WO2022181762A1 - ポリプロピレン系樹脂押出発泡粒子およびポリプロピレン系樹脂発泡成形体 - Google Patents
ポリプロピレン系樹脂押出発泡粒子およびポリプロピレン系樹脂発泡成形体 Download PDFInfo
- Publication number
- WO2022181762A1 WO2022181762A1 PCT/JP2022/007863 JP2022007863W WO2022181762A1 WO 2022181762 A1 WO2022181762 A1 WO 2022181762A1 JP 2022007863 W JP2022007863 W JP 2022007863W WO 2022181762 A1 WO2022181762 A1 WO 2022181762A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- extruded
- polypropylene
- resin
- foam
- particles
- Prior art date
Links
- 229920005989 resin Polymers 0.000 title claims abstract description 304
- 239000011347 resin Substances 0.000 title claims abstract description 304
- 239000002245 particle Substances 0.000 title claims abstract description 209
- -1 Polypropylene Polymers 0.000 title claims abstract description 173
- 239000004743 Polypropylene Substances 0.000 title claims abstract description 161
- 229920001155 polypropylene Polymers 0.000 title claims abstract description 161
- 239000006260 foam Substances 0.000 title claims abstract description 103
- 229920002725 thermoplastic elastomer Polymers 0.000 claims abstract description 72
- 239000003086 colorant Substances 0.000 claims abstract description 48
- 229920005673 polypropylene based resin Polymers 0.000 claims description 88
- 229920006379 extruded polypropylene Polymers 0.000 claims description 46
- 238000000465 moulding Methods 0.000 claims description 41
- 238000002844 melting Methods 0.000 claims description 39
- 230000008018 melting Effects 0.000 claims description 39
- 229920001971 elastomer Polymers 0.000 claims description 31
- 239000000155 melt Substances 0.000 claims description 22
- 239000006229 carbon black Substances 0.000 claims description 19
- 238000010097 foam moulding Methods 0.000 claims description 16
- 230000004927 fusion Effects 0.000 claims description 11
- 239000004927 clay Substances 0.000 claims description 8
- 229920000098 polyolefin Polymers 0.000 claims description 8
- 239000000806 elastomer Substances 0.000 claims description 7
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 4
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 claims description 4
- 229910000423 chromium oxide Inorganic materials 0.000 claims description 4
- 229910052570 clay Inorganic materials 0.000 claims description 4
- 229910017052 cobalt Inorganic materials 0.000 claims description 4
- 239000010941 cobalt Substances 0.000 claims description 4
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 4
- DCYOBGZUOMKFPA-UHFFFAOYSA-N iron(2+);iron(3+);octadecacyanide Chemical compound [Fe+2].[Fe+2].[Fe+2].[Fe+3].[Fe+3].[Fe+3].[Fe+3].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-] DCYOBGZUOMKFPA-UHFFFAOYSA-N 0.000 claims description 4
- 229960003351 prussian blue Drugs 0.000 claims description 4
- 239000013225 prussian blue Substances 0.000 claims description 4
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 4
- 238000005187 foaming Methods 0.000 abstract description 25
- 238000000034 method Methods 0.000 description 67
- 239000011324 bead Substances 0.000 description 48
- 230000008901 benefit Effects 0.000 description 38
- 238000012360 testing method Methods 0.000 description 26
- 239000005060 rubber Substances 0.000 description 24
- 238000001125 extrusion Methods 0.000 description 23
- 239000000203 mixture Substances 0.000 description 23
- 239000002667 nucleating agent Substances 0.000 description 18
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 17
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 16
- 239000000178 monomer Substances 0.000 description 16
- 239000005977 Ethylene Substances 0.000 description 13
- 238000004519 manufacturing process Methods 0.000 description 13
- 239000000463 material Substances 0.000 description 13
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 12
- 239000004088 foaming agent Substances 0.000 description 12
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 12
- 239000004594 Masterbatch (MB) Substances 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 10
- 238000001938 differential scanning calorimetry curve Methods 0.000 description 10
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 10
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 description 9
- 238000005259 measurement Methods 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical compound CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 8
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 8
- 239000003570 air Substances 0.000 description 8
- 239000001569 carbon dioxide Substances 0.000 description 8
- 229910002092 carbon dioxide Inorganic materials 0.000 description 8
- 238000011156 evaluation Methods 0.000 description 8
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 8
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 7
- 239000012860 organic pigment Substances 0.000 description 7
- 229920005604 random copolymer Polymers 0.000 description 7
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 6
- 238000004898 kneading Methods 0.000 description 6
- 229920006124 polyolefin elastomer Polymers 0.000 description 6
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 5
- 239000004604 Blowing Agent Substances 0.000 description 5
- 239000004698 Polyethylene Substances 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 238000005520 cutting process Methods 0.000 description 5
- 229920000573 polyethylene Polymers 0.000 description 5
- 239000007870 radical polymerization initiator Substances 0.000 description 5
- ZGEGCLOFRBLKSE-UHFFFAOYSA-N 1-Heptene Chemical compound CCCCCC=C ZGEGCLOFRBLKSE-UHFFFAOYSA-N 0.000 description 4
- AFFLGGQVNFXPEV-UHFFFAOYSA-N 1-decene Chemical compound CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 description 4
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 229920001400 block copolymer Polymers 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000003763 resistance to breakage Effects 0.000 description 4
- 239000003381 stabilizer Substances 0.000 description 4
- 238000004804 winding Methods 0.000 description 4
- 239000004711 α-olefin Substances 0.000 description 4
- YHQXBTXEYZIYOV-UHFFFAOYSA-N 3-methylbut-1-ene Chemical compound CC(C)C=C YHQXBTXEYZIYOV-UHFFFAOYSA-N 0.000 description 3
- 229920000034 Plastomer Polymers 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 238000000691 measurement method Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 229920001384 propylene homopolymer Polymers 0.000 description 3
- 239000011342 resin composition Substances 0.000 description 3
- PRBHEGAFLDMLAL-GQCTYLIASA-N (4e)-hexa-1,4-diene Chemical compound C\C=C\CC=C PRBHEGAFLDMLAL-GQCTYLIASA-N 0.000 description 2
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- RITONZMLZWYPHW-UHFFFAOYSA-N 3-methylhex-1-ene Chemical compound CCCC(C)C=C RITONZMLZWYPHW-UHFFFAOYSA-N 0.000 description 2
- LDTAOIUHUHHCMU-UHFFFAOYSA-N 3-methylpent-1-ene Chemical compound CCC(C)C=C LDTAOIUHUHHCMU-UHFFFAOYSA-N 0.000 description 2
- JLBJTVDPSNHSKJ-UHFFFAOYSA-N 4-Methylstyrene Chemical compound CC1=CC=C(C=C)C=C1 JLBJTVDPSNHSKJ-UHFFFAOYSA-N 0.000 description 2
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 239000003463 adsorbent Substances 0.000 description 2
- 229940069428 antacid Drugs 0.000 description 2
- 239000003159 antacid agent Substances 0.000 description 2
- 230000001458 anti-acid effect Effects 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 230000003078 antioxidant effect Effects 0.000 description 2
- 239000002216 antistatic agent Substances 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- LPIQUOYDBNQMRZ-UHFFFAOYSA-N cyclopentene Chemical compound C1CC=CC1 LPIQUOYDBNQMRZ-UHFFFAOYSA-N 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000001739 density measurement Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 229920003244 diene elastomer Polymers 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- HEAMQYHBJQWOSS-UHFFFAOYSA-N ethene;oct-1-ene Chemical compound C=C.CCCCCCC=C HEAMQYHBJQWOSS-UHFFFAOYSA-N 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 239000003063 flame retardant Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 239000006078 metal deactivator Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 239000004014 plasticizer Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000000344 soap Substances 0.000 description 2
- 239000000454 talc Substances 0.000 description 2
- 229910052623 talc Inorganic materials 0.000 description 2
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 2
- 239000000326 ultraviolet stabilizing agent Substances 0.000 description 2
- OJOWICOBYCXEKR-APPZFPTMSA-N (1S,4R)-5-ethylidenebicyclo[2.2.1]hept-2-ene Chemical compound CC=C1C[C@@H]2C[C@@H]1C=C2 OJOWICOBYCXEKR-APPZFPTMSA-N 0.000 description 1
- NPNPZTNLOVBDOC-UHFFFAOYSA-N 1,1-difluoroethane Chemical compound CC(F)F NPNPZTNLOVBDOC-UHFFFAOYSA-N 0.000 description 1
- JVPKLOPETWVKQD-UHFFFAOYSA-N 1,2,2-tribromoethenylbenzene Chemical compound BrC(Br)=C(Br)C1=CC=CC=C1 JVPKLOPETWVKQD-UHFFFAOYSA-N 0.000 description 1
- SVHAMPNLOLKSFU-UHFFFAOYSA-N 1,2,2-trichloroethenylbenzene Chemical compound ClC(Cl)=C(Cl)C1=CC=CC=C1 SVHAMPNLOLKSFU-UHFFFAOYSA-N 0.000 description 1
- CYLVUSZHVURAOY-UHFFFAOYSA-N 2,2-dibromoethenylbenzene Chemical compound BrC(Br)=CC1=CC=CC=C1 CYLVUSZHVURAOY-UHFFFAOYSA-N 0.000 description 1
- CISIJYCKDJSTMX-UHFFFAOYSA-N 2,2-dichloroethenylbenzene Chemical compound ClC(Cl)=CC1=CC=CC=C1 CISIJYCKDJSTMX-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 description 1
- GOXQRTZXKQZDDN-UHFFFAOYSA-N 2-Ethylhexyl acrylate Chemical compound CCCCC(CC)COC(=O)C=C GOXQRTZXKQZDDN-UHFFFAOYSA-N 0.000 description 1
- SBYMUDUGTIKLCR-UHFFFAOYSA-N 2-chloroethenylbenzene Chemical compound ClC=CC1=CC=CC=C1 SBYMUDUGTIKLCR-UHFFFAOYSA-N 0.000 description 1
- DDBYLRWHHCWVID-UHFFFAOYSA-N 2-ethylbut-1-enylbenzene Chemical compound CCC(CC)=CC1=CC=CC=C1 DDBYLRWHHCWVID-UHFFFAOYSA-N 0.000 description 1
- WDQMWEYDKDCEHT-UHFFFAOYSA-N 2-ethylhexyl 2-methylprop-2-enoate Chemical compound CCCCC(CC)COC(=O)C(C)=C WDQMWEYDKDCEHT-UHFFFAOYSA-N 0.000 description 1
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical compound OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 description 1
- VHSHLMUCYSAUQU-UHFFFAOYSA-N 2-hydroxypropyl methacrylate Chemical compound CC(O)COC(=O)C(C)=C VHSHLMUCYSAUQU-UHFFFAOYSA-N 0.000 description 1
- GWZMWHWAWHPNHN-UHFFFAOYSA-N 2-hydroxypropyl prop-2-enoate Chemical compound CC(O)COC(=O)C=C GWZMWHWAWHPNHN-UHFFFAOYSA-N 0.000 description 1
- BTOVVHWKPVSLBI-UHFFFAOYSA-N 2-methylprop-1-enylbenzene Chemical compound CC(C)=CC1=CC=CC=C1 BTOVVHWKPVSLBI-UHFFFAOYSA-N 0.000 description 1
- DXIJHCSGLOHNES-UHFFFAOYSA-N 3,3-dimethylbut-1-enylbenzene Chemical compound CC(C)(C)C=CC1=CC=CC=C1 DXIJHCSGLOHNES-UHFFFAOYSA-N 0.000 description 1
- CEBRPXLXYCFYGU-UHFFFAOYSA-N 3-methylbut-1-enylbenzene Chemical compound CC(C)C=CC1=CC=CC=C1 CEBRPXLXYCFYGU-UHFFFAOYSA-N 0.000 description 1
- CNGYZEMWVAWWOB-VAWYXSNFSA-N 5-[[4-anilino-6-[bis(2-hydroxyethyl)amino]-1,3,5-triazin-2-yl]amino]-2-[(e)-2-[4-[[4-anilino-6-[bis(2-hydroxyethyl)amino]-1,3,5-triazin-2-yl]amino]-2-sulfophenyl]ethenyl]benzenesulfonic acid Chemical compound N=1C(NC=2C=C(C(\C=C\C=3C(=CC(NC=4N=C(N=C(NC=5C=CC=CC=5)N=4)N(CCO)CCO)=CC=3)S(O)(=O)=O)=CC=2)S(O)(=O)=O)=NC(N(CCO)CCO)=NC=1NC1=CC=CC=C1 CNGYZEMWVAWWOB-VAWYXSNFSA-N 0.000 description 1
- WTQBISBWKRKLIJ-UHFFFAOYSA-N 5-methylidenebicyclo[2.2.1]hept-2-ene Chemical compound C1C2C(=C)CC1C=C2 WTQBISBWKRKLIJ-UHFFFAOYSA-N 0.000 description 1
- JTHZUSWLNCPZLX-UHFFFAOYSA-N 6-fluoro-3-methyl-2h-indazole Chemical compound FC1=CC=C2C(C)=NNC2=C1 JTHZUSWLNCPZLX-UHFFFAOYSA-N 0.000 description 1
- UCKITPBQPGXDHV-UHFFFAOYSA-N 7-methylocta-1,6-diene Chemical compound CC(C)=CCCCC=C UCKITPBQPGXDHV-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- 239000004716 Ethylene/acrylic acid copolymer Substances 0.000 description 1
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- GYCMBHHDWRMZGG-UHFFFAOYSA-N Methylacrylonitrile Chemical compound CC(=C)C#N GYCMBHHDWRMZGG-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- NRCMAYZCPIVABH-UHFFFAOYSA-N Quinacridone Chemical compound N1C2=CC=CC=C2C(=O)C2=C1C=C1C(=O)C3=CC=CC=C3NC1=C2 NRCMAYZCPIVABH-UHFFFAOYSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- YMOONIIMQBGTDU-VOTSOKGWSA-N [(e)-2-bromoethenyl]benzene Chemical compound Br\C=C\C1=CC=CC=C1 YMOONIIMQBGTDU-VOTSOKGWSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 125000005396 acrylic acid ester group Chemical group 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 1
- 239000000038 blue colorant Substances 0.000 description 1
- MPMBRWOOISTHJV-UHFFFAOYSA-N but-1-enylbenzene Chemical compound CCC=CC1=CC=CC=C1 MPMBRWOOISTHJV-UHFFFAOYSA-N 0.000 description 1
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 1
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- PPSZHCXTGRHULJ-UHFFFAOYSA-N dioxazine Chemical compound O1ON=CC=C1 PPSZHCXTGRHULJ-UHFFFAOYSA-N 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- GMSCBRSQMRDRCD-UHFFFAOYSA-N dodecyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCCCOC(=O)C(C)=C GMSCBRSQMRDRCD-UHFFFAOYSA-N 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 1
- 229920006242 ethylene acrylic acid copolymer Polymers 0.000 description 1
- 229920001038 ethylene copolymer Polymers 0.000 description 1
- 229920005674 ethylene-propylene random copolymer Polymers 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 description 1
- 229920000578 graft copolymer Polymers 0.000 description 1
- 239000000040 green colorant Substances 0.000 description 1
- LNCPIMCVTKXXOY-UHFFFAOYSA-N hexyl 2-methylprop-2-enoate Chemical compound CCCCCCOC(=O)C(C)=C LNCPIMCVTKXXOY-UHFFFAOYSA-N 0.000 description 1
- LNMQRPPRQDGUDR-UHFFFAOYSA-N hexyl prop-2-enoate Chemical compound CCCCCCOC(=O)C=C LNMQRPPRQDGUDR-UHFFFAOYSA-N 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910001872 inorganic gas Inorganic materials 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- GWVMLCQWXVFZCN-UHFFFAOYSA-N isoindoline Chemical compound C1=CC=C2CNCC2=C1 GWVMLCQWXVFZCN-UHFFFAOYSA-N 0.000 description 1
- PBOSTUDLECTMNL-UHFFFAOYSA-N lauryl acrylate Chemical compound CCCCCCCCCCCCOC(=O)C=C PBOSTUDLECTMNL-UHFFFAOYSA-N 0.000 description 1
- 229920000092 linear low density polyethylene Polymers 0.000 description 1
- 239000004707 linear low-density polyethylene Substances 0.000 description 1
- 229920005679 linear ultra low density polyethylene Polymers 0.000 description 1
- 229920001684 low density polyethylene Polymers 0.000 description 1
- 239000004702 low-density polyethylene Substances 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 229920001179 medium density polyethylene Polymers 0.000 description 1
- 239000004701 medium-density polyethylene Substances 0.000 description 1
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 1
- 229920003145 methacrylic acid copolymer Polymers 0.000 description 1
- 229940117841 methacrylic acid copolymer Drugs 0.000 description 1
- 125000005397 methacrylic acid ester group Chemical group 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- HWPKGOGLCKPRLZ-UHFFFAOYSA-M monosodium citrate Chemical compound [Na+].OC(=O)CC(O)(C([O-])=O)CC(O)=O HWPKGOGLCKPRLZ-UHFFFAOYSA-M 0.000 description 1
- 239000002524 monosodium citrate Substances 0.000 description 1
- 235000018342 monosodium citrate Nutrition 0.000 description 1
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 description 1
- HMZGPNHSPWNGEP-UHFFFAOYSA-N octadecyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCCCCCCCCCOC(=O)C(C)=C HMZGPNHSPWNGEP-UHFFFAOYSA-N 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- RPQRDASANLAFCM-UHFFFAOYSA-N oxiran-2-ylmethyl prop-2-enoate Chemical compound C=CC(=O)OCC1CO1 RPQRDASANLAFCM-UHFFFAOYSA-N 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- RGSFGYAAUTVSQA-UHFFFAOYSA-N pentamethylene Natural products C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 1
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920003225 polyurethane elastomer Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- HJWLCRVIBGQPNF-UHFFFAOYSA-N prop-2-enylbenzene Chemical compound C=CCC1=CC=CC=C1 HJWLCRVIBGQPNF-UHFFFAOYSA-N 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 239000001062 red colorant Substances 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 239000012744 reinforcing agent Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- CLJTZNIHUYFUMR-UHFFFAOYSA-M sodium;hydrogen carbonate;2-hydroxypropane-1,2,3-tricarboxylic acid Chemical compound [Na+].OC([O-])=O.OC(=O)CC(O)(C(O)=O)CC(O)=O CLJTZNIHUYFUMR-UHFFFAOYSA-M 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 235000019731 tricalcium phosphate Nutrition 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000001060 yellow colorant Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/04—Particle-shaped
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/0061—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/0066—Use of inorganic compounding ingredients
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/16—Making expandable particles
- C08J9/18—Making expandable particles by impregnating polymer particles with the blowing agent
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/22—After-treatment of expandable particles; Forming foamed products
- C08J9/228—Forming foamed products
- C08J9/232—Forming foamed products by sintering expandable particles
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/10—Homopolymers or copolymers of propene
- C08L23/12—Polypropene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/04—Condition, form or state of moulded material or of the material to be shaped cellular or porous
- B29K2105/048—Expandable particles, beads or granules
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2623/00—Use of polyalkenes or derivatives thereof for preformed parts, e.g. for inserts
- B29K2623/10—Polymers of propylene
- B29K2623/12—PP, i.e. polypropylene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2201/00—Foams characterised by the foaming process
- C08J2201/02—Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
- C08J2201/03—Extrusion of the foamable blend
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2203/00—Foams characterized by the expanding agent
- C08J2203/06—CO2, N2 or noble gases
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2205/00—Foams characterised by their properties
- C08J2205/04—Foams characterised by their properties characterised by the foam pores
- C08J2205/044—Micropores, i.e. average diameter being between 0,1 micrometer and 0,1 millimeter
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2205/00—Foams characterised by their properties
- C08J2205/04—Foams characterised by their properties characterised by the foam pores
- C08J2205/052—Closed cells, i.e. more than 50% of the pores are closed
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2323/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2323/10—Homopolymers or copolymers of propene
- C08J2323/12—Polypropene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2423/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2423/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2423/04—Homopolymers or copolymers of ethene
- C08J2423/08—Copolymers of ethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2423/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2423/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2423/16—Ethene-propene or ethene-propene-diene copolymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2423/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2423/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2423/18—Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
- C08J2423/20—Homopolymers or copolymers of hydrocarbons having four or more carbon atoms having four to nine carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2227—Oxides; Hydroxides of metals of aluminium
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2237—Oxides; Hydroxides of metals of titanium
- C08K2003/2241—Titanium dioxide
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2251—Oxides; Hydroxides of metals of chromium
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2265—Oxides; Hydroxides of metals of iron
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2289—Oxides; Hydroxides of metals of cobalt
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/14—Applications used for foams
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2207/00—Properties characterising the ingredient of the composition
- C08L2207/04—Thermoplastic elastomer
Definitions
- the present invention relates to extruded polypropylene resin foam particles and polypropylene resin foam molded articles.
- a polypropylene resin foam molded product obtained using polypropylene resin expanded particles has the advantages of foam molded products such as arbitrariness of shape, cushioning properties, light weight, and heat insulating properties.
- Examples of methods for producing expanded polypropylene resin particles include a batch foaming method, which is a discontinuous process, and an extrusion foaming method, which is a continuous process. Extrusion foaming has many advantages, such as efficiency and environmental aspects.
- Patent Documents 1 and 2 are examples of techniques for obtaining expanded polypropylene resin particles by extrusion foaming.
- Patent Document 1 discloses polypropylene-based resin pre-expanded particles that are characterized by being made of a polypropylene-based resin that satisfies a specific relational expression between the loss tangent and the melt-breaking take-up speed.
- Patent Document 2 (a) a random polypropylene resin having a specific configuration, (b) a conjugated diene compound, and (c) a mixture of a radical polymerization initiator having a specific configuration are melt-kneaded to obtain a modified polypropylene.
- a method for producing a modified polypropylene resin includes a melt-kneading step to obtain the resin.
- One embodiment of the present invention has been made in view of the above problems, and an object thereof is to provide extruded polypropylene resin expanded particles having excellent moldability and a polypropylene resin expanded molded article having excellent breakage resistance. is.
- the extruded polypropylene resin particles according to one embodiment of the present invention include a base resin containing a polypropylene resin having a branched structure, and the melt tension of the polypropylene resin having a branched structure is 5 cN to 50 cN.
- the base resin further contains a thermoplastic elastomer and an inorganic colorant.
- the structural units include a structural unit derived from the X1 monomer, a structural unit derived from the X2 monomer, ... and an Xn monomer (where n is Integer of 3 or more) is also referred to as "X 1 /X 2 /.../X n copolymer".
- the X 1 /X 2 /.../X n copolymer is not particularly limited in its polymerization mode unless otherwise specified, and may be a random copolymer or a block copolymer. may be a graft copolymer.
- the molecular chains of the resin in the foam-molded product have many crosslinked portions (also referred to as "branching").
- the cross-linked portions (branching) become entangled and can act to prevent the foam-molded article from extending any further.
- the cross-linked portion (branch) is entangled and does not extend, it is thought that the molecular chain must be cut. That is, the inventors of the present invention believe that the reason for the above is that the flexibility of the foamed molded article is reduced, the foamed molded article becomes difficult to stretch, and specifically, the tensile elongation at break of the foamed molded article tends to decrease. I guessed.
- Patent Literatures 1 and 2 above have room for further improvement from the viewpoint of the fracture resistance of foam molded articles.
- the present inventors have made extensive studies in order to provide extruded foamed particles that can provide foamed molded articles with excellent breakage resistance.
- the inventors of the present invention have surprisingly found the following new finding independently: By using a polypropylene resin having a branched structure together with a linear polypropylene resin having no branched structure, It is possible to provide extruded foamed particles that can provide foamed molded articles having excellent breakage resistance.
- the present inventors obtained colored extruded expanded particles by using an inorganic colorant and using a combination of a polypropylene resin having a branched structure and a linear polypropylene resin having no branched structure. An attempt was made to obtain a colored foamed molded article from the extruded foamed particles.
- the present inventors have surprisingly found that (a) the colored extruded particles thus obtained have a remarkably narrow molding width for obtaining a good foam molded product, and (b) It was independently found that the colored foamed molded article barely obtained had remarkably low resistance to breakage.
- the present inventors have made further intensive studies in order to provide both extruded polypropylene resin foam particles with excellent moldability and polypropylene resin foam molded articles with excellent breakage resistance.
- the inventors of the present invention have surprisingly found the following new findings uniquely and completed the present invention:
- a polypropylene resin having a branched structure and a thermoplastic elastomer together Even when an inorganic colorant is used, it is possible to provide both (a) extruded polypropylene resin expanded particles with excellent moldability and (b) polypropylene resin expanded molded articles with excellent breakage resistance. can.
- the extruded polypropylene resin particles according to one embodiment of the present invention include a base resin containing a polypropylene resin having a branched structure, and the polypropylene resin having a branched structure has a melt tension of 5 cN to 50 cN,
- the base resin further contains a thermoplastic elastomer and an inorganic colorant.
- extruded polypropylene resin particles can be made into a polypropylene resin foamed product by molding the extruded polypropylene resin particles (for example, in-mold expansion molding).
- extruded polypropylene resin expanded particles may be referred to as “extruded expanded particles”
- extruded polypropylene resin expanded particles according to one embodiment of the present invention may be referred to as “extruded expanded particles”.
- a "polypropylene-based resin foam-molded article” may be referred to as a "foam-molded article”
- a "polypropylene-based resin foam-molded article according to one embodiment of the present invention” may be referred to as a "present foam-molded article”.
- the present extruded foamed particles have the above-described structure, they have the advantage of (a) being excellent in moldability and (b) being able to provide a foamed molded article having excellent rupture resistance.
- the moldability of the extruded expanded beads is evaluated by the molding width of the extruded expanded beads. The molding width will be described later.
- the resistance to breakage of the present foam molded article is evaluated by the tensile elongation at break of the foam molded article. The tensile elongation at break will be described later.
- the base resin contains (a) a polypropylene resin having a branched structure, (b) a thermoplastic elastomer and an inorganic colorant.
- the base resin may further optionally contain additives such as cell nucleating agents.
- polypropylene resin having a branched structure refers to (a) a polypropylene resin obtained by partially cross-linking the molecules of a polypropylene resin to which no branched structure has been introduced, and (b) A polypropylene resin in which a diene compound other than (poly)propylene or the like is introduced as a branched chain is intended for a polypropylene resin in which no branched structure is introduced.
- polypropylene-based resin into which no branched structure is introduced may be referred to as "linear polypropylene-based resin", and the "polypropylene-based resin having a branched structure” is referred to as "branched polypropylene-based resin”.
- linear polypropylene resin and branched polypropylene resin may be collectively referred to as “polypropylene resin”.
- the linear polypropylene-based resin can also be said to be a raw material for the branched polypropylene-based resin.
- the polypropylene-based resin means a resin containing 50 mol% or more of structural units derived from a propylene monomer out of 100 mol% of all structural units contained in the resin.
- structural unit derived from propylene monomer may be referred to as "propylene unit”.
- the linear polypropylene-based resin may be (a) a homopolymer of propylene, or (b) a block copolymer or random copolymer of propylene and a monomer other than propylene, or (c) A mixture of two or more of these may be used.
- the linear polypropylene resin may have one or more structural units derived from a monomer other than the propylene monomer, or may have one or more types.
- “Monomers other than propylene monomers” used in the production of linear polypropylene resins are sometimes referred to as “comonomers”, and “monomers other than propylene monomers” contained in linear polypropylene resins Structural unit derived from” may be referred to as "comonomer unit".
- Comonomers include monomers such as: (a) ethylene, 1-butene, isobutene, 1-pentene, 3-methyl-1-butene, 1-hexene, 4-methyl-1-pentene, ⁇ -olefins having 2 or 4 to 12 carbon atoms such as 3,4-dimethyl-1-butene, 1-heptene, 3-methyl-1-hexene, 1-octene, 1-decene, (b) cyclopentene, norbornene, Cyclic olefins such as tetracyclo[6,2,11,8,13,6]-4-dodecene, (c) 5-methylene-2-norbornene, 5-ethylidene-2-norbornene, 1,4-hexadiene, methyl- dienes such as 1,4-hexadiene, 7-methyl-1,6-octadiene, and (d) vinyl chloride, vinylidene chloride, acrylonitrile, meth
- Acrylic esters include methyl acrylate, ethyl acrylate, butyl acrylate, hexyl acrylate, 2-ethylhexyl acrylate, lauryl acrylate, stearyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate and and glycidyl acrylate.
- Methacrylates include methyl methacrylate, ethyl methacrylate, butyl methacrylate, hexyl methacrylate, 2-ethylhexyl methacrylate, lauryl methacrylate, stearyl methacrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate and and glycidyl methacrylate.
- Styrenic monomers include styrene, methylstyrene, dimethylstyrene, alphamethylstyrene, paramethylstyrene, ethylstyrene, diethylstyrene, isopropylstyrene, t-butylstyrene, bromostyrene, dibromostyrene, tribromostyrene, chlorostyrene. , dichlorostyrene and trichlorostyrene.
- Linear polypropylene resin as a comonomer unit, preferably has a structural unit derived from an ⁇ -olefin having 2 or 4 to 12 carbon atoms, ethylene, 1-butene, isobutene, 1-pentene, 3-methyl-1 -butene, 1-hexene, 4-methyl-1-pentene, 3,4-dimethyl-1-butene, 1-heptene, 3-methyl-1-hexene, 1-octene and/or 1-decene, etc.
- this configuration (a) the advantage that a branched polypropylene resin having a high melt tension and a low gel fraction can be obtained, and (b) the obtained branched polypropylene resin has excellent moldability. It has the advantage of being able to provide particles.
- the linear polypropylene-based resin is preferably a propylene homopolymer, a polypropylene-based block copolymer and/or a polypropylene-based random copolymer, and is preferably a propylene homopolymer and/or a polypropylene-based random copolymer. more preferred.
- a branched polypropylene resin having a high melt tension and a low gel fraction can be obtained
- the obtained branched polypropylene resin has excellent moldability. It has the advantage of being able to provide particles.
- the linear polypropylene resin preferably contains 90 mol% or more of propylene units, more preferably 93 mol% or more, and 95 mol% or more of all 100 mol% of the total structural units contained in the linear polypropylene resin. It is more preferable to contain it, and it is particularly preferable to contain it in an amount of 97 mol % or more. This configuration has the advantage of obtaining a branched polypropylene resin having a high melt tension and a low gel fraction.
- the melting point of the linear polypropylene resin is not particularly limited.
- the melting point of the linear polypropylene resin is, for example, preferably 130° C. to 165° C., more preferably 135° C. to 164° C., even more preferably 138° C. to 163° C., and 140° C. to 162° C. °C is particularly preferred.
- the melting point of the linear polypropylene-based resin is within the range described above, (a) the advantage that the obtained extruded expanded particles are excellent in moldability, and (b) the extruded expanded particles can be used to form a foamed molded article with excellent breakage resistance.
- the melting point of the linear polypropylene-based resin is a value obtained by measuring with a differential scanning calorimeter method (hereinafter referred to as "DSC method").
- the specific operating procedure is as follows: (1) By raising the temperature of 5 to 6 mg of linear polypropylene resin from 40° C. to 220° C. at a rate of 10° C./min. (2) Then, the linear polypropylene resin is lowered from 220° C. to 40° C. at a rate of 10° C./min. (3) Then, the temperature of the crystallized linear polypropylene resin is further increased from 40°C to 220°C at a rate of 10°C/min.
- the temperature of the peak (melting peak) of the DSC curve of the linear polypropylene-based resin obtained during the second heating can be obtained as the melting point of the linear polypropylene-based resin. If there are multiple peaks (melting peaks) in the DSC curve of the linear polypropylene resin obtained during the second heating by the above method, the temperature of the peak (melting peak) with the maximum amount of heat of fusion is , the melting point of the linear polypropylene resin.
- the differential scanning calorimeter for example, DSC6200 type manufactured by Seiko Instruments Inc. can be used.
- the melt flow rate (MFR) of the linear polypropylene resin is not particularly limited.
- the MFR of the linear polypropylene resin is, for example, preferably 0.5 g/10 min to 20.0 g/10 min, more preferably 1.0 g/10 min to 15.0 g/10 min, It is more preferably 2.0 g/10 minutes to 12.0 g/10 minutes, and particularly preferably 2.0 g/10 minutes to 10.0 g/10 minutes.
- the MFR of a linear polypropylene resin is a value obtained by measuring under conditions of a temperature of 230°C and a load of 2.16 kg according to ISO 1133.
- a polypropylene-based resin having a branched structure can be obtained by introducing a branched structure into a linear polypropylene-based resin.
- the method for introducing a branched structure into the linear polypropylene resin is not particularly limited, but for example, (a1) a method of irradiating the linear polypropylene resin, and (a2) a linear polypropylene resin and a conjugated diene compound and a method of melt kneading a mixture containing a radical polymerization initiator.
- the polypropylene-based resin having a branched structure is obtained by melt-kneading the resin obtained by the method (a2), that is, a mixture containing a linear polypropylene-based resin, a conjugated diene compound, and a radical polymerization initiator. It is preferably a polypropylene-based resin having a structure.
- the method (a2) will be further explained.
- the following (i) to (iv) are performed in order to obtain a branched polypropylene resin: (i) a linear polypropylene resin, a conjugated diene compound, and a radical polymerization initiator (ii) extruding the obtained melt-kneaded material from the die; (iii) cooling the extruded melt-kneaded material (also referred to as a strand) (iv) chopping the strands simultaneously with and after cooling the strands.
- Specific examples of the method (a2) include the method described in WO2020/004429.
- branched structure can be stably introduced into a linear polypropylene-based resin, and the reproducibility of the introduction of the branched structure is high; and/or (ii) no complicated equipment is required and high productivity Since a branched polypropylene-based resin can be obtained, in one embodiment of the present invention, the branched polypropylene-based resin is preferably a branched polypropylene-based resin obtained by the method (a2) described above.
- the melt tension of branched polypropylene-based resins can be higher than the melt tension of linear polypropylene-based resins.
- the melt tension of the branched polypropylene resin is 5 cN to 50 cN, preferably 6 cN to 40 cN, more preferably 7 cN to 30 cN, even more preferably 8 cN to 25 cN, and 10 cN to 20 cN. is particularly preferred.
- the melt tension of the branched polypropylene-based resin is 5 cN or more
- the tension of the composition becomes sufficiently high, and the resulting extrusion foaming Cell rupture in the particles can be prevented.
- the extruded expanded beads obtained have the advantage of being excellent in moldability
- the extruded expanded beads have the advantage of being able to provide a foam molded article having excellent resistance to breakage.
- the melt tension of the branched polypropylene resin is measured using Capilograph 1D (manufactured by Toyo Seiki Seisakusho Co., Ltd., Japan). Specifically, it is as follows (1) to (5): (1) A sample resin (branched polypropylene resin) for measurement is placed in a barrel with a diameter of 9.55 mm heated to the test temperature (200 ° C.).
- the MFR of the branched polypropylene resin is not particularly limited.
- the MFR of the branched polypropylene resin is, for example, preferably 0.5 g/10 min to 20.0 g/10 min, more preferably 1.0 g/10 min to 15.0 g/10 min, It is more preferably 2.0 g/10 minutes to 12.0 g/10 minutes, and particularly preferably 2.0 g/10 minutes to 10.0 g/10 minutes.
- the MFR of the branched polypropylene-based resin is within the range described above, (a) the extruded foamed particles obtained have the advantage of being excellent in moldability, and (b) the extruded foamed particles form a foamed molded article with excellent breakage resistance.
- the MFR of the branched polypropylene-based resin is (a) 0.5 g/10 minutes or more, the extruded expanded particles obtained from the branched polypropylene-based resin have little deformation and good surface properties (beautiful). It has the advantage of being able to provide a foamed molded article, and (b) when it is 20.0 g / 10 minutes or less, the composition containing the extruded foamed particles obtained from the branched polypropylene resin has foamability during extrusion foaming has the advantage of being better
- the MFR of a branched polypropylene resin is a value obtained by measuring under conditions of a temperature of 230°C and a load of 2.16 kg according to ISO 1133.
- the melting point of the branched polypropylene resin is not particularly limited.
- the melting point of the branched polypropylene-based resin is, for example, preferably 130°C to 165°C, more preferably 135°C to 164°C.
- the melting point of the branched polypropylene-based resin is within the range described above, (a) the extruded expanded particles obtained have the advantage of being excellent in moldability, and (b) the extruded expanded particles produce a foamed molded article with excellent breakage resistance. have the advantage of being able to provide
- the melting point of the branched polypropylene-based resin is a value obtained by measuring by the DSC method in the same manner as the melting point of the linear polypropylene-based resin.
- the base resin preferably contains 64.5% to 94.5% by weight, and preferably 64.5% to 90.0% by weight, of a branched polypropylene resin in 100% by weight of the base resin. is more preferable, and it is even more preferable to contain 65.0% by weight to 90.0% by weight.
- This configuration has the advantage of (a) that the obtained extruded expanded beads are excellent in moldability, and (b) the advantage that the extruded expanded beads can provide a foamed molded article with excellent breakage resistance.
- the content of the branched polypropylene-based resin in the base resin can also be said to be the amount of the branched polypropylene-based resin used in the production of the extruded expanded particles.
- thermoplastic elastomer As used herein, a thermoplastic elastomer is intended to have a Shore A of 20 to 95 as measured by ISO 868. A thermoplastic elastomer can also be said to be a resin having a thermoplastic resin as a hard segment and a rubber component as a soft segment.
- thermoplastic elastomers examples include polyolefin elastomers, polyolefin plastomers, polystyrene elastomers, polyvinyl chloride elastomers, polyester elastomers, polyurethane elastomers, and polyamide elastomers.
- polyolefin elastomers examples include TAFMER (registered trademark), MILASTOMER (registered trademark) (Mitsui Chemicals, Inc.), LUCENE (registered trademark) (LG Chem), VERSIFY (registered trademark) (Dow Inc.), ESPOLEX ( (registered trademark) (Sumitomo Chemical Co., Ltd.), MULTIUSE LEOSTOMER (registered trademark) (Riken Technos) and Vistamaxx (registered trademark) (Exxon Mobil) and the like.
- TAFMER registered trademark
- MILASTOMER registered trademark
- LUCENE registered trademark
- VERSIFY registered trademark
- ESPOLEX (registered trademark) (Sumitomo Chemical Co., Ltd.)
- MULTIUSE LEOSTOMER registered trademark
- Vistamaxx registered trademark
- polyolefin-based plastomers examples include Excellen (registered trademark) FX, Tafselene (registered trademark) (Sumitomo Chemical Co., Ltd.), AFFINITY (registered trademark) (Dow Inc.), and Queo (registered trademark) (Borealis). mentioned. These thermoplastic elastomers may be used singly or in combination of two or more.
- the thermoplastic elastomer is preferably a polyolefin-based elastomer and/or a polyolefin-based plastomer, more preferably a polyolefin-based elastomer, from the viewpoint of high elastic performance and compatibility with the polypropylene resin.
- the thermoplastic elastomer is preferably a thermoplastic elastomer having (a) a polyolefin such as polypropylene or polyethylene as a hard segment and (b) a rubber component such as ethylene/ ⁇ -olefin rubber as a soft segment in one molecule. .
- Thermoplastic elastomers having polypropylene or polyethylene as hard segments have high compatibility with polypropylene-based resins.
- thermoplastic elastomer having at least one selected from the group consisting of ethylene/propylene rubber, ethylene/1-butene rubber, ethylene/propylene/diene rubber and ethylene/1-octene rubber as a soft segment is more compatible with polypropylene resin. Higher compatibility. Therefore, thermoplastic elastomers include (a) thermoplastic elastomers having polypropylene or polyethylene as hard segments, and (b) ethylene/propylene rubbers, ethylene/1-butene rubbers, ethylene/propylene/diene rubbers and ethylene/1-butene rubbers as soft segments.
- thermoplastic elastomer having one or more selected from the group consisting of octene rubber, or (c) having (i) a polyolefin such as polypropylene or polyethylene as a hard segment and (ii) an ethylene- Thermoplastic elastomers having a rubber component such as ⁇ -olefin rubber are particularly preferred.
- the tensile elongation at break of the thermoplastic elastomer is preferably 500% or more, more preferably 600% or more, even more preferably 650% or more, and particularly preferably 700% or more.
- the tensile elongation at break of the thermoplastic elastomer is preferably 10000% or less, more preferably 5000% or less. According to this configuration, the flexibility of the branched polypropylene-based resin, the extruded foamed particles, and the foamed molded product is improved, and there is an advantage that they are less likely to break when deformed due to the application of force.
- the tensile elongation at break of a thermoplastic elastomer is a value obtained by measuring a thermoplastic elastomer as a sample according to ASTM D638.
- thermoplastic elastomer There are no particular restrictions on the melting point of the thermoplastic elastomer.
- the melting point of the thermoplastic elastomer is, for example, preferably 40°C to 110°C, more preferably 50°C to 90°C, and particularly preferably 60°C to 80°C.
- This configuration improves the flexibility of the extruded foamed particles and the foamed molded product. As a result, there is an advantage that the resulting foamed molded article is less likely to break when force is applied to it and deformed.
- the melting point of a thermoplastic elastomer is a value obtained by measuring by the DSC method.
- the DSC curve of the thermoplastic elastomer can be obtained by the same method as for measuring the melting point of the linear polypropylene-based resin, except that the thermoplastic elastomer is used instead of the linear polypropylene-based resin.
- the melting point of the thermoplastic elastomer can be determined from the DSC curve of the thermoplastic elastomer in the same manner as the melting point of the linear polypropylene resin.
- the MFR of the thermoplastic elastomer is preferably 0.3 g/10 minutes to 10.0 g/10 minutes, more preferably 0.5 g/10 minutes to 8.0 g/10 minutes, and 0.7 g/10 minutes. It is more preferably 10 minutes to 6.0 g/10 minutes, more preferably 1.0 g/10 minutes to 5.0 g/10 minutes. According to this configuration, the compatibility between the thermoplastic elastomer and the branched polypropylene-based resin is enhanced, and the flexibility of the resulting extruded expanded particles and expanded molded article is improved. As a result, there is an advantage that the resulting foamed molded article is less likely to break when force is applied to it and deformed.
- the MFR of a thermoplastic elastomer is a value obtained by measuring under conditions of a temperature of 230°C and a load of 2.16 kg according to ISO 1133.
- the flexural modulus of the thermoplastic elastomer is preferably 10 MPa to 200 MPa, more preferably 15 MPa to 100 MPa, more preferably 20 MPa to 80 MPa, and particularly preferably 25 MPa to 70 MPa.
- This configuration improves the flexibility of the extruded foamed particles and the foamed molded product. As a result, there is an advantage that the resulting foamed molded article is less likely to break when force is applied to it and deformed.
- the flexural modulus of a thermoplastic elastomer is a value obtained by measuring a thermoplastic elastomer as a sample in accordance with ISO 178.
- thermoplastic elastomer Commercially available products can also be used as the thermoplastic elastomer.
- thermoplastic elastomers that can be suitably used in one embodiment of the present invention include "LUCENE LC180” manufactured by LG Chem, which is a polyolefin elastomer, and "VERSIFY 2300” manufactured by Dow Inc.
- the base resin preferably contains 5.0% to 35.0% by weight, more preferably 6.0% to 30.0% by weight, of a thermoplastic elastomer in 100% by weight of the base resin. Preferably, it contains 8.0% to 25.0% by weight, more preferably 10.0% to 25.0% by weight, and 12.0% to 20.0% by weight. Especially preferred.
- This configuration has the advantage of (a) that the obtained extruded expanded beads are excellent in moldability, and (b) the advantage that the extruded expanded beads can provide a foamed molded article with excellent breakage resistance.
- the content of the thermoplastic elastomer in the base resin can also be said to be the amount of the thermoplastic elastomer used in the production of the extruded expanded beads.
- Inorganic colorants may include white colorants in addition to black, red, green, blue, and yellow colorants.
- examples of inorganic colorants include carbon black, red clay, ocher, green clay, titanium oxide, cobalt blue, Prussian blue, and chromium oxide green. These inorganic colorants may be used singly or in combination of two or more.
- the inorganic colorant preferably contains one or more selected from the group consisting of carbon black, red clay, ocher, green clay, titanium oxide, cobalt blue, Prussian blue, and chromium oxide green, and one selected from the group. It is more preferable to be above. Carbon black is particularly preferable as the inorganic colorant from the viewpoint of ultraviolet absorption performance.
- the base resin preferably contains 0.5% to 5.0% by weight, more preferably 0.5% to 4.5% by weight, of an inorganic colorant based on 100% by weight of the base resin. More preferably, 0.5 wt% to 4.0 wt%, more preferably 1.0 wt% to 3.5 wt%, more preferably 1.0 wt% to 3.0 wt% is particularly preferred. According to this configuration, there is an advantage that the open cell rate of the extruded foamed particles obtained by the extrusion foaming method tends to be low.
- the content of the inorganic coloring agent in the base resin can also be said to be the amount of the inorganic coloring agent used in the production of the extruded expanded beads.
- the base resin further contains a resin other than the branched polypropylene-based resin and the thermoplastic elastomer (sometimes referred to as other resin) or rubber within a range that does not impair the effects of one embodiment of the present invention.
- Resins other than branched polypropylene resins include (a) linear polypropylene resins such as ethylene/propylene random copolymers, ethylene/propylene block copolymers, and propylene homopolymers; Polyethylene, medium density polyethylene, low density polyethylene, linear low density polyethylene, linear ultra low density polyethylene, ethylene/vinyl acetate copolymer, ethylene/acrylic acid copolymer, and ethylene/methacrylic acid copolymer and (c) styrene resins such as polystyrene, styrene/maleic anhydride copolymers, and styrene/ethylene copolymers.
- linear polypropylene resins such as ethylene/propylene random copolymers, ethylene/propylene block copolymers, and propylene homopolymers
- Polyethylene medium density polyethylene, low density polyethylene, linear low density polyethylene, linear ultra low density polyethylene, ethylene/vinyl a
- the rubber examples include olefin rubbers such as ethylene/propylene rubber, ethylene/butene rubber, ethylene/hexene rubber, and ethylene/octene rubber.
- the base resin preferably contains 0 wt % to 20 wt % of the other resin in 100 wt % of the base resin.
- the base resin may contain a cell nucleating agent.
- cell nucleating agents may be used in making the extruded foam particles. By using a cell nucleating agent, the cell number and cell shape of the resulting extruded foam particles can be controlled.
- Bubble nucleating agents include sodium bicarbonate-citric acid mixture, monosodium citrate, talc, and calcium carbonate. One of these cell nucleating agents may be used alone, or two or more thereof may be used in combination.
- the content of the cell nucleating agent in the base resin in other words, the amount of cell nucleating agent used in the production of the extruded expanded beads, is not particularly limited.
- the content of the cell nucleating agent is, for example, preferably 0.01 to 5.00 parts by weight, preferably 0.01 to 3.50 parts by weight, with respect to 100 parts by weight of the polypropylene resin. more preferably 0.01 to 1.00 parts by weight, particularly preferably 0.01 to 0.50 parts by weight.
- the cell size (average cell diameter) and cell shape of the extruded foamed particles become uniform, and as a result, there is an advantage that the foamability during extrusion foaming tends to be stable.
- “cell” intends "bubble".
- the base resin may contain an organic colorant within a range that does not impair the effects of one embodiment of the present invention.
- organic colorants include perylene organic pigments, azo organic pigments, quinacridone organic pigments, phthalocyanine organic pigments, threne organic pigments, dioxazine organic pigments, and isoindoline organic pigments. These organic colorants may be used singly or in combination of two or more.
- the content of the organic colorant in the base resin is not particularly limited.
- the base resin may contain other components such as (a) an antioxidant, a metal deactivator, a phosphorus-based processing stabilizer, an ultraviolet absorber, an ultraviolet stabilizer, a fluorescent brightener, a metallic soap, and an antacid.
- Stabilizers such as adsorbents and/or
- additives such as lubricants, plasticizers, fillers, reinforcements, flame retardants, and antistatic agents may also be included.
- the base resin contained in the extruded expanded beads or the base resin contained in the expanded molded article obtained from the extruded expanded beads that is, the base resin that substantially constitutes the extruded expanded beads or the expanded molded article , branched polypropylene resins, thermoplastic elastomers, inorganic colorants and other resins or rubbers are determined by the operation of melting the extruded foamed particles or the foamed molded article under reduced pressure to return it to a resin mass. does not change substantially.
- the process of melting the extruded foamed particles or the foamed molded article obtained from the extruded foamed particles under reduced pressure to obtain a resin lump may be referred to as "returning the resin".
- a resin lump may be called "returned resin.”
- the type and amount of branched polypropylene resin, thermoplastic elastomer, inorganic colorant and other resins or rubbers contained in the returned resin are , thermoplastic elastomers, inorganic colorants and other resins or rubbers.
- the type and amount of branched polypropylene resin, thermoplastic elastomer, inorganic colorant and other resins or rubbers contained in the returned resin can be confirmed by analyzing the returned resin by any known method. can be done.
- a specific method for returning the resin is not particularly limited, but an example is a method in which the following (b1) to (b5) are performed in order: (b1) a dryer adjusted to the melting point of the extruded foamed particles or foamed product +10°C; (b2) Then, using a vacuum pump over 5 to 10 minutes, the pressure in the dryer is reduced from -0.05 MPa (cage pressure) to -0.10 MPa. (cage pressure); (b3) then leave the extruded foamed particles or foamed molded body in the dryer for 30 minutes to prepare a resin mass (returned resin); (b4) then in the dryer (b5) After that, the resin mass is taken out from the dryer.
- the melting point of the extruded foamed particles or foamed product is a value determined by measuring by the DSC method. Specifically, the DSC curve of the extruded foamed particles or the foamed molded product was measured by the same method as the melting point measurement method of the linear polypropylene resin, except that the extruded foamed particles or the foamed molded product was used instead of the linear polypropylene resin. can be obtained. As with the melting point of the linear polypropylene resin, the melting point of the extruded expanded particles or foamed article can be obtained from the DSC curve of the extruded expanded particles or expanded article.
- a method for producing the present extruded foamed particles is not particularly limited, and a known extrusion foaming method can be employed.
- One aspect of the method for producing the present extruded expanded particles includes, for example, the following aspects: Extrusion foaming method using branched polypropylene resin, thermoplastic elastomer, inorganic colorant, and foaming agent
- Extrusion foaming method using branched polypropylene resin, thermoplastic elastomer, inorganic colorant, and foaming agent A polypropylene-based resin extrusion foaming process comprising a first step of producing an extruded foam, and a second step of producing extruded foamed particles by cutting the extruded foam obtained in the first step into a particle shape. Particle production method.
- the first step will be specifically described.
- a specific example of the first step includes a step of performing the following (c1) and (c2) in order: (c1) a resin mixture containing a branched polypropylene resin, a thermoplastic elastomer and an inorganic colorant, and foaming; and (c2) a melt-kneading step of obtaining a melt-kneaded product by melt-kneading the composition containing the agent in a device equipped with a die; An extrusion foaming step in which the melt-kneaded product is extruded to obtain an extruded foam.
- a bubble nucleating agent e.g., an antioxidant, a metal deactivator, a phosphorus-based processing stabilizer, an ultraviolet absorber, an ultraviolet stabilizer , optical brighteners, metallic soaps, and antacid adsorbents, etc.
- a stabilizer e.g., an antioxidant, a metal deactivator, a phosphorus-based processing stabilizer, an ultraviolet absorber, an ultraviolet stabilizer , optical brighteners, metallic soaps, and antacid adsorbents, etc.
- additives e.g., colorants, lubricants, plasticizers, fillers, reinforcing agents, pigments, dyes, flame retardants, and antistatic agents, etc.
- the resin mixture in (c1) can also be said to be a base resin.
- the branched polypropylene resin, thermoplastic elastomer, inorganic colorant and foaming agent, as well as optionally used other resins, cell nucleating agents and other components are , or may be mixed in the device.
- the composition may be supplied to the device, and the composition may be prepared (completed) in the device.
- the inorganic colorant may be blended (used) as a masterbatch.
- a masterbatch of an inorganic colorant can be obtained by mixing an inorganic colorant and an arbitrary resin (for example, a polypropylene-based resin) in an arbitrary ratio.
- concentration of the inorganic colorant in the masterbatch is not particularly limited.
- the masterbatch may contain 40% by weight of the inorganic colorant in 100% by weight of the masterbatch.
- the melt-kneaded material may be cooled before extruding the melt-kneaded material into the low-pressure region.
- the foaming agent used in one embodiment of the present invention is not particularly limited, and known organic foaming agents and inorganic foaming agents can be used.
- organic foaming agents include aliphatic hydrocarbons such as propane and fluorohydrocarbons such as difluoroethane.
- inorganic foaming agents include carbon dioxide, air, inorganic gases such as nitrogen, and water.
- the foaming agents described above may be used alone or in combination of two or more.
- the extruded polypropylene resin particles are obtained using, as a blowing agent, one or more selected from the group consisting of aliphatic hydrocarbons, fluorocarbons, carbon dioxide gas, air, nitrogen and water.
- the amount of the foaming agent used in the first step may be appropriately adjusted according to the type of the foaming agent and the target expansion ratio of the extruded polypropylene-based resin expanded particles.
- the second step is a step of cutting the extruded foam obtained in the first step into particles to produce extruded foamed particles. "Cut into particles” is also referred to as "shredding".
- the extruded expanded particles obtained in the second step are extruded expanded particles of polypropylene resin.
- the shredding method in the second step is preferably a cold cut method or a hot cut method.
- the cold cut method includes a strand cut method.
- the hot cut method includes an under water cut method and a water ring cut method.
- the extruded foam obtained in the first step may be completely foamed before being cut into particles in the second step, or may be in the middle of being foamed. That is, in the second step, the completely foamed extruded foam may be cut into particles, or the extruded foam in the middle of foaming may be cut into particles.
- the extruded foam obtained in the first step includes not only the extruded foam that has been completely foamed but also the extruded foam that is being foamed.
- the extruded foam may be cooled before, at the same time as, or after cutting the extruded foam into particles.
- the open cell ratio of the present extruded expanded particles is preferably as low as possible.
- the open cell ratio of the extruded expanded beads is preferably 15% or less, more preferably 10% or less, even more preferably 7% or less, and particularly preferably 5% or less.
- the lower limit of the open cell content of the extruded polypropylene-based resin particles is not particularly limited, and is, for example, 0.0% or more.
- the extruded expanded beads when the extruded expanded beads are molded, the cells hardly break and shrink, so the advantage that the extruded expanded beads are excellent in moldability, and (b) the extruded expanded beads are
- the foamed molded article obtained by using it has the advantage that characteristics such as shape arbitrariness, cushioning properties, light weight, compressive strength and heat insulating properties are more exhibited.
- the open cell ratio of the extruded polypropylene resin expanded particles is described in ASTM D2856-87 Procedure C (PROCEDURE C) using an air comparison type hydrometer [manufactured by Tokyo Science Co., Ltd., model 1000].
- the average cell diameter of the extruded expanded particles is preferably 100 ⁇ m to 500 ⁇ m, more preferably 100 ⁇ m to 400 ⁇ m, even more preferably 120 ⁇ m to 350 ⁇ m, and particularly preferably 150 ⁇ m to 300 ⁇ m. According to this configuration, the extruded foamed beads have an advantage of excellent moldability because the cells are hardly broken and contracted when the extruded foamed beads are molded.
- the bulk density of the extruded expanded particles is preferably 60 g/L or more, more preferably 70 g/L or more, still more preferably 80 g/L or more, and particularly preferably 90 g/L or more. preferable.
- the upper limit of the bulk density of the extruded expanded particles is not particularly limited, and is, for example, 300 g/L or less. As described above, regarding the tendency of cracks due to deformation in the foam molded product, the lower the extruded foam particles that are the material of the foam molded product, the lower the tensile elongation at break of the obtained foam molded product. be.
- the extruded expanded particles have the above-described structure, even if the magnification is low enough to have a bulk density of 60 g/L or more, the tensile elongation at break is high, that is, it is possible to provide a foamed molded article with excellent breaking resistance.
- the bulk density of the extruded expanded particles is within the above range, the polypropylene-based resin foamed molded article obtained using the extruded expanded particles has properties such as shape arbitrariness, cushioning properties, lightness, and heat insulation properties. It also has the advantage that the characteristics are exhibited more.
- the inside of the obtained extruded expanded beads is pressurized with an inert gas, and then the extrusion is performed.
- a method of heating expanded beads to increase the expansion ratio (for example, the method described in JP-A-10-237212) can also be used.
- the extruded foam particles have the advantage of a wide molding width (eg greater than 0). In the present specification, it is intended that the larger the molding width of the extruded expanded beads, the better the moldability of the extruded expanded beads.
- the term "forming width of extruded foam particles” refers to the vapor pressure (gauge pressure ) is intended to have a width of: (x1) sufficient fusion between the extruded foam particles (for example, fusion rate of 80% or more), (x2) sufficient gaps between the extruded foam particles, and (x3)
- the surface is beautiful, (x4) the surface is not melted, and (x5) the mold used for in-mold foam molding does not shrink by 5% or more with respect to the dimensions of the mold.
- the foamed molded article sticks to the mold and cannot be taken out, it is determined that the foamed molded article cannot be obtained.
- vapor pressure is too low for the extruded expanded particles, (a) the fusion between the extruded expanded particles is insufficient, (b) the gaps between the extruded expanded particles are not sufficiently filled, and (c) the surface and/or (d) shrinkage. If the vapor pressure is too high for the extruded foam particles, foamed articles with (a) melted surfaces and/or (b) insufficient compressive strength may be obtained.
- the applicable vapor pressure range of the extruded expanded particles is not particularly limited. It is preferable that the molding width of the extruded expanded particles is as wide as possible.
- the molding width of the extruded expanded beads is more preferably 0.02 MPa or more, more preferably 0.03 MPa or more, still more preferably 0.04 MPa or more, and preferably 0.05 MPa or more. Especially preferred.
- the extruded expanded beads obtained by the extrusion foaming method are characterized by having one crystal peak in the DSC curve of the extruded expanded beads obtained by DSC measurement.
- the polypropylene-based resin expanded beads having one crystal peak in the DSC curve of the extruded expanded beads obtained by DSC measurement were obtained by the extrusion expansion method.
- This extruded expanded bead can also have one crystal peak in the DSC curve of the extruded expanded bead obtained by DSC measurement.
- the DSC curve of the extruded expanded particles used for calculating the crystal peak is obtained by raising the temperature of 5 to 6 mg of the extruded expanded particles from 40 ° C. to 220 ° C. at a heating rate of 10 ° C./min by DSC measurement. is the curve obtained while
- a polypropylene-based resin foam molded article includes extruded expanded particles containing a base resin containing 64.5% by weight or more of a polypropylene-based resin having a branched structure in 100% by weight of the base resin.
- the extruded foamed particles have an open cell rate of 15% or less, the density of the foamed molding is 60 g/L to 300 g/L, and the tensile elongation at break of the foamed molding is 10%. That's it.
- the method for molding the extruded foamed particles is not particularly limited, but an example thereof includes in-mold foam molding using a mold equipped with a fixed mold that cannot be driven and a movable mold that can be driven.
- the in-mold foam molding method is not particularly limited, and a known method can be employed.
- the density of the present foam molded product is 60 g/L to 300 g/L, preferably 70 g/L to 300 g/L, more preferably 80 g/L to 300 g/L, and 90 g/L to 300 g. /L is more preferred.
- the foam molded article has a density of 60 g/L or more, a tensile elongation at break of 10% or more, that is, a low tensile strength, and has excellent resistance to breakage.
- the foamed molding has the advantage of exhibiting more features such as shape arbitrariness, cushioning properties, light weight, and heat insulating properties.
- the density of the polypropylene-based resin foam-molded product is calculated by performing the following (1) to (3) in order: (1) Measure the weight W1 (g) of the polypropylene-based resin foam-molded product. (2) Measure the volume V1 (L) of the polypropylene resin foam molded product whose weight W1 was measured; (3) Divide W1 by V1 and calculate the obtained value as the density of the polypropylene resin foam molded product (g /L).
- the method for measuring the volume of the foam molded article is not particularly limited.
- the volume V1 can be obtained by submerging the foam molded article in a container filled with water and measuring the amount of overflowing water.
- the foam molded article is plate-shaped, the length, width, and thickness of the foam molded article may be measured, and the volume V1 may be calculated from these lengths.
- density measurement a foamed molded product that has been sufficiently dried after molding and left in an environment of room temperature of 23° C. and humidity of 50% for 24 hours or more may be used.
- the present foam molded article has an advantage of high tensile elongation at break.
- the tensile elongation at break of the foamed molded product is preferably 10% or more, more preferably 12% or more, more preferably 13% or more, and particularly preferably 15% or more.
- the tensile elongation at break of a polypropylene-based resin foam molded product is a value obtained by performing a tensile elongation test based on ISO 1798 and measuring it. Specifically, the tensile elongation at break of the foam molded product is calculated by performing the following (1) to (4) in order: (1) A dumbbell-shaped foam molded product specified in ISO 1798 is produced, (2) Fix both ends of the test piece; (3) Pull one side of the test piece until the test piece breaks; (4) Test piece The tensile elongation at break of the foam molded product is defined as the elongation percentage of the test piece when it breaks.
- the polypropylene-based resin foam molded article according to another embodiment of the present invention may have the following configuration: [2. Extruded expanded polypropylene resin particles].
- An embodiment of the present invention may have the following configuration.
- a base resin containing a polypropylene-based resin having a branched structure is included, and the melt tension of the polypropylene-based resin having a branched structure is 5 cN to 50 cN, and the base resin further includes a thermoplastic elastomer and an inorganic A polypropylene-based resin extruded expanded particle containing a colorant.
- the base resin contains 64.5% to 94.5% by weight of the polypropylene-based resin having the branched structure in 100% by weight of the base resin. foam particles.
- the inorganic colorant is one or more selected from the group consisting of carbon black, red clay, ocher, green clay, titanium oxide, cobalt blue, Prussian blue, and chromium oxide green, [1] to [4 ].
- thermoplastic elastomer is a polyolefin elastomer.
- thermoplastic elastomer has a tensile elongation at break of 500% to 1000%.
- thermoplastic elastomer has a melting point of 40°C to 110°C.
- the polypropylene resin having a branched structure is a polypropylene resin having a branched structure obtained by melt-kneading a mixture containing a linear polypropylene resin, a conjugated diene compound and a radical polymerization initiator, [1 ] to [10].
- the extruded polypropylene resin particles are obtained by using, as a blowing agent, one or more selected from the group consisting of aliphatic hydrocarbons, fluorocarbons, carbon dioxide, air, nitrogen, and water.
- the polypropylene-based resin extruded foamed particles according to any one of [1] to [11], which are obtained from the present invention.
- melt tension of polypropylene resin having a branched structure was measured using Capilograph 1D (manufactured by Toyo Seiki Seisakusho, Ltd., Japan). Specifically, (1) to (5) were as follows: (1) A barrel with a diameter of 9.55 mm heated to 200° C. was filled with the branched polypropylene resin used in Examples and Comparative Examples.
- the width of the steam pressure (gauge pressure) during in-mold foam molding was determined to obtain a polypropylene-based resin foam molded article that satisfies the following: (x1) sufficient fusion between extruded foam particles (internal (x2) the gaps between the extruded expanded particles are sufficiently filled, (x3) the surface is beautiful, (x4) the surface is not melted, and (x5) A foam-molded article in which the shape of the mold used for in-mold foam molding is transferred without shrinking by 5% or more with respect to the dimensions of the mold.
- a foamed molded article was used which was dried in a 75 to 80° C. dryer for 12 to 24 hours after molding and allowed to pass in an environment of 23° C. and humidity of 50% for 24 hours or longer.
- the polypropylene resin foam molding was hit near the notch with a hammer or the like to break the polypropylene resin foam molding along the notch; Visually observe a certain range, excluding the notch portion and including the center in the thickness direction, to find all the extruded expanded particles present within the range, and the extruded expanded particles within the range that are broken outside the particle interface.
- the density of the foam molded body was calculated by performing the following (1) to (3) in order: (1) the weight W1 (g) of the foam molded body was measured; (2) the foam molded body whose weight W1 was measured The length, width, thickness, and length of each were measured, and the volume V1 (L) of the foamed molding was calculated from those lengths; (3) W1 was divided by V1, and the obtained value was the foamed
- the density (g/L) of the compact was used.
- a foamed molded article was used which had been sufficiently dried after molding and allowed to stand at room temperature of 23° C. and humidity of 50% for 24 hours or more.
- ⁇ Tensile elongation at break> A tensile elongation test based on ISO 1798 was performed to measure the tensile elongation at break of the foam molded product. Specifically, the tensile elongation at break of the foam molded product was calculated by performing the following (1) to (4) in order: (1) A dumbbell-shaped foam molded product specified in ISO 1798 was produced, (2) Both ends of the test piece were fixed; (3) One side of the test piece was pulled until the test piece broke; (4) The test piece The tensile elongation at break of the foam molded product was defined as the elongation of the test piece when the foam was broken. The values obtained are listed in Tables 1-3.
- test piece density ⁇ Density measurement of test piece used in tensile breaking elongation test> The volume Ld of the test piece (dumbbell-shaped foam molded article) used in the tensile elongation test was determined. Next, the weight Wd (g) of the test piece was measured with an electronic balance. Then, Wd was divided by Ld to obtain the density of the test piece used in the tensile elongation test. The obtained values are listed in the column of "test piece density" in Tables 1 to 3.
- ⁇ Comprehensive evaluation> Comprehensive evaluations based on the following criteria are shown in Tables 1-3.
- Polypropylene-based resin having a branched structure As a polypropylene resin having a branched structure and having a melt tension of 10 cN or more and 50 cN or less, "WB140HMS” manufactured by Borealis (measured melt tension of 14 cN and melting point of 161° C.) was used.
- the measured value of the melt tension of the branched polypropylene resin was measured using Capilograph 1D (manufactured by Toyo Seiki Seisakusho Co., Ltd., Japan). Specifically, it was as follows (1) to (5): (1) A sample resin for measurement (branched polypropylene resin) was placed in a barrel with a diameter of 9.55 mm heated to the test temperature (200 ° C.) (2) the sample resin was then heated for 10 minutes in a barrel heated to the test temperature (200° C.); (3) then through a capillary die (1.0 mm bore, 10 mm length) At a constant piston descent speed (10 mm/min), the sample resin was drawn out in the form of a string, and the string was passed through a tension detection pulley located 350 mm below the capillary die, and then wound.
- Capilograph 1D manufactured by Toyo Seiki Seisakusho Co., Ltd., Japan. Specifically, it was as follows (1) to (5): (1) A sample resin for measurement (branched polypropylene
- the winding speed of the string-like material was kept constant from an initial speed of 1.0 m/min until reaching a speed of 200 m/min in 4 minutes.
- the load applied to the pulley with a load cell when the string broke was measured as melt tension.
- the melting point of the branched polypropylene-based resin was a value obtained by measuring by the DSC method in the same manner as the melting point of the linear polypropylene-based resin, except that a thermoplastic elastomer was used instead of the linear polypropylene-based resin. .
- thermoplastic elastomer A polyolefin elastomer resin (“LUCENE LC180”, abbreviation E1, manufactured by LG Chem) or a polyolefin elastomer resin (“VERSIFY 2300,” abbreviation E2, manufactured by Dow Inc) was used as the thermoplastic elastomer.
- E1 has a tensile elongation at break of 850%, a melting point of 73° C., and an MFR of 2.3 g/10 minutes.
- E2 has a tensile elongation at break of 730%, a melting point of 66° C., and an MFR of 2.0 g/10 minutes.
- the tensile elongation at break of E1 and E2 was a value obtained by measuring E1 and E2 as samples according to ASTM D638.
- the melting points of E1 and E2 were values measured by the DSC method in the same manner as the melting point of the linear polypropylene resin described above, except that a thermoplastic elastomer was used instead of the linear polypropylene resin.
- the MFRs of E1 and E2 were values obtained by measuring under the conditions of a temperature of 230° C. and a load of 2.16 kg according to ISO 1133, like the MFR of the linear polypropylene resin.
- Carbon black was used as an inorganic colorant.
- the carbon black was used as a carbon black masterbatch with a carbon black concentration of 40%.
- a carbon black masterbatch was prepared as follows. Carbon black was blended with the polypropylene resin having a branched structure so as to have a concentration of 40%, melt-kneaded with an extruder, and the resulting melt-kneaded product was extruded into water and cut.
- the column of "inorganic colorant” shows the numbers outside the parentheses and the numbers inside the parentheses. The numbers outside the parentheses indicate the amount of the carbon black masterbatch blended, and the numbers in the parentheses indicate the amount of carbon black actually blended.
- Examples and comparative examples are described below.
- an apparatus in which a twin-screw extruder with a shaft diameter of ⁇ 26 mm, a melt cooler, a diverter valve, and a die were connected in series was used as an apparatus used for producing extruded expanded particles.
- Examples 1 to 9, Comparative Example 1 and Reference Examples 1 to 4 (a) a polypropylene resin having a branched structure, (b) a thermoplastic elastomer and/or an ethylene-propylene random copolymer shown in Tables 1 to 3, and (c) an inorganic colorant (carbon black concentration of 40 % carbon black masterbatch) and (d) cell nucleating agent were mixed in the amounts shown in Tables 1 to 3 to prepare a resin mixture. Then, the resin mixture was supplied to a twin-screw extruder and melt-kneaded at a cylinder temperature of 210°C.
- the resulting melt-kneaded material was cooled by passing through a melt cooler that was connected to the tip of the twin-screw extruder and set to 185°C. After that, the melt-kneaded material was extruded from a die attached to the tip of the melt cooler into a region filled with water at a pressure lower than the internal pressure of the apparatus to foam. In the region filled with water, a rotary cutter attached to the tip of the die cut the composition immediately after passing through the die to obtain extruded polypropylene resin expanded particles. The temperature of the melt-kneaded product (composition) immediately before entering the die was 205°C.
- the temperature of the melt-kneaded material immediately before entering the die is the temperature set in contact with the composition near the outlet of the diverter valve, specifically, at a point 10 mm upstream from the inlet of the die along the extrusion direction. measured by a meter.
- the pressure of water against the composition was 0.35 MPa (gauge pressure) in Examples 1 to 7 and Comparative Example 1, and 0.40 MPa (gauge pressure) in Reference Examples 1 to 4. there were.
- the obtained extruded foamed particles were measured for open cell ratio, average cell diameter and bulk density, and the results are shown in Tables 1 to 3. Further, the formed width was evaluated using the obtained extruded expanded particles, and the obtained results are shown in the columns of "steam pressure range” and "formed width” in Tables 1 to 3.
- a block-shaped mold (length 400 mm ⁇ width 300 mm ⁇ thickness variable) was set to a thickness of 52 mm (cracking rate 30%).
- the mold was compressed to a thickness of 40 mm.
- the air in the mold is expelled with steam of 0.10 MPa (gauge pressure), and then heat molding is performed for 10 seconds using steam exhibiting a steam pressure of 0.20 MPa (gauge pressure) to perform foam molding.
- melt-kneaded product was extruded in a strand shape from a die.
- the extruded strands were then water cooled in a water bath.
- the water-cooled strand was cut to produce polypropylene resin particles (1.80 mg/particle).
- the valve at the bottom of the container was opened to release the aqueous dispersion to atmospheric pressure through an orifice plate with an opening diameter of 4.0 mm ⁇ .
- foamed polypropylene resin particles were obtained.
- the obtained expanded polypropylene resin particles were washed with a 1% hydrochloric acid solution, thoroughly washed with water, and then dried.
- the expanded polypropylene resin particles thus obtained were measured for open cell ratio, average cell diameter and bulk density, and the results are shown in Table 3.
- the molding width was evaluated using the expanded polypropylene resin particles obtained, and the obtained results are shown in the columns of "Vapor Pressure Width" and "Molding Width” in Table 3.
- a polypropylene resin foam molded article was produced in the same manner as described above.
- the density of the foamed polypropylene resin article, the density of the test piece, and the tensile elongation at break of the obtained foamed polypropylene resin article were measured, and the results are shown in Table 3. Further, based on the evaluation criteria described above, a comprehensive evaluation was performed, and the results are shown in Table 3.
- the tensile elongation at break is 10% or more. It can be seen that the molding width is 0.04 MPa or more, and the breakage resistance and moldability are improved.
- extruded expanded particles with excellent moldability can be provided. Therefore, one embodiment of the present invention can be suitably used to obtain a foam molded article having excellent breakage resistance. Therefore, one embodiment of the present invention can be suitably used in fields such as automobile interior parts, cushioning materials, packaging materials, and heat insulating materials.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Inorganic Chemistry (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
Abstract
Description
押出発泡法にてポリプロピレン系樹脂押出発泡粒子を製造する場合、完全溶融状態の樹脂組成物を発泡する必要がある。それ故、分岐構造を有していない線状ポリプロピレン系樹脂を用いて押出発泡法にてポリプロピレン系樹脂押出発泡粒子を製造する場合、発泡時の樹脂組成物の粘度が低く、樹脂組成物が発泡力に耐えられないため、セルが破泡し得る。そして、得られる押出発泡粒子の連続気泡率が高いため、成形時に収縮し、良品の発泡成形体が得られない場合がある。この問題を解決するための技術として、特許文献1および2に記載のような、架橋構造を導入したポリプロピレン樹脂が提案されている。
本発明の一実施形態に係るポリプロピレン系樹脂押出発泡粒子は、分岐構造を有するポリプロピレン系樹脂を含有する基材樹脂を含み、前記分岐構造を有するポリプロピレン系樹脂の溶融張力は5cN~50cNであり、前記基材樹脂は、さらに、熱可塑性エラストマーおよび無機系着色剤を含有する。
基材樹脂は、(a)分岐構造を有するポリプロピレン系樹脂、(b)熱可塑性エラストマーおよび無機系着色剤を含む。基材樹脂は、さらに任意で気泡核形成剤等の添加剤を含み得る。
線状ポリプロピレン系樹脂は、(a)プロピレンの単独重合体であってもよく、(b)プロピレンとプロピレン以外の単量体とのブロック共重合体もしくはランダム共重合体であってもよく、または(c)これらの2種以上の混合物であってもよい。
分岐構造を有するポリプロピレン系樹脂(分岐状ポリプロピレン系樹脂)は、線状ポリプロピレン系樹脂に分岐構造を導入することによって得ることができる。線状ポリプロピレン系樹脂に分岐構造を導入する方法としては、特に限定されないが、例えば、(a1)線状ポリプロピレン系樹脂に放射線を照射する方法、および(a2)線状ポリプロピレン系樹脂と共役ジエン化合物とラジカル重合開始剤とを含む混合物を溶融混練する方法などが挙げられる。分岐構造を有するポリプロピレン系樹脂は、前記(a2)の方法により得られた樹脂、すなわち線状ポリプロピレン系樹脂と共役ジエン化合物とラジカル重合開始剤とを含む混合物を溶融混練して得られた、分岐構造を有するポリプロピレン系樹脂であることが好ましい。
分岐状ポリプロピレン系樹脂の溶融張力は、線状ポリプロピレン系樹脂の溶融張力と比較して高くなり得る。分岐状ポリプロピレン系樹脂の溶融張力は、5cN~50cNであり、6cN~40cNであることが好ましく、7cN~30cNであることがより好ましく、8cN~25cNであることがさらに好ましく、10cN~20cNであることが特に好ましい。分岐状ポリプロピレン系樹脂の溶融張力が5cN以上である場合、分岐状ポリプロピレン系樹脂および発泡剤を含む組成物を完全溶融させて発泡するとき、組成物の張力が十分に高くなり、得られる押出発泡粒子におけるセルの破泡を防ぐことができる。その結果、(a)得られる押出発泡粒子が成形性に優れるという利点、および(b)当該押出発泡粒子は耐破断性に優れる発泡成形体を提供できるという利点、を有する。分岐状ポリプロピレン系樹脂の溶融張力が50cN以下である場合、押出発泡工程において、樹脂圧力(溶融混練物が、製造装置に設置された圧力計を押す力)が高くなりすぎず、吐出量を比較的高くすることができる。その結果、生産性が良く押出発泡粒子を得ることができるという利点を有する。
分岐状ポリプロピレン系樹脂のMFRは、特に限定されない。分岐状ポリプロピレン系樹脂のMFRは、例えば、0.5g/10分~20.0g/10分であることが好ましく、1.0g/10分~15.0g/10分であることがより好ましく、2.0g/10分~12.0g/10分であることがさらに好ましく、2.0g/10分~10.0g/10分であることが特に好ましい。分岐状ポリプロピレン系樹脂のMFRが上述した範囲内である場合、(a)得られる押出発泡粒子が成形性に優れるという利点、および(b)当該押出発泡粒子は耐破断性に優れる発泡成形体を提供できるという利点、を有する。分岐状ポリプロピレン系樹脂のMFRが、(a)0.5g/10分以上である場合、当該分岐状ポリプロピレン系樹脂から得られる押出発泡粒子は、変形が少なく、表面性が良好(美麗)である発泡成形体を提供できるという利点を有し、(b)20.0g/10分以下である場合、当該分岐状ポリプロピレン系樹脂から得られる押出発泡粒子を含む組成物は、押出発泡時、発泡性が良好になるという利点を有する。
分岐状ポリプロピレン系樹脂の融点は、特に限定されない。分岐状ポリプロピレン系樹脂の融点は、例えば、130℃~165℃であることが好ましく、135℃~164℃であることがより好ましい。分岐状ポリプロピレン系樹脂の融点が上述した範囲内である場合、(a)得られる押出発泡粒子が成形性に優れるという利点、および(b)当該押出発泡粒子は耐破断性に優れる発泡成形体を提供できるという利点、を有する。分岐状ポリプロピレン系樹脂の融点は、線状ポリプロピレン系樹脂の融点と同様にDSC法により測定して求められる値である。
本明細書において、熱可塑性エラストマーとは、ISO 868にて測定されるShore Aが20~95のものを意図する。熱可塑性エラストマーは、熱可塑性樹脂をハードセグメントとして有し、ゴム成分をソフトセグメントとして有する樹脂ともいえる。
Mobil社)などが挙げられる。ポリオレフィン系プラストマーとしては、例えば、エクセレン(登録商標)FX、タフセレン(登録商標)(住友化学株式会社)、AFFINITY(登録商標)(Dow Inc社)および、Queo(登録商標)(Borealis社)などが挙げられる。これら熱可塑性エラストマーは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
無機系着色剤は、黒色系、赤色系、緑色系、青色系、黄色系着色剤などに加えて、白色系着色剤も含み得る。無機系着色剤としては、カーボンブラック、赤土、黄土、緑土、酸化チタン、コバルト青、紺青、および酸化クロム緑などが挙げられる。これら無機系着色剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。無機系着色剤は、カーボンブラック、赤土、黄土、緑土、酸化チタン、コバルト青、紺青、および酸化クロム緑からなる群から選ばれる1つ以上を含むことが好ましく、当該群から選ばれる1つ以上であることがより好ましい。紫外線吸収性能の観点から、無機系着色剤は、カーボンブラックであることが特に好ましい。
基材樹脂は、本発明の一実施形態に係る効果を損なわない範囲で、分岐状ポリプロピレン系樹脂および熱可塑性エラストマー以外の樹脂(その他の樹脂、と称する場合がある。)またはゴムをさらに含んでいてもよい。分岐状ポリプロピレン系樹脂以外のその他の樹脂としては、(a)エチレン/プロピレンランダム共重合体、エチレン/プロピレンブロック共重合体、プロピレン単独重合体などの線状のポリプロピレン系樹脂、(b)高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレン、直鎖状超低密度ポリエチレン、エチレン/酢酸ビニル共重合体、エチレン/アクリル酸共重合体、およびエチレン/メタアクリル酸共重合体などのエチレン系樹脂、並びに(c)ポリスチレン、スチレン/無水マレイン酸共重合体、およびスチレン/エチレン共重合体などのスチレン系樹脂、などが挙げられる。前記ゴムとしては、エチレン/プロピレンゴム、エチレン/ブテンゴム、エチレン/ヘキセンゴム、エチレン/オクテンゴムなどのオレフィン系ゴムが挙げられる。基材樹脂は、当該基材樹脂100重量%中、前記その他の樹脂を、0重量%~20重量%含むことが好ましい。
基材樹脂は、気泡核形成剤を含んでいてもよい。換言すれば、本押出発泡粒子の製造において気泡核形成剤を使用してもよい。気泡核形成剤を使用することにより、得られる押出発泡粒子の気泡数および気泡の形状をコントロールすることができる。
基材樹脂は、本発明の一実施形態に係る効果を損なわない範囲で、有機系着色剤を含んでいてもよい。有機系着色剤としては、例えば、ペリレン系有機顔料、アゾ系有機顔料、キナクリドン系有機顔料、フタロシアニン系有機顔料、スレン系有機顔料、ジオキサジン系有機顔料、イソインドリン系有機顔料等が挙げられる。これら有機系着色剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。基材樹脂における有機系着色剤の含有量は特に限定されない。
基材樹脂は、必要に応じてその他成分として、(a)酸化防止剤、金属不活性剤、燐系加工安定剤、紫外線吸収剤、紫外線安定剤、蛍光増白剤、金属石鹸、および制酸吸着剤などの安定剤、並びに/または、(b)滑剤、可塑剤、充填材、強化材、難燃剤、および帯電防止剤などの添加剤、をさらに含んでいてもよい。これらその他成分は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
本押出発泡粒子の製造方法としては、特に限定されず、公知の押出発泡方法を採用できる。本押出発泡粒子の製造方法の一態様としては、例えば、以下のような態様が挙げられる:分岐状ポリプロピレン系樹脂、熱可塑性エラストマー、無機系着色剤、および発泡剤を使用して押出発泡法により押出発泡体を製造する第一の工程、および第一の工程で得られた前記押出発泡体を粒子形状にカットして押出発泡粒子を製造する第二の工程、を含む、ポリプロピレン系樹脂押出発泡粒子の製造方法。
第一の工程について、具体的に説明する。第一の工程の具体例としては、以下の(c1)および(c2)を順に行う工程が挙げられる:(c1)分岐状ポリプロピレン系樹脂、熱可塑性エラストマーおよび無機系着色剤を含む樹脂混合物と発泡剤とを含む組成物を、ダイを備える装置にて溶融混練し、溶融混練物を得る溶融混練工程;および(c2)ダイを通じて、当該装置内圧力よりも低圧である領域(低圧領域)に得られた溶融混練物を押出し、押出発泡体を得る押出発泡工程。
第二の工程は、第一の工程で得られた前記押出発泡体を粒子形状にカットして押出発泡粒子を製造する工程である。「粒子形状にカットする」ことを「細断する」ともいう。第二の工程で得られる押出発泡粒子はポリプロピレン系樹脂押出発泡粒子である。
(連続気泡率)
本押出発泡粒子の連続気泡率は、低いほど好ましい。本押出発泡粒子の連続気泡率は、15%以下であることが好ましく、10%以下であることがより好ましく、7%以下であることがさらに好ましく、5%以下であることが特に好ましい。本ポリプロピレン系樹脂押出発泡粒子の連続気泡率の下限値は特に限定されず、例えば0.0%以上である。当該構成によると、(a)押出発泡粒子の成形時に、セルが破泡して収縮することがほとんどないため、当該押出発泡粒子が成形性に優れるという利点、および(b)当該押出発泡粒子を用いて得られた発泡成形体において、形状の任意性、緩衝性、軽量性、圧縮強度および断熱性などの特徴がより発揮されるという利点を有する。
本押出発泡粒子の平均セル径は、100μm~500μmであることが好ましく、100μm~400μmであることがより好ましく、120μm~350μmであることがさらに好ましく、150μm~300μmであることが特に好ましい。当該構成によると、押出発泡粒子の成形時に、セルが破泡して収縮することほとんどないため、当該押出発泡粒子が成形性に優れるという利点を有する。
平均セル径(μm)=2000/平均セル数。
本押出発泡粒子の嵩密度は、60g/L以上であることが好ましく、70g/L以上であることがより好ましく、80g/L以上であることがさらに好ましく、90g/L以上であることが特に好ましい。本押出発泡粒子の嵩密度の上限値は特に限定されず、例えば300g/L以下である。上述したように、発泡成形体における、変形に起因する割れの傾向は、発泡成形体の材料である押出発泡粒子が低倍であるほど、得られる発泡成形体の引張破断伸び率は低い傾向にある。本押出発泡粒子は上述の構成を有するため、60g/L以上の嵩密度を有するほどに低倍であっても、引張破断伸び率が高く、すなわち耐破断性に優れる発泡成形体を提供できるという利点を有する。また、押出発泡粒子の嵩密度が前記範囲内である場合、当該押出発泡粒子を用いて得られたポリプロピレン系樹脂発泡成形体において、形状の任意性、緩衝性、軽量性、および断熱性などの特徴がより発揮される、という利点も有する。押出発泡粒子の製造により得られた押出発泡粒子の発泡倍率が前記範囲に至らなかった場合、得られた押出発泡粒子に対して、押出発泡粒子内を不活性ガスで加圧した後、当該押出発泡粒子を加熱して発泡倍率を高める方法(例えば、特開平10-237212号公報に記載の方法)も利用可能である。
嵩密度(g/L)=押出発泡粒子の重量W(g)/容器の体積V(L)。
本押出発泡粒子は、成形幅が広い(例えば0を超える)という利点を有する。本明細書において、押出発泡粒子の成形幅が大きいほど、当該押出発泡粒子は成形性に優れることを意図する。本明細書において、「押出発泡粒子の成形幅」とは、押出発泡粒子を型内発泡成形したとき、以下を満たす発泡成形体を得ることができる、型内発泡成形時の蒸気圧(ゲージ圧)の幅を意図する:(x1)押出発泡粒子同士の融着が十分(例えば融着率80%以上)であり、(x2)押出発泡粒子間の隙間が十分に埋まっており、(x3)表面が美麗であり、(x4)表面がメルトしておらず、かつ(x5)型内発泡成形に使用した型(金型)の寸法に対して5%以上収縮することなく、当該金型の形状が転写されている、発泡成形体。また、発泡成形体が金型に張り付いて取り出せなくなった場合、発泡成形体が得られない、と判断する。本明細書において、例えば、押出発泡粒子を型内発泡成形したとき、上述した(x1)~(x5)を満たす発泡成形体を得ることができる、型内発泡成形時の蒸気圧がP1~P2である場合、P2-P1で得られる「値」を、「押出発泡粒子の成形幅」とする。また、本明細書において、「P1~P2」を「実施可能な蒸気圧幅」とも称する。
押出発泡法により得られる押出発泡粒子は、DSC測定により得られる押出発泡粒子のDSC曲線において結晶ピークが1つであるという特徴を有する。換言すれば、DSC測定により得られる押出発泡粒子のDSC曲線において結晶ピークが1つであるポリプロピレン系樹脂発泡粒子は、押出発泡法により得られたものである蓋然性が高い。本押出発泡粒子もまた、DSC測定により得られる押出発泡粒子のDSC曲線において結晶ピークが1つであり得る。
本発明の一実施形態に係るポリプロピレン系樹脂発泡成形体は、基材樹脂100重量%中、分岐構造を有するポリプロピレン系樹脂を64.5重量%以上含有する当該基材樹脂を含む押出発泡粒子を成形してなり、前記押出発泡粒子の連続気泡率は15%以下であり、前記発泡成形体の密度は60g/L~300g/Lであり、かつ前記発泡成形体の引張破断伸び率は10%以上である。
本発泡成形体の密度は、60g/L~300g/Lであり、70g/L~300g/Lであることが好ましく、80g/L~300g/Lであることがより好ましく、90g/L~300g/Lであることがさらに好ましい。発泡成形体における、変形に起因する割れの傾向として、発泡成形体が低倍であるほど、得られる発泡成形体の引張破断伸び率が低い傾向にある。本発泡成形体は60g/L以上の密度を有し、かつ引張破断伸び率が10%以上である、すなわち低倍であり、かつ耐破断性に優れる、という利点を有する。また、発泡成形体の密度が上述した範囲内である場合、当該発泡成形体は、形状の任意性、緩衝性、軽量性、および断熱性などの特徴がより発揮される、という利点も有する。
また、密度の測定には、成形後、十分に乾燥させ、室温23℃湿度50%環境下にて24時間以上経過させた発泡成形体を使用してもよい。
本発泡成形体は、引張破断伸び率が大きいという利点を有する。本明細書において、発泡成形体の引張破断伸び率が大きいほど、当該発泡成形体は耐破断性に優れることを意図する。
〔1〕分岐構造を有するポリプロピレン系樹脂を含有する基材樹脂を含み、前記分岐構造を有するポリプロピレン系樹脂の溶融張力は5cN~50cNであり、前記基材樹脂は、さらに、熱可塑性エラストマーおよび無機系着色剤を含有する、ポリプロピレン系樹脂押出発泡粒子。
〔2〕前記基材樹脂は、当該基材樹脂100重量%中、前記分岐構造を有するポリプロピレン系樹脂を64.5重量%~94.5重量%含む、〔1〕に記載のポリプロピレン系樹脂押出発泡粒子。
〔3〕前記基材樹脂は、当該基材樹脂100重量%中、前記熱可塑性エラストマーを5.0重量%~35.0重量%含む、〔1〕または〔2〕に記載のポリプロピレン系樹脂押出発泡粒子。
〔4〕前記基材樹脂は、当該基材樹脂100重量%中、前記無機系着色剤を0.5重量%~5.0重量%含む、〔1〕~〔3〕の何れか1つに記載のポリプロピレン系樹脂押出発泡粒子。
〔5〕前記無機系着色剤は、カーボンブラック、赤土、黄土、緑土、酸化チタン、コバルト青、紺青、および酸化クロム緑からなる群から選ばれる1つ以上である、〔1〕~〔4〕の何れか1つに記載のポリプロピレン系樹脂押出発泡粒子。
〔6〕前記熱可塑性エラストマーは、ポリオレフィン系エラストマーである、〔1〕~〔5〕の何れか1つに記載のポリプロピレン系樹脂押出発泡粒子。
〔7〕熱可塑性エラストマーの引張破断伸び率は、500%~1000%である、〔1〕~〔6〕の何れか1つに記載のポリプロピレン系樹脂押出発泡粒子。
〔8〕熱可塑性エラストマーの融点は、40℃~110℃である、〔1〕~〔7〕の何れか1つに記載のポリプロピレン系樹脂押出発泡粒子。
〔9〕熱可塑性エラストマーのメルトフローレートは、0.3g/10分~10.0g/10分である、〔1〕~〔8〕の何れか1つに記載のポリプロピレン系樹脂押出発泡粒子。
〔10〕前記分岐構造を有するポリプロピレン系樹脂の融点は、130℃~165℃である、〔1〕~〔9〕の何れか1つに記載のポリプロピレン系樹脂押出発泡粒子。
〔11〕前記分岐構造を有するポリプロピレン系樹脂は、線状ポリプロピレン系樹脂と共役ジエン化合物とラジカル重合開始剤とを含む混合物を溶融混練して得た分岐構造を有するポリプロピレン系樹脂である、〔1〕~〔10〕の何れか1つに記載のポリプロピレン系樹脂押出発泡粒子。
〔12〕前記ポリプロピレン系樹脂押出発泡粒子は、発泡剤として、脂肪族炭化水素類、およびフッ化炭化水素類、炭酸ガス、空気、窒素、水からなる群から選ばれる1つ以上を用いて得られたものである、〔1〕~〔11〕の何れか1つに記載のポリプロピレン系樹脂押出発泡粒子。
〔13〕連続気泡率は15%以下である、〔1〕~〔12〕の何れか1つに記載のポリプロピレン系樹脂押出発泡粒子。
〔14〕平均セル径は100μm~500μmである、〔1〕~〔13〕の何れか1つに記載のポリプロピレン系樹脂押出発泡粒子。
〔15〕嵩密度は60g/L以上である、〔1〕~〔14〕の何れか1つに記載のポリプロピレン系樹脂押出発泡粒子。
〔16〕前記嵩密度は300g/L以下である、〔15〕に記載のポリプロピレン系樹脂押出発泡粒子。
〔17〕押出発泡粒子を型内発泡成形したとき、以下を満たす発泡成形体を得ることができる、前記型内発泡成形時の蒸気圧の上下の幅である成形幅は、0.02MPa以上である、〔1〕~〔16〕の何れか1つに記載のポリプロピレン系樹脂押出発泡粒子。
(1)押出発泡粒子同士の融着率が80%以上である;
(2)押出発泡粒子間の隙間が十分に埋まっている;
(3)表面が美麗である;
(4)表面がメルトしていない;および
(5)型内発泡成形に使用した型の寸法に対して5%以上収縮することなく、前記型の形状が転写されている、発泡成形体。
〔18〕前記分岐構造を有するポリプロピレン系樹脂のメルトフローレートは、0.5g/10分~20.0g/10分である、〔1〕~〔17〕の何れか1つに記載のポリプロピレン系樹脂押出発泡粒子。
〔19〕前記熱可塑性エラストマーの曲げ弾性率は、10MPa~200MPaである、〔1〕~〔18〕の何れか1つに記載のポリプロピレン系樹脂押出発泡粒子。
〔20〕発泡成形体であって、
基材樹脂100重量%中、分岐構造を有するポリプロピレン系樹脂を64.5重量%以上含有する前記基材樹脂を含む押出発泡粒子を成形してなり、
前記押出発泡粒子の連続気泡率は15%以下であり、
前記発泡成形体の密度は60g/L~300g/Lであり、かつ
前記発泡成形体の引張破断伸び率は10%以上である、ポリプロピレン系樹脂発泡成形体。
〔21〕〔1〕~〔19〕の何れか1つ項に記載のポリプロピレン系樹脂押出発泡粒子を成形してなる、ポリプロピレン系樹脂発泡成形体。
<分岐構造を有するポリプロピレン系樹脂の溶融張力>
実施例および比較例で用いた分岐状ポリプロピレン系樹脂の溶融張力を、キャピログラフ1D(日本 株式会社東洋精機製作所製)を用いて測定した。具体的には、以下(1)~(5)の通りであった:(1)200℃に加熱された径9.55mmのバレルに実施例および比較例で用いた分岐状ポリプロピレン系樹脂を充填した;(2)次いで、分岐状ポリプロピレン系樹脂を10分間、200℃に加熱されたバレル内で加熱した;(3)次いで、キャピラリーダイ(口径1.0mm、長さ10mm)から、一定に保持したピストン降下速度(10mm/分)にて、分岐状ポリプロピレン系樹脂を紐状に出しながら、この紐状物を前記キャピラリーダイの下方350mmに位置する張力検出のプーリーに通過させた後、巻取りロールを用いる巻取りを開始した;(4)紐状物の引き取りが安定した後、紐状物の巻取り速度を初速1.0m/分から、4分間で200m/分の速度に達するまで一定の割合で増加させた;(5)紐状物が破断したときのロードセル付きプーリーにかかる荷重を溶融張力として測定した。
押出発泡粒子の連続気泡率は、空気比較式比重計[東京サイエンス(株)製、モデル1000]を用いて、ASTM D2856-87の手順C(PROCEDURE C)に記載の方法に従って、測定した。押出発泡粒子の連続気泡率は、具体的には、以下(1)~(3)を順に実施して算出した:(1)空気比較式比重計を用いて押出発泡粒子の体積Vc(cm3)を測定した;(2)次いで、Vcを測定後の押出発泡粒子の全量を、メスシリンダーに入っているエタノール中に沈めた;(3)その後、メスシリンダーにおけるエタノールの位置の上昇量から、押出発泡粒子の見かけ上の体積Va(cm3)を求めた;(4)以下の式により、押出発泡粒子の連続気泡率を算出した:
連続気泡率(%)=((Va-Vc)×100)/Va。
得られた値を表1~表3に記載した。
押出発泡粒子の平均セル径は、以下(1)~(4)を順に実施して算出した:(1)押出発泡粒子の中心を通るように、押出発泡粒子をカミソリで切断した;(2)得られた切断面を、光学顕微鏡で観察した;(3)当該切断面に2000μmの直線を引き、当該直線上に存在するセル数を計測した。10個の押出発泡粒子に関して前記セル数を測定し、それらの相加平均セル数を算出した;(4)下記式で、測定して得られる値を押出発泡粒子の平均セル径(面積平均径)とした:
平均セル径(μm)=2000/平均セル数。
押出発泡粒子の嵩密度は、以下(1)~(3)を順に実施して算出した:(1)押出発泡粒子を、体積V(L)が既知である容器、例えばメスシリンダー、ビーカー、バケツ等へ、容器からあふれるまで入れた;(2)容器の粉面(上端)を擦切り、容器内の押出発泡粒子の重量W(g)を測定した;(3)以下の式により、押出発泡粒子の嵩密度を算出した:
嵩密度(g/L)=押出発泡粒子の重量W(g)/容器の体積V(L)。得られた値を表1~表3に記載した。
縦/横/厚み/=381/381/60mmの金型に対し、クラッキングを18mm設け、金型内に押出発泡粒子を充填した。型内発泡成形の蒸気圧を0.02MPa(ゲージ圧)ずつ変化させながら、蒸気圧のある一定の範囲内において、押出発泡粒子を型内発泡成形しポリプロピレン系樹脂発泡成形体を得た。このとき、以下を満たすポリプロピレン系樹脂発泡成形体を得ることができる、型内発泡成形時の蒸気圧(ゲージ圧)の幅を求めた:(x1)押出発泡粒子同士の融着が十分(内部融着率80%以上)であり、(x2)押出発泡粒子間の隙間が十分に埋まっており、(x3)表面が美麗であり、(x4)表面がメルトしておらず、かつ(x5)型内発泡成形に使用した型(金型)の寸法に対して5%以上収縮することなく、当該金型の形状が転写されている、発泡成形体。なお、上記評価には、成形後、75~80℃乾燥機にて12~24時間乾燥させ、23℃湿度50%の環境下で24時間以上経過させた発泡成形体を用いた。
成形幅の測定に関するポリプロピレン系樹脂発泡成形体の内部融着率の測定は、以下の(1)~(4)の通りであった:(1)ポリプロピレン系樹脂発泡成形体の任意の一面に対して、カッターで垂直方向に、当該面を有する部位の垂直方向の厚さの1/20~1/5の切り込みを入れた;(2)その後、ポリプロピレン系樹脂発泡成形体を切り込みに沿って手で破断した。なお、手で破断しない場合はポリプロピレン系樹脂発泡成形体の切り込みの近くをハンマー等で叩いて、切り込みに沿ってポリプロピレン系樹脂発泡成形体を破断した;(3)得られた破断面のうち、切り込み部分を除き、かつ厚さ方向の中央を含むようにして一定の範囲を目視で観察し、当該範囲内に存在する全押出発泡粒子、および当該範囲内において粒子界面以外で破断している押出発泡粒子(すなわち押出発泡粒子自体が破断している押出発泡粒子)の数を計測した;(4)以下の式(4)に基づき内部融着率を算出する;
内部融着率(%)=(前記範囲内において粒子界面以外で破断している押出発泡粒子数/当該範囲内に存在する全押出発泡粒子数)×100・・・(4)。
発泡成形体の密度は、以下(1)~(3)を順に実施して算出した:(1)発泡成形体の重量W1(g)を測定した;(2)重量W1を測定した発泡成形体の縦、横、厚さ、それぞれの長さを測定し、それらの長さから発泡成形体の体積V1(L)を算出した;(3)W1をV1で除し、得られた値を発泡成形体の密度(g/L)とした。なお、密度の測定には、成形後、十分に乾燥させ、室温23℃湿度50%環境下にて24時間以上経過させた発泡成形体を使用した。
ISO 1798に基づく引張伸び試験を行い、発泡成形体の引張破断伸び率を測定した。具体的に、発泡成形体の引張破断伸び率は、以下(1)~(4)を順に実施して算出した:(1)ISO 1798に規定されるダンベル形状の発泡成形体を作製し、得られた発泡成形体を試験片とした;(2)当該試験片の両端部を固定した;(3)当該試験片の片側を、当該試験片が破断するまで引っ張った;(4)当該試験片が破断したときの、試験片の伸び率を当該発泡成形体の引張破断伸び率とした。得られた値を表1~表3に記載した。
引張破断伸び率の試験で用いた試験片(ダンベル形状の発泡成形体)の体積Ldを求めた。次に、当該試験片の重量Wd(g)を電子天秤にて測定した。そして、WdをLdで除して、引張破断伸び率の試験で用いた試験片の密度を求めた。得られた値を表1~表3の「試験片の密度」の欄に記載した。
以下の基準に基づく総合評価を、表1~表3に記載した。
〇(良好):成形幅が0.04MPa以上であり、かつ引張破断伸び率が10%以上である。
△(標準):成形幅が0.02MPa以上0.04MPa未満であるが、引張破断伸び率が10%以上である、または成形幅が0.04MPa以上であるが、引張破断伸び率が10%未満である。
×(不良):成形幅が0.02MPa未満であり、かつ引張破断伸び率が10%未満である。
実施例および比較例では、以下の材料を使用した。
分岐構造を有するポリプロピレン系樹脂として、溶融張力が10cN以上50cN以下であるポリプロピレン樹脂として、Borealis社製、「WB140HMS」(溶融張力の実測値14cN、および融点161℃)を用いた。
熱可塑性エラストマーとして、ポリオレフィン系エラストマー樹脂(LG Chem社製、「LUCENE LC180」、略号E1)、またはポリオレフィン系エラストマー樹脂(Dow Inc社製、「VERSIFY 2300」、略号E2)を用いた。E1の引張破断伸び率は850%、融点は73℃、MFRは2.3g/10分である。E2の引張破断伸び率は730%、融点は66℃、MFRは2.0g/10分である。E1およびE2の引張破断伸び率は、E1およびE2を試料としてASTM D638に準拠して測定して求めた値であった。E1およびE2の融点は、線状ポリプロピレン系樹脂の代わりに熱可塑性エラストマーを使用する以外は、上述の線状ポリプロピレン系樹脂の融点と同様に、DSC法により測定して求めた値であった。E1およびE2のMFRは、線状ポリプロピレン系樹脂のMFRと同様に、ISO 1133に従い、温度230℃および荷重2.16kgの条件で測定して求めた値であった。
その他の樹脂として、エチレン/プロピレンランダム共重合体(プライムポリマー社製、「F-724NPC」)を用いた。
無機系着色剤として、カーボンブラックを使用した。なお、カーボンブラックは、カーボンブラックの濃度が40%であるカーボンブラックマスターバッチとして使用した。カーボンブラックマスターバッチは、以下のようにして調製した。前記分岐構造を有するポリプロピレン系樹脂に濃度40%になるようにカーボンブラックを配合し、押出機にて溶融混練し、得られた溶融混練物を水中に押出しカットすることで作成した。表1~表3の「無機系着色剤」の欄には、括弧外の数字と、括弧内の数値とを表記している。括弧外の数字はカーボンブラックマスターバッチの配合量を示し、括弧内の数字は実際に配合されたカーボンブラックの量を示している。
気泡核形成剤としては、タルク(Imerys社製、Luzenac 20MO)を使用した。
(a)分岐構造を有するポリプロピレン系樹脂と、(b)表1~表3に示す熱可塑性エラストマーおよび/またはエチレンプロピレンランダム共重合体と、(c)無機系着色剤(カーボンブラックの濃度が40%であるカーボンブラックマスターバッチ)と、(d)気泡核形成剤とを、表1~表3に示す量で混合し、樹脂混合物を調製した。次いで、樹脂混合物を二軸押出機に供給して、シリンダ温度210℃で当該樹脂混合物を溶融混練した。さらに、押出機途中に設けた圧入部より、発泡剤である炭酸ガスを、ポリプロピレン系樹脂100重量部に対し3重量部、定量ポンプを用いて供給し、得られた組成物をさらに溶融混練した。
実施例1~9、比較例1および参考例1~4においては押出発泡によりポリプロピレン系樹脂押出発泡粒子を作製した。一方、以下の参考例5および6においては、除圧発泡によりポリプロピレン系樹脂発泡粒子を作製した。以下、参考例5および6のポリプロピレン系樹脂発泡粒子の作製方法について説明する。
前記<その他の樹脂>の項で説明したエチレン/プロピレンランダム共重合体(プライムポリマー社製、「F-724NPC」)と、気泡核形成剤と、任意で無機系着色剤(カーボンブラックの濃度が40%であるカーボンブラックマスターバッチ)と、を表3に示す量で混合し、樹脂混合物を調製した。次いで、樹脂混合物を二軸押出機[芝浦機械株式会社製、TEM26]に供給して、樹脂温度215℃~225℃にて当該樹脂混合物を溶融混練した。続いて、得られた溶融混練物を、ダイからストランド状に押出した。次いで、押出されたストランドを水槽で水冷した。続いて、水冷されたストランドを切断して、ポリプロピレン系樹脂粒子(1.80mg/粒)を製造した。
内容量10Lの耐圧容器中に、得られたポリプロピレン系樹脂粒子100重量部、水200重量部、分散剤としてのパウダー状塩基性第3リン酸カルシウム1.0重量部、分散助剤としてのn-パラフィンスルホン酸ソーダ0.06重量部、および発泡剤として二酸化炭素4重量部を収容した。容器内の原料(水系分散液)を攪拌しながら、容器内温度を156℃まで昇温した。容器内温度が156℃に達した後、容器内温度が156℃に維持された状態で10分経過後、容器内に二酸化炭素を追加圧入して、容器内圧力を2.2MPa(ゲージ圧)に調整した。さらに、容器内温度を158℃まで昇温した。容器内温度が158℃に達した後、容器内温度158℃および容器内圧力2.2MPa(ゲージ圧)にて20分間保持した。
Claims (15)
- 分岐構造を有するポリプロピレン系樹脂を含有する基材樹脂を含み、
前記分岐構造を有するポリプロピレン系樹脂の溶融張力は5cN~50cNであり、
前記基材樹脂は、さらに、熱可塑性エラストマーおよび無機系着色剤を含有する、ポリプロピレン系樹脂押出発泡粒子。 - 前記基材樹脂は、当該基材樹脂100重量%中、前記分岐構造を有するポリプロピレン系樹脂を64.5重量%~94.5重量%含む、請求項1に記載のポリプロピレン系樹脂押出発泡粒子。
- 前記基材樹脂は、当該基材樹脂100重量%中、前記熱可塑性エラストマーを5.0重量%~35.0重量%含む、請求項1または2に記載のポリプロピレン系樹脂押出発泡粒子。
- 前記基材樹脂は、当該基材樹脂100重量%中、前記無機系着色剤を0.5重量%~5.0重量%含む、請求項1~3の何れか1項に記載のポリプロピレン系樹脂押出発泡粒子。
- 前記無機系着色剤は、カーボンブラック、赤土、黄土、緑土、酸化チタン、コバルト青、紺青、および酸化クロム緑からなる群から選ばれる1つ以上である、請求項1~4の何れか1項に記載のポリプロピレン系樹脂押出発泡粒子。
- 前記熱可塑性エラストマーは、ポリオレフィン系エラストマーである、請求項1~5の何れか1項に記載のポリプロピレン系樹脂押出発泡粒子。
- 熱可塑性エラストマーの引張破断伸び率は、500%~1000%である、請求項1~6の何れか1項に記載のポリプロピレン系樹脂押出発泡粒子。
- 熱可塑性エラストマーの融点は、40℃~110℃である、請求項1~7の何れか1項に記載のポリプロピレン系樹脂押出発泡粒子。
- 熱可塑性エラストマーのメルトフローレートは、0.3g/10分~10.0g/10分である、請求項1~8の何れか1項に記載のポリプロピレン系樹脂押出発泡粒子。
- 連続気泡率は15%以下である、請求項1~9の何れか1項に記載のポリプロピレン系樹脂押出発泡粒子。
- 平均セル径は100μm~500μmである、請求項1~10の何れか1項に記載のポリプロピレン系樹脂押出発泡粒子。
- 嵩密度は60g/L以上である、請求項1~11の何れか1項に記載のポリプロピレン系樹脂押出発泡粒子。
- 押出発泡粒子を型内発泡成形したとき、以下を満たす発泡成形体を得ることができる、前記型内発泡成形時の蒸気圧の上下の幅である成形幅は、0.02MPa以上である、請求項1~12の何れか1項に記載のポリプロピレン系樹脂押出発泡粒子。
(1)押出発泡粒子同士の融着率が80%以上である;
(2)押出発泡粒子間の隙間が十分に埋まっている;
(3)表面が美麗である;
(4)表面がメルトしていない;および
(5)型内発泡成形に使用した型の寸法に対して5%以上収縮することなく、前記型の形状が転写されている、発泡成形体。 - 発泡成形体であって、
基材樹脂100重量%中、分岐構造を有するポリプロピレン系樹脂を64.5重量%以上含有する前記基材樹脂を含む押出発泡粒子を成形してなり、
前記押出発泡粒子の連続気泡率は15%以下であり、
前記発泡成形体の密度は60g/L~300g/Lであり、かつ
前記発泡成形体の引張破断伸び率は10%以上である、ポリプロピレン系樹脂発泡成形体。 - 請求項1~13のいずれか1項に記載のポリプロピレン系樹脂押出発泡粒子を成形してなる、ポリプロピレン系樹脂発泡成形体。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22759796.0A EP4299665A1 (en) | 2021-02-25 | 2022-02-25 | Polypropylene resin extruded foam particles and polypropylene resin foam molded body |
JP2023502535A JPWO2022181762A1 (ja) | 2021-02-25 | 2022-02-25 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021029192 | 2021-02-25 | ||
JP2021-029192 | 2021-02-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022181762A1 true WO2022181762A1 (ja) | 2022-09-01 |
Family
ID=83049175
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/007863 WO2022181762A1 (ja) | 2021-02-25 | 2022-02-25 | ポリプロピレン系樹脂押出発泡粒子およびポリプロピレン系樹脂発泡成形体 |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP4299665A1 (ja) |
JP (1) | JPWO2022181762A1 (ja) |
WO (1) | WO2022181762A1 (ja) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10237212A (ja) | 1997-02-21 | 1998-09-08 | Huels Ag | 発泡したポリオレフィン粒状物を更に発泡する方法 |
JP2002542360A (ja) | 1999-04-19 | 2002-12-10 | バセル テクノロジー カンパニー ベスローテン フェンノートシャップ | 高い溶融強度を持つ軟質プロピレンポリマーブレンド |
JP2005023302A (ja) * | 2003-06-12 | 2005-01-27 | Jsp Corp | ポリプロピレン系樹脂発泡粒子の製造方法 |
JP2006307177A (ja) * | 2005-03-29 | 2006-11-09 | Jsp Corp | ポリプロピレン系樹脂発泡粒子、ポリプロピレン系樹脂発泡粒子成形体の製造方法およびポリプロピレン系樹脂発泡粒子成形体 |
WO2018016399A1 (ja) | 2016-07-19 | 2018-01-25 | 株式会社カネカ | ポリプロピレン系樹脂予備発泡粒子および該予備発泡粒子の製造方法 |
WO2018079699A1 (ja) * | 2016-10-31 | 2018-05-03 | キョーラク株式会社 | 発泡成形用樹脂、発泡成形体及びその製造方法 |
JP2018076464A (ja) * | 2016-11-11 | 2018-05-17 | 株式会社ジェイエスピー | 発泡粒子とその成形体 |
WO2020004429A1 (ja) | 2018-06-28 | 2020-01-02 | 株式会社カネカ | 改質ポリプロピレン樹脂およびその製造方法、並びに、当該改質ポリプロピレン樹脂を用いた押出発泡粒子およびその製造方法 |
WO2021131933A1 (ja) * | 2019-12-23 | 2021-07-01 | 株式会社カネカ | ポリプロピレン系樹脂組成物、その製造方法、予備発泡粒子の製造方法及び発泡成形体の製造方法 |
-
2022
- 2022-02-25 JP JP2023502535A patent/JPWO2022181762A1/ja active Pending
- 2022-02-25 WO PCT/JP2022/007863 patent/WO2022181762A1/ja active Application Filing
- 2022-02-25 EP EP22759796.0A patent/EP4299665A1/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10237212A (ja) | 1997-02-21 | 1998-09-08 | Huels Ag | 発泡したポリオレフィン粒状物を更に発泡する方法 |
JP2002542360A (ja) | 1999-04-19 | 2002-12-10 | バセル テクノロジー カンパニー ベスローテン フェンノートシャップ | 高い溶融強度を持つ軟質プロピレンポリマーブレンド |
JP2005023302A (ja) * | 2003-06-12 | 2005-01-27 | Jsp Corp | ポリプロピレン系樹脂発泡粒子の製造方法 |
JP2006307177A (ja) * | 2005-03-29 | 2006-11-09 | Jsp Corp | ポリプロピレン系樹脂発泡粒子、ポリプロピレン系樹脂発泡粒子成形体の製造方法およびポリプロピレン系樹脂発泡粒子成形体 |
WO2018016399A1 (ja) | 2016-07-19 | 2018-01-25 | 株式会社カネカ | ポリプロピレン系樹脂予備発泡粒子および該予備発泡粒子の製造方法 |
WO2018079699A1 (ja) * | 2016-10-31 | 2018-05-03 | キョーラク株式会社 | 発泡成形用樹脂、発泡成形体及びその製造方法 |
JP2018076464A (ja) * | 2016-11-11 | 2018-05-17 | 株式会社ジェイエスピー | 発泡粒子とその成形体 |
WO2020004429A1 (ja) | 2018-06-28 | 2020-01-02 | 株式会社カネカ | 改質ポリプロピレン樹脂およびその製造方法、並びに、当該改質ポリプロピレン樹脂を用いた押出発泡粒子およびその製造方法 |
WO2021131933A1 (ja) * | 2019-12-23 | 2021-07-01 | 株式会社カネカ | ポリプロピレン系樹脂組成物、その製造方法、予備発泡粒子の製造方法及び発泡成形体の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
EP4299665A1 (en) | 2024-01-03 |
JPWO2022181762A1 (ja) | 2022-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2072207B1 (en) | Expanded polypropylene resin beads and foamed molded article thereof | |
KR101455435B1 (ko) | 폴리프로필렌계 수지 발포 입자 및 그 성형체 | |
KR101473031B1 (ko) | 폴리프로필렌계 수지 발포 입자 및 그 성형체 | |
JP4669301B2 (ja) | 導電性を有する熱可塑性樹脂発泡粒子及びその発泡成形体 | |
WO2021100645A1 (ja) | ポリプロピレン系樹脂発泡粒子、その製造方法及びポリプロピレン系樹脂発泡成形体 | |
US8507608B2 (en) | Propylene polymer resin composition | |
JP5202942B2 (ja) | プロピレン系樹脂押出発泡体の製造方法 | |
WO2021172016A1 (ja) | ポリプロピレン系樹脂発泡粒子、その製造方法及びポリプロピレン系樹脂発泡成形体 | |
JP2022152955A (ja) | ポリプロピレン系樹脂押出発泡粒子の製造方法 | |
JP4999462B2 (ja) | プロピレン系樹脂押出発泡体 | |
WO2016147919A1 (ja) | ポリプロピレン系樹脂発泡粒子およびその製造方法 | |
WO2022203036A1 (ja) | ポリプロピレン系樹脂押出発泡粒子およびその製造方法、並びに発泡成形体 | |
WO2022191181A1 (ja) | 押出発泡用ポリプロピレン系樹脂組成物、押出発泡粒子および発泡成形体 | |
CN103183859B (zh) | 含微交联组分的聚乙烯共混组合物及其管制品 | |
WO2022181762A1 (ja) | ポリプロピレン系樹脂押出発泡粒子およびポリプロピレン系樹脂発泡成形体 | |
WO2022210647A1 (ja) | ポリプロピレン系樹脂押出発泡粒子の製造方法 | |
EP4083089A1 (en) | Polypropylene resin composition, method for producing same, method for producing pre-foamed particles, and method for producing foam molded articles | |
WO2022050375A1 (ja) | 押出発泡粒子およびその製造方法 | |
WO2022163627A1 (ja) | 分岐構造を有するポリプロピレン系樹脂の製造方法、押出発泡粒子の製造方法、および、発泡成形体の製造方法 | |
WO2022154070A1 (ja) | ポリプロピレン系樹脂押出発泡粒子およびその製造方法、並びに発泡成形体 | |
WO2022210645A1 (ja) | ポリプロピレン系樹脂押出発泡粒子およびその製造方法、並びに発泡成形体 | |
WO2022210646A1 (ja) | ポリプロピレン系樹脂押出発泡粒子 | |
WO2023127914A1 (ja) | ポリプロピレン系樹脂押出発泡粒子の製造方法 | |
WO2023054223A1 (ja) | ポリプロピレン系樹脂押出発泡粒子、ポリプロピレン系樹脂発泡成形体および積層発泡体 | |
WO2023176911A1 (ja) | ポリプロピレン系樹脂押出発泡粒子の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22759796 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023502535 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022759796 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022759796 Country of ref document: EP Effective date: 20230925 |