[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022180845A1 - 窒化処理された切削タップおよびその製造方法 - Google Patents

窒化処理された切削タップおよびその製造方法 Download PDF

Info

Publication number
WO2022180845A1
WO2022180845A1 PCT/JP2021/007553 JP2021007553W WO2022180845A1 WO 2022180845 A1 WO2022180845 A1 WO 2022180845A1 JP 2021007553 W JP2021007553 W JP 2021007553W WO 2022180845 A1 WO2022180845 A1 WO 2022180845A1
Authority
WO
WIPO (PCT)
Prior art keywords
cutting edge
cutting
tap
edge portion
diffusion layer
Prior art date
Application number
PCT/JP2021/007553
Other languages
English (en)
French (fr)
Inventor
晃也 久田
孝之 中嶋
Original Assignee
オーエスジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オーエスジー株式会社 filed Critical オーエスジー株式会社
Priority to KR1020237028454A priority Critical patent/KR20230130136A/ko
Priority to JP2023502005A priority patent/JPWO2022180845A1/ja
Priority to PCT/JP2021/007553 priority patent/WO2022180845A1/ja
Priority to US18/270,828 priority patent/US20240058906A1/en
Priority to CN202180094581.8A priority patent/CN116981542A/zh
Priority to TW111104604A priority patent/TWI825581B/zh
Publication of WO2022180845A1 publication Critical patent/WO2022180845A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/28Making specific metal objects by operations not covered by a single other subclass or a group in this subclass cutting tools
    • B23P15/48Making specific metal objects by operations not covered by a single other subclass or a group in this subclass cutting tools threading tools
    • B23P15/52Making specific metal objects by operations not covered by a single other subclass or a group in this subclass cutting tools threading tools taps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23GTHREAD CUTTING; WORKING OF SCREWS, BOLT HEADS, OR NUTS, IN CONJUNCTION THEREWITH
    • B23G5/00Thread-cutting tools; Die-heads
    • B23G5/02Thread-cutting tools; Die-heads without means for adjustment
    • B23G5/06Taps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/02Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for sharpening or cleaning cutting tools, e.g. files
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23GTHREAD CUTTING; WORKING OF SCREWS, BOLT HEADS, OR NUTS, IN CONJUNCTION THEREWITH
    • B23G2200/00Details of threading tools
    • B23G2200/26Coatings of tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23GTHREAD CUTTING; WORKING OF SCREWS, BOLT HEADS, OR NUTS, IN CONJUNCTION THEREWITH
    • B23G2200/00Details of threading tools
    • B23G2200/48Spiral grooves, i.e. spiral flutes

Definitions

  • the present invention relates to a cutting tap and its manufacturing method, and more particularly to a technique for improving the life of a nitrided cutting tap.
  • cutting taps with cutting edges such as straight grooved taps, spiral grooved taps, point grooved taps, taps for pipes, and thread milling cutters have no wear or chipping on the cutting edge, and maintain good cutting performance for a long time. Maintainable tool performance is desired.
  • a cutting tap having such tool performance can reduce the number of tool changes in a machine tool such as a machining center, thereby increasing machining efficiency.
  • the screw thread of the chamfered portion is changed from an incomplete crest shape in which the top portion is shaved from the tip of the taper-shaped chamfered portion toward the complete crest portion to a complete crest shape.
  • the R-chamfered cutting edge lacks hardness and does not provide sufficient cutting tap durability.
  • Patent Document 2 although it is not a cutting tap, in order to suppress chipping and breakage of a tool (broach) having a cutting edge, from the height difference h between the cutting edges adjacent to each other in the cutting direction After applying a surface hardening treatment (gas nitriding) with a thickness d of about 50 ⁇ m to the cutting edge, the white layer on the surface is microblasted to prevent peeling of the hard coating that is coated in the post-treatment. mentioned to be removed.
  • a surface hardening treatment gas nitriding
  • JP 2008-272856 A Japanese Patent Application Laid-Open No. 2020-131310
  • the present invention has been made against the background of the above circumstances, and its object is to obtain a tool performance that can maintain good cutting performance for a long time with little wear and chipping of the cutting edge of the cutting tap. To provide a cutting tap.
  • the inventors of the present invention conducted various investigations against the background of the above circumstances, and as a result, using a corrosive liquid on the cross section including the cutting edge of the cutting tap, the state in which the corrosion of the nitrogen diffusion layer was accelerated was observed using a metallurgical microscope.
  • the nitrogen diffusion layer is shown in black, and the cutting edge portion receiving diffusion from the flank and rake face has a thicker nitrogen diffusion layer than other surface layers.
  • the nitrogen diffusion layer has the property that a gradient of nitrogen concentration and hardness is formed from the surface to the inner side. Since the cutting edge of the cutting edge has a higher nitrogen concentration and hardness than other parts, it is assumed that the tip of the cutting edge is brittle.
  • the cutting tap exhibits a much longer durable life than when the surface hardening treatment by gas nitriding is performed after honing treatment, for example.
  • the present invention has been made based on such knowledge.
  • the gist of the first invention is a method for manufacturing a cutting tap having a nitrogen diffusion layer, wherein nitrogen atoms contained in an atmosphere gas are diffused from the surface of the base material of the cutting tap under heating. It includes a nitriding step of forming a diffusion layer, and a honing step of rounding the cutting edge portion of the cutting tap by colliding abrasive particles against the cutting edge portion of the base material of the cutting tap that has undergone the nitriding step. .
  • the gist of the second invention is a cutting tap having a nitrogen diffusion layer, wherein the thickness of the nitrogen diffusion layer at the cutting edge of the cutting tap and the thickness of the nitrogen diffusion layer at the other portion different from the cutting edge The difference from the thickness of the nitrogen diffusion layer is within 5 ⁇ m.
  • a thick nitrogen diffusion layer is formed on the cutting edge due to diffusion from the flank and rake face, and the cutting edge of the cutting edge has relatively high nitrogen concentration and hardness and is mechanically fragile. Therefore, by removing such a mechanically fragile cutting edge, wear and chipping of the cutting edge of the cutting tap are reduced, and tool performance that can maintain good cutting performance for a long time can be obtained.
  • the diffusion layer has a uniform thickness.
  • the difference between the thickness of the nitrogen diffusion layer at the cutting edge portion of the cutting tap and the thickness of the nitrogen diffusion layer at a portion other than the cutting edge portion is within 5 ⁇ m. For this reason, the nitrogen concentration and hardness of the cutting edge are not so high, and there is not much difference in mechanical fragility. Maintainable tool performance is obtained.
  • the base material of the cutting tap is nitrided in an atmosphere furnace maintained at a temperature of 500°C or higher and 550°C or lower in an ammonia gas atmosphere.
  • the cutting edge of the cutting edge is removed by locally colliding the abrasive particles against the cutting edge using compressed air.
  • the cutting edge of the cutting edge portion is removed, so that the thickness of the nitrogen diffusion layer in the cutting edge portion is the same as that of the nitrogen diffusion layer before removing the cutting edge portion of the cutting edge portion. It is less than the thickness of the layer and approaches the thickness of the nitrogen diffusion layer formed on the surface other than the cutting edge.
  • the thickness of the nitrogen diffusion layer formed on the surface of the cutting tap after the cutting edge of the cutting edge is removed in the honing step is 10 ⁇ m or more and 30 ⁇ m or less, and the cutting The surface hardness of the tap is 950HV or more and 1050HV or less.
  • the angle between the flank and rake face of the cutting edge is an acute angle.
  • FIG. 1 is a diagram showing a three-bladed spiral tap to which the present invention is preferably applied;
  • FIG. 2 is a cross-sectional view taken along line II-II showing a cross-section perpendicular to the center line of rotation of the chamfered portion of the spiral tap of FIG. 1;
  • FIG. It is a figure which expands and demonstrates the cutting edge part before the honing process in the spiral tap of FIG. 1.
  • It is a metallurgical microscope photograph which shows the cutting edge part before the honing process in the spiral tap of FIG. 1 enlarging.
  • It is a figure which expands and demonstrates the cutting edge part after the honing process in the spiral tap of FIG. 1.
  • FIG. 1 is a diagram showing a three-bladed spiral tap 10 to which the present invention is preferably applied.
  • FIG. 2 is a cross section of the biting portion 22 of the spiral tap 10 of FIG. 1, taken along the line II-II of FIG.
  • the spiral tap 10 is an example of a cutting tap, and integrally includes a shank portion 12, a neck portion 14, and a threaded portion 16 in that order on the rotation center line CL.
  • the threaded portion 16 is provided with a thread groove-shaped male thread corresponding to the female thread to be machined, and three twist grooves 20 are formed at equal intervals around the rotation center line CL so as to divide the male thread.
  • the threaded portion 16 has a chamfered portion 22 on the distal end side where the thread 18 of the male screw is tapered off in the axial direction, and a complete thread 18 provided continuously from the chamfered portion 22. and a full peak portion 24 .
  • a cutting edge portion 28 is formed on a ridge line portion between the screw thread of the chamfer portion 22 and the screw thread of the complete thread portion 24 and the helical groove 20 on the rotational direction A1 side of the screw thread.
  • the twisted groove 20 has a right-hand twist and is provided over substantially the entire neck portion 14 beyond the threaded portion 16 .
  • the cutting edge 28 formed on the chamfer 22 is the tip of the area sandwiched between the concave arc-shaped rake face 30 and the convex arc-shaped flank face 32. , the tip angle ⁇ is acute.
  • FIG. 3 is an enlarged sectional view of the cutting edge portion 28 of the spiral tap 10 after nitriding treatment (nitriding treatment step P2 described later) and before honing treatment (honing treatment step P3 described later), and FIG. 4 is after nitriding treatment. It is an enlarged photograph of the cutting edge part 28 before a honing process. 5 is an enlarged sectional view of the cutting edge 28 of the spiral tap 10 after nitriding and honing, and FIG. 6 is an enlarged photograph of the cutting edge 28 after nitriding and honing. 4 and 6 are photographs of enlarged images obtained by corroding the cross section of the spiral tap 10 with an etchant and enlarging it with a metallurgical microscope. In FIGS. 4 and 6, the nitrogen diffusion layer 38 is more susceptible to corrosion than the tool base material 36, and is shown relatively black in the metallographic micrographs.
  • the cutting edge portion 28 is R-chamfered by, for example, honing (R-honing) processing, and as shown in the enlarged cross-sectional view shown in FIG. 5 and the enlarged photograph shown in FIG.
  • the sharp cutting edge 34 formed at 36 has been removed.
  • the difference from t2 is within 5 ⁇ m.
  • the thickness t1 of the nitrogen diffusion layer 38 at the cutting edge portion 28 is a value measured in the direction of the half angle ( ⁇ /2) of the tip angle ⁇ , and the thickness of the nitrogen diffusion layer 38 at the flank surface 32 and the flat surface 30.
  • t2 is the value in the direction perpendicular to the flank surface 32 and the flat surface 30;
  • FIG. 7 shows the main part of the manufacturing process of the spiral tap 10.
  • a bar-shaped tool base material 36 made of high-speed tool steel is formed with a screw thread 18 by thread grinding, a helical groove 20 is formed by groove grinding, and a chamfered portion 22 is formed by chamfer grinding. It is formed. Further, the tool base material 36 is quenched as necessary.
  • nitriding process P2 gas nitriding is performed in an atmosphere furnace maintained at a temperature of 500° C. or more and 550° C. or less in an ammonia gas atmosphere, thereby obtaining an enlarged cross-sectional view shown in FIG. 3 and an enlarged view shown in FIG.
  • a nitrogen diffusion layer 38 is formed on the surface of the tool base material 36 with a thickness of, for example, about 10 ⁇ m to 30 ⁇ m.
  • the surface hardness of the tool base material 36 on which the nitrogen diffusion layer 38 is formed is, for example, 950 HV or more and 1050 HV or less (JIS Z 2244:2009).
  • An indentation load of 0.3 Kgf was used in the measurement of the Vickers hardness HV.
  • abrasive particles such as Al 2 O 3 and SiC are locally injected from the nozzle N together with compressed air toward the tip of the nitrided cutting edge portion 28, that is, the cutting edge 34, and the cutting edge 34 is It is removed and the tip of the cutting edge portion 28 is rounded.
  • the difference between the thickness t1 of the nitrogen diffusion layer 38 of the cutting edge portion 28 and the thickness t2 of the nitrogen diffusion layer 38 of the flank surface 32, the relief surface 30, and the like is within 5 ⁇ m. That is, honing is applied.
  • the enlarged sectional view shown in FIG. 5 and the enlarged photograph shown in FIG. 6 show this state.
  • the direction of the nozzle N is desirably the half angle ( ⁇ /2) direction of the tip angle ⁇ of the cutting edge 34 .
  • FIG. 8 shows the test results of cutting test 1
  • Fig. 9 is a graph showing the number of processes shown in the test results of Fig. 8 in a comparable manner for each sample.
  • FIG. 10 is a metallurgical microscope photograph which shows the cutting edge part 28 of the sample 2 which is an example of edge chipping in enlargement.
  • Sample 1 is conventionally used with the most common spiral tap specifications, and is not subjected to honing and nitriding.
  • a minute chipping occurred on the cutting edge 34, and the wear starting from the chipping increased.
  • the life (number of processing) of the first rod was 700, and the life (number of processing) of the second rod was 600.
  • Sample 2 was subjected to the same nitriding treatment as the nitriding treatment process P2 in order to improve the wear resistance of sample 1.
  • the cutting edge 34 of the cutting edge portion 28 was broken and chipped before the wear resistance was exhibited, so the life was much shorter than that of the sample 1.
  • Sample 3 was honed as a countermeasure against chipping of the blade of Sample 1. According to this sample 3, although chipping of the blade is suppressed, the honing process causes initial wear from the time of a new product.
  • sample 6 is honed and nitrided in the same manner as sample 5, it differs from sample 5 in that nitriding is performed after honing.
  • the cutting edge 34 of the cutting edge 28 is removed, but since the nitriding treatment is performed after the cutting edge 34 is removed, the thickness t1 of the nitrogen diffusion layer 38 of the cutting edge 28 is different.
  • the flank surface 32 is larger than the thickness t2 of the easy surface 30, and the surface of the cutting edge portion 28 is brittle due to the high nitrogen concentration and hardness, so the effect of suppressing chipping is limited. Since the nitrogen concentration and hardness change exponentially from the surface, even a relatively small difference in the thickness of the nitrogen diffusion layer 38 is presumed to have a large effect.
  • Samples 4 and 5 in which nitriding treatment is performed before honing, have no damage to the cutting edge 28 even after 900 times of machining, and wear is small, so continuation of machining was judged to be possible, and the cutting test was completed at 900 times.
  • FIG. 11 shows the results of cutting test 2.
  • FIG. 12 is a graph showing the number of processes shown in the test results of FIG. 11 so as to be comparable for each sample.
  • Sample 1 is conventionally used with the most common spiral tap specifications, and is not honed or nitrided. In this sample 1, a minute chipping occurred on the cutting edge 34, and the wear starting from the chipping increased.
  • the life (number of processing) of the first rod was 700
  • the life (number of processing) of the second rod was 600.
  • Sample 2 was subjected to nitriding treatment similar to nitriding treatment step P2 in order to increase the wear resistance of sample 1, and the difference ⁇ t between thickness t1 and thickness t2 was 13 ⁇ m.
  • chipping and breakage of the cutting edge 34 of the cutting edge portion 28 occurred before the wear resistance was exhibited, so that the life of the sample 2 was significantly shorter than that of the sample 1.
  • sample 2 is lightly honed as a post-treatment, and as a result, the difference ⁇ t between thickness t1 and thickness t2 is 9 ⁇ m. Since sample A was not sufficiently honed as a post-treatment, breakage and edge chipping occurred.
  • sample 2 is appropriately subjected to honing (honing process P3) as a post-treatment, and the difference ⁇ t between thickness t1 and thickness t2 is 5 ⁇ m and 1 ⁇ m, respectively.
  • Samples B and C showed no damage to the cutting edge 28 and little wear even after 900 times of machining.
  • the cutting edge 28 was not damaged after 900 times of processing, but the wear was large, so it was judged that further processing could not be continued.
  • This sample D was insufficient in abrasion resistance, and as with sample 1, excessive abrasion occurred after 700 cycles.
  • the method for manufacturing the spiral tap (cutting tap) 10 of the present embodiment in the nitriding process P2, nitrogen atoms contained in the atmosphere gas are released from the surface of the tool base material 36 of the cutting tap under heating. After the diffused nitrogen diffusion layer 38 is formed, in the honing process P3, the cutting edge portion 28 of the tool base material 36 of the cutting tap is collided with abrasive particles to round off the cutting edge portion 28 and the cutting edge 34 is removed. be done.
  • a thick nitrogen diffusion layer 38 is formed in advance on the cutting edge 28 by diffusion from the flank 32 and diffusion from the rake face 30, and the cutting edge 34 of the cutting edge 28 has a relatively high nitrogen concentration and hardness, and is mechanically stable. fragile.
  • the thickness of the nitrogen diffusion layer 38 is made uniform.
  • the thickness t1 of the nitrogen diffusion layer 38 in the cutting edge portion 28 of the spiral tap 10 and the other portion (flank 32) different from the cutting edge portion 28 The difference ⁇ t (absolute value) between the surface 30) and the thickness t2 of the nitrogen diffusion layer 38 is within 5 ⁇ m. For this reason, the cutting edge portion 28 does not have a high nitrogen concentration and hardness, and there is not much difference in mechanical fragility. Tool performance that can be maintained for a long time can be obtained.
  • the cutting tap (spiral tap 10) of the above-described embodiment was formed with the twisted groove 20, but the shape of the groove may be a straight groove or a spiral point groove. Further, the cutting tap of the present invention may be a straight grooved tap, a spiral grooved tap, a thread milling cutter, or the like, and any rotary cutting tool having a cutting edge may be used.
  • the cutting tap in the above-described embodiment was composed of three blades, the number of blades is not particularly limited.
  • the cutting tap of the present invention can be constructed using various tool materials (tool base material 36) such as high-speed tool steel and cemented carbide steel. can also be deposited over the nitrogen diffusion layer 38 .
  • gas nitriding was performed in the nitriding process P2 of the above-described embodiment, but gas nitriding, ion nitriding, salt bath nitriding, plasma nitriding, etc. may be used in addition to gas nitriding.
  • the cutting edge 28 was locally subjected to blasting using abrasive grains to remove the cutting edge 34 of the cutting edge 28, but glass beads were used.
  • blasting may be performed using other materials such as steel balls.
  • the abrasive particles may be jetted together with compressed air, but may be jetted together with a liquid, or may be barrel-polished together with the polished pieces in a barrel bath. Barrel polishing is not a localized sharpening, but preferentially removes the sharp cutting edge 34 of the cutting tap 10 . Further, the abrasive particles may be abrasive particles such as Al 2 O 3 and SiC, but glass particles, steel balls and the like may also be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

タップ加工中の刃欠けや摩耗を抑制し、耐久性の高い切削タップを提供する。 窒化処理工程P2において、加熱下で雰囲気ガスに含まれる窒素原子が切削タップの工具母材の表面から拡散された窒素拡散層が形成された後に、ホーニング処理工程P3において、切削タップの工具母材の切れ刃部に研磨粒子を衝突させて切れ刃部が丸められ、刃先が除去される。切れ刃部には逃げ面からの拡散とすくい面からの拡散とによって窒素拡散層が予め厚く形成され、切れ刃部の刃先は窒素濃度及び硬度が相対的に高く、機械的に脆い。このため、機械的に脆い刃先が除去されることで、切削タップの切れ刃部の摩耗や刃欠けが減少し、良好な切削性を長期に保持できる工具性能が得られる。

Description

窒化処理された切削タップおよびその製造方法
 本発明は、切削タップおよびその製造方法に関し、特に、窒化処理された切削タップの寿命を向上させる技術に関するものである。
 例えば、ストレート溝付タップ、ねじれ溝付タップ、ポイント溝付タップ、管用タップ、ねじ切りフライス等の切れ刃を有する切削タップには、切れ刃に摩耗や刃欠けがなく、良好な切削性を長期に保持できる工具性能が望まれている。このような工具性能を有する切削タップは、マシニングセンタのような工作盤の工具交換の回数を少なくし加工効率が高められる。
 これに対して、特許文献1では、テーパ状の食付き部の先端から完全山部に向かうに従って頂部が削られた不完全の山形状から完全な山形状へとされた食付部のねじ山が、ねじれ溝や直線溝により周方向に分断され、その分断されたねじ山の一端部、すなわち分断により形成された一方の端面にねじれ溝または直線溝に沿って形成される切れ刃を有する切削タップにおいて、切削中に切れ刃に発生するチッピング(切れ刃に生じる小さい欠け)を抑制するため、切れ刃にR面取りを施すことが提案されている。しかしながら、R面取りが施された切れ刃では、硬さが不足していて切削タップの耐久性が充分に得られない。
 これに対して、特許文献2には、切削タップではないが、切れ刃を有する工具(ブローチ)の刃欠けや折損を抑制するために、切削方向において互いに隣接する切れ刃間の高低差hよりも大きい50μm程度の厚さdの表面硬化処理(ガス窒化)を切れ刃に施した後、後処理においてコーティングされる硬質被膜の剥離を防止するために表面の白層をマイクロブラスト処理を用いて除去することが記載されている。
特開2008-272856号公報 特開2020-131310号公報
 しかし、特許文献2に記載されたような、ガス窒化による表面硬化処理を施し、その表面硬化後の表面全体にマイクロブラスト処理を施すという工程を、切削タップに適用しても、切れ刃の欠けが発生し易く、切削タップの耐久性が充分に得られなかった。
 本発明は以上の事情を背景として為されたものであり、その目的とするところは、切削タップの切れ刃の摩耗や刃欠けが少なく、良好な切削性を長期に保持できる工具性能が得られる切削タップを提供することにある。
 本発明者等は、以上の事情を背景として種々検討を重ねた結果、切削タップの切れ刃を含む断面に腐食液を用いて、窒素拡散層の腐食が促進された状態を金属顕微鏡を用いて観察すると窒素拡散層が黒色で示され、逃げ面及びすくい面からの拡散を受ける切れ刃部は、他の表層と比較して窒素拡散層が厚く形成されていることに着目した。一般に、窒素拡散層は、表面から内部側ほど、窒素濃度及び硬度の勾配が形成される性質がある。切れ刃部の刃先では他の部分に比較して窒素濃度及び硬度が高いので、刃先ほど脆くなっていることが想定されることから、切削タップにガス窒化による表面硬化処理を施した後、ホーニング処理を用いて切れ刃の刃先部を除去すると、例えばホーニング処理の後にガス窒化による表面硬化処理を施した場合に比較して、切削タップが格段に高い耐久寿命を示すことを見出した。本発明は、係る知見に基づいて為されたものである。
 すなわち、第1発明の要旨とするところは、窒素拡散層を有する切削タップの製造方法であって、加熱下において雰囲気ガスに含まれる窒素原子が前記切削タップの母材の表面から拡散された窒素拡散層を形成する窒化処理工程と、前記窒化処理工程を経た前記切削タップの前記母材の切れ刃部に研磨粒子を衝突させて前記切れ刃部を丸めるホーニング処理工程と、を含むことにある。
 また、第2発明の要旨とするところは、窒素拡散層を有する切削タップであって、前記切削タップの切れ刃部における前記窒素拡散層の厚みと前記切れ刃部とは異なる他の部分における前記窒素拡散層の厚みとの差は、5μm以内であることにある。
 第1発明の窒化処理された切削タップの製造方法によれば、加熱下において雰囲気ガスに含まれる窒素原子が前記切削タップの母材の表面から拡散された窒素拡散層を形成する窒化処理工程と、前記窒化処理工程を経た前記切削タップの前記母材の切れ刃部に研磨粒子を衝突させて前記切れ刃部を丸めるホーニング処理工程と、を含む。切れ刃部には逃げ面からの拡散及びすくい面からの拡散によって窒素拡散層が厚く形成されており、切れ刃部の刃先は窒素濃度及び硬度が相対的に高く、機械的に脆い。このため、そのような機械的に脆い刃先が除去されることで、切削タップの切れ刃部の摩耗や刃欠けが減少し、良好な切削性を長期に保持できる工具性能が得られるとともに、窒素拡散層の厚みが均一化される。
 第2発明の窒素拡散層を有する切削タップによれば、前記切削タップの切れ刃部における前記窒素拡散層の厚みと前記切れ刃部とは異なる他の部分における前記窒素拡散層の厚みとの差は、5μm以内である。このため、切れ刃部は窒素濃度及び硬度がそれほど高くはなく、機械的な脆さもそれほど差異はないので、切削タップの切れ刃部の摩耗や刃欠けが減少し、良好な切削性を長期に保持できる工具性能が得られる。
 ここで、好適には、前記窒化処理工程では、アンモニアガス雰囲気下で500℃以上550℃以下の温度に保持された雰囲気炉内において、前記切削タップの母材の窒化処理が実施される。
 また、好適には、前記ホーニング処理工程では、圧縮空気を用いて前記研磨粒子を前記切れ刃部に対して局所的に衝突させることで、前記切れ刃部の刃先が除去される。
 また、好適には、前記ホーニング処理工程では、前記切れ刃部の刃先が除去されることにより、前記刃先部における前記窒素拡散層の厚みが、前記切れ刃部の刃先を除去前の前記窒素拡散層の厚みよりも減少させられ、前記刃先部以外の表面に形成されている前記窒素拡散層の厚みに接近させる。
 また、好適には、前記ホーニング処理工程で前記切れ刃部の刃先が除去された後に前記切削タップの表面に形成されている前記窒素拡散層の厚みは10μm以上30μm以下の厚みであり、前記切削タップの表面硬さは950HV以上1050HV以下である。
 また、好適には、前記切れ刃部の逃げ面とすくい面との間の角度は、鋭角である。
本発明が好適に適用された3枚刃のスパイラルタップを示す図である。 図1のスパイラルタップの食付部における回転中心線に直角な断面を示すII-II視断面図である。 図1のスパイラルタップにおけるホーニング処理される前の切れ刃部を拡大して説明する図である。 図1のスパイラルタップにおけるホーニング処理される前の切れ刃部を拡大して示す金属顕微鏡写真である。 図1のスパイラルタップにおけるホーニング処理された後の切れ刃部を拡大して説明する図である。 図1のスパイラルタップにおけるホーニング処理された後の切れ刃部を拡大して示す金属顕微鏡写真である。 図1のスパイラルタップの製造工程の要部を説明する工程図である。 複数種類のスパイラルタップを用いて切削試験1を行った結果を示す図表である。 図8の切削試験結果を試料毎に切削回数を比較可能に示すグラフである。 刃欠けの一例として、図8の試料2の切れ刃部を拡大して示す金属顕微鏡写真である。 複数種類のスパイラルタップを用いて切削試験2を行った結果を示す図表である。 図11の切削試験結果を試料毎に切削回数を比較可能に示すグラフである。
 以下、本発明の実施例を図面を参照しつつ詳細に説明する。なお、以下の実施例において図は適宜簡略化或いは変形されており、各部の寸法比及び形状等は必ずしも正確に描かれていない。
 図1は、本発明が好適に適用された3枚刃のスパイラルタップ10を示す図である。図2は、図1のスパイラルタップ10の食付部22の断面であって、図1のII-II視断面図である。スパイラルタップ10は、切削タップの一例として挙げられたものであり、シャンク部12、首部14、及び、ねじ部16を、その順番で回転中心線CL上に一体に備えている。ねじ部16には加工すべき雌ねじに対応するねじ溝形状の雄ねじが設けられているとともに、その雄ねじを分断するように回転中心線CLまわりに等間隔で3本のねじれ溝20が形成されている。
 ねじ部16は、雄ねじのねじ山18が軸方向においてテーパ状に除去された先端側の食付部22と、その食付部22に連続して設けられた完全な形状のねじ山18を有する完全山部24とを備えている。食付部22のねじ山及び完全山部24のねじ山とねじれ溝20との稜線部分であって、ねじ山の回転方向A1側の稜線部分には、切れ刃部28が形成されている。本実施例では、ねじれ溝20は右ねじれであり、ねじ部16を越えて首部14の略全域に亘って設けられている。図2に示すように、食付部22に形成されている切れ刃部28は、凹円弧状のすくい面30と凸円弧状の逃げ面32とに挟まれた領域のうちの先端部であって、先端角αは鋭角である。
 図3は、窒化処理(後述の窒化処理工程P2)後でホーニング処理(後述のホーニング処理工程P3)前のスパイラルタップ10の切れ刃部28の拡大断面図であり、図4は窒化処理後でホーニング処理前の切れ刃部28の拡大写真である。また、図5は、窒化処理後でホーニング処理後のスパイラルタップ10の切れ刃部28の拡大断面図であり、図6は窒化処理後でホーニング処理後の切れ刃部28の拡大写真である。なお、図4及び図6は、スパイラルタップ10の断面を腐食液により腐食させ、金属顕微鏡にて拡大された拡大画像を撮像した写真である。図4及び図6において窒素拡散層38は工具母材36よりも腐食されやすく、金属顕微鏡写真では相対的に黒く示されている。
 切れ刃部28では、例えばホーニング(Rホーニング)加工によるR面取りが施されていて、図5に示す拡大断面図及び図6に示す拡大写真に示すように、研削等による成形工程時には工具母材36に形成されていた尖った刃先34が除去されている。図5及び図6に示すように、切れ刃部28における窒素拡散層38の厚みt1と、切れ刃部28とは異なる他の部分(逃げ面32やすくい面30)における窒素拡散層38の厚みt2との差は、5μm以内である。上記切れ刃部28における窒素拡散層38の厚みt1は、先端角αの半角(α/2)の方向で測定された値であり、上記逃げ面32やすくい面30における窒素拡散層38の厚みt2は、逃げ面32やすくい面30に直角な方向の値である。
 図7は、スパイラルタップ10の製造工程の要部を示している。タップ研削工程P1では、例えば高速度工具鋼製の棒状の工具母材36に、ねじ研削によるねじ山18が形成され、溝研削によりねじれ溝20が形成され、山払い研削により食付部22が形成される。また、必要に応じて工具母材36に焼き入れが施される。
 次いで、窒化処理工程P2では、例えばアンモニアガス雰囲気下で500℃以上550℃以下の温度を保持した雰囲気炉内で、ガス窒化を施すことにより、図3に示す拡大断面図及び図4に示す拡大写真のように、工具母材36の表面に窒素拡散層38が例えば10μmから30μm程度の厚みで形成される。この窒素拡散層38が形成された工具母材36の表面硬さは例えば950HV以上1050HV以下(JIS Z 2244:2009)である。このビッカース硬度HVの測定では、0.3Kgfの押込み荷重を用いた。
 そして、ホーニング処理工程P3では、Al、SiCなどの研磨粒子が圧縮空気とともにノズルNから窒化処理された切れ刃部28の先端すなわち刃先34へ向かって局所的に噴射され、刃先34が除去されて切れ刃部28の先端が丸められる。これにより、切れ刃部28の窒素拡散層38の厚みt1は、逃げ面32やすくい面30などの窒素拡散層38の厚みt2との差が5μm以内とされる。すなわち、ホーニング加工が施される。図5に示す拡大断面図及び図6に示す拡大写真は、この状態を示している。上記ノズルNの方向は、刃先34の先端角αの半角(α/2)方向が望ましい。
〔切削試験1〕
 本発明者等は、スパイラルタップ10と同じ材質及び形状であるが表面処理及びホーニング加工が異なる試料1から試料6を表2に示すように作成し、各2本について、以下の表1に示す切削試験条件下で切削(雌ねじ加工)を行ない、100穴毎に工具(試料)を観察して損傷状態を把握し、評価した。また、欠損の有無または摩耗の大小の状態から、継続使用が困難と判断した時点で寿命と判断し、そのときの加工数(加工穴数)の値を記録した。
(表1)
 被削材     :S45C
 ねじ寸法    :M10×ピッチ1.5mm
 使用機械    :縦型マシニングセンタBT50
 切削油     :水溶性切削油剤(10倍希釈)
 切削速度    :15m/min
 下穴の加工長さ :20mm(止り穴)
(表2)
   前処理ホーニング 表面窒化処理 後処理ホーニング 
試料1   なし      なし      なし    
試料2   なし      有       なし    
試料3   なし      なし      有     
試料4   なし      有       有     
試料5   有       有       有     
試料6   有       有       なし    
 図8は切削試験1の試験結果を示し、図9は図8の試験結果に示された加工数を試料毎に対比可能に表すグラフである。また、図10は、刃欠けの一例である試料2の切れ刃部28を拡大して示す金属顕微鏡写真である。
 図8及び図9において、試料1は、もっとも一般的なスパイラルタップの仕様で従来から用いられているものであり、ホーニング加工及び窒化処理は施されていない。この試料1では、刃先34に微小な刃こぼれが発生してそれを起点とした摩耗が大きくなった。1本目の寿命(加工数)は700、2本目の寿命(加工数)は600であった。
 試料2は、試料1の耐摩耗性を高めるために窒化処理工程P2と同様の窒化処理が行なわれたものである。この試料2は、耐摩耗性を発揮する前に切れ刃部28の刃先34の折損、刃欠けが発生したので、試料1よりも大幅に短い寿命となった。
 試料3は、試料1の刃こぼれ対策として、ホーニング加工が施されたものである。この試料3によれば、刃こぼれは抑制されるものの、ホーニング加工により新品時から初期摩耗が生じたようになることから、試料1よりも摩耗が大きくなるので、耐久性が劣る。
 試料6は、試料5と同様に、ホーニング加工及び窒化処理が施されているものの、試料5に比較して、窒化処理がホーニング加工の後で施されている点で、相違する。この試料6では、切れ刃部28の刃先34が除去されているが、刃先34が除去された後で窒化処理が施されているので、切れ刃部28の窒素拡散層38の厚みt1が他の逃げ面32やすくい面30の厚みt2と比較して大きく、切れ刃部28の表面では、窒素濃度及び硬さが高く脆いので、欠損の抑制効果は限定的である。窒素濃度及び硬さは、表面から指数函数的に変化するため、比較的僅かな窒素拡散層38の厚みの差であっても、影響が大きいものと推定される。
 これに対して、窒化処理がホーニング加工の前で施されている試料4及び試料5は、900回の加工後であっても切れ刃部28の損傷がなく、摩耗も少ないことから加工の継続が可能と判断され、その900回で切削試験が終了された。このことは、窒素濃度及び硬度が相対的に高く機械的に脆い切れ刃部28の刃先34が、窒化処理後のホーニング加工によって除去されていることから、窒素拡散層38が均一化されているので、切削タップ10の切れ刃部28に摩耗や刃欠けがなく、良好な切削性を長期に保持できるようになったと推定される。
〔切削試験2〕
 次に、本発明者等は、スパイラルタップ10と同じ材質及び形状であり、前述の窒化処理及びホーニング加工を施すとともに、工具母材36表面の(切れ刃部28とは異なる他の部分における)窒素拡散層38の厚みt2と切れ刃部28表面の窒素拡散層38の厚みt1との差Δt(=│t1-t2│)を変化させた試料A、試料B、試料C、試料D、試料Eを、表3に示すように作成した。そして、各2本の試料について、前記表1に示す切削試験条件下で切削(雌ねじ加工)を行ない、100穴毎に工具(試料)を観察して損傷状態を把握し、評価した。また、欠損の有無または摩耗の大小の状態から、継続使用が困難と判断した時点で寿命と判断し、そのときの加工数(加工穴数)の値を記録した。なお、表3の「厚みの差」の項目は、t1-t2を表している。
(表3)
   前処理ホーニング 表面窒化処理 後処理ホーニング 厚みの差  
試料1   なし      なし      なし     なし   
試料2   なし      有       なし    13μm  
試料A   なし      有       有      9μm  
試料B   なし      有       有      5μm  
試料C   なし      有       有      1μm  
試料D   なし      有       有     -5μm  
試料E   なし      有       有     -9μm  
 図11は、切削試験2の結果を示している。図12は図11の試験結果に示された加工数を試料毎に対比可能に表すグラフである。
 図11及び図12において、試料1は、もっとも一般的なスパイラルタップの仕様で従来から用いられているものであり、ホーニング加工及び窒化処理は施されていない。この試料1では、刃先34に微小な刃こぼれが発生してそれを起点とした摩耗が大きくなった。1本目の寿命(加工数)は700、2本目の寿命(加工数)は600であった。
 試料2は、試料1の耐摩耗性を高めるために窒化処理工程P2と同様の窒化処理が行なわれたものであり、厚みt1と厚みt2との差Δtは13μmである。この試料2は、耐摩耗性を発揮する前に切れ刃部28の刃先34の刃欠け、折損が発生したので、試料1よりも大幅に短い寿命となった。
 試料Aは、試料2に、後処理としてホーニング加工が軽く施されており、その結果、厚みt1と厚みt2との差Δtは9μmである。この試料Aは、後処理としてのホーニング加工が不十分であるため、折損や刃欠けが発生した。
 試料B及び試料Cは、試料2に、後処理であるホーニング加工(ホーニング処理工程P3)が適切に施されており、厚みt1と厚みt2との差Δtはそれぞれ5μm及び1μmである。試料B及び試料Cは、900回の加工後であっても切れ刃部28の損傷がなく、摩耗も少ないことから加工の継続が可能と判断され、その900回で切削試験が終了された。
 試料Dは、試料2に、後処理であるホーニング加工がやや過剰に施されており、その結果、厚みt1と厚みt2との差Δtは5μm(t1-t2=-5μm)である。この試料Dは、900回の加工後では切れ刃部28の損傷はないが、摩耗は大きいことからそれ以上の加工の継続が不可能と判断されたものの、試料1よりは耐摩耗性に優れていた。このことは、窒素濃度及び硬度が相対的に高く機械的に脆い切れ刃部28の刃先34が窒化処理後のホーニング加工によって除去されており、厚みt1と厚みt2との差Δt(絶対値)が5μm以内であることから、窒素拡散層38が均一化されているので、切削タップの切れ刃部28に摩耗や刃欠けがなく、良好な切削性を長期に保持できるようになったと推定される。
 試料Eは、試料2に、後処理であるホーニング加工が過剰に施されており、その結果、厚みt1と厚みt2との差Δtは9μm(t1-t2=-9μm)である。この試料Dでは、耐摩耗性が不十分であり、試料1と同様に700回を超えると摩耗が過大となった。
 上述のように、本実施例のスパイラルタップ(切削タップ)10の製造方法によれば、窒化処理工程P2において、加熱下において雰囲気ガスに含まれる窒素原子が切削タップの工具母材36の表面から拡散された窒素拡散層38が形成された後に、ホーニング処理工程P3において、切削タップの工具母材36の切れ刃部28に研磨粒子を衝突させて切れ刃部28が丸められ、刃先34が除去される。切れ刃部28には逃げ面32からの拡散とすくい面30からの拡散とによって窒素拡散層38が予め厚く形成され、切れ刃部28の刃先34は窒素濃度及び硬度が相対的に高く、機械的に脆い。このため、そのような機械的に脆い刃先34が除去されることで、切削タップの切れ刃部28における摩耗や刃欠けが減少し、良好な切削性を長期に保持できる工具性能が得られるとともに、窒素拡散層38の厚みが均一化される。
 また、本実施例のスパイラルタップ(切削タップ)10によれば、スパイラルタップ10の切れ刃部28における窒素拡散層38の厚みt1と切れ刃部28とは異なる他の部分(逃げ面32やすくい面30)における窒素拡散層38の厚みt2との差Δt(絶対値)は、5μm以内である。このため、切れ刃部28は窒素濃度及び硬度がそれほど高くはなく、機械的な脆さもそれほど差異はないので、スパイラルタップ10の切れ刃部28における摩耗や刃欠けが減少し、良好な切削性を長期に保持できる工具性能が得られる。
 以上、本発明の実施例を図面に基づいて詳細に説明したが、本発明はその他の態様においても適用される。
 例えば、前述の実施例の切削タップ(スパイラルタップ10)には、ねじれ溝20が形成されていたが、溝の形状はストレート溝あるいはスパイラルポイント溝であっても構わない。また、本発明の切削タップは、ストレート溝付タップ、スパイラル溝付タップ、ねじ切りフライスなどであってもよく、切れ刃を有する回転切削工具であればよい。
 また、前述の実施例の切削タップ(スパイラルタップ10)は3枚刃で構成されていたが、刃数については特に限定されない。また、本発明の切削タップは、例えば高速度工具鋼や超硬合金鋼等の種々の工具材料(工具母材36)を用いて構成することができ、必要に応じて、AlCrNなどの硬質被膜を窒素拡散層38の上に被着させることもできる。
 また、前述の実施例の窒化処理工程P2ではガス窒化が行われていたが、ガス窒化の他に、ガス軟窒化、イオン窒化、塩浴窒化、プラズマ窒化などが用いられてもよい。
 また、前述の実施例のホーニング処理工程P3では、切れ刃部28に砥粒を用いたブラスト処理を局所的に施すことで切れ刃部28の刃先34を除去していたが、ガラスビーズを用いたブラスト処理を施してもよいし、スチールボールなど他の材料を用いたブラスト処理を実行しても構わない。
 また、ホーニング処理工程P3では、研磨粒子を圧縮空気と共に噴射させてもよいが、液体と共に噴射させてもよいし、研磨片とともにバレル槽内でバレル研磨を行なってもよい。バレル研磨は局所的な研磨ではないが、切削タップ10の尖った刃先34が優先的に除去される。また、研磨粒子は、Al、SiCなどの砥粒であってもよいが、ガラス粒子、鋼球などが用いられてもよい。
 なお、上述したのはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。
10:スパイラルタップ(切削タップ) 28:切れ刃部 30:すくい面(切れ刃部とは異なる他の部分) 32:逃げ面(切れ刃部とは異なる他の部分) 36:工具母材(母材) 38:窒素拡散層 Δt:差

Claims (2)

  1.  窒素拡散層を有する切削タップの製造方法であって、
     加熱下において雰囲気ガスに含まれる窒素原子が前記切削タップの母材の表面から拡散された窒素拡散層を形成する窒化処理工程と、
     前記窒化処理工程を経た前記切削タップの前記母材の切れ刃部に研磨粒子を衝突させて前記切れ刃部を丸めるホーニング処理工程と、を含む
     ことを特徴とする窒化処理された切削タップの製造方法。
  2.  窒素拡散層を有する切削タップであって、
     前記切削タップの切れ刃部における前記窒素拡散層の厚みと前記切れ刃部とは異なる他の部分における前記窒素拡散層の厚みとの差は、5μm以内である
     ことを特徴とする窒化処理された切削タップ。
PCT/JP2021/007553 2021-02-26 2021-02-26 窒化処理された切削タップおよびその製造方法 WO2022180845A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020237028454A KR20230130136A (ko) 2021-02-26 2021-02-26 질화 처리된 절삭 탭 및 그 제조 방법
JP2023502005A JPWO2022180845A1 (ja) 2021-02-26 2021-02-26
PCT/JP2021/007553 WO2022180845A1 (ja) 2021-02-26 2021-02-26 窒化処理された切削タップおよびその製造方法
US18/270,828 US20240058906A1 (en) 2021-02-26 2021-02-26 Nitrided cut tap and production method therefor
CN202180094581.8A CN116981542A (zh) 2021-02-26 2021-02-26 氮化处理后的切削丝锥及其制造方法
TW111104604A TWI825581B (zh) 2021-02-26 2022-02-08 經氮化處理之切削螺絲攻及其製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/007553 WO2022180845A1 (ja) 2021-02-26 2021-02-26 窒化処理された切削タップおよびその製造方法

Publications (1)

Publication Number Publication Date
WO2022180845A1 true WO2022180845A1 (ja) 2022-09-01

Family

ID=83048713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/007553 WO2022180845A1 (ja) 2021-02-26 2021-02-26 窒化処理された切削タップおよびその製造方法

Country Status (6)

Country Link
US (1) US20240058906A1 (ja)
JP (1) JPWO2022180845A1 (ja)
KR (1) KR20230130136A (ja)
CN (1) CN116981542A (ja)
TW (1) TWI825581B (ja)
WO (1) WO2022180845A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0938805A (ja) * 1995-07-27 1997-02-10 Honda Motor Co Ltd シリンダボアの切削用工具
JP2000005904A (ja) * 1998-06-18 2000-01-11 Sumitomo Metal Mining Co Ltd 表面処理鋼系切削工具
JP2005082877A (ja) * 2003-09-11 2005-03-31 Nachi Fujikoshi Corp 窒化被覆工具
JP2009066726A (ja) * 2007-09-14 2009-04-02 Kyocera Corp 切削インサート及びそれを用いた切削工具並びに切削方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101284321B (zh) * 2007-04-09 2010-09-29 陈�胜 复合式螺丝攻及其制造方法
JP2008272856A (ja) 2007-04-26 2008-11-13 Osg Corp スパイラルタップ
JP2020131310A (ja) 2019-02-14 2020-08-31 株式会社不二越 切削工具およびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0938805A (ja) * 1995-07-27 1997-02-10 Honda Motor Co Ltd シリンダボアの切削用工具
JP2000005904A (ja) * 1998-06-18 2000-01-11 Sumitomo Metal Mining Co Ltd 表面処理鋼系切削工具
JP2005082877A (ja) * 2003-09-11 2005-03-31 Nachi Fujikoshi Corp 窒化被覆工具
JP2009066726A (ja) * 2007-09-14 2009-04-02 Kyocera Corp 切削インサート及びそれを用いた切削工具並びに切削方法

Also Published As

Publication number Publication date
KR20230130136A (ko) 2023-09-11
CN116981542A (zh) 2023-10-31
US20240058906A1 (en) 2024-02-22
JPWO2022180845A1 (ja) 2022-09-01
TW202237309A (zh) 2022-10-01
TWI825581B (zh) 2023-12-11

Similar Documents

Publication Publication Date Title
US7033643B2 (en) Process of manufacturing a coated body
JP3834544B2 (ja) タップ、およびその製造方法
JP6173211B2 (ja) ボア切削工具およびその製造方法
Sugihara et al. Development of novel CBN cutting tool for high speed machining of Inconel 718 focusing on coolant behaviors
KR101360720B1 (ko) 경질 피막 피복 탭 및 경질 피막 피복 탭의 제조 방법
Uhlmann et al. Abrasive waterjet turning of high performance materials
JP2010162677A (ja) 小径cbnボールエンドミル
JP2010162677A5 (ja)
US5352067A (en) Milling cutter clamping wedge with hardened chip surface
WO2022180845A1 (ja) 窒化処理された切削タップおよびその製造方法
JPH04310325A (ja) 硬質膜被覆高速度鋼切削工具の製造方法
JP2007210070A (ja) 旋削加工用工具及びその工具を使用した金属部材の加工方法
KR102470286B1 (ko) 경면 가공 방법 및 경면 가공 공구
JP2006305700A (ja) タップ及びタップの製造方法。
JP4582735B2 (ja) ブローチ加工方法
JP2007007809A (ja) 低加工硬化超硬ドリル
JP2009066715A (ja) 切削工具
JP2003025128A (ja) 脆性材料用穴明け工具
JP4618680B2 (ja) ブローチの製造方法
Davidson Microfinishing and surface textures
CN112676627B (zh) 半径立铣刀
JP2004291204A (ja) cBN基焼結体切削工具およびその製造方法
JPH0631520A (ja) エンドミル
JP4479266B2 (ja) 内面ブローチ加工方法
JP2007007808A (ja) 低加工硬化超硬ドリル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21927070

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18270828

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20237028454

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237028454

Country of ref document: KR

Ref document number: 2023502005

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202180094581.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21927070

Country of ref document: EP

Kind code of ref document: A1