン、ジメチルスチレン、アルファメチルスチレン、パラメチルスチレン、エチルスチレン、ジエチルスチレン、イソプロピルスチレン、t-ブチルスチレン、ブロモスチレン、ジブロモスチレン、トリブロモスチレン、クロロスチレン、ジクロロスチレンおよびトリクロロスチレンなどが挙げられる。
 線状ポリプロピレン系樹脂は、コモノマー単位として、炭素数2または4~12のα-オレフィンに由来する構造単位を有することが好ましく、エチレン、1-ブテン、イソブテン、1-ペンテン、3-メチル-1-ブテン、1-ヘキセン、4-メチル-1-ペンテン、3,4-ジメチル-1-ブテン、1-ヘプテン、3-メチル-1-ヘキセン、1-オクテンおよび/または1-デセンなどに由来する構造単位を有することがより好ましく、エチレン、1-ブテン、イソブテン、1-ペンテン、3-メチル-1-ブテン、1-ヘキセンおよび/または4-メチル-1-ペンテンに由来する構造単位を有することがより好ましく、エチレン、1-ブテン、イソブテンおよび/または1-ペンテンに由来する構造単位を有することがよりさらに好ましく、エチレンおよび/または1-ブテンに由来する構造単位を有することがより特に好ましい。当該構成によると、(a)高い溶融張力および低いゲル分率を有する分岐状ポリプロピレン系樹脂が得られるという利点、並びに(b)得られる分岐状ポリプロピレン系樹脂が成形性に優れるポリプロピレン系樹脂押出発泡粒子を提供できるという利点を有する。
 線状ポリプロピレン系樹脂は、プロピレン単独重合体、ポリプロピレン系ブロック共重合体および/またはポリプロピレン系ランダム共重合体であることが好ましく、プロピレン単独重合体および/またはポリプロピレン系ランダム共重合体であることがより好ましい。当該構成によると、(a)高い溶融張力および低いゲル分率を有する分岐状ポリプロピレン系樹脂が得られるという利点、並びに(b)得られる分岐状ポリプロピレン系樹脂が成形性に優れるポリプロピレン系樹脂押出発泡粒子を提供できるという利点を有する。
 線状ポリプロピレン系樹脂は、当該線状ポリプロピレン系樹脂に含まれる全構造単位100モル%中、プロピレン単位を90モル%以上含むことが好ましく、93モル%以上含むことがより好ましく、95モル%以上含むことがさらに好ましく、97モル%以上含むことが特に好ましい。当該構成によると、高い溶融張力および低いゲル分率を有する分岐状ポリプロピレン系樹脂が得られるという利点を有する。
 線状ポリプロピレン系樹脂の融点は、特に限定されない。線状ポリプロピレン系樹脂の融点は、例えば、130℃~165℃であることが好ましく、135℃~164℃であることがより好ましく、138℃~163℃であることがさらに好ましく、140℃~162℃であることが特に好ましい。線状ポリプロピレン系樹脂の融点が上述した範囲内である場合、(a)得られる押出発泡粒子が成形性に優れるという利点、および(b)当該押出発泡粒子は耐破断性に優れる発泡成形体を提供できるという利点、を有する。線状ポリプロピレン系樹脂の融点が、(a)130℃以上である場合、発泡成形体の寸法安定性が低下する虞がなく、発泡成形体の耐熱性が不十分となる虞がなく、かつ発泡成形体の圧縮強度が強くなる傾向があるという利点を有し、(b)165℃以下である場合、押出発泡粒子を比較的低い蒸気圧で成形することが可能となるため、ポリプロピレン系樹脂発泡粒子用の汎用成形機を使用して押出発泡粒子を成形できるという利点を有する。
 本明細書において、線状ポリプロピレン系樹脂の融点は、示差走査熱量計法(以降、「DSC法」と称する)により測定して求められる値である。具体的な操作手順(測定方法)は以下の通りである:(1)線状ポリプロピレン系樹脂5~6mgの温度を10℃/分の昇温速度で40℃から220℃まで昇温することにより当該線状ポリプロピレン系樹脂を融解させる;(2)その後、融解された線状ポリプロピレン系樹脂の温度を10℃/分の降温速度で220℃から40℃まで降温することにより当該線状ポリプロピレン系樹脂を結晶化させる;(3)その後、さらに、結晶化された線状ポリプロピレン系樹脂の温度を10℃/分の昇温速度で40℃から220℃まで昇温する。2回目の昇温時(すなわち(3)のとき)に得られる当該線状ポリプロピレン系樹脂のDSC曲線のピーク(融解ピーク)の温度を当該線状ポリプロピレン系樹脂の融点として求めることができる。なお、上述の方法により、2回目の昇温時に得られる、線状ポリプロピレン系樹脂のDSC曲線において、ピーク(融解ピーク)が複数存在する場合、融解熱量が最大のピーク(融解ピーク)の温度を、線状ポリプロピレン系樹脂の融点とする。示差走査熱量計としては、例えば、セイコーインスツルメンツ(株)製、DSC6200型を用いることができる。
 線状ポリプロピレン系樹脂のメルトフローレート(Melt Flow Rate;MFR)は、特に限定されない。線状ポリプロピレン系樹脂のMFRは、例えば、0.5g/10分~20.0g/10分であることが好ましく、1.0g/10分~15.0g/10分であることがより好ましく、2.0g/10分~12.0g/10分であることがさらに好ましく、2.0g/10分~10.0g/10分であることが特に好ましい。
 本明細書において、線状ポリプロピレン系樹脂のMFRは、ISO 1133に従い、温度230℃および荷重2.16kgの条件で測定して求められる値である。
 (分岐構造を有するポリプロピレン系樹脂)
 分岐構造を有するポリプロピレン系樹脂(分岐状ポリプロピレン系樹脂)は、線状ポリプロピレン系樹脂に分岐構造を導入することによって得ることができる。線状ポリプロピレン系樹脂に分岐構造を導入する方法としては、特に限定されないが、例えば、(a1)線状ポリプロピレン系樹脂に放射線を照射する方法、および(a2)線状ポリプロピレン系樹脂と共役ジエン化合物とラジカル重合開始剤とを含む混合物を溶融混練する方法などが挙げられる。分岐構造を有するポリプロピレン系樹脂は、前記(a2)の方法により得られた樹脂、すなわち線状ポリプロピレン系樹脂と共役ジエン化合物とラジカル重合開始剤とを含む混合物を溶融混練して得られた、分岐構造を有するポリプロピレン系樹脂であることが好ましい。
 前記(a1)の方法の具体的な方法としては、例えば特表2002-542360に記載の方法が挙げられる。
 前記(a2)の方法についてさらに説明する。前記(a2)の方法では、例えば、以下(i)~(iv)を順に行い、分岐状ポリプロピレン系樹脂を得ることができる:(i)線状ポリプロピレン系樹脂と共役ジエン化合物とラジカル重合開始剤とを含む混合物を、ダイを備える装置で溶融混練する;(ii)得られた溶融混練物をダイから押出す;(iii)押出された溶融混練物(ストランドとも称される。)を冷却する;(iv)ストランドの冷却と同時にまた、冷却後に、ストランドを細断する。前記(a2)の方法の具体的な方法としては、例えばWO2020/004429に記載の方法が挙げられる。
 (i)線状ポリプロピレン系樹脂に分岐構造を安定して導入でき、かつ分岐構造の導入の再現性が高いことから、および/または(ii)複雑な設備を必要とせず、かつ高い生産性で分岐状ポリプロピレン系樹脂を得ることができるとことから、本発明の一実施形態において、分岐状ポリプロピレン系樹脂は、上述の(a2)の方法によって得られる分岐状ポリプロピレン系樹脂であることが好ましい。
 (分岐状ポリプロピレン系樹脂の溶融張力)
 分岐状ポリプロピレン系樹脂の溶融張力は、線状ポリプロピレン系樹脂の溶融張力と比較して高くなり得る。分岐状ポリプロピレン系樹脂の溶融張力は、5cN~50cNであり、6cN~40cNであることが好ましく、7cN~30cNであることがより好ましく、8cN~25cNであることがさらに好ましく、10cN~20cNであることが特に好ましい。分岐状ポリプロピレン系樹脂の溶融張力が5cN以上である場合、分岐状ポリプロピレン系樹脂および発泡剤を含む組成物を完全溶融させて発泡するとき、組成物の張力が十分に高くなり、得られる押出発泡粒子におけるセルの破泡を防ぐことができる。その結果、(a)得られる押出発泡粒子が成形性に優れるという利点、および(b)当該押出発泡粒子は耐破断性に優れる発泡成形体を提供できるという利点、を有する。分岐状ポリプロピレン系樹脂の溶融張力が50cN以下である場合、押出発泡工程において、樹脂圧力(溶融混練物が、製造装置に設置された圧力計を押す力)が高くなりすぎず、吐出量を比較的高くすることができる。その結果、生産性が良く押出発泡粒子を得ることができるという利点を有する。
 本明細書において、分岐状ポリプロピレン系樹脂の溶融張力は、キャピログラフ1D(日本 株式会社東洋精機製作所製)を用いて測定する。具体的には、以下(1)~(5)の通りである:(1)試験温度(200℃)に加熱された径9.55mmのバレルに測定用の試料樹脂(分岐状ポリプロピレン系樹脂)を充填する;(2)次いで、試料樹脂を10分間、試験温度(200℃)に加熱されたバレル内で加熱する;(3)次いで、キャピラリーダイ(口径1.0mm、長さ10mm)から、一定に保持したピストン降下速度(10mm/分)にて、試料樹脂を紐状に出しながら、この紐状物を前記キャピラリーダイの下方350mmに位置する張力検出のプーリーに通過させた後、巻取りロールを用いる巻取りを開始する;(4)紐状物の引き取りが安定した後、紐状物の巻取り速度を初速1.0m/分から、4分間で200m/分の速度に達するまで一定の割合で増加させる;(5)紐状物が破断したときのロードセル付きプーリーにかかる荷重を溶融張力として測定する。
 (分岐状ポリプロピレン系樹脂のMFR)
 分岐状ポリプロピレン系樹脂のMFRは、特に限定されない。分岐状ポリプロピレン系樹脂のMFRは、例えば、0.5g/10分~20.0g/10分であることが好ましく、1.0g/10分~15.0g/10分であることがより好ましく、2.0g/10分~12.0g/10分であることがさらに好ましく、2.0g/10分~10.0g/10分であることが特に好ましい。分岐状ポリプロピレン系樹脂のMFRが上述した範囲内である場合、(a)得られる押出発泡粒子が成形性に優れるという利点、および(b)当該押出発泡粒子は耐破断性に優れる発泡成形体を提供できるという利点、を有する。分岐状ポリプロピレン系樹脂のMFRが、(a)0.5g/10分以上である場合、当該分岐状ポリプロピレン系樹脂から得られる押出発泡粒子は、変形が少なく、表面性が良好(美麗)である発泡成形体を提供できるという利点を有し、(b)20.0g/10分以下である場合、当該分岐状ポリプロピレン系樹脂から得られる押出発泡粒子を含む組成物は、押出発泡時、発泡性が良好になるという利点を有する。
 本明細書において、分岐状ポリプロピレン系樹脂のMFRは、ISO 1133に従い、温度230℃および荷重2.16kgの条件で測定して求められる値である。
 (分岐状ポリプロピレン系樹脂の融点)
 分岐状ポリプロピレン系樹脂の融点は、特に限定されない。分岐状ポリプロピレン系樹脂の融点は、例えば、130℃~165℃であることが好ましく、135℃~164℃であることがより好ましい。分岐状ポリプロピレン系樹脂の融点が上述した範囲内である場合、(a)得られる押出発泡粒子が成形性に優れるという利点、および(b)当該押出発泡粒子は耐破断性に優れる発泡成形体を提供できるという利点、を有する。分岐状ポリプロピレン系樹脂の融点は、線状ポリプロピレン系樹脂の融点と同様にDSC法により測定して求められる値である。
 基材樹脂は、当該基材樹脂100重量%中、分岐状ポリプロピレン系樹脂を、64.5重量%~94.5重量%含むことが好ましく、64.5重量%~90.0重量%含むことがより好ましく、65.0重量%~90.0重量%含むことがさらに好ましい。当該構成によると、(a)得られる押出発泡粒子が成形性に優れるという利点、および(b)当該押出発泡粒子は耐破断性に優れる発泡成形体を提供できるという利点、を有する。なお、基材樹脂における分岐状ポリプロピレン系樹脂の含有量は、押出発泡粒子の製造における分岐状ポリプロピレン系樹脂の使用量ともいえる。
 (熱可塑性エラストマー)
 本明細書において、熱可塑性エラストマーとは、ISO 868にて測定されるShore Aが20~95のものを意図する。熱可塑性エラストマーは、熱可塑性樹脂をハードセグメントとして有し、ゴム成分をソフトセグメントとして有する樹脂ともいえる。
 熱可塑性エラストマーとしては、例えば、ポリオレフィン系エラストマー、ポリオレフィン系プラストマー、ポリスチレン系エラストマー、ポリ塩化ビニル系エラストマー、ポリエステル系エラストマー、ポリウレタン系エラストマー、ポリアミド系エラストマーなどが挙げられる。ポリオレフィン系エラストマーとしては、例えば、TAFMER(登録商標)、MILASTOMER(登録商標)(三井化学株式会社)、LUCENE(登録商標)(LG Chem社)、VERSIFY(登録商標)(Dow Inc社)、ESPOLEX(登録商標)(住友化学株式会社)、MULTIUSE LEOSTOMER(登録商標)(リケンテクノス社)およびVistamaxx(登録商標)(Exxon
 Mobil社)などが挙げられる。ポリオレフィン系プラストマーとしては、例えば、エクセレン(登録商標)FX、タフセレン(登録商標)(住友化学株式会社)、AFFINITY(登録商標)(Dow Inc社)および、Queo(登録商標)(Borealis社)などが挙げられる。これら熱可塑性エラストマーは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 熱可塑性エラストマーとしては、高い弾性性能、ポリプロピレン系樹脂との相溶性の観点から、ポリオレフィン系エラストマーおよび/またはポリオレフィン系プラストマーであることが好ましく、ポリオレフィン系エラストマーであることがより好ましい。熱可塑性エラストマーとしては、一分子中に(a)ハードセグメントとしてポリプロピレンやポリエチレン等のポリオレフィンを有し、かつ(b)ソフトセグメントとしてエチレン/α-オレフィンゴム等のゴム成分を有する熱可塑性エラストマーが好ましい。ハードセグメントとしてポリプロピレンまたはポリエチレンを有する熱可塑性エラストマーは、ポリプロピレン系樹脂との相溶性が高い。また、ソフトセグメントとしてエチレン/プロピレンゴム、エチレン/1-ブテンゴム、エチレン/プロピレン/ジエンゴムおよびエチレン/1-オクテンゴムからなる群から選択される1種以上を有する熱可塑性エラストマーは、ポリプロピレン系樹脂とのより相溶性が高くなる。そのため、熱可塑性エラストマーとしては、(a)ハードセグメントとしてポリプロピレンまたはポリエチレンを有する熱可塑性エラストマー、(b)ソフトセグメントとしてエチレン/プロピレンゴム、エチレン/1-ブテンゴム、エチレン/プロピレン/ジエンゴムおよびエチレン/1-オクテンゴムからなる群から選択される1種以上を有する熱可塑性エラストマー、または(c)一分子中に(i)ハードセグメントとしてポリプロピレンやポリエチレン等のポリオレフィンを有し、かつ(ii)ソフトセグメントとしてエチレン-α-オレフィンゴム等のゴム成分を有する熱可塑性エラストマー、が特に好ましい。
 熱可塑性エラストマーの引張破断伸び率は、500%以上であることが好ましく、600%以上であることがより好ましく、650%以上であることがさらに好ましく、700%以上であることが特に好ましい。熱可塑性エラストマーの引張破断伸び率は、10000%以下であることが好ましく、5000%以下であることがより好ましい。当該構成によると、分岐状ポリプロピレン系樹脂、押出発泡粒子および発泡成形体の柔軟性が向上し、力が加わって変形した際に破断しにくくなるという利点を有する。本明細書において、熱可塑性エラストマーの引張破断伸び率は、熱可塑性エラストマーを試料としてASTM D638に準拠して測定して求められる値である。
 熱可塑性エラストマーの融点は、特に制限はない。熱可塑性エラストマーの融点は、例えば、40℃~110℃であることが好ましく、50℃~90℃であることがより好ましく、60℃~80℃であることが特に好ましい。当該構成によると、押出発泡粒子および発泡成形体の柔軟性が向上する。その結果、得られる発泡成形体に力が加わって変形した際に、発泡成形体が破断しにくくなるという利点を有する。
 本明細書において、熱可塑性エラストマーの融点は、DSC法により測定して求められる値である。具体的に、線状ポリプロピレン系樹脂の代わりに熱可塑性エラストマーを使用する以外は、線状ポリプロピレン系樹脂の融点の測定方法と同じ方法により、熱可塑性エラストマーのDSC曲線を得ることができる。線状ポリプロピレン系樹脂の融点と同様に、熱可塑性エラストマーのDSC曲線から熱可塑性エラストマーの融点を求めることができる。
 熱可塑性エラストマーのMFRは、0.3g/10分~10.0g/10分であることが好ましく、0.5g/10分~8.0g/10分であることがより好ましく、0.7g/10分~6.0g/10分であることがより好ましく、1.0g/10分~5.0g/10分であることがより好ましい。当該構成によると、熱可塑性エラストマーと分岐状ポリプロピレン系樹脂との相溶性が高くなり、得られる押出発泡粒子および発泡成形体の柔軟性が向上する。その結果、得られる発泡成形体に力が加わって変形した際に、発泡成形体が破断しにくくなるという利点を有する。
 本明細書において、熱可塑性エラストマーのMFRは、ISO 1133に従い、温度230℃および荷重2.16kgの条件で測定して求められる値である。
 熱可塑性エラストマーの曲げ弾性率は、10MPa~200MPaであることが好ましく、15MPa~100MPaであることがより好ましく、20MPa~80MPaであることがより好ましく、25MPa~70MPaであることが特に好ましい。当該構成によると、押出発泡粒子および発泡成形体の柔軟性が向上する。その結果、得られる発泡成形体に力が加わって変形した際に、発泡成形体が破断しにくくなるという利点を有する。本明細書において、熱可塑性エラストマーの曲げ弾性率は、熱可塑性エラストマーを試料として、ISO 178に準拠して測定して求められる値である。
 熱可塑性エラストマーとしては、市販品を使用することもできる。本発明の一実施形態において好適に利用できる熱可塑性エラストマーの市販品としては、ポリオレフィン系エラストマーであるLG Chem社製「LUCENE LC180」、およびDow Inc社製、「VERSIFY 2300」などが挙げられる。
 基材樹脂は、当該基材樹脂100重量%中、熱可塑性エラストマーを、5.0重量%~35.0重量%含むことが好ましく、6.0重量%~30.0重量%含むことがより好ましく、8.0重量%~25.0重量%含むことがより好ましく、10.0重量%~25.0重量%含むことがさらに好ましく、12.0重量%~20.0重量%含むことが特に好ましい。当該構成によると、(a)得られる押出発泡粒子が成形性に優れるという利点、および(b)当該押出発泡粒子は耐破断性に優れる発泡成形体を提供できるという利点、を有する。なお、基材樹脂における熱可塑性エラストマーの含有量は、押出発泡粒子の製造における熱可塑性エラストマーの使用量ともいえる。
 (無機系着色剤)
 無機系着色剤は、黒色系、赤色系、緑色系、青色系、黄色系着色剤などに加えて、白色系着色剤も含み得る。無機系着色剤としては、カーボンブラック、赤土、黄土、緑土、酸化チタン、コバルト青、紺青、および酸化クロム緑などが挙げられる。これら無機系着色剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。無機系着色剤は、カーボンブラック、赤土、黄土、緑土、酸化チタン、コバルト青、紺青、および酸化クロム緑からなる群から選ばれる1つ以上を含むことが好ましく、当該群から選ばれる1つ以上であることがより好ましい。紫外線吸収性能の観点から、無機系着色剤は、カーボンブラックであることが特に好ましい。
 基材樹脂は、当該基材樹脂100重量%中、無機系着色剤を、0.5重量%~5.0重量%含むことが好ましく、0.5重量%~4.5重量%含むことがより好ましく、0.5重量%~4.0重量%含むことがより好ましく、1.0重量%~3.5重量%含むことがさらに好ましく、1.0重量%~3.0重量%含むことが特に好ましい。当該構成によると、押出発泡法で得られる押出発泡粒子の連続気泡率が低くなる傾向があるという利点を有する。なお、基材樹脂における無機系着色剤の含有量は、押出発泡粒子の製造における無機系着色剤の使用量ともいえる。
 (その他の樹脂またはゴム)
 基材樹脂は、本発明の一実施形態に係る効果を損なわない範囲で、分岐状ポリプロピレン系樹脂および熱可塑性エラストマー以外の樹脂(その他の樹脂、と称する場合がある。)またはゴムをさらに含んでいてもよい。分岐状ポリプロピレン系樹脂以外のその他の樹脂としては、(a)エチレン/プロピレンランダム共重合体、エチレン/プロピレンブロック共重合体、プロピレン単独重合体などの線状のポリプロピレン系樹脂、(b)高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレン、直鎖状超低密度ポリエチレン、エチレン/酢酸ビニル共重合体、エチレン/アクリル酸共重合体、およびエチレン/メタアクリル酸共重合体などのエチレン系樹脂、並びに(c)ポリスチレン、スチレン/無水マレイン酸共重合体、およびスチレン/エチレン共重合体などのスチレン系樹脂、などが挙げられる。前記ゴムとしては、エチレン/プロピレンゴム、エチレン/ブテンゴム、エチレン/ヘキセンゴム、エチレン/オクテンゴムなどのオレフィン系ゴムが挙げられる。基材樹脂は、当該基材樹脂100重量%中、前記その他の樹脂を、0重量%~20重量%含むことが好ましい。
 (気泡核形成剤)
 基材樹脂は、気泡核形成剤を含んでいてもよい。換言すれば、本押出発泡粒子の製造において気泡核形成剤を使用してもよい。気泡核形成剤を使用することにより、得られる押出発泡粒子の気泡数および気泡の形状をコントロールすることができる。
 気泡核形成剤としては、重炭酸ソーダ-クエン酸混合物、クエン酸モノナトリウム塩、タルク、および炭酸カルシウムなどを挙げることができる。これら気泡核形成剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 基材樹脂における気泡核形成剤の含有量、換言すれば押出発泡粒子の製造における気泡核形成剤の使用量、は特に限定されない。気泡核形成剤の含有量は、例えば、ポリプロピレン系樹脂100重量部に対して、0.01重量部~5.00重量部であることが好ましく、0.01重量部~3.50重量部であることがより好ましく、0.01重量部~1.00重量部であることがさらに好ましく、0.01重量部~0.50重量部であることが特に好ましい。当該構成によると、押出発泡粒子のセルサイズ(平均セル径)やセル形状が均一になり、その結果、押出発泡時の発泡性が安定しやすい傾向があるという利点を有する。なお、「セル」は「気泡」を意図する。
 (有機系着色剤)
 基材樹脂は、本発明の一実施形態に係る効果を損なわない範囲で、有機系着色剤を含んでいてもよい。有機系着色剤としては、例えば、ペリレン系有機顔料、アゾ系有機顔料、キナクリドン系有機顔料、フタロシアニン系有機顔料、スレン系有機顔料、ジオキサジン系有機顔料、イソインドリン系有機顔料等が挙げられる。これら有機系着色剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。基材樹脂における有機系着色剤の含有量は特に限定されない。
 (その他成分)
 基材樹脂は、必要に応じてその他成分として、(a)酸化防止剤、金属不活性剤、燐系加工安定剤、紫外線吸収剤、紫外線安定剤、蛍光増白剤、金属石鹸、および制酸吸着剤などの安定剤、並びに/または、(b)滑剤、可塑剤、充填材、強化材、難燃剤、および帯電防止剤などの添加剤、をさらに含んでいてもよい。これらその他成分は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 押出発泡粒子に含まれる基材樹脂または当該押出発泡粒子から得られる発泡成形体に含まれる基材樹脂、すなわち前記押出発泡粒子または前記発泡成形体を実質的に構成する基材樹脂、に含まれる、分岐状ポリプロピレン系樹脂、熱可塑性エラストマー、無機系着色剤およびその他の樹脂またはゴム、の種類および量は、前記押出発泡粒子または前記発泡成形体を減圧下で融解して樹脂塊に戻す操作によっても、実質的に変化しない。本明細書において、押出発泡粒子、または当該押出発泡粒子から得られる発泡成形体を減圧下で融解して樹脂塊を得ることを「樹脂戻しする」と称する場合があり、樹脂戻しして得られる樹脂塊を「戻し樹脂」と称する場合がある。本明細書において、戻し樹脂に含まれる、分岐状ポリプロピレン系樹脂、熱可塑性エラストマー、無機系着色剤およびその他の樹脂またはゴム、の種類および量を、基材樹脂に含まれる、分岐状ポリプロピレン系樹脂、熱可塑性エラストマー、無機系着色剤およびその他の樹脂またはゴム、の種類および量と見做すことができる。戻し樹脂に含まれる、分岐状ポリプロピレン系樹脂、熱可塑性エラストマー、無機系着色剤およびその他の樹脂またはゴム、の種類および量は、任意の公知の方法により戻し樹脂を解析することで、確認することができる。
 樹脂戻しの具体的な方法としては特に限定されないが、例えば以下(b1)~(b5)を順に行う方法が挙げられる:(b1)押出発泡粒子または発泡成形体の融点+10℃に調整した乾燥機中に、押出発泡粒子または発泡成形体を入れる;(b2)次いで、5~10分かけて真空ポンプを使用して、前記乾燥機内の圧力を-0.05MPa(ケージ圧)~-0.10MPa(ケージ圧)になるまで減圧する;(b3)その後、前記乾燥機内で30分間、押出発泡粒子または発泡成形体を放置し、樹脂塊(戻し樹脂)を調製する;(b4)次いで、乾燥機内の温度を室温まで冷却した後、乾燥機内の圧力を常圧まで戻す;(b5)その後、乾燥機から前記樹脂塊を取り出す。
 本明細書において、押出発泡粒子または発泡成形体の融点は、DSC法により測定して求められる値である。具体的に、線状ポリプロピレン系樹脂の代わりに押出発泡粒子または発泡成形体を使用する以外は、線状ポリプロピレン系樹脂の融点の測定方法と同じ方法により、押出発泡粒子または発泡成形体のDSC曲線を得ることができる。線状ポリプロピレン系樹脂の融点と同様に、押出発泡粒子または発泡成形体のDSC曲線から押出発泡粒子または発泡成形体の融点を求めることができる。
 (2-2.ポリプロピレン系樹脂押出発泡粒子の製造方法)
 本押出発泡粒子の製造方法としては、特に限定されず、公知の押出発泡方法を採用できる。本押出発泡粒子の製造方法の一態様としては、例えば、以下のような態様が挙げられる:分岐状ポリプロピレン系樹脂、熱可塑性エラストマー、無機系着色剤、および発泡剤を使用して押出発泡法により押出発泡体を製造する第一の工程、および第一の工程で得られた前記押出発泡体を粒子形状にカットして押出発泡粒子を製造する第二の工程、を含む、ポリプロピレン系樹脂押出発泡粒子の製造方法。
 (第一の工程)
 第一の工程について、具体的に説明する。第一の工程の具体例としては、以下の(c1)および(c2)を順に行う工程が挙げられる:(c1)分岐状ポリプロピレン系樹脂、熱可塑性エラストマーおよび無機系着色剤を含む樹脂混合物と発泡剤とを含む組成物を、ダイを備える装置にて溶融混練し、溶融混練物を得る溶融混練工程;および(c2)ダイを通じて、当該装置内圧力よりも低圧である領域(低圧領域)に得られた溶融混練物を押出し、押出発泡体を得る押出発泡工程。
 第一の工程において、特に前記(c1)において、必要に応じて、気泡核形成剤、安定剤(例えば、酸化防止剤、金属不活性剤、燐系加工安定剤、紫外線吸収剤、紫外線安定剤、蛍光増白剤、金属石鹸、および制酸吸着剤など)および添加剤(例えば、着色剤、滑剤、可塑剤、充填材、強化材、顔料、染料、難燃剤、および帯電防止剤など)をさらに使用してもよい。
 前記(c1)における樹脂混合物は、基材樹脂ともいえる。前記(c1)において、分岐状ポリプロピレン系樹脂、熱可塑性エラストマー、無機系着色剤および発泡剤、並びに、任意で使用され得るその他の樹脂、気泡核形成剤およびその他成分は、装置に供給される前に混合されていてもよく、装置内で混合されてもよい。換言すれば、前記(c1)において、組成物が装置に供給されてもよく、装置内で組成物が調製(完成)されてもよい。前記(c1)において、(i)分岐状ポリプロピレン系樹脂、熱可塑性エラストマー、無機系着色剤および発泡剤、並びに、任意で使用され得るその他の樹脂、気泡核形成剤およびその他成分を混合する方法および順序、または(ii)分岐状ポリプロピレン系樹脂、熱可塑性エラストマー、無機系着色剤および発泡剤、並びに、任意で使用され得るその他の樹脂、気泡核形成剤およびその他成分を装置へ供給する方法および順序、は特に限定されない。
 前記(c1)において、無機系着色剤は、マスターバッチとして配合(使用)されてもよい。無機系着色剤のマスターバッチは、無機系着色剤と任意の樹脂(例えばポリプロピレン基樹脂)とを、任意の比率で混合することで得られ得る。マスターバッチにおける無機系着色剤の濃度は特に限定されず、例えば、マスターバッチ100重量%中、40重量%の無機系着色剤を含むマスターバッチであってもよい。
 前記(c2)において、低圧領域に溶融混練物を押出す前に、溶融混練物を冷却してもよい。
 本発明の一実施形態で使用される発泡剤としては、特に限定されず、公知の有機系発泡剤および無機系発泡剤を用いることができる。有機系発泡剤としては、プロパン等の脂肪族炭化水素類、ジフルオロエタン等のフッ化炭化水素類等が挙げられる。無機系発泡剤としては、炭酸ガス、空気、窒素等の無機ガス、水等が挙げられる。上述した発泡剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。ポリプロピレン系樹脂押出発泡粒子は、発泡剤として、脂肪族炭化水素類、フッ化炭化水素類、炭酸ガス、空気、窒素および水からなる群から選ばれる1つ以上を用いて得られたものであることが好ましく、炭酸ガス、空気、窒素および水からなる群から選ばれる1つ以上を用いて得られたものであることがより好ましく、炭酸ガスを用いて得られたものであることがさらに好ましい。第一の工程における発泡剤の使用量は、発泡剤の種類に応じて、目標とするポリプロピレン系樹脂押出発泡粒子の発泡倍率に応じて適宜調整すればよい。
 (第二の工程)
 第二の工程は、第一の工程で得られた前記押出発泡体を粒子形状にカットして押出発泡粒子を製造する工程である。「粒子形状にカットする」ことを「細断する」ともいう。第二の工程で得られる押出発泡粒子はポリプロピレン系樹脂押出発泡粒子である。
 第二の工程における細断方法、すなわちカット方法としては、コールドカット法、またはホットカット法が好ましい。コールドカット法としては、ストランドカット法が挙げられる。ホットカット法としては、アンダーウォータカット法、およびウォータリングカット法が挙げられる。
 第一の工程で得られた押出発泡体は、第二の工程で粒子状にカットされる前に発泡が完了していてもよく、発泡途中であってもよい。すなわち、第二の工程では、完全に発泡し終った押出発泡体を粒子状にカットしてもよく、発泡途中の押出発泡体を粒子状にカットしてもよい。換言すれば、第一の工程で得られる押出発泡体は、発泡が完了している押出発泡体に加えて、発泡途中の押出発泡体も含む。
 第二の工程において、押出発泡体を粒子状にカットする前に、カットすると同時に、またはカットした後に、押出発泡体を冷却してもよい。
 (2-3.ポリプロピレン系樹脂押出発泡粒子の物性等)
 (連続気泡率)
 本押出発泡粒子の連続気泡率は、低いほど好ましい。本押出発泡粒子の連続気泡率は、15%以下であることが好ましく、10%以下であることがより好ましく、7%以下であることがさらに好ましく、5%以下であることが特に好ましい。本ポリプロピレン系樹脂押出発泡粒子の連続気泡率の下限値は特に限定されず、例えば0.0%以上である。当該構成によると、(a)押出発泡粒子の成形時に、セルが破泡して収縮することがほとんどないため、当該押出発泡粒子が成形性に優れるという利点、および(b)当該押出発泡粒子を用いて得られた発泡成形体において、形状の任意性、緩衝性、軽量性、圧縮強度および断熱性などの特徴がより発揮されるという利点を有する。
 本明細書において、ポリプロピレン系樹脂押出発泡粒子の連続気泡率は、空気比較式比重計[東京サイエンス(株)製、モデル1000]を用いて、ASTM D2856-87の手順C(PROCEDURE C)に記載の方法に従って、測定して求められる値である。押出発泡粒子の連続気泡率は、具体的には、以下(1)~(3)を順に実施して算出される:(1)空気比較式比重計を用いて押出発泡粒子の体積Vc(cm)を測定する;(2)次いで、Vcを測定後の押出発泡粒子の全量を、メスシリンダーに入っているエタノール中に沈める;(3)その後、メスシリンダーにおけるエタノールの位置の上昇量から、押出発泡粒子の見かけ上の体積Va(cm)を求める;(4)以下の式により、押出発泡粒子の連続気泡率を算出する:連続気泡率(%)=((Va-Vc)×100)/Va。なお、体積Vaの測定の方法は水没法とも称される。
 (平均セル径)
 本押出発泡粒子の平均セル径は、100μm~500μmであることが好ましく、100μm~400μmであることがより好ましく、120μm~350μmであることがさらに好ましく、150μm~300μmであることが特に好ましい。当該構成によると、押出発泡粒子の成形時に、セルが破泡して収縮することほとんどないため、当該押出発泡粒子が成形性に優れるという利点を有する。
 本明細書において、ポリプロピレン系樹脂押出発泡粒子の平均セル径は、具体的には、以下(1)~(4)を順に実施して算出される値である:(1)押出発泡粒子の中心を通るように、押出発泡粒子をカミソリで切断する;(2)得られた切断面を、光学顕微鏡で観察する;(3)当該切断面に2000μmの直線を引き、当該直線上に存在するセル数を計測する。10個の押出発泡粒子に関して前記セル数を測定し、それらの相加平均セル数を算出する;(4)下記式で測定して得られる値を押出発泡粒子の平均セル径(すなわち、面積平均径ともいえる)とする:
平均セル径(μm)=2000/平均セル数。
 (嵩密度)
 本押出発泡粒子の嵩密度は、60g/L以上であることが好ましく、70g/L以上であることがより好ましく、80g/L以上であることがさらに好ましく、90g/L以上であることが特に好ましい。本押出発泡粒子の嵩密度の上限値は特に限定されず、例えば300g/L以下である。上述したように、発泡成形体における、変形に起因する割れの傾向は、発泡成形体の材料である押出発泡粒子が低倍であるほど、得られる発泡成形体の引張破断伸び率は低い傾向にある。本押出発泡粒子は上述の構成を有するため、60g/L以上の嵩密度を有するほどに低倍であっても、引張破断伸び率が高く、すなわち耐破断性に優れる発泡成形体を提供できるという利点を有する。また、押出発泡粒子の嵩密度が前記範囲内である場合、当該押出発泡粒子を用いて得られたポリプロピレン系樹脂発泡成形体において、形状の任意性、緩衝性、軽量性、および断熱性などの特徴がより発揮される、という利点も有する。押出発泡粒子の製造により得られた押出発泡粒子の発泡倍率が前記範囲に至らなかった場合、得られた押出発泡粒子に対して、押出発泡粒子内を不活性ガスで加圧した後、当該押出発泡粒子を加熱して発泡倍率を高める方法(例えば、特開平10-237212号公報に記載の方法)も利用可能である。
 本明細書において、ポリプロピレン系樹脂押出発泡粒子の嵩密度は、以下(1)~(3)を順に実施して算出される:(1)押出発泡粒子を、体積V(L)が既知である容器、例えばメスシリンダー、ビーカー、バケツ等へ、容器からあふれるまで入れる;(2)容器の粉面(上端)を擦切り、容器内の押出発泡粒子の重量W(g)を測定する;(3)以下の式により、押出発泡粒子の嵩密度を算出する:
嵩密度(g/L)=押出発泡粒子の重量W(g)/容器の体積V(L)。
 (成形幅)
 本押出発泡粒子は、成形幅が広い(例えば0を超える)という利点を有する。本明細書において、押出発泡粒子の成形幅が大きいほど、当該押出発泡粒子は成形性に優れることを意図する。本明細書において、「押出発泡粒子の成形幅」とは、押出発泡粒子を型内発泡成形したとき、以下を満たす発泡成形体を得ることができる、型内発泡成形時の蒸気圧(ゲージ圧)の幅を意図する:(x1)押出発泡粒子同士の融着が十分(例えば融着率80%以上)であり、(x2)押出発泡粒子間の隙間が十分に埋まっており、(x3)表面が美麗であり、(x4)表面がメルトしておらず、かつ(x5)型内発泡成形に使用した型(金型)の寸法に対して5%以上収縮することなく、当該金型の形状が転写されている、発泡成形体。また、発泡成形体が金型に張り付いて取り出せなくなった場合、発泡成形体が得られない、と判断する。本明細書において、例えば、押出発泡粒子を型内発泡成形したとき、上述した(x1)~(x5)を満たす発泡成形体を得ることができる、型内発泡成形時の蒸気圧がP1~P2である場合、P2-P1で得られる「値」を、「押出発泡粒子の成形幅」とする。また、本明細書において、「P1~P2」を「実施可能な蒸気圧幅」とも称する。
 押出発泡粒子に対して蒸気圧が低すぎる場合、(a)押出発泡粒子同士の融着が不十分であり、(b)押出発泡粒子間の隙間が十分に埋まっておらず、(c)表面の美麗性に劣り、および/または(d)収縮する結果、型内発泡成形に使用した型(金型)の形状が転写されていない、発泡成形体が得られる場合がある。押出発泡粒子に対して蒸気圧が高すぎる場合、(a)表面がメルトしている、および/または、(b)圧縮強度が不十分である発泡成形体が得られる場合がある。
 本押出発泡粒子の実施可能な蒸気圧幅は特に限定されない。本押出発泡粒子の成形幅は広いほど好ましい。本押出発泡粒子の成形幅は、0.02MPa以上であることがより好ましく、0.03MPa以上であることがより好ましく、0.04MPa以上であることがさらに好ましく、0.05MPa以上であることが特に好ましい。
 (結晶ピーク)
 押出発泡法により得られる押出発泡粒子は、DSC測定により得られる押出発泡粒子のDSC曲線において結晶ピークが1つであるという特徴を有する。換言すれば、DSC測定により得られる押出発泡粒子のDSC曲線において結晶ピークが1つであるポリプロピレン系樹脂発泡粒子は、押出発泡法により得られたものである蓋然性が高い。本押出発泡粒子もまた、DSC測定により得られる押出発泡粒子のDSC曲線において結晶ピークが1つであり得る。
 本明細書において、結晶ピークの算出に用いられる押出発泡粒子のDSC曲線は、DSC測定により、押出発泡粒子5~6mgの温度を10℃/分の昇温速度で40℃から220℃まで昇温する間に得られる曲線である。
 〔3.ポリプロピレン系樹脂発泡成形体〕
 本発明の一実施形態に係るポリプロピレン系樹脂発泡成形体は、基材樹脂100重量%中、分岐構造を有するポリプロピレン系樹脂を64.5重量%以上含有する当該基材樹脂を含む押出発泡粒子を成形してなり、前記押出発泡粒子の連続気泡率は15%以下であり、前記発泡成形体の密度は60g/L~300g/Lであり、かつ前記発泡成形体の引張破断伸び率は10%以上である。
 以下、本発泡成形体に関する各態様について説明するが、以下に詳説した事項以外(例えば基材樹脂および連続気泡率など)は、適宜、〔2.ポリプロピレン系樹脂押出発泡粒子〕の項の記載を援用する。
 押出発泡粒子の成形方法は特に限定されないが、例えば、駆動し得ない固定型と駆動し得る移動型とを備える金型を使用する、型内発泡成形が挙げられる。型内発泡成形方法としては特に限定されず、公知の方法を採用できる。
 (発泡成形体の密度)
 本発泡成形体の密度は、60g/L~300g/Lであり、70g/L~300g/Lであることが好ましく、80g/L~300g/Lであることがより好ましく、90g/L~300g/Lであることがさらに好ましい。発泡成形体における、変形に起因する割れの傾向として、発泡成形体が低倍であるほど、得られる発泡成形体の引張破断伸び率が低い傾向にある。本発泡成形体は60g/L以上の密度を有し、かつ引張破断伸び率が10%以上である、すなわち低倍であり、かつ耐破断性に優れる、という利点を有する。また、発泡成形体の密度が上述した範囲内である場合、当該発泡成形体は、形状の任意性、緩衝性、軽量性、および断熱性などの特徴がより発揮される、という利点も有する。
 本明細書において、ポリプロピレン系樹脂発泡成形体の密度は、以下(1)~(3)を順に実施して算出される:(1)ポリプロピレン系樹脂発泡成形体の重量W1(g)を測定する;(2)重量W1を測定したポリプロピレン系樹脂発泡成形体の体積V1(L)を測定する;(3)W1をV1で除し、得られた値をポリプロピレン系樹脂発泡成形体の密度(g/L)とする。
 なお、(2)において、発泡成形体の体積の測定方法は特に限定されない。例えば、水を満杯にした容器に、発泡成形体を水没させ、あふれた水量を測定することで体積V1を求めることができる。発泡成形体が板状である場合、発泡成形体の縦、横、厚さ、それぞれの長さを測定し、それらの長さから体積V1を計算して求めても良い。
また、密度の測定には、成形後、十分に乾燥させ、室温23℃湿度50%環境下にて24時間以上経過させた発泡成形体を使用してもよい。
 (引張破断伸び率)
 本発泡成形体は、引張破断伸び率が大きいという利点を有する。本明細書において、発泡成形体の引張破断伸び率が大きいほど、当該発泡成形体は耐破断性に優れることを意図する。
 本発泡成形体の引張破断伸び率は、10%以上であることが好ましく、12%以上であることがより好ましく、13%以上であることがより好ましく、15%以上であることが特に好ましい。
 本明細書において、ポリプロピレン系樹脂発泡成形体の引張破断伸び率は、ISO 1798に基づく引張伸び試験を行い、測定して得られた値である。具体的に、発泡成形体の引張破断伸び率は、以下(1)~(4)を順に実施して算出される:(1)ISO 1798に規定されるダンベル形状の発泡成形体を作製し、得られた発泡成形体を試験片とする;(2)当該試験片の両端部を固定する;(3)当該試験片の片側を、当該試験片が破断するまで引っ張る;(4)当該試験片が破断したときの、試験片の伸び率を当該発泡成形体の引張破断伸び率とする。
 本発明の別の一実施形態に係るポリプロピレン系樹脂発泡成形体は、次のような構成であってもよい:〔2.ポリプロピレン系樹脂押出発泡粒子〕の項に記載のポリプロピレン系樹脂押出発泡粒子を成形してなる、ポリプロピレン系樹脂発泡成形体。
 本発明の一実施形態は、以下の構成であってもよい。
〔1〕分岐構造を有するポリプロピレン系樹脂を含有する基材樹脂を含み、前記分岐構造を有するポリプロピレン系樹脂の溶融張力は5cN~50cNであり、前記基材樹脂は、さらに、熱可塑性エラストマーおよび無機系着色剤を含有する、ポリプロピレン系樹脂押出発泡粒子。
〔2〕前記基材樹脂は、当該基材樹脂100重量%中、前記分岐構造を有するポリプロピレン系樹脂を64.5重量%~94.5重量%含む、〔1〕に記載のポリプロピレン系樹脂押出発泡粒子。
〔3〕前記基材樹脂は、当該基材樹脂100重量%中、前記熱可塑性エラストマーを5.0重量%~35.0重量%含む、〔1〕または〔2〕に記載のポリプロピレン系樹脂押出発泡粒子。
〔4〕前記基材樹脂は、当該基材樹脂100重量%中、前記無機系着色剤を0.5重量%~5.0重量%含む、〔1〕~〔3〕の何れか1つに記載のポリプロピレン系樹脂押出発泡粒子。
〔5〕前記無機系着色剤は、カーボンブラック、赤土、黄土、緑土、酸化チタン、コバルト青、紺青、および酸化クロム緑からなる群から選ばれる1つ以上である、〔1〕~〔4〕の何れか1つに記載のポリプロピレン系樹脂押出発泡粒子。
〔6〕前記熱可塑性エラストマーは、ポリオレフィン系エラストマーである、〔1〕~〔5〕の何れか1つに記載のポリプロピレン系樹脂押出発泡粒子。
〔7〕熱可塑性エラストマーの引張破断伸び率は、500%~1000%である、〔1〕~〔6〕の何れか1つに記載のポリプロピレン系樹脂押出発泡粒子。
〔8〕熱可塑性エラストマーの融点は、40℃~110℃である、〔1〕~〔7〕の何れか1つに記載のポリプロピレン系樹脂押出発泡粒子。
〔9〕熱可塑性エラストマーのメルトフローレートは、0.3g/10分~10.0g/10分である、〔1〕~〔8〕の何れか1つに記載のポリプロピレン系樹脂押出発泡粒子。
〔10〕前記分岐構造を有するポリプロピレン系樹脂の融点は、130℃~165℃である、〔1〕~〔9〕の何れか1つに記載のポリプロピレン系樹脂押出発泡粒子。
〔11〕前記分岐構造を有するポリプロピレン系樹脂は、線状ポリプロピレン系樹脂と共役ジエン化合物とラジカル重合開始剤とを含む混合物を溶融混練して得た分岐構造を有するポリプロピレン系樹脂である、〔1〕~〔10〕の何れか1つに記載のポリプロピレン系樹脂押出発泡粒子。
〔12〕前記ポリプロピレン系樹脂押出発泡粒子は、発泡剤として、脂肪族炭化水素類、およびフッ化炭化水素類、炭酸ガス、空気、窒素、水からなる群から選ばれる1つ以上を用いて得られたものである、〔1〕~〔11〕の何れか1つに記載のポリプロピレン系樹脂押出発泡粒子。
〔13〕連続気泡率は15%以下である、〔1〕~〔12〕の何れか1つに記載のポリプロピレン系樹脂押出発泡粒子。
〔14〕平均セル径は100μm~500μmである、〔1〕~〔13〕の何れか1つに記載のポリプロピレン系樹脂押出発泡粒子。
〔15〕嵩密度は60g/L以上である、〔1〕~〔14〕の何れか1つに記載のポリプロピレン系樹脂押出発泡粒子。
〔16〕前記嵩密度は300g/L以下である、〔15〕に記載のポリプロピレン系樹脂押出発泡粒子。
〔17〕押出発泡粒子を型内発泡成形したとき、以下を満たす発泡成形体を得ることができる、前記型内発泡成形時の蒸気圧の上下の幅である成形幅は、0.02MPa以上である、〔1〕~〔16〕の何れか1つに記載のポリプロピレン系樹脂押出発泡粒子。
(1)押出発泡粒子同士の融着率が80%以上である;
(2)押出発泡粒子間の隙間が十分に埋まっている;
(3)表面が美麗である;
(4)表面がメルトしていない;および
(5)型内発泡成形に使用した型の寸法に対して5%以上収縮することなく、前記型の形状が転写されている、発泡成形体。
〔18〕前記分岐構造を有するポリプロピレン系樹脂のメルトフローレートは、0.5g/10分~20.0g/10分である、〔1〕~〔17〕の何れか1つに記載のポリプロピレン系樹脂押出発泡粒子。
〔19〕前記熱可塑性エラストマーの曲げ弾性率は、10MPa~200MPaである、〔1〕~〔18〕の何れか1つに記載のポリプロピレン系樹脂押出発泡粒子。
〔20〕発泡成形体であって、
 基材樹脂100重量%中、分岐構造を有するポリプロピレン系樹脂を64.5重量%以上含有する前記基材樹脂を含む押出発泡粒子を成形してなり、
 前記押出発泡粒子の連続気泡率は15%以下であり、
 前記発泡成形体の密度は60g/L~300g/Lであり、かつ
 前記発泡成形体の引張破断伸び率は10%以上である、ポリプロピレン系樹脂発泡成形体。
〔21〕〔1〕~〔19〕の何れか1つ項に記載のポリプロピレン系樹脂押出発泡粒子を成形してなる、ポリプロピレン系樹脂発泡成形体。
 以下、実施例および比較例によって本発明の一実施形態をより詳細に説明する。本発明は以下の実施例に限定されるものではない。
 (測定および評価方法)
 <分岐構造を有するポリプロピレン系樹脂の溶融張力>
 実施例および比較例で用いた分岐状ポリプロピレン系樹脂の溶融張力を、キャピログラフ1D(日本 株式会社東洋精機製作所製)を用いて測定した。具体的には、以下(1)~(5)の通りであった:(1)200℃に加熱された径9.55mmのバレルに実施例および比較例で用いた分岐状ポリプロピレン系樹脂を充填した;(2)次いで、分岐状ポリプロピレン系樹脂を10分間、200℃に加熱されたバレル内で加熱した;(3)次いで、キャピラリーダイ(口径1.0mm、長さ10mm)から、一定に保持したピストン降下速度(10mm/分)にて、分岐状ポリプロピレン系樹脂を紐状に出しながら、この紐状物を前記キャピラリーダイの下方350mmに位置する張力検出のプーリーに通過させた後、巻取りロールを用いる巻取りを開始した;(4)紐状物の引き取りが安定した後、紐状物の巻取り速度を初速1.0m/分から、4分間で200m/分の速度に達するまで一定の割合で増加させた;(5)紐状物が破断したときのロードセル付きプーリーにかかる荷重を溶融張力として測定した。
 <連続気泡率>
 押出発泡粒子の連続気泡率は、空気比較式比重計[東京サイエンス(株)製、モデル1000]を用いて、ASTM D2856-87の手順C(PROCEDURE C)に記載の方法に従って、測定した。押出発泡粒子の連続気泡率は、具体的には、以下(1)~(3)を順に実施して算出した:(1)空気比較式比重計を用いて押出発泡粒子の体積Vc(cm)を測定した;(2)次いで、Vcを測定後の押出発泡粒子の全量を、メスシリンダーに入っているエタノール中に沈めた;(3)その後、メスシリンダーにおけるエタノールの位置の上昇量から、押出発泡粒子の見かけ上の体積Va(cm)を求めた;(4)以下の式により、押出発泡粒子の連続気泡率を算出した:
連続気泡率(%)=((Va-Vc)×100)/Va。
得られた値を表1~表3に記載した。
 <平均セル径>
 押出発泡粒子の平均セル径は、以下(1)~(4)を順に実施して算出した:(1)押出発泡粒子の中心を通るように、押出発泡粒子をカミソリで切断した;(2)得られた切断面を、光学顕微鏡で観察した;(3)当該切断面に2000μmの直線を引き、当該直線上に存在するセル数を計測した。10個の押出発泡粒子に関して前記セル数を測定し、それらの相加平均セル数を算出した;(4)下記式で、測定して得られる値を押出発泡粒子の平均セル径(面積平均径)とした:
平均セル径(μm)=2000/平均セル数。
 <嵩密度>
 押出発泡粒子の嵩密度は、以下(1)~(3)を順に実施して算出した:(1)押出発泡粒子を、体積V(L)が既知である容器、例えばメスシリンダー、ビーカー、バケツ等へ、容器からあふれるまで入れた;(2)容器の粉面(上端)を擦切り、容器内の押出発泡粒子の重量W(g)を測定した;(3)以下の式により、押出発泡粒子の嵩密度を算出した:
嵩密度(g/L)=押出発泡粒子の重量W(g)/容器の体積V(L)。得られた値を表1~表3に記載した。
 <成形幅>
 縦/横/厚み/=381/381/60mmの金型に対し、クラッキングを18mm設け、金型内に押出発泡粒子を充填した。型内発泡成形の蒸気圧を0.02MPa(ゲージ圧)ずつ変化させながら、蒸気圧のある一定の範囲内において、押出発泡粒子を型内発泡成形しポリプロピレン系樹脂発泡成形体を得た。このとき、以下を満たすポリプロピレン系樹脂発泡成形体を得ることができる、型内発泡成形時の蒸気圧(ゲージ圧)の幅を求めた:(x1)押出発泡粒子同士の融着が十分(内部融着率80%以上)であり、(x2)押出発泡粒子間の隙間が十分に埋まっており、(x3)表面が美麗であり、(x4)表面がメルトしておらず、かつ(x5)型内発泡成形に使用した型(金型)の寸法に対して5%以上収縮することなく、当該金型の形状が転写されている、発泡成形体。なお、上記評価には、成形後、75~80℃乾燥機にて12~24時間乾燥させ、23℃湿度50%の環境下で24時間以上経過させた発泡成形体を用いた。
 上述の方法で得られた蒸気圧の幅をP1~P2とするとき、該「P1~P2」を「実施可能な蒸気圧幅」とし、P2-P1で得られる「値」を、「押出発泡粒子の成形幅」とした。「実施可能な蒸気圧幅」および「ポリプロピレン系樹脂押出発泡粒子の成形幅」を、それぞれ、表1~表3の「蒸気圧幅」および「成形幅」の欄に記載した。
 <内部融着率>
 成形幅の測定に関するポリプロピレン系樹脂発泡成形体の内部融着率の測定は、以下の(1)~(4)の通りであった:(1)ポリプロピレン系樹脂発泡成形体の任意の一面に対して、カッターで垂直方向に、当該面を有する部位の垂直方向の厚さの1/20~1/5の切り込みを入れた;(2)その後、ポリプロピレン系樹脂発泡成形体を切り込みに沿って手で破断した。なお、手で破断しない場合はポリプロピレン系樹脂発泡成形体の切り込みの近くをハンマー等で叩いて、切り込みに沿ってポリプロピレン系樹脂発泡成形体を破断した;(3)得られた破断面のうち、切り込み部分を除き、かつ厚さ方向の中央を含むようにして一定の範囲を目視で観察し、当該範囲内に存在する全押出発泡粒子、および当該範囲内において粒子界面以外で破断している押出発泡粒子(すなわち押出発泡粒子自体が破断している押出発泡粒子)の数を計測した;(4)以下の式(4)に基づき内部融着率を算出する;
内部融着率(%)=(前記範囲内において粒子界面以外で破断している押出発泡粒子数/当該範囲内に存在する全押出発泡粒子数)×100・・・(4)。
 <発泡成形体の密度>
 発泡成形体の密度は、以下(1)~(3)を順に実施して算出した:(1)発泡成形体の重量W1(g)を測定した;(2)重量W1を測定した発泡成形体の縦、横、厚さ、それぞれの長さを測定し、それらの長さから発泡成形体の体積V1(L)を算出した;(3)W1をV1で除し、得られた値を発泡成形体の密度(g/L)とした。なお、密度の測定には、成形後、十分に乾燥させ、室温23℃湿度50%環境下にて24時間以上経過させた発泡成形体を使用した。
 <引張破断伸び率>
 ISO 1798に基づく引張伸び試験を行い、発泡成形体の引張破断伸び率を測定した。具体的に、発泡成形体の引張破断伸び率は、以下(1)~(4)を順に実施して算出した:(1)ISO 1798に規定されるダンベル形状の発泡成形体を作製し、得られた発泡成形体を試験片とした;(2)当該試験片の両端部を固定した;(3)当該試験片の片側を、当該試験片が破断するまで引っ張った;(4)当該試験片が破断したときの、試験片の伸び率を当該発泡成形体の引張破断伸び率とした。得られた値を表1~表3に記載した。
 <引張破断伸び率の試験で用いた試験片の密度測定>
 引張破断伸び率の試験で用いた試験片(ダンベル形状の発泡成形体)の体積Ldを求めた。次に、当該試験片の重量Wd(g)を電子天秤にて測定した。そして、WdをLdで除して、引張破断伸び率の試験で用いた試験片の密度を求めた。得られた値を表1~表3の「試験片の密度」の欄に記載した。
 <総合評価>
 以下の基準に基づく総合評価を、表1~表3に記載した。
〇(良好):成形幅が0.04MPa以上であり、かつ引張破断伸び率が10%以上である。
△(標準):成形幅が0.02MPa以上0.04MPa未満であるが、引張破断伸び率が10%以上である、または成形幅が0.04MPa以上であるが、引張破断伸び率が10%未満である。
×(不良):成形幅が0.02MPa未満であり、かつ引張破断伸び率が10%未満である。
 (材料)
 実施例および比較例では、以下の材料を使用した。
 <分岐構造を有するポリプロピレン系樹脂>
 分岐構造を有するポリプロピレン系樹脂として、溶融張力が10cN以上50cN以下であるポリプロピレン樹脂として、Borealis社製、「WB140HMS」(溶融張力の実測値14cN、および融点161℃)を用いた。
 なお、分岐状ポリプロピレン系樹脂の溶融張力の実測値は、キャピログラフ1D(日本 株式会社東洋精機製作所製)を用いて測定した。具体的には、以下(1)~(5)の通りであった:(1)試験温度(200℃)に加熱された径9.55mmのバレルに測定用の試料樹脂(分岐状ポリプロピレン系樹脂)を充填した;(2)次いで、試料樹脂を10分間、試験温度(200℃)に加熱されたバレル内で加熱した;(3)次いで、キャピラリーダイ(口径1.0mm、長さ10mm)から、一定に保持したピストン降下速度(10mm/分)にて、試料樹脂を紐状に出しながら、この紐状物を前記キャピラリーダイの下方350mmに位置する張力検出のプーリーに通過させた後、巻取りロールを用いる巻取りを開始した;(4)紐状物の引き取りが安定した後、紐状物の巻取り速度を初速1.0m/分から、4分間で200m/分の速度に達するまで一定の割合で増加させた;(5)紐状物が破断したときのロードセル付きプーリーにかかる荷重を溶融張力として測定した。また、分岐状ポリプロピレン系樹脂の融点は、線状ポリプロピレン系樹脂の代わりに熱可塑性エラストマーを使用する以外は、線状ポリプロピレン系樹脂の融点と同様にDSC法により測定して求められる値であった。
 <熱可塑性エラストマー>
 熱可塑性エラストマーとして、ポリオレフィン系エラストマー樹脂(LG Chem社製、「LUCENE LC180」、略号E1)、またはポリオレフィン系エラストマー樹脂(Dow Inc社製、「VERSIFY 2300」、略号E2)を用いた。E1の引張破断伸び率は850%、融点は73℃、MFRは2.3g/10分である。E2の引張破断伸び率は730%、融点は66℃、MFRは2.0g/10分である。E1およびE2の引張破断伸び率は、E1およびE2を試料としてASTM D638に準拠して測定して求めた値であった。E1およびE2の融点は、線状ポリプロピレン系樹脂の代わりに熱可塑性エラストマーを使用する以外は、上述の線状ポリプロピレン系樹脂の融点と同様に、DSC法により測定して求めた値であった。E1およびE2のMFRは、線状ポリプロピレン系樹脂のMFRと同様に、ISO 1133に従い、温度230℃および荷重2.16kgの条件で測定して求めた値であった。
 <その他の樹脂>
 その他の樹脂として、エチレン/プロピレンランダム共重合体(プライムポリマー社製、「F-724NPC」)を用いた。
 <無機系着色剤>
 無機系着色剤として、カーボンブラックを使用した。なお、カーボンブラックは、カーボンブラックの濃度が40%であるカーボンブラックマスターバッチとして使用した。カーボンブラックマスターバッチは、以下のようにして調製した。前記分岐構造を有するポリプロピレン系樹脂に濃度40%になるようにカーボンブラックを配合し、押出機にて溶融混練し、得られた溶融混練物を水中に押出しカットすることで作成した。表1~表3の「無機系着色剤」の欄には、括弧外の数字と、括弧内の数値とを表記している。括弧外の数字はカーボンブラックマスターバッチの配合量を示し、括弧内の数字は実際に配合されたカーボンブラックの量を示している。
 <気泡核形成剤>
 気泡核形成剤としては、タルク(Imerys社製、Luzenac 20MO)を使用した。
 以下、実施例および比較例を説明する。なお、実施例および比較例では、押出発泡粒子の製造に使用する装置として、軸径φ26mmの二軸押出機とメルトクーラーとダイバーターバルブとダイとが直列に連結された装置を使用した。
 (実施例1~9、比較例1および参考例1~4)
 (a)分岐構造を有するポリプロピレン系樹脂と、(b)表1~表3に示す熱可塑性エラストマーおよび/またはエチレンプロピレンランダム共重合体と、(c)無機系着色剤(カーボンブラックの濃度が40%であるカーボンブラックマスターバッチ)と、(d)気泡核形成剤とを、表1~表3に示す量で混合し、樹脂混合物を調製した。次いで、樹脂混合物を二軸押出機に供給して、シリンダ温度210℃で当該樹脂混合物を溶融混練した。さらに、押出機途中に設けた圧入部より、発泡剤である炭酸ガスを、ポリプロピレン系樹脂100重量部に対し3重量部、定量ポンプを用いて供給し、得られた組成物をさらに溶融混練した。
 得られた溶融混練物を、二軸押出機の先端に接続され、185℃に設定したメルトクーラーを通過させて冷却した。その後、メルトクーラーの先端に装着されたダイより、装置内圧よりも低圧かつ水で満たされた領域に、溶融混練物を押出して発泡させた。水で満たされた領域中で、ダイ先端に取り付けた回転カッターにより、ダイを通過直後の組成物を細断し、ポリプロピレン系樹脂押出発泡粒子を得た。ダイに進入直前の溶融混練物(組成物)の温度は205℃であった。ダイに進入直前の溶融混練物温度は、ダイバーターバルブの出口付近に、具体的には、押出方向に沿ってダイの入口から上流に10mmの箇所に、組成物と接するように設置された温度計により、測定した。
 水で満たされた領域において、組成物に対する水の圧力は、実施例1~7および比較例1では0.35MPa(ゲージ圧)であり、参考例1~4では0.40MPa(ゲージ圧)であった。
 得られた押出発泡粒子について、連続気泡率、平均セル径および嵩密度を測定し、その結果を表1~3に示した。また、得られた押出発泡粒子を用いて成形幅を評価し、得られた結果を表1~3の「蒸気圧幅」および「成形幅」の欄に記載した。
 得られた押出発泡粒子について、ダイセン株式会社製成形機(KD345)を使用し、ブロック形状金型(縦400mm×横300mm×厚さ可変)の厚さを52mmの状態(クラッキング率30%)にして、押出発泡粒子を金型内に充填した後、金型厚さが40mmとなるように圧縮した。次いで、0.10MPa(ゲージ圧)の水蒸気で金型内の空気を追い出し、その後、その後、0.20MPa(ゲージ圧)の蒸気圧を示す水蒸気を用いて10秒間加熱成形することにより、発泡成形体を得た。得られた発泡成形体について、発泡成形体の密度、試験片の密度および引張破断伸び率を測定し、その結果を表1~3に示した。また、上述した評価基準に基づき、総合評価を行い、その結果を表1~3に示した。
 (参考例5および6)
 実施例1~9、比較例1および参考例1~4においては押出発泡によりポリプロピレン系樹脂押出発泡粒子を作製した。一方、以下の参考例5および6においては、除圧発泡によりポリプロピレン系樹脂発泡粒子を作製した。以下、参考例5および6のポリプロピレン系樹脂発泡粒子の作製方法について説明する。
[ポリプロピレン系樹脂粒子の作製]
 前記<その他の樹脂>の項で説明したエチレン/プロピレンランダム共重合体(プライムポリマー社製、「F-724NPC」)と、気泡核形成剤と、任意で無機系着色剤(カーボンブラックの濃度が40%であるカーボンブラックマスターバッチ)と、を表3に示す量で混合し、樹脂混合物を調製した。次いで、樹脂混合物を二軸押出機[芝浦機械株式会社製、TEM26]に供給して、樹脂温度215℃~225℃にて当該樹脂混合物を溶融混練した。続いて、得られた溶融混練物を、ダイからストランド状に押出した。次いで、押出されたストランドを水槽で水冷した。続いて、水冷されたストランドを切断して、ポリプロピレン系樹脂粒子(1.80mg/粒)を製造した。
[ポリプロピレン系樹脂発泡粒子の作製]
 内容量10Lの耐圧容器中に、得られたポリプロピレン系樹脂粒子100重量部、水200重量部、分散剤としてのパウダー状塩基性第3リン酸カルシウム1.0重量部、分散助剤としてのn-パラフィンスルホン酸ソーダ0.06重量部、および発泡剤として二酸化炭素4重量部を収容した。容器内の原料(水系分散液)を攪拌しながら、容器内温度を156℃まで昇温した。容器内温度が156℃に達した後、容器内温度が156℃に維持された状態で10分経過後、容器内に二酸化炭素を追加圧入して、容器内圧力を2.2MPa(ゲージ圧)に調整した。さらに、容器内温度を158℃まで昇温した。容器内温度が158℃に達した後、容器内温度158℃および容器内圧力2.2MPa(ゲージ圧)にて20分間保持した。
 その後、容器下部のバルブを開いて、水系分散液を開孔径4.0mmφのオリフィス板を通して、大気圧下に放出した。かかる操作により、ポリプロピレン系樹脂発泡粒子を得た。得られたポリプロピレン系樹脂発泡粒子を1%塩酸溶液で洗浄し、十分に水洗した後、乾燥させた。
 このようにして得られたポリプロピレン系樹脂発泡粒子について、連続気泡率、平均セル径および嵩密度を測定し、その結果を表3に示した。また、得られたポリプロピレン系樹脂発泡粒子を用いて成形幅を評価し、得られた結果を表3の「蒸気圧幅」および「成形幅」の欄に記載した。
 得られたポリプロピレン系樹脂発泡粒子を用いて、上記と同様にしてポリプロピレン系樹脂発泡成形体を作製した。得られたポリプロピレン系樹脂発泡成形体について、ポリプロピレン系樹脂発泡成形体の密度、試験片の密度および引張破断伸び率を測定し、その結果を表3に示した。また、上述した評価基準に基づき、総合評価を行い、その結果を表3に示した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000003
 表3の参考例1より、分岐構造を有するポリプロピレン樹脂を含んでなる押出発泡粒子を用いた発泡成形体の引張破断伸び率は7%であり、耐破断性が悪いことが分かる。参考例2~4に示されるように、熱可塑性エラストマーを使用することにより、引張破断伸び率は10%以上に向上することが分かる。比較例1に示すように、分岐構造を有するポリプロピレン樹脂とカーボンブラックとを使用するが、熱可塑性エラストマーを使用しない場合、引張破断伸び率は6%であり、成形幅は0MPaであり、耐破断性および成形性が悪くなることが分かる。
 実施例1~9から、分岐構造を有するポリプロピレン樹脂およびカーボンブラックに加えて、さらに熱可塑性エラストマーを、各々本発明の一実施形態の範囲内で使用する場合、引張破断伸び率が10%以上になり、成形幅も0.04MPa以上であり、耐破断性および成形性が良好になることが分かる。
 除圧発泡によりポリプロピレン系樹脂発泡粒子を作製した参考例5および6の場合、ポリプロピレン系樹脂発泡粒子の成形性は良好であり、ポリプロピレン系樹脂発泡成形体の耐破断性も良好であることがわかる。すなわち、除圧発泡により得られるポリプロピレン系樹脂発泡粒子については、無機系着色剤を含むか否かに関わらず、ポリプロピレン系樹脂発泡成形体の良品を得るための成形幅が著しく狭くなる虞はなく、当該ポリプロピレン系樹脂発泡成形体の耐破断性が著しく低くなる虞もない、ということが分かる。
 本発明の一実施形態によれば、成形性に優れる押出発泡粒子を提供することができる。そのため、本発明の一実施形態は、優れた耐破断性を有する発泡成形体を得るために、好適に利用できる。そのため、本発明の一実施形態は、自動車内装部材、緩衝材、包装材、および断熱材等の分野等において好適に利用できる。

Claims (15)

  1.  分岐構造を有するポリプロピレン系樹脂を含有する基材樹脂を含み、
     前記分岐構造を有するポリプロピレン系樹脂の溶融張力は5cN~50cNであり、
     前記基材樹脂は、さらに、熱可塑性エラストマーおよび無機系着色剤を含有する、ポリプロピレン系樹脂押出発泡粒子。
  2.  前記基材樹脂は、当該基材樹脂100重量%中、前記分岐構造を有するポリプロピレン系樹脂を64.5重量%~94.5重量%含む、請求項1に記載のポリプロピレン系樹脂押出発泡粒子。
  3.  前記基材樹脂は、当該基材樹脂100重量%中、前記熱可塑性エラストマーを5.0重量%~35.0重量%含む、請求項1または2に記載のポリプロピレン系樹脂押出発泡粒子。
  4.  前記基材樹脂は、当該基材樹脂100重量%中、前記無機系着色剤を0.5重量%~5.0重量%含む、請求項1~3の何れか1項に記載のポリプロピレン系樹脂押出発泡粒子。
  5.  前記無機系着色剤は、カーボンブラック、赤土、黄土、緑土、酸化チタン、コバルト青、紺青、および酸化クロム緑からなる群から選ばれる1つ以上である、請求項1~4の何れか1項に記載のポリプロピレン系樹脂押出発泡粒子。
  6.  前記熱可塑性エラストマーは、ポリオレフィン系エラストマーである、請求項1~5の何れか1項に記載のポリプロピレン系樹脂押出発泡粒子。
  7.  熱可塑性エラストマーの引張破断伸び率は、500%~1000%である、請求項1~6の何れか1項に記載のポリプロピレン系樹脂押出発泡粒子。
  8.  熱可塑性エラストマーの融点は、40℃~110℃である、請求項1~7の何れか1項に記載のポリプロピレン系樹脂押出発泡粒子。
  9.  熱可塑性エラストマーのメルトフローレートは、0.3g/10分~10.0g/10分である、請求項1~8の何れか1項に記載のポリプロピレン系樹脂押出発泡粒子。
  10.  連続気泡率は15%以下である、請求項1~9の何れか1項に記載のポリプロピレン系樹脂押出発泡粒子。
  11.  平均セル径は100μm~500μmである、請求項1~10の何れか1項に記載のポリプロピレン系樹脂押出発泡粒子。
  12.  嵩密度は60g/L以上である、請求項1~11の何れか1項に記載のポリプロピレン系樹脂押出発泡粒子。
  13.  押出発泡粒子を型内発泡成形したとき、以下を満たす発泡成形体を得ることができる、前記型内発泡成形時の蒸気圧の上下の幅である成形幅は、0.02MPa以上である、請求項1~12の何れか1項に記載のポリプロピレン系樹脂押出発泡粒子。
    (1)押出発泡粒子同士の融着率が80%以上である;
    (2)押出発泡粒子間の隙間が十分に埋まっている;
    (3)表面が美麗である;
    (4)表面がメルトしていない;および
    (5)型内発泡成形に使用した型の寸法に対して5%以上収縮することなく、前記型の形状が転写されている、発泡成形体。
  14.  発泡成形体であって、
     基材樹脂100重量%中、分岐構造を有するポリプロピレン系樹脂を64.5重量%以上含有する前記基材樹脂を含む押出発泡粒子を成形してなり、
     前記押出発泡粒子の連続気泡率は15%以下であり、
     前記発泡成形体の密度は60g/L~300g/Lであり、かつ
     前記発泡成形体の引張破断伸び率は10%以上である、ポリプロピレン系樹脂発泡成形体。
  15.  請求項1~13のいずれか1項に記載のポリプロピレン系樹脂押出発泡粒子を成形してなる、ポリプロピレン系樹脂発泡成形体。
PCT/JP2022/007863 2021-02-25 2022-02-25 ポリプロピレン系樹脂押出発泡粒子およびポリプロピレン系樹脂発泡成形体 WO2022181762A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22759796.0A EP4299665A1 (en) 2021-02-25 2022-02-25 Polypropylene resin extruded foam particles and polypropylene resin foam molded body
JP2023502535A JPWO2022181762A1 (ja) 2021-02-25 2022-02-25

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021029192 2021-02-25
JP2021-029192 2021-02-25

Publications (1)

Publication Number Publication Date
WO2022181762A1 true WO2022181762A1 (ja) 2022-09-01

Family

ID=83049175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/007863 WO2022181762A1 (ja) 2021-02-25 2022-02-25 ポリプロピレン系樹脂押出発泡粒子およびポリプロピレン系樹脂発泡成形体

Country Status (3)

Country Link
EP (1) EP4299665A1 (ja)
JP (1) JPWO2022181762A1 (ja)
WO (1) WO2022181762A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10237212A (ja) 1997-02-21 1998-09-08 Huels Ag 発泡したポリオレフィン粒状物を更に発泡する方法
JP2002542360A (ja) 1999-04-19 2002-12-10 バセル テクノロジー カンパニー ベスローテン フェンノートシャップ 高い溶融強度を持つ軟質プロピレンポリマーブレンド
JP2005023302A (ja) * 2003-06-12 2005-01-27 Jsp Corp ポリプロピレン系樹脂発泡粒子の製造方法
JP2006307177A (ja) * 2005-03-29 2006-11-09 Jsp Corp ポリプロピレン系樹脂発泡粒子、ポリプロピレン系樹脂発泡粒子成形体の製造方法およびポリプロピレン系樹脂発泡粒子成形体
WO2018016399A1 (ja) 2016-07-19 2018-01-25 株式会社カネカ ポリプロピレン系樹脂予備発泡粒子および該予備発泡粒子の製造方法
WO2018079699A1 (ja) * 2016-10-31 2018-05-03 キョーラク株式会社 発泡成形用樹脂、発泡成形体及びその製造方法
JP2018076464A (ja) * 2016-11-11 2018-05-17 株式会社ジェイエスピー 発泡粒子とその成形体
WO2020004429A1 (ja) 2018-06-28 2020-01-02 株式会社カネカ 改質ポリプロピレン樹脂およびその製造方法、並びに、当該改質ポリプロピレン樹脂を用いた押出発泡粒子およびその製造方法
WO2021131933A1 (ja) * 2019-12-23 2021-07-01 株式会社カネカ ポリプロピレン系樹脂組成物、その製造方法、予備発泡粒子の製造方法及び発泡成形体の製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10237212A (ja) 1997-02-21 1998-09-08 Huels Ag 発泡したポリオレフィン粒状物を更に発泡する方法
JP2002542360A (ja) 1999-04-19 2002-12-10 バセル テクノロジー カンパニー ベスローテン フェンノートシャップ 高い溶融強度を持つ軟質プロピレンポリマーブレンド
JP2005023302A (ja) * 2003-06-12 2005-01-27 Jsp Corp ポリプロピレン系樹脂発泡粒子の製造方法
JP2006307177A (ja) * 2005-03-29 2006-11-09 Jsp Corp ポリプロピレン系樹脂発泡粒子、ポリプロピレン系樹脂発泡粒子成形体の製造方法およびポリプロピレン系樹脂発泡粒子成形体
WO2018016399A1 (ja) 2016-07-19 2018-01-25 株式会社カネカ ポリプロピレン系樹脂予備発泡粒子および該予備発泡粒子の製造方法
WO2018079699A1 (ja) * 2016-10-31 2018-05-03 キョーラク株式会社 発泡成形用樹脂、発泡成形体及びその製造方法
JP2018076464A (ja) * 2016-11-11 2018-05-17 株式会社ジェイエスピー 発泡粒子とその成形体
WO2020004429A1 (ja) 2018-06-28 2020-01-02 株式会社カネカ 改質ポリプロピレン樹脂およびその製造方法、並びに、当該改質ポリプロピレン樹脂を用いた押出発泡粒子およびその製造方法
WO2021131933A1 (ja) * 2019-12-23 2021-07-01 株式会社カネカ ポリプロピレン系樹脂組成物、その製造方法、予備発泡粒子の製造方法及び発泡成形体の製造方法

Also Published As

Publication number Publication date
EP4299665A1 (en) 2024-01-03
JPWO2022181762A1 (ja) 2022-09-01

Similar Documents

Publication Publication Date Title
EP2072207B1 (en) Expanded polypropylene resin beads and foamed molded article thereof
KR101455435B1 (ko) 폴리프로필렌계 수지 발포 입자 및 그 성형체
KR101473031B1 (ko) 폴리프로필렌계 수지 발포 입자 및 그 성형체
JP4669301B2 (ja) 導電性を有する熱可塑性樹脂発泡粒子及びその発泡成形体
WO2021100645A1 (ja) ポリプロピレン系樹脂発泡粒子、その製造方法及びポリプロピレン系樹脂発泡成形体
US8507608B2 (en) Propylene polymer resin composition
JP5202942B2 (ja) プロピレン系樹脂押出発泡体の製造方法
WO2021172016A1 (ja) ポリプロピレン系樹脂発泡粒子、その製造方法及びポリプロピレン系樹脂発泡成形体
JP2022152955A (ja) ポリプロピレン系樹脂押出発泡粒子の製造方法
JP4999462B2 (ja) プロピレン系樹脂押出発泡体
WO2016147919A1 (ja) ポリプロピレン系樹脂発泡粒子およびその製造方法
WO2022203036A1 (ja) ポリプロピレン系樹脂押出発泡粒子およびその製造方法、並びに発泡成形体
WO2022191181A1 (ja) 押出発泡用ポリプロピレン系樹脂組成物、押出発泡粒子および発泡成形体
CN103183859B (zh) 含微交联组分的聚乙烯共混组合物及其管制品
WO2022181762A1 (ja) ポリプロピレン系樹脂押出発泡粒子およびポリプロピレン系樹脂発泡成形体
WO2022210647A1 (ja) ポリプロピレン系樹脂押出発泡粒子の製造方法
EP4083089A1 (en) Polypropylene resin composition, method for producing same, method for producing pre-foamed particles, and method for producing foam molded articles
WO2022050375A1 (ja) 押出発泡粒子およびその製造方法
WO2022163627A1 (ja) 分岐構造を有するポリプロピレン系樹脂の製造方法、押出発泡粒子の製造方法、および、発泡成形体の製造方法
WO2022154070A1 (ja) ポリプロピレン系樹脂押出発泡粒子およびその製造方法、並びに発泡成形体
WO2022210645A1 (ja) ポリプロピレン系樹脂押出発泡粒子およびその製造方法、並びに発泡成形体
WO2022210646A1 (ja) ポリプロピレン系樹脂押出発泡粒子
WO2023127914A1 (ja) ポリプロピレン系樹脂押出発泡粒子の製造方法
WO2023054223A1 (ja) ポリプロピレン系樹脂押出発泡粒子、ポリプロピレン系樹脂発泡成形体および積層発泡体
WO2023176911A1 (ja) ポリプロピレン系樹脂押出発泡粒子の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22759796

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023502535

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022759796

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022759796

Country of ref document: EP

Effective date: 20230925