WO2022180708A1 - Stator, electric motor, and air conditioner - Google Patents
Stator, electric motor, and air conditioner Download PDFInfo
- Publication number
- WO2022180708A1 WO2022180708A1 PCT/JP2021/006971 JP2021006971W WO2022180708A1 WO 2022180708 A1 WO2022180708 A1 WO 2022180708A1 JP 2021006971 W JP2021006971 W JP 2021006971W WO 2022180708 A1 WO2022180708 A1 WO 2022180708A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- stator
- stator core
- resin
- electric motor
- windings
- Prior art date
Links
- 238000004804 winding Methods 0.000 claims abstract description 56
- 229920005989 resin Polymers 0.000 claims abstract description 55
- 239000011347 resin Substances 0.000 claims abstract description 55
- 230000017525 heat dissipation Effects 0.000 claims abstract description 41
- 230000002093 peripheral effect Effects 0.000 claims abstract description 28
- 230000005855 radiation Effects 0.000 claims description 6
- 238000009413 insulation Methods 0.000 claims description 2
- 230000004048 modification Effects 0.000 description 8
- 238000012986 modification Methods 0.000 description 8
- 239000004412 Bulk moulding compound Substances 0.000 description 5
- 239000003507 refrigerant Substances 0.000 description 4
- 239000004734 Polyphenylene sulfide Substances 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 229920000069 polyphenylene sulfide Polymers 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229920001707 polybutylene terephthalate Polymers 0.000 description 2
- 238000005057 refrigeration Methods 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- 238000004378 air conditioning Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- -1 polybutylene terephthalate Polymers 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/12—Stationary parts of the magnetic circuit
- H02K1/20—Stationary parts of the magnetic circuit with channels or ducts for flow of cooling medium
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K5/00—Casings; Enclosures; Supports
- H02K5/04—Casings or enclosures characterised by the shape, form or construction thereof
- H02K5/18—Casings or enclosures characterised by the shape, form or construction thereof with ribs or fins for improving heat transfer
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K9/00—Arrangements for cooling or ventilating
- H02K9/22—Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
Definitions
- the present disclosure relates to stators used in electric motors.
- heat radiation members such as cooling fins are used to release the heat of the electric motor (see Patent Document 1, for example).
- the conventional technology has the problem that the heat generated by the windings cannot be efficiently released to the outside of the stator.
- the purpose of the present disclosure is to efficiently release the heat generated by the windings to the outside of the stator.
- the stator of the present disclosure is a stator core having teeth; an insulating portion provided on the teeth; a winding wound around the insulation; a heat radiating member facing the outer peripheral surface of the stator core; and a resin covering at least a portion of the stator core.
- the electric motor of the present disclosure is the stator; and a rotor disposed inside the stator.
- the air conditioner of the present disclosure is indoor unit and and an outdoor unit connected to the indoor unit, Each of the indoor unit, the outdoor unit, or the indoor unit and the outdoor unit has the electric motor.
- the heat generated by the windings can be efficiently released to the outside of the stator.
- FIG. 1 is a cross-sectional view schematically showing an electric motor according to Embodiment 1; FIG. It is a side view which shows a stator roughly.
- FIG. 4 is a side view schematically showing the structure of a stator; 4 is a front view schematically showing the structure of the stator; FIG. 4 is a front view schematically showing the structure of the stator;
- FIG. 11 is a side view schematically showing a stator having another example of a heat dissipation member;
- FIG. 7 is a schematic side view of a stator having a heat dissipation member shown in FIG. 6;
- FIG. 7 is a front view schematically showing a stator having heat dissipation members shown in FIG. 6;
- FIG. 4 is a side view schematically showing a stator having heat dissipation members shown in FIG. 6;
- FIG. 6 is a front view schematically showing a stator having heat dissipation members shown in FIG. 6;
- FIG. 11 is a side view showing a stator having still another example of a heat radiating member;
- FIG. 10 is a schematic side view of a stator having a heat dissipation member shown in FIG. 9;
- FIG. 10 is a schematic front view of a stator having heat dissipating members shown in FIG. 9;
- FIG. 4 is a diagram schematically showing the configuration of an air conditioner according to Embodiment 2;
- Embodiment 1 An electric motor 1 according to Embodiment 1 will be described below.
- the z-axis direction (z-axis) indicates a direction parallel to the axis A1 of the electric motor 1
- the x-axis direction (x-axis) indicates a direction orthogonal to the z-axis direction.
- the y-axis direction (y-axis) indicates a direction orthogonal to both the z-axis direction and the x-axis direction.
- the axis A ⁇ b>1 is the center of rotation of the rotor 2 , that is, the rotation axis of the rotor 2 .
- the direction parallel to the axis A1 is also referred to as "the axial direction of the rotor 2" or simply “the axial direction”.
- a radial direction is a radial direction of the rotor 2, the stator 3, or the stator core 31, and is a direction perpendicular to the axis A1.
- the xy plane is a plane perpendicular to the axial direction.
- An arrow D1 indicates a circumferential direction about the axis A1.
- the circumferential direction of the rotor 2, stator 3, or stator core 31 is also simply referred to as "circumferential direction”.
- FIG. 1 is a cross-sectional view schematically showing an electric motor 1 according to Embodiment 1.
- the electric motor 1 has a rotor 2, a stator 3, and bearings 7a and 7b.
- the electric motor 1 further has a bracket 8 and a waterproof rubber 9 that seals the electric motor 1 .
- the electric motor 1 is, for example, a permanent magnet synchronous motor, but is not limited to this.
- Bearings 7a and 7b rotatably support shaft 22 of rotor 2 .
- the rotor 2 is rotatably arranged inside the stator 3 .
- An air gap exists between the rotor 2 and the stator 3 .
- the rotor 2 has a rotor core 21 and a shaft 22 .
- the rotor 2 is rotatable around a rotation axis (that is, axis A1).
- the rotor 2 may also have permanent magnets for forming the magnetic poles of the rotor 2 .
- FIG. 2 is a side view schematically showing the stator 3.
- FIG. 3 is a side view schematically showing the structure of the stator 3.
- FIG. 4 is a front view schematically showing the structure of the stator 3.
- FIG. 5 is a front view schematically showing the structure of the stator 3.
- the resin 6 is omitted.
- the stator 3 includes a stator core 31, at least one winding 32 (also referred to as stator winding), at least one insulating portion 33, a circuit board 4, lead wires 41 connected to the circuit board 4, and the circuit board. 4, a heat radiating member 5, and resin 6 (also called mold resin).
- the stator core 31 , the windings 32 , the insulating portion 33 and the heat radiating member 5 are integrally molded with the resin 6 .
- the stator core 31, the windings 32, the insulating portion 33, the heat dissipation member 5, and the resin 6 are integrated as one component (also called molded stator).
- stator core 31, the windings 32, the insulating portion 33, the heat dissipation member 5, and the circuit board 4 may be integrally molded with the resin 6.
- stator core 31, the windings 32, the insulating portion 33, the heat dissipation member 5, the circuit board 4, and the resin 6 are integrated as one component (also called molded stator).
- stator core 31 , the windings 32 , the insulating portion 33 , the heat dissipation member 5 , the circuit board 4 , and the drive circuit 42 may be integrally molded with the resin 6 .
- the stator core 31, the windings 32, the insulating portion 33, the heat dissipation member 5, the circuit board 4, the drive circuit 42, and the resin 6 are integrated as one component (also called molded stator).
- the stator core 31 has at least one tooth 311.
- stator core 31 has a plurality of teeth 311 .
- the stator core 31 is formed of a plurality of magnetic steel sheets laminated in the axial direction.
- each of the plurality of electromagnetic steel sheets is formed into a predetermined shape by punching. These electromagnetic steel sheets are fixed to each other by caulking, welding, adhesion, or the like.
- the windings 32 are, for example, magnet wires.
- the winding 32 is wound around the insulating portion 33 .
- a coil is formed by winding the wire 32 around the insulating portion 33 .
- the winding 32 is electrically connected to a terminal 32a (also referred to as a winding terminal).
- the end of the winding 32 is hooked on the hook of the terminal 32a and fixed to the terminal 32a by fusing or soldering.
- the terminal 32 a is fixed to the insulating portion 33 and electrically connected to the circuit board 4 .
- the insulating portion 33 is provided on each tooth 311, for example.
- the insulating portion 33 is combined with each tooth 311 .
- the insulating portion 33 has at least one fixing portion 331 for fixing the circuit board 4 .
- the insulating portion 33 is, for example, thermoplastic resin such as polybutylene terephthalate (PBT).
- PBT polybutylene terephthalate
- the insulating portion 33 electrically insulates the stator core 31 (specifically, each tooth 311 of the stator core 31).
- the insulating portion 33 is molded integrally with the stator core 31 .
- the insulating portion 33 may be molded in advance and the molded insulating portion 33 may be combined with the stator core 31 .
- the circuit board 4 has a positioning hole 43 (also simply referred to as a "hole”) that engages with the fixing portion 331 (specifically, the protrusion 331a) of the insulating portion 33.
- the fixing portion 331 of the insulating portion 33 has a projection 331a and a support portion 331b.
- the protrusion 331 a is inserted into a positioning hole 43 formed in the circuit board 4 .
- the support portion 331b supports the circuit board 4 in the axial direction and positions the circuit board 4 in the axial direction.
- the circuit board 4 is positioned on one end side of the stator 3 in the axial direction of the stator 3 .
- the drive circuit 42 is a circuit for controlling the rotation of the rotor 2.
- the drive circuit 42 includes, for example, a drive element 42a and a Hall IC (Integrated Circuit) 42b.
- the drive element 42a is, for example, a power transistor.
- Hall IC 42 b detects the magnetic field from rotor 2 in order to detect the rotational position of rotor 2 .
- the resin 6 covers at least part of the stator core 31.
- resin 6 covers the outer peripheral surface of stator core 31 .
- Resin 6 is, for example, a thermosetting resin such as bulk molding compound (BMC).
- BMC bulk molding compound
- Bulk molding compounds are suitable for insert molding as they allow low pressure molding. When a bulk molding compound is used as the resin 6, deformation of inserts such as the circuit board 4 or the stator core 31 can be prevented when the resin 6 is molded using a mold, and the quality of the electric motor 1 is improved. can be made
- a part of the heat radiating member 5 is pressed by the mold. Furthermore, the material of the resin 6 is injected into the mold so that a part of the heat radiating member 5 is exposed to the outside of the stator 3 . Through this process, part of the heat radiating member 5 can be exposed to the outside of the stator 3 .
- the resin 6 may be a thermoplastic resin such as polyphenylene sulfide (PPS). Since PPS has higher thermal conductivity than BMC, the heat generated in the windings 32 is easily transferred to the heat radiating member 5 .
- PPS polyphenylene sulfide
- the heat dissipation member 5 faces the outer peripheral surface of the stator core 31 .
- the heat dissipation member 5 extends continuously in the circumferential direction of the stator core 31 .
- the heat dissipation member 5 may cover the entire outer peripheral surface of the stator core 31 .
- the heat dissipation member 5 is made of, for example, a metal material such as aluminum.
- the heat dissipation member 5 is fixed by the resin 6 so as to face the outer peripheral surface of the stator core 31 . In this case, part of the heat dissipation member 5 may be fitted with the resin 6 .
- the heat radiating member 5 When part of the heat radiating member 5 is fitted with the resin 6 , the heat radiating member 5 is firmly fixed so as to face the outer peripheral surface of the stator core 31 . At least part of the heat dissipation member 5 is exposed outside the stator 3 . With this configuration, the heat generated by the windings 32 is efficiently released to the outside of the stator 3 .
- the heat dissipation member 5 may be directly provided on the outer peripheral surface of the stator core 31. That is, the heat dissipation member 5 may be fixed to the outer peripheral surface of the stator core 31 . With this configuration, the heat generated by the windings 32 is directly transmitted to the heat radiating member 5 and radiated to the outside of the stator 3 more efficiently.
- the stator core 31, the windings 32, and the insulating portion 33 may be integrally molded with the resin 6.
- the stator core 31, the windings 32, the insulating portion 33, and the resin 6 are integrated as one component (also called molded stator).
- the heat radiating member 5 is fixed to the resin 6 so as to face the outer peripheral surface of the stator core 31 by press fitting, shrink fitting, or screws, for example. With this configuration, the heat generated by the windings 32 is transmitted to the heat radiating member 5 through the resin 6 and efficiently radiated to the outside of the stator 3 .
- FIG. 6 is a side view schematically showing a stator 3 having a heat radiating member 5a as another example of the heat radiating member 5.
- FIG. 7 is a side view schematically showing the stator 3 having the heat dissipation member 5a shown in FIG. In FIG. 7, the resin 6 and the circuit board 4 are omitted.
- FIG. 8 is a front view schematically showing the stator 3 having the heat radiating member 5a shown in FIG. In FIG. 8, the resin 6 and the circuit board 4 are omitted.
- the heat radiating member 5a described in the modification 1 can be applied to the stator 3 described in the first embodiment.
- the heat dissipating member 5a in Modification 1 has a base portion 51 and at least one protruding portion 52 protruding from the base portion 51.
- the base portion 51 is supported by the resin 6 . Since the base portion 51 is supported by the resin 6 , the heat radiating member 5 a is firmly fixed so as to face the outer peripheral surface of the stator core 31 .
- the base portion 51 may be fitted with the resin 6 .
- the heat dissipation member 5a (specifically, the base portion 51) extends continuously in the circumferential direction of the stator core 31.
- the heat dissipation member 5 a may cover the entire outer peripheral surface of the stator core 31 .
- the base portion 51 may cover the entire outer peripheral surface of the stator core 31 .
- the heat dissipation member 5a may have a plurality of protrusions 52.
- the number of teeth 311 and the number of protrusions 52 are the same.
- each protrusion 52 faces the teeth 311 . That is, when viewed in the direction in which teeth 311 extend, projections 52 overlap at least a portion of teeth 311 . With this configuration, the heat generated in the windings 32 is efficiently released from the protrusions 52 to the outside of the stator 3 .
- the winding 32 is wound around each tooth 311 by concentrated winding.
- the number of coils formed by windings 32 is the same as the number of teeth 311 . Therefore, in Modification 1, the number of teeth 311, the number of coils, and the number of protrusions 52 are the same.
- Each protrusion 52 protrudes radially, for example.
- Each protrusion 52 is exposed to the outside of the stator 3 . Since each protrusion 52 is exposed to the outside of the stator 3 , the heat generated by the windings 32 is efficiently released from each protrusion 52 to the outside of the stator 3 .
- At least part of the base portion 51 may be exposed to the outside of the stator 3 . Also in this case, the heat generated by the windings 32 is efficiently released from the base portion 51 to the outside of the stator 3 .
- the base portion 51 and each projection portion 52 may be exposed to the outside of the stator 3 . Also in this case, the heat generated by the windings 32 is efficiently released to the outside of the stator 3 from the base portion 51 and each projection portion 52 .
- resin 6 may be provided between two protrusions 52 adjacent in the circumferential direction of stator core 31 .
- the base portion 51 is fitted with the resin 6 and each projection portion 52 is exposed to the outside of the stator 3 .
- the heat radiating member 5 a is firmly fixed so as to face the outer peripheral surface of the stator core 31 , and the heat generated in the windings 32 is efficiently radiated to the outside of the stator 3 through the protrusions 52 .
- FIG. 9 is a side view showing a stator 3 having a heat radiating member 5b as still another example of the heat radiating member 5.
- FIG. 10 is a side view schematically showing the stator 3 having the heat radiating member 5b shown in FIG. In FIG. 10, the resin 6 and the circuit board 4 are omitted.
- FIG. 11 is a front view schematically showing the stator 3 having the heat radiating member 5b shown in FIG. In FIG. 11, the resin 6 and the circuit board 4 are omitted.
- the heat radiating member 5b described in the modification 2 can be applied to the stator 3 described in the first embodiment.
- the heat dissipating member 5 b in Modification 2 has a base portion 51 , at least one projecting portion 52 projecting from the base portion 51 , and at least one fin 53 projecting from the projecting portion 52 .
- the base portion 51 is supported by the resin 6 . Since the base portion 51 is supported by the resin 6 , the heat dissipation member 5 b is firmly fixed so as to face the outer peripheral surface of the stator core 31 .
- the base portion 51 may be fitted with the resin 6 .
- the heat dissipation member 5b (specifically, the base portion 51) extends continuously in the circumferential direction of the stator core 31.
- the heat dissipation member 5 b may cover the entire outer peripheral surface of the stator core 31 .
- the base portion 51 may cover the entire outer peripheral surface of the stator core 31 .
- Each fin 53 protrudes radially, for example.
- Each fin 53 may be, for example, a plate and may have a tapered shape.
- Each fin 53 is exposed outside the stator 3 . Since each fin 53 is exposed to the outside of the stator 3 , the heat generated by the windings 32 is efficiently released from each fin 53 to the outside of the stator 3 .
- the heat dissipation member 5b may have a plurality of fins 53.
- each fin 53 faces teeth 311 . That is, when viewed in the direction in which teeth 311 extend, fins 53 overlap at least a portion of teeth 311 . With this configuration, the heat generated by the windings 32 is efficiently released from the fins 53 to the outside of the stator 3 .
- the resin 6 may be provided between two protrusions 52 that are adjacent in the circumferential direction of the stator core 31 .
- the base portion 51 is supported by the resin 6 and each protrusion 52 is exposed to the outside of the stator 3 .
- the heat radiating member 5b is firmly fixed so as to face the outer peripheral surface of the stator core 31, and the heat generated in the windings 32 is efficiently released to the outside of the stator 3 through the projections 52 and the fins 53.
- Each fin 53 may protrude from the base portion 51 without the heat radiating member 5b having the projecting portion 52.
- resin 6 may be provided between two fins 53 adjacent in the circumferential direction of stator core 31 .
- the base portion 51 is supported by the resin 6 and each fin 53 is exposed outside the stator 3 .
- the heat radiating member 5 b is firmly fixed so as to face the outer peripheral surface of the stator core 31 , and the heat generated by the windings 32 is efficiently radiated from the fins 53 to the outside of the stator 3 .
- the thermal resistance between the stator core 31 and the resin 6 can be reduced. Furthermore, when the stator core 31, the windings 32, the insulating portion 33, and the heat dissipation member 5 are integrally molded with the resin 6, the number of parts and the manufacturing process for attaching the heat dissipation member 5 can be reduced.
- the stator core 31, the windings 32, the insulating portion 33, the heat radiation member 5, and the circuit board 4 are integrally molded with the resin 6, the heat generated by the windings 32 is radiated radially through the heat radiation member 5. Therefore, the temperature rise of the circuit board 4 or the drive circuit 42 fixed to the circuit board 4 can be prevented.
- the heat dissipation member 5 faces the outer peripheral surface of the stator core 31, so heat generated in the windings 32 can be dissipated in the radial direction. Therefore, when the circuit board 4 is located on one end side of the stator 3 in the axial direction of the stator 3 , it is possible to prevent the heat generated by the windings 32 from being transmitted to the circuit board 4 . As a result, the temperature rise of the circuit board 4 or the drive circuit 42 fixed to the circuit board 4 due to the heat generated by the windings 32 can be prevented.
- the heat dissipation member 5 faces the outer peripheral surface of the stator core 31, it is not always necessary to provide the heat dissipation member 5 on one end side of the stator 3 in the axial direction of the stator 3. Therefore, the cost of the stator 3 can be reduced.
- the heat radiating member 5a has the base portion 51 and at least one projecting portion 52 protruding from the base portion 51, the surface area of the heat radiating member 5a exposed to the outside of the stator 3 can be increased. As a result, heat generated by the windings 32 can be efficiently released to the outside of the stator 3 .
- stator 3 When the number of teeth 311 and the number of protrusions 52 are the same, the stator 3 can be provided with an even heat dissipation path. As a result, heat retention in the stator 3 can be prevented.
- the protrusions 52 overlap at least a part of the teeth 311 when viewed in the direction in which the teeth 311 extend, the heat generated in the windings 32 is efficiently transferred from the protrusions 52 to the outside of the stator 3 . can be released well.
- the heat dissipation member 5a can be firmly fixed so as to face the outer peripheral surface of the stator core 31. As a result, vibration and noise in the electric motor 1 can be reduced while the electric motor 1 is in operation.
- the heat radiating member 5 When at least part of the heat radiating member 5 is exposed outside the stator 3, the heat radiating member 5 is exposed to the outside air. As a result, heat generated by the windings 32 can be efficiently released to the outside of the stator 3 .
- the heat radiating member 5b has fins 53 exposed to the outside of the stator 3
- the surface area of the heat radiating member 5b exposed to the outside of the stator 3 can be increased. Since the fins 53 are exposed to the outside air, the heat generated by the windings 32 can be efficiently released from the fins 53 to the outside of the stator 3 .
- the heat radiating member 5 covers the entire outer peripheral surface of the stator core 31, the area of the heat radiating member 5 facing the outer peripheral surface of the stator core 31 further increases. As a result, the heat generated by the windings 32 can be more efficiently released to the outside of the stator 3.
- FIG. 12 is a diagram schematically showing the configuration of air conditioner 10 according to Embodiment 2. As shown in FIG.
- An air conditioner 10 according to Embodiment 2 includes an indoor unit 11 as a fan (also referred to as a first fan) and an outdoor unit 13 as a fan (also referred to as a second fan) connected to the indoor unit 11.
- a fan also referred to as a first fan
- an outdoor unit 13 as a fan (also referred to as a second fan) connected to the indoor unit 11.
- the air conditioner 10 has an indoor unit 11, a refrigerant pipe 12, and an outdoor unit 13.
- the outdoor unit 13 is connected to the indoor unit 11 through the refrigerant pipe 12 .
- the indoor unit 11 has an electric motor 11a (for example, the electric motor 1 according to Embodiment 1), a blower section 11b that blows air by being driven by the electric motor 11a, and a housing 11c that covers the electric motor 11a and the blower section 11b.
- the air blower 11b has, for example, blades 11d driven by an electric motor 11a.
- blades 11d are fixed to the shaft of electric motor 11a and generate airflow.
- the outdoor unit 13 includes an electric motor 13a (for example, the electric motor 1 according to Embodiment 1), an air blower 13b, a compressor 14, a heat exchanger (not shown), an air blower 13b, a compressor 14, and a heat exchanger. and a housing 13c covering the exchanger.
- the air blower 13b blows air by being driven by the electric motor 13a.
- the air blower 13b has, for example, blades 13d driven by an electric motor 13a.
- the blades 13d are fixed to the shaft of the electric motor 13a and generate airflow.
- the compressor 14 includes an electric motor 14a (for example, the electric motor 1 according to Embodiment 1), a compression mechanism 14b (for example, a refrigerant circuit) driven by the electric motor 14a, and a housing 14c that covers the electric motor 14a and the compression mechanism 14b. have.
- an electric motor 14a for example, the electric motor 1 according to Embodiment 1
- a compression mechanism 14b for example, a refrigerant circuit driven by the electric motor 14a
- a housing 14c that covers the electric motor 14a and the compression mechanism 14b.
- At least one of the indoor unit 11 and the outdoor unit 13 has the electric motor 1 described in the first embodiment. That is, each of the indoor unit 11, the outdoor unit 13, or the indoor unit 11 and the outdoor unit 13 has the electric motor 1 described in the first embodiment.
- the electric motor 1 described in the first embodiment is applied to at least one of the electric motors 11a and 13a as the driving source of the air blower. That is, the electric motor 1 described in Embodiment 1 is applied to each of the indoor unit 11 and the outdoor unit 13 or the indoor unit 11 and the outdoor unit 13 .
- the electric motor 1 described in the first embodiment may be applied to the electric motor 14 a of the compressor 14 .
- the air conditioner 10 can perform air conditioning, for example, a cooling operation in which cool air is blown from the indoor unit 11 and a heating operation in which warm air is blown.
- the electric motor 11a is a drive source for driving the air blower 11b.
- the air blower 11b can blow the adjusted air.
- the electric motor 11a is fixed to the housing 11c of the indoor unit 11 with screws, for example.
- the electric motor 13a is fixed to the housing 13c of the outdoor unit 13 with screws, for example.
- the electric motor 1 according to Embodiment 1 when used as the drive source for the blower (for example, the indoor unit 11), the same advantages as those described in Embodiment 1 can be obtained. As a result, it is possible to prevent the efficiency of the blower from decreasing.
- the blower having the electric motor 1 according to Embodiment 1 and the blades (for example, the blades 11d or 13d) driven by the electric motor 1 can be used alone as a device for blowing air. This blower can also be applied to devices other than the air conditioner 10 .
- Embodiment 1 when the electric motor 1 according to Embodiment 1 is used as the drive source for the compressor 14, the same advantages as those described in Embodiment 1 can be obtained. As a result, the efficiency of the compressor 14 can be improved.
- the electric motor 1 described in Embodiment 1 can be installed in equipment having a drive source, such as a ventilation fan, a home appliance, or a machine tool, in addition to the air conditioner 10 .
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Motor Or Generator Frames (AREA)
Abstract
This stator (3) has a stator core (31) having teeth (311), an insulating portion (33) provided to the teeth (311), a winding (32) wound around the insulating portion (33), a heat dissipation member (5) facing an outer peripheral surface of the stator core (31), and a resin (6) covering at least part of the stator core (31).
Description
本開示は、電動機に用いられるステータに関する。
The present disclosure relates to stators used in electric motors.
一般に、電動機の熱を放出するため、冷却フィンなどの放熱部材が用いられている(例えば、特許文献1参照)。
In general, heat radiation members such as cooling fins are used to release the heat of the electric motor (see Patent Document 1, for example).
しかしながら、従来の技術では、巻線で発生した熱を、ステータの外部に効率よく放出できないという問題がある。
However, the conventional technology has the problem that the heat generated by the windings cannot be efficiently released to the outside of the stator.
本開示の目的は、巻線で発生した熱を、ステータの外部に効率よく放出することである。
The purpose of the present disclosure is to efficiently release the heat generated by the windings to the outside of the stator.
本開示のステータは、
ティースを有するステータコアと、
前記ティースに設けられた絶縁部と、
前記絶縁部に巻かれた巻線と、
前記ステータコアの外周面に対向する放熱部材と、
前記ステータコアの少なくとも一部を覆っている樹脂と
を備える。
本開示の電動機は、
前記ステータと、
前記ステータの内側に配置されたロータと
を備える。
本開示の空気調和機は、
室内機と、
前記室内機に接続される室外機と
を備え、
前記室内機、前記室外機、又は前記室内機及び前記室外機の各々は、前記電動機を有する。 The stator of the present disclosure is
a stator core having teeth;
an insulating portion provided on the teeth;
a winding wound around the insulation;
a heat radiating member facing the outer peripheral surface of the stator core;
and a resin covering at least a portion of the stator core.
The electric motor of the present disclosure is
the stator;
and a rotor disposed inside the stator.
The air conditioner of the present disclosure is
indoor unit and
and an outdoor unit connected to the indoor unit,
Each of the indoor unit, the outdoor unit, or the indoor unit and the outdoor unit has the electric motor.
ティースを有するステータコアと、
前記ティースに設けられた絶縁部と、
前記絶縁部に巻かれた巻線と、
前記ステータコアの外周面に対向する放熱部材と、
前記ステータコアの少なくとも一部を覆っている樹脂と
を備える。
本開示の電動機は、
前記ステータと、
前記ステータの内側に配置されたロータと
を備える。
本開示の空気調和機は、
室内機と、
前記室内機に接続される室外機と
を備え、
前記室内機、前記室外機、又は前記室内機及び前記室外機の各々は、前記電動機を有する。 The stator of the present disclosure is
a stator core having teeth;
an insulating portion provided on the teeth;
a winding wound around the insulation;
a heat radiating member facing the outer peripheral surface of the stator core;
and a resin covering at least a portion of the stator core.
The electric motor of the present disclosure is
the stator;
and a rotor disposed inside the stator.
The air conditioner of the present disclosure is
indoor unit and
and an outdoor unit connected to the indoor unit,
Each of the indoor unit, the outdoor unit, or the indoor unit and the outdoor unit has the electric motor.
本開示によれば、巻線で発生した熱を、ステータの外部に効率よく放出することができる。
According to the present disclosure, the heat generated by the windings can be efficiently released to the outside of the stator.
実施の形態1.
実施の形態1に係る電動機1について以下に説明する。
各図に示されるxyz直交座標系において、z軸方向(z軸)は、電動機1の軸線A1と平行な方向を示し、x軸方向(x軸)は、z軸方向に直交する方向を示し、y軸方向(y軸)は、z軸方向及びx軸方向の両方に直交する方向を示す。軸線A1は、ロータ2の回転中心、すなわち、ロータ2の回転軸である。軸線A1と平行な方向は、「ロータ2の軸方向」又は単に「軸方向」とも称する。径方向は、ロータ2、ステータ3、又はステータコア31の半径方向であり、軸線A1と直交する方向である。xy平面は、軸方向と直交する平面である。矢印D1は、軸線A1を中心とする周方向を示す。ロータ2、ステータ3、又はステータコア31の周方向を、単に「周方向」とも称する。Embodiment 1.
Anelectric motor 1 according to Embodiment 1 will be described below.
In the xyz orthogonal coordinate system shown in each figure, the z-axis direction (z-axis) indicates a direction parallel to the axis A1 of theelectric motor 1, and the x-axis direction (x-axis) indicates a direction orthogonal to the z-axis direction. , the y-axis direction (y-axis) indicates a direction orthogonal to both the z-axis direction and the x-axis direction. The axis A<b>1 is the center of rotation of the rotor 2 , that is, the rotation axis of the rotor 2 . The direction parallel to the axis A1 is also referred to as "the axial direction of the rotor 2" or simply "the axial direction". A radial direction is a radial direction of the rotor 2, the stator 3, or the stator core 31, and is a direction perpendicular to the axis A1. The xy plane is a plane perpendicular to the axial direction. An arrow D1 indicates a circumferential direction about the axis A1. The circumferential direction of the rotor 2, stator 3, or stator core 31 is also simply referred to as "circumferential direction".
実施の形態1に係る電動機1について以下に説明する。
各図に示されるxyz直交座標系において、z軸方向(z軸)は、電動機1の軸線A1と平行な方向を示し、x軸方向(x軸)は、z軸方向に直交する方向を示し、y軸方向(y軸)は、z軸方向及びx軸方向の両方に直交する方向を示す。軸線A1は、ロータ2の回転中心、すなわち、ロータ2の回転軸である。軸線A1と平行な方向は、「ロータ2の軸方向」又は単に「軸方向」とも称する。径方向は、ロータ2、ステータ3、又はステータコア31の半径方向であり、軸線A1と直交する方向である。xy平面は、軸方向と直交する平面である。矢印D1は、軸線A1を中心とする周方向を示す。ロータ2、ステータ3、又はステータコア31の周方向を、単に「周方向」とも称する。
An
In the xyz orthogonal coordinate system shown in each figure, the z-axis direction (z-axis) indicates a direction parallel to the axis A1 of the
図1は、実施の形態1に係る電動機1を概略的に示す断面図である。
電動機1は、ロータ2と、ステータ3と、ベアリング7a,7bとを有する。図1に示される例では、電動機1は、さらに、ブラケット8と、電動機1を密閉する防水ゴム9とを有する。電動機1は、例えば、永久磁石同期電動機であるが、これに限定されない。ベアリング7a及び7bは、ロータ2のシャフト22を回転自在に支持する。 FIG. 1 is a cross-sectional view schematically showing anelectric motor 1 according to Embodiment 1. FIG.
Theelectric motor 1 has a rotor 2, a stator 3, and bearings 7a and 7b. In the example shown in FIG. 1 , the electric motor 1 further has a bracket 8 and a waterproof rubber 9 that seals the electric motor 1 . The electric motor 1 is, for example, a permanent magnet synchronous motor, but is not limited to this. Bearings 7a and 7b rotatably support shaft 22 of rotor 2 .
電動機1は、ロータ2と、ステータ3と、ベアリング7a,7bとを有する。図1に示される例では、電動機1は、さらに、ブラケット8と、電動機1を密閉する防水ゴム9とを有する。電動機1は、例えば、永久磁石同期電動機であるが、これに限定されない。ベアリング7a及び7bは、ロータ2のシャフト22を回転自在に支持する。 FIG. 1 is a cross-sectional view schematically showing an
The
ロータ2は、ステータ3の内側に回転可能に配置されている。ロータ2とステータ3との間には、エアギャップが存在する。ロータ2は、ロータコア21と、シャフト22とを有する。ロータ2は、回転軸(すなわち、軸線A1)を中心として回転可能である。ロータ2は、さらに、ロータ2の磁極を形成するための永久磁石を有してもよい。
The rotor 2 is rotatably arranged inside the stator 3 . An air gap exists between the rotor 2 and the stator 3 . The rotor 2 has a rotor core 21 and a shaft 22 . The rotor 2 is rotatable around a rotation axis (that is, axis A1). The rotor 2 may also have permanent magnets for forming the magnetic poles of the rotor 2 .
図2は、ステータ3を概略的に示す側面図である。
図3は、ステータ3の構造を概略的に示す側面図である。図3では、樹脂6及び回路基板4が省略されている。
図4は、ステータ3の構造を概略的に示す正面図である。図4では、樹脂6及び回路基板4が省略されている。
図5は、ステータ3の構造を概略的に示す正面図である。図5では、樹脂6が省略されている。 FIG. 2 is a side view schematically showing thestator 3. FIG.
FIG. 3 is a side view schematically showing the structure of thestator 3. FIG. In FIG. 3, the resin 6 and the circuit board 4 are omitted.
FIG. 4 is a front view schematically showing the structure of thestator 3. FIG. In FIG. 4, the resin 6 and the circuit board 4 are omitted.
FIG. 5 is a front view schematically showing the structure of thestator 3. FIG. In FIG. 5, the resin 6 is omitted.
図3は、ステータ3の構造を概略的に示す側面図である。図3では、樹脂6及び回路基板4が省略されている。
図4は、ステータ3の構造を概略的に示す正面図である。図4では、樹脂6及び回路基板4が省略されている。
図5は、ステータ3の構造を概略的に示す正面図である。図5では、樹脂6が省略されている。 FIG. 2 is a side view schematically showing the
FIG. 3 is a side view schematically showing the structure of the
FIG. 4 is a front view schematically showing the structure of the
FIG. 5 is a front view schematically showing the structure of the
ステータ3は、ステータコア31と、少なくとも1つの巻線32(ステータ巻線とも称する)と、少なくとも1つの絶縁部33と、回路基板4と、回路基板4に接続されたリード線41と、回路基板4の表面に固定された駆動回路42と、放熱部材5と、樹脂6(モールド樹脂とも称する)とを有する。例えば、ステータコア31、巻線32、絶縁部33、及び放熱部材5は、樹脂6で一体成形されている。この場合、ステータコア31、巻線32、絶縁部33、放熱部材5、及び樹脂6は、1つの構成要素(モールド固定子とも称する)として一体化されている。
The stator 3 includes a stator core 31, at least one winding 32 (also referred to as stator winding), at least one insulating portion 33, a circuit board 4, lead wires 41 connected to the circuit board 4, and the circuit board. 4, a heat radiating member 5, and resin 6 (also called mold resin). For example, the stator core 31 , the windings 32 , the insulating portion 33 and the heat radiating member 5 are integrally molded with the resin 6 . In this case, the stator core 31, the windings 32, the insulating portion 33, the heat dissipation member 5, and the resin 6 are integrated as one component (also called molded stator).
さらに、ステータコア31、巻線32、絶縁部33、放熱部材5、及び回路基板4が樹脂6で一体成形されていてもよい。この場合、ステータコア31、巻線32、絶縁部33、放熱部材5、回路基板4、及び樹脂6は、1つの構成要素(モールド固定子とも称する)として一体化されている。
Further, the stator core 31, the windings 32, the insulating portion 33, the heat dissipation member 5, and the circuit board 4 may be integrally molded with the resin 6. In this case, the stator core 31, the windings 32, the insulating portion 33, the heat dissipation member 5, the circuit board 4, and the resin 6 are integrated as one component (also called molded stator).
さらに、ステータコア31、巻線32、絶縁部33、放熱部材5、回路基板4、及び駆動回路42が、樹脂6で一体成形されていてもよい。この場合、ステータコア31、巻線32、絶縁部33、放熱部材5、回路基板4、駆動回路42、及び樹脂6は、1つの構成要素(モールド固定子とも称する)として一体化されている。
Furthermore, the stator core 31 , the windings 32 , the insulating portion 33 , the heat dissipation member 5 , the circuit board 4 , and the drive circuit 42 may be integrally molded with the resin 6 . In this case, the stator core 31, the windings 32, the insulating portion 33, the heat dissipation member 5, the circuit board 4, the drive circuit 42, and the resin 6 are integrated as one component (also called molded stator).
ステータコア31は、少なくとも1つのティース311を有する。本実施の形態では、ステータコア31は、複数のティース311を有する。例えば、ステータコア31は、軸方向に積層された複数の電磁鋼板で形成されている。この場合、複数の電磁鋼板の各々は、打ち抜き処理によって、予め定められた形状に形成される。これらの電磁鋼板は、かしめ、溶接、又は接着等によって互いに固定される。
The stator core 31 has at least one tooth 311. In this embodiment, stator core 31 has a plurality of teeth 311 . For example, the stator core 31 is formed of a plurality of magnetic steel sheets laminated in the axial direction. In this case, each of the plurality of electromagnetic steel sheets is formed into a predetermined shape by punching. These electromagnetic steel sheets are fixed to each other by caulking, welding, adhesion, or the like.
巻線32は、例えば、マグネットワイヤーである。巻線32は、絶縁部33に巻かれている。巻線32が、絶縁部33に巻回されることによりコイルが形成される。巻線32は、端子32a(巻線端子とも称する)と電気的に接続されている。図3に示される例では、巻線32の端部は、端子32aのフック部に引っ掛けられており、ヒュージング又は半田によって端子32aに固定されている。端子32aは、絶縁部33に固定されており、回路基板4と電気的に接続されている。
The windings 32 are, for example, magnet wires. The winding 32 is wound around the insulating portion 33 . A coil is formed by winding the wire 32 around the insulating portion 33 . The winding 32 is electrically connected to a terminal 32a (also referred to as a winding terminal). In the example shown in FIG. 3, the end of the winding 32 is hooked on the hook of the terminal 32a and fixed to the terminal 32a by fusing or soldering. The terminal 32 a is fixed to the insulating portion 33 and electrically connected to the circuit board 4 .
絶縁部33は、例えば、各ティース311に設けられている。例えば、絶縁部33は、各ティース311と組み合わされている。絶縁部33は、回路基板4を固定する少なくとも1つの固定部331を有する。絶縁部33は、例えば、ポリブチレンテレフタレート(PBT)等の熱可塑性樹脂である。絶縁部33は、ステータコア31(具体的には、ステータコア31の各ティース311)を電気的に絶縁する。例えば、絶縁部33は、ステータコア31と一体に成形される。ただし、予め絶縁部33を成形し、成形された絶縁部33をステータコア31と組み合わせてもよい。
The insulating portion 33 is provided on each tooth 311, for example. For example, the insulating portion 33 is combined with each tooth 311 . The insulating portion 33 has at least one fixing portion 331 for fixing the circuit board 4 . The insulating portion 33 is, for example, thermoplastic resin such as polybutylene terephthalate (PBT). The insulating portion 33 electrically insulates the stator core 31 (specifically, each tooth 311 of the stator core 31). For example, the insulating portion 33 is molded integrally with the stator core 31 . However, the insulating portion 33 may be molded in advance and the molded insulating portion 33 may be combined with the stator core 31 .
回路基板4は、絶縁部33の固定部331(具体的には、突起331a)と係合する位置決め穴43(単に「穴」とも称する)を有する。
The circuit board 4 has a positioning hole 43 (also simply referred to as a "hole") that engages with the fixing portion 331 (specifically, the protrusion 331a) of the insulating portion 33.
絶縁部33の固定部331は、突起331aと支持部331bとを有する。突起331aは、回路基板4に形成された位置決め穴43に挿入されている。この構成により、回路基板4が絶縁部33に固定される。支持部331bは、回路基板4を軸方向に支持し、軸方向において回路基板4を位置決めする。回路基板4は、ステータ3の軸方向におけるステータ3の一端側に位置している。
The fixing portion 331 of the insulating portion 33 has a projection 331a and a support portion 331b. The protrusion 331 a is inserted into a positioning hole 43 formed in the circuit board 4 . With this configuration, the circuit board 4 is fixed to the insulating portion 33 . The support portion 331b supports the circuit board 4 in the axial direction and positions the circuit board 4 in the axial direction. The circuit board 4 is positioned on one end side of the stator 3 in the axial direction of the stator 3 .
駆動回路42は、ロータ2の回転を制御するための回路である。駆動回路42は、例えば、駆動素子42a及びホールIC(Integrated Circuit)42bを含む。
The drive circuit 42 is a circuit for controlling the rotation of the rotor 2. The drive circuit 42 includes, for example, a drive element 42a and a Hall IC (Integrated Circuit) 42b.
駆動素子42aは、例えば、パワートランジスタである。ホールIC42bは、ロータ2の回転位置を検出するために、ロータ2からの磁界を検出する。
The drive element 42a is, for example, a power transistor. Hall IC 42 b detects the magnetic field from rotor 2 in order to detect the rotational position of rotor 2 .
樹脂6は、ステータコア31の少なくとも一部を覆っている。例えば、樹脂6は、ステータコア31の外周面を覆っている。樹脂6は、例えば、バルクモールディングコンパウンド(BMC)などの熱硬化性樹脂である。バルクモールディングコンパウンドは、低圧成形を可能にするため、インサート成形に適している。樹脂6としてバルクモールディングコンパウンドを用いた場合、金型を用いて樹脂6の成形を行うときに、回路基板4又はステータコア31などのインサート物の変形を防止することができ、電動機1の品質を向上させることができる。
The resin 6 covers at least part of the stator core 31. For example, resin 6 covers the outer peripheral surface of stator core 31 . Resin 6 is, for example, a thermosetting resin such as bulk molding compound (BMC). Bulk molding compounds are suitable for insert molding as they allow low pressure molding. When a bulk molding compound is used as the resin 6, deformation of inserts such as the circuit board 4 or the stator core 31 can be prevented when the resin 6 is molded using a mold, and the quality of the electric motor 1 is improved. can be made
金型を用いて樹脂6の成形を行うとき、例えば、放熱部材5の一部を金型で押さえる。さらに、放熱部材5の一部が、ステータ3の外部に露出するように、樹脂6の材料を金型内に注入する。この工程により、放熱部材5の一部を、ステータ3の外部に露出させることができる。
When molding the resin 6 using a mold, for example, a part of the heat radiating member 5 is pressed by the mold. Furthermore, the material of the resin 6 is injected into the mold so that a part of the heat radiating member 5 is exposed to the outside of the stator 3 . Through this process, part of the heat radiating member 5 can be exposed to the outside of the stator 3 .
樹脂6は、ポリフェニレンスルファイド(PPS)などの熱可塑性樹脂でもよい。PPSは、BMCに比べて熱伝導率が向上するので、巻線32で発生した熱が放熱部材5に伝達されやすい。
The resin 6 may be a thermoplastic resin such as polyphenylene sulfide (PPS). Since PPS has higher thermal conductivity than BMC, the heat generated in the windings 32 is easily transferred to the heat radiating member 5 .
放熱部材5は、ステータコア31の外周面に対向している。放熱部材5は、ステータコア31の周方向に連続的に延在している。放熱部材5は、ステータコア31の外周面の全てを覆っていてもよい。放熱部材5は、例えば、アルミニウムなどの金属材料で作られている。例えば、放熱部材5は、樹脂6によってステータコア31の外周面に対向するように固定されている。この場合、放熱部材5の一部が樹脂6と嵌合していてもよい。放熱部材5の一部が樹脂6と嵌合しているとき、放熱部材5が、ステータコア31の外周面に対向するようにしっかり固定される。放熱部材5の少なくとも一部は、ステータ3の外部に露出している。この構成により、巻線32で発生した熱が、ステータ3の外部に効率よく放出される。
The heat dissipation member 5 faces the outer peripheral surface of the stator core 31 . The heat dissipation member 5 extends continuously in the circumferential direction of the stator core 31 . The heat dissipation member 5 may cover the entire outer peripheral surface of the stator core 31 . The heat dissipation member 5 is made of, for example, a metal material such as aluminum. For example, the heat dissipation member 5 is fixed by the resin 6 so as to face the outer peripheral surface of the stator core 31 . In this case, part of the heat dissipation member 5 may be fitted with the resin 6 . When part of the heat radiating member 5 is fitted with the resin 6 , the heat radiating member 5 is firmly fixed so as to face the outer peripheral surface of the stator core 31 . At least part of the heat dissipation member 5 is exposed outside the stator 3 . With this configuration, the heat generated by the windings 32 is efficiently released to the outside of the stator 3 .
放熱部材5は、ステータコア31の外周面に直接設けられていてもよい。すなわち、放熱部材5は、ステータコア31の外周面に固定されていてもよい。この構成により、巻線32で発生した熱が、放熱部材5に直接に伝達され、ステータ3の外部にさらに効率よく放出される。
The heat dissipation member 5 may be directly provided on the outer peripheral surface of the stator core 31. That is, the heat dissipation member 5 may be fixed to the outer peripheral surface of the stator core 31 . With this configuration, the heat generated by the windings 32 is directly transmitted to the heat radiating member 5 and radiated to the outside of the stator 3 more efficiently.
ステータコア31、巻線32、及び絶縁部33が樹脂6で一体成形されていてもよい。この場合、ステータコア31、巻線32、絶縁部33、及び樹脂6は、1つの構成要素(モールド固定子とも称する)として一体化されている。この場合、放熱部材5は、例えば、圧入、焼き嵌め、又はねじで、ステータコア31の外周面に対向するように樹脂6に固定されている。この構成により、巻線32で発生した熱が、樹脂6を通して放熱部材5に伝達され、ステータ3の外部に効率よく放出される。
The stator core 31, the windings 32, and the insulating portion 33 may be integrally molded with the resin 6. In this case, the stator core 31, the windings 32, the insulating portion 33, and the resin 6 are integrated as one component (also called molded stator). In this case, the heat radiating member 5 is fixed to the resin 6 so as to face the outer peripheral surface of the stator core 31 by press fitting, shrink fitting, or screws, for example. With this configuration, the heat generated by the windings 32 is transmitted to the heat radiating member 5 through the resin 6 and efficiently radiated to the outside of the stator 3 .
変形例1.
放熱部材5の他の例を説明する。
図6は、放熱部材5の他の例としての放熱部材5aを有するステータ3を概略的に示す側面図である。
図7は、図6に示される放熱部材5aを有するステータ3を概略的に示す側面図である。図7では、樹脂6及び回路基板4が省略されている。
図8は、図6に示される放熱部材5aを有するステータ3を概略的に示す正面図である。図8では、樹脂6及び回路基板4が省略されている。
実施の形態1で説明された放熱部材5の代わりに、変形例1で説明される放熱部材5aを実施の形態1で説明されたステータ3に適用することができる。Modification 1.
Another example of theheat dissipation member 5 will be described.
FIG. 6 is a side view schematically showing astator 3 having a heat radiating member 5a as another example of the heat radiating member 5. As shown in FIG.
FIG. 7 is a side view schematically showing thestator 3 having the heat dissipation member 5a shown in FIG. In FIG. 7, the resin 6 and the circuit board 4 are omitted.
FIG. 8 is a front view schematically showing thestator 3 having the heat radiating member 5a shown in FIG. In FIG. 8, the resin 6 and the circuit board 4 are omitted.
Instead of theheat radiating member 5 described in the first embodiment, the heat radiating member 5a described in the modification 1 can be applied to the stator 3 described in the first embodiment.
放熱部材5の他の例を説明する。
図6は、放熱部材5の他の例としての放熱部材5aを有するステータ3を概略的に示す側面図である。
図7は、図6に示される放熱部材5aを有するステータ3を概略的に示す側面図である。図7では、樹脂6及び回路基板4が省略されている。
図8は、図6に示される放熱部材5aを有するステータ3を概略的に示す正面図である。図8では、樹脂6及び回路基板4が省略されている。
実施の形態1で説明された放熱部材5の代わりに、変形例1で説明される放熱部材5aを実施の形態1で説明されたステータ3に適用することができる。
Another example of the
FIG. 6 is a side view schematically showing a
FIG. 7 is a side view schematically showing the
FIG. 8 is a front view schematically showing the
Instead of the
変形例1における放熱部材5aは、ベース部51と、ベース部51から突き出ている少なくとも1つの突起部52とを有する。例えば、ベース部51は、樹脂6によって支持されている。ベース部51が樹脂6によって支持されているので、放熱部材5aが、ステータコア31の外周面に対向するようにしっかり固定される。ベース部51は、樹脂6と嵌合していてもよい。
The heat dissipating member 5a in Modification 1 has a base portion 51 and at least one protruding portion 52 protruding from the base portion 51. For example, the base portion 51 is supported by the resin 6 . Since the base portion 51 is supported by the resin 6 , the heat radiating member 5 a is firmly fixed so as to face the outer peripheral surface of the stator core 31 . The base portion 51 may be fitted with the resin 6 .
図6、図7、及び図8に示される例では、放熱部材5a(具体的には、ベース部51)は、ステータコア31の周方向に連続的に延在している。放熱部材5aは、ステータコア31の外周面の全てを覆っていてもよい。例えば、ベース部51がステータコア31の外周面の全てを覆っていてもよい。
In the examples shown in FIGS. 6, 7, and 8, the heat dissipation member 5a (specifically, the base portion 51) extends continuously in the circumferential direction of the stator core 31. The heat dissipation member 5 a may cover the entire outer peripheral surface of the stator core 31 . For example, the base portion 51 may cover the entire outer peripheral surface of the stator core 31 .
放熱部材5aは、複数の突起部52を有していてもよい。ティース311の数と突起部52の数は同一である。この場合、各突起部52は、ティース311に対向している。すなわち、ティース311が延在する方向に見たとき、突起部52の位置は、ティース311の少なくとも一部に重なっている。この構成により、巻線32で発生した熱が、各突起部52からステータ3の外部に効率よく放出される。
The heat dissipation member 5a may have a plurality of protrusions 52. The number of teeth 311 and the number of protrusions 52 are the same. In this case, each protrusion 52 faces the teeth 311 . That is, when viewed in the direction in which teeth 311 extend, projections 52 overlap at least a portion of teeth 311 . With this configuration, the heat generated in the windings 32 is efficiently released from the protrusions 52 to the outside of the stator 3 .
巻線32は、集中巻で各ティース311に巻かれている。この場合、巻線32によって形成されるコイルの数は、ティース311の数と同一である。したがって、変形例1では、ティース311の数、コイルの数、及び突起部52の数は同一である。
The winding 32 is wound around each tooth 311 by concentrated winding. In this case, the number of coils formed by windings 32 is the same as the number of teeth 311 . Therefore, in Modification 1, the number of teeth 311, the number of coils, and the number of protrusions 52 are the same.
各突起部52は、例えば、径方向に突き出ている。各突起部52は、ステータ3の外部に露出している。各突起部52がステータ3の外部に露出しているので、巻線32で発生した熱が、各突起部52からステータ3の外部に効率よく放出される。ベース部51の少なくとも一部が、ステータ3の外部に露出していてもよい。この場合も、巻線32で発生した熱が、ベース部51からステータ3の外部に効率よく放出される。ベース部51及び各突起部52が、ステータ3の外部に露出していてもよい。この場合も、巻線32で発生した熱が、ベース部51及び各突起部52からステータ3の外部に効率よく放出される。
Each protrusion 52 protrudes radially, for example. Each protrusion 52 is exposed to the outside of the stator 3 . Since each protrusion 52 is exposed to the outside of the stator 3 , the heat generated by the windings 32 is efficiently released from each protrusion 52 to the outside of the stator 3 . At least part of the base portion 51 may be exposed to the outside of the stator 3 . Also in this case, the heat generated by the windings 32 is efficiently released from the base portion 51 to the outside of the stator 3 . The base portion 51 and each projection portion 52 may be exposed to the outside of the stator 3 . Also in this case, the heat generated by the windings 32 is efficiently released to the outside of the stator 3 from the base portion 51 and each projection portion 52 .
図6に示されるように、ステータコア31の周方向において隣接する2つの突起部52の間に樹脂6が設けられていてもよい。この場合、ベース部51が樹脂6と嵌合しており、各突起部52がステータ3の外部に露出している。この構成により、放熱部材5aが、ステータコア31の外周面に対向するようにしっかり固定され、巻線32で発生した熱が、各突起部52からステータ3の外部に効率よく放出される。
As shown in FIG. 6, resin 6 may be provided between two protrusions 52 adjacent in the circumferential direction of stator core 31 . In this case, the base portion 51 is fitted with the resin 6 and each projection portion 52 is exposed to the outside of the stator 3 . With this configuration, the heat radiating member 5 a is firmly fixed so as to face the outer peripheral surface of the stator core 31 , and the heat generated in the windings 32 is efficiently radiated to the outside of the stator 3 through the protrusions 52 .
変形例2.
放熱部材5のさらに他の例を説明する。
図9は、放熱部材5のさらに他の例としての放熱部材5bを有するステータ3を示す側面図である。
図10は、図9に示される放熱部材5bを有するステータ3を概略的に示す側面図である。図10では、樹脂6及び回路基板4が省略されている。
図11は、図9に示される放熱部材5bを有するステータ3を概略的に示す正面図である。図11では、樹脂6及び回路基板4が省略されている。
実施の形態1で説明された放熱部材5の代わりに、変形例2で説明される放熱部材5bを実施の形態1で説明されたステータ3に適用することができる。Modification 2.
Still another example of theheat dissipation member 5 will be described.
FIG. 9 is a side view showing astator 3 having a heat radiating member 5b as still another example of the heat radiating member 5. As shown in FIG.
FIG. 10 is a side view schematically showing thestator 3 having the heat radiating member 5b shown in FIG. In FIG. 10, the resin 6 and the circuit board 4 are omitted.
FIG. 11 is a front view schematically showing thestator 3 having the heat radiating member 5b shown in FIG. In FIG. 11, the resin 6 and the circuit board 4 are omitted.
Instead of theheat radiating member 5 described in the first embodiment, the heat radiating member 5b described in the modification 2 can be applied to the stator 3 described in the first embodiment.
放熱部材5のさらに他の例を説明する。
図9は、放熱部材5のさらに他の例としての放熱部材5bを有するステータ3を示す側面図である。
図10は、図9に示される放熱部材5bを有するステータ3を概略的に示す側面図である。図10では、樹脂6及び回路基板4が省略されている。
図11は、図9に示される放熱部材5bを有するステータ3を概略的に示す正面図である。図11では、樹脂6及び回路基板4が省略されている。
実施の形態1で説明された放熱部材5の代わりに、変形例2で説明される放熱部材5bを実施の形態1で説明されたステータ3に適用することができる。
Still another example of the
FIG. 9 is a side view showing a
FIG. 10 is a side view schematically showing the
FIG. 11 is a front view schematically showing the
Instead of the
変形例2における放熱部材5bは、ベース部51と、ベース部51から突き出ている少なくとも1つの突起部52と、突起部52から突き出ている少なくとも1つのフィン53とを有する。ベース部51は、樹脂6によって支持されている。ベース部51が樹脂6によって支持されているので、放熱部材5bが、ステータコア31の外周面に対向するようにしっかり固定される。ベース部51は、樹脂6と嵌合していてもよい。
The heat dissipating member 5 b in Modification 2 has a base portion 51 , at least one projecting portion 52 projecting from the base portion 51 , and at least one fin 53 projecting from the projecting portion 52 . The base portion 51 is supported by the resin 6 . Since the base portion 51 is supported by the resin 6 , the heat dissipation member 5 b is firmly fixed so as to face the outer peripheral surface of the stator core 31 . The base portion 51 may be fitted with the resin 6 .
図9、図10、及び図11に示される例では、放熱部材5b(具体的には、ベース部51)は、ステータコア31の周方向に連続的に延在している。放熱部材5bは、ステータコア31の外周面の全てを覆っていてもよい。例えば、ベース部51がステータコア31の外周面の全てを覆っていてもよい。
In the examples shown in FIGS. 9, 10, and 11, the heat dissipation member 5b (specifically, the base portion 51) extends continuously in the circumferential direction of the stator core 31. The heat dissipation member 5 b may cover the entire outer peripheral surface of the stator core 31 . For example, the base portion 51 may cover the entire outer peripheral surface of the stator core 31 .
各フィン53は、例えば、径方向に突き出ている。各フィン53は、例えば、板でもよく、先細の形状を持っていてもよい。各フィン53は、ステータ3の外部に露出している。各フィン53がステータ3の外部に露出しているので、巻線32で発生した熱が、各フィン53からステータ3の外部に効率よく放出される。
Each fin 53 protrudes radially, for example. Each fin 53 may be, for example, a plate and may have a tapered shape. Each fin 53 is exposed outside the stator 3 . Since each fin 53 is exposed to the outside of the stator 3 , the heat generated by the windings 32 is efficiently released from each fin 53 to the outside of the stator 3 .
放熱部材5bは、複数のフィン53を有していてもよい。この場合、各フィン53は、ティース311に対向している。すなわち、ティース311が延在する方向に見たとき、フィン53の位置は、ティース311の少なくとも一部に重なっている。この構成により、巻線32で発生した熱が、各フィン53からステータ3の外部に効率よく放出される。
The heat dissipation member 5b may have a plurality of fins 53. In this case, each fin 53 faces teeth 311 . That is, when viewed in the direction in which teeth 311 extend, fins 53 overlap at least a portion of teeth 311 . With this configuration, the heat generated by the windings 32 is efficiently released from the fins 53 to the outside of the stator 3 .
図9に示されるように、ステータコア31の周方向において隣接する2つの突起部52の間に樹脂6が設けられていてもよい。この場合、ベース部51が樹脂6によって支持されており、各突起部52がステータ3の外部に露出している。この構成により、放熱部材5bが、ステータコア31の外周面に対向するようにしっかり固定され、巻線32で発生した熱が、各突起部52及び各フィン53からステータ3の外部に効率よく放出される。
As shown in FIG. 9, the resin 6 may be provided between two protrusions 52 that are adjacent in the circumferential direction of the stator core 31 . In this case, the base portion 51 is supported by the resin 6 and each protrusion 52 is exposed to the outside of the stator 3 . With this configuration, the heat radiating member 5b is firmly fixed so as to face the outer peripheral surface of the stator core 31, and the heat generated in the windings 32 is efficiently released to the outside of the stator 3 through the projections 52 and the fins 53. be.
放熱部材5bが突起部52を有さずに、各フィン53がベース部51から突き出ていてもよい。この場合、ステータコア31の周方向において隣接する2つのフィン53の間に樹脂6が設けられていてもよい。この場合、ベース部51が樹脂6によって支持されており、各フィン53がステータ3の外部に露出している。この構成により、放熱部材5bが、ステータコア31の外周面に対向するようにしっかり固定され、巻線32で発生した熱が、各フィン53からステータ3の外部に効率よく放出される。
Each fin 53 may protrude from the base portion 51 without the heat radiating member 5b having the projecting portion 52. In this case, resin 6 may be provided between two fins 53 adjacent in the circumferential direction of stator core 31 . In this case, the base portion 51 is supported by the resin 6 and each fin 53 is exposed outside the stator 3 . With this configuration, the heat radiating member 5 b is firmly fixed so as to face the outer peripheral surface of the stator core 31 , and the heat generated by the windings 32 is efficiently radiated from the fins 53 to the outside of the stator 3 .
〈本実施の形態の利点〉
電動機1において、巻線32で発生した熱は、絶縁部33を通過し、ステータコア31に伝達される。本実施の形態によれば、放熱部材5がステータコア31の外周面に対向しているので、巻線32で発生した熱を、ステータ3の外部に効率よく放出することができる。 <Advantages of this embodiment>
In theelectric motor 1 , the heat generated by the windings 32 passes through the insulating portion 33 and is transferred to the stator core 31 . According to the present embodiment, heat radiation member 5 faces the outer peripheral surface of stator core 31 , so heat generated in windings 32 can be efficiently released to the outside of stator 3 .
電動機1において、巻線32で発生した熱は、絶縁部33を通過し、ステータコア31に伝達される。本実施の形態によれば、放熱部材5がステータコア31の外周面に対向しているので、巻線32で発生した熱を、ステータ3の外部に効率よく放出することができる。 <Advantages of this embodiment>
In the
ステータコア31、巻線32、絶縁部33、及び放熱部材5が樹脂6で一体成形されている場合、ステータコア31と樹脂6との間の熱抵抗を低減することができる。さらに、ステータコア31、巻線32、絶縁部33、及び放熱部材5が樹脂6で一体成形されている場合、放熱部材5の取り付けのための部品及び製造工程を削減することができる。
When the stator core 31, the windings 32, the insulating portion 33, and the heat dissipation member 5 are integrally molded with the resin 6, the thermal resistance between the stator core 31 and the resin 6 can be reduced. Furthermore, when the stator core 31, the windings 32, the insulating portion 33, and the heat dissipation member 5 are integrally molded with the resin 6, the number of parts and the manufacturing process for attaching the heat dissipation member 5 can be reduced.
さらに、ステータコア31、巻線32、絶縁部33、放熱部材5、及び回路基板4が樹脂6で一体成形されている場合、巻線32で発生した熱が放熱部材5を通して径方向に放出されるので、回路基板4又は回路基板4に固定された駆動回路42の温度上昇を防ぐことができる。
Furthermore, when the stator core 31, the windings 32, the insulating portion 33, the heat radiation member 5, and the circuit board 4 are integrally molded with the resin 6, the heat generated by the windings 32 is radiated radially through the heat radiation member 5. Therefore, the temperature rise of the circuit board 4 or the drive circuit 42 fixed to the circuit board 4 can be prevented.
本実施の形態によれば、放熱部材5がステータコア31の外周面に対向しているので、巻線32で発生した熱を径方向に放出することができる。したがって、回路基板4がステータ3の軸方向におけるステータ3の一端側に位置している場合、巻線32で発生した熱が回路基板4に伝達されることを防止することができる。その結果、巻線32で発生した熱による回路基板4又は回路基板4に固定された駆動回路42の温度上昇を防止することができる。
According to this embodiment, the heat dissipation member 5 faces the outer peripheral surface of the stator core 31, so heat generated in the windings 32 can be dissipated in the radial direction. Therefore, when the circuit board 4 is located on one end side of the stator 3 in the axial direction of the stator 3 , it is possible to prevent the heat generated by the windings 32 from being transmitted to the circuit board 4 . As a result, the temperature rise of the circuit board 4 or the drive circuit 42 fixed to the circuit board 4 due to the heat generated by the windings 32 can be prevented.
放熱部材5は、ステータコア31の外周面に対向しているので、放熱部材5をステータ3の軸方向におけるステータ3の一端側に必ずしも設ける必要はない。そのため、ステータ3のコストを低減することができる。
Since the heat dissipation member 5 faces the outer peripheral surface of the stator core 31, it is not always necessary to provide the heat dissipation member 5 on one end side of the stator 3 in the axial direction of the stator 3. Therefore, the cost of the stator 3 can be reduced.
放熱部材5aがベース部51と、ベース部51から突き出ている少なくとも1つの突起部52とを有する場合、ステータ3の外部に露出される放熱部材5aの表面積を増加させることができる。その結果、巻線32で発生した熱を、ステータ3の外部に効率よく放出することができる。
When the heat radiating member 5a has the base portion 51 and at least one projecting portion 52 protruding from the base portion 51, the surface area of the heat radiating member 5a exposed to the outside of the stator 3 can be increased. As a result, heat generated by the windings 32 can be efficiently released to the outside of the stator 3 .
ティース311の数と突起部52の数が同一である場合、偏りのない放熱経路をステータ3に設けることができる。その結果、ステータ3における熱の滞留を防ぐことができる。
When the number of teeth 311 and the number of protrusions 52 are the same, the stator 3 can be provided with an even heat dissipation path. As a result, heat retention in the stator 3 can be prevented.
ティース311が延在する方向に見たとき、突起部52の位置がティース311の少なくとも一部に重なっている場合、巻線32で発生した熱を、各突起部52からステータ3の外部に効率よく放出することができる。
When the protrusions 52 overlap at least a part of the teeth 311 when viewed in the direction in which the teeth 311 extend, the heat generated in the windings 32 is efficiently transferred from the protrusions 52 to the outside of the stator 3 . can be released well.
ステータコア31の周方向において隣接する2つの突起部52の間に樹脂6が設けられている場合、放熱部材5aを、ステータコア31の外周面に対向するようにしっかり固定することができる。その結果、電動機1の作動中において、電動機1における振動及び騒音を低減することができる。
When the resin 6 is provided between two protrusions 52 adjacent in the circumferential direction of the stator core 31, the heat dissipation member 5a can be firmly fixed so as to face the outer peripheral surface of the stator core 31. As a result, vibration and noise in the electric motor 1 can be reduced while the electric motor 1 is in operation.
放熱部材5の少なくとも一部がステータ3の外部に露出している場合、放熱部材5が外気にふれる。その結果、巻線32で発生した熱を、ステータ3の外部に効率よく放出することができる。
When at least part of the heat radiating member 5 is exposed outside the stator 3, the heat radiating member 5 is exposed to the outside air. As a result, heat generated by the windings 32 can be efficiently released to the outside of the stator 3 .
放熱部材5bがステータ3の外部に露出しているフィン53を有する場合、ステータ3の外部に露出される放熱部材5bの表面積を増加させることができる。フィン53が外気にふれるので、巻線32で発生した熱を、フィン53からステータ3の外部に効率よく放出することができる。
When the heat radiating member 5b has fins 53 exposed to the outside of the stator 3, the surface area of the heat radiating member 5b exposed to the outside of the stator 3 can be increased. Since the fins 53 are exposed to the outside air, the heat generated by the windings 32 can be efficiently released from the fins 53 to the outside of the stator 3 .
放熱部材5がステータコア31の周方向に連続的に延在している場合、放熱部材5がステータコア31の外周面に対向する面積が増加する。その結果、巻線32で発生した熱を、ステータ3の外部により効率的に放出することができる。
When the heat radiating member 5 extends continuously in the circumferential direction of the stator core 31, the area of the heat radiating member 5 facing the outer peripheral surface of the stator core 31 increases. As a result, the heat generated by the windings 32 can be more efficiently released to the outside of the stator 3.
放熱部材5がステータコア31の外周面の全てを覆っている場合、放熱部材5がステータコア31の外周面に対向する面積がさらに増加する。その結果、巻線32で発生した熱を、ステータ3の外部により効率的に放出することができる。
When the heat radiating member 5 covers the entire outer peripheral surface of the stator core 31, the area of the heat radiating member 5 facing the outer peripheral surface of the stator core 31 further increases. As a result, the heat generated by the windings 32 can be more efficiently released to the outside of the stator 3.
実施の形態2.
実施の形態2に係る空気調和機10(冷凍空調装置又は冷凍サイクル装置とも称する)について説明する。
図12は、実施の形態2に係る空気調和機10の構成を概略的に示す図である。Embodiment 2.
An air conditioner 10 (also referred to as a refrigeration air conditioner or a refrigeration cycle device) according toEmbodiment 2 will be described.
FIG. 12 is a diagram schematically showing the configuration ofair conditioner 10 according to Embodiment 2. As shown in FIG.
実施の形態2に係る空気調和機10(冷凍空調装置又は冷凍サイクル装置とも称する)について説明する。
図12は、実施の形態2に係る空気調和機10の構成を概略的に示す図である。
An air conditioner 10 (also referred to as a refrigeration air conditioner or a refrigeration cycle device) according to
FIG. 12 is a diagram schematically showing the configuration of
実施の形態2に係る空気調和機10は、送風機(第1の送風機とも称する)としての室内機11と、室内機11に接続される送風機(第2の送風機とも称する)としての室外機13とを有する。
An air conditioner 10 according to Embodiment 2 includes an indoor unit 11 as a fan (also referred to as a first fan) and an outdoor unit 13 as a fan (also referred to as a second fan) connected to the indoor unit 11. have
本実施の形態では、空気調和機10は、室内機11と、冷媒配管12と、室外機13とを有する。例えば、室外機13は、冷媒配管12を通して室内機11に接続される。
In this embodiment, the air conditioner 10 has an indoor unit 11, a refrigerant pipe 12, and an outdoor unit 13. For example, the outdoor unit 13 is connected to the indoor unit 11 through the refrigerant pipe 12 .
室内機11は、電動機11a(例えば、実施の形態1に係る電動機1)と、電動機11aによって駆動されることにより、送風する送風部11bと、電動機11a及び送風部11bを覆うハウジング11cとを有する。送風部11bは、例えば、電動機11aによって駆動される羽根11dを有する。例えば、羽根11dは、電動機11aのシャフトに固定されており、気流を生成する。
The indoor unit 11 has an electric motor 11a (for example, the electric motor 1 according to Embodiment 1), a blower section 11b that blows air by being driven by the electric motor 11a, and a housing 11c that covers the electric motor 11a and the blower section 11b. . The air blower 11b has, for example, blades 11d driven by an electric motor 11a. For example, blades 11d are fixed to the shaft of electric motor 11a and generate airflow.
室外機13は、電動機13a(例えば、実施の形態1に係る電動機1)と、送風部13bと、圧縮機14と、熱交換器(図示しない)と、送風部13b、圧縮機14、及び熱交換器を覆うハウジング13cとを有する。送風部13bは、電動機13aによって駆動されることにより、送風する。送風部13bは、例えば、電動機13aによって駆動される羽根13dを有する。例えば、羽根13dは、電動機13aのシャフトに固定されており、気流を生成する。圧縮機14は、電動機14a(例えば、実施の形態1に係る電動機1)と、電動機14aによって駆動される圧縮機構14b(例えば、冷媒回路)と、電動機14a及び圧縮機構14bを覆うハウジング14cとを有する。
The outdoor unit 13 includes an electric motor 13a (for example, the electric motor 1 according to Embodiment 1), an air blower 13b, a compressor 14, a heat exchanger (not shown), an air blower 13b, a compressor 14, and a heat exchanger. and a housing 13c covering the exchanger. The air blower 13b blows air by being driven by the electric motor 13a. The air blower 13b has, for example, blades 13d driven by an electric motor 13a. For example, the blades 13d are fixed to the shaft of the electric motor 13a and generate airflow. The compressor 14 includes an electric motor 14a (for example, the electric motor 1 according to Embodiment 1), a compression mechanism 14b (for example, a refrigerant circuit) driven by the electric motor 14a, and a housing 14c that covers the electric motor 14a and the compression mechanism 14b. have.
空気調和機10において、室内機11及び室外機13の少なくとも1つは、実施の形態1で説明した電動機1を有する。すなわち、室内機11、室外機13、又は室内機11及び室外機13の各々は、実施の形態1で説明した電動機1を有する。具体的には、送風部の駆動源として、電動機11a及び13aの少なくとも一方に、実施の形態1で説明した電動機1が適用される。すなわち、室内機11、室外機13、又は室内機11及び室外機13の各々に、実施の形態1で説明した電動機1が適用される。圧縮機14の電動機14aに、実施の形態1で説明した電動機1を適用してもよい。
In the air conditioner 10, at least one of the indoor unit 11 and the outdoor unit 13 has the electric motor 1 described in the first embodiment. That is, each of the indoor unit 11, the outdoor unit 13, or the indoor unit 11 and the outdoor unit 13 has the electric motor 1 described in the first embodiment. Specifically, the electric motor 1 described in the first embodiment is applied to at least one of the electric motors 11a and 13a as the driving source of the air blower. That is, the electric motor 1 described in Embodiment 1 is applied to each of the indoor unit 11 and the outdoor unit 13 or the indoor unit 11 and the outdoor unit 13 . The electric motor 1 described in the first embodiment may be applied to the electric motor 14 a of the compressor 14 .
空気調和機10は、例えば、室内機11から冷たい空気を送風する冷房運転、温かい空気を送風する暖房運転等の空調を行うことができる。室内機11において、電動機11aは、送風部11bを駆動するための駆動源である。送風部11bは、調整された空気を送風することができる。
The air conditioner 10 can perform air conditioning, for example, a cooling operation in which cool air is blown from the indoor unit 11 and a heating operation in which warm air is blown. In the indoor unit 11, the electric motor 11a is a drive source for driving the air blower 11b. The air blower 11b can blow the adjusted air.
室内機11において、電動機11aは、例えば、ねじによって室内機11のハウジング11cに固定されている。室外機13において、電動機13aは、例えば、ねじによって室外機13のハウジング13cに固定されている。
In the indoor unit 11, the electric motor 11a is fixed to the housing 11c of the indoor unit 11 with screws, for example. In the outdoor unit 13, the electric motor 13a is fixed to the housing 13c of the outdoor unit 13 with screws, for example.
実施の形態2に係る空気調和機10では、電動機11a及び13aの少なくとも一方に、実施の形態1で説明した電動機1が適用されるので、実施の形態1で説明した利点と同じ利点を得ることができる。その結果、空気調和機10の効率を高めることができる。
In the air conditioner 10 according to Embodiment 2, since the electric motor 1 described in Embodiment 1 is applied to at least one of the electric motors 11a and 13a, the same advantages as those described in Embodiment 1 can be obtained. can be done. As a result, the efficiency of the air conditioner 10 can be improved.
さらに、送風機(例えば、室内機11)の駆動源として、実施の形態1に係る電動機1が用いられる場合、実施の形態1で説明した利点と同じ利点を得ることができる。その結果、送風機の効率の低下を防ぐことができる。実施の形態1に係る電動機1と電動機1によって駆動される羽根(例えば、羽根11d又は13d)とを有する送風機は、送風する装置として単独で用いることができる。この送風機は、空気調和機10以外の機器にも適用可能である。
Furthermore, when the electric motor 1 according to Embodiment 1 is used as the drive source for the blower (for example, the indoor unit 11), the same advantages as those described in Embodiment 1 can be obtained. As a result, it is possible to prevent the efficiency of the blower from decreasing. The blower having the electric motor 1 according to Embodiment 1 and the blades (for example, the blades 11d or 13d) driven by the electric motor 1 can be used alone as a device for blowing air. This blower can also be applied to devices other than the air conditioner 10 .
さらに、圧縮機14の駆動源として、実施の形態1に係る電動機1が用いられる場合、実施の形態1で説明した利点と同じ利点を得ることができる。その結果、圧縮機14の効率を高めることができる。
Furthermore, when the electric motor 1 according to Embodiment 1 is used as the drive source for the compressor 14, the same advantages as those described in Embodiment 1 can be obtained. As a result, the efficiency of the compressor 14 can be improved.
実施の形態1で説明した電動機1は、空気調和機10以外に、換気扇、家電機器、又は工作機など、駆動源を有する機器に搭載できる。
The electric motor 1 described in Embodiment 1 can be installed in equipment having a drive source, such as a ventilation fan, a home appliance, or a machine tool, in addition to the air conditioner 10 .
以上に説明した各実施の形態における特徴及び各変形例における特徴は、互いに組み合わせることができる。
The features of each embodiment and the features of each modification described above can be combined with each other.
1,11a,13a,14a 電動機、 2 ロータ、 3 ステータ、 4 回路基板、 5,5a,5b 放熱部材、 6 樹脂、 7a,7b ベアリング、 8 ブラケット、 9 防水ゴム、 10 空気調和機、 11 室内機、 12 冷媒配管、 13 室外機、 31 ステータコア、 32 巻線、 33 絶縁部、 42 駆動回路、 51 ベース部、 52 突起部、 53 フィン。
1, 11a, 13a, 14a electric motor, 2 rotor, 3 stator, 4 circuit board, 5, 5a, 5b heat dissipation member, 6 resin, 7a, 7b bearing, 8 bracket, 9 waterproof rubber, 10 air conditioner, 11 indoor unit , 12 refrigerant pipe, 13 outdoor unit, 31 stator core, 32 winding, 33 insulating part, 42 drive circuit, 51 base part, 52 projection part, 53 fin.
Claims (14)
- ティースを有するステータコアと、
前記ティースに設けられた絶縁部と、
前記絶縁部に巻かれた巻線と、
前記ステータコアの外周面に対向する放熱部材と、
前記ステータコアの少なくとも一部を覆っている樹脂と
を備えたステータ。 a stator core having teeth;
an insulating portion provided on the teeth;
a winding wound around the insulation;
a heat radiating member facing the outer peripheral surface of the stator core;
and a resin covering at least part of the stator core. - 前記ステータコア、前記絶縁部、前記巻線、及び前記放熱部材は、前記樹脂で一体成形されている請求項1に記載のステータ。 The stator according to claim 1, wherein the stator core, the insulating portion, the windings, and the heat radiation member are integrally molded with the resin.
- 回路基板をさらに備え、
前記ステータコア、前記絶縁部、前記巻線、前記放熱部材、及び前記回路基板は、前記樹脂で一体成形されている請求項1に記載のステータ。 further comprising a circuit board,
2. The stator according to claim 1, wherein the stator core, the insulating portion, the windings, the heat dissipation member, and the circuit board are integrally molded with the resin. - 前記回路基板は、前記ステータの軸方向における前記ステータの一端側に位置している請求項3に記載のステータ。 The stator according to claim 3, wherein the circuit board is located on one end side of the stator in the axial direction of the stator.
- 前記放熱部材は、ベース部と、前記ベース部から突き出ている少なくとも1つの突起部とを有する請求項1から4のいずれか1項に記載のステータ。 The stator according to any one of claims 1 to 4, wherein the heat dissipation member has a base portion and at least one projection projecting from the base portion.
- 前記ティースの数と前記突起部の数は同一である請求項5に記載のステータ。 The stator according to claim 5, wherein the number of said teeth and the number of said protrusions are the same.
- 前記ステータコアの周方向において隣接する2つの前記突起部の間に前記樹脂が設けられている請求項5又は6に記載のステータ。 The stator according to claim 5 or 6, wherein the resin is provided between two of the protrusions that are adjacent in the circumferential direction of the stator core.
- 前記ティースが延在する方向に見たとき、前記突起部の位置は、前記ティースの少なくとも一部に重なっている請求項5から7のいずれか1項に記載のステータ。 The stator according to any one of claims 5 to 7, wherein the projection overlaps at least a part of the teeth when viewed in the direction in which the teeth extend.
- 前記放熱部材の少なくとも一部は、前記ステータの外部に露出している請求項1から8のいずれか1項に記載のステータ。 The stator according to any one of claims 1 to 8, wherein at least part of said heat radiating member is exposed to the outside of said stator.
- 前記放熱部材は、前記ステータの外部に露出しているフィンを有する請求項1から4のいずれか1項に記載のステータ。 The stator according to any one of claims 1 to 4, wherein the heat radiation member has fins exposed to the outside of the stator.
- 前記放熱部材は、前記ステータコアの周方向に連続的に延在している請求項1から10のいずれか1項に記載のステータ。 The stator according to any one of claims 1 to 10, wherein the heat dissipation member extends continuously in the circumferential direction of the stator core.
- 前記放熱部材は、前記ステータコアの前記外周面の全てを覆っている請求項11に記載のステータ。 The stator according to claim 11, wherein the heat radiating member covers the entire outer peripheral surface of the stator core.
- 請求項1から12のいずれか1項に記載のステータと、
前記ステータの内側に配置されたロータと
を備えた電動機。 A stator according to any one of claims 1 to 12;
and a rotor arranged inside the stator. - 室内機と、
前記室内機に接続される室外機と
を備え、
前記室内機、前記室外機、又は前記室内機及び前記室外機の各々は、請求項13に記載の電動機を有する
空気調和機。 indoor unit and
and an outdoor unit connected to the indoor unit,
Each of the indoor unit, the outdoor unit, or the indoor unit and the outdoor unit has the electric motor according to claim 13. An air conditioner.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023501735A JPWO2022180708A1 (en) | 2021-02-25 | 2021-02-25 | |
PCT/JP2021/006971 WO2022180708A1 (en) | 2021-02-25 | 2021-02-25 | Stator, electric motor, and air conditioner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/006971 WO2022180708A1 (en) | 2021-02-25 | 2021-02-25 | Stator, electric motor, and air conditioner |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022180708A1 true WO2022180708A1 (en) | 2022-09-01 |
Family
ID=83047883
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/006971 WO2022180708A1 (en) | 2021-02-25 | 2021-02-25 | Stator, electric motor, and air conditioner |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2022180708A1 (en) |
WO (1) | WO2022180708A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08140300A (en) * | 1994-11-07 | 1996-05-31 | Asmo Co Ltd | Motor with radiation fins |
JPH099575A (en) * | 1995-06-19 | 1997-01-10 | Hitachi Ltd | Rotary electric machine |
JP2006054963A (en) * | 2004-08-12 | 2006-02-23 | Minebea-Matsushita Motor Corp | Stepping motor |
JP2011244976A (en) * | 2010-05-26 | 2011-12-08 | Panasonic Corp | Washing machine |
JP2015115593A (en) * | 2013-12-16 | 2015-06-22 | 三菱電機株式会社 | Motor, air conditioner, and method of manufacturing motor |
-
2021
- 2021-02-25 WO PCT/JP2021/006971 patent/WO2022180708A1/en active Application Filing
- 2021-02-25 JP JP2023501735A patent/JPWO2022180708A1/ja active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08140300A (en) * | 1994-11-07 | 1996-05-31 | Asmo Co Ltd | Motor with radiation fins |
JPH099575A (en) * | 1995-06-19 | 1997-01-10 | Hitachi Ltd | Rotary electric machine |
JP2006054963A (en) * | 2004-08-12 | 2006-02-23 | Minebea-Matsushita Motor Corp | Stepping motor |
JP2011244976A (en) * | 2010-05-26 | 2011-12-08 | Panasonic Corp | Washing machine |
JP2015115593A (en) * | 2013-12-16 | 2015-06-22 | 三菱電機株式会社 | Motor, air conditioner, and method of manufacturing motor |
Also Published As
Publication number | Publication date |
---|---|
JPWO2022180708A1 (en) | 2022-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6664505B2 (en) | Electric motor, blower, air conditioner, and method for manufacturing electric motor | |
EP3573219B1 (en) | Electric motor, air conditioner, and method for manufacturing electric motor | |
JP7042968B2 (en) | How to manufacture motors, blowers, air conditioners and motors | |
JP7093347B2 (en) | Manufacturing methods for motors, compressors, and air conditioners, and motors | |
WO2022180708A1 (en) | Stator, electric motor, and air conditioner | |
JP7183401B2 (en) | MOTOR, BLOWER, AIR CONDITIONER, AND MOTOR MANUFACTURING METHOD | |
WO2024121879A1 (en) | Electric motor and air conditioner | |
WO2022249307A1 (en) | Electric motor and air conditioner | |
WO2023233609A1 (en) | Electric motor and air conditioner | |
WO2023148949A1 (en) | Electric motor and air conditioner | |
WO2023095316A1 (en) | Electric motor and air conditioner | |
JP7185048B2 (en) | Electric motors, blowers and air conditioners | |
JP7566627B2 (en) | ROTOR, MOTOR, FAN, AIR CONDITIONER, AND METHOD FOR MANUFACTURING ROTOR | |
WO2020026403A1 (en) | Rotor, motor, fan, air-conditioner, and rotor manufacturing method | |
AU2020431701A1 (en) | Outdoor Unit and Air Conditioner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21927810 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2023501735 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21927810 Country of ref document: EP Kind code of ref document: A1 |