[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022175781A1 - 表示装置、表示モジュール、及び電子機器 - Google Patents

表示装置、表示モジュール、及び電子機器 Download PDF

Info

Publication number
WO2022175781A1
WO2022175781A1 PCT/IB2022/051089 IB2022051089W WO2022175781A1 WO 2022175781 A1 WO2022175781 A1 WO 2022175781A1 IB 2022051089 W IB2022051089 W IB 2022051089W WO 2022175781 A1 WO2022175781 A1 WO 2022175781A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light
light emitting
emitting
insulator
Prior art date
Application number
PCT/IB2022/051089
Other languages
English (en)
French (fr)
Inventor
山崎舜平
岡崎健一
江口晋吾
方堂涼太
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Priority to CN202280014839.3A priority Critical patent/CN116868693A/zh
Priority to US18/276,074 priority patent/US20240099068A1/en
Priority to JP2023500123A priority patent/JPWO2022175781A1/ja
Priority to KR1020237030322A priority patent/KR20230147648A/ko
Publication of WO2022175781A1 publication Critical patent/WO2022175781A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/19Tandem OLEDs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/32Stacked devices having two or more layers, each emitting at different wavelengths
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/90Assemblies of multiple devices comprising at least one organic light-emitting element
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements

Definitions

  • One aspect of the present invention relates to a display device, a display module, and an electronic device.
  • One embodiment of the present invention relates to a method for manufacturing a display device.
  • one aspect of the present invention is not limited to the above technical field.
  • Technical fields of one embodiment of the present invention include semiconductor devices, display devices, light-emitting devices, power storage devices, memory devices, electronic devices, lighting devices, input devices (e.g., touch sensors), and input/output devices (e.g., touch panels). ), how they are driven, or how they are manufactured.
  • Display devices that can be applied to display panels typically include liquid crystal display devices, organic EL (Electro Luminescence) elements, light-emitting devices equipped with light-emitting elements such as light-emitting diodes (LEDs), and electrophoretic display devices.
  • Examples include electronic paper that performs display by, for example.
  • the basic structure of an organic EL device is to sandwich a layer containing a light-emitting organic compound between a pair of electrodes. By applying a voltage to this device, light can be obtained from the light-emitting organic compound.
  • a display device to which such an organic EL element is applied does not require a backlight, which is required in a liquid crystal display device or the like.
  • Patent Document 1 describes an example of a display device using an organic EL element.
  • An object of one embodiment of the present invention is to provide a high-definition display device.
  • An object of one embodiment of the present invention is to provide a high-resolution display device.
  • An object of one embodiment of the present invention is to provide a display device with a high aperture ratio.
  • An object of one embodiment of the present invention is to provide a highly reliable display device.
  • An object of one embodiment of the present invention is to provide a method for manufacturing the display device.
  • One embodiment of the present invention includes a first light-emitting device, a second light-emitting device, a first colored layer, a second colored layer, a first insulator, a second insulator, and a second insulator.
  • 3 insulators wherein the first colored layer is disposed overlying the first light emitting device, the second colored layer is disposed overlying the second light emitting device, and the first and the second light emitting device have a function of emitting white light, the first colored layer has a function of transmitting visible light of a color different from that of the second colored layer, and the first has a first conductive layer and a first light emitting layer on the first conductive layer, and the second light emitting device has a second conductive layer and on the second conductive layer wherein the first insulator is in contact with at least part of the side surface of the first light emitting device, and the second insulator is in contact with at least one side surface of the second light emitting device
  • the first light-emitting layer and the second light-emitting layer may have the same material.
  • the first light emitting device includes a first light emitting unit including a first light emitting layer, a first charge generation layer on the first light emitting unit, and a second charge generation layer on the first charge generation layer.
  • It preferably has a second charge generating layer on top and a fourth light emitting unit on the second charge generating layer, the fourth light emitting unit having a fourth light emitting layer.
  • the first light-emitting unit contains the same material as the third light-emitting unit
  • the first charge-generation layer contains the same material as the second charge-generation layer
  • the first charge-generation layer contains the same material as the second charge-generation layer.
  • the second light emitting unit may have the same material as the fourth light emitting unit.
  • the first light-emitting unit includes the first hole-injection layer, the first hole-transport layer, and the first electron-transport layer
  • the second light-emitting unit includes the second a hole-transporting layer and a second electron-transporting layer, the third light-emitting unit comprising the second hole-injecting layer, the third hole-transporting layer, and the third electron-transporting layer
  • the fourth light-emitting unit has a fourth hole-transporting layer and a fourth electron-transporting layer, the first insulator laterally of the first hole-injecting layer; First hole-transport layer side, first light-emitting layer side, first electron-transport layer side, first charge generation layer side, second hole-transport layer side, third light emission
  • the second insulator contacts the side of the layer and the side of the second electron-transporting layer, and the second insulator is on the side of the second hole-injecting layer, the side of the third hole-transporting layer, and the side of the second light-emitting layer.
  • the first insulator and the second insulator have a first layer and a second layer on the first layer, and in the first insulator, the first layer the side surface of the first layer contacts at least a portion of the side surface of the first light emitting device, the bottom surface of the first layer contacts at least a portion of the third insulator, and the side surface and bottom surface of the second layer contact the first in contact with at least part of the layer of the second insulator, the side surface of the first layer contacts at least part of the side surface of the second light-emitting device, and the lower surface of the first layer is in contact with the third insulator
  • it is in contact with at least part of the body and the side and bottom surfaces of the second layer are in contact with at least part of the first layer.
  • the first layer contains aluminum oxide and the second layer contains silicon nitride.
  • the side surface of the first light-emitting layer and the side surface of the second light-emitting layer face each other, and the distance between the side surface of the first light-emitting layer and the side surface of the second light-emitting layer is 8 ⁇ m or less. is preferably.
  • One aspect of the present invention is a display module having a display device having any of the above configurations, and a connector such as a flexible printed circuit (hereinafter referred to as FPC) or TCP (tape carrier package) attached.
  • FPC flexible printed circuit
  • TCP tape carrier package
  • a display module such as a display module in which an integrated circuit (IC) is mounted by a COG (Chip On Glass) method, a COF (Chip On Film) method, or the like.
  • An aspect of the present invention is an electronic device including the display module described above and at least one of a housing, a battery, a camera, a speaker, and a microphone.
  • a high-definition display device can be provided according to one embodiment of the present invention.
  • One embodiment of the present invention can provide a high-resolution display device.
  • a display device with a high aperture ratio can be provided.
  • One embodiment of the present invention can provide a highly reliable display device.
  • One embodiment of the present invention can provide a method for manufacturing the display device.
  • FIG. 1A is a top view showing an example of a display device.
  • FIG. 1B is a cross-sectional view showing an example of a display device; 2A and 2B are cross-sectional views showing an example of a display device. 3A and 3B are cross-sectional views showing an example of a display device. 4A to 4E are top views showing examples of pixels of a display device.
  • FIG. 5A is a top view showing an example of a display device.
  • FIG. 5B is a cross-sectional view showing an example of a display device; 6A to 6G are top views showing examples of pixels of a display device. 7A and 7B are cross-sectional views showing an example of a display device.
  • FIG. 8A and 8B are cross-sectional views showing an example of a display device.
  • 9A and 9B are cross-sectional views showing an example of a display device.
  • 10A to 10D are diagrams illustrating an example of a method for manufacturing a display device.
  • 11A to 11C are diagrams illustrating an example of a method for manufacturing a display device.
  • 12A to 12C are diagrams illustrating an example of a method for manufacturing a display device.
  • 13A and 13B are diagrams illustrating an example of a method for manufacturing a display device.
  • FIG. 14 is a perspective view showing an example of a display device.
  • FIG. 16 is a cross-sectional view showing an example of a display device.
  • 17A and 17B are diagrams showing configuration examples of the display module.
  • FIG. 18 is a diagram illustrating a configuration example of a display device.
  • FIG. 19 is a diagram illustrating a configuration example of a display device.
  • FIG. 20 is a diagram illustrating a configuration example of a display device.
  • 21A and 21B are diagrams illustrating examples of electronic devices.
  • 22A to 22D are diagrams illustrating examples of electronic devices.
  • 23A to 23F are diagrams illustrating examples of electronic devices.
  • film and “layer” can be interchanged depending on the case or situation.
  • conductive layer can be changed to the term “conductive film.”
  • insulating film can be changed to the term “insulating layer”.
  • pixels are arranged in matrix in the display portion, and an image can be displayed on the display portion.
  • the pixel has a light-emitting device that emits white light and a colored layer that overlaps the light-emitting device.
  • Full-color display can be performed by using colored layers that transmit visible light of different colors in each pixel. Furthermore, since the light emitting device used for each pixel can be formed using the same material, the manufacturing process can be simplified and the manufacturing cost can be reduced.
  • EL devices such as OLED (Organic Light Emitting Diode) and QLED (Quantum-dot Light Emitting Diode).
  • light-emitting substances that EL devices have include substances that emit fluorescence (fluorescent materials), substances that emit phosphorescence (phosphorescence materials), inorganic compounds (quantum dot materials, etc.), and substances that exhibit heat-activated delayed fluorescence (heat-activated delayed fluorescence (Thermally Activated Delayed Fluorescence: TADF) material).
  • LEDs such as micro LED (Light Emitting Diode), can also be used as a light emitting device.
  • each pixel When the light-emitting device of each pixel is formed of a white-light-emitting organic EL device, it is not necessary to separate the light-emitting layers in each pixel. Therefore, a layer other than the pixel electrode included in the light-emitting device (for example, a light-emitting layer) can be shared by each pixel. However, among the layers included in the light-emitting device, there are also layers with relatively high conductivity. Leakage current may occur between pixels when a layer with high conductivity is commonly provided for each pixel.
  • a display device when a display device has a high definition or a high aperture ratio and the distance between pixels becomes small, the leakage current becomes unignorable, and there is a possibility that the display quality of the display device is deteriorated. Therefore, in a display device according to one embodiment of the present invention, at least part of a light-emitting device in each pixel is formed in an island shape, so that the display device has high definition.
  • the island-shaped portion of the light-emitting device includes a light-emitting layer.
  • an island-shaped light-emitting layer can be formed by a vacuum deposition method using a metal mask (also called a shadow mask).
  • a metal mask also called a shadow mask
  • island-like formations occur due to various influences such as precision of the metal mask, misalignment between the metal mask and the substrate, bending of the metal mask, and broadening of the contour of the deposited film due to vapor scattering. Since the shape and position of the light-emitting layer deviate from the design, it is difficult to increase the definition and aperture ratio of the display device.
  • an island-shaped pixel electrode (which can also be called a lower electrode) is formed, and a layer including a light-emitting layer (which can be called an EL layer or part of an EL layer) is formed.
  • a sacrificial layer is formed on the EL layer.
  • an island-shaped EL layer is formed by forming a resist mask over the sacrificial layer and processing the EL layer and the sacrificial layer using the resist mask.
  • the sacrificial layer may be referred to as a mask layer in this specification and the like.
  • the island-shaped EL layer is not formed by a pattern of a metal mask, but is formed by forming an EL layer over one surface and then processing the EL layer. be done. Therefore, it is possible to realize a high-definition display device or a display device with a high aperture ratio, which has hitherto been difficult to achieve. Further, by providing the sacrificial layer over the EL layer, damage to the EL layer during the manufacturing process of the display device can be reduced, and the reliability of the light-emitting device can be improved.
  • the gap can be narrowed to 500 nm or less, 200 nm or less, 100 nm or less, or even 50 nm or less.
  • the pattern of the EL layer itself (which can be said to be a processing size) can also be made much smaller than when a metal mask is used.
  • the thickness of the EL layer varies between the center and the edge, so the effective area that can be used as the light emitting region is smaller than the area of the EL layer. Become.
  • the pattern is formed by processing a film formed to have a uniform thickness, the thickness can be made uniform within the pattern, and even if the pattern is fine, almost the entire area of the pattern can emit light. It can be used as a region. Therefore, a display device having both high definition and high aperture ratio can be manufactured.
  • a light-emitting device that emits white light
  • the sacrificial layer is removed, and the remaining layers forming the EL layer (for example, carrier injection layer, etc.) and a common electrode (which can also be called an upper electrode) can be formed in common.
  • the carrier injection layer is often a layer with relatively high conductivity in the light-emitting device. Therefore, the light-emitting device may be short-circuited when the carrier injection layer comes into contact with the side surface of the island-shaped EL layer. Note that even in the case where the carrier injection layer is provided in an island shape and only the common electrode is formed in common among the light emitting devices, the common electrode and the side surface of the island-shaped EL layer or the side surface of the pixel electrode should be in contact with each other. and the light-emitting device may short out.
  • a sidewall insulator is provided in contact with the side surface of the island-shaped EL layer and a bank-shaped insulator is provided to cover the end portion of the island-shaped pixel electrode. to This can prevent the island-shaped EL layer from contacting the carrier injection layer or the common electrode. Therefore, short-circuiting of the light-emitting device can be suppressed, and the reliability of the light-emitting device can be improved.
  • FIG. 2A A schematic cross-sectional view of the display device 500 is shown in FIG. 2A.
  • the display device 500 has a plurality of light emitting devices 550W that emit white light, and a colored layer 545R that transmits red light, a colored layer 545G that transmits green light, and a colored layer 545G that transmits green light are formed on each of the light emitting devices 550W.
  • a coloring layer 545B that transmits blue light is provided.
  • the colored layer 545R, the colored layer 545G, and the colored layer 545B are preferably provided over the light-emitting device 550W with the protective layer 540 interposed therebetween.
  • the light-emitting device 550W has a structure in which two light-emitting units (light-emitting unit 512Q_1 and light-emitting unit 512Q_2) are stacked via an intermediate layer 531 between a pair of electrodes (electrodes 501 and 502).
  • the electrode 501 functions as a pixel electrode and is provided for each light emitting device.
  • the electrode 502 functions as a common electrode and is commonly provided for a plurality of light emitting devices.
  • the light-emitting unit 512Q_1 includes layers 521, 522, a light-emitting layer 523Q_1, a layer 524, and the like.
  • the light-emitting unit 512Q_2 includes a layer 522, a light-emitting layer 523Q_2, a layer 524, and the like.
  • the light-emitting device 550W has a layer 525 and the like between the light-emitting unit 512Q_2 and the electrode 502. FIG. Note that the layer 525 can also be considered part of the light emitting unit 512Q_2.
  • the layer 521 has, for example, a layer (hole injection layer) containing a highly hole-injecting substance.
  • the layer 522 includes, for example, a layer containing a substance with a high hole-transport property (hole-transport layer).
  • the layer 524 includes, for example, a layer containing a highly electron-transporting substance (electron-transporting layer).
  • the layer 525 includes, for example, a layer containing a highly electron-injecting substance (electron-injection layer).
  • the layer 521 may have an electron-injection layer
  • the layer 522 may have an electron-transport layer
  • the layer 524 may have a hole-transport layer
  • the layer 525 may have a hole-injection layer.
  • the layers are not limited to this.
  • the layer 521 has a function of both a hole-injection layer and a hole-transport layer, or when the layer 521 has a function of both an electron-injection layer and an electron-transport layer , the layer 522 may be omitted.
  • the intermediate layer 531 has a function of injecting electrons into one of the light-emitting unit 512Q_1 and the light-emitting unit 512Q_2 and injecting holes into the other when a voltage is applied between the electrode 501 and the electrode 502. .
  • the intermediate layer 531 can also be called a charge generation layer.
  • a material applicable to an electron injection layer such as lithium fluoride
  • a material applicable to the hole injection layer can be preferably used.
  • a layer containing a material with high hole-transport properties (hole-transport material) and an acceptor material (electron-accepting material) can be used for the intermediate layer.
  • a layer containing a highly electron-transporting material (electron-transporting material) and a donor material can be used for the intermediate layer.
  • the light emitting device 550W can be a light emitting device that emits white light.
  • the light-emitting layers 523Q_1 and 523Q_2 preferably contain light-emitting substances that emit light such as R (red), G (green), B (blue), Y (yellow), and O (orange).
  • the light emitted from the light-emitting substances included in the light-emitting layers 523Q_1 and 523Q_2 preferably includes spectral components of two or more of R, G, and B colors.
  • the light-emitting device 550W when the light-emitting device 550W has two light-emitting units, one light-emitting unit emits red and green light, and the other light-emitting unit emits blue light, thereby obtaining the light-emitting device 550W that emits white light. .
  • the light emitting device 550W that emits white light can be obtained.
  • the light-emitting device 550W has three light-emitting units, red light is emitted from any one light-emitting unit, green light is emitted from the other light-emitting unit, and blue light is emitted from the remaining light-emitting unit.
  • a light-emitting device 550W that emits white light can be obtained.
  • a light-emitting layer emitting blue light is used in the first light-emitting unit
  • a light-emitting layer emitting yellow light, yellow-green light, or green light is used in the second light-emitting unit
  • a light-emitting layer emitting blue light is used in the third light-emitting unit.
  • the first light-emitting unit uses a blue light-emitting layer
  • the second light-emitting unit uses a stacked structure of a red light-emitting layer and a yellow, yellow-green, or green light-emitting layer
  • a light-emitting layer emitting blue light can be used for the third light-emitting unit.
  • a light-emitting layer emitting blue light is used for the first light-emitting unit, and one of the second light-emitting unit and the third light-emitting unit emits red light.
  • a yellow-, yellow-green-, or green-emitting layer can be used for the other, and a blue-emitting layer can be used for the fourth light-emitting unit.
  • each pixel emits red light, green light, or blue light, and full-color display is performed. It can be performed.
  • FIG. 2 and the like show an example in which the colored layer 545R that transmits red light, the colored layer 545G that transmits green light, and the colored layer 545B that transmits blue light are provided, but the present invention is not limited to this. is not limited to
  • the visible light transmitted through the colored layer may be at least two colors of visible light different from each other, and may be appropriately selected from red, green, blue, cyan, magenta, yellow, or the like.
  • the layers 521, 522, 524, 525, the light-emitting layer 523Q_1, and the light-emitting layer 523Q_2 have the same structure (material, film thickness, and the like) in pixels of each color, colored layers can be provided as appropriate. , can display in full color. Therefore, in the display device according to one embodiment of the present invention, it is not necessary to separately manufacture a light-emitting device for each pixel; thus, manufacturing steps can be simplified and manufacturing costs can be reduced.
  • the present invention is not limited to this, and one or more of 521, layer 522, layer 524, layer 525, light emitting layer 523Q_1, and light emitting layer 523Q_2 may have different structures depending on pixels.
  • tandem structure A configuration in which a plurality of light-emitting units are connected in series via an intermediate layer 531, such as the light-emitting device 550W, is referred to herein as a tandem structure.
  • a structure having one light-emitting unit between a pair of electrodes is called a single structure.
  • the tandem structure it is called a tandem structure, but it is not limited to this, and for example, the tandem structure may be called a stack structure.
  • the tandem structure enables a light-emitting device capable of emitting light with high luminance.
  • the tandem structure can reduce the current required to obtain the same luminance as compared with the single structure, so that the power consumption of the display device can be reduced and the reliability can be improved.
  • the light-emitting unit 512Q_1, the intermediate layer 531, the light-emitting unit 512Q_2, and the layer 525 can be formed as island-shaped layers.
  • FIG. 2B is a modification of the display device 500 shown in FIG. 2A.
  • a display device 500 shown in FIG. 2B is an example in which a layer 525 is provided in common among the light emitting devices similarly to the electrode 502 .
  • layer 525 can be referred to as a common layer.
  • the common layer is not particularly limited.
  • one or more layers selected from a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer can be used as a common layer.
  • a hole injection layer and a hole transport layer may be provided in common for each light emitting device.
  • a display device 500 shown in FIG. 3A is an example in which a light-emitting device 550W has a configuration in which three light-emitting units are stacked.
  • the light-emitting device 550W has a light-emitting unit 512Q_3 laminated on the light-emitting unit 512Q_2 with an intermediate layer 531 interposed therebetween.
  • the light-emitting unit 512Q_3 includes a layer 522, a light-emitting layer 523Q_3, a layer 524, and the like.
  • the number of light emitting units is not particularly limited, and may be two or more.
  • FIG. 3B shows an example of stacking n light-emitting units (n is an integer of 2 or more).
  • the luminance obtained from the light-emitting device with the same amount of current can be increased according to the number of stacked layers. Further, by increasing the number of stacked light-emitting units, the current required to obtain the same luminance can be reduced, so the power consumption of the light-emitting device can be reduced according to the number of stacked layers.
  • the light-emitting material of the light-emitting layer is not particularly limited.
  • the light-emitting layer 523Q_1 included in the light-emitting unit 512Q_1 can include a phosphorescent material
  • the light-emitting layer 523Q_2 included in the light-emitting unit 512Q_2 can include a fluorescent material.
  • the light-emitting layer 523Q_1 included in the light-emitting unit 512Q_1 can include a fluorescent material
  • the light-emitting layer 523Q_2 included in the light-emitting unit 512Q_2 can include a phosphorescent material.
  • the configuration of the light emitting unit is not limited to the above.
  • the light-emitting layer 523Q_1 included in the light-emitting unit 512Q_1 may include a TADF material
  • the light-emitting layer 523Q_2 included in the light-emitting unit 512Q_2 may include either a fluorescent material or a phosphorescent material. good.
  • the display device of one embodiment of the present invention may have a structure in which all the light-emitting layers are made of a fluorescent material, or a structure in which all the light-emitting layers are made of a phosphorescent material.
  • a display device of one embodiment of the present invention is a top emission type in which light is emitted in a direction opposite to a substrate over which a light-emitting device is formed, and light is emitted toward a substrate over which a light-emitting device is formed.
  • a bottom emission type bottom emission type
  • a double emission type dual emission type in which light is emitted from both sides may be used.
  • FIG. 1A shows a top view (also referred to as a plan view) of the display device 100.
  • the display device 100 has a display section in which a plurality of pixels 110 are arranged in a matrix, and a connection section 140 outside the display section.
  • One pixel 110 is composed of three sub-pixels, sub-pixels 110a, 110b, and 110c.
  • the arrangement of sub-pixels includes, for example, a stripe arrangement, an S-stripe arrangement, a matrix arrangement, a delta arrangement, a Bayer arrangement, and a pentile arrangement.
  • a stripe arrangement is applied to the pixels 110 shown in FIG. 1A.
  • top surface shapes of sub-pixels include triangles, quadrilaterals (including rectangles and squares), polygons such as pentagons, shapes with rounded corners of these polygons, ellipses, and circles.
  • the top surface shape of the sub-pixel corresponds to the top surface shape of the light emitting region of the light emitting device.
  • the sub-pixels 110a, 110b, and 110c have light-emitting devices that emit white light, and colored layers 125a, 125b, and 125c (hereinafter collectively referred to as colored layers 125 in some cases) provided thereon. ) shows an example in which each sub-pixel emits light of a different color.
  • the sub-pixels 110a, 110b, and 110c correspond to the sub-pixel having the colored layer 545R, the sub-pixel having the colored layer 545G, and the sub-pixel having the colored layer 545B shown in FIG. 2A and the like.
  • FIG. 1A shows an example in which the connecting portion 140 is positioned below the display portion in a top view (which can also be called a plan view), it is not particularly limited.
  • the connecting portion 140 may be provided at least one of the upper side, the right side, the left side, and the lower side of the display portion when viewed from above, and may be provided so as to surround the four sides of the display portion.
  • the number of connection parts 140 may be singular or plural.
  • FIG. 1B shows cross-sectional views taken along dashed-dotted lines X1-X2, Y1-Y2, and Y3-Y4 in FIG. 1A.
  • the display device 100 includes light-emitting devices 130a, 130b, and 130c (hereinafter collectively referred to as light-emitting devices 130) on a layer 101 including transistors.
  • a protective layer 131 is provided to cover.
  • insulators 124 are provided on the side surfaces of the light emitting devices 130a, 130b, and 130c.
  • Colored layers 125 a , 125 b , and 125 c are provided on the protective layer 131 .
  • a substrate 120 is attached thereon with a resin layer 122 .
  • the layer 101 including transistors for example, a stacked structure in which a plurality of transistors are provided on a substrate and an insulating layer is provided to cover these transistors can be applied.
  • a structural example of the layer 101 including a transistor will be described later in Embodiment 2. FIG.
  • the light emitting devices 130a, 130b, and 130c preferably emit white (W) light.
  • W white
  • the sub-pixels 110a, 110b, and 110c that emit light of different colors can be formed.
  • a light-emitting device has an EL layer between a pair of electrodes.
  • one of a pair of electrodes may be referred to as a pixel electrode and the other may be referred to as a common electrode.
  • one electrode functions as an anode and the other electrode functions as a cathode.
  • the pixel electrode functions as an anode and the common electrode functions as a cathode will be described below as an example.
  • the light emitting device 130a has a pixel electrode 111a on the layer 101 containing the transistor, a first layer 113 on the pixel electrode 111a, a second layer 114 on the first layer 113, and a second layer 114 on the second layer 114. and a common electrode 115 .
  • the first layer 113 and the second layer 114 can be collectively called an EL layer.
  • the light emitting device 130b differs from the light emitting device 130a in that pixel electrodes 111b are provided instead of the pixel electrodes 111a.
  • the light emitting device 130c differs from the light emitting device 130a in that pixel electrodes 111c are provided instead of the pixel electrodes 111a.
  • the pixel electrodes 111a, 111b, and 111c may be collectively referred to as the pixel electrode 111 in some cases.
  • the first layer 113 has a first light emitting unit 192 on the pixel electrode 111a, an intermediate layer 191 on the first light emitting unit 192, and a second light emitting unit 194 on the intermediate layer 191.
  • the first light-emitting unit 192 includes a first hole-injection layer 181a on the pixel electrode 111a, a first hole-transport layer 182a on the first hole-injection layer 181a, and a first hole-injection layer 181a. It has a first light emitting layer 183a on the transport layer 182a and a first electron transport layer 184a on the first light emitting layer 183a.
  • the second light-emitting unit 194 includes a second hole-transporting layer 182b on the intermediate layer 191, a second light-emitting layer 183b on the second hole-transporting layer 182b, and a second light-emitting layer and a second electron-transporting layer 184b on 183b.
  • the first light-emitting unit 192, the intermediate layer 191, and the second light-emitting unit 194 apply, for example, the same configurations as the light-emitting unit 512Q_1, the intermediate layer 531, and the light-emitting unit 512Q_2 shown in FIG. 2A, respectively. be able to. That is, the first light-emitting unit 192 can have layers 521, 522, light-emitting layer 523Q_1, layer 524, and so on.
  • the first hole-injecting layer 181a is the layer 521
  • the first hole-transporting layer 182a is the layer 522
  • the first light-emitting layer 183a is the light-emitting layer 523Q_1
  • the first electron-transporting layer 184a is the layer 524.
  • the second light-emitting unit 194 can have a layer 522, a light-emitting layer 523Q_2, a layer 524, and the like. Therefore, the second hole-transporting layer 182b corresponds to the layer 522, the second light-emitting layer 183b corresponds to the light-emitting layer 523Q_2, and the second electron-transporting layer 184b corresponds to the layer 524.
  • the second layer 114 is a layer common to the light emitting devices 130a to 130c.
  • the second layer 114 has, for example, an electron injection layer.
  • the second layer 114 may have a laminate of an electron transport layer and an electron injection layer.
  • the common electrode 115 is electrically connected to the conductive layer 123 provided on the connecting portion 140 . As a result, the same potential is supplied to the common electrodes 115 of the light emitting devices of each color.
  • a conductive film that transmits visible light and infrared light is used for the electrode on the light extraction side of the pixel electrode and the common electrode.
  • a conductive film that reflects visible light and infrared light is preferably used for the electrode on the side from which light is not extracted.
  • indium tin oxide also referred to as In—Sn oxide, ITO
  • In—Si—Sn oxide also referred to as ITSO
  • indium zinc oxide In—Zn oxide
  • In—W— Zn oxide alloys containing aluminum (aluminum alloys) such as alloys of aluminum, magnesium, nickel and lanthanum (Al-Ni-La), alloys of silver and magnesium, and alloys of silver, palladium and copper ( silver-containing alloys such as Ag--Pd--Cu, also referred to as APC).
  • elements belonging to Group 1 or Group 2 of the periodic table of elements not exemplified above e.g., lithium (Li), cesium (Cs), calcium (Ca), strontium (Sr)), europium (Eu), ytterbium
  • Yb ytterbium
  • a rare earth metal such as (Yb) an alloy containing an appropriate combination thereof, graphene, or the like can be used.
  • a pair of electrodes (a pixel electrode and a common electrode) of a light-emitting device may be formed by appropriately laminating the above metals, alloys, electrically conductive compounds, mixtures thereof, and the like.
  • a micro optical resonator (microcavity) structure is preferably applied to the light emitting device. Therefore, one of the pair of electrodes of the light-emitting device preferably has an electrode (semi-transmissive/semi-reflective electrode) that is transparent and reflective to visible light, and the other is an electrode that is reflective to visible light ( reflective electrode). Since the light-emitting device has a microcavity structure, the light emitted from the light-emitting layer can be resonated between both electrodes, and the light emitted from the light-emitting device can be enhanced.
  • the semi-transmissive/semi-reflective electrode can have a laminated structure of a reflective electrode and an electrode having transparency to visible light (also referred to as a transparent electrode).
  • the light transmittance of the transparent electrode is set to 40% or more.
  • the light-emitting device preferably uses an electrode having a transmittance of 40% or more for visible light (light with a wavelength of 400 nm or more and less than 750 nm).
  • the visible light reflectance of the semi-transmissive/semi-reflective electrode is 10% or more and 95% or less, preferably 30% or more and 80% or less.
  • the visible light reflectance of the reflective electrode is 40% or more and 100% or less, preferably 70% or more and 100% or less.
  • the resistivity of these electrodes is preferably 1 ⁇ 10 ⁇ 2 ⁇ cm or less.
  • the transmittance or reflectance of near-infrared light (light having a wavelength of 750 nm or more and 1300 nm or less) of these electrodes preferably satisfies the above numerical range, similarly to the transmittance or reflectance of visible light.
  • the first light emitting unit 192 and the second light emitting unit 194 each have a light emitting layer. It is preferable to adopt a configuration in which white light emission is obtained by combining light from the light emitting layers of a plurality of light emitting units.
  • the first light-emitting unit 192 and the second light-emitting unit 194 can each have one or more light-emitting layers.
  • a light-emitting layer is a layer containing a light-emitting substance.
  • the emissive layer can have one or more emissive materials.
  • a substance exhibiting emission colors such as blue, purple, violet, green, yellow-green, yellow, orange, and red is used as appropriate.
  • a substance that emits near-infrared light can be used as the light-emitting substance.
  • Luminescent materials include fluorescent materials, phosphorescent materials, thermally activated delayed fluorescent materials, and quantum dot materials.
  • fluorescent materials include pyrene derivatives, anthracene derivatives, triphenylene derivatives, fluorene derivatives, carbazole derivatives, dibenzothiophene derivatives, dibenzofuran derivatives, dibenzoquinoxaline derivatives, quinoxaline derivatives, pyridine derivatives, pyrimidine derivatives, phenanthrene derivatives, and naphthalene derivatives. be done.
  • Examples of phosphorescent materials include organometallic complexes (especially iridium complexes) having a 4H-triazole skeleton, 1H-triazole skeleton, imidazole skeleton, pyrimidine skeleton, pyrazine skeleton, or pyridine skeleton, and phenylpyridine derivatives having an electron-withdrawing group.
  • organometallic complexes especially iridium complexes
  • platinum complexes, rare earth metal complexes, etc. which are used as ligands, can be mentioned.
  • the light-emitting layer may contain one or more organic compounds (host material, assist material, etc.) in addition to the light-emitting substance (guest material).
  • One or both of a hole-transporting material and an electron-transporting material can be used as the one or more organic compounds.
  • Bipolar materials or TADF materials may also be used as one or more organic compounds.
  • the light-emitting layer preferably includes, for example, a phosphorescent material and a combination of a hole-transporting material and an electron-transporting material that easily form an exciplex.
  • ExTET Exciplex-Triplet Energy Transfer
  • a combination that forms an exciplex that emits light that overlaps with the wavelength of the absorption band on the lowest energy side of the light-emitting substance energy transfer becomes smooth and light emission can be efficiently obtained. With this configuration, high efficiency, low-voltage driving, and long life of the light-emitting device can be realized at the same time.
  • the first layer 113 includes, as layers other than the light-emitting layer, a substance with a high hole-injection property, a substance with a high hole-transport property, a hole-blocking material, a substance with a high electron-transport property, a substance with a high electron-injection property, and an electron layer.
  • a layer containing a block material, a bipolar substance (a substance with high electron-transport properties and hole-transport properties), or the like may be further included.
  • Both low-molecular-weight compounds and high-molecular-weight compounds can be used in the light-emitting device, and inorganic compounds may be included.
  • Each of the layers constituting the light-emitting device can be formed by a vapor deposition method (including a vacuum vapor deposition method), a transfer method, a printing method, an inkjet method, a coating method, or the like.
  • the first layer 113 may have one or more of a hole injection layer, a hole transport layer, a hole blocking layer, an electron blocking layer, an electron transport layer, and an electron injection layer.
  • the second layer 114 may have one or more of a hole injection layer, a hole transport layer, a hole block layer, an electron block layer, an electron transport layer, and an electron injection layer.
  • a hole injection layer e.g., a hole injection layer
  • a hole transport layer e.g., a hole transport layer
  • a hole block layer e.g., a hole block layer
  • an electron injection layer
  • the hole-injecting layer is a layer that injects holes from the anode into the hole-transporting layer, and contains a material with high hole-injecting properties.
  • highly hole-injecting materials include aromatic amine compounds and composite materials containing a hole-transporting material and an acceptor material (electron-accepting material).
  • a hole-transporting layer is a layer that transports holes injected from the anode by the hole-injecting layer to the light-emitting layer.
  • a hole-transporting layer is a layer containing a hole-transporting material.
  • the hole-transporting material a substance having a hole mobility of 1 ⁇ 10 ⁇ 6 cm 2 /Vs or more is preferable. Note that substances other than these can be used as long as they have a higher hole-transport property than electron-transport property.
  • hole-transporting materials include ⁇ -electron-rich heteroaromatic compounds (e.g., carbazole derivatives, thiophene derivatives, furan derivatives, etc.), aromatic amines (compounds having an aromatic amine skeleton), and other highly hole-transporting materials. is preferred.
  • ⁇ -electron-rich heteroaromatic compounds e.g., carbazole derivatives, thiophene derivatives, furan derivatives, etc.
  • aromatic amines compounds having an aromatic amine skeleton
  • other highly hole-transporting materials is preferred.
  • an electron-transporting layer is a layer that transports electrons injected from the cathode by the electron-injecting layer to the light-emitting layer.
  • the electron-transporting layer is a layer containing an electron-transporting material.
  • an electron-transporting material a substance having an electron mobility of 1 ⁇ 10 ⁇ 6 cm 2 /Vs or more is preferable. Note that substances other than these substances can be used as long as they have a higher electron-transport property than hole-transport property.
  • electron-transporting materials include metal complexes having a quinoline skeleton, metal complexes having a benzoquinoline skeleton, metal complexes having an oxazole skeleton, metal complexes having a thiazole skeleton, oxadiazole derivatives, triazole derivatives, imidazole derivatives, ⁇ -electrons including oxazole derivatives, thiazole derivatives, phenanthroline derivatives, quinoline derivatives with quinoline ligands, benzoquinoline derivatives, quinoxaline derivatives, dibenzoquinoxaline derivatives, pyridine derivatives, bipyridine derivatives, pyrimidine derivatives, and other nitrogen-containing heteroaromatic compounds
  • a material having a high electron-transport property such as a deficient heteroaromatic compound can be used.
  • the electron injection layer is a layer that injects electrons from the cathode to the electron transport layer, and is a layer that contains a material with high electron injection properties.
  • Alkali metals, alkaline earth metals, or compounds thereof can be used as materials with high electron injection properties.
  • a composite material containing an electron-transporting material and a donor material (electron-donating material) can also be used as a material with high electron-injecting properties.
  • Examples of the electron injection layer include lithium, cesium, lithium fluoride (LiF), cesium fluoride (CsF), calcium fluoride (CaF 2 ), 8-(quinolinolato)lithium (abbreviation: Liq), 2-(2 -pyridyl)phenoratritium (abbreviation: LiPP), 2-(2-pyridyl)-3-pyridinolatritium (abbreviation: LiPPy), 4-phenyl-2-(2-pyridyl)phenoratritium (abbreviation: LiPPP) , lithium oxide (LiO x ), cesium carbonate, etc., alkali metals, alkaline earth metals, or compounds thereof.
  • Liq lithium, cesium, lithium fluoride
  • CsF cesium fluoride
  • CaF 2 calcium fluoride
  • Liq 8-(quinolinolato)lithium
  • LiPP 2-(2 -pyridyl)phenoratritium
  • an electron-transporting material may be used as the electron injection layer.
  • a compound having a lone pair of electrons and an electron-deficient heteroaromatic ring can be used as the electron-transporting material.
  • a compound having at least one of a pyridine ring, diazine ring (pyrimidine ring, pyrazine ring, pyridazine ring), and triazine ring can be used.
  • the lowest unoccupied molecular orbital (LUMO) of the organic compound having an unshared electron pair is preferably -3.6 eV or more and -2.3 eV or less.
  • CV cyclic voltammetry
  • photoelectron spectroscopy optical absorption spectroscopy
  • inverse photoelectron spectroscopy etc. are used to determine the highest occupied molecular orbital (HOMO: Highest Occupied Molecular Orbital) level and LUMO level of an organic compound. can be estimated.
  • BPhen 4,7-diphenyl-1,10-phenanthroline
  • NBPhen 2,9-bis(naphthalen-2-yl)-4,7-diphenyl-1,10-phenanthroline
  • HATNA diquinoxalino [2,3-a:2′,3′-c]phenazine
  • TmPPPyTz 2,4,6-tris[3′-(pyridin-3-yl)biphenyl-3-yl]-1,3 , 5-triazine
  • TmPPPyTz 2,4,6-tris[3′-(pyridin-3-yl)biphenyl-3-yl]-1,3 , 5-triazine
  • a material (also called a composite material) in which multiple types of substances are mixed can be used for the first layer 113 .
  • a composite material containing an alkali metal, an alkali metal compound, or an alkali metal complex and an electron-transporting material can be used for the first layer 113 .
  • the HOMO level of the electron-transporting material is more preferably ⁇ 6.0 eV or higher.
  • a composite material of an acceptor material and a hole-transport material can be used for the first layer 113 .
  • a composite material of an acceptor material and a substance having a relatively deep HOMO level of ⁇ 5.7 eV to ⁇ 5.4 eV can be used for the first layer 113 .
  • a light-emitting device using the composite material described above for the first layer 113 may be referred to as a Recombination-Site Tailoring Injection structure (ReSTI structure).
  • ReSTI structure Recombination-Site Tailoring Injection structure
  • a protective layer 131 on the light emitting devices 130a, 130b, 130c.
  • the reliability of the light-emitting device can be improved.
  • the conductivity of the protective layer 131 does not matter. At least one of an insulating film, a semiconductor film, and a conductive film can be used as the protective layer 131 .
  • the protective layer 131 includes an inorganic film or an inorganic insulating film
  • oxidation of the common electrode 115 can be prevented, and impurities (moisture, oxygen, or the like) can be prevented from entering the light-emitting devices 130a, 130b, and 130c. can. This can suppress deterioration of the light-emitting device and improve the reliability of the display device.
  • inorganic insulating films such as an oxide insulating film, a nitride insulating film, an oxynitride insulating film, and a nitride oxide insulating film can be used.
  • oxide insulating film include a silicon oxide film, an aluminum oxide film, a gallium oxide film, a germanium oxide film, an yttrium oxide film, a zirconium oxide film, a lanthanum oxide film, a neodymium oxide film, a hafnium oxide film, a tantalum oxide film, and the like.
  • nitride insulating film examples include a silicon nitride film and an aluminum nitride film.
  • oxynitride insulating film a silicon oxynitride film, an aluminum oxynitride film, or the like can be given.
  • nitride oxide insulating film a silicon nitride oxide film, an aluminum nitride oxide film, or the like can be given.
  • oxynitride refers to a material whose composition contains more oxygen than nitrogen
  • nitride oxide refers to a material whose composition contains more nitrogen than oxygen. point to the material.
  • silicon oxynitride refers to a material whose composition contains more oxygen than nitrogen
  • silicon nitride oxide refers to a material whose composition contains more nitrogen than oxygen. indicates
  • the protective layer 131 preferably has a nitride insulating film or a nitride oxide insulating film, and more preferably has a nitride insulating film.
  • the protective layer 131 includes In—Sn oxide (also referred to as ITO), In—Zn oxide, Ga—Zn oxide, Al—Zn oxide, or indium gallium zinc oxide (In—Ga—Zn oxide).
  • Inorganic films containing materials such as IGZO can also be used.
  • the inorganic film preferably has a high resistance, and specifically, preferably has a higher resistance than the common electrode 115 .
  • the inorganic film may further contain nitrogen.
  • In—Ga—Zn oxide or the like can be used as the protective layer 131 .
  • the protective layer 131 When the light emitted from the light-emitting device is taken out through the protective layer 131, the protective layer 131 preferably has high transparency to visible light.
  • the protective layer 131 preferably has high transparency to visible light.
  • ITO, IGZO, and aluminum oxide are preferable because they are inorganic materials with high transparency to visible light.
  • the protective layer 131 for example, a stacked structure of an aluminum oxide film and a silicon nitride film over the aluminum oxide film, or a stacked structure of an aluminum oxide film and an IGZO film over the aluminum oxide film, or the like can be used. can be done. By using the stacked structure, impurities (such as water and oxygen) entering the EL layer can be suppressed.
  • the protective layer 131 may have an organic film.
  • protective layer 131 may have both an organic film and an inorganic film.
  • a colored layer 125 (a colored layer 125 a, a colored layer 125 b, and a colored layer 125 c ) is provided on the protective layer 131 .
  • Colored layer 125a has a region that overlaps light emitting device 130a
  • colored layer 125b has a region that overlaps light emitting device 130b
  • colored layer 125c has a region that overlaps light emitting device 130c.
  • the colored layers 125 a , 125 b , 125 c have at least regions overlapping the light emitting layers of the respective light emitting devices 130 .
  • the colored layer 125a, the colored layer 125b, and the colored layer 125c have a function of transmitting lights of different colors.
  • the colored layer 125a has a function of transmitting red light
  • the colored layer 125b has a function of transmitting green light
  • the colored layer 125c has a function of transmitting blue light. Accordingly, the display device 100 can perform full-color display.
  • the colored layer 125a, the colored layer 125b, and the colored layer 125c may have a function of transmitting any one of cyan, magenta, and yellow light.
  • adjacent colored layers 125 preferably have overlapping regions. Specifically, it is preferable to have a region where the adjacent colored layer 125 overlaps in a region that does not overlap with the light emitting device 130 .
  • the colored layers 125 can function as a light shielding layer in a region where the colored layers 125 overlap. Therefore, it is possible to suppress leakage of light emitted from the light emitting device 130 to adjacent sub-pixels. For example, light emitted from the light emitting device 130a overlapping the colored layer 125a can be prevented from entering the colored layer 125b. Therefore, the contrast of an image displayed on the display device can be increased, and a display device with high display quality can be realized.
  • the light shielding layer can be provided, for example, on the surface of the substrate 120 on the resin layer 122 side. Also, the colored layer 125 may be provided on the surface of the substrate 120 on the resin layer 122 side.
  • each light-emitting device 130 and each colored layer 125 is easier than in the case of forming the colored layer 125 on the substrate 120.
  • a high-definition display device can be realized.
  • Each end of the pixel electrodes 111a, 111b, and 111c is covered with an insulator 121.
  • the insulator 121 can also be called a bank, partition, barrier, embankment, or the like. By providing such an insulator 121, the pixel electrodes 111a, 111b, and 111c can be prevented from being in contact with the second layer 114, the common electrode 115, or the like, thereby suppressing a short circuit of the light emitting device . be able to.
  • the insulator 121 has openings above the pixel electrodes 111a, 111b, and 111c, respectively. , in contact with the first hole-injection layer 181a). That is, part of the insulator 121 is provided between the pixel electrode 111a, 111b, or 111c and the first hole-injection layer 181a at or near the end of each of the pixel electrodes 111a, 111b, and 111c. It is
  • the insulator 121 can have a single-layer structure or a laminated structure using one or both of an inorganic insulating film and an organic insulating film.
  • organic insulating materials that can be used for the insulator 121 include acrylic resins, epoxy resins, polyimide resins, polyamide resins, polyimideamide resins, polysiloxane resins, benzocyclobutene resins, and phenol resins.
  • an inorganic insulating film that can be used for the insulator 121 an inorganic insulating film that can be used for the protective layer 131 can be used.
  • an inorganic insulating film is used as the insulator 121 covering the edge of the pixel electrode, impurities are less likely to enter the light-emitting device than when an organic insulating film is used, and the reliability of the light-emitting device can be improved.
  • an organic insulating film is used as the insulator 121 that covers the end portion of the pixel electrode, step coverage is high and the shape of the pixel electrode is less likely to affect it than when an inorganic insulating film is used. Therefore, short-circuiting of the light emitting device can be prevented.
  • the shape of the insulator 121 can be processed into a tapered shape or the like.
  • a tapered shape refers to a shape in which at least a part of the side surface of the structure is inclined with respect to the substrate surface.
  • a region in which the angle formed by the inclined side surface and the substrate surface also referred to as a taper angle) is less than 90°.
  • the insulator 124 is provided on the insulator 121 and in contact with at least part of the side surface of the light emitting device 130 . At this time, insulator 124 is preferably in contact with at least part of the side surface of first light emitting unit 192 , the side surface of intermediate layer 191 , and the side surface of second light emitting unit 194 .
  • the insulator 124 is formed on the sides of the first hole-injection layer 181a, the sides of the first hole-transport layer 182a, the sides of the first light-emitting layer 183a, and the first electron-transport layer.
  • the second layer 114 is formed by the first light-emitting unit 192 , the intermediate layer 191 , and the second light-emitting unit 194 .
  • the insulator 124 can also be called a sidewall, a sidewall protective layer, a sidewall insulating film, or the like.
  • FIG. 1B shows an example in which the insulator 124 has a two-layer structure of an insulator 124a and an insulator 124b on the insulator 124a.
  • the side surface of the insulator 124a is in contact with at least part of the side surface of the light emitting device 130, and the lower surface of the insulator 124a is in contact with at least part of the insulator 121.
  • the side surface and the bottom surface of the insulator 124b are in contact with at least part of the insulator 124a.
  • the thickness of the insulator 124b in the direction perpendicular to the substrate surface of the substrate 120 can be made thicker than the thickness of the insulator 124b in the direction parallel to the substrate surface of the substrate 120.
  • the shape of the upper end portion of the insulator 124b can be round. It is preferable that the upper end portion of the insulator 124b be rounded so that coverage with the second layer 114, the common electrode 115, and the protective layer 131 is improved.
  • inorganic insulating films such as oxide insulating films, nitride insulating films, oxynitride insulating films, and oxynitride insulating films can be used, for example.
  • oxide insulating film include a silicon oxide film, an aluminum oxide film, a gallium oxide film, a germanium oxide film, an yttrium oxide film, a zirconium oxide film, a lanthanum oxide film, a neodymium oxide film, a hafnium oxide film, a tantalum oxide film, and the like.
  • nitride insulating film examples include a silicon nitride film and an aluminum nitride film.
  • oxynitride insulating film a silicon oxynitride film, an aluminum oxynitride film, or the like can be given.
  • nitride oxide insulating film a silicon nitride oxide film, an aluminum nitride oxide film, or the like can be given.
  • the insulators 124a and 124b can be formed by various film formation methods such as sputtering, vapor deposition (including vacuum vapor deposition), CVD, and ALD.
  • the ALD method causes little film formation damage to the layers to be formed
  • the insulator 124a that is in direct contact with the first light-emitting unit 192, the intermediate layer 191, and the second light-emitting unit 194 is formed by the ALD method.
  • an aluminum oxide film formed by an ALD method can be used as the insulator 124a, and a silicon nitride film formed by a sputtering method can be used as the insulator 124b.
  • one or both of the insulator 124a and the insulator 124b preferably have a function as a barrier insulating film against at least one of water and oxygen.
  • one or both of the insulator 124a and the insulator 124b preferably have a function of suppressing diffusion of at least one of water and oxygen.
  • one or both of the insulator 124a and the insulator 124b preferably have a function of capturing or fixing at least one of water and oxygen (also referred to as gettering).
  • a barrier insulating film indicates an insulating film having barrier properties.
  • the term “barrier property” refers to a function of suppressing diffusion of a corresponding substance (also referred to as low permeability).
  • the term “barrier property” means the function of capturing or fixing (also referred to as gettering) a corresponding substance.
  • One or both of the insulator 124a and the insulator 124b have the above barrier insulating film function or gettering function, so that impurities (typically, water or oxygen) that can diffuse into each light-emitting element from the outside are prevented. It becomes a configuration that can suppress the intrusion of With such a structure, a highly reliable display device can be provided.
  • a device manufactured using a metal mask or FMM may be referred to as a device with an MM (metal mask) structure.
  • a device manufactured without using a metal mask or FMM may be referred to as a device with an MML (metal maskless) structure.
  • a light emitting device capable of emitting white light is sometimes called a white light emitting device.
  • a white light emitting device can be combined with a colored layer (for example, a color filter) to realize a full-color display device.
  • a structure in which the light-emitting devices of each color (here, blue (B), green (G), and red (R)) are provided with separate light-emitting layers or painted separately is called a side-by-side (SBS) structure.
  • SBS side-by-side
  • light-emitting devices can be broadly classified into single structures and tandem structures.
  • a single-structure device preferably has one light-emitting unit between a pair of electrodes, and the light-emitting unit preferably includes one or more light-emitting layers.
  • the light-emitting unit preferably includes one or more light-emitting layers.
  • the luminescent color of the first luminescent layer and the luminescent color of the second luminescent layer have a complementary color relationship, it is possible to obtain a configuration in which the entire light emitting device emits white light.
  • a tandem structure device preferably has two or more light-emitting units between a pair of electrodes, and each light-emitting unit preferably includes one or more light-emitting layers.
  • each light-emitting unit preferably includes one or more light-emitting layers.
  • a structure in which white light emission is obtained by combining light from the light emitting layers of a plurality of light emitting units may be employed. Note that the structure for obtaining white light emission is the same as the structure of the single structure.
  • the manufacturing process of the white light emitting device is simpler than that of the light emitting device with the SBS structure. can be reduced or the manufacturing yield can be increased.
  • the display device of this embodiment can reduce the distance between the light emitting devices.
  • the distance between the light emitting devices can be, for example, the distance between the opposing side surfaces of the adjacent pixel electrodes 111 .
  • the distance between light emitting devices can be reduced to 8 ⁇ m or less, 6 ⁇ m or less, 4 ⁇ m or less, 3 ⁇ m or less, 2 ⁇ m or less, or even 1 ⁇ m or less.
  • the gap can be narrowed to 500 nm or less, 200 nm or less, 100 nm or less, 90 nm or less, 70 nm or less, 50 nm or less, 30 nm or less, 20 nm or less, 15 nm or less, or even 10 nm. .
  • FIG. 1A illustrates an example in which the sub-pixels 110a, 110b, and 110c are arranged in stripes
  • the present invention is not limited to this.
  • An example of a pixel array different from that shown in FIG. 1A will be described below with reference to FIGS. 4 to 6.
  • FIG. 1A illustrates an example in which the sub-pixels 110a, 110b, and 110c are arranged in stripes
  • the S-stripe arrangement is applied to the pixels 110 shown in FIG. 4A.
  • the pixel 110 shown in FIG. 4A is composed of three sub-pixels, sub-pixels 110a, 110b and 110c.
  • the sub-pixels 110b and 110c in the second column are arranged in the first and second rows, respectively, but the sub-pixel 110a in the first column is arranged in the first and second rows. , are arranged over the first and second rows.
  • sub-pixel 110a may be a blue sub-pixel
  • sub-pixel 110b may be a red sub-pixel
  • sub-pixel 110c may be a green sub-pixel.
  • the pixel 110 shown in FIG. 4B includes a subpixel 110a having a substantially trapezoidal top surface shape with rounded corners, a subpixel 110b having a substantially triangular top surface shape with rounded corners, and a substantially square or substantially hexagonal top surface shape with rounded corners. and a sub-pixel 110c having Also, the sub-pixel 110a has a larger light emitting area than the sub-pixel 110b.
  • the shape and size of each sub-pixel can be determined independently.
  • sub-pixels with more reliable light emitting devices can be smaller in size.
  • sub-pixel 110a may be a green sub-pixel
  • sub-pixel 110b may be a red sub-pixel
  • sub-pixel 110c may be a blue sub-pixel.
  • FIG. 4C shows an example in which pixels 128a having sub-pixels 110a and 110b and pixels 128b having sub-pixels 110b and 110c are alternately arranged.
  • sub-pixel 110a may be a blue sub-pixel
  • sub-pixel 110b may be a green sub-pixel
  • sub-pixel 110c may be a red sub-pixel.
  • Pixel 128a has two sub-pixels (sub-pixels 110a and 110b) in the upper row (first row) and one sub-pixel (sub-pixel 110c) in the lower row (second row).
  • Pixel 128b has one sub-pixel (sub-pixel 110c) in the upper row (first row) and two sub-pixels (sub-pixels 110a and 110b) in the lower row (second row).
  • FIG. 4D is an example in which each sub-pixel has a substantially square top surface shape with rounded corners
  • FIG. 4E is an example in which each sub-pixel has a circular top surface shape.
  • the top surface shape of the sub-pixel may be a polygonal shape with rounded corners, an elliptical shape, a circular shape, or the like.
  • the EL layer is processed into an island shape using a resist mask.
  • the resist film formed on the EL layer needs to be cured at a temperature lower than the heat resistance temperature of the EL layer. Therefore, depending on the heat resistance temperature of the EL layer material and the curing temperature of the resist material, curing of the resist film may be insufficient.
  • a resist film that is insufficiently hardened may take a shape away from the desired shape during processing.
  • the top surface shape of the EL layer may be a polygon with rounded corners, an ellipse, or a circle. For example, when a resist mask having a square top surface is formed, a resist mask having a circular top surface is formed, and the EL layer may have a circular top surface.
  • a technique for correcting the mask pattern in advance so that the design pattern and the transfer pattern match.
  • OPC Optical Proximity Correction
  • a pattern for correction is added to a corner portion of a figure on a mask pattern.
  • FIG. 1A shows a configuration in which three sub-pixels are provided, but the present invention is not limited to this.
  • a configuration in which four or more sub-pixels are provided may be employed.
  • the pixel 110 shown in FIG. 5A is composed of four sub-pixels, sub-pixels 110a, 110b, 110c and 110d.
  • Subpixel 110d like subpixels 110a, 110b, and 110c, also has a light emitting device 130d that emits white light.
  • the light emitting device 130d has a pixel electrode 111d, a first layer 113, a second layer 114, and a common electrode 115.
  • FIG. 5B the light emitting device 130d has a pixel electrode 111d, a first layer 113, a second layer 114, and a common electrode 115.
  • the sub-pixel 110d does not have a colored layer.
  • the sub-pixels 110a, 110b, and 110c can be red, green, and blue sub-pixels, respectively, and the sub-pixel 110d can be a white sub-pixel.
  • FIG. 5A shows an example in which one pixel 110 is arranged in two rows and three columns.
  • the pixel 110 has three sub-pixels (sub-pixels 110a, 110b, 110c) in the upper row (first row) and one sub-pixel (sub-pixel 110d) in the lower row (second row).
  • sub-pixel 110a in the left column (first column), sub-pixel 110b in the middle column (second column), and sub-pixel 110b in the right column (third column). It has pixels 110c and sub-pixels 110d over these three columns.
  • a stripe arrangement is applied to the pixels 110 shown in FIGS. 6A to 6C.
  • the pixel 110 shown in FIGS. 6A-6C is composed of four sub-pixels, sub-pixels 110a, 110b, 110c and 110d.
  • the sub-pixels 110a, 110b, 110c, 110d have light emitting devices that emit different colors of light.
  • sub-pixels 110a, 110b, 110c, and 110d can be red, green, blue, and white sub-pixels, respectively.
  • FIG. 6A is an example in which each sub-pixel has a rectangular top surface shape
  • FIG. 6B is an example in which each sub-pixel has a top surface shape connecting two semicircles and a rectangle
  • FIG. This is an example where the sub-pixel has an elliptical top surface shape.
  • a matrix arrangement is applied to the pixels 110 shown in FIGS. 6D to 6F.
  • the pixel 110 shown in FIGS. 6D-6F is composed of four sub-pixels, sub-pixels 110a, 110b, 110c and 110d.
  • the sub-pixels 110a, 110b, 110c, 110d have light emitting devices that emit different colors of light.
  • sub-pixels 110a, 110b, 110c, and 110d can be red, green, blue, and white sub-pixels, respectively.
  • FIG. 6D is an example in which each sub-pixel has a square top surface shape
  • FIG. 6E is an example in which each sub-pixel has a substantially square top surface shape with rounded corners
  • FIG. which have a circular top shape.
  • a pixel 110 shown in FIG. 6G is composed of six sub-pixels: a sub-pixel 110a, a sub-pixel 110b, a sub-pixel 110c, a sub-pixel 110d1, a sub-pixel 110d2, and a sub-pixel 110d3.
  • Subpixels 110d1, 110d2, and 110d3 in FIG. 6G are obtained by separating subpixel 110d shown in FIG. 5A parallel to subpixels 110a, 110b, and 110c.
  • the sub-pixels 110d1, 110d2, and 110d3 may be electrically connected to the same transistor in the layer 101 including transistors.
  • the bottlenecks formed between the sub-pixels 110a, 110b, 110c, 110d1, 110d2, and 110d3 are formed across the display device 100 in the X direction or the Y direction. . This makes it easier for dust and the like to flow through the bottleneck in the cleaning process when manufacturing the display device 100, and prevents dust generated during the manufacturing process from entering the display device.
  • FIG. 7 modified examples of the cross-sectional shape of the display device 100 will be described with reference to FIGS. 7 to 9.
  • recesses may be formed in the upper portion of insulator 121 between adjacent light emitting devices 130 .
  • the first recess is formed in a region of the insulator 121 that does not overlap with the first layer 113 in some cases.
  • the bottom surface of the insulator 124 may come into contact with the bottom surface of the first recess.
  • a second recess may be formed in a region of the first recess that does not overlap with the insulator 124 . At this time, part of the second layer 114 may come into contact with the bottom surface of the second recess.
  • FIG. 1B shows an example in which the second layer 114 enters a region between adjacent insulators 124, etc., but as shown in FIG. good.
  • the voids 133 contain, for example, one or more selected from air, nitrogen, oxygen, carbon dioxide, and group 18 elements (typically helium, neon, argon, xenon, krypton, etc.).
  • the refractive index of the air gap 133 is lower than that of the second layer 114 , the light emitted from the light emitting device is reflected at the interface between the second layer 114 and the air gap 133 . This makes it possible to suppress the light emitted from the light emitting device from entering adjacent pixels (or sub-pixels). Therefore, it is possible to suppress color mixture of light from different pixels, so that the display quality of the display device can be improved.
  • FIG. 1B shows an example in which the insulator 124 has the insulator 124a and the insulator 124b on the insulator 124a
  • the insulator 124 may have a single layer structure as shown in FIG. 8A.
  • the insulator 124 may be formed using a material that can be used for the insulator 124a or the insulator 124b.
  • FIG. 1B shows an example in which the upper end of the insulator 124 approximately coincides with the upper surface of the second electron transport layer 184b
  • the present invention is not limited to this.
  • the upper end of one or both of the insulator 124a and the insulator 124b may protrude from the upper surface of the second electron transport layer 184b.
  • the insulator 124 can cover the side surfaces of the first layer 113 up to the upper end, so short-circuiting of the light-emitting device 130 can be further suppressed.
  • FIG. 1B shows an example in which the colored layers 125a, 125b, and 125c are in contact with the upper surface of the protective layer 131, but the present invention is not limited to this.
  • an insulating layer 126 having good flatness may be provided to cover the protective layer 131, and colored layers 125a, 125b, and 125c may be provided on the insulating layer 126.
  • the insulating layer 126 for example, an organic insulating material, an inorganic insulating material, or the like that can be used for the insulator 121 may be used.
  • the resin layer 122 may be provided on the colored layers 125a, 125b, and 125c, and the substrate 120 may be attached.
  • conductive layers 112a, 112b, and 112c (hereinafter collectively referred to as conductive layers) having a function of transmitting visible light are formed on the pixel electrodes 111a, 111b, and 111c. 112) may be provided.
  • the conductive layer 123 also has a laminated structure of the conductive layers 123a and 123b.
  • the above-described conductive film having transparency to visible light can be used.
  • a conductive film that reflects visible light and is formed thin enough to transmit visible light can be used. Further, with the stacked structure of the conductive film and the conductive film that transmits visible light, conductivity and mechanical strength can be increased.
  • the conductive layer 112 is arranged between the pixel electrode 111 and the first hole injection layer 181a.
  • a conductive layer 112 is located on the pixel electrode 111 .
  • the conductive layer 112 provided in each light emitting device 130 preferably has a different thickness for each light emitting device.
  • the conductive layer 112a when the colored layer 125a transmits red light, the colored layer 125b transmits green light, and the colored layer 125c transmits blue light, the conductive layer 112a is the thickest among the three conductive layers 112. However, the thickness of the conductive layer 112c may be minimized.
  • the distance between the upper surface of the pixel electrode 111 and the lower surface of the common electrode 115 in each light emitting device is the largest in the light emitting device 130 overlapping the colored layer 125a and the smallest in the light emitting device 130 overlapping the colored layer 125c.
  • the light-emitting device 130 overlapping the colored layer 125a has the longest optical path length, so it emits light with the longest wavelength (for example, red light) intensified.
  • the light-emitting device 130 overlapping the colored layer 125b has the shortest optical path length, and thus emits light in which the shortest wavelength light (for example, blue light) is intensified.
  • the light-emitting device 130 overlapping the colored layer 125b emits light in which the intermediate wavelength light (for example, green light) is intensified.
  • FIGS. 10A to 10D show side by side a cross-sectional view along dashed line X1-X2, a cross-sectional view along Y1-Y2, and a cross-sectional view along Y3-Y4 in FIG. 1A. 11 to 13 are also the same as FIG.
  • the thin films (insulating films, semiconductor films, conductive films, etc.) that make up the display device are formed by sputtering, chemical vapor deposition (CVD), vacuum deposition, pulsed laser deposition (PLD). ) method, ALD method, or the like.
  • CVD methods include a plasma enhanced CVD (PECVD) method, a thermal CVD method, and the like. Also, one of the thermal CVD methods is the metal organic CVD (MOCVD) method.
  • the thin films (insulating film, semiconductor film, conductive film, etc.) that make up the display device can be applied by spin coating, dipping, spray coating, inkjet, dispensing, screen printing, offset printing, doctor knife, slit coating, roll coating, It can be formed by methods such as curtain coating and knife coating.
  • vacuum processes such as vapor deposition and solution processes such as spin coating and inkjet can be used to fabricate light-emitting devices.
  • vapor deposition methods include physical vapor deposition (PVD) such as sputtering, ion plating, ion beam vapor deposition, molecular beam vapor deposition, and vacuum vapor deposition, and chemical vapor deposition (CVD).
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • the functional layers (hole injection layer, hole transport layer, light emitting layer, electron transport layer, electron injection layer, etc.) included in the EL layer may be formed by a vapor deposition method (vacuum vapor deposition method, etc.), a coating method (dip coating method, die coat method, bar coat method, spin coat method, spray coat method, etc.), printing method (inkjet method, screen (stencil printing) method, offset (lithographic printing) method, flexographic (letterpress printing) method, gravure method, or micro contact method, etc.).
  • a vapor deposition method vacuum vapor deposition method, etc.
  • a coating method dip coating method, die coat method, bar coat method, spin coat method, spray coat method, etc.
  • printing method inkjet method, screen (stencil printing) method, offset (lithographic printing) method, flexographic (letterpress printing) method, gravure method, or micro contact method, etc.
  • the thin film when processing the thin film that constitutes the display device, a photolithography method or the like can be used.
  • the thin film may be processed by a nanoimprint method, a sandblast method, a lift-off method, or the like.
  • an island-shaped thin film may be directly formed by a film formation method using a shielding mask such as a metal mask.
  • a photolithography method there are typically the following two methods.
  • One is a method of forming a resist mask on a thin film to be processed, processing the thin film by etching or the like, and removing the resist mask.
  • the other is a method of forming a photosensitive thin film, then performing exposure and development to process the thin film into a desired shape.
  • the light used for exposure can be, for example, i-line (wavelength 365 nm), g-line (wavelength 436 nm), h-line (wavelength 405 nm), or a mixture of these.
  • ultraviolet rays, KrF laser light, ArF laser light, or the like can also be used.
  • extreme ultraviolet (EUV: Extreme Ultra-violet) light or X-rays may be used.
  • An electron beam can also be used instead of the light used for exposure. The use of extreme ultraviolet light, X-rays, or electron beams is preferable because extremely fine processing is possible.
  • a photomask may not be used when exposure is performed by scanning a beam such as an electron beam.
  • a dry etching method, a wet etching method, a sandblasting method, or the like can be used to etch the thin film.
  • pixel electrodes 111a, 111b, and 111c and a conductive layer 123 are formed over a layer 101 including transistors. Each pixel electrode is provided in the display portion, and the conductive layer 123 is provided in the connection portion 140 .
  • an insulator 121 covering the ends of the pixel electrodes 111a, 111b, and 111c and the ends of the conductive layer 123 is formed.
  • a first hole-injection layer 181A, a first hole-transport layer 182A, a first light-emitting layer 183A, a first An electron-transporting layer 184A, an intermediate layer 191A, a second hole-transporting layer 182B, a second light-emitting layer 183B, and a second electron-transporting layer 184B are formed in this order, and a second layer is formed on the second electron-transporting layer 184B.
  • a first sacrificial layer 118A is formed, and a second sacrificial layer 119A is formed on the first sacrificial layer 118A.
  • FIG. 10B in the cross-sectional view between Y1-Y2, the first hole-injection layer 181A, the first hole-transport layer 182A, the first light-emitting layer 183A, the first electron-transport layer 184A, the intermediate layer 191A, Example in which the second hole-transport layer 182B, the second light-emitting layer 183B, the second electron-transport layer 184B, the first sacrificial layer 118A, and the second sacrificial layer 119A are all provided over the conductive layer 123 is shown, but is not limited to this.
  • the first hole-injection layer 181A, the first hole-transport layer 182A, the first light-emitting layer 183A, the first electron-transport layer 184A, the intermediate layer 191A, the second hole-transport layer 182B, the second The light-emitting layer 183B, the second electron-transporting layer 184B, and the first sacrificial layer 118A do not have to overlap with the conductive layer 123 .
  • first hole-injection layer 181A, the first hole-transport layer 182A, the first light-emitting layer 183A, the first electron-transport layer 184A, the intermediate layer 191A, the second hole-transport layer 182B, the second The ends of the light-emitting layer 183B and the second electron-transporting layer 184B on the side of the connecting portion 140 may be located inside the ends of the first sacrificial layer 118A and the second sacrificial layer 119A.
  • the first hole-injection layer 181A, the first hole-transport layer 182A, and the first light-emitting layer are formed.
  • a mask also referred to as an area mask, a rough metal mask, etc.
  • the first hole-injection layer 181A, the first hole-transport layer 182A, and the first light-emitting layer are formed.
  • the area deposited with the sacrificial layer 119A can be changed.
  • a light-emitting device is formed using a resist mask.
  • the materials that can be used as pixel electrodes are as described above.
  • a sputtering method or a vacuum deposition method can be used to form the pixel electrode.
  • the insulator 121 can have a single-layer structure or a laminated structure using one or both of an inorganic insulating film and an organic insulating film, as described above.
  • First hole injection layer 181A, first hole transport layer 182A, first light emitting layer 183A, first electron transport layer 184A, intermediate layer 191A, second hole transport layer 182B, second light emission Layer 183B and second electron-transporting layer 184B are respectively later formed into first hole-injecting layer 181a, first hole-transporting layer 182a, first light-emitting layer 183a, first electron-transporting layer 184a, These layers are to be the intermediate layer 191, the second hole-transporting layer 182b, the second light-emitting layer 183b, and the second electron-transporting layer 184b.
  • the first hole-injecting layer 181a, the first hole-transporting layer 182a, the first light-emitting layer 183a, the first electron-transporting layer 184a, the intermediate layer 191, and the second hole-transporting layer, respectively, are described above. Any structure applicable to the layer 182b, the second light-emitting layer 183b, and the second electron-transporting layer 184b can be applied.
  • the layer 183B and the second electron-transporting layer 184B can each be formed by a vapor deposition method (including a vacuum vapor deposition method), a transfer method, a printing method, an inkjet method, a coating method, or the like.
  • first hole-injection layer 181A, the first hole-transport layer 182A, the first light-emitting layer 183A, the first electron-transport layer 184A, the intermediate layer 191A, the second hole-transport layer 182B, the second The light-emitting layer 183B and the second electron-transporting layer 184B may each be formed using a premixed material.
  • a premix material is a composite material in which a plurality of materials are blended or mixed in advance.
  • the sacrificial layer includes a first hole-injection layer 181A, a first hole-transport layer 182A, a first light-emitting layer 183A, a first electron-transport layer 184A, an intermediate layer 191A, and a second hole-transport layer 182B.
  • the second light-emitting layer 183B, and the second electron-transporting layer 184B a film having high resistance to processing conditions, specifically, a film having a high etching selectivity is used.
  • a sputtering method for example, a sputtering method, an ALD method (thermal ALD method, PEALD method), or a vacuum deposition method can be used to form the sacrificial layer.
  • a formation method that causes less damage to the EL layer is preferable, and the sacrificial layer is preferably formed by an ALD method or a vacuum evaporation method rather than a sputtering method.
  • a film that can be removed by wet etching is preferably used for the sacrificial layer.
  • the first hole-injection layer 181A, the first hole-transport layer 182A, the first light-emitting layer 183A, the first light-emitting layer 183A, the first hole-injection layer 182A, the first hole-transport layer 183A, the first hole-transport layer 183A, the first hole-transport layer 183A, and the first hole-transport layer 183A can be formed more easily during processing of the sacrificial layer than when the dry etching method is used. Damage to the electron-transporting layer 184A, the intermediate layer 191A, the second hole-transporting layer 182B, the second light-emitting layer 183B, and the second electron-transporting layer 184B can be reduced.
  • various functional layers constituting the light-emitting device (hole injection layer, hole transport layer, light emitting layer, active layer, electron transport layer, etc.) ) is difficult to process, and it is desirable that various sacrificial layers are difficult to process in the process of processing the functional layer. It is desirable to select the material of the sacrificial layer, the processing method, and the processing method of the functional layer in consideration of these.
  • an inorganic film such as a metal film, an alloy film, a metal oxide film, a semiconductor film, or an inorganic insulating film can be used.
  • the sacrificial layer includes metal materials such as gold, silver, platinum, magnesium, nickel, tungsten, chromium, molybdenum, iron, cobalt, copper, palladium, titanium, aluminum, yttrium, zirconium, and tantalum, or the metal materials.
  • metal materials such as gold, silver, platinum, magnesium, nickel, tungsten, chromium, molybdenum, iron, cobalt, copper, palladium, titanium, aluminum, yttrium, zirconium, and tantalum, or the metal materials.
  • a metal oxide such as In--Ga--Zn oxide can be used for the sacrificial layer.
  • the sacrificial layer for example, an In--Ga--Zn oxide film can be formed using a sputtering method.
  • indium oxide, In-Zn oxide, In-Sn oxide, indium titanium oxide (In-Ti oxide), indium tin zinc oxide (In-Sn-Zn oxide), indium titanium zinc oxide ( In--Ti--Zn oxide), indium gallium tin-zinc oxide (In--Ga--Sn--Zn oxide), or the like can be used.
  • indium tin oxide containing silicon or the like can be used.
  • element M is aluminum, silicon, boron, yttrium, copper, vanadium, beryllium, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten , or one or more selected from magnesium
  • M is aluminum, silicon, boron, yttrium, copper, vanadium, beryllium, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten , or one or more selected from magnesium
  • Various inorganic insulating films that can be used for the protective layer 131 can be used as the sacrificial layer.
  • an oxide insulating film is preferable because it has higher adhesion to the EL layer than a nitride insulating film.
  • inorganic insulating materials such as aluminum oxide, hafnium oxide, and silicon oxide can be used for the sacrificial layer.
  • an aluminum oxide film can be formed using the ALD method. Use of the ALD method is preferable because damage to the base (especially the EL layer or the like) can be reduced.
  • a lamination structure of an In—Ga—Zn oxide film formed by a sputtering method and an aluminum oxide film formed on the In—Ga—Zn oxide film by an ALD method is applied as the sacrificial layer.
  • a lamination structure of an aluminum oxide film formed by an ALD method and an In--Ga--Zn oxide film formed over the aluminum oxide film by a sputtering method can be used as the sacrificial layer.
  • a single-layer structure of an aluminum oxide film formed by an ALD method can be applied as the sacrificial layer.
  • a resist mask 190 is formed on the second sacrificial layer 119A.
  • a resist mask can be formed by applying a photosensitive resin (photoresist), followed by exposure and development.
  • the resist mask 190 is provided at positions overlapping with the pixel electrodes 111a, 111b, and 111c.
  • the resist mask 190 preferably does not overlap with the conductive layer 123 .
  • a resist mask 190 is used to partially remove the second sacrificial layer 119A.
  • a region of the second sacrificial layer 119A that does not overlap with the resist mask 190 can be removed. Therefore, the second sacrificial layer 119 remains at positions overlapping with the pixel electrodes 111a, 111b, and 111c. After that, the resist mask 190 is removed.
  • the second sacrificial layer 119 is used to partially remove the first sacrificial layer 118A.
  • the region of the first sacrificial layer 118A that does not overlap with the second sacrificial layer 119 can be removed. Therefore, a layered structure of the first sacrificial layer 118 and the second sacrificial layer 119 remains at positions overlapping with the pixel electrodes 111a, 111b, and 111c.
  • a portion of the first hole injection layer 181A and a portion of the first hole transport layer 182A are separated. , part of the first light-emitting layer 183A, part of the first electron-transporting layer 184A, part of the intermediate layer 191A, part of the second hole-transporting layer 182B, part of the second light-emitting layer 183B. , and a portion of the second electron transport layer 184B.
  • the first hole-injection layer 181A, the first hole-transport layer 182A, the first light-emitting layer 183A, the first electron-transport layer 184A, the intermediate layer 191A, the second hole-transport layer 182B, the second Regions of the second light-emitting layer 183B and the second electron-transporting layer 184B that do not overlap with the first sacrificial layer 118 and the second sacrificial layer 119 can be removed. Therefore, the conductive layer 123 is exposed.
  • the stacked structure of the first hole-injection layer 181a, the first hole-transport layer 182a, the first light-emitting layer 183a, and the first electron-transport layer 184a is sometimes referred to as a first light-emitting unit 192.
  • a stacked structure of the second hole-transport layer 182b, the second light-emitting layer 183b, and the second electron-transport layer 184b is sometimes called a second light-emitting unit 194.
  • the stacked structure of the first light-emitting unit 192 , the intermediate layer 191 , and the second light-emitting unit 194 is sometimes called the first layer 113 .
  • the first sacrificial layer 118A and the second sacrificial layer 119A can be processed by wet etching or dry etching, respectively.
  • the first sacrificial layer 118A and the second sacrificial layer 119A are preferably processed by anisotropic etching.
  • the first hole-injection layer 181A, the first hole-transport layer 182A, the first light-emitting layer 183A, the first light-emitting layer 183A, the first hole-injection layer 182A, the first hole-transport layer 183A, the first hole-transport layer 183A, the first hole-transport layer 183A, and the first hole-transport layer 183A can be formed more easily during processing of the sacrificial layer than when the dry etching method is used. Damage to the electron-transporting layer 184A, the intermediate layer 191A, the second hole-transporting layer 182B, the second light-emitting layer 183B, and the second electron-transporting layer 184B can be reduced.
  • a developer for example, a tetramethylammonium hydroxide (TMAH) aqueous solution, dilute hydrofluoric acid, oxalic acid, phosphoric acid, acetic acid, nitric acid, or a chemical solution using a mixed liquid thereof can be used.
  • TMAH tetramethylammonium hydroxide
  • the first hole-injection layer 181A, the first hole-transport layer 182A, the first light-emitting layer 183A, the first light-emitting layer 183A, and the first hole-injection layer 181A are formed by not using a gas containing oxygen as an etching gas.
  • the deterioration of the electron-transporting layer 184A, the intermediate layer 191A, the second hole-transporting layer 182B, the second light-emitting layer 183B, and the second electron-transporting layer 184B can be suppressed.
  • a gas containing a noble gas such as CF 4 , C 4 F 8 , SF 6 , CHF 3 , Cl 2 , H 2 O, BCl 3 , or He is used for etching. Gases are preferred.
  • the sacrificial layer has a laminated structure, some layers are processed using the resist mask 190, and after removing the resist mask 190, the partial layers are used as a hard mask to process the remaining layers. be able to.
  • the resist mask 190 is removed by ashing using oxygen plasma or the like.
  • the first sacrificial layer 118A is located on the outermost surface, and the first hole injection layer 181A, the first hole transport layer 182A, the first light emitting layer 183A, the first electron transport layer 184A, the intermediate layer Layer 191A, second hole-transporting layer 182B, second light-emitting layer 183B, and second electron-transporting layer 184B are not exposed.
  • the first hole-injection layer 181A, the first hole-transport layer 182A, the first light-emitting layer 183A, the first electron-transport layer 184A, the intermediate layer 191A, the second Damage to the hole-transport layer 182B, the second light-emitting layer 183B, and the second electron-transport layer 184B can be suppressed.
  • the second sacrificial layer 119 as a hard mask, the first sacrificial layer 118A can be processed.
  • 1 hole injection layer 181A, first hole transport layer 182A, first light emitting layer 183A, first electron transport layer 184A, intermediate layer 191A, second hole transport layer 182B, second light emitting layer 183B, and the second electron-transporting layer 184B can be processed.
  • the layer 183B and the second electron-transporting layer 184B are preferably processed by anisotropic etching.
  • Anisotropic dry etching is particularly preferred.
  • As an etching gas a gas containing nitrogen, a gas containing hydrogen, a gas containing noble gas, a gas containing nitrogen and argon, a gas containing nitrogen and hydrogen, or the like is preferably used.
  • the first hole injection layer 181A, the first hole transport layer 182A, the first light emitting layer 183A, the first electron transport layer 184A, the intermediate layer 191A, Deterioration of the second hole-transport layer 182B, the second light-emitting layer 183B, and the second electron-transport layer 184B can be suppressed.
  • part of the upper portion of the insulator 121 that does not overlap with the resist mask 190 may be removed by the above etching treatment.
  • the insulator 121 is formed with a first concave portion on the top.
  • the first concave portion is formed in a region that does not overlap with the first layer 113 .
  • an insulating film 124A is formed to cover the first layer 113, the first sacrificial layer 118, and the second sacrificial layer 119. Then, as shown in FIG. Further, an insulating film 124B is formed on the insulating film 124A.
  • a material that can be used for the insulator 124a and the insulator 124 may be used for the insulating film 124A and the insulating film 124B.
  • Methods for forming the insulating film 124A and the insulating film 124B include a vacuum deposition method, a sputtering method, a CVD method, an ALD method, and the like.
  • the insulating film 124A is preferably formed by a method that causes less damage to the first layer 113 .
  • the insulating films 124A and 124B are formed at a temperature lower than the heat-resistant temperature of the first layer 113 .
  • an aluminum oxide film can be formed using the ALD method.
  • the use of the ALD method is preferable because a film with high coverage can be formed.
  • a silicon oxynitride film or a silicon nitride film can be formed as the insulating film 124B by a PECVD method or a sputtering method.
  • the insulator 124b is formed by etching the insulating film 124B.
  • the insulating film 124B is preferably processed by anisotropic etching.
  • Anisotropic dry etching is particularly preferred.
  • gases containing noble gases such as CF 4 , C 4 F 8 , SF 6 , CHF 3 , Cl 2 , H 2 O, BCl 3 , or He can be used as the etching gas.
  • the insulating film 124A is etched to form an insulator 124a.
  • the insulating film 124A is preferably processed using a wet etching method. By using the wet etching method, damage to the second sacrificial layer 119 and the like can be reduced when the insulator 124a is processed, compared to the case of using the dry etching method.
  • a developer for example, a tetramethylammonium hydroxide aqueous solution (TMAH), dilute hydrofluoric acid, oxalic acid, phosphoric acid, acetic acid, nitric acid, or a chemical solution using a mixed liquid thereof can be used.
  • TMAH tetramethylammonium hydroxide aqueous solution
  • the insulator 124 in which the insulator 124b is laminated on the insulator 124a can be formed.
  • the insulator 124 has a side surface in contact with the first layer 113 and a bottom surface in contact with the insulator 121 . This can prevent the light-emitting device 130 from short-circuiting due to contact between the second layer 114 or the common electrode 115 to be formed later and the side surface of the pixel electrode 111 or the side surface of the first layer 113 . In addition, damage to the first layer 113 in subsequent steps can be suppressed.
  • part of the upper portion of the insulator 121 that does not overlap with the insulator 124 may be removed by the etching treatment.
  • the insulator 121 is formed with a second recess on the top.
  • the second recess is formed in a region of the first recess that does not overlap the insulator 124 .
  • the second sacrificial layer 119 is removed. Further, as shown in FIG. 13A, the first sacrificial layer 118 is removed. As a result, the second electron transport layer 184b is exposed on the pixel electrode 111, and the conductive layer 123 is exposed on the connection portion 140. Next, as shown in FIG. 12C, the second sacrificial layer 119 is removed. Further, as shown in FIG. 13A, the first sacrificial layer 118 is removed. As a result, the second electron transport layer 184b is exposed on the pixel electrode 111, and the conductive layer 123 is exposed on the connection portion 140. Next, as shown in FIG.
  • the same method as the sacrificial layer processing process can be used.
  • damage to the first layer 113, the conductive layer 123, and the insulator 124 can be reduced in removing the sacrificial layer compared to the case of using the dry etching method. can.
  • a second layer 114 is formed so as to cover the first layer 113, the conductive layer 123, the insulator 124, and the insulator 121, and the second layer 114 and the insulating layer are formed.
  • a common electrode 115 is formed over the body 121 and the conductive layer 123 .
  • the materials that can be used for the second layer 114 are as described above.
  • Each of the layers that constitute the second layer 114 can be formed by a vapor deposition method (including a vacuum vapor deposition method), a transfer method, a printing method, an inkjet method, a coating method, or the like.
  • the layers constituting the second layer 114 may be formed using a premix material. Note that the second layer 114 may be omitted if unnecessary.
  • the materials that can be used as the common electrode 115 are as described above.
  • a sputtering method or a vacuum deposition method can be used.
  • a protective layer 131 is formed on the common electrode 115 .
  • the materials that can be used for the protective layer 131 are as described above.
  • Methods for forming the protective layer 131 include a vacuum deposition method, a sputtering method, a CVD method, an ALD method, and the like.
  • the protective layer 131 may have a single layer structure or a laminated structure.
  • the protective layer 131 may have a laminated structure of two layers formed using different film formation methods.
  • colored layers 125a, 125b, and 125c are formed on the protective layer 131 so as to have regions overlapping with the pixel electrodes 111a, 111b, and 111c.
  • the colored layers 125a, 125b, and 125c can be formed at desired positions by an inkjet method, an etching method using a photolithography method, or the like. Specifically, a different colored layer 125 (colored layer 125a, colored layer 125b, or colored layer 125c) can be formed for each pixel.
  • the display device 100 shown in FIG. 1B can be manufactured.
  • the island-shaped EL layer is not formed by the pattern of the metal mask, but is formed by forming the EL layer over one surface and then processing the EL layer. Therefore, the island-shaped EL layer can be formed with a uniform thickness. In addition, it is possible to realize a high-definition display device or a display device with a high aperture ratio, which has been difficult to achieve.
  • a display device of one embodiment of the present invention includes a tandem light-emitting device. Then, side surfaces of the pixel electrode, the light emitting layer, the carrier transport layer, the carrier injection layer, and the intermediate layer of the light emitting device are covered with sidewall-shaped insulators and bank-shaped insulators. With such a configuration, contact between the common electrode and the side surfaces of the pixel electrode, the light emitting layer, the carrier transport layer, the carrier injection layer, and the intermediate layer is suppressed. can be suppressed.
  • the display device of this embodiment can be a high-resolution display device or a large-sized display device. Therefore, the display device of the present embodiment includes a relatively large screen such as a television device, a desktop or notebook personal computer, a computer monitor, a digital signage, a large game machine such as a pachinko machine, or the like. In addition to electronic devices, it can be used for display portions of digital cameras, digital video cameras, digital photo frames, mobile phones, portable game machines, personal digital assistants, and sound reproducing devices.
  • FIG. 14 shows a perspective view of the display device 100A
  • FIG. 15A shows a cross-sectional view of the display device 100A.
  • the display device 100A has a configuration in which a substrate 152 and a substrate 151 are bonded together.
  • the substrate 152 is clearly indicated by dashed lines.
  • the display device 100A has a display section 162, a circuit 164, wiring 165, and the like.
  • FIG. 14 shows an example in which an IC 173 and an FPC 172 are mounted on the display device 100A. Therefore, the configuration shown in FIG. 14 can also be said to be a display module including the display device 100A, an IC (integrated circuit), and an FPC.
  • a scanning line driving circuit for example, can be used as the circuit 164 .
  • the wiring 165 has a function of supplying signals and power to the display section 162 and the circuit 164 .
  • the signal and power are input to the wiring 165 from the outside through the FPC 172 or input to the wiring 165 from the IC 173 .
  • FIG. 14 shows an example in which an IC 173 is provided on a substrate 151 by a COG (Chip On Glass) method, a COF (Chip On Film) method, or the like.
  • a COG Chip On Glass
  • COF Chip On Film
  • the IC 173 for example, an IC having a scanning line driver circuit or a signal line driver circuit can be applied.
  • the display device 100A and the display module may be configured without an IC.
  • the IC may be mounted on the FPC by the COF method or the like.
  • FIG. 15A shows an example of a cross-section of the display device 100A when a portion of the region including the FPC 172, a portion of the circuit 164, a portion of the display section 162, and a portion of the region including the end are cut. show.
  • a display device 100A shown in FIG. 15A includes a transistor 201, a transistor 205, a light-emitting device 130a, a light-emitting device 130b, a colored layer 125a, a colored layer 125b, and the like between a substrate 151 and a substrate 152.
  • Light emitting device 130a and light emitting device 130b emit white light.
  • the colored layer 125a and the colored layer 125b have a function of transmitting lights of different colors. Although two types of colored layers are shown in FIG. 15A, more types of colored layers are provided in the display device 100A.
  • the three sub-pixels are R, G, and B sub-pixels
  • Examples include sub-pixels of three colors of yellow (Y), cyan (C), and magenta (M).
  • the four sub-pixels include R, G, B, and white (W) sub-pixels, and R, G, B, and Y four-color sub-pixels. be done.
  • the protective layer 131 and the substrate 152 are adhered via the adhesive layer 142 .
  • a solid sealing structure, a hollow sealing structure, or the like can be applied to sealing the light-emitting device.
  • the space between substrates 152 and 151 is filled with an adhesive layer 142 to apply a solid sealing structure.
  • the space may be filled with an inert gas (such as nitrogen or argon) to apply a hollow sealing structure.
  • the adhesive layer 142 may be provided so as not to overlap the light emitting device.
  • the space may be filled with a resin different from the adhesive layer 142 provided in a frame shape.
  • the light emitting device 130a has a layered structure similar to that of the light emitting device 130a shown in FIG. 1B, and the light emitting device 130b has a layered structure similar to that of the light emitting device 130b shown in FIG. 1B.
  • Embodiment 1 can be referred to for details of the light-emitting device.
  • An insulator 124 is formed in contact with the side surface of the light emitting device 130a and the side surface of the light emitting device 130b.
  • a protective layer 131 is formed to cover the light emitting devices 130a and 130b, the insulator 124, and the insulator 121.
  • the pixel electrode 111 a is connected to the conductive layer 222 b of the transistor 205 through an opening provided in the insulating layer 214 .
  • the pixel electrode 111b is electrically connected to one of the source electrode and the drain electrode of the transistor 205 through an opening provided in the insulating layer 214 .
  • a region including the ends of the pixel electrodes 111 a and 111 b is covered with an insulator 121 .
  • the pixel electrodes 111a and 111b contain a material that reflects visible light, and the common electrode 115 contains a material that transmits visible light.
  • the light emitted by the light emitting device is emitted to the substrate 152 side. Therefore, it is preferable that the substrate 152 be made of a material that is highly transparent to visible light.
  • a layered structure from the substrate 151 to the insulating layer 214 corresponds to the layer 101 including the transistor in the first embodiment.
  • Both the transistor 201 and the transistor 205 are formed over the substrate 151 . These transistors can be made with the same material and the same process.
  • An insulating layer 211, an insulating layer 213, an insulating layer 215, and an insulating layer 214 are provided on the substrate 151 in this order.
  • Part of the insulating layer 211 functions as a gate insulating layer of each transistor.
  • Part of the insulating layer 213 functions as a gate insulating layer of each transistor.
  • An insulating layer 215 is provided over the transistor.
  • An insulating layer 214 is provided over the transistor and functions as a planarization layer. Note that the number of gate insulating layers and the number of insulating layers covering a transistor are not limited, and each may have a single layer or two or more layers.
  • a material in which impurities such as water and hydrogen are difficult to diffuse for at least one insulating layer covering the transistor.
  • Inorganic insulating films are preferably used for the insulating layer 211, the insulating layer 213, and the insulating layer 215, respectively.
  • As the inorganic insulating film for example, a silicon nitride film, a silicon oxynitride film, a silicon oxide film, a silicon oxynitride film, an aluminum oxide film, an aluminum nitride film, or the like can be used.
  • a hafnium oxide film, an yttrium oxide film, a zirconium oxide film, a gallium oxide film, a tantalum oxide film, a magnesium oxide film, a lanthanum oxide film, a cerium oxide film, a neodymium oxide film, or the like may be used.
  • two or more of the insulating films described above may be laminated and used.
  • An organic insulating film is suitable for the insulating layer 214 that functions as a planarizing layer.
  • materials that can be used for the organic insulating film include acrylic resins, polyimide resins, epoxy resins, polyamide resins, polyimideamide resins, siloxane resins, benzocyclobutene-based resins, phenolic resins, precursors of these resins, and the like.
  • the organic insulating film preferably has openings near the ends of the display device 100A. As a result, it is possible to prevent impurities from entering through the organic insulating film from the end portion of the display device 100A.
  • the organic insulating film may be formed so that the edges of the organic insulating film are located inside the edges of the display device 100A so that the organic insulating film is not exposed at the edges of the display device 100A.
  • An opening is formed in the insulating layer 214 in a region 228 shown in FIG. 15A.
  • a conductive layer 221 functioning as a gate an insulating layer 211 functioning as a gate insulating layer, conductive layers 222a and 222b functioning as sources and drains, a semiconductor layer 231, and a gate insulating layer. It has an insulating layer 213 and a conductive layer 223 functioning as a gate.
  • the same hatching pattern is applied to a plurality of layers obtained by processing the same conductive film.
  • the insulating layer 211 is located between the conductive layer 221 and the semiconductor layer 231 .
  • the insulating layer 213 is located between the conductive layer 223 and the semiconductor layer 231 .
  • the structure of the transistor included in the display device of this embodiment there is no particular limitation on the structure of the transistor included in the display device of this embodiment.
  • a planar transistor, a staggered transistor, an inverted staggered transistor, or the like can be used.
  • the transistor structure may be either a top-gate type or a bottom-gate type.
  • gates may be provided above and below a semiconductor layer in which a channel is formed.
  • a structure in which a semiconductor layer in which a channel is formed is sandwiched between two gates is applied to the transistors 201 and 205 .
  • a transistor may be driven by connecting two gates and applying the same signal to them.
  • the threshold voltage of the transistor may be controlled by applying a potential for controlling the threshold voltage to one of the two gates and applying a potential for driving to the other.
  • Crystallinity of a semiconductor material used for a transistor is not particularly limited, either an amorphous semiconductor or a semiconductor having crystallinity (a microcrystalline semiconductor, a polycrystalline semiconductor, a single crystal semiconductor, or a semiconductor partially including a crystal region). may be used. It is preferable to use a crystalline semiconductor because deterioration of transistor characteristics can be suppressed.
  • a semiconductor layer of a transistor preferably includes a metal oxide (also referred to as an oxide semiconductor).
  • the display device of this embodiment preferably uses a transistor including a metal oxide for a channel formation region (hereinafter referred to as an OS transistor).
  • the semiconductor layer of the transistor may comprise silicon. Examples of silicon include amorphous silicon and crystalline silicon (low-temperature polysilicon, monocrystalline silicon, etc.).
  • the semiconductor layer includes, for example, indium and M (M is gallium, aluminum, silicon, boron, yttrium, tin, copper, vanadium, beryllium, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, one or more selected from hafnium, tantalum, tungsten, and magnesium) and zinc.
  • M is preferably one or more selected from aluminum, gallium, yttrium, and tin.
  • an oxide also referred to as IGZO
  • IGZO oxide containing indium (In), gallium (Ga), and zinc (Zn) as the semiconductor layer.
  • the atomic ratio of In in the In-M-Zn oxide is preferably equal to or higher than the atomic ratio of M.
  • the transistor included in the circuit 164 and the transistor included in the display portion 162 may have the same structure or different structures.
  • the plurality of transistors included in the circuit 164 may all have the same structure, or may have two or more types.
  • the structures of the plurality of transistors included in the display portion 162 may all be the same, or may be of two or more types.
  • 15B and 15C show other configuration examples of the transistor.
  • the transistor 209 and the transistor 210 each include a conductive layer 221 functioning as a gate, an insulating layer 211 functioning as a gate insulating layer, a semiconductor layer 231 having a channel formation region 231i and a pair of low-resistance regions 231n, and one of the pair of low-resistance regions 231n.
  • a conductive layer 222a connected to a pair of low-resistance regions 231n, a conductive layer 222b connected to the other of a pair of low-resistance regions 231n, an insulating layer 225 functioning as a gate insulating layer, a conductive layer 223 functioning as a gate, and an insulating layer 215 covering the conductive layer 223 have
  • the insulating layer 211 is located between the conductive layer 221 and the channel formation region 231i.
  • the insulating layer 225 is located at least between the conductive layer 223 and the channel formation region 231i.
  • an insulating layer 218 may be provided to cover the transistor.
  • the transistor 209 shown in FIG. 15B shows an example in which the insulating layer 225 covers the top surface and side surfaces of the semiconductor layer 231 .
  • the conductive layers 222a and 222b are connected to the low-resistance region 231n through openings provided in the insulating layers 225 and 215, respectively.
  • One of the conductive layers 222a and 222b functions as a source and the other functions as a drain.
  • the insulating layer 225 overlaps the channel formation region 231i of the semiconductor layer 231 and does not overlap the low resistance region 231n.
  • the structure shown in FIG. 15C can be manufactured by processing the insulating layer 225 using the conductive layer 223 as a mask.
  • the insulating layer 215 is provided to cover the insulating layer 225 and the conductive layer 223, and the conductive layers 222a and 222b are connected to the low resistance region 231n through openings in the insulating layer 215, respectively.
  • a connecting portion 204 is provided in a region of the substrate 151 where the substrate 152 does not overlap.
  • the wiring 165 is electrically connected to the FPC 172 via the conductive layer 166 and the connecting layer 242 .
  • the conductive layer 166 is a conductive film obtained by processing the same conductive film as the pixel electrode.
  • the conductive layer 166 is exposed on the upper surface of the connecting portion 204 . Thereby, the connecting portion 204 and the FPC 172 can be electrically connected via the connecting layer 242 .
  • a light shielding layer 148 is preferably provided on the surface of the substrate 152 on the substrate 151 side. Colored layers 125a and 125b may be provided on the surface of the substrate 152 on the substrate 151 side. In FIG. 15A, the colored layers 125a and 125b are provided so as to partially cover the light shielding layer 148 when the substrate 152 is used as a reference.
  • optical members can be arranged outside the substrate 152 .
  • optical members include polarizing plates, retardation plates, light diffusion layers (diffusion films, etc.), antireflection layers, light collecting films, and the like.
  • an antistatic film that suppresses adhesion of dust, a water-repellent film that prevents adhesion of dirt, a hard coat film that suppresses the occurrence of scratches due to use, a shock absorption layer, etc. are arranged on the outside of the substrate 152 .
  • an antistatic film that suppresses adhesion of dust
  • a water-repellent film that prevents adhesion of dirt
  • a hard coat film that suppresses the occurrence of scratches due to use
  • a shock absorption layer, etc. are arranged.
  • the protective layer 131 that covers the light-emitting device, it is possible to suppress the entry of impurities such as water into the light-emitting device and improve the reliability of the light-emitting device.
  • the insulating layer 215 and the protective layer 131 are in contact with each other through the opening of the insulating layer 214 in the region 228 near the edge of the display device 100A.
  • the inorganic insulating films are in contact with each other. This can prevent impurities from entering the display section 162 from the outside through the organic insulating film. Therefore, the reliability of the display device 100A can be improved.
  • the substrates 151 and 152 glass, quartz, ceramics, sapphire, resins, metals, alloys, semiconductors, etc. can be used, respectively.
  • a material that transmits the light is used for the substrate on the side from which the light from the light-emitting device is extracted.
  • flexible materials are used for the substrates 151 and 152, the flexibility of the display device can be increased and a flexible display can be realized.
  • a polarizing plate may be used as the substrate 151 or the substrate 152 .
  • polyester resin such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyacrylonitrile resin, acrylic resin, polyimide resin, polymethyl methacrylate resin, polycarbonate (PC) resin, polyethersulfone ( PES) resin, polyamide resin (nylon, aramid, etc.), polysiloxane resin, cycloolefin resin, polystyrene resin, polyamideimide resin, polyurethane resin, polyvinyl chloride resin, polyvinylidene chloride resin, polypropylene resin, polytetrafluoroethylene (PTFE ) resin, ABS resin, cellulose nanofiber, and the like can be used.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PES polyethersulfone
  • polyamide resin nylon, aramid, etc.
  • polysiloxane resin polystyrene resin
  • polyamideimide resin polyurethane resin
  • a substrate having high optical isotropy has small birefringence (it can be said that the amount of birefringence is small).
  • the absolute value of the retardation (retardation) value of the substrate with high optical isotropy is preferably 30 nm or less, more preferably 20 nm or less, and even more preferably 10 nm or less.
  • Films with high optical isotropy include triacetyl cellulose (TAC, also called cellulose triacetate) films, cycloolefin polymer (COP) films, cycloolefin copolymer (COC) films, and acrylic films.
  • TAC triacetyl cellulose
  • COP cycloolefin polymer
  • COC cycloolefin copolymer
  • a film having a low water absorption rate as the substrate.
  • various curable adhesives such as photocurable adhesives such as ultraviolet curable adhesives, reaction curable adhesives, thermosetting adhesives, and anaerobic adhesives can be used.
  • These adhesives include epoxy resins, acrylic resins, silicone resins, phenol resins, polyimide resins, imide resins, PVC (polyvinyl chloride) resins, PVB (polyvinyl butyral) resins, EVA (ethylene vinyl acetate) resins, and the like.
  • a material with low moisture permeability such as epoxy resin is preferable.
  • a two-liquid mixed type resin may be used.
  • an adhesive sheet or the like may be used.
  • connection layer 242 an anisotropic conductive film (ACF: Anisotropic Conductive Film), an anisotropic conductive paste (ACP: Anisotropic Conductive Paste), or the like can be used.
  • ACF Anisotropic Conductive Film
  • ACP Anisotropic Conductive Paste
  • materials that can be used for conductive layers such as various wirings and electrodes constituting display devices include aluminum, titanium, chromium, nickel, copper, yttrium, zirconium, molybdenum, silver, Examples include metals such as tantalum and tungsten, and alloys containing these metals as main components. A film containing these materials can be used as a single layer or as a laminated structure.
  • conductive oxides such as indium oxide, indium tin oxide, indium zinc oxide, zinc oxide, zinc oxide containing gallium, or graphene can be used.
  • metal materials such as gold, silver, platinum, magnesium, nickel, tungsten, chromium, molybdenum, iron, cobalt, copper, palladium, and titanium, or alloy materials containing such metal materials can be used.
  • a nitride of the metal material eg, titanium nitride
  • it is preferably thin enough to have translucency.
  • a stacked film of any of the above materials can be used as the conductive layer.
  • a laminated film of a silver-magnesium alloy and indium tin oxide because the conductivity can be increased.
  • conductive layers such as various wirings and electrodes that constitute a display device, and conductive layers (conductive layers functioning as pixel electrodes or common electrodes) of light-emitting devices.
  • Examples of insulating materials that can be used for each insulating layer include resins such as acrylic resins and epoxy resins, and inorganic insulating materials such as silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, and aluminum oxide.
  • FIG. 15A shows an example of a top emission display device 100A in which light is emitted to the substrate 152 side
  • the present invention is not limited to this.
  • a bottom emission display device in which light is emitted to the substrate 151 side may be used.
  • the display device 100B differs from the display device 100A in that colored layers 125a and 125b are provided between the insulating layer 213 and the insulating layer 214 .
  • the colored layers 125a and 125b are provided so as to overlap the light emitting devices 130a and 130b, respectively.
  • the display device 100B also differs from the display device 100A in that the pixel electrodes 111a and 111b contain a material that transmits visible light, and the common electrode 115 contains a material that reflects visible light.
  • the conductive layer 166 obtained by processing the same conductive film as the pixel electrodes 111a and 111b also contains a material that transmits visible light.
  • the substrate 151 is made of a material having high visible light transmittance.
  • This embodiment can be implemented by appropriately combining at least part of it with other embodiments described herein.
  • FIG. 17A is a schematic perspective view of the display module 480.
  • FIG. Display module 480 has display device 400 and FPC 490 .
  • the display module 480 has substrates 401 and 402 .
  • a display portion 481 is provided on the substrate 402 side.
  • the display section 481 is an area for displaying an image in the display module 480, and is an area where light from each pixel provided in the pixel section 484, which will be described later, can be visually recognized.
  • FIG. 17B shows a perspective view schematically showing the configuration on the substrate 401 side.
  • the substrate 401 has a structure in which a circuit portion 482, a pixel circuit portion 483 over the circuit portion 482, and a pixel portion 484 over the pixel circuit portion 483 are stacked.
  • a terminal portion 485 for connecting to the FPC 490 is provided on a portion of the substrate 401 that does not overlap with the pixel portion 484 .
  • the terminal portion 485 and the circuit portion 482 are electrically connected by a wiring portion 486 composed of a plurality of wirings.
  • the pixel unit 484 has a plurality of periodically arranged pixels 484a. An enlarged view of one pixel 484a is shown on the right side of FIG. 17B. Pixel 484a has sub-pixel 110a, sub-pixel 110b, and sub-pixel 110c. The above embodiment can be referred to for the configuration of the sub-pixel 110a, the sub-pixel 110b, and the sub-pixel 110c and their surroundings.
  • the pixel circuit section 483 has a plurality of pixel circuits 483a arranged periodically.
  • the plurality of pixels 484a and the plurality of pixel circuits 483a may be arranged in a stripe arrangement as shown in FIG. 17B. Note that the plurality of pixels 484a and the plurality of pixel circuits 483a may be arranged in a delta arrangement or the like, instead of the stripe arrangement.
  • One pixel circuit 483a is a circuit that controls light emission of three light emitting elements included in one pixel 484a.
  • One pixel circuit 483a may have a structure in which three circuits for controlling light emission of one light-emitting element are provided.
  • the pixel circuit 483a can have at least one selection transistor, one current control transistor (driving transistor), and a capacitive element for each light emitting element. At this time, a gate signal is input to the gate of the selection transistor, and a source signal is input to either the source or the drain of the selection transistor. This realizes an active matrix display device.
  • the circuit section 482 has a circuit that drives each pixel circuit 483 a of the pixel circuit section 483 .
  • a circuit that drives each pixel circuit 483 a of the pixel circuit section 483 For example, it is preferable to have a gate line driver circuit, a source line driver circuit, and the like.
  • an arithmetic circuit, a memory circuit, a power supply circuit, and the like may be provided.
  • the FPC 490 functions as wiring for supplying a video signal, power supply potential, or the like to the circuit section 482 from the outside. Also, an IC may be mounted on the FPC 490 .
  • the aperture ratio (effective display area ratio) of the display portion 481 can be extremely high. can be done.
  • the aperture ratio of the display portion 481 can be 40% or more and less than 100%, preferably 50% or more and 95% or less, more preferably 60% or more and 95% or less.
  • the pixels 484a can be arranged at an extremely high density, and the definition of the display portion 481 can be extremely high.
  • the pixels 484a may be arranged with a resolution of 2000 ppi or more, preferably 3000 ppi or more, more preferably 5000 ppi or more, and still more preferably 6000 ppi or more, and 20000 ppi or less, or 30000 ppi or less. preferable.
  • a display module 480 Since such a display module 480 has extremely high definition, it can be suitably used for devices for VR such as head-mounted displays, or glasses-type devices for AR. For example, even in a configuration in which the display portion of the display module 480 is viewed through a lens, the display module 480 has an extremely high-definition display portion 481, so pixels cannot be viewed even if the display portion is enlarged with the lens. , a highly immersive display can be performed.
  • the display module 480 is not limited to this, and can be suitably used for electronic equipment having a relatively small display unit. For example, it can be suitably used for a display part of a wearable electronic device such as a wristwatch.
  • each display device (the display device 400A to the display device 400C) that can be used for the display device 400 will be described below.
  • FIG. 18A is a schematic cross-sectional view of the display device 400A.
  • the display device 400A includes a substrate 401, subpixels 110a, 110b, 110c, capacitive elements 440, transistors 410, and the like.
  • a layered structure from the substrate 401 to the capacitive element 440 corresponds to the layer 101 including the transistor in the first embodiment.
  • a transistor 410 is a transistor in which a channel formation region is formed in the substrate 401 .
  • the substrate 401 for example, a semiconductor substrate such as a single crystal silicon substrate can be used.
  • the transistor 410 includes part of the substrate 401, a conductive layer 411, a low-resistance region 412, an insulating layer 413, an insulating layer 414, and the like.
  • the conductive layer 411 functions as a gate electrode.
  • An insulating layer 413 is located between the substrate 401 and the conductive layer 411 and functions as a gate insulating layer.
  • the low-resistance region 412 is a region in which impurities are doped in the substrate 401 and functions as either a source or a drain.
  • the insulating layer 414 is provided to cover the side surface of the conductive layer 411 .
  • a device isolation layer 415 is provided between two adjacent transistors 410 so as to be embedded in the substrate 401 .
  • An insulating layer 461 is provided to cover the transistor 410 , and a capacitor 440 is provided over the insulating layer 461 .
  • the capacitive element 440 has a conductive layer 441, a conductive layer 442, and an insulating layer 443 positioned therebetween.
  • the conductive layer 441 functions as one electrode of the capacitor 440
  • the conductive layer 442 functions as the other electrode of the capacitor 440
  • the insulating layer 443 functions as the dielectric of the capacitor 440 .
  • the conductive layer 441 is provided on the insulating layer 461 and electrically connected to one of the source and drain of the transistor 410 by a plug 471 embedded in the insulating layer 461 .
  • An insulating layer 443 is provided over the conductive layer 441 .
  • the conductive layer 442 is provided in a region overlapping with the conductive layer 441 with the insulating layer 443 provided therebetween.
  • An insulating layer 321 is provided to cover the capacitive element 440 , and sub-pixels 110 a , 110 b , 110 c and the like are provided on the insulating layer 321 .
  • the pixel electrodes of the sub-pixel 110 a , sub-pixel 110 b , and sub-pixel 110 c are electrically connected to the conductive layer 441 by plugs 331 embedded in the insulating layers 321 and 443 .
  • an example using the configuration illustrated in FIG. 1B is shown as the configuration of the sub-pixel 110a, the sub-pixel 110b, the sub-pixel 110c, etc., but the configuration is not limited to this, and various configurations illustrated above can be applied. be able to.
  • a protective layer 131, an insulating layer 362, and an insulating layer 363 are provided in this order so as to cover the common electrode 115 of the light emitting elements of the subpixels 110a, 110b, and 110c.
  • These three insulating layers function as protective layers that prevent impurities such as water from diffusing into the light emitting elements of the subpixels 110a, 110b, and 110c.
  • An inorganic insulating film with low moisture permeability such as a silicon oxide film, a silicon nitride film, or an aluminum oxide film is preferably used for the insulating layer 363 .
  • an organic insulating film with high light-transmitting property can be used for the insulating layer 362 .
  • the influence of unevenness on the lower side of the insulating layer 362 can be reduced, and the surface on which the insulating layer 363 is formed can be made smooth. As a result, defects such as pinholes are less likely to occur in the insulating layer 363, and the moisture permeability of the protective layer can be further increased.
  • the structure of the protective layer covering the light-emitting elements of the sub-pixels 110a, 110b, and 110c is not limited to this, and may be a single-layer structure, a two-layer structure, or a laminated structure of four or more layers.
  • the display device 400A has a substrate 402 on the viewing side.
  • the substrate 402 and the substrate 401 are bonded together with an adhesive layer 364 having translucency.
  • a light-transmitting substrate such as a glass substrate, a quartz substrate, a sapphire substrate, or a plastic substrate can be used.
  • FIG. 19 is a schematic cross-sectional view of the display device 400B.
  • the display device 400B mainly differs from the display device 400A in that the transistor configuration is different.
  • the transistor 420 is a transistor in which a metal oxide (also referred to as an oxide semiconductor) is applied to a semiconductor layer in which a channel is formed.
  • a metal oxide also referred to as an oxide semiconductor
  • the transistor 420 includes a semiconductor layer 421, an insulating layer 423, a conductive layer 424, a pair of conductive layers 425, an insulating layer 426, a conductive layer 427, and the like.
  • the substrate 401 provided with the transistor 420 the insulating substrate or the semiconductor substrate described above can be used.
  • An insulating layer 432 is provided on the substrate 401 .
  • the insulating layer 432 functions as a barrier layer that prevents impurities such as water or hydrogen from diffusing from the substrate 401 into the transistor 420 and oxygen from the semiconductor layer 421 toward the insulating layer 432 side.
  • a film into which hydrogen or oxygen is less likely to diffuse than a silicon oxide film such as an aluminum oxide film, a hafnium oxide film, or a silicon nitride film, can be used.
  • a conductive layer 427 is provided over the insulating layer 432 and an insulating layer 426 is provided to cover the conductive layer 427 .
  • the conductive layer 427 functions as a first gate electrode of the transistor 420, and part of the insulating layer 426 functions as a first gate insulating layer.
  • An oxide insulating film such as a silicon oxide film is preferably used for at least a portion of the insulating layer 426 which is in contact with the semiconductor layer 421 .
  • the upper surface of the insulating layer 426 is preferably planarized.
  • the semiconductor layer 421 is provided on the insulating layer 426 .
  • the semiconductor layer 421 preferably includes a metal oxide (also referred to as an oxide semiconductor) film having semiconductor characteristics. Details of materials that can be suitably used for the semiconductor layer 421 will be described later.
  • a pair of conductive layers 425 are provided on and in contact with the semiconductor layer 421 and function as a source electrode and a drain electrode.
  • An insulating layer 428 is provided to cover the top and side surfaces of the pair of conductive layers 425, the side surface of the semiconductor layer 421, and the like, and the insulating layer 461b is provided over the insulating layer 428.
  • the insulating layer 428 functions as a barrier insulating film that prevents impurities such as water or hydrogen from diffusing into the semiconductor layer 421 from the insulating layer 461 b or the like and oxygen from leaving the semiconductor layer 421 .
  • an insulating film similar to the insulating layer 432 can be used as the insulating layer 432.
  • An opening reaching the semiconductor layer 421 is provided in the insulating layer 428 and the insulating layer 461b.
  • the insulating layer 423 and the conductive layer 424 are embedded in the opening, which are in contact with the side surfaces of the insulating layer 461b, the insulating layer 428, and the conductive layer 425, and the top surface of the semiconductor layer 421.
  • FIG. The conductive layer 424 functions as a second gate electrode, and the insulating layer 423 functions as a second gate insulating layer.
  • the top surface of the conductive layer 424, the top surface of the insulating layer 423, and the top surface of the insulating layer 461b are planarized so that their heights are approximately the same, and the insulating layers 429 and 461a are provided to cover them. .
  • the insulating layers 461a and 461b function as interlayer insulating layers.
  • the insulating layer 429 also functions as a barrier insulating film that prevents impurities such as water or hydrogen from diffusing into the transistor 420 from the insulating layer 461a or the like.
  • As the insulating layer 429 an insulating film similar to the insulating layers 428 and 432 can be used.
  • a plug 471 electrically connected to one of the pair of conductive layers 425 is provided so as to be embedded in the insulating layers 461a, 429, and 461b.
  • the plug 471 includes the conductive layer 471a covering the side surfaces of the openings of the insulating layers 461a, 461b, 429, and 428 and part of the top surface of the conductive layer 425, and the conductive layer 471a. It is preferable to have a conductive layer 471b in contact with the top surface. At this time, a conductive material into which hydrogen and oxygen are difficult to diffuse is preferably used for the conductive layer 471a.
  • FIG. 20 is a schematic cross-sectional view of the display device 400C.
  • the display device 400C has a structure in which a transistor 410 in which a channel is formed over a substrate 401 and a transistor 420 including a metal oxide in a semiconductor layer in which the channel is formed are stacked.
  • An insulating layer 461 is provided to cover the transistor 410 , and a conductive layer 451 is provided over the insulating layer 461 .
  • An insulating layer 462 is provided to cover the conductive layer 451 , and the conductive layer 452 is provided over the insulating layer 462 .
  • Each of the conductive layers 451 and 452 functions as a wiring.
  • An insulating layer 463 and an insulating layer 432 are provided to cover the conductive layer 452 , and the transistor 420 is provided over the insulating layer 432 .
  • An insulating layer 465 is provided to cover the transistor 420 , and the capacitor 440 is provided over the insulating layer 465 . The capacitor 440 and the transistor 420 are electrically connected through a plug 474 .
  • the transistor 420 can be used as a transistor forming a pixel circuit. Further, the transistor 410 can be used as a transistor forming a pixel circuit or a transistor forming a driver circuit (a gate line driver circuit or a source line driver circuit) for driving the pixel circuit. Further, the transistors 410 and 420 can be used as transistors included in various circuits such as an arithmetic circuit and a memory circuit.
  • a transistor includes a conductive layer functioning as a gate electrode, a semiconductor layer, a conductive layer functioning as a source electrode, a conductive layer functioning as a drain electrode, and an insulating layer functioning as a gate insulating layer.
  • the structure of the transistor included in the display device of one embodiment of the present invention there is no particular limitation on the structure of the transistor included in the display device of one embodiment of the present invention.
  • a planar transistor, a staggered transistor, or an inverted staggered transistor may be used.
  • the transistor structure may be either a top-gate type or a bottom-gate type.
  • gate electrodes may be provided above and below the channel.
  • Crystallinity of a semiconductor material used for a transistor is not particularly limited, either an amorphous semiconductor or a semiconductor having crystallinity (a microcrystalline semiconductor, a polycrystalline semiconductor, a single crystal semiconductor, or a semiconductor partially including a crystal region). may be used. It is preferable to use a crystalline semiconductor because deterioration of transistor characteristics can be suppressed.
  • a transistor (OS transistor) in which a metal oxide film is used as a semiconductor layer in which a channel is formed will be described below.
  • a metal oxide having an energy gap of 2 eV or more, preferably 2.5 eV or more, more preferably 3 eV or more can be used as a semiconductor material used for a transistor.
  • a typical example is a metal oxide containing indium, and for example, CAC-OS, which will be described later, can be used.
  • a transistor using a metal oxide which has a wider bandgap and a lower carrier density than silicon, retains charge accumulated in a capacitor connected in series with the transistor for a long period of time due to its low off-state current. It is possible.
  • the semiconductor layer is represented by an In-M-Zn oxide containing, for example, indium, zinc, and M (M is a metal such as aluminum, titanium, gallium, germanium, yttrium, zirconium, lanthanum, cerium, tin, neodymium, or hafnium). It can be a membrane that is
  • the atomic ratio of the metal elements in the sputtering target used for forming the In-M-Zn oxide is In ⁇ M, Zn It is preferable to satisfy ⁇ M.
  • the atomic ratio of the semiconductor layers to be deposited includes a variation of plus or minus 40% of the atomic ratio of the metal element contained in the sputtering target.
  • Conductive layer In addition to the gate, source and drain of transistors, materials that can be used for conductive layers such as various wirings and electrodes constituting display devices include aluminum, titanium, chromium, nickel, copper, yttrium, zirconium, molybdenum, silver, A metal such as tantalum or tungsten, or an alloy containing this as a main component can be used. Also, a film containing these materials can be used as a single layer or as a laminated structure.
  • a single-layer structure of an aluminum film containing silicon a two-layer structure in which an aluminum film is stacked over a titanium film, a two-layer structure in which an aluminum film is stacked over a tungsten film, and a copper film over a copper-magnesium-aluminum alloy film.
  • insulating materials that can be used for each insulating layer include resins such as acrylic resins and epoxy resins, resins having a siloxane bond such as silicone, silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, and oxide. Inorganic insulating materials such as aluminum can also be used.
  • the light emitting element is preferably provided between a pair of insulating films (barrier insulating films) with low water permeability. As a result, it is possible to prevent impurities such as water from entering the light-emitting element, and to prevent deterioration of the reliability of the device.
  • Examples of insulating films with low water permeability include films containing nitrogen and silicon such as silicon nitride films and silicon nitride oxide films, and films containing nitrogen and aluminum such as aluminum nitride films.
  • films containing nitrogen and silicon such as silicon nitride films and silicon nitride oxide films
  • films containing nitrogen and aluminum such as aluminum nitride films.
  • a silicon oxide film, a silicon oxynitride film, an aluminum oxide film, or the like may be used.
  • the water vapor permeation amount of an insulating film with low water permeability is 1 ⁇ 10 ⁇ 5 [g/(m 2 ⁇ day)] or less, preferably 1 ⁇ 10 ⁇ 6 [g/(m 2 ⁇ day)] or less, It is more preferably 1 ⁇ 10 ⁇ 7 [g/(m 2 ⁇ day)] or less, still more preferably 1 ⁇ 10 ⁇ 8 [g/(m 2 ⁇ day)] or less.
  • This embodiment can be implemented by appropriately combining at least part of it with other embodiments described herein.
  • the metal oxide preferably contains at least indium or zinc. In particular, it preferably contains indium and zinc. In addition to these, aluminum, gallium, yttrium, tin and the like are preferably contained. In addition, one or more selected from boron, silicon, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, magnesium, cobalt, etc. may be contained. .
  • the metal oxide is formed by chemical vapor deposition (CVD) such as sputtering, metal organic chemical vapor deposition (MOCVD), or atomic layer deposition (ALD). It can be formed by a layer deposition method or the like.
  • CVD chemical vapor deposition
  • MOCVD metal organic chemical vapor deposition
  • ALD atomic layer deposition
  • Crystal structures of oxide semiconductors include amorphous (including completely amorphous), CAAC (c-axis-aligned crystalline), nc (nanocrystalline), CAC (cloud-aligned composite), single crystal, and polycrystal. (poly crystal) and the like.
  • the crystal structure of the film or substrate can be evaluated using an X-ray diffraction (XRD) spectrum.
  • XRD X-ray diffraction
  • it can be evaluated using an XRD spectrum obtained by GIXD (Grazing-Incidence XRD) measurement.
  • GIXD Gram-Incidence XRD
  • the GIXD method is also called a thin film method or a Seemann-Bohlin method.
  • the shape of the peak of the XRD spectrum is almost bilaterally symmetrical.
  • the peak shape of the XRD spectrum is left-right asymmetric.
  • the asymmetric shape of the peaks in the XRD spectra demonstrates the presence of crystals in the film or substrate. In other words, the film or substrate cannot be said to be in an amorphous state unless the shape of the peaks in the XRD spectrum is symmetrical.
  • the crystal structure of the film or substrate can be evaluated by a diffraction pattern (also referred to as a nano beam electron diffraction pattern) observed by nano beam electron diffraction (NBED).
  • a diffraction pattern also referred to as a nano beam electron diffraction pattern
  • NBED nano beam electron diffraction
  • a halo is observed in the diffraction pattern of a quartz glass substrate, and it can be confirmed that the quartz glass is in an amorphous state.
  • a spot-like pattern is observed instead of a halo. Therefore, it is presumed that the IGZO film deposited at room temperature is neither crystalline nor amorphous, but in an intermediate state and cannot be concluded to be in an amorphous state.
  • oxide semiconductors may be classified differently from the above when their structures are focused. For example, oxide semiconductors are classified into single-crystal oxide semiconductors and non-single-crystal oxide semiconductors. Examples of non-single-crystal oxide semiconductors include the above CAAC-OS and nc-OS. Non-single-crystal oxide semiconductors include polycrystalline oxide semiconductors, amorphous-like oxide semiconductors (a-like OS), amorphous oxide semiconductors, and the like.
  • CAAC-OS is an oxide semiconductor that includes a plurality of crystal regions, and the c-axes of the plurality of crystal regions are oriented in a specific direction. Note that the specific direction is the thickness direction of the CAAC-OS film, the normal direction to the formation surface of the CAAC-OS film, or the normal direction to the surface of the CAAC-OS film.
  • a crystalline region is a region having periodicity in atomic arrangement. If the atomic arrangement is regarded as a lattice arrangement, the crystalline region is also a region with a uniform lattice arrangement.
  • CAAC-OS has a region where a plurality of crystal regions are connected in the a-b plane direction, and the region may have strain.
  • the strain refers to a portion where the orientation of the lattice arrangement changes between a region with a uniform lattice arrangement and another region with a uniform lattice arrangement in a region where a plurality of crystal regions are connected. That is, CAAC-OS is an oxide semiconductor that is c-axis oriented and has no obvious orientation in the ab plane direction.
  • each of the plurality of crystal regions is composed of one or more microcrystals (crystals having a maximum diameter of less than 10 nm).
  • the maximum diameter of the crystalline region is less than 10 nm.
  • the size of the crystal region may be about several tens of nanometers.
  • CAAC-OS contains indium (In) and oxygen.
  • a tendency to have a layered crystal structure also referred to as a layered structure in which a layer (hereinafter referred to as an In layer) and a layer containing the element M, zinc (Zn), and oxygen (hereinafter referred to as a (M, Zn) layer) are stacked.
  • the (M, Zn) layer may contain indium.
  • the In layer contains the element M.
  • the In layer may contain Zn.
  • the layered structure is observed as a lattice image in, for example, a high-resolution TEM (Transmission Electron Microscope) image.
  • a plurality of bright points are observed in the electron beam diffraction pattern of the CAAC-OS film.
  • a certain spot and another spot are observed at point-symmetrical positions with respect to the spot of the incident electron beam that has passed through the sample (also referred to as a direct spot) as the center of symmetry.
  • the lattice arrangement in the crystal region is basically a hexagonal lattice, but the unit cell is not always a regular hexagon and may be a non-regular hexagon. Moreover, the distortion may have a lattice arrangement such as a pentagon or a heptagon. Note that in CAAC-OS, no clear crystal grain boundary can be observed even near the strain. That is, it can be seen that the distortion of the lattice arrangement suppresses the formation of grain boundaries. This is because the CAAC-OS can tolerate strain due to the fact that the arrangement of oxygen atoms is not dense in the ab plane direction and the bond distance between atoms changes due to the substitution of metal atoms. it is conceivable that.
  • a crystal structure in which clear grain boundaries are confirmed is called a polycrystal.
  • a grain boundary becomes a recombination center, traps carriers, and is highly likely to cause a decrease in on-current of a transistor, a decrease in field-effect mobility, and the like. Therefore, a CAAC-OS in which no clear grain boundaries are observed is one of crystalline oxides having a crystal structure suitable for a semiconductor layer of a transistor.
  • a structure containing Zn is preferable for forming a CAAC-OS.
  • In--Zn oxide and In--Ga--Zn oxide are preferable because they can suppress the generation of grain boundaries more than In oxide.
  • CAAC-OS is an oxide semiconductor with high crystallinity and no clear crystal grain boundaries. Therefore, it can be said that the decrease in electron mobility due to grain boundaries is less likely to occur in CAAC-OS.
  • a CAAC-OS can be said to be an oxide semiconductor with few impurities and defects (such as oxygen vacancies). Therefore, an oxide semiconductor including CAAC-OS has stable physical properties. Therefore, an oxide semiconductor including CAAC-OS is resistant to heat and has high reliability.
  • CAAC-OS is also stable against high temperatures (so-called thermal budget) in the manufacturing process. Therefore, the use of the CAAC-OS for the OS transistor makes it possible to increase the degree of freedom in the manufacturing process.
  • nc-OS has periodic atomic arrangement in a minute region (eg, a region of 1 nm to 10 nm, particularly a region of 1 nm to 3 nm).
  • the nc-OS has minute crystals.
  • the size of the minute crystal is, for example, 1 nm or more and 10 nm or less, particularly 1 nm or more and 3 nm or less, the minute crystal is also called a nanocrystal.
  • nc-OS does not show regularity in crystal orientation between different nanocrystals. Therefore, no orientation is observed in the entire film.
  • an nc-OS may be indistinguishable from an a-like OS or an amorphous oxide semiconductor depending on the analysis method.
  • an nc-OS film is subjected to structural analysis using an XRD apparatus, out-of-plane XRD measurement using ⁇ /2 ⁇ scanning does not detect a peak indicating crystallinity.
  • an nc-OS film is subjected to electron beam diffraction (also referred to as selected area electron beam diffraction) using an electron beam with a probe diameter larger than that of nanocrystals (for example, 50 nm or more), a diffraction pattern such as a halo pattern is obtained. is observed.
  • an nc-OS film is subjected to electron diffraction (also referred to as nanobeam electron diffraction) using an electron beam with a probe diameter close to or smaller than the size of a nanocrystal (for example, 1 nm or more and 30 nm or less)
  • An electron beam diffraction pattern may be obtained in which a plurality of spots are observed within a ring-shaped area centered on the direct spot.
  • An a-like OS is an oxide semiconductor having a structure between an nc-OS and an amorphous oxide semiconductor.
  • An a-like OS has void or low density regions. That is, the a-like OS has lower crystallinity than the nc-OS and CAAC-OS. In addition, the a-like OS has a higher hydrogen concentration in the film than the nc-OS and the CAAC-OS.
  • CAC-OS relates to material composition.
  • CAC-OS is, for example, one structure of a material in which elements constituting a metal oxide are unevenly distributed with a size of 0.5 nm or more and 10 nm or less, preferably 1 nm or more and 3 nm or less, or in the vicinity thereof.
  • the metal oxide one or more metal elements are unevenly distributed, and the region having the metal element has a size of 0.5 nm or more and 10 nm or less, preferably 1 nm or more and 3 nm or less, or a size in the vicinity thereof.
  • the mixed state is also called mosaic or patch.
  • CAC-OS is a structure in which the material is separated into a first region and a second region to form a mosaic shape, and the first region is distributed in the film (hereinafter, also referred to as a cloud shape). ). That is, CAC-OS is a composite metal oxide in which the first region and the second region are mixed.
  • the atomic ratios of In, Ga, and Zn to the metal elements constituting the CAC-OS in the In--Ga--Zn oxide are denoted by [In], [Ga], and [Zn], respectively.
  • the first region is a region where [In] is larger than [In] in the composition of the CAC-OS film.
  • the second region is a region where [Ga] is greater than [Ga] in the composition of the CAC-OS film.
  • the first region is a region in which [In] is larger than [In] in the second region and [Ga] is smaller than [Ga] in the second region.
  • the second region is a region in which [Ga] is larger than [Ga] in the first region and [In] is smaller than [In] in the first region.
  • the first region is a region whose main component is indium oxide, indium zinc oxide, or the like.
  • the second region is a region containing gallium oxide, gallium zinc oxide, or the like as a main component. That is, the first region can be rephrased as a region containing In as a main component. Also, the second region can be rephrased as a region containing Ga as a main component.
  • a clear boundary between the first region and the second region may not be observed.
  • the CAC-OS in the In—Ga—Zn oxide means a region containing Ga as a main component and a region containing In as a main component in a material structure containing In, Ga, Zn, and O. Each region is a mosaic, and refers to a configuration in which these regions exist randomly. Therefore, CAC-OS is presumed to have a structure in which metal elements are unevenly distributed.
  • the CAC-OS can be formed, for example, by sputtering under the condition that the substrate is not heated.
  • a sputtering method one or more selected from an inert gas (typically argon), an oxygen gas, and a nitrogen gas may be used as a deposition gas. good.
  • an inert gas typically argon
  • oxygen gas typically argon
  • a nitrogen gas may be used as a deposition gas. good.
  • the lower the flow rate ratio of the oxygen gas to the total flow rate of the film formation gas during film formation, the better. is preferably 0% or more and 10% or less.
  • an EDX mapping obtained using energy dispersive X-ray spectroscopy shows that a region containing In as a main component It can be confirmed that the (first region) and the region (second region) containing Ga as the main component are unevenly distributed and have a mixed structure.
  • the first region is a region with higher conductivity than the second region. That is, when carriers flow through the first region, conductivity as a metal oxide is developed. Therefore, by distributing the first region in the form of a cloud in the metal oxide, a high field effect mobility ( ⁇ ) can be realized.
  • the second region is a region with higher insulation than the first region.
  • the leakage current can be suppressed by distributing the second region in the metal oxide.
  • CAC-OS when used for a transistor, the conductivity caused by the first region and the insulation caused by the second region act in a complementary manner to provide a switching function (turning ON/OFF). functions) can be given to the CAC-OS.
  • a part of the material has a conductive function
  • a part of the material has an insulating function
  • the whole material has a semiconductor function.
  • CAC-OS is most suitable for various semiconductor devices including display devices.
  • Oxide semiconductors have a variety of structures, each with different characteristics.
  • An oxide semiconductor of one embodiment of the present invention includes two or more of an amorphous oxide semiconductor, a polycrystalline oxide semiconductor, an a-like OS, a CAC-OS, an nc-OS, and a CAAC-OS. may
  • an oxide semiconductor with low carrier concentration is preferably used for a transistor.
  • the carrier concentration of the oxide semiconductor is 1 ⁇ 10 17 cm ⁇ 3 or less, preferably 1 ⁇ 10 15 cm ⁇ 3 or less, more preferably 1 ⁇ 10 13 cm ⁇ 3 or less, more preferably 1 ⁇ 10 11 cm ⁇ 3 or less. 3 or less, more preferably less than 1 ⁇ 10 10 cm ⁇ 3 and 1 ⁇ 10 ⁇ 9 cm ⁇ 3 or more.
  • the impurity concentration in the oxide semiconductor film may be lowered to lower the defect level density.
  • a low impurity concentration and a low defect level density are referred to as high-purity intrinsic or substantially high-purity intrinsic.
  • an oxide semiconductor with a low carrier concentration is sometimes referred to as a highly purified intrinsic or substantially highly purified intrinsic oxide semiconductor.
  • the trap level density may also be low.
  • the charge trapped in the trap level of the oxide semiconductor takes a long time to disappear, and may behave as if it were a fixed charge. Therefore, a transistor whose channel formation region is formed in an oxide semiconductor with a high trap level density might have unstable electrical characteristics.
  • Impurities include hydrogen, nitrogen, alkali metals, alkaline earth metals, iron, nickel, silicon, and the like.
  • the concentration of silicon or carbon in the oxide semiconductor and the concentration of silicon or carbon in the vicinity of the interface with the oxide semiconductor are 2 ⁇ 10 18 atoms/cm 3 or less, preferably 2 ⁇ 10 17 atoms/cm 3 or less.
  • the concentration of alkali metal or alkaline earth metal in the oxide semiconductor obtained by SIMS is set to 1 ⁇ 10 18 atoms/cm 3 or less, preferably 2 ⁇ 10 16 atoms/cm 3 or less.
  • the nitrogen concentration in the oxide semiconductor obtained by SIMS is less than 5 ⁇ 10 19 atoms/cm 3 , preferably 5 ⁇ 10 18 atoms/cm 3 or less, more preferably 1 ⁇ 10 18 atoms/cm 3 or less. , more preferably 5 ⁇ 10 17 atoms/cm 3 or less.
  • the oxide semiconductor reacts with oxygen that bonds to a metal atom to form water, which may cause oxygen vacancies.
  • oxygen vacancies When hydrogen enters the oxygen vacancies, electrons, which are carriers, may be generated.
  • part of hydrogen may bond with oxygen that bonds with a metal atom to generate an electron, which is a carrier. Therefore, a transistor including an oxide semiconductor containing hydrogen is likely to have normally-on characteristics. Therefore, hydrogen in the oxide semiconductor is preferably reduced as much as possible.
  • the hydrogen concentration obtained by SIMS is less than 1 ⁇ 10 20 atoms/cm 3 , preferably less than 1 ⁇ 10 19 atoms/cm 3 , more preferably less than 5 ⁇ 10 18 atoms/cm. Less than 3 , more preferably less than 1 ⁇ 10 18 atoms/cm 3 .
  • An electronic device of this embodiment includes the display device of one embodiment of the present invention in a display portion.
  • the display device of one embodiment of the present invention can easily have high definition and high resolution. Therefore, it can be used for display portions of various electronic devices.
  • Examples of electronic devices include televisions, desktop or notebook personal computers, monitors for computers, digital signage, large game machines such as pachinko machines, and other electronic devices with relatively large screens. Examples include cameras, digital video cameras, digital photo frames, mobile phones, mobile game machines, mobile information terminals, and sound reproducing devices.
  • the display device of one embodiment of the present invention can have high definition, it can be suitably used for an electronic device having a relatively small display portion.
  • electronic devices include wristwatch-type and bracelet-type information terminals (wearable devices), VR devices such as head-mounted displays, glasses-type AR devices, and MR devices.
  • wearable devices include wristwatch-type and bracelet-type information terminals (wearable devices), VR devices such as head-mounted displays, glasses-type AR devices, and MR devices.
  • a wearable device that can be attached to a part is exemplified.
  • a display device of one embodiment of the present invention includes HD (1280 ⁇ 720 pixels), FHD (1920 ⁇ 1080 pixels), WQHD (2560 ⁇ 1440 pixels), WQXGA (2560 ⁇ 1600 pixels), 4K (2560 ⁇ 1600 pixels), 3840 ⁇ 2160) and 8K (7680 ⁇ 4320 pixels).
  • the resolution it is preferable to set the resolution to 4K, 8K, or higher.
  • the pixel density (definition) of the display device of one embodiment of the present invention is preferably 100 ppi or more, preferably 300 ppi or more, more preferably 500 ppi or more, more preferably 1000 ppi or more, more preferably 2000 ppi or more, and 3000 ppi or more.
  • the display device can support various screen ratios such as 1:1 (square), 4:3, 16:9, 16:10.
  • the electronic device of this embodiment includes sensors (force, displacement, position, velocity, acceleration, angular velocity, number of revolutions, distance, light, liquid, magnetism, temperature, chemical substance, sound, time, hardness, electric field, current, voltage , power, radiation, flow, humidity, gradient, vibration, odor or infrared).
  • the electronic device of this embodiment can have various functions. For example, functions to display various information (still images, moving images, text images, etc.) on the display, touch panel functions, functions to display calendars, dates or times, functions to execute various software (programs), wireless communication function, a function of reading a program or data recorded on a recording medium, and the like.
  • An electronic device 6500 shown in FIG. 21A is a mobile information terminal that can be used as a smartphone.
  • the electronic device 6500 has a housing 6501, a display unit 6502, a power button 6503, a button 6504, a speaker 6505, a microphone 6506, a camera 6507, a light source 6508, and the like.
  • a display portion 6502 has a touch panel function.
  • the display device of one embodiment of the present invention can be applied to the display portion 6502 .
  • FIG. 21B is a schematic cross-sectional view including the end of the housing 6501 on the microphone 6506 side.
  • a light-transmitting protective member 6510 is provided on the display surface side of the housing 6501, and a display panel 6511, an optical member 6512, a touch sensor panel 6513, and a printer are placed in a space surrounded by the housing 6501 and the protective member 6510.
  • a substrate 6517, a battery 6518, and the like are arranged.
  • a display panel 6511, an optical member 6512, and a touch sensor panel 6513 are fixed to the protective member 6510 with an adhesive layer (not shown).
  • a portion of the display panel 6511 is folded back in a region outside the display portion 6502, and the FPC 6515 is connected to the folded portion.
  • An IC6516 is mounted on the FPC6515.
  • the FPC 6515 is connected to terminals provided on the printed circuit board 6517 .
  • the flexible display of one embodiment of the present invention can be applied to the display panel 6511 . Therefore, an extremely lightweight electronic device can be realized. In addition, since the display panel 6511 is extremely thin, the thickness of the electronic device can be reduced and the large-capacity battery 6518 can be mounted. In addition, by folding back part of the display panel 6511 and arranging a connection portion with the FPC 6515 on the back side of the pixel portion, an electronic device with a narrow frame can be realized.
  • FIG. 22A An example of a television device is shown in FIG. 22A.
  • a television set 7100 has a display portion 7000 incorporated in a housing 7101 .
  • a configuration in which a housing 7101 is supported by a stand 7103 is shown.
  • the display device of one embodiment of the present invention can be applied to the display portion 7000 .
  • the operation of the television device 7100 shown in FIG. 22A can be performed using operation switches provided on the housing 7101 and a separate remote controller 7111 .
  • the display portion 7000 may be provided with a touch sensor, and the television device 7100 may be operated by touching the display portion 7000 with a finger or the like.
  • the remote controller 7111 may have a display section for displaying information output from the remote controller 7111 .
  • a channel and a volume can be operated with operation keys or a touch panel provided in the remote controller 7111 , and an image displayed on the display portion 7000 can be operated.
  • the television device 7100 is configured to include a receiver, a modem, and the like.
  • the receiver can receive general television broadcasts. Also, by connecting to a wired or wireless communication network via a modem, one-way (from the sender to the receiver) or two-way (between the sender and the receiver, or between the receivers, etc.) information communication is performed. is also possible.
  • FIG. 22B shows an example of a notebook personal computer.
  • a notebook personal computer 7200 has a housing 7211, a keyboard 7212, a pointing device 7213, an external connection port 7214, and the like.
  • the display portion 7000 is incorporated in the housing 7211 .
  • the display device of one embodiment of the present invention can be applied to the display portion 7000 .
  • FIGS. 22C and 22D An example of digital signage is shown in FIGS. 22C and 22D.
  • a digital signage 7300 shown in FIG. 22C includes a housing 7301, a display unit 7000, speakers 7303, and the like. Furthermore, it can have an LED lamp, an operation key (including a power switch or an operation switch), connection terminals, various sensors, a microphone, and the like.
  • FIG. 22D shows a digital signage 7400 attached to a cylindrical post 7401.
  • a digital signage 7400 has a display section 7000 provided along the curved surface of a pillar 7401 .
  • the display device of one embodiment of the present invention can be applied to the display portion 7000 in FIGS. 22C and 22D.
  • the wider the display unit 7000 the more information can be provided at once.
  • the wider the display unit 7000 the more conspicuous it is, and the more effective the advertisement can be, for example.
  • a touch panel By applying a touch panel to the display unit 7000, not only can images or moving images be displayed on the display unit 7000, but also the user can intuitively operate the display unit 7000, which is preferable. Further, when used for providing information such as route information or traffic information, usability can be enhanced by intuitive operation.
  • the digital signage 7300 or digital signage 7400 is preferably capable of cooperating with an information terminal 7311 or information terminal 7411 such as a smartphone possessed by the user through wireless communication.
  • advertisement information displayed on the display unit 7000 can be displayed on the screen of the information terminal 7311 or the information terminal 7411 .
  • display on the display portion 7000 can be switched.
  • the digital signage 7300 or the digital signage 7400 can execute a game using the screen of the information terminal 7311 or 7411 as an operation means (controller). This allows an unspecified number of users to simultaneously participate in and enjoy the game.
  • the electronic device shown in FIGS. 23A to 23F includes a housing 9000, a display unit 9001, a speaker 9003, operation keys 9005 (including a power switch or an operation switch), connection terminals 9006, sensors 9007 (force, displacement, position, speed). , acceleration, angular velocity, number of rotations, distance, light, liquid, magnetism, temperature, chemical substances, sound, time, hardness, electric field, current, voltage, power, radiation, flow rate, humidity, gradient, vibration, smell, or infrared rays function), a microphone 9008, and the like.
  • the electronic devices shown in FIGS. 23A to 23F have various functions. For example, a function to display various information (still images, moving images, text images, etc.) on the display unit, a touch panel function, a calendar, a function to display the date or time, a function to control processing by various software (programs), It can have a wireless communication function, a function of reading and processing programs or data recorded on a recording medium, and the like. Note that the functions of the electronic device are not limited to these, and can have various functions.
  • the electronic device may have a plurality of display units.
  • the electronic device is equipped with a camera, etc., and has the function of capturing still images or moving images and storing them in a recording medium (external or built into the camera), or the function of displaying the captured image on the display unit, etc. good.
  • FIG. 23A is a perspective view showing a mobile information terminal 9101.
  • the mobile information terminal 9101 can be used as a smart phone, for example.
  • the portable information terminal 9101 may be provided with a speaker 9003, a connection terminal 9006, a sensor 9007, and the like.
  • the mobile information terminal 9101 can display text and image information on its multiple surfaces.
  • FIG. 23A shows an example in which three icons 9050 are displayed.
  • Information 9051 indicated by a dashed rectangle can also be displayed on another surface of the display portion 9001 . Examples of the information 9051 include notification of incoming e-mail, SNS, telephone call, title of e-mail or SNS, sender name, date and time, remaining battery power, radio wave intensity, and the like.
  • an icon 9050 or the like may be displayed at the position where the information 9051 is displayed.
  • FIG. 23B is a perspective view showing the mobile information terminal 9102.
  • the portable information terminal 9102 has a function of displaying information on three or more sides of the display portion 9001 .
  • information 9052, information 9053, and information 9054 are displayed on different surfaces.
  • the user can confirm the information 9053 displayed at a position where the mobile information terminal 9102 can be viewed from above the mobile information terminal 9102 while the mobile information terminal 9102 is stored in the chest pocket of the clothes.
  • the user can check the display without taking out the portable information terminal 9102 from the pocket, and can determine, for example, whether to receive a call.
  • FIG. 23C is a perspective view showing a wristwatch-type mobile information terminal 9200.
  • the mobile information terminal 9200 can be used as a smart watch (registered trademark), for example.
  • the display portion 9001 has a curved display surface, and display can be performed along the curved display surface.
  • the mobile information terminal 9200 can also make hands-free calls by mutual communication with a headset capable of wireless communication, for example.
  • the portable information terminal 9200 can transmit data to and from another information terminal through the connection terminal 9006, and can be charged. Note that the charging operation may be performed by wireless power supply.
  • FIG. 23D to 23F are perspective views showing a foldable personal digital assistant 9201.
  • FIG. 23D is a perspective view of the portable information terminal 9201 in an unfolded state
  • FIG. 23F is a folded state
  • FIG. 23E is a perspective view of a state in the middle of changing from one of FIGS. 23D and 23F to the other.
  • the portable information terminal 9201 has excellent portability in the folded state, and has excellent display visibility due to a seamless wide display area in the unfolded state.
  • a display portion 9001 included in the portable information terminal 9201 is supported by three housings 9000 connected by hinges 9055 .
  • the display portion 9001 can be bent with a curvature radius of 0.1 mm or more and 150 mm or less.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

高精細な表示装置を提供する。 第1、第2の発光デバイスと、第1、第2の着色層と、第1、第2、第3の絶縁体と、を有し、第1の着色層は、第1の発光デバイスに重畳して配置され、第2の着色層は、第2の発光デバイスに重畳して配置され、第1の発光デバイス、および第2の発光デバイスは、白色光を発する機能を有し、第1の着色層は、第2の着色層とは異なる色の可視光を透過する機能を有し、第1の発光デバイスは、第1の導電層と、第1の導電層上の第1の発光層と、を有し、第2の発光デバイスは、第2の導電層と、第2の導電層上の第2の発光層と、を有し、第1の絶縁体は、第1の発光デバイスの側面の少なくとも一部に接し、第2の絶縁体は、第2の発光デバイスの側面の少なくとも一部に接し、第1の絶縁体、および第2の絶縁体は、第3の絶縁体の上に配置され、第3の絶縁体は、第1の導電層の端部および第2の導電層の端部を覆って配置される。

Description

表示装置、表示モジュール、及び電子機器
 本発明の一態様は、表示装置、表示モジュール、及び、電子機器に関する。本発明の一態様は、表示装置の作製方法に関する。
 なお、本発明の一態様は、上記の技術分野に限定されない。本発明の一態様の技術分野としては、半導体装置、表示装置、発光装置、蓄電装置、記憶装置、電子機器、照明装置、入力装置(例えば、タッチセンサなど)、入出力装置(例えば、タッチパネルなど)、それらの駆動方法、またはそれらの製造方法を一例として挙げることができる。
 近年、スマートフォンなどの携帯電話、タブレット型情報端末、ノート型PC(パーソナルコンピュータ)などの情報端末機器が広く普及している。これらに設けられたディスプレイパネルにおいて、高精細なディスプレイパネルが要求されている。
 また、ディスプレイパネルに適用可能な表示装置としては、代表的には液晶表示装置、有機EL(Electro Luminescence)素子、発光ダイオード(LED:Light Emitting Diode)等の発光素子を備える発光装置、電気泳動方式などにより表示を行う電子ペーパなどが挙げられる。
 例えば、有機EL素子の基本的な構成は、一対の電極間に発光性の有機化合物を含む層を挟持したものである。この素子に電圧を印加することにより、発光性の有機化合物から発光を得ることができる。このような有機EL素子が適用された表示装置は、液晶表示装置等で必要であったバックライトが不要なため、薄型、軽量、高コントラストで且つ低消費電力な表示装置を実現できる。例えば、有機EL素子を用いた表示装置の一例が、特許文献1に記載されている。
特開2002−324673号公報
 本発明の一態様は、高精細な表示装置を提供することを課題の一つとする。本発明の一態様は、高解像度の表示装置を提供することを課題の一つとする。本発明の一態様は、高開口率の表示装置を提供することを課題の一つとする。本発明の一態様は、信頼性の高い表示装置を提供することを課題の一つとする。本発明の一態様は、上記表示装置の作製方法を提供することを課題の一つとする。
 なお、これらの課題の記載は、他の課題の存在を妨げるものではない。本発明の一態様は、必ずしも、これらの課題の全てを解決する必要はないものとする。明細書、図面、請求項の記載から、これら以外の課題を抽出することが可能である。
 本発明の一態様は、第1の発光デバイスと、第2の発光デバイスと、第1の着色層と、第2の着色層と、第1の絶縁体と、第2の絶縁体と、第3の絶縁体と、を有し、第1の着色層は、第1の発光デバイスに重畳して配置され、第2の着色層は、第2の発光デバイスに重畳して配置され、第1の発光デバイス、および第2の発光デバイスは、白色光を発する機能を有し、第1の着色層は、第2の着色層とは異なる色の可視光を透過する機能を有し、第1の発光デバイスは、第1の導電層と、第1の導電層上の第1の発光層と、を有し、第2の発光デバイスは、第2の導電層と、第2の導電層上の第2の発光層と、を有し、第1の絶縁体は、第1の発光デバイスの側面の少なくとも一部に接し、第2の絶縁体は、第2の発光デバイスの側面の少なくとも一部に接し、第1の絶縁体、および第2の絶縁体は、第3の絶縁体の上に配置され、第3の絶縁体は、第1の導電層の端部および第2の導電層の端部を覆って配置される、表示装置である。
 上記において、第1の発光層は、第2の発光層と、同一の材料を有する、構成にしてもよい。
 上記において、第1の発光デバイスは、第1の発光層を含む第1の発光ユニットと、第1の発光ユニット上の第1の電荷発生層と、第1の電荷発生層上の第2の発光ユニットと、を有し、第2の発光ユニットは、第3の発光層を有し、第2の発光デバイスは、第2の発光層を含む第3の発光ユニットと、第3の発光ユニット上の第2の電荷発生層と、第2の電荷発生層上の第4の発光ユニットと、を有し、第4の発光ユニットは、第4の発光層を有する、ことが好ましい。また、上記において、第1の発光ユニットは、第3の発光ユニットと、同一の材料を有し、第1の電荷発生層は、第2の電荷発生層と、同一の材料を有し、第2の発光ユニットは、第4の発光ユニットと、同一の材料を有する構成にしてもよい。
 上記において、第1の発光ユニットは、第1の正孔注入層と、第1の正孔輸送層と、第1の電子輸送層と、を有し、第2の発光ユニットは、第2の正孔輸送層と、第2の電子輸送層と、を有し、第3の発光ユニットは、第2の正孔注入層と、第3の正孔輸送層と、第3の電子輸送層と、を有し、第4の発光ユニットは、第4の正孔輸送層と、第4の電子輸送層と、を有し、第1の絶縁体は、第1の正孔注入層の側面、第1の正孔輸送層の側面、第1の発光層の側面、第1の電子輸送層の側面、第1の電荷発生層の側面、第2の正孔輸送層の側面、第3の発光層の側面、および第2の電子輸送層の側面に接し、第2の絶縁体は、第2の正孔注入層の側面、第3の正孔輸送層の側面、第2の発光層の側面、第3の電子輸送層の側面、第2の電荷発生層の側面、第4の正孔輸送層の側面、第2の発光層の側面、および第4の電子輸送層の側面に接する、ことが好ましい。
 上記において、第1の絶縁体、および第2の絶縁体は、第1の層と、第1の層上の第2の層と、を有し、第1の絶縁体において、第1の層の側面は、第1の発光デバイスの側面の少なくとも一部に接し、第1の層の下面は、第3の絶縁体の少なくとも一部に接し、第2の層の側面および下面は、第1の層の少なくとも一部に接し、第2の絶縁体において、第1の層の側面は、第2の発光デバイスの側面の少なくとも一部に接し、第1の層の下面は、第3の絶縁体の少なくとも一部に接し、第2の層の側面および下面は、第1の層の少なくとも一部に接する、ことが好ましい。また、上記において、第1の層は、酸化アルミニウムを含み、第2の層は、窒化シリコンを含む、ことが好ましい。
 上記において、第1の発光層の側面と、第2の発光層の側面は、対向しており、第1の発光層の側面と、第2の発光層の側面との間の距離が8μm以下である、ことが好ましい。
 本発明の一態様は、上記いずれかの構成の表示装置を有し、フレキシブルプリント回路基板(Flexible Printed Circuit、以下、FPCと記す)もしくはTCP(Tape Carrier Package)等のコネクタが取り付けられた表示モジュール、またはCOG(Chip On Glass)方式もしくはCOF(Chip On Film)方式等により集積回路(IC)が実装された表示モジュール等の表示モジュールである。
 本発明の一態様は、上記の表示モジュールと、筐体、バッテリ、カメラ、スピーカ、及びマイクのうち少なくとも一つと、を有する電子機器である。
 本発明の一態様により、高精細な表示装置を提供できる。本発明の一態様により、高解像度の表示装置を提供できる。本発明の一態様により、高開口率の表示装置を提供できる。本発明の一態様により、信頼性の高い表示装置を提供できる。本発明の一態様により、上記表示装置の作製方法を提供できる。
 なお、これらの効果の記載は、他の効果の存在を妨げるものではない。本発明の一態様は、必ずしも、これらの効果の全てを有する必要はない。明細書、図面、請求項の記載から、これら以外の効果を抽出することが可能である。
図1Aは、表示装置の一例を示す上面図である。図1Bは、表示装置の一例を示す断面図である。
図2A及び図2Bは、表示装置の一例を示す断面図である。
図3A及び図3Bは、表示装置の一例を示す断面図である。
図4A乃至図4Eは、表示装置の画素の一例を示す上面図である。
図5Aは、表示装置の一例を示す上面図である。図5Bは、表示装置の一例を示す断面図である。
図6A乃至図6Gは、表示装置の画素の一例を示す上面図である。
図7A及び図7Bは、表示装置の一例を示す断面図である。
図8A及び図8Bは、表示装置の一例を示す断面図である。
図9A及び図9Bは、表示装置の一例を示す断面図である。
図10A乃至図10Dは、表示装置の作製方法の一例を示す図である。
図11A乃至図11Cは、表示装置の作製方法の一例を示す図である。
図12A乃至図12Cは、表示装置の作製方法の一例を示す図である。
図13A及び図13Bは、表示装置の作製方法の一例を示す図である。
図14は、表示装置の一例を示す斜視図である。
図15Aは、表示装置の一例を示す断面図である。図15B及び図15Cは、トランジスタの一例を示す断面図である。
図16は、表示装置の一例を示す断面図である。
図17A及び図17Bは、表示モジュールの構成例を示す図である。
図18は、表示装置の構成例を示す図である。
図19は、表示装置の構成例を示す図である。
図20は、表示装置の構成例を示す図である。
図21A及び図21Bは、電子機器の一例を示す図である。
図22A乃至図22Dは、電子機器の一例を示す図である。
図23A乃至図23Fは、電子機器の一例を示す図である。
 実施の形態について、図面を用いて詳細に説明する。但し、本発明は以下の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。
 なお、以下に説明する発明の構成において、同一部分または同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略する。また、同様の機能を指す場合には、ハッチパターンを同じくし、特に符号を付さない場合がある。
 また、図面において示す各構成の、位置、大きさ、範囲などは、理解の簡単のため、実際の位置、大きさ、範囲などを表していない場合がある。このため、開示する発明は、必ずしも、図面に開示された位置、大きさ、範囲などに限定されない。
 なお、「膜」という言葉と、「層」という言葉とは、場合によっては、または、状況に応じて、互いに入れ替えることが可能である。例えば、「導電層」という用語を、「導電膜」という用語に変更することが可能である。または、例えば、「絶縁膜」という用語を、「絶縁層」という用語に変更することが可能である。
(実施の形態1)
 本実施の形態では、本発明の一態様の表示装置とその作製方法について図1乃至図13を用いて説明する。
 本発明の一態様の表示装置は、表示部に、画素がマトリクス状に配置されており、当該表示部で画像を表示することができる。当該画素は、白色光を発する発光デバイスと、当該発光デバイスと重畳する着色層と、を有する。各画素において、異なる色の可視光を透過する着色層を用いることで、フルカラー表示を行うことができる。さらに、各画素に用いられる発光デバイスは、同一の材料を用いて形成することができるので、製造工程を簡略化し、製造コストを低減することができる。
 発光デバイスとしては、OLED(Organic Light Emitting Diode)、QLED(Quantum−dot Light Emitting Diode)などのELデバイスを用いることが好ましい。ELデバイスが有する発光物質としては、蛍光を発する物質(蛍光材料)、燐光を発する物質(燐光材料)、無機化合物(量子ドット材料など)、熱活性化遅延蛍光を示す物質(熱活性化遅延蛍光(Thermally Activated Delayed Fluorescence:TADF)材料)などが挙げられる。また、発光デバイスとして、マイクロLED(Light Emitting Diode)などのLEDを用いることもできる。
 各画素の発光デバイスを、白色発光の有機ELデバイスで形成する場合、各画素において、発光層の塗分けを行う必要がない。よって、発光デバイスに含まれる画素電極以外の層(例えば発光層など)を、各画素で共通にすることができる。しかしながら、発光デバイスに含まれる層には、比較的導電性が高い層もあり、導電性が高い層が各画素で共通で設けられることで、画素間にリーク電流が発生する場合がある。特に、表示装置が高精細化または高開口率化され、画素間の距離が小さくなると、当該リーク電流は無視できない大きさになり、表示装置の表示品位の低下などを引き起こす恐れがある。そこで、本発明の一態様に係る表示装置では、各画素において、発光デバイスの少なくとも一部を島状に形成することで、表示装置の高精細化を図る。ここで、当該発光デバイスの島状に形成する部分には、発光層を含むものとする。
 例えば、メタルマスク(シャドーマスクともいう)を用いた真空蒸着法により、島状の発光層を成膜することができる。しかし、この方法では、メタルマスクの精度、メタルマスクと基板との位置ずれ、メタルマスクのたわみ、及び蒸気の散乱などによる成膜される膜の輪郭の広がりなど、様々な影響により、島状の発光層の形状及び位置に設計からのずれが生じるため、表示装置の高精細化、及び高開口率化が困難である。
 本発明の一態様の表示装置の作製方法では、島状の画素電極(下部電極ともいえる)を形成し、発光層を含む層(EL層、またはEL層の一部、ということができる)を一面に形成した後、EL層上に犠牲層を形成する。そして、犠牲層上にレジストマスクを形成し、レジストマスクを用いて、EL層と犠牲層を加工することで、島状のEL層を形成する。なお、本明細書等において、犠牲層をマスク層と呼称してもよい。
 このように、本発明の一態様の表示装置の作製方法では、島状のEL層は、メタルマスクのパターンによって形成されるのではなく、EL層を一面に成膜した後に加工することで形成される。したがって、これまで実現が困難であった高精細な表示装置または高開口率の表示装置を実現することができる。また、EL層上に犠牲層を設けることで、表示装置の作製工程中にEL層が受けるダメージを低減し、発光デバイスの信頼性を高めることができる。
 隣り合う発光デバイスの間隔について、例えばメタルマスクを用いた形成方法では10μm未満にすることは困難であるが、上記方法によれば、8μm以下、6μm以下、4μm以下、3μm以下、2μm以下、または、1μm以下にまで狭めることができる。さらに、例えばLSI向けの露光装置を用いることで、500nm以下、200nm以下、100nm以下、さらには50nm以下にまで間隔を狭めることもできる。
 また、EL層自体のパターン(加工サイズともいえる)についても、メタルマスクを用いた場合に比べて極めて小さくすることができる。また、例えばEL層の作り分けにメタルマスクを用いた場合では、EL層の中央と端で厚さのばらつきが生じるため、EL層の面積に対して、発光領域として使用できる有効な面積は小さくなる。一方、上記作製方法では、均一な厚さに成膜した膜を加工することでパターンを形成するため、パターン内で厚さを均一にでき、微細なパターンであっても、そのほぼ全域を発光領域として用いることができる。そのため、高い精細度と高い開口率を兼ね備えた表示装置を作製することができる。
 なお、白色光を発する発光デバイスにおいて、EL層を構成する全ての層を島状に形成する必要はなく、一部の層は同一工程で成膜することができる。本発明の一態様の表示装置の作製方法では、EL層を構成する一部の層を画素ごとに島状に形成した後、犠牲層を除去し、EL層を構成する残りの層(例えば、キャリア注入層など)と、共通電極(上部電極ともいえる)と、を共通して形成することができる。
 一方で、キャリア注入層は、発光デバイスの中では、比較的導電性が高い層であることが多い。そのため、キャリア注入層が、島状のEL層の側面に接することで、発光デバイスがショートする恐れがある。なお、キャリア注入層を島状に設け、共通電極のみを発光デバイス間で共通して形成する場合についても、共通電極と、島状のEL層の側面、または、画素電極の側面とが接することで、発光デバイスがショートする恐れがある。
 そこで、本発明の一態様の表示装置は、島状のEL層の側面に接して側壁状の絶縁体を設け、且つ島状の画素電極の端部を覆って土手状の絶縁体を設ける構成にする。これにより、島状のEL層が、キャリア注入層または共通電極と接することを抑制できる。したがって、発光デバイスのショートを抑制し、発光デバイスの信頼性を高めることができる。
[発光デバイスの構成例]
 ここで、図2及び図3を用いて、発光デバイスおよび着色層の構成例を説明する。
 図2Aに、表示装置500の断面概略図を示す。表示装置500は、白色の光を発する発光デバイス550Wを複数有しており、それぞれの発光デバイス550Wの上には、赤色の光を透過させる着色層545R、緑色の光を透過させる着色層545G、または青色の光を透過させる着色層545Bが設けられる。ここで、着色層545R、着色層545G、および着色層545Bは、保護層540を介して、発光デバイス550W上に設けられることが好ましい。
 発光デバイス550Wは、一対の電極(電極501、電極502)の間に、中間層531を介して2つの発光ユニット(発光ユニット512Q_1、発光ユニット512Q_2)が積層された構成を有する。
 電極501は、画素電極として機能し、発光デバイス毎に設けられる。電極502は、共通電極として機能し、複数の発光デバイスに共通に設けられる。
 発光ユニット512Q_1は、層521、層522、発光層523Q_1、層524等を有する。発光ユニット512Q_2は、層522、発光層523Q_2、層524等を有する。また、発光デバイス550Wは、発光ユニット512Q_2と、電極502との間に層525などを有する。なお、層525を発光ユニット512Q_2の一部とみなすこともできる。
 層521は、例えば正孔注入性の高い物質を含む層(正孔注入層)などを有する。層522は、例えば正孔輸送性の高い物質を含む層(正孔輸送層)などを有する。層524は、例えば電子輸送性の高い物質を含む層(電子輸送層)などを有する。層525は、例えば電子注入性の高い物質を含む層(電子注入層)などを有する。
 または、層521が電子注入層を有し、層522が電子輸送層を有し、層524が正孔輸送層を有し、層525が正孔注入層を有する構成としてもよい。
 図2Aにおいては、層521と、層522と、を分けて明示したがこれに限定されない。例えば、層521が正孔注入層と、正孔輸送層との双方の機能を有する構成とする場合、あるいは層521が電子注入層と、電子輸送層との双方の機能を有する構成とする場合においては、層522を省略してもよい。
 また、中間層531は、電極501と電極502との間に電圧を印加したときに、発光ユニット512Q_1及び発光ユニット512Q_2のうち、一方に電子を注入し、他方に正孔を注入する機能を有する。中間層531は、電荷発生層と呼ぶこともできる。
 中間層531としては、例えば、フッ化リチウムなどの電子注入層に適用可能な材料を好適に用いることができる。また、中間層としては、例えば、正孔注入層に適用可能な材料を好適に用いることができる。また、中間層には、正孔輸送性の高い材料(正孔輸送性材料)とアクセプター性材料(電子受容性材料)とを含む層を用いることができる。また、中間層には、電子輸送性の高い材料(電子輸送性材料)とドナー性材料とを含む層を用いることができる。このような層を有する中間層を形成することにより、発光ユニットが積層された場合における駆動電圧の上昇を抑制することができる。
 発光デバイス550Wが有する発光層523Q_1の発光色と発光層523Q_2の発光色を補色の関係にすることで、発光デバイス550Wを白色発光する発光デバイスとすることができる。発光層523Q_1、523Q_2には、それぞれ、R(赤)、G(緑)、B(青)、Y(黄)、O(橙)等の発光を示す発光物質を含むことが好ましい。または、発光層523Q_1、523Q_2が有する発光物質の発光は、R、G、Bのうち2以上の色のスペクトル成分を含むことが好ましい。
 ここで、発光デバイス550Wに用いることができる、各発光ユニットが有する発光層の発光色の組み合わせの一例を説明する。
 例えば、発光デバイス550Wが、2つの発光ユニットを有する場合、一方の発光ユニットで赤色と緑色の発光、他方の発光ユニットで青色の発光を得ることで、白色発光する発光デバイス550Wを得ることができる。または、一方の発光ユニットで黄色または橙色の発光、他方の発光ユニットで青色の発光を得ることで、白色発光する発光デバイス550Wを得ることができる。
 また、例えば、発光デバイス550Wが、3つの発光ユニットを有する場合、いずれか一つの発光ユニットから赤色の発光、他の一つの発光ユニットから緑色の発光、残りの一つの発光ユニットから青色の発光を得ることで、白色発光する発光デバイス550Wを得ることができる。また、第1の発光ユニットに青色発光の発光層を用い、第2の発光ユニットに黄色発光、黄緑色発光、または緑色発光の発光層を用い、第3の発光ユニットに青色発光の発光層を用いることができる。また、第1の発光ユニットに青色発光の発光層を用い、第2の発光ユニットに赤色発光の発光層と、黄色発光、黄緑色発光、または緑色発光の発光層と、の積層構造を用い、第3の発光ユニットに青色発光の発光層を用いることができる。
 また、例えば、発光デバイス550Wが、4つの発光ユニットを有する場合、第1の発光ユニットに青色発光の発光層を用い、第2の発光ユニットと第3の発光ユニットのうち一方に赤色発光の発光層を用い、他方に黄色発光、黄緑色発光、または緑色発光の発光層を用い、第4の発光ユニットに青色発光の発光層を用いることができる。
 このような、白色発光が可能な発光デバイス550Wの上に、着色層545R、着色層545G、または着色層545Bを設けることで、画素ごとに赤色発光、緑色発光、または青色発光を行い、フルカラー表示を行うことができる。なお、図2等においては、赤色の光を透過する着色層545R、緑色の光を透過する着色層545G、および青色の光を透過する着色層545Bを設ける例について示したが、本発明はこれに限られるものではない。着色層が透過する色の可視光は、少なくとも2色以上の互いに異なる色の可視光にすればよく、例えば赤、緑、青、シアン、マゼンタ、または黄などから適宜選択すればよい。
 よって、層521、層522、層524、層525、発光層523Q_1、および発光層523Q_2は、各色の画素において、同一の構成(材料、膜厚など)にしても、着色層を適宜設けることで、フルカラー表示を行うことができる。ゆえに、本発明の一態様に係る表示装置は、画素ごとに発光デバイスを作り分ける必要がないので、作製工程を簡略化でき、製造コストを低減することができる。ただし、本発明はこれに限られるものではなく、521、層522、層524、層525、発光層523Q_1、および発光層523Q_2のいずれか一または複数を、画素によって異なる構成にすることもできる。
 発光デバイス550Wのように、複数の発光ユニットが中間層531を介して直列に接続された構成を本明細書ではタンデム構造と呼ぶ。一方、一対の電極間に一つの発光ユニットを有する構成を、シングル構造と呼ぶ。なお、本明細書等においては、タンデム構造として呼称するが、これに限定されず、例えば、タンデム構造をスタック構造と呼んでもよい。なお、タンデム構造とすることで、高輝度発光が可能な発光デバイスとすることができる。また、タンデム構造は、シングル構造と比べて、同じ輝度を得るために必要な電流を低減できるため、表示装置の消費電力を低減し、信頼性を高めることができる。
 図2Aにおいて、発光ユニット512Q_1、中間層531、発光ユニット512Q_2、層525を、島状の層として形成することができる。
 図2Bは、図2Aに示す表示装置500の変形例である。図2Bに示す表示装置500は、層525を、電極502と同様に、各発光デバイス間で共通に設けた場合の例である。このとき、層525を共通層と呼ぶことができる。このように、複数の発光デバイスに1以上の共通層を設けることで、作製工程を簡略化できるため、製造コストを低減することができる。なお、共通層に特に限定はない。例えば、正孔注入層、正孔輸送層、発光層、電子輸送層、及び電子注入層のうち一種以上の層を共通層とすることができる。例えば、正孔注入層と正孔輸送層を各発光デバイス間で共通に設けてもよい。
 図3Aに示す表示装置500は、発光デバイス550Wが、3つの発光ユニットを積層した構成を有する場合の例である。図3Aにおいて、発光デバイス550Wは、発光ユニット512Q_2上にさらに中間層531を介して発光ユニット512Q_3が積層されている。発光ユニット512Q_3は、層522、発光層523Q_3、層524等を有する。
 発光デバイスにタンデム構造を適用する場合、発光ユニットの数は特に限定されず、2つ以上とすることができる。
 図3Bでは、n個の発光ユニット(nは2以上の整数)を積層した場合の例を示している。
 このように、発光ユニットの積層数を増やすことにより、同じ電流量で発光デバイスから得られる輝度を、積層数に応じて高めることができる。また、発光ユニットの積層数を増やすことにより、同じ輝度を得るために必要な電流を低減できるため、発光デバイスの消費電力を、積層数に応じて低減することができる。
 なお、表示装置500において、発光層の発光材料は特に限定されない。例えば、図2Aに示す表示装置500において、発光ユニット512Q_1が有する発光層523Q_1は燐光材料を有し、発光ユニット512Q_2が有する発光層523Q_2は蛍光材料を有する構成とすることができる。または、発光ユニット512Q_1が有する発光層523Q_1は蛍光材料を有し、発光ユニット512Q_2が有する発光層523Q_2は燐光材料を有する構成とすることができる。
 なお、発光ユニットの構成については、上記に限定されない。例えば、図2Aに示す表示装置500において、発光ユニット512Q_1が有する発光層523Q_1はTADF材料を有し、発光ユニット512Q_2が有する発光層523Q_2は蛍光材料、または燐光材料のいずれか一を有する構成としてもよい。このように異なる発光材料を用いる、例えば、信頼性の高い発光材料と、発光効率の高い発光材料と、を組み合わせることで、それぞれの欠点を補い、信頼性、及び発光効率の双方を高めた表示装置とすることができる。
 なお、本発明の一態様の表示装置は、全ての発光層を蛍光材料とする構成としてもよいし、全ての発光層を燐光材料とする構成としてもよい。
[表示装置の構成例]
 次に、図1A及び図1Bを用いて、本発明の一態様の表示装置について説明する。
 本発明の一態様の表示装置は、発光デバイスが形成されている基板とは反対方向に光を射出する上面射出型(トップエミッション型)、発光デバイスが形成されている基板側に光を射出する下面射出型(ボトムエミッション型)、両面に光を射出する両面射出型(デュアルエミッション型)のいずれであってもよい。
 図1Aに表示装置100の上面図(平面図とよぶこともできる。)を示す。表示装置100は、複数の画素110がマトリクス状に配置された表示部と、表示部の外側の接続部140と、を有する。1つの画素110は、副画素110a、110b、および110cの、3つの副画素から構成される。
 なお、副画素の配列に特に限定はなく、様々な方法を適用することができる。副画素の配列としては、例えば、ストライプ配列、Sストライプ配列、マトリクス配列、デルタ配列、ベイヤー配列、ペンタイル配列などが挙げられる。図1Aに示す画素110には、ストライプ配列が適用されている。
 また、副画素の上面形状としては、例えば、三角形、四角形(長方形、正方形を含む)、五角形などの多角形、これら多角形の角が丸い形状、楕円形、または円形などが挙げられる。ここで、副画素の上面形状は、発光デバイスの発光領域の上面形状に相当する。
 本実施の形態では、副画素110a、110b、および110cが、白色発光する発光デバイスを有し、その上に設けられた着色層125a、125b、125c(以下、まとめて着色層125と呼ぶ場合がある。)によって、それぞれの副画素が異なる色の光を発する例を示す。例えば、副画素110a、110b、110cは、図2A等に示す、着色層545Rを有する副画素、着色層545Gを有する副画素、着色層545Bを有する副画素に相当する。
 図1Aでは、上面視(平面視と呼ぶこともできる)で、接続部140が表示部の下側に位置する例を示すが、特に限定されない。接続部140は、上面視で、表示部の上側、右側、左側、下側の少なくとも一箇所に設けられていればよく、表示部の四辺を囲むように設けられていてもよい。また、接続部140は、単数であっても複数であってもよい。
 図1Bに、図1Aにおける一点鎖線X1−X2間、Y1−Y2間、及びY3−Y4間の断面図を示す。
 図1Bに示すように、表示装置100は、トランジスタを含む層101上に、発光デバイス130a、130b、130c(以下、まとめて発光デバイス130と呼ぶ場合がある。)が設けられ、これら発光デバイスを覆うように保護層131が設けられている。ここで、発光デバイス130a、130b、130cの側面に絶縁体124が設けられている。また、保護層131上には、着色層125a、125b、125cが設けられている。さらにその上に、樹脂層122によって基板120が貼り合わされている。
 トランジスタを含む層101には、例えば、基板に複数のトランジスタが設けられ、これらのトランジスタを覆うように絶縁層が設けられた積層構造を適用することができる。トランジスタを含む層101の構成例は、実施の形態2で後述する。
 発光デバイス130a、130b、130cは、白色(W)の光を発することが好ましい。これらの上にそれぞれ異なる色の光を透過する、着色層125a、125b、125cを設けることで、異なる色の光を発する副画素110a、110b、110cを形成することができる。
 発光デバイスは、一対の電極間にEL層を有する。本明細書等では、一対の電極の一方を画素電極と記し、他方を共通電極と記すことがある。
 発光デバイスが有する一対の電極のうち、一方の電極は陽極として機能し、他方の電極は陰極として機能する。以下では、画素電極が陽極として機能し、共通電極が陰極として機能する場合を例に挙げて説明する。
 発光デバイス130aは、トランジスタを含む層101上の画素電極111aと、画素電極111a上の第1の層113と、第1の層113上の第2の層114と、第2の層114上の共通電極115と、を有する。なお、第1の層113と第2の層114とをまとめてEL層と呼ぶことができる。また、発光デバイス130bは、画素電極111aの代わりに画素電極111bが設けられている点が発光デバイス130aと異なる。また、発光デバイス130cは、画素電極111aの代わりに画素電極111cが設けられている点が発光デバイス130aと異なる。以下、画素電極111a、111b、111cをまとめて、画素電極111と呼ぶ場合がある。
 第1の層113は、画素電極111a上の第1の発光ユニット192と、第1の発光ユニット192上の中間層191と、中間層191上の第2の発光ユニット194と、を有する。例えば、第1の発光ユニット192は、画素電極111a上の第1の正孔注入層181aと、第1の正孔注入層181a上の第1の正孔輸送層182aと、第1の正孔輸送層182a上の第1の発光層183aと、第1の発光層183a上の第1の電子輸送層184aと、を有する。また、例えば、第2の発光ユニット194は、中間層191上の第2の正孔輸送層182bと、第2の正孔輸送層182b上の第2の発光層183bと、第2の発光層183b上の第2の電子輸送層184bと、を有する。
 第1の発光ユニット192、中間層191、及び、第2の発光ユニット194は、それぞれ、例えば、図2Aに示す、発光ユニット512Q_1、中間層531、及び、発光ユニット512Q_2と同様の構成を適用することができる。つまり、第1の発光ユニット192は、層521、層522、発光層523Q_1、層524等を有することができる。よって、第1の正孔注入層181aは層521に、第1の正孔輸送層182aは層522に、第1の発光層183aは発光層523Q_1に、第1の電子輸送層184aは層524に相当する。また、第2の発光ユニット194は、層522、発光層523Q_2、層524等を有することができる。よって、第2の正孔輸送層182bは層522に、第2の発光層183bは発光層523Q_2に、第2の電子輸送層184bは層524に相当する。
 第2の層114は、発光デバイス130a乃至130cが共通で有する層である。第2の層114は、例えば、電子注入層を有する。または、第2の層114は、電子輸送層と電子注入層とを積層して有していてもよい。
 共通電極115は、接続部140に設けられた導電層123と電気的に接続される。これにより、各色の発光デバイスが有する共通電極115には、同電位が供給される。
 画素電極と共通電極のうち、光を取り出す側の電極には、可視光及び赤外光を透過する導電膜を用いる。また、光を取り出さない側の電極には、可視光及び赤外光を反射する導電膜を用いることが好ましい。
 発光デバイスの一対の電極(画素電極と共通電極)を形成する材料としては、金属、合金、電気伝導性化合物、及びこれらの混合物などを適宜用いることができる。具体的には、インジウムスズ酸化物(In−Sn酸化物、ITOともいう)、In−Si−Sn酸化物(ITSOともいう)、インジウム亜鉛酸化物(In−Zn酸化物)、In−W−Zn酸化物、アルミニウム、マグネシウム、ニッケル、及びランタンの合金(Al−Ni−La)等のアルミニウムを含む合金(アルミニウム合金)、並びに、銀とマグネシウムの合金、及び、銀とパラジウムと銅の合金(Ag−Pd−Cu、APCとも記す)等の銀を含む合金が挙げられる。その他、アルミニウム(Al)、チタン(Ti)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、ガリウム(Ga)、亜鉛(Zn)、インジウム(In)、スズ(Sn)、モリブデン(Mo)、タンタル(Ta)、タングステン(W)、パラジウム(Pd)、金(Au)、白金(Pt)、銀(Ag)、イットリウム(Y)、ネオジム(Nd)などの金属、及びこれらを適宜組み合わせて含む合金を用いることもできる。その他、上記例示のない元素周期表の第1族または第2族に属する元素(例えば、リチウム(Li)、セシウム(Cs)、カルシウム(Ca)、ストロンチウム(Sr))、ユウロピウム(Eu)、イッテルビウム(Yb)などの希土類金属及びこれらを適宜組み合わせて含む合金、グラフェン等を用いることができる。また、上記の金属、合金、電気伝導性化合物、及びこれらの混合物などを適宜積層して、発光デバイスの一対の電極(画素電極と共通電極)を形成してもよい。
 発光デバイスには、微小光共振器(マイクロキャビティ)構造が適用されていることが好ましい。したがって、発光デバイスが有する一対の電極の一方は、可視光に対する透過性及び反射性を有する電極(半透過・半反射電極)を有することが好ましく、他方は、可視光に対する反射性を有する電極(反射電極)を有することが好ましい。発光デバイスがマイクロキャビティ構造を有することで、発光層から得られる発光を両電極間で共振させ、発光デバイスから射出される光を強めることができる。
 なお、半透過・半反射電極は、反射電極と可視光に対する透過性を有する電極(透明電極ともいう)との積層構造とすることができる。
 透明電極の光の透過率は、40%以上とする。例えば、発光デバイスには、可視光(波長400nm以上750nm未満の光)の透過率が40%以上である電極を用いることが好ましい。半透過・半反射電極の可視光の反射率は、10%以上95%以下、好ましくは30%以上80%以下とする。反射電極の可視光の反射率は、40%以上100%以下、好ましくは70%以上100%以下とする。また、これらの電極の抵抗率は、1×10−2Ωcm以下が好ましい。また、これらの電極の近赤外光(波長750nm以上1300nm以下の光)の透過率または反射率は、可視光の透過率または反射率と同様に、上記の数値範囲を満たすことが好ましい。
 第1の層113において、第1の発光ユニット192と第2の発光ユニット194は、それぞれ発光層を有する。複数の発光ユニットの発光層からの光を合わせて白色発光が得られる構成を適用することが好ましい。第1の発光ユニット192、及び、第2の発光ユニット194は、それぞれ、発光層を1層または複数層有することができる。
 発光層は、発光物質を含む層である。発光層は、1種または複数種の発光物質を有することができる。発光物質としては、青色、紫色、青紫色、緑色、黄緑色、黄色、橙色、赤色などの発光色を呈する物質を適宜用いる。また、発光物質として、近赤外光を発する物質を用いることもできる。
 発光物質としては、蛍光材料、燐光材料、熱活性化遅延蛍光材料、量子ドット材料などが挙げられる。
 蛍光材料としては、例えば、ピレン誘導体、アントラセン誘導体、トリフェニレン誘導体、フルオレン誘導体、カルバゾール誘導体、ジベンゾチオフェン誘導体、ジベンゾフラン誘導体、ジベンゾキノキサリン誘導体、キノキサリン誘導体、ピリジン誘導体、ピリミジン誘導体、フェナントレン誘導体、ナフタレン誘導体などが挙げられる。
 燐光材料としては、例えば、4H−トリアゾール骨格、1H−トリアゾール骨格、イミダゾール骨格、ピリミジン骨格、ピラジン骨格、またはピリジン骨格を有する有機金属錯体(特にイリジウム錯体)、電子吸引基を有するフェニルピリジン誘導体を配位子とする有機金属錯体(特にイリジウム錯体)、白金錯体、希土類金属錯体等が挙げられる。
 発光層は、発光物質(ゲスト材料)に加えて、1種または複数種の有機化合物(ホスト材料、アシスト材料等)を有していてもよい。1種または複数種の有機化合物としては、正孔輸送性材料及び電子輸送性材料の一方または双方を用いることができる。また、1種または複数種の有機化合物として、バイポーラ性材料、またはTADF材料を用いてもよい。
 発光層は、例えば、燐光材料と、励起錯体を形成しやすい組み合わせである正孔輸送性材料及び電子輸送性材料と、を有することが好ましい。このような構成とすることにより、励起錯体から発光物質(燐光材料)へのエネルギー移動であるExTET(Exciplex−Triplet Energy Transfer)を用いた発光を効率よく得ることができる。発光物質の最も低エネルギー側の吸収帯の波長と重なるような発光を呈する励起錯体を形成するような組み合わせを選択することで、エネルギー移動がスムーズとなり、効率よく発光を得ることができる。この構成により、発光デバイスの高効率、低電圧駆動、長寿命を同時に実現できる。
 第1の層113は、発光層以外の層として、正孔注入性の高い物質、正孔輸送性の高い物質、正孔ブロック材料、電子輸送性の高い物質、電子注入性の高い物質、電子ブロック材料、またはバイポーラ性の物質(電子輸送性及び正孔輸送性が高い物質)等を含む層をさらに有していてもよい。
 発光デバイスには低分子化合物及び高分子化合物のいずれを用いることもでき、無機化合物を含んでいてもよい。発光デバイスを構成する層は、それぞれ、蒸着法(真空蒸着法を含む)、転写法、印刷法、インクジェット法、塗布法等の方法で形成することができる。
 例えば、第1の層113は、正孔注入層、正孔輸送層、正孔ブロック層、電子ブロック層、電子輸送層、及び電子注入層のうち一つ以上を有していてもよい。
 第2の層114は、正孔注入層、正孔輸送層、正孔ブロック層、電子ブロック層、電子輸送層、及び電子注入層のうち一つ以上を有することができる。例えば、画素電極111a、111b、111cが陽極として機能し、共通電極115が陰極として機能する場合、第2の層114は、電子注入層を有することが好ましい。
 正孔注入層は、陽極から正孔輸送層に正孔を注入する層であり、正孔注入性の高い材料を含む層である。正孔注入性の高い材料としては、芳香族アミン化合物、及び、正孔輸送性材料とアクセプター性材料(電子受容性材料)とを含む複合材料などが挙げられる。
 発光デバイスにおいて、正孔輸送層は、正孔注入層によって陽極から注入された正孔を発光層に輸送する層である。正孔輸送層は、正孔輸送性材料を含む層である。正孔輸送性材料としては、1×10−6cm/Vs以上の正孔移動度を有する物質が好ましい。なお、電子よりも正孔の輸送性の高い物質であれば、これら以外のものも用いることができる。正孔輸送性材料としては、π電子過剰型複素芳香族化合物(例えばカルバゾール誘導体、チオフェン誘導体、フラン誘導体など)、芳香族アミン(芳香族アミン骨格を有する化合物)等の正孔輸送性の高い材料が好ましい。
 発光デバイスにおいて、電子輸送層は、電子注入層によって陰極から注入された電子を発光層に輸送する層である。電子輸送層は、電子輸送性材料を含む層である。電子輸送性材料としては、1×10−6cm/Vs以上の電子移動度を有する物質が好ましい。なお、正孔よりも電子の輸送性の高い物質であれば、これら以外のものも用いることができる。電子輸送性材料としては、キノリン骨格を有する金属錯体、ベンゾキノリン骨格を有する金属錯体、オキサゾール骨格を有する金属錯体、チアゾール骨格を有する金属錯体等の他、オキサジアゾール誘導体、トリアゾール誘導体、イミダゾール誘導体、オキサゾール誘導体、チアゾール誘導体、フェナントロリン誘導体、キノリン配位子を有するキノリン誘導体、ベンゾキノリン誘導体、キノキサリン誘導体、ジベンゾキノキサリン誘導体、ピリジン誘導体、ビピリジン誘導体、ピリミジン誘導体、その他、含窒素複素芳香族化合物を含むπ電子不足型複素芳香族化合物等の電子輸送性の高い材料を用いることができる。
 電子注入層は、陰極から電子輸送層に電子を注入する層であり、電子注入性の高い材料を含む層である。電子注入性の高い材料としては、アルカリ金属、アルカリ土類金属、またはそれらの化合物を用いることができる。電子注入性の高い材料としては、電子輸送性材料とドナー性材料(電子供与性材料)とを含む複合材料を用いることもできる。
 電子注入層としては、例えば、リチウム、セシウム、フッ化リチウム(LiF)、フッ化セシウム(CsF)、フッ化カルシウム(CaF)、8−(キノリノラト)リチウム(略称:Liq)、2−(2−ピリジル)フェノラトリチウム(略称:LiPP)、2−(2−ピリジル)−3−ピリジノラトリチウム(略称:LiPPy)、4−フェニル−2−(2−ピリジル)フェノラトリチウム(略称:LiPPP)、リチウム酸化物(LiO)、炭酸セシウム等のようなアルカリ金属、アルカリ土類金属、またはこれらの化合物を用いることができる。
 または、電子注入層としては、電子輸送性材料を用いてもよい。例えば、非共有電子対を備え、電子不足型複素芳香環を有する化合物を、電子輸送性材料に用いることができる。具体的には、ピリジン環、ジアジン環(ピリミジン環、ピラジン環、ピリダジン環)、トリアジン環の少なくとも一つを有する化合物を用いることができる。
 なお、非共有電子対を備える有機化合物の最低空軌道(LUMO:Lowest Unoccupied Molecular Orbital)が、−3.6eV以上−2.3eV以下であると好ましい。また、一般にCV(サイクリックボルタンメトリ)、光電子分光法、光吸収分光法、逆光電子分光法等により、有機化合物の最高被占有軌道(HOMO:Highest Occupied Molecular Orbital)準位及びLUMO準位を見積もることができる。
 例えば、4,7−ジフェニル−1,10−フェナントロリン(略称:BPhen)、2,9−ビス(ナフタレン−2−イル)−4,7−ジフェニル−1,10−フェナントロリン(略称:NBPhen)、ジキノキサリノ[2,3−a:2’,3’−c]フェナジン(略称:HATNA)、2,4,6−トリス[3’−(ピリジン−3−イル)ビフェニル−3−イル]−1,3,5−トリアジン(略称:TmPPPyTz)等を、非共有電子対を備える有機化合物に用いることができる。なお、NBPhenはBPhenと比較して、高いガラス転移点(Tg)を備え、耐熱性に優れる。
 また、複数種の物質を混合した材料(複合材料とも呼称する)を、第1の層113に用いることができる。具体的には、アルカリ金属、アルカリ金属化合物またはアルカリ金属錯体と、電子輸送性材料とを含む複合材料を、第1の層113に用いることができる。なお、電子輸送性材料のHOMO準位が−6.0eV以上であるとより好ましい。
 または、アクセプター性材料と正孔輸送性材料との複合材料を、第1の層113に用いることができる。具体的には、アクセプター性材料と、−5.7eV以上−5.4eV以下の比較的深いHOMO準位を有する物質との複合材料を、第1の層113に用いることができる。当該複合材料を第1の層113に用いることで、発光デバイスの信頼性を向上することができる。
 なお、本明細書等において、第1の層113に、上述の複合材料を用いる発光デバイスをRecombination−Site Tailoring Injection構造(ReSTI構造)と呼称する場合がある。
 発光デバイス130a、130b、130c上に保護層131を有することが好ましい。保護層131を設けることで、発光デバイスの信頼性を高めることができる。
 保護層131の導電性は問わない。保護層131としては、絶縁膜、半導体膜、及び、導電膜の少なくとも一種を用いることができる。
 保護層131が無機膜または無機絶縁膜を有することで、共通電極115の酸化を防止することができ、発光デバイス130a、130b、130cに不純物(水分、酸素など)が入り込むことを抑制することができる。これにより、発光デバイスの劣化を抑制し、表示装置の信頼性を高めることができる。
 保護層131には、例えば、酸化絶縁膜、窒化絶縁膜、酸化窒化絶縁膜、及び窒化酸化絶縁膜などの無機絶縁膜を用いることができる。酸化絶縁膜としては、酸化シリコン膜、酸化アルミニウム膜、酸化ガリウム膜、酸化ゲルマニウム膜、酸化イットリウム膜、酸化ジルコニウム膜、酸化ランタン膜、酸化ネオジム膜、酸化ハフニウム膜、及び酸化タンタル膜などが挙げられる。窒化絶縁膜としては、窒化シリコン膜及び窒化アルミニウム膜などが挙げられる。酸化窒化絶縁膜としては、酸化窒化シリコン膜、酸化窒化アルミニウム膜などが挙げられる。窒化酸化絶縁膜としては、窒化酸化シリコン膜、窒化酸化アルミニウム膜などが挙げられる。
 なお、本明細書などにおいて、酸化窒化物とは、その組成として、窒素よりも酸素の含有量が多い材料を指し、窒化酸化物とは、その組成として、酸素よりも窒素の含有量が多い材料を指す。例えば、酸化窒化シリコンと記載した場合は、その組成として窒素よりも酸素の含有量が多い材料を指し、窒化酸化シリコンと記載した場合は、その組成として、酸素よりも窒素の含有量が多い材料を示す。
 保護層131は、それぞれ、窒化絶縁膜または窒化酸化絶縁膜を有することが好ましく、窒化絶縁膜を有することがより好ましい。
 また、保護層131には、In−Sn酸化物(ITOともいう)、In−Zn酸化物、Ga−Zn酸化物、Al−Zn酸化物、またはインジウムガリウム亜鉛酸化物(In−Ga−Zn酸化物、IGZOともいう)などを含む無機膜を用いることもできる。当該無機膜は、高抵抗であることが好ましく、具体的には、共通電極115よりも高抵抗であることが好ましい。当該無機膜は、さらに窒素を含んでいてもよい。例えば、共通電極115に銀とマグネシウムの合金などの不純物(水分、酸素など)で劣化しやすい金属を用いる場合、In−Ga−Zn酸化物などを保護層131として用いることができる。
 発光デバイスの発光を、保護層131を介して取り出す場合、保護層131は、可視光に対する透過性が高いことが好ましい。例えば、ITO、IGZO、及び、酸化アルミニウムは、それぞれ、可視光に対する透過性が高い無機材料であるため、好ましい。
 保護層131としては、例えば、酸化アルミニウム膜と、酸化アルミニウム膜上の窒化シリコン膜と、の積層構造、または、酸化アルミニウム膜と、酸化アルミニウム膜上のIGZO膜と、の積層構造などを用いることができる。当該積層構造を用いることで、EL層側に入り込む不純物(水、酸素など)を抑制することができる。
 さらに、保護層131は、有機膜を有していてもよい。例えば、保護層131は、有機膜と無機膜の双方を有していてもよい。
 保護層131上には、着色層125(着色層125a、着色層125b、及び着色層125c)が設けられる。着色層125aは発光デバイス130aと重なる領域を有し、着色層125bは発光デバイス130bと重なる領域を有し、着色層125cは発光デバイス130cと重なる領域を有する。着色層125a、125b、125cは、少なくともそれぞれの発光デバイス130が有する発光層と重なる領域を有する。
 着色層125a、着色層125b、及び着色層125cは、互いに異なる色の光を透過する機能を有する。例えば、着色層125aは赤色の光を透過する機能を有し、着色層125bは緑色の光を透過する機能を有し、着色層125cは青色の光を透過する機能を有する。これにより、表示装置100は、フルカラー表示を行うことができる。なお、着色層125a、着色層125b、及び着色層125cは、シアン、マゼンタ、及び黄色の光のいずれかを透過する機能を有してもよい。
 ここで、隣接する着色層125は、重なる領域を有することが好ましい。具体的には、発光デバイス130と重ならない領域において、隣接する着色層125が重なる領域を有することが好ましい。異なる色の光を透過する着色層125が重なることで、着色層125が重なる領域において、着色層125を遮光層として機能させることができる。よって、発光デバイス130が発する光が隣接する副画素に漏れることを抑制できる。例えば、着色層125aと重なる発光デバイス130aが発する光が、着色層125bに入射されることを抑制できる。よって、表示装置に表示される画像のコントラストを高めることができ、表示品位の高い表示装置を実現できる。
 なお、隣接する着色層125が重なる領域を有さなくてもよい。この場合、発光デバイス130と重ならない領域に、遮光層を設けることが好ましい。遮光層は、例えば基板120の樹脂層122側の面に設けることができる。また、着色層125を、基板120の樹脂層122側の面に設けてもよい。
 また、保護層131上に着色層125を形成することで、基板120上に着色層125を形成する場合に比べて、各発光デバイス130と各着色層125との位置合わせが容易であり、極めて高精細な表示装置を実現できる。
 画素電極111a、111b、111cのそれぞれの端部は、絶縁体121によって覆われている。絶縁体121は、バンク、隔壁、障壁、または土手などと呼ぶこともできる。このような、絶縁体121を設けることで、画素電極111a、111b、111cに第2の層114または共通電極115などが接することを防ぐことができるので、発光デバイス130がショートするのを抑制することができる。
 また、絶縁体121は、画素電極111a、111b、111cのそれぞれの上に開口を有しており、当該開口において、画素電極111a、111b、111cは、それぞれ第1の発光ユニット192の下部(例えば、第1の正孔注入層181a)と接する。つまり、画素電極111a、111b、111cのそれぞれの端部または端部近傍において、画素電極111a、111b、または111cと、第1の正孔注入層181aの間に、絶縁体121の一部が設けられている。
 絶縁体121は、無機絶縁膜及び有機絶縁膜の一方または双方を用いた、単層構造または積層構造とすることができる。
 絶縁体121に用いることができる有機絶縁材料としては、例えば、アクリル樹脂、エポキシ樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリイミドアミド樹脂、ポリシロキサン樹脂、ベンゾシクロブテン系樹脂、及びフェノール樹脂等が挙げられる。また、絶縁体121に用いることができる無機絶縁膜としては、保護層131に用いることができる無機絶縁膜を用いることができる。
 画素電極の端部を覆う絶縁体121として、無機絶縁膜を用いると、有機絶縁膜を用いる場合に比べて、発光デバイスに不純物が入りにくく、発光デバイスの信頼性を高めることができる。画素電極の端部を覆う絶縁体121として、有機絶縁膜を用いると、無機絶縁膜を用いる場合に比べて、段差被覆性が高く、画素電極の形状の影響を受けにくい。そのため、発光デバイスのショートを防止できる。具体的には、絶縁体121として、有機絶縁膜を用いると、絶縁体121の形状をテーパー形状などに加工することができる。なお、本明細書等において、テーパー形状とは、構造の側面の少なくとも一部が、基板面に対して傾斜して設けられている形状のことを指す。例えば、傾斜した側面と基板面とがなす角(テーパー角ともいう)が90°未満である領域を有すると好ましい。
 絶縁体124は、絶縁体121の上に、発光デバイス130の側面の少なくとも一部に接して設けられる。このとき、絶縁体124は、第1の発光ユニット192の側面、中間層191の側面、および第2の発光ユニット194の側面の少なくとも一部に接していることが好ましい。例えば、図1Bに示すように、絶縁体124が、第1の正孔注入層181aの側面、第1の正孔輸送層182aの側面、第1の発光層183aの側面、第1の電子輸送層184aの側面、中間層191の側面、第2の正孔輸送層182bの側面、第2の発光層183bの側面、および第2の電子輸送層184bの側面と接する構成にすることができる。このように、発光デバイスの側面の少なくとも一部が絶縁体124に覆われる構成にすることで、第2の層114が、第1の発光ユニット192、中間層191、および第2の発光ユニット194のいずれかの側面と接することを抑制できる。以上により、発光デバイス130のショートを抑制することができる。なお、絶縁体124は、側壁、側壁保護層、またはサイドウォール絶縁膜などと呼ぶこともできる。
 図1Bには、絶縁体124が絶縁体124aと、絶縁体124a上の絶縁体124bの2層構造である例を示している。絶縁体124aの側面は、発光デバイス130の側面の少なくとも一部に接し、絶縁体124aの下面は、絶縁体121の少なくとも一部に接することが好ましい。また、絶縁体124bの側面および下面は、絶縁体124aの少なくとも一部に接することが好ましい。
 また、絶縁体124bの基板120の基板面に垂直な方向の厚さは、絶縁体124bの基板120の基板面に平行な方向の厚さより厚くすることができる。また、絶縁体124bの上端部の形状は、ラウンド状とすることができる。絶縁体124bの上端部の形状をラウンド状とすることで、第2の層114、共通電極115、及び保護層131の被覆性が高まるため好ましい。
 絶縁体124a及び絶縁体124bには、例えば、酸化絶縁膜、窒化絶縁膜、酸化窒化絶縁膜、及び窒化酸化絶縁膜などの無機絶縁膜を用いることができる。酸化絶縁膜としては、酸化シリコン膜、酸化アルミニウム膜、酸化ガリウム膜、酸化ゲルマニウム膜、酸化イットリウム膜、酸化ジルコニウム膜、酸化ランタン膜、酸化ネオジム膜、酸化ハフニウム膜、及び酸化タンタル膜などが挙げられる。窒化絶縁膜としては、窒化シリコン膜及び窒化アルミニウム膜などが挙げられる。酸化窒化絶縁膜としては、酸化窒化シリコン膜、酸化窒化アルミニウム膜などが挙げられる。窒化酸化絶縁膜としては、窒化酸化シリコン膜、窒化酸化アルミニウム膜などが挙げられる。
 絶縁体124a及び絶縁体124bは、例えばスパッタリング法、蒸着法(真空蒸着法を含む)、CVD法、ALD法などの各種成膜方法により形成することができる。特に、ALD法は被形成層に対する成膜ダメージが小さいため、第1の発光ユニット192、中間層191、および第2の発光ユニット194に直接接する、絶縁体124aは、ALD法を用いて成膜することが好ましい。また、このとき、絶縁体124bはスパッタリング法などを用いて成膜すると、生産性を高めることができるため好ましい。
 例えば、絶縁体124aにALD法により成膜した酸化アルミニウム膜を用い、絶縁体124bに、スパッタリング法により成膜した窒化シリコン膜を用いることができる。
 また、絶縁体124a及び絶縁体124bの一方または双方は、水及び酸素の少なくとも一方に対するバリア絶縁膜としての機能を有することが好ましい。または、絶縁体124a及び絶縁体124bの一方または双方は、水及び酸素の少なくとも一方の拡散を抑制する機能を有することが好ましい。または、絶縁体124a及び絶縁体124bの一方または双方は、水及び酸素の少なくとも一方を捕獲、または固着する(ゲッタリングともいう)機能を有することが好ましい。
 なお、本明細書等において、バリア絶縁膜とは、バリア性を有する絶縁膜のことを示す。また、本明細書等において、バリア性とは、対応する物質の拡散を抑制する機能(透過性が低いともいう)とする。または、本明細書等において、バリア性とは、対応する物質を、捕獲、または固着する(ゲッタリングともいう)機能とする。
 絶縁体124a及び絶縁体124bの一方または双方が、上述のバリア絶縁膜の機能、またはゲッタリング機能を有することで、外部から各発光素子に拡散しうる不純物(代表的には、水または酸素)の侵入を抑制することが可能な構成となる。当該構成とすることで、信頼性の優れた表示装置を提供することができる。
 本明細書等において、メタルマスク、またはFMM(ファインメタルマスク、高精細なメタルマスク)を用いて作製されるデバイスをMM(メタルマスク)構造のデバイスと呼称する場合がある。また、本明細書等において、メタルマスク、またはFMMを用いることなく作製されるデバイスをMML(メタルマスクレス)構造のデバイスと呼称する場合がある。
 なお、本明細書等において、白色光を発することのできる発光デバイスを白色発光デバイスと呼ぶ場合がある。なお、白色発光デバイスは、着色層(たとえば、カラーフィルタ)と組み合わせることで、フルカラー表示の表示装置を実現することができる。また、各色の発光デバイス(ここでは青(B)、緑(G)、及び赤(R))で、発光層を作り分ける、または発光層を塗り分ける構造をSBS(Side By Side)構造と呼ぶ場合がある。
 また、発光デバイスは、シングル構造と、タンデム構造とに大別することができる。シングル構造のデバイスは、一対の電極間に1つの発光ユニットを有し、当該発光ユニットは、1以上の発光層を含む構成とすることが好ましい。白色発光を得るには、2以上の発光層の各々の発光が補色の関係となるような発光層を選択すればよい。例えば、第1の発光層の発光色と第2の発光層の発光色を補色の関係になるようにすることで、発光デバイス全体として白色発光する構成を得ることができる。また、発光層を3つ以上有する発光デバイスの場合も同様である。
 タンデム構造のデバイスは、一対の電極間に2以上の複数の発光ユニットを有し、各発光ユニットは、1以上の発光層を含む構成とすることが好ましい。白色発光を得るには、複数の発光ユニットの発光層からの光を合わせて白色発光が得られる構成とすればよい。なお、白色発光が得られる構成については、シングル構造の構成と同様である。なお、タンデム構造のデバイスにおいて、複数の発光ユニットの間には、電荷発生層などの中間層を設けると好適である。
 また、上述の白色発光デバイス(シングル構造またはタンデム構造)と、SBS構造の発光デバイスと、を比較した場合、白色発光デバイスは、製造プロセスがSBS構造の発光デバイスよりも簡単であるため、製造コストを低くすることができる、または製造歩留まりを高くすることができるため、好適である。
 本実施の形態の表示装置は、発光デバイス間の距離を狭くすることができる。ここで、発光デバイス間の距離は、例えば、隣接する画素電極111の対向する側面の間の距離とすることができる。具体的には、発光デバイス間の距離を、8μm以下、6μm以下、4μm以下、3μm以下、2μm以下、または、1μm以下にまで狭めることができる。さらに、例えばLSI向けの露光装置を用いることで、500nm以下、200nm以下、100nm以下、90nm以下、70nm以下、50nm以下、30nm以下、20nm以下、15nm以下、または10nmにまで間隔を狭めることもできる。
 図1Aにおいては、副画素110a、110b、110cがストライプ配列の例について説明したが、本発明はこれに限られるものではない。以下に、図4乃至図6を用いて、図1Aに示すものとは異なる画素配列の例について説明する。
 図4Aに示す画素110には、Sストライプ配列が適用されている。図4Aに示す画素110は、副画素110a、110b、110cの、3つの副画素から構成される。ここでは、2行2列の副画素の配列において、2列目の副画素110bと副画素110cは、それぞれ1行目と2行目に配置させているが、1列目の副画素110aは、1行目と2行目に渡って配置させている。例えば、副画素110aを青色の副画素とし、副画素110bを赤色の副画素とし、副画素110cを緑色の副画素としてもよい。
 図4Bに示す画素110は、角が丸い略台形の上面形状を有する副画素110aと、角が丸い略三角形の上面形状を有する副画素110bと、角が丸い略四角形または略六角形の上面形状を有する副画素110cと、を有する。また、副画素110aは、副画素110bよりも発光面積が広い。このように、各副画素の形状及びサイズはそれぞれ独立に決定することができる。例えば、信頼性の高い発光デバイスを有する副画素ほど、サイズを小さくすることができる。例えば、副画素110aを緑色の副画素とし、副画素110bを赤色の副画素とし、副画素110cを青色の副画素としてもよい。
 図4Cに示す画素128a、128bには、ペンタイル配列が適用されている。図4Cでは、副画素110a及び副画素110bを有する画素128aと、副画素110b及び副画素110cを有する画素128bと、が交互に配置されている例を示す。例えば、副画素110aを青色の副画素とし、副画素110bを緑色の副画素とし、副画素110cを赤色の副画素としてもよい。
 図4D及び図4Eに示す画素128a、128bは、デルタ配列が適用されている。画素128aは上の行(1行目)に、2つの副画素(副画素110a、110b)を有し、下の行(2行目)に、1つの副画素(副画素110c)を有する。画素128bは上の行(1行目)に、1つの副画素(副画素110c)を有し、下の行(2行目)に、2つの副画素(副画素110a、110b)を有する。
 図4Dは、各副画素が、角が丸い略四角形の上面形状を有する例であり、図4Eは、各副画素が、円形の上面形状を有する例である。
 フォトリソグラフィ法では、加工するパターンが微細になるほど、光の回折の影響を無視できなくなるため、露光によりフォトマスクのパターンを転写する際に忠実性が損なわれ、レジストマスクを所望の形状に加工することが困難になる。そのため、フォトマスクのパターンが矩形であっても、角が丸まったパターンが形成されやすい。したがって、副画素の上面形状が、多角形の角が丸い形状、楕円形、または円形などになることがある。
 さらに、本発明の一態様の表示装置の作製方法では、レジストマスクを用いてEL層を島状に加工する。EL層上に形成したレジスト膜は、EL層の耐熱温度よりも低い温度で硬化する必要がある。そのため、EL層の材料の耐熱温度及びレジスト材料の硬化温度によっては、レジスト膜の硬化が不十分になる場合がある。硬化が不十分なレジスト膜は、加工時に所望の形状から離れた形状をとることがある。その結果、EL層の上面形状が、多角形の角が丸い形状、楕円形、または円形などになることがある。例えば、上面形状が正方形のレジストマスクを形成しようとした場合に、円形の上面形状のレジストマスクが形成され、EL層の上面形状が円形になることがある。
 なお、EL層の上面形状を所望の形状とするために、設計パターンと、転写パターンとが、一致するように、あらかじめマスクパターンを補正する技術(OPC(Optical Proximity Correction:光近接効果補正)技術)を用いてもよい。具体的には、OPC技術では、マスクパターン上の図形コーナー部などに補正用のパターンを追加する。
 また、図1Aでは、副画素を3つ設ける構成を示したが、本発明はこれに限られるものではない。副画素を4つ以上設ける構成にしてもよい。図5Aに示す画素110は、副画素110a、110b、110c、110dの、4つの副画素から構成される。副画素110dも、副画素110a、110b、110cと同様に、白色光を発する発光デバイス130dを有する。図5Bに示すように、発光デバイス130dは、画素電極111dと、第1の層113と、第2の層114と、共通電極115と、を有する。ただし、副画素110dは、副画素110a、110b、110cと異なり、着色層を有さない。このような構成にすることで、例えば、副画素110a、110b、110cは、それぞれ、赤色、緑色、青色の副画素とすることができ、副画素110dは白色の副画素とすることができる。
 図5Aでは、1つの画素110が、2行3列で配置されている例を示す。画素110は、上の行(1行目)に、3つの副画素(副画素110a、110b、110c)を有し、下の行(2行目)に、1つの副画素(副画素110d)を有する。言い換えると、画素110は、左の列(1列目)に、副画素110aを有し、中央の列(2列目)に副画素110bを有し、右の列(3列目)に副画素110cを有し、さらに、この3列にわたって、副画素110dを有する。
 図6A乃至図6Cに示す画素110は、ストライプ配列が適用されている。図6A乃至図6Cに示す画素110は、副画素110a、110b、110c、110dの、4つの副画素から構成される。副画素110a、110b、110c、110dは、それぞれ異なる色の光を発する発光デバイスを有する。例えば、副画素110a、110b、110c、110dは、それぞれ、赤色、緑色、青色、白色の副画素とすることができる。
 図6Aは、各副画素が、長方形の上面形状を有する例であり、図6Bは、各副画素が、2つの半円と長方形をつなげた上面形状を有する例であり、図6Cは、各副画素が、楕円形の上面形状を有する例である。
 図6D乃至図6Fに示す画素110は、マトリクス配列が適用されている。図6D乃至図6Fに示す画素110は、副画素110a、110b、110c、110dの、4つの副画素から構成される。副画素110a、110b、110c、110dは、それぞれ異なる色の光を発する発光デバイスを有する。例えば、副画素110a、110b、110c、110dは、それぞれ、赤色、緑色、青色、白色の副画素とすることができる。
 図6Dは、各副画素が、正方形の上面形状を有する例であり、図6Eは、各副画素が、角が丸い略正方形の上面形状を有する例であり、図6Fは、各副画素が、円形の上面形状を有する例である。
 図6Gに示す画素110は、副画素110a、副画素110b、副画素110c、副画素110d1、副画素110d2、副画素110d3の、6つの副画素から構成される。図6Gの副画素110d1、110d2、110d3は、図5Aに示す副画素110dを、副画素110a、110b、110cに平行にして分離したものである。ここで、副画素110d1、110d2、110d3は、トランジスタを含む層101において、同一のトランジスタに電気的に接続される構成にしてもよい。
 図6Gに示すような構成にすることで、副画素110a、110b、110c、110d1、110d2、110d3の間に形成される隘路が、X方向またはY方向に表示装置100を横切るように形成される。これにより、表示装置100を作製する際の洗浄工程において、当該隘路をゴミなどが流れやすくなり、製造過程で生じるゴミが表示装置に混入するのを防ぐことができる。
 次に、図7乃至図9を用いて、表示装置100の断面形状の変形例について説明する。
 図7Aに示すように、隣接する発光デバイス130の間において、絶縁体121の上部に凹部が形成される場合がある。例えば、絶縁体121の、第1の層113と重畳しない領域に第1の凹部が形成される場合がある。このとき、第1の凹部の底面に絶縁体124の下面が接する場合がある。また、例えば、第1の凹部の中の、絶縁体124と重畳しない領域に第2の凹部が形成される場合がある。このとき、第2の凹部の底面に第2の層114の一部が接する場合がある。
 また、図1Bでは、第2の層114が隣接する絶縁体124の間の領域などに入り込んでいる例を示したが、図7Bに示すように、当該領域に、空隙133が形成されてもよい。
 空隙133は、例えば、空気、窒素、酸素、二酸化炭素、及び第18族元素(代表的には、ヘリウム、ネオン、アルゴン、キセノン、クリプトン等)の中から選ばれるいずれか一または複数を有する。
 また、空隙133の屈折率が、第2の層114の屈折率より低い場合、発光デバイスから発せられる光が、第2の層114と空隙133との界面で反射する。これにより、発光デバイスから発せられる光が、隣接する画素(または副画素)に入射することを抑制することができる。よって、異なる画素の光が混色することを抑制できるため、表示装置の表示品位を高めることができる。
 また、図1Bでは、絶縁体124が、絶縁体124aと、絶縁体124a上の絶縁体124bを有する例を示したが、図8Aに示すように、絶縁体124は単層構造にしてもよい。絶縁体124は、上述の絶縁体124aまたは絶縁体124bに用いることが可能な材料を用いて形成すればよい。
 また、図1Bでは、絶縁体124の上端が、第2の電子輸送層184bの上面と概略一致する例を示したが、本発明はこれに限られるものではない。例えば、図8Bに示すように、絶縁体124a及び絶縁体124bのいずれか一方または両方の上端が、第2の電子輸送層184bの上面よりも突出する構成になってもよい。このような構成にすることで、絶縁体124が、第1の層113の側面を上端まで覆うことができるので、発光デバイス130のショートをより抑制することができる。
 また、図1Bでは、着色層125a、125b、125cが保護層131の上面に接する例を示したが、本発明はこれに限られるものではない。例えば、図9Aに示すように、保護層131を覆って、平坦性の良好な絶縁層126を設け、絶縁層126の上に着色層125a、125b、125cを設ける構成にしてもよい。ここで、絶縁層126は、例えば、絶縁体121に用いることが可能な、有機絶縁材料または無機絶縁材料などを用いればよい。さらに、着色層125a、125b、125cの上に、樹脂層122を設けて、基板120を貼り合わせればよい。
 また、図9Bに示すように、画素電極111a、画素電極111b、画素電極111cの上に、可視光を透過する機能を有する導電層112a、導電層112b、導電層112c(以下、まとめて導電層112と呼ぶ場合がある。)を設ける構成にしてもよい。また、このとき、導電層123も同様に、導電層123aと導電層123bの積層構造になる。
 導電層112としては、上述の可視光に対して透過性を有する導電膜を用いることができる。また、導電層112としては、上記可視光を反射する導電膜を、可視光が透過する程度に薄く形成した膜を用いることができる。また、当該導電膜と上記可視光を透過する導電膜との積層構造とすることで、導電性および機械的な強度を高めることができる。
 図9Bに示すように、導電層112は、画素電極111と第1の正孔注入層181aの間に配置される。導電層112は、画素電極111上に位置する。
 また図9Bに示すように、各発光デバイス130に備わる導電層112は、発光デバイスごとに異なる厚みを有することが好ましい。例えば、着色層125aが赤色光を透過し、着色層125bが緑色光を透過し、着色層125cが青色光を透過する場合、3つの導電層112のうち、導電層112aの厚さを最も厚くし、導電層112cの厚さを最も薄くすればよい。ここで各発光デバイスにおける画素電極111の上面と共通電極115の下面との距離は、着色層125aと重なる発光デバイス130において最も大きく、着色層125cと重なる発光デバイス130において最も小さい。それぞれの発光デバイスにおいて、画素電極111の上面と共通電極115の下面の距離を変化させることにより、それぞれの発光素子における光学距離(光路長)を変化させることができる。
 3つの発光デバイスのうち、着色層125aと重なる発光デバイス130は最も光路長が長いため、最も長波長の光(例えば赤色の光)が強められた光を射出する。一方、着色層125bと重なる発光デバイス130は、最も光路長が短いため、最も短波長の光(例えば青色の光)が強められた光を射出する。着色層125bと重なる発光デバイス130は、その中間の波長の光(例えば緑色の光)が強められた光を射出する。
 このような構成とすることで、異なる色の副画素毎に、発光デバイス130が有する発光層を作り分ける必要がなく、同じ構成の発光デバイスを用いて、色再現性の高いカラー表示を行うことができる。
[表示装置の作製方法例]
 次に、図10乃至図13を用いて表示装置の作製方法例を説明する。図10A乃至図10Dには、図1Aにおける一点鎖線X1−X2間の断面図と、Y1−Y2間の断面図と、Y3−Y4間の断面図と、を並べて示す。図11乃至図13についても、図10と同様である。
 表示装置を構成する薄膜(絶縁膜、半導体膜、及び、導電膜等)は、スパッタリング法、化学気相堆積(CVD:Chemical Vapor Deposition)法、真空蒸着法、パルスレーザー堆積(PLD:Pulsed Laser Deposition)法、ALD法等を用いて形成することができる。CVD法としては、プラズマ化学気相堆積(PECVD:Plasma Enhanced CVD)法、及び、熱CVD法などがある。また、熱CVD法のひとつに、有機金属化学気相堆積(MOCVD:Metal Organic CVD)法がある。
 また、表示装置を構成する薄膜(絶縁膜、半導体膜、及び、導電膜等)は、スピンコート、ディップ、スプレー塗布、インクジェット、ディスペンス、スクリーン印刷、オフセット印刷、ドクターナイフ、スリットコート、ロールコート、カーテンコート、ナイフコート等の方法により形成することができる。
 特に、発光デバイスの作製には、蒸着法などの真空プロセス、及び、スピンコート法、インクジェット法などの溶液プロセスを用いることができる。蒸着法としては、スパッタ法、イオンプレーティング法、イオンビーム蒸着法、分子線蒸着法、真空蒸着法などの物理蒸着法(PVD法)、及び、化学蒸着法(CVD法)等が挙げられる。特にEL層に含まれる機能層(正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層など)については、蒸着法(真空蒸着法等)、塗布法(ディップコート法、ダイコート法、バーコート法、スピンコート法、スプレーコート法等)、印刷法(インクジェット法、スクリーン(孔版印刷)法、オフセット(平版印刷)法、フレキソ(凸版印刷)法、グラビア法、または、マイクロコンタクト法等)などの方法により形成することができる。
 また、表示装置を構成する薄膜を加工する際には、フォトリソグラフィ法等を用いることができる。または、ナノインプリント法、サンドブラスト法、リフトオフ法などにより薄膜を加工してもよい。また、メタルマスクなどの遮蔽マスクを用いた成膜方法により、島状の薄膜を直接形成してもよい。
 フォトリソグラフィ法としては、代表的には以下の2つの方法がある。一つは、加工したい薄膜上にレジストマスクを形成して、エッチング等により当該薄膜を加工し、レジストマスクを除去する方法である。もう一つは、感光性を有する薄膜を成膜した後に、露光、現像を行って、当該薄膜を所望の形状に加工する方法である。
 フォトリソグラフィ法において、露光に用いる光は、例えばi線(波長365nm)、g線(波長436nm)、h線(波長405nm)、またはこれらを混合させた光を用いることができる。そのほか、紫外線、KrFレーザ光、またはArFレーザ光等を用いることもできる。また、液浸露光技術により露光を行ってもよい。また、露光に用いる光として、極端紫外(EUV:Extreme Ultra−violet)光、またはX線を用いてもよい。また、露光に用いる光に換えて、電子ビームを用いることもできる。極端紫外光、X線または電子ビームを用いると、極めて微細な加工が可能となるため好ましい。なお、電子ビームなどのビームを走査することにより露光を行う場合には、フォトマスクを用いなくてもよい。
 薄膜のエッチングには、ドライエッチング法、ウェットエッチング法、サンドブラスト法などを用いることができる。
 まず、図10Aに示すように、トランジスタを含む層101上に、画素電極111a、111b、111c、及び導電層123を形成する。各画素電極は、表示部に設けられ、導電層123は、接続部140に設けられる。
 次に、画素電極111a、111b、111cの端部及び導電層123の端部を覆う絶縁体121を形成する。
 そして、図10Bに示すように、各画素電極上、及び、絶縁体121上に、第1の正孔注入層181A、第1の正孔輸送層182A、第1の発光層183A、第1の電子輸送層184A、中間層191A、第2の正孔輸送層182B、第2の発光層183B、及び第2の電子輸送層184Bをこの順で形成し、第2の電子輸送層184B上に第1の犠牲層118Aを形成し、第1の犠牲層118A上に第2の犠牲層119Aを形成する。
 図10Bでは、Y1−Y2間の断面図において、第1の正孔注入層181A、第1の正孔輸送層182A、第1の発光層183A、第1の電子輸送層184A、中間層191A、第2の正孔輸送層182B、第2の発光層183B、第2の電子輸送層184B、第1の犠牲層118A、及び、第2の犠牲層119Aがいずれも導電層123上に設けられる例を示すが、これに限られない。
 例えば、第1の正孔注入層181A、第1の正孔輸送層182A、第1の発光層183A、第1の電子輸送層184A、中間層191A、第2の正孔輸送層182B、第2の発光層183B、第2の電子輸送層184B、及び、第1の犠牲層118Aは、導電層123と重ならなくてもよい。また、第1の正孔注入層181A、第1の正孔輸送層182A、第1の発光層183A、第1の電子輸送層184A、中間層191A、第2の正孔輸送層182B、第2の発光層183B、及び第2の電子輸送層184Bの接続部140側の端部が、第1の犠牲層118A及び第2の犠牲層119Aの端部よりも内側に位置していてもよい。例えば、成膜エリアを規定するためのマスク(エリアマスク、ラフメタルマスクなどともいう)を用いることで、第1の正孔注入層181A、第1の正孔輸送層182A、第1の発光層183A、第1の電子輸送層184A、中間層191A、第2の正孔輸送層182B、第2の発光層183B、及び第2の電子輸送層184Bと、第1の犠牲層118A及び第2の犠牲層119Aとで成膜される領域を変えることができる。本発明の一態様においては、レジストマスクを用いて発光デバイスを形成するが、上述のようにエリアマスクと組み合わせることで、比較的簡単なプロセスにて発光デバイスを作製することができる。
 画素電極として用いることができる材料は上述の通りである。画素電極の形成には、例えば、スパッタリング法または真空蒸着法を用いることができる。
 絶縁体121は、上述の通り、無機絶縁膜及び有機絶縁膜の一方または双方を用いた、単層構造または積層構造とすることができる。
 第1の正孔注入層181A、第1の正孔輸送層182A、第1の発光層183A、第1の電子輸送層184A、中間層191A、第2の正孔輸送層182B、第2の発光層183B、及び第2の電子輸送層184Bは、それぞれ、後に、第1の正孔注入層181a、第1の正孔輸送層182a、第1の発光層183a、第1の電子輸送層184a、中間層191、第2の正孔輸送層182b、第2の発光層183b、及び第2の電子輸送層184bとなる層である。そのため、それぞれ、上述した、第1の正孔注入層181a、第1の正孔輸送層182a、第1の発光層183a、第1の電子輸送層184a、中間層191、第2の正孔輸送層182b、第2の発光層183b、及び第2の電子輸送層184bに適用可能な構成を適用できる。
 第1の正孔注入層181A、第1の正孔輸送層182A、第1の発光層183A、第1の電子輸送層184A、中間層191A、第2の正孔輸送層182B、第2の発光層183B、及び第2の電子輸送層184Bは、それぞれ、蒸着法(真空蒸着法を含む)、転写法、印刷法、インクジェット法、塗布法等の方法で形成することができる。また、第1の正孔注入層181A、第1の正孔輸送層182A、第1の発光層183A、第1の電子輸送層184A、中間層191A、第2の正孔輸送層182B、第2の発光層183B、及び第2の電子輸送層184Bは、それぞれ、プレミックス材料を用いて形成されてもよい。なお、本明細書等において、プレミックス材料とは、複数の材料をあらかじめ配合、または混合した複合材料である。
 本実施の形態では、犠牲層が、第1の犠牲層と第2の犠牲層の2層構造である例を示すが、犠牲層は、単層構造であっても3層以上の積層構造であってもよい。犠牲層には、第1の正孔注入層181A、第1の正孔輸送層182A、第1の発光層183A、第1の電子輸送層184A、中間層191A、第2の正孔輸送層182B、第2の発光層183B、及び第2の電子輸送層184Bの加工条件に対する耐性の高い膜、具体的には、エッチングの選択比が大きい膜を用いる。
 犠牲層の形成には、例えば、スパッタリング法、ALD法(熱ALD法、PEALD法)、または真空蒸着法を用いることができる。なお、EL層へのダメージが少ない形成方法が好ましく、スパッタリング法よりも、ALD法または真空蒸着法を用いて、犠牲層を形成することが好ましい。
 犠牲層には、ウェットエッチング法により除去できる膜を用いることが好ましい。ウェットエッチング法を用いることで、ドライエッチング法を用いる場合に比べて、犠牲層の加工時に、第1の正孔注入層181A、第1の正孔輸送層182A、第1の発光層183A、第1の電子輸送層184A、中間層191A、第2の正孔輸送層182B、第2の発光層183B、及び第2の電子輸送層184Bに加わるダメージを低減することができる。
 本実施の形態の表示装置の作製方法における各種犠牲層の加工工程において、発光デバイスを構成する各種機能層(正孔注入層、正孔輸送層、発光層、活性層、及び、電子輸送層など)が加工されにくいこと、且つ、機能層の加工工程において、各種犠牲層が加工されにくいことが望ましい。犠牲層の材料、加工方法、及び、機能層の加工方法については、これらを考慮して選択することが望ましい。
 犠牲層としては、例えば、金属膜、合金膜、金属酸化物膜、半導体膜、無機絶縁膜などの無機膜を用いることができる。
 犠牲層には、例えば金、銀、白金、マグネシウム、ニッケル、タングステン、クロム、モリブデン、鉄、コバルト、銅、パラジウム、チタン、アルミニウム、イットリウム、ジルコニウム、及びタンタルなどの金属材料、または該金属材料を含む合金材料を用いることができる。
 また、犠牲層には、In−Ga−Zn酸化物などの金属酸化物を用いることができる。犠牲層として、例えば、スパッタリング法を用いて、In−Ga−Zn酸化物膜を形成することができる。さらに、酸化インジウム、In−Zn酸化物、In−Sn酸化物、インジウムチタン酸化物(In−Ti酸化物)、インジウムスズ亜鉛酸化物(In−Sn−Zn酸化物)、インジウムチタン亜鉛酸化物(In−Ti−Zn酸化物)、インジウムガリウムスズ亜鉛酸化物(In−Ga−Sn−Zn酸化物)などを用いることができる。またはシリコンを含むインジウムスズ酸化物などを用いることもできる。
 なお、上記ガリウムに代えて元素M(Mは、アルミニウム、シリコン、ホウ素、イットリウム、銅、バナジウム、ベリリウム、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムから選ばれた一種または複数種)を用いてもよい。
 また、犠牲層としては、保護層131に用いることができる各種無機絶縁膜を用いることができる。特に、酸化絶縁膜は、窒化絶縁膜に比べてEL層との密着性が高く好ましい。例えば、犠牲層には、酸化アルミニウム、酸化ハフニウム、酸化シリコンなどの無機絶縁材料を用いることができる。犠牲層として、例えば、ALD法を用いて、酸化アルミニウム膜を形成することができる。ALD法を用いることで、下地(特にEL層など)へのダメージを低減できるため好ましい。
 例えば、犠牲層として、スパッタリング法を用いて形成したIn−Ga−Zn酸化物膜と、In−Ga−Zn酸化物膜上にALD法を用いて形成した酸化アルミニウム膜と、の積層構造を適用することができる。また、犠牲層として、ALD法を用いて形成した酸化アルミニウム膜と、酸化アルミニウム膜上にスパッタリング法を用いて形成したIn−Ga−Zn酸化物膜と、の積層構造を適用することができる。また、犠牲層として、ALD法を用いて形成した酸化アルミニウム膜の単層構造を適用することができる。
 次に、図10Cに示すように、第2の犠牲層119A上にレジストマスク190を形成する。レジストマスクは、感光性の樹脂(フォトレジスト)を塗布し、露光及び現像を行うことで形成することができる。レジストマスク190は、画素電極111a、111b、111cと重なる位置に設ける。レジストマスク190は導電層123とは重ならないことが好ましい。
 そして、図10Dに示すように、レジストマスク190を用いて、第2の犠牲層119Aの一部を除去する。これにより、第2の犠牲層119Aの、レジストマスク190と重なっていない領域を除去することができる。したがって、画素電極111a、111b、111cと重なる位置に、第2の犠牲層119が残存する。その後、レジストマスク190を除去する。
 次に、図11Aに示すように、第2の犠牲層119を用いて、第1の犠牲層118Aの一部を除去する。これにより、第1の犠牲層118Aの、第2の犠牲層119と重なっていない領域を除去することができる。したがって、画素電極111a、111b、111cと重なる位置に、第1の犠牲層118と第2の犠牲層119との積層構造が残存する。
 次に、図11Bに示すように、第1の犠牲層118及び第2の犠牲層119を用いて、第1の正孔注入層181Aの一部、第1の正孔輸送層182Aの一部、第1の発光層183Aの一部、第1の電子輸送層184Aの一部、中間層191Aの一部、第2の正孔輸送層182Bの一部、第2の発光層183Bの一部、及び第2の電子輸送層184Bの一部を除去する。これにより、第1の正孔注入層181A、第1の正孔輸送層182A、第1の発光層183A、第1の電子輸送層184A、中間層191A、第2の正孔輸送層182B、第2の発光層183B、及び第2の電子輸送層184Bの、第1の犠牲層118及び第2の犠牲層119と重なっていない領域を除去することができる。したがって、導電層123が露出する。そして、画素電極111a、111b、111c上に、第1の正孔注入層181a、第1の正孔輸送層182a、第1の発光層183a、第1の電子輸送層184a、中間層191、第2の正孔輸送層182b、第2の発光層183b、第2の電子輸送層184b、第1の犠牲層118、及び、第2の犠牲層119の積層構造が残存する。
 なお、第1の正孔注入層181a、第1の正孔輸送層182a、第1の発光層183a、及び、第1の電子輸送層184aの積層構造を第1の発光ユニット192と呼ぶ場合がある。また、第2の正孔輸送層182b、第2の発光層183b、及び、第2の電子輸送層184bの積層構造を第2の発光ユニット194と呼ぶ場合がある。また、第1の発光ユニット192、中間層191、及び第2の発光ユニット194の積層構造を第1の層113と呼ぶ場合がある。
 第1の犠牲層118A及び第2の犠牲層119Aは、それぞれ、ウェットエッチング法またはドライエッチング法により加工することができる。第1の犠牲層118A及び第2の犠牲層119Aの加工は、異方性エッチングにより行うことが好ましい。
 ウェットエッチング法を用いることで、ドライエッチング法を用いる場合に比べて、犠牲層の加工時に、第1の正孔注入層181A、第1の正孔輸送層182A、第1の発光層183A、第1の電子輸送層184A、中間層191A、第2の正孔輸送層182B、第2の発光層183B、及び第2の電子輸送層184Bに加わるダメージを低減することができる。ウェットエッチング法を用いる場合、例えば、現像液、水酸化テトラメチルアンモニウム(TMAH)水溶液、希フッ酸、シュウ酸、リン酸、酢酸、硝酸、またはこれらの混合液体を用いた薬液などを用いることが好ましい。
 また、ドライエッチング法を用いる場合は、エッチングガスに酸素を含むガスを用いないことで、第1の正孔注入層181A、第1の正孔輸送層182A、第1の発光層183A、第1の電子輸送層184A、中間層191A、第2の正孔輸送層182B、第2の発光層183B、及び第2の電子輸送層184Bの劣化を抑制することができる。ドライエッチング法を用いる場合、例えば、CF、C、SF、CHF、Cl、HO、BCl、またはHeなどの貴ガス(希ガスともいう)を含むガスをエッチングガスに用いることが好ましい。
 犠牲層を積層構造とすることで、レジストマスク190を用いて一部の層を加工し、レジストマスク190を除去した後、当該一部の層をハードマスクに用いて、残りの層を加工することができる。
 例えば、レジストマスク190を用いて第2の犠牲層119Aを加工した後、酸素プラズマを用いたアッシングなどによりレジストマスク190を除去する。このとき、第1の犠牲層118Aが最表面に位置し、第1の正孔注入層181A、第1の正孔輸送層182A、第1の発光層183A、第1の電子輸送層184A、中間層191A、第2の正孔輸送層182B、第2の発光層183B、及び第2の電子輸送層184Bは露出していない。このため、レジストマスク190の除去工程において、第1の正孔注入層181A、第1の正孔輸送層182A、第1の発光層183A、第1の電子輸送層184A、中間層191A、第2の正孔輸送層182B、第2の発光層183B、及び第2の電子輸送層184Bにダメージが入ることを抑制することができる。そして、第2の犠牲層119をハードマスクに用いて、第1の犠牲層118Aを加工することができ、第1の犠牲層118と第2の犠牲層119とをハードマスクに用いて、第1の正孔注入層181A、第1の正孔輸送層182A、第1の発光層183A、第1の電子輸送層184A、中間層191A、第2の正孔輸送層182B、第2の発光層183B、及び第2の電子輸送層184Bを加工することができる。
 第1の正孔注入層181A、第1の正孔輸送層182A、第1の発光層183A、第1の電子輸送層184A、中間層191A、第2の正孔輸送層182B、第2の発光層183B、及び第2の電子輸送層184Bの加工は、異方性エッチングにより行うことが好ましい。特に、異方性のドライエッチングが好ましい。エッチングガスとしては、窒素を含むガス、水素を含むガス、貴ガスを含むガス、窒素及びアルゴンを含むガス、または、窒素及び水素を含むガスなどを用いることが好ましい。エッチングガスに酸素を含むガスを用いないことで、第1の正孔注入層181A、第1の正孔輸送層182A、第1の発光層183A、第1の電子輸送層184A、中間層191A、第2の正孔輸送層182B、第2の発光層183B、及び第2の電子輸送層184Bの劣化を抑制することができる。
 ここで、上記エッチング処理により、絶縁体121の上部のレジストマスク190と重畳しない部分の一部が除去される場合がある。この場合、図7Aで示すように、絶縁体121は、上部に第1の凹部が形成される。当該第1の凹部は、第1の層113と重畳しない領域に形成される。
 次に、図11Cに示すように、第1の層113、第1の犠牲層118、及び、第2の犠牲層119を覆って、絶縁膜124Aを成膜する。さらに、絶縁膜124A上に絶縁膜124Bを成膜する。絶縁膜124Aおよび絶縁膜124Bは、絶縁体124aおよび絶縁体124として用いることができる材料を用いればよい。
 絶縁膜124Aおよび絶縁膜124Bの成膜方法としては、真空蒸着法、スパッタリング法、CVD法、及び、ALD法などが挙げられる。絶縁膜124Aは、第1の層113へのダメージが少ない方法で成膜されることが好ましい。また、絶縁膜124A、及び絶縁膜124Bは、第1の層113の耐熱温度よりも低い温度で形成する。例えば、絶縁膜124Aとして、ALD法を用いて酸化アルミニウム膜を形成することができる。ALD法を用いることで、被覆性の高い膜を成膜可能なため好ましい。また、例えば、絶縁膜124Bとして、PECVD法、又はスパッタリング法を用いて酸化窒化シリコン膜または窒化シリコン膜を形成することができる。
 次に、図12Aに示すように、絶縁膜124Bをエッチングすることで、絶縁体124bを形成する。絶縁膜124Bの加工は、異方性エッチングにより行うことが好ましい。特に、異方性のドライエッチングが好ましい。例えば、CF、C、SF、CHF、Cl、HO、BCl、またはHeなどの貴ガスを含むガスをエッチングガスに用いることができる。
 次に、図12Bに示すように、絶縁体124bをハードマスクとして、絶縁膜124Aをエッチングして、絶縁体124aを形成する。絶縁膜124Aの加工は、ウェットエッチング法を用いて行うことが好ましい。ウェットエッチング法を用いることで、ドライエッチング法を用いる場合に比べて、絶縁体124aの加工時に、第2の犠牲層119などに加わるダメージを低減することができる。ウェットエッチング法を用いる場合、例えば、現像液、水酸化テトラメチルアンモニウム水溶液(TMAH)、希フッ酸、シュウ酸、リン酸、酢酸、硝酸、またはこれらの混合液体を用いた薬液などを用いることが好ましい。
 このようにして、絶縁体124a上に絶縁体124bが積層された絶縁体124を形成することができる。絶縁体124は、側面が第1の層113に接しており、下面が絶縁体121に接している。これにより、後に形成する第2の層114又は共通電極115と、画素電極111の側面、または第1の層113の側面とが接して、発光デバイス130がショートすることを抑制できる。また、後の工程において、第1の層113が受けるダメージを抑制できる。
 ここで、上記エッチング処理により、絶縁体121の上部の絶縁体124と重畳しない部分の一部が除去される場合がある。この場合、図7Aで示すように、絶縁体121は、上部に第2の凹部が形成される。第2の凹部は、第1の凹部の中の絶縁体124と重畳しない領域に形成される。
 次に、図12Cに示すように、第2の犠牲層119を除去する。さらに、図13Aに示すように、第1の犠牲層118を除去する。これにより、画素電極111上では第2の電子輸送層184bが露出し、接続部140では、導電層123が露出する。
 犠牲層の除去工程には、犠牲層の加工工程と同様の方法を用いることができる。特に、ウェットエッチング法を用いることで、ドライエッチング法を用いる場合に比べて、犠牲層を除去する際に、第1の層113、導電層123、および絶縁体124に加わるダメージを低減することができる。
 次に、図13Bに示すように、第1の層113、導電層123、絶縁体124、及び、絶縁体121を覆うように、第2の層114を形成し、第2の層114、絶縁体121、及び、導電層123上に共通電極115を形成する。
 第2の層114として用いることができる材料は上述の通りである。第2の層114を構成する層は、それぞれ、蒸着法(真空蒸着法を含む)、転写法、印刷法、インクジェット法、塗布法等の方法で形成することができる。また、第2の層114を構成する層は、プレミックス材料を用いて形成されてもよい。なお、第2の層114は不要であれば設けなくてもよい。
 共通電極115として用いることができる材料は上述の通りである。共通電極115の形成には、例えば、スパッタリング法または真空蒸着法を用いることができる。
 そして、図13Bに示すように、共通電極115上に、保護層131を形成する。
 保護層131に用いることができる材料は上述の通りである。保護層131の成膜方法としては、真空蒸着法、スパッタリング法、CVD法、及び、ALD法などが挙げられる。保護層131は、単層構造であってもよく、積層構造であってもよい。例えば、保護層131は、互いに異なる成膜方法を用いて形成された2層の積層構造であってもよい。
 続いて、保護層131上に、着色層125a、125b、125cを、画素電極111a、111b、111cと重なる領域を有するように形成する。着色層125a、着色層125b、及び着色層125cは、インクジェット法、フォトリソグラフィ法を用いたエッチング方法などでそれぞれ所望の位置に形成することができる。具体的には、画素ごとに異なる着色層125(着色層125a、着色層125b、又は着色層125c)を形成することができる。
 そして、保護層131上に、樹脂層122を用いて、基板120を貼り合わせることで、図1Bに示す表示装置100を作製することができる。
 以上のように、本実施の形態の表示装置の作製方法では、島状のEL層は、メタルマスクのパターンによって形成されるのではなく、EL層を一面に成膜した後に加工することで形成されるため、島状のEL層を均一の厚さで形成することができる。また、これまで実現が困難であった高精細な表示装置または高開口率の表示装置を実現することができる。
 本発明の一態様の表示装置は、タンデム構造の発光デバイスを有する。そして、発光デバイスが有する画素電極、発光層、キャリア輸送層、キャリア注入層、及び中間層のそれぞれの側面は、側壁状の絶縁体、および土手状の絶縁体によって覆われる。このような構成にすることにより、共通電極などと、画素電極、発光層、キャリア輸送層、キャリア注入層、及び中間層のそれぞれの側面と、が接することが抑制されるので、発光デバイスのショートを抑制することができる。
 本実施の形態は、他の実施の形態と適宜組み合わせることができる。また、本明細書において、1つの実施の形態の中に、複数の構成例が示される場合は、構成例を適宜組み合わせることが可能である。
(実施の形態2)
 本実施の形態では、本発明の一態様の表示装置について図14乃至図16を用いて説明する。
 本実施の形態の表示装置は、高解像度な表示装置または大型な表示装置とすることができる。したがって、本実施の形態の表示装置は、例えば、テレビジョン装置、デスクトップ型もしくはノート型のパーソナルコンピュータ、コンピュータ用などのモニタ、デジタルサイネージ、パチンコ機などの大型ゲーム機などの比較的大きな画面を備える電子機器の他、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、携帯電話機、携帯型ゲーム機、携帯情報端末、音響再生装置の表示部に用いることができる。
[表示装置100A]
 図14に、表示装置100Aの斜視図を示し、図15Aに、表示装置100Aの断面図を示す。
 表示装置100Aは、基板152と基板151とが貼り合わされた構成を有する。図14では、基板152を破線で明示している。
 表示装置100Aは、表示部162、回路164、配線165等を有する。図14では表示装置100AにIC173及びFPC172が実装されている例を示している。そのため、図14に示す構成は、表示装置100A、IC(集積回路)、及びFPCを有する表示モジュールということもできる。
 回路164としては、例えば走査線駆動回路を用いることができる。
 配線165は、表示部162及び回路164に信号及び電力を供給する機能を有する。当該信号及び電力は、外部からFPC172を介して配線165に入力されるか、またはIC173から配線165に入力される。
 図14では、COG(Chip On Glass)方式またはCOF(Chip On Film)方式等により、基板151にIC173が設けられている例を示す。IC173は、例えば走査線駆動回路または信号線駆動回路などを有するICを適用できる。なお、表示装置100A及び表示モジュールは、ICを設けない構成としてもよい。また、ICを、COF方式等により、FPCに実装してもよい。
 図15Aに、表示装置100Aの、FPC172を含む領域の一部、回路164の一部、表示部162の一部、及び、端部を含む領域の一部をそれぞれ切断したときの断面の一例を示す。
 図15Aに示す表示装置100Aは、基板151と基板152の間に、トランジスタ201、トランジスタ205、発光デバイス130a、発光デバイス130b、着色層125a、及び着色層125b等を有する。発光デバイス130a、及び発光デバイス130bは、白色の光を発する。着色層125aと着色層125bは、互いに異なる色の光を透過する機能を有する。図15Aでは、2種類の着色層を示したが、表示装置100Aにおいて、着色層の種類はさらに多く設けられる。
 ここで、表示装置の画素が、互いに異なる色の光を透過する着色層125を有する副画素を3種類有する場合、当該3つの副画素としては、R、G、Bの3色の副画素、黄色(Y)、シアン(C)、及びマゼンタ(M)の3色の副画素などが挙げられる。当該副画素を4つ有する場合、当該4つの副画素としては、R、G、B、白色(W)の4色の副画素、R、G、B、Yの4色の副画素などが挙げられる。
 保護層131と基板152は接着層142を介して接着されている。発光デバイスの封止には、固体封止構造または中空封止構造などが適用できる。図15Aでは、基板152と基板151との間の空間が、接着層142で充填されており、固体封止構造が適用されている。または、当該空間を不活性ガス(窒素またはアルゴンなど)で充填し、中空封止構造を適用してもよい。このとき、接着層142は、発光デバイスと重ならないように設けられていてもよい。また、当該空間を、枠状に設けられた接着層142とは異なる樹脂で充填してもよい。
 発光デバイス130aは、図1Bに示す発光デバイス130aと同様の積層構造を有し、発光デバイス130bは、図1Bに示す発光デバイス130bと同様の積層構造を有する。発光デバイスの詳細は実施の形態1を参照できる。また、発光デバイス130aの側面、および発光デバイス130bの側面に接して絶縁体124が形成されている。また、発光デバイス130a、130b、絶縁体124、および絶縁体121を覆って、保護層131が形成されている。
 画素電極111aは、絶縁層214に設けられた開口を介して、トランジスタ205が有する導電層222bと接続されている。画素電極111bも同様に、絶縁層214に設けられた開口を介して、トランジスタ205が有するソース電極およびドレイン電極の一方に電気に接続されている。
 画素電極111a、111bの端部を含む領域は、絶縁体121によって覆われている。画素電極111a、111bは可視光を反射する材料を含み、共通電極115は可視光を透過する材料を含む。
 発光デバイスが発する光は、基板152側に射出される。したがって、基板152には、可視光に対する透過性が高い材料を用いることが好ましい。
 基板151から絶縁層214までの積層構造が、実施の形態1におけるトランジスタを含む層101に相当する。
 トランジスタ201、及びトランジスタ205は、いずれも基板151上に形成されている。これらのトランジスタは、同一の材料及び同一の工程により作製することができる。
 基板151上には、絶縁層211、絶縁層213、絶縁層215、及び絶縁層214がこの順で設けられている。絶縁層211は、その一部が各トランジスタのゲート絶縁層として機能する。絶縁層213は、その一部が各トランジスタのゲート絶縁層として機能する。絶縁層215は、トランジスタを覆って設けられる。絶縁層214は、トランジスタを覆って設けられ、平坦化層としての機能を有する。なお、ゲート絶縁層の数及びトランジスタを覆う絶縁層の数は限定されず、それぞれ単層であっても2層以上であってもよい。
 トランジスタを覆う絶縁層の少なくとも一層に、水及び水素などの不純物が拡散しにくい材料を用いることが好ましい。これにより、絶縁層をバリア絶縁膜として機能させることができる。このような構成とすることで、トランジスタに外部から不純物が拡散することを効果的に抑制でき、表示装置の信頼性を高めることができる。
 絶縁層211、絶縁層213、及び絶縁層215としては、それぞれ、無機絶縁膜を用いることが好ましい。無機絶縁膜としては、例えば、窒化シリコン膜、酸化窒化シリコン膜、酸化シリコン膜、窒化酸化シリコン膜、酸化アルミニウム膜、窒化アルミニウム膜などを用いることができる。また、酸化ハフニウム膜、酸化イットリウム膜、酸化ジルコニウム膜、酸化ガリウム膜、酸化タンタル膜、酸化マグネシウム膜、酸化ランタン膜、酸化セリウム膜、及び酸化ネオジム膜等を用いてもよい。また、上述の絶縁膜を2以上積層して用いてもよい。
 平坦化層として機能する絶縁層214には、有機絶縁膜が好適である。有機絶縁膜に用いることができる材料としては、アクリル樹脂、ポリイミド樹脂、エポキシ樹脂、ポリアミド樹脂、ポリイミドアミド樹脂、シロキサン樹脂、ベンゾシクロブテン系樹脂、フェノール樹脂、及びこれら樹脂の前駆体等が挙げられる。
 ここで、有機絶縁膜は、無機絶縁膜に比べてバリア性が低いことが多い。そのため、有機絶縁膜は、表示装置100Aの端部近傍に開口を有することが好ましい。これにより、表示装置100Aの端部から有機絶縁膜を介して不純物が入り込むことを抑制することができる。または、有機絶縁膜の端部が表示装置100Aの端部よりも内側にくるように有機絶縁膜を形成し、表示装置100Aの端部に有機絶縁膜が露出しないようにしてもよい。
 図15Aに示す領域228では、絶縁層214に開口が形成されている。これにより、絶縁層214に有機絶縁膜を用いる場合であっても、絶縁層214を介して外部から表示部162に不純物が入り込むことを抑制できる。従って、表示装置100Aの信頼性を高めることができる。
 トランジスタ201、及びトランジスタ205は、ゲートとして機能する導電層221、ゲート絶縁層として機能する絶縁層211、ソース及びドレインとして機能する導電層222a及び導電層222b、半導体層231、ゲート絶縁層として機能する絶縁層213、並びに、ゲートとして機能する導電層223を有する。ここでは、同一の導電膜を加工して得られる複数の層に、同じハッチングパターンを付している。絶縁層211は、導電層221と半導体層231との間に位置する。絶縁層213は、導電層223と半導体層231との間に位置する。
 本実施の形態の表示装置が有するトランジスタの構造は特に限定されない。例えば、プレーナ型のトランジスタ、スタガ型のトランジスタ、逆スタガ型のトランジスタ等を用いることができる。また、トップゲート型またはボトムゲート型のいずれのトランジスタ構造としてもよい。または、チャネルが形成される半導体層の上下にゲートが設けられていてもよい。
 トランジスタ201、及びトランジスタ205には、チャネルが形成される半導体層を2つのゲートで挟持する構成が適用されている。2つのゲートを接続し、これらに同一の信号を供給することによりトランジスタを駆動してもよい。または、2つのゲートのうち、一方に閾値電圧を制御するための電位を与え、他方に駆動のための電位を与えることで、トランジスタの閾値電圧を制御してもよい。
 トランジスタに用いる半導体材料の結晶性についても特に限定されず、非晶質半導体、結晶性を有する半導体(微結晶半導体、多結晶半導体、単結晶半導体、または一部に結晶領域を有する半導体)のいずれを用いてもよい。結晶性を有する半導体を用いると、トランジスタ特性の劣化を抑制できるため好ましい。
 トランジスタの半導体層は、金属酸化物(酸化物半導体ともいう)を有することが好ましい。つまり、本実施の形態の表示装置は、金属酸化物をチャネル形成領域に用いたトランジスタ(以下、OSトランジスタ)を用いることが好ましい。または、トランジスタの半導体層は、シリコンを有していてもよい。シリコンとしては、アモルファスシリコン、結晶性のシリコン(低温ポリシリコン、単結晶シリコンなど)などが挙げられる。
 半導体層は、例えば、インジウムと、M(Mは、ガリウム、アルミニウム、シリコン、ホウ素、イットリウム、スズ、銅、バナジウム、ベリリウム、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、及びマグネシウムから選ばれた一種または複数種)と、亜鉛と、を有することが好ましい。特に、Mは、アルミニウム、ガリウム、イットリウム、及びスズから選ばれた一種または複数種であることが好ましい。
 特に、半導体層として、インジウム(In)、ガリウム(Ga)、及び亜鉛(Zn)を含む酸化物(IGZOとも記す)を用いることが好ましい。
 半導体層がIn−M−Zn酸化物の場合、当該In−M−Zn酸化物におけるInの原子数比はMの原子数比以上であることが好ましい。このようなIn−M−Zn酸化物の金属元素の原子数比として、In:M:Zn=1:1:1またはその近傍の組成、In:M:Zn=1:1:1.2またはその近傍の組成、In:M:Zn=2:1:3またはその近傍の組成、In:M:Zn=3:1:2またはその近傍の組成、In:M:Zn=4:2:3またはその近傍の組成、In:M:Zn=4:2:4.1またはその近傍の組成、In:M:Zn=5:1:3またはその近傍の組成、In:M:Zn=5:1:6またはその近傍の組成、In:M:Zn=5:1:7またはその近傍の組成、In:M:Zn=5:1:8またはその近傍の組成、In:M:Zn=6:1:6またはその近傍の組成、In:M:Zn=5:2:5またはその近傍の組成、等が挙げられる。なお、近傍の組成とは、所望の原子数比の±30%の範囲を含む。
 例えば、原子数比がIn:Ga:Zn=4:2:3またはその近傍の組成と記載する場合、Inの原子数比を4としたとき、Gaの原子数比が1以上3以下であり、Znの原子数比が2以上4以下である場合を含む。また、原子数比がIn:Ga:Zn=5:1:6またはその近傍の組成と記載する場合、Inの原子数比を5としたときに、Gaの原子数比が0.1より大きく2以下であり、Znの原子数比が5以上7以下である場合を含む。また、原子数比がIn:Ga:Zn=1.1:1またはその近傍の組成と記載する場合、Inの原子数比を1としたときに、Gaの原子数比が0.1より大きく2以下であり、Znの原子数比が0.1より大きく2以下である場合を含む。
 回路164が有するトランジスタと、表示部162が有するトランジスタは、同じ構造であってもよく、異なる構造であってもよい。回路164が有する複数のトランジスタの構造は、全て同じであってもよく、2種類以上あってもよい。同様に、表示部162が有する複数のトランジスタの構造は、全て同じであってもよく、2種類以上あってもよい。
 図15B及び図15Cに、トランジスタの他の構成例を示す。
 トランジスタ209及びトランジスタ210は、ゲートとして機能する導電層221、ゲート絶縁層として機能する絶縁層211、チャネル形成領域231i及び一対の低抵抗領域231nを有する半導体層231、一対の低抵抗領域231nの一方と接続する導電層222a、一対の低抵抗領域231nの他方と接続する導電層222b、ゲート絶縁層として機能する絶縁層225、ゲートとして機能する導電層223、並びに、導電層223を覆う絶縁層215を有する。絶縁層211は、導電層221とチャネル形成領域231iとの間に位置する。絶縁層225は、少なくとも導電層223とチャネル形成領域231iとの間に位置する。さらに、トランジスタを覆う絶縁層218を設けてもよい。
 図15Bに示すトランジスタ209では、絶縁層225が半導体層231の上面及び側面を覆う例を示す。導電層222a及び導電層222bは、それぞれ、絶縁層225及び絶縁層215に設けられた開口を介して低抵抗領域231nと接続される。導電層222a及び導電層222bのうち、一方はソースとして機能し、他方はドレインとして機能する。
 一方、図15Cに示すトランジスタ210では、絶縁層225は、半導体層231のチャネル形成領域231iと重なり、低抵抗領域231nとは重ならない。例えば、導電層223をマスクとして絶縁層225を加工することで、図15Cに示す構造を作製できる。図15Cでは、絶縁層225及び導電層223を覆って絶縁層215が設けられ、絶縁層215の開口を介して、導電層222a及び導電層222bがそれぞれ低抵抗領域231nと接続されている。
 基板151の、基板152が重ならない領域には、接続部204が設けられている。接続部204では、配線165が導電層166及び接続層242を介してFPC172と電気的に接続されている。導電層166は、画素電極と同一の導電膜を加工して得られた導電膜である。接続部204の上面では、導電層166が露出している。これにより、接続部204とFPC172とを接続層242を介して電気的に接続することができる。
 基板152の基板151側の面には、遮光層148を設けることが好ましい。また、基板152の基板151側の面に、着色層125a、125bを設けてもよい。図15Aでは、基板152を基準としてみたときに、着色層125a、125bが遮光層148の一部を覆うように設けられている。
 また、基板152の外側には各種光学部材を配置することができる。光学部材としては、偏光板、位相差板、光拡散層(拡散フィルムなど)、反射防止層、及び集光フィルム等が挙げられる。また、基板152の外側には、ゴミの付着を抑制する帯電防止膜、汚れを付着しにくくする撥水性の膜、使用に伴う傷の発生を抑制するハードコート膜、衝撃吸収層等を配置してもよい。
 発光デバイスを覆う保護層131を設けることで、発光デバイスに水などの不純物が入り込むことを抑制し、発光デバイスの信頼性を高めることができる。
 表示装置100Aの端部近傍の領域228において、絶縁層214の開口を介して、絶縁層215と保護層131とが互いに接することが好ましい。特に、無機絶縁膜同士が接することが好ましい。これにより、有機絶縁膜を介して外部から表示部162に不純物が入り込むことを抑制することができる。従って、表示装置100Aの信頼性を高めることができる。
 基板151及び基板152には、それぞれ、ガラス、石英、セラミック、サファイア、樹脂、金属、合金、半導体などを用いることができる。発光デバイスからの光を取り出す側の基板には、該光を透過する材料を用いる。基板151及び基板152に可撓性を有する材料を用いると、表示装置の可撓性を高め、フレキシブルディスプレイを実現することができる。また、基板151または基板152として偏光板を用いてもよい。
 基板151及び基板152としては、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル樹脂、ポリアクリロニトリル樹脂、アクリル樹脂、ポリイミド樹脂、ポリメチルメタクリレート樹脂、ポリカーボネート(PC)樹脂、ポリエーテルスルホン(PES)樹脂、ポリアミド樹脂(ナイロン、アラミド等)、ポリシロキサン樹脂、シクロオレフィン樹脂、ポリスチレン樹脂、ポリアミドイミド樹脂、ポリウレタン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリプロピレン樹脂、ポリテトラフルオロエチレン(PTFE)樹脂、ABS樹脂、セルロースナノファイバー等を用いることができる。基板151及び基板152の一方または双方に、可撓性を有する程度の厚さのガラスを用いてもよい。
 なお、表示装置に円偏光板を重ねる場合、表示装置が有する基板には、光学等方性の高い基板を用いることが好ましい。光学等方性が高い基板は、複屈折が小さい(複屈折量が小さい、ともいえる)。
 光学等方性が高い基板のリタデーション(位相差)値の絶対値は、30nm以下が好ましく、20nm以下がより好ましく、10nm以下がさらに好ましい。
 光学等方性が高いフィルムとしては、トリアセチルセルロース(TAC、セルローストリアセテートともいう)フィルム、シクロオレフィンポリマー(COP)フィルム、シクロオレフィンコポリマー(COC)フィルム、及びアクリルフィルム等が挙げられる。
 また、基板としてフィルムを用いる場合、フィルムが吸水することで、表示パネルにしわが発生するなどの形状変化が生じる恐れがある。そのため、基板には、吸水率の低いフィルムを用いることが好ましい。例えば、吸水率が1%以下のフィルムを用いることが好ましく、0.1%以下のフィルムを用いることがより好ましく、0.01%以下のフィルムを用いることがさらに好ましい。
 接着層142としては、紫外線硬化型等の光硬化型接着剤、反応硬化型接着剤、熱硬化型接着剤、嫌気型接着剤などの各種硬化型接着剤を用いることができる。これら接着剤としてはエポキシ樹脂、アクリル樹脂、シリコーン樹脂、フェノール樹脂、ポリイミド樹脂、イミド樹脂、PVC(ポリビニルクロライド)樹脂、PVB(ポリビニルブチラル)樹脂、EVA(エチレンビニルアセテート)樹脂等が挙げられる。特に、エポキシ樹脂等の透湿性が低い材料が好ましい。また、二液混合型の樹脂を用いてもよい。また、接着シート等を用いてもよい。
 接続層242としては、異方性導電フィルム(ACF:Anisotropic Conductive Film)、異方性導電ペースト(ACP:Anisotropic Conductive Paste)などを用いることができる。
 トランジスタのゲート、ソース及びドレインのほか、表示装置を構成する各種配線及び電極などの導電層に用いることのできる材料としては、アルミニウム、チタン、クロム、ニッケル、銅、イットリウム、ジルコニウム、モリブデン、銀、タンタル、及びタングステンなどの金属、並びに、当該金属を主成分とする合金などが挙げられる。これらの材料を含む膜を単層で、または積層構造として用いることができる。
 また、透光性を有する導電材料としては、酸化インジウム、インジウム錫酸化物、インジウム亜鉛酸化物、酸化亜鉛、ガリウムを含む酸化亜鉛などの導電性酸化物またはグラフェンを用いることができる。または、金、銀、白金、マグネシウム、ニッケル、タングステン、クロム、モリブデン、鉄、コバルト、銅、パラジウム、及びチタンなどの金属材料、または、該金属材料を含む合金材料を用いることができる。または、該金属材料の窒化物(例えば、窒化チタン)などを用いてもよい。なお、金属材料、または、合金材料(またはそれらの窒化物)を用いる場合には、透光性を有する程度に薄くすることが好ましい。また、上記材料の積層膜を導電層として用いることができる。例えば、銀とマグネシウムの合金とインジウムスズ酸化物の積層膜などを用いると、導電性を高めることができるため好ましい。これらは、表示装置を構成する各種配線及び電極などの導電層、及び、発光デバイスが有する導電層(画素電極または共通電極として機能する導電層)にも用いることができる。
 各絶縁層に用いることのできる絶縁材料としては、例えば、アクリル樹脂、エポキシ樹脂などの樹脂、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化アルミニウムなどの無機絶縁材料が挙げられる。
 図15Aでは、基板152側に光が射出されるトップエミッション型の表示装置100Aの例について示したが、本発明はこれに限られるものではない。例えば、図16に示す表示装置100Bのように、基板151側に光が射出されるボトムエミッション型の表示装置にしてもよい。
 表示装置100Bは、着色層125a、125bが、絶縁層213と絶縁層214の間に設けられている点において、表示装置100Aと異なる。着色層125a、125bは、それぞれ、発光デバイス130a、130bと重なるように設けられている。
 また、表示装置100Bは、画素電極111a、111bが可視光を透過する材料を含み、共通電極115が可視光を反射する材料を含む点において、表示装置100Aと異なる。ここで、画素電極111a、111bと同一の導電膜を加工して得られる、導電層166も可視光を透過する材料を含む。
 また、表示装置100Bは、基板151に、可視光に対する透過性が高い材料が用いられる。
 以上のような構成にすることで、発光デバイス130a、130bの発光層から射出された光は、それぞれ、画素電極111a、111b、着色層125a、125bを透過して、基板151側から射出される。
 本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態3)
 本実施の形態では、本発明の一態様の表示装置を有する表示モジュールの構成例について説明する。
 図17Aは、表示モジュール480の斜視概略図である。表示モジュール480は、表示装置400と、FPC490とを有する。
 表示モジュール480は、基板401、基板402を有する。また基板402側に表示部481を有する。表示部481は、表示モジュール480における画像を表示する領域であり、後述する画素部484に設けられる各画素からの光を視認できる領域である。
 図17Bに、基板401側の構成を模式的に示した斜視図を示している。基板401は、回路部482と、回路部482上に画素回路部483と、画素回路部483上に画素部484と、が積層された構成を有する。また、基板401上の画素部484と重ならない部分に、FPC490と接続するための端子部485を有する。また端子部485と回路部482とは、複数の配線により構成される配線部486により電気的に接続されている。
 画素部484は、周期的に配列した複数の画素484aを有する。図17Bの右側に、1つの画素484aの拡大図を示している。画素484aは、副画素110a、副画素110b、及び副画素110cを有する。副画素110a、副画素110b、及び副画素110c並びにその周囲の構成に関しては、先の実施の形態を参酌することができる。
 画素回路部483は、周期的に配列した複数の画素回路483aを有する。複数の画素484aおよび複数の画素回路483aは、図17Bに示す、ストライプ配列で配置してもよい。なお、ストライプ配列に限らず、複数の画素484aおよび複数の画素回路483aをデルタ配列などで配置してもよい。
 1つの画素回路483aは、1つの画素484aが有する3つの発光素子の発光を制御する回路である。1つの画素回路483aは、1つの発光素子の発光を制御する回路が3つ設けられる構成としてもよい。例えば、画素回路483aは、1つの発光素子につき、1つの選択トランジスタと、1つの電流制御用トランジスタ(駆動トランジスタ)と、容量素子と、を少なくとも有する構成とすることができる。このとき、選択トランジスタのゲートにはゲート信号が、ソースまたはドレインの一方にはソース信号が、それぞれ入力される。これにより、アクティブマトリクス型の表示装置が実現されている。
 回路部482は、画素回路部483の各画素回路483aを駆動する回路を有する。例えば、ゲート線駆動回路、ソース線駆動回路等を有することが好ましい。このほか、演算回路、メモリ回路、電源回路等を有していてもよい。
 FPC490は、外部から回路部482にビデオ信号または電源電位等を供給するための配線として機能する。また、FPC490上にICが実装されていてもよい。
 表示モジュール480は、画素部484の下側に画素回路部483または回路部482等が積層された構成とすることができるため、表示部481の開口率(有効表示面積比)を極めて高くすることができる。例えば表示部481の開口率は、40%以上100%未満、好ましくは50%以上95%以下、より好ましくは60%以上95%以下とすることができる。また、画素484aを極めて高密度に配置することが可能で、表示部481の精細度を極めて高くすることができる。例えば、表示部481には、2000ppi以上、好ましくは3000ppi以上、より好ましくは5000ppi以上、さらに好ましくは6000ppi以上であって、20000ppi以下、または30000ppi以下の精細度で、画素484aが配置されることが好ましい。
 このような表示モジュール480は、極めて高精細であることから、ヘッドマウントディスプレイなどのVR向け機器、またはメガネ型のAR向け機器に好適に用いることができる。例えば、レンズを通して表示モジュール480の表示部を視認する構成の場合であっても、表示モジュール480は極めて高精細な表示部481を有するためにレンズで表示部を拡大しても画素が視認されず、没入感の高い表示を行うことができる。また、表示モジュール480はこれに限られず、比較的小型の表示部を有する電子機器に好適に用いることができる。例えば腕時計などの装着型の電子機器の表示部に好適に用いることができる。
 以下では、上記の表示装置400に用いることが可能な各表示装置(表示装置400A乃至表示装置400C)の構造について説明する。
〔構成例1〕
 図18Aは、表示装置400Aの断面概略図である。
 表示装置400Aは、基板401、副画素110a、副画素110b、副画素110c、容量素子440、トランジスタ410等を有する。
 基板401から容量素子440までの積層構造が、実施の形態1におけるトランジスタを含む層101に相当する。
 トランジスタ410は、基板401にチャネル形成領域が形成されるトランジスタである。基板401としては、例えば単結晶シリコン基板などの半導体基板を用いることができる。トランジスタ410は、基板401の一部、導電層411、低抵抗領域412、絶縁層413、絶縁層414等を有する。導電層411は、ゲート電極として機能する。絶縁層413は、基板401と導電層411の間に位置し、ゲート絶縁層として機能する。低抵抗領域412は、基板401に不純物がドープされた領域であり、ソースまたはドレインの一方として機能する。絶縁層414は、導電層411の側面を覆って設けられる。
 また、基板401に埋め込まれるように、隣接する2つのトランジスタ410の間に素子分離層415が設けられている。
 また、トランジスタ410を覆って絶縁層461が設けられ、絶縁層461上に容量素子440が設けられている。
 容量素子440は、導電層441と、導電層442と、これらの間に位置する絶縁層443を有する。導電層441は容量素子440の一方の電極として機能し、導電層442は容量素子440の他方の電極として機能し、絶縁層443は容量素子440の誘電体として機能する。
 導電層441は絶縁層461上に設けられ、絶縁層461に埋め込まれたプラグ471によってトランジスタ410のソースまたはドレインの一方と電気的に接続されている。絶縁層443は導電層441を覆って設けられる。導電層442は、絶縁層443を介して導電層441と重なる領域に設けられている。
 容量素子440を覆って、絶縁層321が設けられ、絶縁層321上に副画素110a、副画素110b、副画素110c等が設けられている。副画素110a、副画素110b、及び副画素110cの画素電極は、絶縁層321及び絶縁層443に埋め込まれたプラグ331によって、導電層441に電気的に接続されている。ここでは、副画素110a、副画素110b、副画素110c等の構成として、図1Bで例示した構成を用いた例を示しているが、これに限られず、上記で例示した様々な構成を適用することができる。
 表示装置400Aでは、副画素110a、副画素110b、副画素110cの発光素子の共通電極115を覆うように、保護層131、絶縁層362、及び絶縁層363がこの順に設けられている。これら3つの絶縁層は、副画素110a、副画素110b、副画素110cの発光素子に水などの不純物が拡散することを防ぐ保護層として機能する。絶縁層363には酸化シリコン膜、窒化シリコン膜、酸化アルミニウム膜などの、透湿性の低い無機絶縁膜を用いることが好ましい。また、絶縁層362には、透光性の高い有機絶縁膜を用いることができる。絶縁層362に有機絶縁膜を用いることで、絶縁層362よりも下側の凹凸形状の影響を緩和し、絶縁層363の被形成面を滑らかな面とすることができる。これにより、絶縁層363にピンホールなどの欠陥が生じにくいため、保護層の透湿性をより高めることができる。なお、副画素110a、副画素110b、副画素110cの発光素子を覆う保護層の構成はこれに限られず、単層、または2層構造としてもよいし、4層以上の積層構造としてもよい。
 表示装置400Aは、視認側に基板402を有する。基板402と基板401とは、透光性を有する接着層364により貼り合されている。基板402としては、ガラス基板、石英基板、サファイア基板、プラスチック基板などの、透光性を有する基板を用いることができる。
 このような構成とすることで、極めて高精細で、表示品位の高い表示装置を実現できる。
〔構成例2〕
 図19は、表示装置400Bの断面概略図である。表示装置400Bは、トランジスタの構成が異なる点で、上記表示装置400Aと主に相違している。
 トランジスタ420は、チャネルが形成される半導体層に、金属酸化物(酸化物半導体ともいう)が適用されたトランジスタである。
 トランジスタ420は、半導体層421、絶縁層423、導電層424、一対の導電層425、絶縁層426、導電層427等を有する。
 トランジスタ420が設けられる基板401としては、上述した絶縁性基板または半導体基板を用いることができる。
 基板401上に、絶縁層432が設けられている。絶縁層432は、基板401から水または水素などの不純物がトランジスタ420に拡散すること、及び半導体層421から絶縁層432側に酸素が脱離することを防ぐバリア層として機能する。絶縁層432としては、例えば酸化アルミニウム膜、酸化ハフニウム膜、窒化シリコン膜などの、酸化シリコン膜よりも水素または酸素が拡散しにくい膜を用いることができる。
 絶縁層432上に導電層427が設けられ、導電層427を覆って絶縁層426が設けられている。導電層427は、トランジスタ420の第1のゲート電極として機能し、絶縁層426の一部は、第1のゲート絶縁層として機能する。絶縁層426の少なくとも半導体層421と接する部分には、酸化シリコン膜等の酸化物絶縁膜を用いることが好ましい。絶縁層426の上面は、平坦化されていることが好ましい。
 半導体層421は、絶縁層426上に設けられる。半導体層421は、半導体特性を有する金属酸化物(酸化物半導体ともいう)膜を有することが好ましい。半導体層421に好適に用いることのできる材料の詳細については後述する。
 一対の導電層425は、半導体層421上に接して設けられ、ソース電極及びドレイン電極として機能する。
 また、一対の導電層425の上面及び側面、ならびに半導体層421の側面等を覆って絶縁層428が設けられ、絶縁層428上に絶縁層461bが設けられている。絶縁層428は、半導体層421に絶縁層461b等から水または水素などの不純物が拡散すること、及び半導体層421から酸素が脱離することを防ぐバリア絶縁膜として機能する。絶縁層428としては、上記絶縁層432と同様の絶縁膜を用いることができる。
 絶縁層428及び絶縁層461bに、半導体層421に達する開口が設けられている。当該開口の内部において、絶縁層461b、絶縁層428、及び導電層425の側面、並びに半導体層421の上面に接する絶縁層423と、導電層424とが埋め込まれている。導電層424は、第2のゲート電極として機能し、絶縁層423は第2のゲート絶縁層として機能する。
 導電層424の上面、絶縁層423の上面、及び絶縁層461bの上面は、それぞれ高さが概略一致するように平坦化処理され、これらを覆って絶縁層429及び絶縁層461aが設けられている。
 絶縁層461a及び絶縁層461bは、層間絶縁層として機能する。また絶縁層429は、トランジスタ420に絶縁層461a等から水または水素などの不純物が拡散することを防ぐバリア絶縁膜として機能する。絶縁層429としては、上記絶縁層428及び絶縁層432と同様の絶縁膜を用いることができる。
 一対の導電層425の一方と電気的に接続するプラグ471は、絶縁層461a、絶縁層429、及び絶縁層461bに埋め込まれるように設けられている。ここで、プラグ471は、絶縁層461a、絶縁層461b、絶縁層429、及び絶縁層428のそれぞれの開口の側面、及び導電層425の上面の一部を覆う導電層471aと、導電層471aの上面に接する導電層471bとを有することが好ましい。このとき、導電層471aとして、水素及び酸素が拡散しにくい導電性材料を用いることが好ましい。
〔構成例3〕
 図20は、表示装置400Cの断面概略図である。表示装置400Cは、基板401にチャネルが形成されるトランジスタ410と、チャネルが形成される半導体層に金属酸化物を含むトランジスタ420とが積層された構成を有する。
 トランジスタ410を覆って絶縁層461が設けられ、絶縁層461上に導電層451が設けられている。また導電層451を覆って絶縁層462が設けられ、絶縁層462上に導電層452が設けられている。導電層451及び導電層452は、それぞれ配線として機能する。また、導電層452を覆って絶縁層463、絶縁層432が設けられ、絶縁層432上にトランジスタ420が設けられている。また、トランジスタ420を覆って絶縁層465が設けられ、絶縁層465上に容量素子440が設けられている。容量素子440とトランジスタ420とは、プラグ474により電気的に接続されている。
 トランジスタ420は、画素回路を構成するトランジスタとして用いることができる。また、トランジスタ410は、画素回路を構成するトランジスタ、または当該画素回路を駆動するための駆動回路(ゲート線駆動回路、ソース線駆動回路)を構成するトランジスタとして用いることができる。また、トランジスタ410及びトランジスタ420は、演算回路または記憶回路などの各種回路を構成するトランジスタとして用いることができる。
 このような構成とすることで、発光ユニットの直下に画素回路だけでなく駆動回路等を形成することができるため、表示領域の周辺に駆動回路を設ける場合に比べて、表示装置を小型化することが可能となる。
 以下では、表示装置に適用可能なトランジスタ等の構成要素について説明する。
〔トランジスタ〕
 トランジスタは、ゲート電極として機能する導電層と、半導体層と、ソース電極として機能する導電層と、ドレイン電極として機能する導電層と、ゲート絶縁層として機能する絶縁層と、を有する。
 なお、本発明の一態様の表示装置が有するトランジスタの構造は特に限定されない。例えば、プレーナ型のトランジスタとしてもよいし、スタガ型のトランジスタとしてもよいし、逆スタガ型のトランジスタとしてもよい。また、トップゲート型またはボトムゲート型のいずれのトランジスタ構造としてもよい。または、チャネルの上下にゲート電極が設けられていてもよい。
 トランジスタに用いる半導体材料の結晶性についても特に限定されず、非晶質半導体、結晶性を有する半導体(微結晶半導体、多結晶半導体、単結晶半導体、または一部に結晶領域を有する半導体)のいずれを用いてもよい。結晶性を有する半導体を用いると、トランジスタ特性の劣化を抑制できるため好ましい。
 以下では、特に金属酸化物膜をチャネルが形成される半導体層に用いるトランジスタ(OSトランジスタ)について説明する。
 トランジスタに用いる半導体材料としては、エネルギーギャップが2eV以上、好ましくは2.5eV以上、より好ましくは3eV以上である金属酸化物を用いることができる。代表的には、インジウムを含む金属酸化物などであり、例えば、後述するCAC−OSなどを用いることができる。
 シリコンよりもバンドギャップが広く、且つキャリア密度の小さい金属酸化物が用いられたトランジスタは、その低いオフ電流により、トランジスタと直列に接続された容量素子に蓄積した電荷を長期間に亘って保持することが可能である。
 半導体層は、例えばインジウム、亜鉛及びM(Mはアルミニウム、チタン、ガリウム、ゲルマニウム、イットリウム、ジルコニウム、ランタン、セリウム、スズ、ネオジムまたはハフニウム等の金属)を含むIn−M−Zn系酸化物で表記される膜とすることができる。
 半導体層を構成する金属酸化物がIn−M−Zn系酸化物の場合、In−M−Zn酸化物を成膜するために用いるスパッタリングターゲットの金属元素の原子数比は、In≧M、Zn≧Mを満たすことが好ましい。このようなスパッタリングターゲットの金属元素の原子数比として、In:M:Zn=1:1:1、In:M:Zn=1:1:1.2、In:M:Zn=3:1:2、In:M:Zn=4:2:3、In:M:Zn=4:2:4.1、In:M:Zn=5:1:6、In:M:Zn=5:1:7、In:M:Zn=5:1:8等が好ましい。なお、成膜される半導体層の原子数比はそれぞれ、上記のスパッタリングターゲットに含まれる金属元素の原子数比のプラスマイナス40%の変動を含む。
〔導電層〕
 トランジスタのゲート、ソース及びドレインのほか、表示装置を構成する各種配線及び電極などの導電層に用いることのできる材料としては、アルミニウム、チタン、クロム、ニッケル、銅、イットリウム、ジルコニウム、モリブデン、銀、タンタル、またはタングステンなどの金属、またはこれを主成分とする合金などが挙げられる。またこれらの材料を含む膜を単層で、または積層構造として用いることができる。例えば、シリコンを含むアルミニウム膜の単層構造、チタン膜上にアルミニウム膜を積層する二層構造、タングステン膜上にアルミニウム膜を積層する二層構造、銅−マグネシウム−アルミニウム合金膜上に銅膜を積層する二層構造、チタン膜上に銅膜を積層する二層構造、タングステン膜上に銅膜を積層する二層構造、チタン膜または窒化チタン膜と、その上に重ねてアルミニウム膜または銅膜を積層し、さらにその上にチタン膜または窒化チタン膜を形成する三層構造、モリブデン膜または窒化モリブデン膜と、その上に重ねてアルミニウム膜または銅膜を積層し、さらにその上にモリブデン膜または窒化モリブデン膜を形成する三層構造等がある。なお、酸化インジウム、酸化錫または酸化亜鉛等の酸化物を用いてもよい。また、マンガンを含む銅を用いると、エッチングによる形状の制御性が高まるため好ましい。
〔絶縁層〕
 各絶縁層に用いることのできる絶縁材料としては、例えば、アクリル樹脂、エポキシ樹脂などの樹脂、シリコーンなどのシロキサン結合を有する樹脂の他、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化アルミニウムなどの無機絶縁材料を用いることもできる。
 また、発光素子は、一対の透水性の低い絶縁膜(バリア絶縁膜)の間に設けられていることが好ましい。これにより、発光素子に水等の不純物が侵入することを抑制でき、装置の信頼性の低下を抑制できる。
 透水性の低い絶縁膜としては、窒化シリコン膜、窒化酸化シリコン膜等の窒素と珪素を含む膜、または窒化アルミニウム膜等の窒素とアルミニウムを含む膜等が挙げられる。また、酸化シリコン膜、酸化窒化シリコン膜、酸化アルミニウム膜等を用いてもよい。
 例えば、透水性の低い絶縁膜の水蒸気透過量は、1×10−5[g/(m・day)]以下、好ましくは1×10−6[g/(m・day)]以下、より好ましくは1×10−7[g/(m・day)]以下、さらに好ましくは1×10−8[g/(m・day)]以下とする。
 本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態4)
 本実施の形態では、上記の実施の形態で説明したOSトランジスタに用いることができる金属酸化物(酸化物半導体ともいう)について説明する。
 金属酸化物は、少なくともインジウムまたは亜鉛を含むことが好ましい。特にインジウム及び亜鉛を含むことが好ましい。また、それらに加えて、アルミニウム、ガリウム、イットリウム、スズなどが含まれていることが好ましい。また、ホウ素、シリコン、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、マグネシウム、コバルトなどから選ばれた一種、または複数種が含まれていてもよい。
 また、金属酸化物は、スパッタリング法、有機金属化学気相成長(MOCVD:Metal Organic Chemical Vapor Deposition)法などの化学気相成長(CVD:Chemical Vapor Deposition)法、または、原子層堆積(ALD:Atomic Layer Deposition)法などにより形成することができる。
<結晶構造の分類>
 酸化物半導体の結晶構造としては、アモルファス(completely amorphousを含む)、CAAC(c−axis−aligned crystalline)、nc(nanocrystalline)、CAC(cloud−aligned composite)、単結晶(single crystal)、及び多結晶(poly crystal)等が挙げられる。
 なお、膜または基板の結晶構造は、X線回折(XRD:X−Ray Diffraction)スペクトルを用いて評価することができる。例えば、GIXD(Grazing−Incidence XRD)測定で得られるXRDスペクトルを用いて評価することができる。なお、GIXD法は、薄膜法またはSeemann−Bohlin法ともいう。
 例えば、石英ガラス基板では、XRDスペクトルのピークの形状がほぼ左右対称である。一方で、結晶構造を有するIGZO膜では、XRDスペクトルのピークの形状が左右非対称である。XRDスペクトルのピークの形状が左右非対称であることは、膜中または基板中の結晶の存在を明示している。別言すると、XRDスペクトルのピークの形状で左右対称でないと、膜または基板は非晶質状態であるとは言えない。
 また、膜または基板の結晶構造は、極微電子線回折法(NBED:Nano Beam Electron Diffraction)によって観察される回折パターン(極微電子線回折パターンともいう)にて評価することができる。例えば、石英ガラス基板の回折パターンでは、ハローが観察され、石英ガラスは、非晶質状態であることが確認できる。また、室温成膜したIGZO膜の回折パターンでは、ハローではなく、スポット状のパターンが観察される。このため、室温成膜したIGZO膜は、結晶状態でもなく、非晶質状態でもない、中間状態であり、非晶質状態であると結論することはできないと推定される。
<<酸化物半導体の構造>>
 なお、酸化物半導体は、構造に着目した場合、上記とは異なる分類となる場合がある。例えば、酸化物半導体は、単結晶酸化物半導体と、それ以外の非単結晶酸化物半導体と、に分けられる。非単結晶酸化物半導体としては、例えば、上述のCAAC−OS、及びnc−OSがある。また、非単結晶酸化物半導体には、多結晶酸化物半導体、擬似非晶質酸化物半導体(a−like OS:amorphous−like oxide semiconductor)、非晶質酸化物半導体、などが含まれる。
 ここで、上述のCAAC−OS、nc−OS、及びa−like OSの詳細について、説明を行う。
[CAAC−OS]
 CAAC−OSは、複数の結晶領域を有し、当該複数の結晶領域はc軸が特定の方向に配向している酸化物半導体である。なお、特定の方向とは、CAAC−OS膜の厚さ方向、CAAC−OS膜の被形成面の法線方向、またはCAAC−OS膜の表面の法線方向である。また、結晶領域とは、原子配列に周期性を有する領域である。なお、原子配列を格子配列とみなすと、結晶領域とは、格子配列の揃った領域でもある。さらに、CAAC−OSは、a−b面方向において複数の結晶領域が連結する領域を有し、当該領域は歪みを有する場合がある。なお、歪みとは、複数の結晶領域が連結する領域において、格子配列の揃った領域と、別の格子配列の揃った領域と、の間で格子配列の向きが変化している箇所を指す。つまり、CAAC−OSは、c軸配向し、a−b面方向には明らかな配向をしていない酸化物半導体である。
 なお、上記複数の結晶領域のそれぞれは、1つまたは複数の微小な結晶(最大径が10nm未満である結晶)で構成される。結晶領域が1つの微小な結晶で構成されている場合、当該結晶領域の最大径は10nm未満となる。また、結晶領域が多数の微小な結晶で構成されている場合、当該結晶領域の大きさは、数十nm程度となる場合がある。
 また、In−M−Zn酸化物(元素Mは、アルミニウム、ガリウム、イットリウム、スズ、チタンなどから選ばれた一種、または複数種)において、CAAC−OSは、インジウム(In)、及び酸素を有する層(以下、In層)と、元素M、亜鉛(Zn)、及び酸素を有する層(以下、(M,Zn)層)とが積層した、層状の結晶構造(層状構造ともいう)を有する傾向がある。なお、インジウムと元素Mは、互いに置換可能である。よって、(M,Zn)層にはインジウムが含まれる場合がある。また、In層には元素Mが含まれる場合がある。なお、In層にはZnが含まれる場合もある。当該層状構造は、例えば、高分解能TEM(Transmission Electron Microscope)像において、格子像として観察される。
 CAAC−OS膜に対し、例えば、XRD装置を用いて構造解析を行うと、θ/2θスキャンを用いたOut−of−plane XRD測定では、c軸配向を示すピークが2θ=31°またはその近傍に検出される。なお、c軸配向を示すピークの位置(2θの値)は、CAAC−OSを構成する金属元素の種類、組成などにより変動する場合がある。
 また、例えば、CAAC−OS膜の電子線回折パターンにおいて、複数の輝点(スポット)が観測される。なお、あるスポットと別のスポットとは、試料を透過した入射電子線のスポット(ダイレクトスポットともいう)を対称中心として、点対称の位置に観測される。
 上記特定の方向から結晶領域を観察した場合、当該結晶領域内の格子配列は、六方格子を基本とするが、単位格子は正六角形とは限らず、非正六角形である場合がある。また、上記歪みにおいて、五角形、七角形などの格子配列を有する場合がある。なお、CAAC−OSにおいて、歪み近傍においても、明確な結晶粒界(グレインバウンダリー)を確認することはできない。即ち、格子配列の歪みによって、結晶粒界の形成が抑制されていることがわかる。これは、CAAC−OSが、a−b面方向において酸素原子の配列が稠密でないこと、金属原子が置換することで原子間の結合距離が変化することなどによって、歪みを許容することができるためと考えられる。
 なお、明確な結晶粒界が確認される結晶構造は、いわゆる多結晶(polycrystal)と呼ばれる。結晶粒界は、再結合中心となり、キャリアが捕獲されトランジスタのオン電流の低下、電界効果移動度の低下などを引き起こす可能性が高い。よって、明確な結晶粒界が確認されないCAAC−OSは、トランジスタの半導体層に好適な結晶構造を有する結晶性の酸化物の一つである。なお、CAAC−OSを構成するには、Znを有する構成が好ましい。例えば、In−Zn酸化物、及びIn−Ga−Zn酸化物は、In酸化物よりも結晶粒界の発生を抑制できるため好適である。
 CAAC−OSは、結晶性が高く、明確な結晶粒界が確認されない酸化物半導体である。よって、CAAC−OSは、結晶粒界に起因する電子移動度の低下が起こりにくいといえる。また、酸化物半導体の結晶性は不純物の混入、欠陥の生成などによって低下する場合があるため、CAAC−OSは不純物及び欠陥(酸素欠損など)の少ない酸化物半導体ともいえる。従って、CAAC−OSを有する酸化物半導体は、物理的性質が安定する。そのため、CAAC−OSを有する酸化物半導体は熱に強く、信頼性が高い。また、CAAC−OSは、製造工程における高い温度(所謂サーマルバジェット)に対しても安定である。従って、OSトランジスタにCAAC−OSを用いると、製造工程の自由度を広げることが可能となる。
[nc−OS]
 nc−OSは、微小な領域(例えば、1nm以上10nm以下の領域、特に1nm以上3nm以下の領域)において原子配列に周期性を有する。別言すると、nc−OSは、微小な結晶を有する。なお、当該微小な結晶の大きさは、例えば、1nm以上10nm以下、特に1nm以上3nm以下であることから、当該微小な結晶をナノ結晶ともいう。また、nc−OSは、異なるナノ結晶間で結晶方位に規則性が見られない。そのため、膜全体で配向性が見られない。従って、nc−OSは、分析方法によっては、a−like OSまたは非晶質酸化物半導体と区別が付かない場合がある。例えば、nc−OS膜に対し、XRD装置を用いて構造解析を行うと、θ/2θスキャンを用いたOut−of−plane XRD測定では、結晶性を示すピークが検出されない。また、nc−OS膜に対し、ナノ結晶よりも大きいプローブ径(例えば50nm以上)の電子線を用いる電子線回折(制限視野電子線回折ともいう。)を行うと、ハローパターンのような回折パターンが観測される。一方、nc−OS膜に対し、ナノ結晶の大きさと近いかナノ結晶より小さいプローブ径(例えば1nm以上30nm以下)の電子線を用いる電子線回折(ナノビーム電子線回折ともいう。)を行うと、ダイレクトスポットを中心とするリング状の領域内に複数のスポットが観測される電子線回折パターンが取得される場合がある。
[a−like OS]
 a−like OSは、nc−OSと非晶質酸化物半導体との間の構造を有する酸化物半導体である。a−like OSは、鬆または低密度領域を有する。即ち、a−like OSは、nc−OS及びCAAC−OSと比べて、結晶性が低い。また、a−like OSは、nc−OS及びCAAC−OSと比べて、膜中の水素濃度が高い。
<<酸化物半導体の構成>>
 次に、上述のCAC−OSの詳細について、説明を行う。なお、CAC−OSは材料構成に関する。
[CAC−OS]
 CAC−OSとは、例えば、金属酸化物を構成する元素が、0.5nm以上10nm以下、好ましくは、1nm以上3nm以下、またはその近傍のサイズで偏在した材料の一構成である。なお、以下では、金属酸化物において、一つまたは複数の金属元素が偏在し、該金属元素を有する領域が、0.5nm以上10nm以下、好ましくは、1nm以上3nm以下、またはその近傍のサイズで混合した状態をモザイク状、またはパッチ状ともいう。
 さらに、CAC−OSとは、第1の領域と、第2の領域と、に材料が分離することでモザイク状となり、当該第1の領域が、膜中に分布した構成(以下、クラウド状ともいう。)である。つまり、CAC−OSは、当該第1の領域と、当該第2の領域とが、混合している構成を有する複合金属酸化物である。
 ここで、In−Ga−Zn酸化物におけるCAC−OSを構成する金属元素に対するIn、Ga、及びZnの原子数比のそれぞれを、[In]、[Ga]、及び[Zn]と表記する。例えば、In−Ga−Zn酸化物におけるCAC−OSにおいて、第1の領域は、[In]が、CAC−OS膜の組成における[In]よりも大きい領域である。また、第2の領域は、[Ga]が、CAC−OS膜の組成における[Ga]よりも大きい領域である。または、例えば、第1の領域は、[In]が、第2の領域における[In]よりも大きく、且つ、[Ga]が、第2の領域における[Ga]よりも小さい領域である。また、第2の領域は、[Ga]が、第1の領域における[Ga]よりも大きく、且つ、[In]が、第1の領域における[In]よりも小さい領域である。
 具体的には、上記第1の領域は、インジウム酸化物、インジウム亜鉛酸化物などが主成分である領域である。また、上記第2の領域は、ガリウム酸化物、ガリウム亜鉛酸化物などが主成分である領域である。つまり、上記第1の領域を、Inを主成分とする領域と言い換えることができる。また、上記第2の領域を、Gaを主成分とする領域と言い換えることができる。
 なお、上記第1の領域と、上記第2の領域とは、明確な境界が観察できない場合がある。
 また、In−Ga−Zn酸化物におけるCAC−OSとは、In、Ga、Zn、及びOを含む材料構成において、一部にGaを主成分とする領域と、一部にInを主成分とする領域とが、それぞれモザイク状であり、これらの領域がランダムに存在している構成をいう。よって、CAC−OSは、金属元素が不均一に分布した構造を有していると推測される。
 CAC−OSは、例えば基板を加熱しない条件で、スパッタリング法により形成することができる。また、CAC−OSをスパッタリング法で形成する場合、成膜ガスとして、不活性ガス(代表的にはアルゴン)、酸素ガス、及び窒素ガスの中から選ばれたいずれか一つまたは複数を用いればよい。また、成膜時の成膜ガスの総流量に対する酸素ガスの流量比は低いほど好ましく、例えば、成膜時の成膜ガスの総流量に対する酸素ガスの流量比を0%以上30%未満、好ましくは0%以上10%以下とすることが好ましい。
 また、例えば、In−Ga−Zn酸化物におけるCAC−OSでは、エネルギー分散型X線分光法(EDX:Energy Dispersive X−ray spectroscopy)を用いて取得したEDXマッピングにより、Inを主成分とする領域(第1の領域)と、Gaを主成分とする領域(第2の領域)とが、偏在し、混合している構造を有することが確認できる。
 ここで、第1の領域は、第2の領域と比較して、導電性が高い領域である。つまり、第1の領域を、キャリアが流れることにより、金属酸化物としての導電性が発現する。従って、第1の領域が、金属酸化物中にクラウド状に分布することで、高い電界効果移動度(μ)が実現できる。
 一方、第2の領域は、第1の領域と比較して、絶縁性が高い領域である。つまり、第2の領域が、金属酸化物中に分布することで、リーク電流を抑制することができる。
 従って、CAC−OSをトランジスタに用いる場合、第1の領域に起因する導電性と、第2の領域に起因する絶縁性とが、相補的に作用することにより、スイッチングさせる機能(On/Offさせる機能)をCAC−OSに付与することができる。つまり、CAC−OSとは、材料の一部では導電性の機能と、材料の一部では絶縁性の機能とを有し、材料の全体では半導体としての機能を有する。導電性の機能と絶縁性の機能とを分離させることで、双方の機能を最大限に高めることができる。よって、CAC−OSをトランジスタに用いることで、高いオン電流(Ion)、高い電界効果移動度(μ)、及び良好なスイッチング動作を実現することができる。
 また、CAC−OSを用いたトランジスタは、信頼性が高い。従って、CAC−OSは、表示装置をはじめとするさまざまな半導体装置に最適である。
 酸化物半導体は、多様な構造をとり、それぞれが異なる特性を有する。本発明の一態様の酸化物半導体は、非晶質酸化物半導体、多結晶酸化物半導体、a−like OS、CAC−OS、nc−OS、CAAC−OSのうち、二種以上を有していてもよい。
<酸化物半導体を有するトランジスタ>
 続いて、上記酸化物半導体をトランジスタに用いる場合について説明する。
 上記酸化物半導体をトランジスタに用いることで、高い電界効果移動度のトランジスタを実現することができる。また、信頼性の高いトランジスタを実現することができる。
 トランジスタには、キャリア濃度の低い酸化物半導体を用いることが好ましい。例えば、酸化物半導体のキャリア濃度は1×1017cm−3以下、好ましくは1×1015cm−3以下、さらに好ましくは1×1013cm−3以下、より好ましくは1×1011cm−3以下、さらに好ましくは1×1010cm−3未満であり、1×10−9cm−3以上である。なお、酸化物半導体膜のキャリア濃度を低くする場合においては、酸化物半導体膜中の不純物濃度を低くし、欠陥準位密度を低くすればよい。本明細書等において、不純物濃度が低く、欠陥準位密度の低いことを高純度真性または実質的に高純度真性と言う。なお、キャリア濃度の低い酸化物半導体を、高純度真性または実質的に高純度真性な酸化物半導体と呼ぶ場合がある。
 また、高純度真性または実質的に高純度真性である酸化物半導体膜は、欠陥準位密度が低いため、トラップ準位密度も低くなる場合がある。
 また、酸化物半導体のトラップ準位に捕獲された電荷は、消失するまでに要する時間が長く、あたかも固定電荷のように振る舞うことがある。そのため、トラップ準位密度の高い酸化物半導体にチャネル形成領域が形成されるトランジスタは、電気特性が不安定となる場合がある。
 従って、トランジスタの電気特性を安定にするためには、酸化物半導体中の不純物濃度を低減することが有効である。また、酸化物半導体中の不純物濃度を低減するためには、近接する膜中の不純物濃度も低減することが好ましい。不純物としては、水素、窒素、アルカリ金属、アルカリ土類金属、鉄、ニッケル、シリコン等がある。
<不純物>
 ここで、酸化物半導体中における各不純物の影響について説明する。
 酸化物半導体において、第14族元素の一つであるシリコンまたは炭素が含まれると、酸化物半導体において欠陥準位が形成される。このため、酸化物半導体におけるシリコンまたは炭素の濃度と、酸化物半導体との界面近傍のシリコンまたは炭素の濃度(二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)により得られる濃度)を、2×1018atoms/cm以下、好ましくは2×1017atoms/cm以下とする。
 また、酸化物半導体にアルカリ金属またはアルカリ土類金属が含まれると、欠陥準位を形成し、キャリアを生成する場合がある。従って、アルカリ金属またはアルカリ土類金属が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。このため、SIMSにより得られる酸化物半導体中のアルカリ金属またはアルカリ土類金属の濃度を、1×1018atoms/cm以下、好ましくは2×1016atoms/cm以下にする。
 また、酸化物半導体において、窒素が含まれると、キャリアである電子が生じ、キャリア濃度が増加し、n型化しやすい。この結果、窒素が含まれている酸化物半導体を半導体に用いたトランジスタはノーマリーオン特性となりやすい。または、酸化物半導体において、窒素が含まれると、トラップ準位が形成される場合がある。この結果、トランジスタの電気特性が不安定となる場合がある。このため、SIMSにより得られる酸化物半導体中の窒素濃度を、5×1019atoms/cm未満、好ましくは5×1018atoms/cm以下、より好ましくは1×1018atoms/cm以下、さらに好ましくは5×1017atoms/cm以下にする。
 また、酸化物半導体に含まれる水素は、金属原子と結合する酸素と反応して水になるため、酸素欠損を形成する場合がある。該酸素欠損に水素が入ることで、キャリアである電子が生成される場合がある。また、水素の一部が金属原子と結合する酸素と結合して、キャリアである電子を生成することがある。従って、水素が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。このため、酸化物半導体中の水素はできる限り低減されていることが好ましい。具体的には、酸化物半導体において、SIMSにより得られる水素濃度を、1×1020atoms/cm未満、好ましくは1×1019atoms/cm未満、より好ましくは5×1018atoms/cm未満、さらに好ましくは1×1018atoms/cm未満にする。
 不純物が十分に低減された酸化物半導体をトランジスタのチャネル形成領域に用いることで、安定した電気特性を付与することができる。
 本実施の形態は、他の実施の形態と適宜組み合わせることができる。
(実施の形態5)
 本実施の形態では、本発明の一態様の電子機器について、図21乃至図23を用いて説明する。
 本実施の形態の電子機器は、表示部に本発明の一態様の表示装置を有する。本発明の一態様の表示装置は、高精細化及び高解像度化が容易である。したがって、様々な電子機器の表示部に用いることができる。
 電子機器としては、例えば、テレビジョン装置、デスクトップ型もしくはノート型のパーソナルコンピュータ、コンピュータ用などのモニタ、デジタルサイネージ、パチンコ機などの大型ゲーム機などの比較的大きな画面を備える電子機器の他、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、携帯電話機、携帯型ゲーム機、携帯情報端末、音響再生装置、などが挙げられる。
 特に、本発明の一態様の表示装置は、精細度を高めることが可能なため、比較的小さな表示部を有する電子機器に好適に用いることができる。このような電子機器としては、例えば、腕時計型及びブレスレット型の情報端末機(ウェアラブル機器)、並びに、ヘッドマウントディスプレイなどのVR向け機器、メガネ型のAR向け機器、及び、MR向け機器など、頭部に装着可能なウェアラブル機器等が挙げられる。
 本発明の一態様の表示装置は、HD(画素数1280×720)、FHD(画素数1920×1080)、WQHD(画素数2560×1440)、WQXGA(画素数2560×1600)、4K(画素数3840×2160)、8K(画素数7680×4320)といった極めて高い解像度を有していることが好ましい。特に4K、8K、またはそれ以上の解像度とすることが好ましい。また、本発明の一態様の表示装置における画素密度(精細度)は、100ppi以上が好ましく、300ppi以上が好ましく、500ppi以上がより好ましく、1000ppi以上がより好ましく、2000ppi以上がより好ましく、3000ppi以上がより好ましく、5000ppi以上がより好ましく、7000ppi以上がさらに好ましい。このように高い解像度及び高い精細度の一方または双方を有する表示装置を用いることで、携帯型または家庭用途などのパーソナルユースの電子機器において、臨場感及び奥行き感などをより高めることが可能となる。また、本発明の一態様の表示装置の画面比率(アスペクト比)については、特に限定はない。例えば、表示装置は、1:1(正方形)、4:3、16:9、16:10など様々な画面比率に対応することができる。
 本実施の形態の電子機器は、センサ(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、においまたは赤外線を測定する機能を含むもの)を有していてもよい。
 本実施の形態の電子機器は、様々な機能を有することができる。例えば、様々な情報(静止画、動画、テキスト画像など)を表示部に表示する機能、タッチパネル機能、カレンダー、日付または時刻などを表示する機能、様々なソフトウェア(プログラム)を実行する機能、無線通信機能、記録媒体に記録されているプログラムまたはデータを読み出す機能等を有することができる。
 図21Aに示す電子機器6500は、スマートフォンとして用いることのできる携帯情報端末機である。
 電子機器6500は、筐体6501、表示部6502、電源ボタン6503、ボタン6504、スピーカ6505、マイク6506、カメラ6507、及び光源6508等を有する。表示部6502はタッチパネル機能を備える。
 表示部6502に、本発明の一態様の表示装置を適用することができる。
 図21Bは、筐体6501のマイク6506側の端部を含む断面概略図である。
 筐体6501の表示面側には透光性を有する保護部材6510が設けられ、筐体6501と保護部材6510に囲まれた空間内に、表示パネル6511、光学部材6512、タッチセンサパネル6513、プリント基板6517、バッテリ6518等が配置されている。
 保護部材6510には、表示パネル6511、光学部材6512、及びタッチセンサパネル6513が接着層(図示しない)により固定されている。
 表示部6502よりも外側の領域において、表示パネル6511の一部が折り返されており、当該折り返された部分にFPC6515が接続されている。FPC6515には、IC6516が実装されている。FPC6515は、プリント基板6517に設けられた端子に接続されている。
 表示パネル6511には本発明の一態様のフレキシブルディスプレイを適用することができる。そのため、極めて軽量な電子機器を実現できる。また、表示パネル6511が極めて薄いため、電子機器の厚さを抑えつつ、大容量のバッテリ6518を搭載することもできる。また、表示パネル6511の一部を折り返して、画素部の裏側にFPC6515との接続部を配置することにより、狭額縁の電子機器を実現できる。
 図22Aにテレビジョン装置の一例を示す。テレビジョン装置7100は、筐体7101に表示部7000が組み込まれている。ここでは、スタンド7103により筐体7101を支持した構成を示している。
 表示部7000に、本発明の一態様の表示装置を適用することができる。
 図22Aに示すテレビジョン装置7100の操作は、筐体7101が備える操作スイッチ、及び、別体のリモコン操作機7111により行うことができる。または、表示部7000にタッチセンサを備えていてもよく、指等で表示部7000に触れることでテレビジョン装置7100を操作してもよい。リモコン操作機7111は、当該リモコン操作機7111から出力する情報を表示する表示部を有していてもよい。リモコン操作機7111が備える操作キーまたはタッチパネルにより、チャンネル及び音量の操作を行うことができ、表示部7000に表示される映像を操作することができる。
 なお、テレビジョン装置7100は、受信機及びモデムなどを備えた構成とする。受信機により一般のテレビ放送の受信を行うことができる。また、モデムを介して有線または無線による通信ネットワークに接続することにより、一方向(送信者から受信者)または双方向(送信者と受信者間、あるいは受信者間同士など)の情報通信を行うことも可能である。
 図22Bに、ノート型パーソナルコンピュータの一例を示す。ノート型パーソナルコンピュータ7200は、筐体7211、キーボード7212、ポインティングデバイス7213、外部接続ポート7214等を有する。筐体7211に、表示部7000が組み込まれている。
 表示部7000に、本発明の一態様の表示装置を適用することができる。
 図22C、図22Dに、デジタルサイネージの一例を示す。
 図22Cに示すデジタルサイネージ7300は、筐体7301、表示部7000、及びスピーカ7303等を有する。さらに、LEDランプ、操作キー(電源スイッチ、または操作スイッチを含む)、接続端子、各種センサ、マイクロフォン等を有することができる。
 図22Dは円柱状の柱7401に取り付けられたデジタルサイネージ7400である。デジタルサイネージ7400は、柱7401の曲面に沿って設けられた表示部7000を有する。
 図22C、図22Dにおいて、表示部7000に、本発明の一態様の表示装置を適用することができる。
 表示部7000が広いほど、一度に提供できる情報量を増やすことができる。また、表示部7000が広いほど、人の目につきやすく、例えば、広告の宣伝効果を高めることができる。
 表示部7000にタッチパネルを適用することで、表示部7000に画像または動画を表示するだけでなく、使用者が直感的に操作することができ、好ましい。また、路線情報もしくは交通情報などの情報を提供するための用途に用いる場合には、直感的な操作によりユーザビリティを高めることができる。
 また、図22C、図22Dに示すように、デジタルサイネージ7300またはデジタルサイネージ7400は、使用者が所持するスマートフォン等の情報端末機7311または情報端末機7411と無線通信により連携可能であることが好ましい。例えば、表示部7000に表示される広告の情報を、情報端末機7311または情報端末機7411の画面に表示させることができる。また、情報端末機7311または情報端末機7411を操作することで、表示部7000の表示を切り替えることができる。
 また、デジタルサイネージ7300またはデジタルサイネージ7400に、情報端末機7311または情報端末機7411の画面を操作手段(コントローラ)としたゲームを実行させることもできる。これにより、不特定多数の使用者が同時にゲームに参加し、楽しむことができる。
 図23A乃至図23Fに示す電子機器は、筐体9000、表示部9001、スピーカ9003、操作キー9005(電源スイッチ、または操作スイッチを含む)、接続端子9006、センサ9007(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、においまたは赤外線を測定する機能を含むもの)、マイクロフォン9008、等を有する。
 図23A乃至図23Fに示す電子機器は、様々な機能を有する。例えば、様々な情報(静止画、動画、テキスト画像など)を表示部に表示する機能、タッチパネル機能、カレンダー、日付または時刻などを表示する機能、様々なソフトウェア(プログラム)によって処理を制御する機能、無線通信機能、記録媒体に記録されているプログラムまたはデータを読み出して処理する機能、等を有することができる。なお、電子機器の機能はこれらに限られず、様々な機能を有することができる。電子機器は、複数の表示部を有していてもよい。また、電子機器にカメラ等を設け、静止画または動画を撮影し、記録媒体(外部またはカメラに内蔵)に保存する機能、撮影した画像を表示部に表示する機能、等を有していてもよい。
 図23A乃至図23Fに示す電子機器の詳細について、以下説明を行う。
 図23Aは、携帯情報端末9101を示す斜視図である。携帯情報端末9101は、例えばスマートフォンとして用いることができる。なお、携帯情報端末9101は、スピーカ9003、接続端子9006、センサ9007等を設けてもよい。また、携帯情報端末9101は、文字及び画像情報をその複数の面に表示することができる。図23Aでは3つのアイコン9050を表示した例を示している。また、破線の矩形で示す情報9051を表示部9001の他の面に表示することもできる。情報9051の一例としては、電子メール、SNS、電話などの着信の通知、電子メールまたはSNSなどの題名、送信者名、日時、時刻、バッテリの残量、電波強度などがある。または、情報9051が表示されている位置にはアイコン9050などを表示してもよい。
 図23Bは、携帯情報端末9102を示す斜視図である。携帯情報端末9102は、表示部9001の3面以上に情報を表示する機能を有する。ここでは、情報9052、情報9053、情報9054がそれぞれ異なる面に表示されている例を示す。例えば使用者は、洋服の胸ポケットに携帯情報端末9102を収納した状態で、携帯情報端末9102の上方から観察できる位置に表示された情報9053を確認することもできる。使用者は、携帯情報端末9102をポケットから取り出すことなく表示を確認し、例えば電話を受けるか否かを判断できる。
 図23Cは、腕時計型の携帯情報端末9200を示す斜視図である。携帯情報端末9200は、例えばスマートウォッチ(登録商標)として用いることができる。また、表示部9001はその表示面が湾曲して設けられ、湾曲した表示面に沿って表示を行うことができる。また、携帯情報端末9200は、例えば無線通信可能なヘッドセットと相互通信することによって、ハンズフリーで通話することもできる。また、携帯情報端末9200は、接続端子9006により、他の情報端末と相互にデータ伝送を行うこと、及び、充電を行うこともできる。なお、充電動作は無線給電により行ってもよい。
 図23D乃至図23Fは、折り畳み可能な携帯情報端末9201を示す斜視図である。また、図23Dは携帯情報端末9201を展開した状態、図23Fは折り畳んだ状態、図23Eは図23Dと図23Fの一方から他方に変化する途中の状態の斜視図である。携帯情報端末9201は、折り畳んだ状態では可搬性に優れ、展開した状態では継ぎ目のない広い表示領域により表示の一覧性に優れる。携帯情報端末9201が有する表示部9001は、ヒンジ9055によって連結された3つの筐体9000に支持されている。例えば、表示部9001は、曲率半径0.1mm以上150mm以下で曲げることができる。
 本実施の形態は、他の実施の形態と適宜組み合わせることができる。
100:表示装置、100A:表示装置、100B:表示装置、101:層、110:画素、110a:副画素、110b:副画素、110c:副画素、110d:副画素、110d1:副画素、110d2:副画素、110d3:副画素、111:画素電極、111a:画素電極、111b:画素電極、111c:画素電極、111d:画素電極、112:導電層、112a:導電層、112b:導電層、112c:導電層、113:層、114:層、115:共通電極、118:犠牲層、118A:犠牲層、119:犠牲層、119A:犠牲層、120:基板、121:絶縁体、122:樹脂層、123:導電層、123a:導電層、123b:導電層、124:絶縁体、124a:絶縁体、124A:絶縁膜、124b:絶縁体、124B:絶縁膜、125:着色層、125a:着色層、125b:着色層、125c:着色層、126:絶縁層、128a:画素、128b:画素、130:発光デバイス、130a:発光デバイス、130b:発光デバイス、130c:発光デバイス、130d:発光デバイス、131:保護層、133:空隙、140:接続部、142:接着層、148:遮光層、151:基板、152:基板、162:表示部、164:回路、165:配線、166:導電層、172:FPC、173:IC、181a:正孔注入層、181A:正孔注入層、182a:正孔輸送層、182A:正孔輸送層、182b:正孔輸送層、182B:正孔輸送層、183a:発光層、183A:発光層、183b:発光層、183B:発光層、184a:電子輸送層、184A:電子輸送層、184b:電子輸送層、184B:電子輸送層、190:レジストマスク、191:中間層、191A:中間層、192:発光ユニット、194:発光ユニット、201:トランジスタ、204:接続部、205:トランジスタ、209:トランジスタ、210:トランジスタ、211:絶縁層、213:絶縁層、214:絶縁層、215:絶縁層、218:絶縁層、221:導電層、222a:導電層、222b:導電層、223:導電層、225:絶縁層、228:領域、231:半導体層、231i:チャネル形成領域、231n:低抵抗領域、242:接続層、321:絶縁層、331:プラグ、362:絶縁層、363:絶縁層、364:接着層、400:表示装置、400A:表示装置、400B:表示装置、400C:表示装置、401:基板、402:基板、410:トランジスタ、411:導電層、412:低抵抗領域、413:絶縁層、414:絶縁層、415:素子分離層、420:トランジスタ、421:半導体層、423:絶縁層、424:導電層、425:導電層、426:絶縁層、427:導電層、428:絶縁層、429:絶縁層、432:絶縁層、440:容量素子、441:導電層、442:導電層、443:絶縁層、451:導電層、452:導電層、461:絶縁層、461a:絶縁層、461b:絶縁層、462:絶縁層、463:絶縁層、465:絶縁層、471:プラグ、471a:導電層、471b:導電層、474:プラグ、480:表示モジュール、481:表示部、482:回路部、483:画素回路部、483a:画素回路、484:画素部、484a:画素、485:端子部、486:配線部、490:FPC、500:表示装置、501:電極、502:電極、512Q_1:発光ユニット、512Q_2:発光ユニット、512Q_3:発光ユニット、521:層、522:層、523Q_1:発光層、523Q_2:発光層、523Q_3:発光層、524:層、525:層、531:中間層、540:保護層、545B:着色層、545G:着色層、545R:着色層、550W:発光デバイス、6500:電子機器、6501:筐体、6502:表示部、6503:電源ボタン、6504:ボタン、6505:スピーカ、6506:マイク、6507:カメラ、6508:光源、6510:保護部材、6511:表示パネル、6512:光学部材、6513:タッチセンサパネル、6515:FPC、6516:IC、6517:プリント基板、6518:バッテリ、7000:表示部、7100:テレビジョン装置、7101:筐体、7103:スタンド、7111:リモコン操作機、7200:ノート型パーソナルコンピュータ、7211:筐体、7212:キーボード、7213:ポインティングデバイス、7214:外部接続ポート、7300:デジタルサイネージ、7301:筐体、7303:スピーカ、7311:情報端末機、7400:デジタルサイネージ、7401:柱、7411:情報端末機、9000:筐体、9001:表示部、9003:スピーカ、9005:操作キー、9006:接続端子、9007:センサ、9008:マイクロフォン、9050:アイコン、9051:情報、9052:情報、9053:情報、9054:情報、9055:ヒンジ、9101:携帯情報端末、9102:携帯情報端末、9200:携帯情報端末、9201:携帯情報端末

Claims (10)

  1.  第1の発光デバイスと、第2の発光デバイスと、第1の着色層と、第2の着色層と、第1の絶縁体と、第2の絶縁体と、第3の絶縁体と、を有し、
     前記第1の着色層は、前記第1の発光デバイスに重畳して配置され、
     前記第2の着色層は、前記第2の発光デバイスに重畳して配置され、
     前記第1の発光デバイス、および前記第2の発光デバイスは、白色光を発する機能を有し、
     前記第1の着色層は、前記第2の着色層とは異なる色の可視光を透過する機能を有し、
     前記第1の発光デバイスは、第1の導電層と、前記第1の導電層上の第1の発光層と、を有し、
     前記第2の発光デバイスは、第2の導電層と、前記第2の導電層上の第2の発光層と、を有し、
     前記第1の絶縁体は、前記第1の発光デバイスの側面の少なくとも一部に接し、
     前記第2の絶縁体は、前記第2の発光デバイスの側面の少なくとも一部に接し、
     前記第1の絶縁体、および前記第2の絶縁体は、前記第3の絶縁体の上に配置され、
     前記第3の絶縁体は、前記第1の導電層の端部および前記第2の導電層の端部を覆って配置される、
     表示装置。
  2.  請求項1において、
     前記第1の発光層は、前記第2の発光層と、同一の材料を有する、
     表示装置。
  3.  請求項1または請求項2において、
     前記第1の発光デバイスは、前記第1の発光層を含む第1の発光ユニットと、前記第1の発光ユニット上の第1の電荷発生層と、前記第1の電荷発生層上の第2の発光ユニットと、を有し、
     前記第2の発光ユニットは、第3の発光層を有し、
     前記第2の発光デバイスは、前記第2の発光層を含む第3の発光ユニットと、前記第3の発光ユニット上の第2の電荷発生層と、前記第2の電荷発生層上の第4の発光ユニットと、を有し、
     前記第4の発光ユニットは、第4の発光層を有する、
     表示装置。
  4.  請求項3において、
     前記第1の発光ユニットは、前記第3の発光ユニットと、同一の材料を有し、
     前記第1の電荷発生層は、前記第2の電荷発生層と、同一の材料を有し、
     前記第2の発光ユニットは、前記第4の発光ユニットと、同一の材料を有し、
     表示装置。
  5.  請求項3または請求項4において、
     前記第1の発光ユニットは、第1の正孔注入層と、第1の正孔輸送層と、第1の電子輸送層と、を有し、
     前記第2の発光ユニットは、第2の正孔輸送層と、第2の電子輸送層と、を有し、
     前記第3の発光ユニットは、第2の正孔注入層と、第3の正孔輸送層と、第3の電子輸送層と、を有し、
     前記第4の発光ユニットは、第4の正孔輸送層と、第4の電子輸送層と、を有し、
     前記第1の絶縁体は、前記第1の正孔注入層の側面、前記第1の正孔輸送層の側面、前記第1の発光層の側面、前記第1の電子輸送層の側面、前記第1の電荷発生層の側面、前記第2の正孔輸送層の側面、前記第3の発光層の側面、および前記第2の電子輸送層の側面に接し、
     前記第2の絶縁体は、前記第2の正孔注入層の側面、前記第3の正孔輸送層の側面、前記第2の発光層の側面、前記第3の電子輸送層の側面、前記第2の電荷発生層の側面、前記第4の正孔輸送層の側面、前記第2の発光層の側面、および前記第4の電子輸送層の側面に接する、
     表示装置。
  6.  請求項1乃至請求項5のいずれか一項において、
     前記第1の絶縁体、および前記第2の絶縁体は、第1の層と、前記第1の層上の第2の層と、を有し、
     前記第1の絶縁体において、
     前記第1の層の側面は、前記第1の発光デバイスの側面の少なくとも一部に接し、
     前記第1の層の下面は、前記第3の絶縁体の少なくとも一部に接し、
     前記第2の層の側面および下面は、前記第1の層の少なくとも一部に接し、
     前記第2の絶縁体において、
     前記第1の層の側面は、前記第2の発光デバイスの側面の少なくとも一部に接し、
     前記第1の層の下面は、前記第3の絶縁体の少なくとも一部に接し、
     前記第2の層の側面および下面は、前記第1の層の少なくとも一部に接する、
     表示装置。
  7.  請求項6において、
     前記第1の層は、酸化アルミニウムを含み、
     前記第2の層は、窒化シリコンを含む、
     表示装置。
  8.  請求項1乃至請求項7のいずれか一項において、
     前記第1の発光層の側面と、前記第2の発光層の側面は、対向しており、
     前記第1の発光層の側面と、前記第2の発光層の側面との間の距離が8μm以下である、
     表示装置。
  9.  請求項1乃至請求項8のいずれか一に記載の表示装置と、
     コネクタ及び集積回路のうち少なくとも一方と、を有する、表示モジュール。
  10.  請求項9に記載の表示モジュールと、
     筐体、バッテリ、カメラ、スピーカ、及びマイクのうち少なくとも一つと、を有する、電子機器。
PCT/IB2022/051089 2021-02-19 2022-02-08 表示装置、表示モジュール、及び電子機器 WO2022175781A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280014839.3A CN116868693A (zh) 2021-02-19 2022-02-08 显示装置、显示模块及电子设备
US18/276,074 US20240099068A1 (en) 2021-02-19 2022-02-08 Display device, display module, and electronic device
JP2023500123A JPWO2022175781A1 (ja) 2021-02-19 2022-02-08
KR1020237030322A KR20230147648A (ko) 2021-02-19 2022-02-08 표시 장치, 표시 모듈, 및 전자 기기

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021025034 2021-02-19
JP2021-025034 2021-02-19

Publications (1)

Publication Number Publication Date
WO2022175781A1 true WO2022175781A1 (ja) 2022-08-25

Family

ID=82931843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2022/051089 WO2022175781A1 (ja) 2021-02-19 2022-02-08 表示装置、表示モジュール、及び電子機器

Country Status (5)

Country Link
US (1) US20240099068A1 (ja)
JP (1) JPWO2022175781A1 (ja)
KR (1) KR20230147648A (ja)
CN (1) CN116868693A (ja)
WO (1) WO2022175781A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093398A (ja) * 2003-09-19 2005-04-07 Sony Corp 有機発光素子およびその製造方法ならびに表示装置
JP2007103058A (ja) * 2005-09-30 2007-04-19 Seiko Epson Corp 有機el装置の製造方法
US20090236976A1 (en) * 2008-03-19 2009-09-24 Samsung Mobile Display Co., Ltd. Organic light emitting display device
WO2009133680A1 (ja) * 2008-04-28 2009-11-05 パナソニック株式会社 表示装置およびその製造方法
JP2010033936A (ja) * 2008-07-30 2010-02-12 Toshiba Corp 自発光型素子及びその製造方法
WO2011046166A1 (ja) * 2009-10-14 2011-04-21 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子およびこれを用いた照明装置
JP2012049088A (ja) * 2010-08-30 2012-03-08 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子、及び有機エレクトロルミネッセンス素子の製造方法
JP2012190794A (ja) * 2011-02-25 2012-10-04 Semiconductor Energy Lab Co Ltd 発光装置、及び発光装置を用いた電子機器
WO2013051234A1 (ja) * 2011-10-04 2013-04-11 ソニー株式会社 有機エレクトロルミネッセンス素子

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG118118A1 (en) 2001-02-22 2006-01-27 Semiconductor Energy Lab Organic light emitting device and display using the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093398A (ja) * 2003-09-19 2005-04-07 Sony Corp 有機発光素子およびその製造方法ならびに表示装置
JP2007103058A (ja) * 2005-09-30 2007-04-19 Seiko Epson Corp 有機el装置の製造方法
US20090236976A1 (en) * 2008-03-19 2009-09-24 Samsung Mobile Display Co., Ltd. Organic light emitting display device
WO2009133680A1 (ja) * 2008-04-28 2009-11-05 パナソニック株式会社 表示装置およびその製造方法
JP2010033936A (ja) * 2008-07-30 2010-02-12 Toshiba Corp 自発光型素子及びその製造方法
WO2011046166A1 (ja) * 2009-10-14 2011-04-21 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子およびこれを用いた照明装置
JP2012049088A (ja) * 2010-08-30 2012-03-08 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子、及び有機エレクトロルミネッセンス素子の製造方法
JP2012190794A (ja) * 2011-02-25 2012-10-04 Semiconductor Energy Lab Co Ltd 発光装置、及び発光装置を用いた電子機器
WO2013051234A1 (ja) * 2011-10-04 2013-04-11 ソニー株式会社 有機エレクトロルミネッセンス素子

Also Published As

Publication number Publication date
JPWO2022175781A1 (ja) 2022-08-25
KR20230147648A (ko) 2023-10-23
US20240099068A1 (en) 2024-03-21
CN116868693A (zh) 2023-10-10

Similar Documents

Publication Publication Date Title
WO2022175781A1 (ja) 表示装置、表示モジュール、及び電子機器
WO2023281344A1 (ja) 表示装置
WO2022162496A1 (ja) 表示装置の作製方法、表示装置、表示モジュール、及び、電子機器
WO2022157595A1 (ja) 表示装置の作製方法、表示装置、表示モジュール、及び、電子機器
WO2022214904A1 (ja) 表示装置
WO2022189908A1 (ja) 表示装置
WO2022172128A1 (ja) 表示装置、表示装置の作製方法、表示モジュール、及び電子機器
WO2023042027A1 (ja) 表示装置
WO2022229775A1 (ja) 表示装置
WO2023089443A1 (ja) 表示装置、及び表示装置の作製方法
WO2022162485A1 (ja) 表示装置
WO2023052908A1 (ja) 表示装置
WO2023012571A1 (ja) 表示装置
WO2022208231A1 (ja) 表示装置
WO2022224091A1 (ja) 表示装置
WO2022167882A1 (ja) 表示装置、表示モジュール、及び電子機器
WO2022263964A1 (ja) 表示装置
WO2022224073A1 (ja) 表示装置、及び表示装置の作製方法
WO2022214916A1 (ja) 表示装置、表示装置の作製方法、表示モジュール、電子機器
WO2022248962A1 (ja) 表示装置、表示モジュール、及び、電子機器
WO2022175775A1 (ja) 表示装置、表示装置の作製方法、表示モジュール、及び電子機器
KR20240055760A (ko) 표시 장치
KR20240036672A (ko) 표시 장치
KR20240018501A (ko) 표시 장치, 표시 모듈, 전자 기기, 및 표시 장치의 제작 방법
CN116848948A (zh) 显示装置的制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22755649

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023500123

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18276074

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280014839.3

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237030322

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237030322

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22755649

Country of ref document: EP

Kind code of ref document: A1