[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022176733A1 - 飛翔位置導出方法、飛翔体追跡システム、地上システムおよび飛翔体対処システム - Google Patents

飛翔位置導出方法、飛翔体追跡システム、地上システムおよび飛翔体対処システム Download PDF

Info

Publication number
WO2022176733A1
WO2022176733A1 PCT/JP2022/005082 JP2022005082W WO2022176733A1 WO 2022176733 A1 WO2022176733 A1 WO 2022176733A1 JP 2022005082 W JP2022005082 W JP 2022005082W WO 2022176733 A1 WO2022176733 A1 WO 2022176733A1
Authority
WO
WIPO (PCT)
Prior art keywords
flying object
satellite
monitoring
latitude
monitoring data
Prior art date
Application number
PCT/JP2022/005082
Other languages
English (en)
French (fr)
Inventor
久幸 迎
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2023500772A priority Critical patent/JP7504281B2/ja
Priority to US18/275,213 priority patent/US20240101279A1/en
Publication of WO2022176733A1 publication Critical patent/WO2022176733A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/10Artificial satellites; Systems of such satellites; Interplanetary vehicles
    • B64G1/1021Earth observation satellites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/10Artificial satellites; Systems of such satellites; Interplanetary vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/10Artificial satellites; Systems of such satellites; Interplanetary vehicles
    • B64G1/1007Communications satellites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/10Artificial satellites; Systems of such satellites; Interplanetary vehicles
    • B64G1/1085Swarms and constellations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G3/00Observing or tracking cosmonautic vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H11/00Defence installations; Defence devices
    • F41H11/02Anti-aircraft or anti-guided missile or anti-torpedo defence installations or systems

Definitions

  • the present disclosure relates to technology for tracking the flight trajectory of a flying object.
  • the flying object countermeasure system uses an infrared observation device mounted on a geostationary orbit satellite to detect the plume at the time of launch, predicts the landing position based on movement information in the early stages of flight, and responds with the countermeasure system.
  • the flying object countermeasure system uses an infrared observation device mounted on a geostationary orbit satellite to detect the plume at the time of launch, predicts the landing position based on movement information in the early stages of flight, and responds with the countermeasure system.
  • Infrared observation device mounted on a geostationary orbit satellite to detect the plume at the time of launch, predicts the landing position based on movement information in the early stages of flight, and responds with the countermeasure system.
  • When launched extremely hot gas spreads over a wide area. Therefore, it is possible to detect flying objects even when monitoring from a geostationary orbit.
  • a low earth orbit satellite constellation is a satellite constellation made up of low earth orbit satellites.
  • a constellation of low earth orbit satellites is one or more low earth orbit satellites.
  • a low earth orbit satellite is a satellite that flies in a low earth orbit, such as LEO.
  • LEO is an abbreviation for Low Earth Orbit.
  • Patent Document 1 discloses a surveillance satellite that circulates in a low orbit and comprehensively monitors a specific latitude area within the global surface of the earth.
  • the present disclosure aims to enable tracking of the flight trajectory of a flying object.
  • a first monitoring satellite while orbiting the earth, monitors the periphery of the earth on which a flying object flies at a target time from a first latitude, obtains first monitoring data, and transmits the first monitoring data
  • a second monitoring satellite while orbiting the earth, monitors the circumference of the earth at the target time from a second latitude to obtain second monitoring data, and transmits the second monitoring data
  • a third monitoring satellite while orbiting the earth, monitors the periphery of the earth at the target time from a third latitude to obtain third monitoring data, and transmits the third monitoring data
  • the ground system receiving the first monitoring data, the second monitoring data and the third monitoring data; calculating a first line-of-sight direction from the first monitoring satellite to the flying object at the target time based on the first monitoring data; calculating from the second monitoring satellite at the target time based on the second monitoring data; calculating a second line-of-sight direction to the flying object, calculating a third line-
  • the present disclosure it is possible to calculate the flying object coordinate values at each time. Therefore, it is possible to track the flight trajectory of the flying object.
  • FIG. 1 is a configuration diagram of a flying object tracking system 101 according to Embodiment 1.
  • FIG. 1 is a configuration diagram of a monitoring satellite 120 according to Embodiment 1.
  • FIG. FIG. 2 shows monitoring by the flying object tracking system 101 according to the first embodiment;
  • FIG. 10 is a diagram showing monitoring by the flying object tracking system 101 according to the second embodiment;
  • FIG. 11 is a configuration diagram of a flying object countermeasure system 102 according to Embodiment 3;
  • FIG. 11 is a configuration diagram of a flying object tracking system 103 according to Embodiment 4;
  • FIG. 12 is a diagram showing three patterns of distances (A, B, and C) according to the fourth embodiment;
  • FIG. 11 is a diagram showing two flight path models (ballistic flight) according to Embodiment 4;
  • FIG. 11 is a diagram showing two flight path models (intermittent injection) according to Embodiment 4;
  • FIG. 11 is a configuration diagram of a flying object countermeasure system 104 according to Em
  • Embodiment 1 The flying object tracking system 101 will be described with reference to FIGS. 1 to 3.
  • FIG. 1 A flying object tracking system 101 will be described with reference to FIGS. 1 to 3.
  • the flying object tracking system 101 is a system for tracking the flight trajectory of the flying object 109 .
  • the flying object tracking system 101 includes a satellite constellation 110 and a ground system 130.
  • Satellite constellation 110 has three or more surveillance satellites 120 including a first surveillance satellite 120A, a second surveillance satellite 120B, and a third surveillance satellite 120C.
  • Monitoring satellite 120 is an artificial satellite for monitoring flying object 109 .
  • the configuration of the monitoring satellite 120 will be described based on FIG.
  • the surveillance satellite 120 includes a communication device 121 , a surveillance device 122 , a propulsion device 123 , an attitude control device 124 , a satellite control device 125 and a power supply device 126 .
  • the communication device 121 is a communication device for communicating with the ground system 130. For example, communication device 121 receives various commands from ground system 130 . The communication device 121 also transmits monitoring data obtained by the monitoring device 122 to the ground system 130 .
  • the monitoring device 122 is a device for monitoring the flying object 109 and generates monitoring data. Specifically, the monitoring device 122 is a monitoring device that uses infrared rays.
  • the attitude control device 124 is a device for controlling attitude elements such as the attitude of the surveillance satellite 120 and the angular velocity of the surveillance satellite 120 .
  • Attitude control device 124 changes each attitude element in a desired direction.
  • attitude controller 124 maintains each attitude element in the desired orientation.
  • the attitude control device 124 includes an attitude sensor, an actuator, and a controller.
  • Attitude sensors include gyroscopes, earth sensors, sun sensors, star trackers, thrusters and magnetic sensors.
  • Actuators include attitude control thrusters, momentum wheels, reaction wheels and control moment gyros.
  • the controller controls the actuators according to measurement data from the attitude sensor or various commands from the ground system 130 .
  • the power supply device 126 includes a solar battery, a battery, a power control device, and the like, and supplies power to each device of the surveillance satellite 120 .
  • the surveillance satellite 120 has a pointing function for directing the line of sight to the flying object 109 .
  • surveillance satellites 120 include reaction wheels.
  • a reaction wheel is a device for controlling the attitude of surveillance satellite 120 .
  • Body pointing is achieved by the reaction wheels controlling the attitude of the surveillance satellite 120 .
  • surveillance satellite 120 includes a pointing mechanism.
  • the pointing mechanism is a mechanism for changing the viewing direction of the monitoring device 122 (viewing direction changing device). For example, a driving mirror or the like is used as the pointing mechanism.
  • the ground system 130 has a communication device 131 and a satellite control device 132 .
  • the satellite control device 132 is a computer equipped with hardware such as processing circuits and input/output interfaces. An input device and an output device are connected to the input/output interface.
  • the satellite control device 132 is connected to the communication device 131 via an input/output interface. Satellite controller 132 generates various commands for each surveillance satellite 120 to control satellite constellation 110 .
  • the satellite control device 132 also analyzes the monitoring data obtained from each monitoring satellite 120 to generate information (for example, position information) of the flying object 109 .
  • the communication device 131 communicates with each monitoring satellite 120 . Specifically, the communication device 131 transmits various commands to each monitoring satellite 120 .
  • the communication device 131 also receives monitoring data transmitted from each monitoring satellite 120 .
  • the processing circuitry may be dedicated hardware or a processor executing a program stored in memory. In the processing circuit, some functions may be implemented in dedicated hardware and the remaining functions may be implemented in software or firmware. That is, processing circuitry can be implemented in hardware, software, firmware, or a combination thereof.
  • Dedicated hardware may be, for example, single circuits, multiple circuits, programmed processors, parallel programmed processors, ASICs, FPGAs, or combinations thereof.
  • ASIC is an abbreviation for Application Specific Integrated Circuit.
  • FPGA is an abbreviation for Field Programmable Gate Array.
  • Satellite controller 132 generates commands for controlling the altitude of each surveillance satellite 120 .
  • the satellite control device 132 also generates commands for controlling the orbital inclination of each surveillance satellite 120 .
  • the satellite control device 132 then transmits these commands to each monitoring satellite 120 .
  • the satellite controller 125 adjusts the satellite altitude and orbital inclination, respectively, according to these commands. Specifically, satellite controller 125 controls propulsion device 123 according to these commands.
  • the satellite altitude and orbital inclination can be adjusted by the propulsion unit 123 changing the satellite velocity.
  • the propulsion unit 123 changing the satellite velocity.
  • the propulsion device 123 generates thrust in a direction perpendicular to the orbital plane at a point (an equinox) where the surveillance satellite 120 crosses the sky above the equator, the orbital inclination angle can be finely adjusted effectively.
  • the position of each monitoring satellite 120 at each time is known in the ground system 130.
  • the first monitoring satellite 120A While orbiting the earth, the first monitoring satellite 120A monitors the circumference of the earth where the flying object 109 flies from the first latitude at the target time.
  • the first latitude is a latitude within the range from -10 degrees to +10 degrees. That is, the first monitoring satellite 120A monitors the flying object 109 by performing rim observation from above the equator. Thereby, the first monitoring data is obtained.
  • the first monitoring data is monitoring data obtained by the first monitoring satellite 120A.
  • First monitoring satellite 120 A obtains first monitoring data and transmits the first monitoring data to ground system 130 .
  • the second monitoring satellite 120B orbits the earth and monitors the circumference of the earth at the time of interest from the second latitude.
  • the second latitude is a latitude within the range from plus 20 degrees to plus 40 degrees.
  • the second monitoring satellite 120B monitors the flying object 109 by performing rim observation from the mid-latitude band. Thereby, the second monitoring data is obtained.
  • the second monitoring data is monitoring data obtained by the second monitoring satellite 120B.
  • Second monitoring satellite 120 B obtains second monitoring data and transmits the second monitoring data to ground system 130 .
  • the third monitoring satellite 120C orbits the earth and monitors the circumference of the earth from the third latitude at the time of interest.
  • the third latitude is a latitude within the range from plus 40 degrees to plus 60 degrees.
  • the third surveillance satellite 120C orbits the earth in an inclined orbit.
  • the third latitude is the latitude of the northern end of the inclined orbit. That is, the third monitoring satellite 120C monitors the flying object 109 by performing (rearward) rim observation from near the northern end of the orbital plane. Thereby, the third monitoring data is obtained.
  • the third monitoring data is monitoring data obtained by the third monitoring satellite 120C.
  • Third monitoring satellite 120 C obtains third monitoring data and transmits the third monitoring data to ground system 130 .
  • Ground system 130 operates as follows. First, ground system 130 receives first monitoring data, second monitoring data, and third monitoring data. Ground system 130 then calculates a first line-of-sight direction based on the first monitoring data. The first line-of-sight direction is the line-of-sight direction from the first monitoring satellite 120A to the flying object 109 at the target time. The ground system 130 also calculates a second line-of-sight direction based on the second monitoring data. The second line-of-sight direction is the line-of-sight direction from the second monitoring satellite 120B to the flying object 109 at the target time. Additionally, the ground system 130 calculates a third line-of-sight direction based on the third monitoring data.
  • the third line-of-sight direction is the line-of-sight direction from the third monitoring satellite 120C to the flying object 109 at the target time. Then, the ground system 130 calculates the flying object coordinate values at the target time based on the first line-of-sight direction, the second line-of-sight direction, and the third line-of-sight direction.
  • the flying object coordinate values are coordinate values indicating the position of the flying object 109 .
  • ground system 130 calculates a first straight line.
  • the first straight line is a straight line passing through the first viewing direction. That is, the first straight line is a straight line passing through the first monitoring satellite 120A and having the same inclination as the first line-of-sight direction.
  • Ground system 130 also calculates a second straight line.
  • the second straight line is a straight line passing through the second viewing direction. That is, the second straight line is a straight line that passes through the second monitoring satellite 120B and has the same inclination as the second line-of-sight direction.
  • ground system 130 computes a third straight line.
  • the third straight line is a straight line passing through the third line-of-sight direction.
  • the third straight line passes through the third monitoring satellite 120C and has the same inclination as the third line-of-sight direction.
  • the ground system 130 then calculates the coordinate values of the intersections of the first straight line, the second straight line, and the third straight line.
  • the calculated coordinate values are flying object coordinate values.
  • the coordinate values of the flying object are calculated as follows. First, the ground system 130 calculates a sphere where the first straight line, the second straight line, and the third straight line touch. The ground system 130 then calculates the coordinate values of the center of the calculated sphere. The calculated coordinate values are flying object coordinate values.
  • a polar orbiting satellite is a surveillance satellite 120 that orbits a polar orbit.
  • an equatorial satellite or an inclined orbit satellite flying near the equator corresponds to the first monitoring satellite 120A.
  • polar orbiting satellites are included in satellite constellation 110, surveillance from high latitudes may be performed on the polar orbiting satellites.
  • the satellite constellation 110 consists only of tilted orbit satellites, it makes sense to monitor near the northernmost point of the tilted orbit. According to Embodiment 1, the position coordinates of the flying object 109 launched from the mid-latitude zone and flying in the east-west direction can be derived with high accuracy.
  • Embodiment 2 The flying object tracking system 101 will be described mainly with reference to FIG. 4 for differences from the first embodiment.
  • the first monitoring satellite 120A monitors the circumference of the earth where the flying object 109 flies from the first latitude at the target time.
  • the first latitude is a latitude within the range from plus 20 degrees to plus 40 degrees. That is, the first monitoring satellite 120A monitors the flying object 109 by performing rim observation from the mid-latitude band. Thereby, the first monitoring data is obtained.
  • First monitoring satellite 120 A obtains first monitoring data and transmits the first monitoring data to ground system 130 .
  • the third monitoring satellite 120C orbits the earth and monitors the circumference of the earth from the third latitude at the time of interest.
  • the third latitude is a latitude of plus 50 degrees or more. That is, the third monitoring satellite 120C monitors the flying object 109 by performing (rear) rim observation from a high latitude band. Thereby, the third monitoring data is obtained.
  • Third monitoring satellite 120 C obtains third monitoring data and transmits the third monitoring data to ground system 130 .
  • ground system 130 The operation of the ground system 130 is the same as that in the first embodiment.
  • Embodiment 3 The flying object countermeasure system 102 will be described mainly with reference to FIG. 5 for differences from the first and second embodiments.
  • the flying object handling system 102 is an example of the flying object tracking system 101 .
  • the flying object handling system 102 is a system for tracking the flight trajectory of the flying object 109 and handling the flying object 109 .
  • the airborne object countermeasure system 102 comprises a satellite constellation 110 , a ground system 130 and a plurality of countermeasure assets 140 .
  • a plurality of countermeasure assets 140 are placed at different locations to counter the flying object 109 .
  • Examples of response assets 140 are aircraft, ships, or vehicles.
  • the ground system 130 includes a communication device 131 , a satellite control device 132 and a communication device 133 .
  • the communication device 133 is a device for communicating with each handling asset 140 .
  • the ground system 130 calculates the flying object coordinate values at each time.
  • the calculation method is the same as the method in the first embodiment.
  • the ground system 130 selects one or more response assets 140 from multiple response assets 140 based on the flying object coordinate values at each time. For example, ground system 130 predicts the destination of projectile 109 and selects response asset 140 that is closest to the predicted destination. Ground system 130 then generates projectile information data and transmits the projectile information data to each of the selected one or more response assets 140 .
  • the flying object information data indicates information on the flying object 109 . For example, the flying object information data indicates flying object coordinate values at each time.
  • Embodiment 3 it is possible to track the flying object 109 and select the countermeasure asset 140 to deal with the flying object 109 .
  • Embodiment 4 The flying object tracking system 103 will be described mainly with reference to FIGS. 6 to 9 for differences from the first or second embodiment.
  • the flying object tracking system 103 is a system for tracking the flight trajectory of the flying object 109 .
  • the flying object tracking system 103 includes a satellite constellation 110 and a ground system 130.
  • the satellite constellation 110 has multiple surveillance satellites 120 .
  • Each of first surveillance satellite 120A, second surveillance satellite 120B, and third surveillance satellite 120C is an example of surveillance satellite 120 included in flying object tracking system 103 .
  • the satellite control device 132 stores multiple flight path models.
  • the flight path model represents the predicted flight path of the flying object 109 .
  • the flight path model indicates coordinate values indicating the launch point of the flying object 109 (launch point coordinate values).
  • the flight path model indicates the flight direction of the flying object 109 .
  • the flight path model indicates the flight distance and flight altitude at each time after launch. Each time after launch is indicated by the elapsed time from the time of launch.
  • a plurality of monitoring satellites 120 monitor the flying object 109 from mutually different positions at a target time, obtain a plurality of monitoring data, and transmit a plurality of monitoring data.
  • Ground system 130 operates as follows. First, ground system 130 receives a plurality of monitoring data. Ground system 130 then selects a trajectory model from the multiple trajectory models based on the multiple monitoring data. Then, the ground system 130 calculates the flying object coordinate values at the target time based on the selected flight path model.
  • the ground system 130 derives the position coordinates that minimize the divergence between the line-of-sight vector from the monitoring satellite 120 to the flying object 109 at the target time and the flight position coordinates at the target time in the provisional flight path model as updated flight position coordinates.
  • FIG. 7 shows three patterns of distances (A, B, and C) from launch to landing of the projectile 109 .
  • a black circle represents the flying object 109 .
  • the projectile 109 is launched from a point within the launch area and lands at a point within the landing area.
  • FIG. 8 shows two flight path models when the projectile 109 makes ballistic flight. Each trajectory model shows the relationship between distance and altitude. The reaching distance of the flying object 109 in one flight path model is distance A, and the reaching distance of the flying object 109 in the other flight path model is distance C.
  • FIG. FIG. 9 shows two flight path models when the projectile 109 ejects intermittently. Each trajectory model shows the relationship between distance and altitude. The reaching distance of the flying object 109 in one flight path model is distance B, and the reaching distance of the flying object 109 in the other flight path model is distance C.
  • FIG. 8 shows two flight path models when the projectile 109 makes ballistic flight. Each trajectory model shows the relationship between distance and altitude. The reaching distance of
  • the ground system 130 corrects the deviation between the selected trajectory model and the actual trajectory of the flying object 109 based on the measurement information from the subsequent satellites.
  • the ground system 130 then derives flight position coordinates with high accuracy.
  • the flight profile is formed in the vertical plane containing the launch position coordinates.
  • the flying object 109 is positioned at the intersection of the line-of-sight vector and the vertical plane when the flying object 109 is monitored by the following satellite.
  • the divergence caused by the azimuth angle error of the flight path model, the profile error, the analysis error of the position coordinates of the surveillance satellite 120, and the analysis error of the azimuth angle of each line-of-sight vector becomes apparent.
  • the flying object 109 By ensuring consistency with the flight information from subsequent satellites, it is possible to reduce mutual errors and derive highly accurate flight position coordinates. If the flying object 109 intermittently repeats ejection, the flight path of the flying object 109 becomes more complicated than when the flying object 109 performs ballistic flight. However, by repeating flight information acquisition by subsequent satellites, the elapsed time after launch of the flying object 109 increases, and the flight distance of the flying object 109 increases. Then, the estimation accuracy of the azimuth angle is improved, and the amount of error included in the flight path model is reduced. Even if the flying object 109 ejects intermittently, the altitude or horizontal movement distance immediately after ejection is small compared to the flight distance of a long distance.
  • the position coordinates of flying object 109 can be derived without using a plurality of pieces of monitoring data acquired by a plurality of monitoring satellites 120 at the same time. Specifically, the position coordinates can be derived based on the flight path model according to the elapsed time after the launch of the flying object 109 . Therefore, there is a high degree of freedom in obtaining monitoring data from subsequent satellites, making it easy to collect monitoring data. Needless to say, it is possible to derive the flight position with high accuracy by performing monitoring from many directions with different azimuth angles of the line-of-sight vectors and collecting monitoring data.
  • Embodiment 5 The flying object countermeasure system 104 will be described mainly with reference to FIG. 10 for differences from the first to fourth embodiments.
  • the configuration of the flying object countermeasure system 104 will be described based on FIG.
  • the flying object handling system 104 is an example of the flying object tracking system 103 .
  • the flying object handling system 104 is a system for tracking the flight trajectory of the flying object 109 and handling the flying object 109 .
  • the flying object countermeasure system 104 includes a satellite constellation 110 and a ground system 130 as in the configuration of the fourth embodiment.
  • the flying object countermeasure system 104 includes a plurality of countermeasure assets 140 as in the configuration in the third embodiment.
  • the ground system 130 has a communication device 133 as in the configuration of the third embodiment.
  • the projectile When the projectile is launched, the high-temperature atmosphere diffuses, making it easy to monitor.
  • the body of the projectile in the post-boost phase has a small solid angle that can be seen from the surveillance satellite, and the temperature rise is not as remarkable as that of the plume. Therefore, if the background land information is mixed with the flying object information, there is a concern that the flying object cannot be identified.
  • the post-boost phase is the phase after injection has ceased. Therefore, by using a monitoring method called rim observation, which points toward the earth's periphery, the body of the flying object whose temperature has risen is monitored against the background of deep space. As a result, the flying object can be monitored without the flying object information being buried in noise.
  • the satellite control device functions as a flight path prediction device that integrates flying object information indicating high-temperature objects detected by a plurality of surveillance satellites and analyzes changes in time-series positional information. As a result, the flying object can be tracked and the flight path can be predicted. Even if the flying object intermittently re-injects mid-flight and changes its traveling direction, the flight path prediction device tracks the traveling direction and continuously acquires time-series information, so that it is possible to take measures against the flying object. It becomes possible.
  • Response assets include aircraft, ships and vehicles deployed on land, sea and air.
  • ground-mounted equipment and the like also exist.
  • due to security restrictions, etc. it may not be possible to disclose the location information of individual response assets. Therefore, when the flying object response system uses a special dedicated system, it is possible to collect commands to the response assets and information on the flying objects in the response ground center (ground system), and execute commands to the response assets from the response ground center. Be reasonable.
  • the operation method of the flying object countermeasure system varies depending on the configuration method and operation method of the entire system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

飛翔体(109)は地球周縁を飛翔する。3機の監視衛星(120)は、対象時刻に互いに異なる緯度から地球周縁を監視し、3つの監視データを送信する。地上システム(130)は、3つの監視データを受信し、3つの監視データに基づいて対象時刻における3機の監視衛星から飛翔体への3つの視線方向を算出し、3つの視線方向に基づいて対象時刻における飛翔体の位置を示す飛翔体座標値を算出する。

Description

飛翔位置導出方法、飛翔体追跡システム、地上システムおよび飛翔体対処システム
 本開示は、飛翔体の飛翔軌跡を追跡するための技術に関するものである。
 飛翔体が弾道飛行することを前提とする飛翔体対処システムが存在する。
 飛翔体対処システムは、発射時の噴霧(プルーム)を静止軌道衛星に搭載した赤外観測装置で探知し、飛行初期の段階の移動情報に基づき着地位置を予測し、対処システムで対処する。
 発射時には、極めて高温な気体が広域に広がる。そのため、静止軌道からの監視でも飛翔体の探知が可能である。
 しかしながら、昨今、Hypersonic Glide Vehicle(HGV)と呼ばれる飛翔体が登場して新しい脅威となっている。この飛翔体は、飛行途中で間欠的に噴射して飛行経路を変更する。
 噴射を止めた飛翔体を追跡するためには、飛翔体の本体の温度を検知する必要がある。そのため、高分解能かつ高感度の赤外監視が必要となり、従来の静止衛星による監視では対応できない。
 そこで、低軌道衛星コンステレーションにより、静止軌道よりもはるかに近距離から飛翔体を監視するシステムの研究が始まっている。
 そして、低軌道衛星コンステレーションで常時監視を行って、飛翔体の発射の探知後に即座に対処アセットに情報を伝達する仕組みが待望されている。
 低軌道衛星コンステレーションは、低軌道衛星群で構成される衛星コンステレーションである。
 低軌道衛星群は、1機以上の低軌道衛星である。
 低軌道衛星は、LEOのような低軌道を飛翔する人工衛星である。
 LEOは、Low Earth Orbitの略称である。
 特許文献1は、低軌道を周回して地球の全球面内における特定緯度の地域を網羅的に監視するための監視衛星について開示している。
特許4946398号公報
 本開示は、飛翔体の飛翔軌跡の追跡を可能にすることを目的とする。
 本開示の飛翔位置導出方法では、
 第1監視衛星が、地球を周回しながら、飛翔体が飛翔する地球周縁を対象時刻に第1緯度から監視して第1監視データを得て、前記第1監視データを送信し、
 第2監視衛星が、地球を周回しながら、前記地球周縁を前記対象時刻に第2緯度から監視して第2監視データを得て、前記第2監視データを送信し、
 第3監視衛星が、地球を周回しながら、前記地球周縁を前記対象時刻に第3緯度から監視して第3監視データを得て、前記第3監視データを送信し、
 地上システムが、
 前記第1監視データと前記第2監視データと前記第3監視データを受信し、
 前記第1監視データに基づいて前記対象時刻における前記第1監視衛星から前記飛翔体への第1視線方向を算出し、前記第2監視データに基づいて前記対象時刻における前記第2監視衛星から前記飛翔体への第2視線方向を算出し、前記第3監視データに基づいて前記対象時刻における前記第3監視衛星から前記飛翔体への第3視線方向を算出し、
 前記第1視線方向と前記第2視線方向と前記第3視線方向に基づいて、前記対象時刻における前記飛翔体の位置を示す飛翔体座標値を算出する。
 本開示によれば、各時刻の飛翔体座標値を算出することが可能となる。したがって、飛翔体の飛翔軌跡の追跡が可能となる。
実施の形態1における飛翔体追跡システム101の構成図。 実施の形態1における監視衛星120の構成図。 実施の形態1における飛翔体追跡システム101による監視を示す図。 実施の形態2における飛翔体追跡システム101による監視を示す図。 実施の形態3における飛翔体対処システム102の構成図。 実施の形態4における飛翔体追跡システム103の構成図。 実施の形態4における3パターンの距離(A,B,C)を示す図。 実施の形態4における2つの飛翔経路モデル(弾道飛行)を示す図。 実施の形態4における2つの飛翔経路モデル(間欠的噴射)を示す図。 実施の形態5における飛翔体対処システム104の構成図。
 実施の形態および図面において、同じ要素または対応する要素には同じ符号を付している。説明した要素と同じ符号が付された要素の説明は適宜に省略または簡略化する。
 実施の形態1.
 飛翔体追跡システム101について、図1から図3に基づいて説明する。
***構成の説明***
 図1に基づいて、飛翔体追跡システム101の構成を説明する。
 飛翔体追跡システム101は、飛翔体109の飛翔の軌跡を追跡するためのシステムである。
 飛翔体追跡システム101は、衛星コンステレーション110と、地上システム130と、を備える。
 衛星コンステレーション110は、第1監視衛星120Aと、第2監視衛星120Bと、第3監視衛星120Cと、を含む3機以上の監視衛星120を有する。
 監視衛星120は、飛翔体109を監視するための人工衛星である。
 図2に基づいて、監視衛星120の構成を説明する。
 監視衛星120は、通信装置121と、監視装置122と、推進装置123と、姿勢制御装置124と、衛星制御装置125と、電源装置126と、を備える。
 通信装置121は、地上システム130と通信するための通信装置である。例えば、通信装置121は、地上システム130から各種コマンドを受信する。また、通信装置121は、監視装置122によって得られる監視データを地上システム130に送信する。
 監視装置122は、飛翔体109を監視するための装置であり、監視データを生成する。具体的には、監視装置122は、赤外線を利用する監視装置である。
 監視データは、飛翔体109が映った画像に相当するデータであり、監視装置122の視野(監視範囲)における飛翔体109の位置を示す。
 監視データは、時刻情報、位置情報、視線情報および視野情報などを含んでもよい。時刻情報は、監視が行われた時刻(監視時刻)を示す。位置情報は、監視衛星120の座標値を示す。視線情報は、監視装置122の視線方向を示す。視野情報は、監視装置122の視野を示す。
 推進装置123は、監視衛星120に推進力を与える装置であり、監視衛星120の速度を変化させる。具体的には、推進装置123は電気推進機である。例えば、推進装置123は、イオンエンジンまたはホールスラスタである。
 姿勢制御装置124は、監視衛星120の姿勢と監視衛星120の角速度といった姿勢要素を制御するための装置である。
 姿勢制御装置124は、各姿勢要素を所望の方向に変化させる。もしくは、姿勢制御装置124は、各姿勢要素を所望の方向に維持する。姿勢制御装置124は、姿勢センサとアクチュエータとコントローラとを備える。姿勢センサは、ジャイロスコープ、地球センサ、太陽センサ、スター・トラッカ、スラスタおよび磁気センサなどである。アクチュエータは、姿勢制御スラスタ、モーメンタムホイール、リアクションホイールおよびコントロール・モーメント・ジャイロ等である。コントローラは、姿勢センサの計測データまたは地上システム130からの各種コマンドにしたがって、アクチュエータを制御する。
 姿勢制御装置124は、監視装置122の視野方向を変更するための装置(視野方向変更装置)として使用することができる。監視装置122の視野方向は、監視装置122の視線方向に相当する。監視装置122の視線方向を中心とする範囲(視野)が監視範囲となる。
 衛星制御装置125は、監視衛星120の各装置を制御するコンピュータであり、処理回路を備える。例えば、衛星制御装置125は、地上システム130から送信される各種コマンドにしたがって、各装置を制御する。
 電源装置126は、太陽電池、バッテリおよび電力制御装置などを備え、監視衛星120の各装置に電力を供給する。
 監視衛星120のポインティング機能について説明する。
 監視衛星120は、視線方向を飛翔体109へ向けるためのポインティング機能を有する。
 例えば、監視衛星120は、リアクションホイールを備える。リアクションホイールは、監視衛星120の姿勢を制御するための装置である。リアクションホイールが監視衛星120の姿勢を制御することによって、ボディポインティングが実現される。
 例えば、監視衛星120は、ポインティング機構を備える。ポインティング機構は、監視装置122の視野方向を変えるための機構(視野方向変更装置)である。例えば、ポインティング機構として、駆動ミラーなどが利用される。
 図1に戻り、地上システム130の構成を説明する。
 地上システム130は、通信装置131と、衛星管制装置132と、を備える。
 衛星管制装置132は、処理回路および入出力インタフェースなどのハードウェアを備えるコンピュータである。入出力インタフェースには、入力装置および出力装置が接続される。衛星管制装置132は、入出力インタフェースを介して、通信装置131に接続される。衛星管制装置132は、衛星コンステレーション110を制御するために、各監視衛星120に対する各種コマンドを生成する。また、衛星管制装置132は、各監視衛星120から得られる監視データを解析して飛翔体109の情報(例えば位置情報)を生成する。
 通信装置131は、各監視衛星120と通信を行う。具体的には、通信装置131は、各種コマンドを各監視衛星120へ送信する。また、通信装置131は、各監視衛星120から送信される監視データを受信する。
 衛星管制装置132と衛星制御装置125とのそれぞれに備わる処理回路について説明する。
 処理回路は、専用のハードウェアであってもよいし、メモリに格納されるプログラムを実行するプロセッサであってもよい。
 処理回路において、一部の機能が専用のハードウェアで実現されて、残りの機能がソフトウェアまたはファームウェアで実現されてもよい。つまり、処理回路は、ハードウェア、ソフトウェア、ファームウェアまたはこれらの組み合わせで実現することができる。
 専用のハードウェアは、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC、FPGAまたはこれらの組み合わせである。
 ASICは、Application Specific Integrated Circuitの略称である。
 FPGAは、Field Programmable Gate Arrayの略称である。
 衛星高度および軌道傾斜角の調整について説明する。
 監視衛星120の軌道面の法線を北極側から見た相対角度は、衛星高度と軌道傾斜角との相関で成立する。
 1日当たりの衛星周回数を維持する高度条件において、適切な軌道傾斜角を微調整することにより、軌道面間の相対角度を維持したまま、衛星コンステレーション110の運用が可能となる。
 衛星管制装置132は、各監視衛星120の高度を制御するためのコマンドを生成する。また、衛星管制装置132は、各監視衛星120の軌道傾斜角を制御するためのコマンドを生成する。そして、衛星管制装置132は、これらコマンドを各監視衛星120へ送信する。
 各監視衛星120において、衛星制御装置125は、これらのコマンドにしたがって、衛星高度と軌道傾斜角とのそれぞれを調整する。具体的には、衛星制御装置125は、これらのコマンドにしたがって、推進装置123を制御する。推進装置123が衛星速度を変えることにより、衛星高度と軌道傾斜角とを調整することができる。
 監視衛星120の飛行速度が増速すると、監視衛星120の高度が上昇する。そして、監視衛星120の高度が上昇すると、監視衛星120の対地速度が減速する。
 監視衛星120の飛行速度が減速すると、監視衛星120の高度が下降する。そして、監視衛星120の高度が下降すると、監視衛星120の対地速度が増速する。
 監視衛星120が赤道上空を横切る地点(分点)において推進装置123が軌道面と直交する方向へ推力を発生させれば、効果的に軌道傾斜角を微調整することができる。
***動作の説明***
 飛翔体追跡システム101の動作の手順は飛翔位置導出方法に相当する。
 図3に基づいて、飛翔位置導出方法を説明する。
 上向きの黒三角は、発射時の飛翔体109を表す。他方の黒三角形は、発射後に飛翔している飛翔体109を表す。
 監視衛星120Dは、衛星コンステレーション110に含まれる監視衛星120である。監視衛星120Dは、第1監視衛星120Aと第2監視衛星120Bと第3監視衛星120Cとのいずれかであってよいし、他の監視衛星120であってもよい。監視衛星120Dは、飛翔体109の発射地点を直下視して飛翔体109の発射を探知する。
 地上システム130の図示は省略する。
 各時刻における各監視衛星120の位置は、地上システム130において既知である。
 第1監視衛星120Aは、地球を周回しながら、飛翔体109が飛翔する地球周縁を対象時刻に第1緯度から監視する。第1緯度は、マイナス10度からプラス10度までの範囲内の緯度である。つまり、第1監視衛星120Aは、赤道上空からリム観測を行って飛翔体109を監視する。これにより、第1監視データが得られる。第1監視データは、第1監視衛星120Aによって得られる監視データである。
 第1監視衛星120Aは、第1監視データを得て、第1監視データを地上システム130へ送信する。
 第2監視衛星120Bは、地球を周回しながら、地球周縁を対象時刻に第2緯度から監視する。第2緯度は、プラス20度からプラス40度までの範囲内の緯度である。つまり、第2監視衛星120Bは、中緯度帯からリム観測を行って飛翔体109を監視する。これにより、第2監視データが得られる。第2監視データは、第2監視衛星120Bによって得られる監視データである。
 第2監視衛星120Bは、第2監視データを得て、第2監視データを地上システム130へ送信する。
 第3監視衛星120Cは、地球を周回しながら、地球周縁を対象時刻に第3緯度から監視する。第3緯度は、プラス40度からプラス60度までの範囲内の緯度である。例えば、第3監視衛星120Cは、傾斜軌道を飛翔して地球を周回する。そして、第3緯度は、傾斜軌道の北端部の緯度である。つまり、第3監視衛星120Cは、軌道面の北端付近から(後方)リム観測を行って飛翔体109を監視する。これにより、第3監視データが得られる。第3監視データは、第3監視衛星120Cによって得られる監視データである。
 第3監視衛星120Cは、第3監視データを得て、第3監視データを地上システム130へ送信する。
 地上システム130は、以下のように動作する。
 まず、地上システム130は、第1監視データと第2監視データと第3監視データを受信する。
 次に、地上システム130は、第1監視データに基づいて第1視線方向を算出する。第1視線方向は、対象時刻における第1監視衛星120Aから飛翔体109への視線方向である。
 また、地上システム130は、第2監視データに基づいて第2視線方向を算出する。第2視線方向は、対象時刻における第2監視衛星120Bから飛翔体109への視線方向である。
 さらに、地上システム130は、第3監視データに基づいて第3視線方向を算出する。第3視線方向は、対象時刻における第3監視衛星120Cから飛翔体109への視線方向である。
 そして、地上システム130は、第1視線方向と第2視線方向と第3視線方向に基づいて、対象時刻における飛翔体座標値を算出する。飛翔体座標値は、飛翔体109の位置を示す座標値である。
 飛翔体座標値は、以下のように算出される。
 まず、地上システム130は第1直線を算出する。第1直線は、第1視線方向を通る直線である。つまり、第1直線は、第1監視衛星120Aを通り、第1視線方向と同じ傾きを有する直線である。
 また、地上システム130は第2直線を算出する。第2直線は、第2視線方向を通る直線である。つまり、第2直線は、第2監視衛星120Bを通り、第2視線方向と同じ傾きを有する直線である。
 さらに、地上システム130は第3直線を算出する。第3直線は、第3視線方向を通る直線である。つまり、第3直線は、第3監視衛星120Cを通り、第3視線方向と同じ傾きを有する直線である。
 そして、地上システム130は、第1直線と第2直線と第3直線の交点の座標値を算出する。算出される座標値が飛翔体座標値である。
 第1直線と第2直線と第3直線の交点が求まらない場合、飛翔体座標値は以下のように算出される。
 まず、地上システム130は、第1直線と第2直線と第3直線が接する球を算出する。
 そして、地上システム130は、算出した球の中心の座標値を算出する。算出される座標値が飛翔体座標値である。
***実施の形態1の特徴および効果***
 飛翔体109の位置座標(座標値)は、位置座標が既知である3機の監視衛星120から同時に飛翔体109を監視したときに、各監視衛星120の視線ベクトルの方位角(視線方向)に基づいて、各監視衛星120の視線ベクトルが会合する点として解析できる。
 飛翔体109からみた視線ベクトルの方位角が分散するほど、位置計測精度が向上する。そのため、飛翔体109が中緯度の発射領域から東西方向に飛翔すれば、赤道上空近傍の低緯度帯、低緯度帯より緯度が高い中緯度帯、及び緯度が極力高い高緯度帯の3か所から監視すれば、高精度の位置座標解析が可能となる。
 飛翔体109を監視する衛星コンステレーション110が赤道上空衛星、傾斜軌道衛星、及び極軌道衛星などで構成されることが想定される。赤道上空衛星は、赤道上空を周回する監視衛星120である。傾斜軌道衛星は、傾斜軌道を周回する監視衛星120である。極軌道衛星は、極軌道を周回する監視衛星120である。赤道上空近傍の低緯度帯において、赤道上空衛星または赤道上空近傍を飛翔時の傾斜軌道衛星が第1監視衛星120Aに該当する。極軌道衛星が衛星コンステレーション110に含まれる場合、高緯度からの監視は極軌道衛星で実施してもよい。しかし、衛星コンステレーション110が傾斜軌道衛星のみで構成される場合、傾斜軌道の最北端近傍で監視することが合理的である。
 実施の形態1により、中緯度帯から発射されて東西方向に飛翔する飛翔体109の位置座標を高精度に導出できる。
 各監視衛星120の位置座標の誤差および各視線ベクトルの方位角の誤差のため、本来一点で会合するべき3方向の視線ベクトルが会合しない、という解析結果が得られる可能性がある。
 3方向の視線ベクトルが会合しない場合であっても、有限の半径を有する球体を仮定することにより、3方向の視線ベクトルが接する最小半径の球体の中心位置座標として、飛翔体109の位置座標を導出できる。
 実施の形態2.
 飛翔体追跡システム101について、主に実施の形態1と異なる点を図4に基づいて説明する。
***構成の説明***
 飛翔体追跡システム101の構成は、実施の形態1における構成と同じである。
***動作の説明***
 図4に基づいて、飛翔体位置導出方法を説明する。
 第1監視衛星120Aは、地球を周回しながら、飛翔体109が飛翔する地球周縁を対象時刻に第1緯度から監視する。第1緯度は、プラス20度からプラス40度までの範囲内の緯度である。つまり、第1監視衛星120Aは、中緯度帯からリム観測を行って飛翔体109を監視する。これにより、第1監視データが得られる。
 第1監視衛星120Aは、第1監視データを得て、第1監視データを地上システム130へ送信する。
 第2監視衛星120Bは、地球を周回しながら、地球周縁を対象時刻に第2緯度から監視する。第2緯度は、プラス30度からプラス50度までの範囲内の緯度である。つまり、第2監視衛星120Bは、中高緯度帯からリム観測を行って飛翔体109を監視する。これにより、第2監視データが得られる。
 第2監視衛星120Bは、第2監視データを得て、第2監視データを地上システム130へ送信する。
 第3監視衛星120Cは、地球を周回しながら、地球周縁を対象時刻に第3緯度から監視する。第3緯度は、プラス50度以上の緯度である。つまり、第3監視衛星120Cは、高緯度帯から(後方)リム観測を行って飛翔体109を監視する。これにより、第3監視データが得られる。
 第3監視衛星120Cは、第3監視データを得て、第3監視データを地上システム130へ送信する。
 地上システム130の動作は、実施の形態1における動作を同じである。
***実施の形態2の特徴および効果***
 高緯度帯から発射される飛翔体109は、赤道上空近傍からの視野範囲から逸脱する。そのため、傾斜軌道衛星ないし極軌道衛星により、飛翔体109を監視する必要がある。
 実施の形態2により、極域を含む高緯度帯から発射されて極域を通過して飛翔する飛翔体109の位置座標を高精度に導出できる。
 実施の形態3.
 飛翔体対処システム102について、主に実施の形態1および実施の形態2と異なる点を図5に基づいて説明する。
***構成の説明***
 図5に基づいて、飛翔体対処システム102の構成を説明する。飛翔体対処システム102は、飛翔体追跡システム101の一例である。
 飛翔体対処システム102は、飛翔体109の飛翔軌跡を追跡し、飛翔体109に対処するためのシステムである。
 飛翔体対処システム102は、衛星コンステレーション110と、地上システム130と、複数の対処アセット140と、を備える。
 複数の対処アセット140は、飛翔体109に対処するために互いに異なる場所に配置される。対処アセット140の具体例は、航空機、船舶または車両である。
 地上システム130は、通信装置131と、衛星管制装置132と、通信装置133と、を備える。
 通信装置133は、各対処アセット140と通信するための装置である。
***動作の説明***
 衛星コンステレーション110の動作は、実施の形態1または実施の形態2における動作と同じである。
 まず、地上システム130は、各時刻の飛翔体座標値を算出する。算出方法は、実施の形態1における方法と同じである。
 次に、地上システム130は、各時刻の飛翔体座標値に基づいて、複数の対処アセット140から1つ以上の対処アセット140を選択する。例えば、地上システム130は、飛翔体109の飛翔先を予測し、予測した飛翔先に最も近い対処アセット140を選択する。
 そして、地上システム130は、飛翔体情報データを生成し、選択した1つ以上の対処アセット140のそれぞれに飛翔体情報データを送信する。
 飛翔体情報データは、飛翔体109の情報を示す。例えば、飛翔体情報データは、各時刻の飛翔体座標値を示す。
***実施の形態3の効果***
 実施の形態3により、飛翔体109を追跡して対処アセット140を選択し、飛翔体109に対処することが可能となる。
 実施の形態4.
 飛翔体追跡システム103について、主に実施の形態1または実施の形態2と異なる点を図6から図9に基づいて説明する。
***構成の説明***
 図6に基づいて、飛翔体追跡システム103の構成を説明する。
 飛翔体追跡システム103は、飛翔体109の飛翔軌跡を追跡するためのシステムである。
 飛翔体追跡システム103は、衛星コンステレーション110と、地上システム130と、を備える。
 衛星コンステレーション110は、複数の監視衛星120を有する。第1監視衛星120Aと第2監視衛星120Bと第3監視衛星120Cとのそれぞれは、飛翔体追跡システム103に含まれる監視衛星120の一例である。
 衛星管制装置132は、複数の飛翔経路モデルを記憶する。飛翔経路モデルは、飛翔体109の予測の飛翔経路を表す。例えば、飛翔経路モデルは、飛翔体109の発射地点を示す座標値(発射地点座標値)を示す。また、飛翔経路モデルは、飛翔体109の飛翔方向を示す。さらに、飛翔経路モデルは、発射後の各時刻における飛翔距離および飛翔高度を示す。発射後の各時刻は、発射時から経過した時間で示される。
***動作の説明***
 複数の監視衛星120は、対象時刻に互いに異なる位置から飛翔体109の監視を行って複数の監視データを得て、複数の監視データを送信する。
 地上システム130は、以下のように動作する。
 まず、地上システム130は、複数の監視データを受信する。
 次に、地上システム130は、複数の監視データに基づいて、複数の飛翔経路モデルから1つの飛翔経路モデルを選択する。
 そして、地上システム130は、選択された飛翔経路モデルに基づいて、対象時刻における飛翔体座標値を算出する。
***実施の形態4の補足***
 地上システム130は、飛翔体109の飛翔経路をモデル化する。飛翔経路モデルは、飛翔体109の発射位置座標(発射地点座標値)、飛翔体109の飛翔方向、発射から着地までの時系列プロファイル(飛翔距離および飛翔高度)で構成される。
 地上システム130は、赤外監視装置によって検出された飛翔体109の発射地点を起点にして、複数の飛翔経路モデルの中から暫定の飛翔経路モデル(予測用)を選定する。
 地上システム130は、対象時刻における監視衛星120から飛翔体109への視線ベクトルと暫定の飛翔経路モデルでの対象時刻における飛翔位置座標の乖離が最小となる位置座標を更新飛翔位置座標として導出する。
 図7は、飛翔体109が発射してから着地するまでの3パターンの距離(A,B,C)を示している。黒丸は飛翔体109を表す。
 飛翔体109は、発射領域内の地点から発射され、着地領域内の地点に着地する。
 図8は、飛翔体109が弾道飛行する場合の2つの飛翔経路モデルを表す。各飛翔経路モデルは距離と高度の関係を示す。一方の飛翔経路モデルにおける飛翔体109の到達距離は距離Aであり、他方の飛翔経路モデルにおける飛翔体109の到達距離は距離Cである。
 図9は、飛翔体109が間欠的に噴射する場合の2つの飛翔経路モデルを表す。各飛翔経路モデルは距離と高度の関係を示す。一方の飛翔経路モデルにおける飛翔体109の到達距離は距離Bであり、他方の飛翔経路モデルにおける飛翔体109の到達距離は距離Cである。
***実施の形態4の特徴および効果***
 各監視衛星120の位置座標の誤差および各視線ベクトルの方位角の誤差のため、本来一点で会合するべき3方向の視線ベクトルが会合しない、という解析結果が得られる可能性がある。そのような場合であっても、実施の形態4により、飛翔体109の位置座標を導出できる。
 飛翔体109の典型的な飛翔プロファイルを仮定した飛翔経路モデルが予め準備される。地上システム130は、監視衛星120によって得られる発射探知情報に基づいて、飛翔経路モデルを選択する。具体的には、地上システム130は、飛翔体109の発射位置座標を起点にして、後続衛星の監視結果に適合する飛翔経路モデルを選択する。次に、地上システム130は、後続衛星による計測情報に基づいて、選択した飛翔経路モデルと飛翔体109の実軌道の乖離を補正する。そして、地上システム130は、高精度な飛翔位置座標を導出する。
 飛翔体109が弾道飛行する場合には、飛翔プロファイルは、発射位置座標を含む垂直平面内に形成される。また、後続衛星で飛翔体109を監視したときの視線ベクトルと垂直平面との交点に飛翔体109が位置することを前提条件とする。これにより、飛翔経路モデルの方位角の誤差と、プロファイルの誤差と、監視衛星120の位置座標の解析誤差と、各視線ベクトルの方位角の解析誤差と、に起因する乖離が顕在化する。
 さらなる後続衛星による飛翔情報との整合性をとることで、相互の誤差量を減らし、精度の高い飛翔位置座標を導出することが可能となる。
 飛翔体109が間欠的に噴射を繰返す場合には、飛翔体109が弾道飛行する場合よりも、飛翔体109の飛翔経路が複雑になる。しかし、後続衛星による飛翔情報取得を繰返すことにより、飛翔体109の発射後の経過時間が大きくなり、飛翔体109の飛翔距離が長くなる。そして、方位角の推定精度が向上し、飛翔経路モデルに内包する誤差量が低減される。
 飛翔体109が間欠的に噴射をしても、遠距離の飛翔距離に比較して、噴射直後の高度ないし水平移動距離は小さい。そのため、後続衛星による飛翔情報取得を繰返すことで、飛翔体109が間欠的に噴射をしても、精度の高い位置座標の導出が可能となる。
 実施の形態4によれば、同時に複数の監視衛星120で取得した複数の監視データを用いずに、飛翔体109の位置座標を導出できる。具体的には、飛翔体109の発射後の経過時間に応じて、飛翔経路モデルに基づいて位置座標を導出できる。そのため、後続衛星による監視データの取得の自由度が高く、監視データを収集しやすい。
 視線ベクトルの方位角が異なる多数の方向から監視が行われ監視データが収集されることにより、精度の高い飛翔位置導出が可能になることは言うまでもない。
 実施の形態5.
 飛翔体対処システム104について、主に実施の形態1から実施の形態4と異なる点を図10に基づいて説明する。
***構成の説明***
 図10に基づいて、飛翔体対処システム104の構成を説明する。飛翔体対処システム104は、飛翔体追跡システム103の一例である。
 飛翔体対処システム104は、飛翔体109の飛翔軌跡を追跡し、飛翔体109に対処するためのシステムである。
 飛翔体対処システム104は、実施の形態4における構成と同じく、衛星コンステレーション110と地上システム130を備える。
 飛翔体対処システム104は、実施の形態3における構成と同じく、複数の対処アセット140を備える。
 地上システム130は、実施の形態3における構成と同じく、通信装置133を備える。
***動作の説明***
 衛星コンステレーション110の動作は、実施の形態4における動作と同じである。
 地上システム130は、実施の形態4における方法と同じ方法で、各時刻における飛翔体座標値を算出する。
 地上システム130は、実施の形態3における方法と同じ方法で、対処アセット140を選択し、選択した対処アセット140に飛翔体情報データを送信する。
***実施の形態5の効果***
 実施の形態5により、飛翔体109を追跡して対処アセット140を選択し、飛翔体109に対処することが可能となる。
***実施の形態の補足***
 飛翔体の発射時には高温の大気が拡散するので監視が容易にできる。しかし、ポストブーストフェーズの飛翔体本体は、監視衛星から見える立体角が小さく、温度上昇もプルームほど顕著ではない。そのため、背景となる陸域の情報が飛翔体情報に混在すると、飛翔体の識別が不能になる懸念がある。ポストブーストフェーズは、噴射が止まった後のフェーズである。
 そこで、地球周縁を指向するリム観測と呼ばれる監視方法により、温度上昇した飛翔体本体を、深宇宙を背景にして監視する。
 これにより、飛翔体情報がノイズに埋もれることなく飛翔体の監視が可能となる。
 衛星管制装置は、複数の監視衛星によって探知された高温対象を示す飛翔体情報を統合して時系列的な位置情報の変化を分析する飛翔経路予測装置として機能する。これにより、飛翔体の追跡ができ、飛翔経路の予測が可能となる。
 飛翔体が飛翔途中で間欠的に再噴射をして進行方向を変更しても、飛翔経路予測装置が進行方向を追跡して時系列情報を継続的に取得することにより、飛翔体に対する処置が可能となる。
 対処アセットとして、陸海空に配備された航空機、船舶および車両が存在する。その他に、地上設置型設備なども存在する。
 また、個別の対処アセットに対して直接に情報を伝送する手段がある。但し、セキュリティ上の制約などにより、個別の対処アセットの位置情報を開示できない場合がある。そのため、飛翔体対処システムが特別な専用システムを利用する場合、対処アセットへの指令および飛翔体情報を対処地上センター(地上システム)に集約し、対処地上センターから対処アセットに対する指令を実施することが合理的である。
 飛翔体対処システムの運用方法は、システム全体の構成方法および運用方法によって変わる。
 各実施の形態は、好ましい形態の例示であり、本開示の技術的範囲を制限することを意図するものではない。各実施の形態は、部分的に実施してもよいし、他の形態と組み合わせて実施してもよい。
 101 飛翔体追跡システム、102 飛翔体対処システム、103 飛翔体追跡システム、104 飛翔体対処システム、109 飛翔体、110 衛星コンステレーション、120 監視衛星、120A 第1監視衛星、120B 第2監視衛星、120C 第3監視衛星、121 通信装置、122 監視装置、123 推進装置、124 姿勢制御装置、125 衛星制御装置、126 電源装置、130 地上システム、131 通信装置、132 衛星管制装置、133 通信装置、140 対処アセット。

Claims (15)

  1.  第1監視衛星が、地球を周回しながら、飛翔体が飛翔する地球周縁を対象時刻に第1緯度から監視して第1監視データを得て、前記第1監視データを送信し、
     第2監視衛星が、地球を周回しながら、前記地球周縁を前記対象時刻に第2緯度から監視して第2監視データを得て、前記第2監視データを送信し、
     第3監視衛星が、地球を周回しながら、前記地球周縁を前記対象時刻に第3緯度から監視して第3監視データを得て、前記第3監視データを送信し、
     地上システムが、
     前記第1監視データと前記第2監視データと前記第3監視データを受信し、
     前記第1監視データに基づいて前記対象時刻における前記第1監視衛星から前記飛翔体への第1視線方向を算出し、前記第2監視データに基づいて前記対象時刻における前記第2監視衛星から前記飛翔体への第2視線方向を算出し、前記第3監視データに基づいて前記対象時刻における前記第3監視衛星から前記飛翔体への第3視線方向を算出し、
     前記第1視線方向と前記第2視線方向と前記第3視線方向に基づいて、前記対象時刻における前記飛翔体の位置を示す飛翔体座標値を算出する
    飛翔位置導出方法。
  2.  前記第1緯度が、マイナス10度からプラス10度までの範囲内の緯度であり、
     前記第2緯度が、プラス20度からプラス40度までの範囲内の緯度であり、
     前記第3緯度が、プラス40度からプラス60度までの範囲内の緯度である
    請求項1に記載の飛翔位置導出方法。
  3.  前記第3監視衛星は、傾斜軌道を飛翔して地球を周回し、
     前記第3緯度が、前記傾斜軌道の北端部の緯度である
    請求項2に記載の飛翔位置導出方法。
  4.  前記第1緯度が、プラス20度からプラス40度までの範囲内の緯度であり、
     前記第2緯度が、プラス30度からプラス50度までの範囲内の緯度であり、
     前記第3緯度が、プラス50度以上の緯度である
    請求項1に記載の飛翔位置導出方法。
  5.  前記地上システムは、前記第1視線方向を通る第1直線と前記第2視線方向を通る第2直線と前記第3視線方向を通る第3直線の交点の座標値を前記飛翔体座標値として算出する
    請求項1から請求項4のいずれか1項に記載の飛翔位置導出方法。
  6.  前記地上システムは、前記交点が求まらない場合、前記第1直線と前記第2直線と前記第3直線が接する球を算出し、算出した球の中心の座標値を前記飛翔体座標値として算出する
    請求項5に記載の飛翔位置導出方法。
  7.  請求項1から請求項6のいずれか1項に記載の飛翔位置導出方法に使用される第1監視衛星と第2監視衛星と第3監視衛星とを有する衛星コンステレーションと、
     請求項1から請求項6のいずれか1項に記載の飛翔位置導出方法に使用される地上システムと、
    を備える飛翔体追跡システム。
  8.  請求項7に記載の飛翔体追跡システムに使用される地上システム。
  9.  請求項1から請求項6のいずれか1項に記載の飛翔位置導出方法に使用される第1監視衛星と第2監視衛星と第3監視衛星とを有する衛星コンステレーションと、
     請求項1から請求項6のいずれか1項に記載の飛翔位置導出方法に使用される地上システムと、
     飛翔体に対処するために互いに異なる場所に配置された複数の対処アセットと、
    を備え、
     前記地上システムは、各時刻における前記飛翔体の位置を示す飛翔体座標値を算出し、各時刻の飛翔体座標値に基づいて前記複数の対処アセットから1つ以上の対処アセットを選択し、選択した1つ以上の対処アセットのそれぞれに前記飛翔体の情報を示す飛翔体情報データを送信する
    飛翔体対処システム。
  10.  請求項9に記載の飛翔体対処システムに使用される地上システム。
  11.  複数の監視衛星が、対象時刻に互いに異なる位置から飛翔体の監視を行って複数の監視データを得て、前記複数の監視データを送信し、
     地上システムが、前記複数の監視データを受信し、前記飛翔体の予測の飛翔経路をそれぞれに表す複数の飛翔経路モデルから1つの飛翔経路モデルを前記複数の監視データに基づいて選択し、選択された飛翔経路モデルに基づいて前記対象時刻における前記飛翔体の位置を示す飛翔体座標値を算出する
    飛翔位置導出方法。
  12.  請求項11に記載の飛翔位置導出方法に使用される複数の監視衛星を有する衛星コンステレーションと、
     請求項11に記載の飛翔位置導出方法に使用される地上システムと、
    を備える飛翔体追跡システム。
  13.  請求項12に記載の飛翔体追跡システムに使用される地上システム。
  14.  請求項11に記載の飛翔位置導出方法に使用される複数の監視衛星を有する衛星コンステレーションと、
     請求項11に記載の飛翔位置導出方法に使用される地上システムと、
     飛翔体に対処するために互いに異なる場所に配置された複数の対処アセットと、
    を備え、
     前記地上システムは、各時刻における前記飛翔体の位置を示す飛翔体座標値を算出し、各時刻の飛翔体座標値に基づいて前記複数の対処アセットから1つ以上の対処アセットを選択し、選択した1つ以上の対処アセットのそれぞれに前記飛翔体の情報を示す飛翔体情報データを送信する
    飛翔体対処システム。
  15.  請求項14に記載の飛翔体対処システムに使用される地上システム。
PCT/JP2022/005082 2021-02-19 2022-02-09 飛翔位置導出方法、飛翔体追跡システム、地上システムおよび飛翔体対処システム WO2022176733A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023500772A JP7504281B2 (ja) 2021-02-19 2022-02-09 飛翔位置導出方法、飛翔体追跡システム、地上システムおよび飛翔体対処システム
US18/275,213 US20240101279A1 (en) 2021-02-19 2022-02-09 Flight position derivation method, flying object tracking system, ground system, and flying object handling system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021024860 2021-02-19
JP2021-024860 2021-02-19

Publications (1)

Publication Number Publication Date
WO2022176733A1 true WO2022176733A1 (ja) 2022-08-25

Family

ID=82931636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/005082 WO2022176733A1 (ja) 2021-02-19 2022-02-09 飛翔位置導出方法、飛翔体追跡システム、地上システムおよび飛翔体対処システム

Country Status (3)

Country Link
US (1) US20240101279A1 (ja)
JP (1) JP7504281B2 (ja)
WO (1) WO2022176733A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100038490A1 (en) * 2006-12-18 2010-02-18 Ohb Orbitale Hochtechnologie Bremen-Systems Ag Method, satellite, and a system or an arrangement with at least one satellite for detecting natural or artificial objects, and the use thereof in the execution of said method
US7875837B1 (en) * 2008-01-09 2011-01-25 Lockheed Martin Corporation Missile tracking with interceptor launch and control
JP2011052999A (ja) * 2009-08-31 2011-03-17 Lighthouse Technology & Consulting Co Ltd 飛翔体探知方法及びシステムならびにプログラム
US20120316819A1 (en) * 2008-04-22 2012-12-13 United States Government, As Represented By The Secretary Of The Navy Process for estimation of ballistic missile boost state
US9250043B1 (en) * 2012-08-13 2016-02-02 Lockheed Martin Corporation System and method for early intercept ballistic missile defense
US20180106898A1 (en) * 2015-01-02 2018-04-19 Reservoir Labs, Inc. Systems and methods for efficient targeting
WO2020261481A1 (ja) * 2019-06-27 2020-12-30 三菱電機株式会社 衛星コンステレーション、地上設備および人工衛星
WO2021172182A1 (ja) * 2020-02-26 2021-09-02 三菱電機株式会社 衛星コンステレーション、地上設備および飛翔体追跡システム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100038490A1 (en) * 2006-12-18 2010-02-18 Ohb Orbitale Hochtechnologie Bremen-Systems Ag Method, satellite, and a system or an arrangement with at least one satellite for detecting natural or artificial objects, and the use thereof in the execution of said method
US7875837B1 (en) * 2008-01-09 2011-01-25 Lockheed Martin Corporation Missile tracking with interceptor launch and control
US20120316819A1 (en) * 2008-04-22 2012-12-13 United States Government, As Represented By The Secretary Of The Navy Process for estimation of ballistic missile boost state
JP2011052999A (ja) * 2009-08-31 2011-03-17 Lighthouse Technology & Consulting Co Ltd 飛翔体探知方法及びシステムならびにプログラム
US9250043B1 (en) * 2012-08-13 2016-02-02 Lockheed Martin Corporation System and method for early intercept ballistic missile defense
US20180106898A1 (en) * 2015-01-02 2018-04-19 Reservoir Labs, Inc. Systems and methods for efficient targeting
WO2020261481A1 (ja) * 2019-06-27 2020-12-30 三菱電機株式会社 衛星コンステレーション、地上設備および人工衛星
WO2021172182A1 (ja) * 2020-02-26 2021-09-02 三菱電機株式会社 衛星コンステレーション、地上設備および飛翔体追跡システム

Also Published As

Publication number Publication date
JP7504281B2 (ja) 2024-06-21
US20240101279A1 (en) 2024-03-28
JPWO2022176733A1 (ja) 2022-08-25

Similar Documents

Publication Publication Date Title
JP7086294B2 (ja) 衛星コンステレーション、地上設備および人工衛星
US6341249B1 (en) Autonomous unified on-board orbit and attitude control system for satellites
WO2021172182A1 (ja) 衛星コンステレーション、地上設備および飛翔体追跡システム
US8676503B2 (en) System for determing and controlling inertial attitude, for navigation, and for pointing and/or tracking for an artificial satellite employing and optical sensor and a counter-rotational optical mirror, and terrestrial-based testing system for assessing inertial attitude functions of an artificial satellite
US8213803B2 (en) Method and system for laser based communication
US8686326B1 (en) Optical-flow techniques for improved terminal homing and control
Sohn et al. Vision-based real-time target localization for single-antenna GPS-guided UAV
JP2024120183A (ja) 飛翔体対処システム、監視地上センター、対処地上センター、通信ルート探索装置、飛翔経路予測装置、対処アセット選択装置、赤道上空衛星システム、赤道上空衛星、極軌道衛星システム、極軌道衛星、傾斜軌道衛星システム、および、傾斜軌道衛星
US11815335B2 (en) Guided munition systems for detecting off-axis targets
JP7262369B2 (ja) 衛星コンステレーション
JP2024120181A (ja) 飛翔体対処システム、衛星統合指令センター、対処地上センター、通信ルート探索装置、飛翔経路予測装置、対処アセット選択装置、赤道上空衛星システム、赤道上空衛星、極軌道衛星システム、極軌道衛星、傾斜軌道衛星システム、傾斜軌道衛星、統合データライブラリ、および、衛星コンステレーション
JP7394802B2 (ja) 滑空飛翔体識別方法、飛翔体追跡システム、飛翔体対処システム、および、地上システム
JP7394801B2 (ja) 滑空飛翔体追跡方法、飛翔体追跡システム、飛翔体対処システム、および、地上システム
WO2022176734A1 (ja) 飛翔経路モデル選択方法、飛翔体追跡システム、飛翔体対処システムおよび地上システム
JP2024045779A (ja) 飛翔経路予測装置、対処アセット選択装置、赤道上空衛星システム、極軌道衛星システムおよび監視衛星
WO2022176733A1 (ja) 飛翔位置導出方法、飛翔体追跡システム、地上システムおよび飛翔体対処システム
JP7395023B2 (ja) 衛星コンステレーション、飛翔体監視システム、傾斜軌道衛星システム、傾斜軌道衛星およびハイブリッドコンステレーション
JP7418367B2 (ja) 弾道飛翔体追跡方法、飛翔体追跡システム、飛翔体対処システムおよび地上システム
JP7446251B2 (ja) 衛星コンステレーションシステムおよび衛星コンステレーション
JP2023058047A (ja) 飛翔体追跡システム
JP7407764B2 (ja) 飛翔体追跡システム、飛翔経路予測方法、監視衛星、および、地上設備
WO2023062732A1 (ja) 通信衛星システム、エッジコンピューティングシステム、および主衛星
RU2339904C2 (ru) Авиационная бомба, стабилизированная по крену, с инерциально-спутниковой системой наведения
JPH11294997A (ja) 誘導飛しょう体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22756054

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023500772

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18275213

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22756054

Country of ref document: EP

Kind code of ref document: A1