[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022174728A1 - 电池形变检测装置及电池管理系统 - Google Patents

电池形变检测装置及电池管理系统 Download PDF

Info

Publication number
WO2022174728A1
WO2022174728A1 PCT/CN2022/073950 CN2022073950W WO2022174728A1 WO 2022174728 A1 WO2022174728 A1 WO 2022174728A1 CN 2022073950 W CN2022073950 W CN 2022073950W WO 2022174728 A1 WO2022174728 A1 WO 2022174728A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
detection device
battery
capacitance
deformation detection
Prior art date
Application number
PCT/CN2022/073950
Other languages
English (en)
French (fr)
Inventor
周号
Original Assignee
珠海迈巨微电子有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海迈巨微电子有限责任公司 filed Critical 珠海迈巨微电子有限责任公司
Publication of WO2022174728A1 publication Critical patent/WO2022174728A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge

Definitions

  • the present disclosure belongs to the technical field of battery safety detection, and in particular, the present disclosure relates to a battery deformation detection device and a battery management system.
  • Lithium batteries will be deformed when subjected to external force, and bulging will also occur after the battery ages.
  • problems such as internal short circuit, fire and explosion will occur. Therefore, safety testing of lithium batteries is a must.
  • the present disclosure provides a battery deformation detection device and a battery management system.
  • a battery deformation detection device comprising:
  • the strain sensing portion provided on at least one surface of a battery of the battery device, the strain sensing portion capable of generating a strain electrical signal at least based on deformation of the battery of the battery device, the strain electrical signal at least indicate the occurrence of said deformation;
  • the strain sensing part includes at least one strain sensing device, the strain sensing device includes a plurality of conductive elements, and the plurality of the conductive elements are evenly arranged in a two-dimensional array, and each conductive element is insulated from other conductive elements ; the strain sensing device is capable of deforming a position of the two-dimensional array corresponding to the deformation of the battery in response to the deformation of the battery, and the strain sensing portion generates the strain electrical energy based on the deformation of the two-dimensional array Signal.
  • the strain electrical signal includes a self-capacitance change signal of any one of the conductive elements of the two-dimensional array.
  • the strain electrical signal includes a mutual capacitance change signal between two adjacent conductive elements of the two-dimensional array.
  • the two-dimensional array includes a plurality of conductive elements arranged in a first direction and a plurality of conductive elements arranged in a second direction, the first direction being perpendicular to the the second direction.
  • the two adjacent conductive elements are two adjacent conductive elements along the first direction or two adjacent conductive elements along the second direction, and the The first direction is perpendicular to the second direction.
  • the strain electrical signal includes a mutual capacitance change signal between any two non-adjacent conductive elements of the two-dimensional array.
  • the strain sensing part includes two strain sensing devices, the two strain sensing devices are disposed opposite to each other, and an insulation is disposed between the two strain sensing devices gap.
  • the strain sensing part includes a first strain sensing device and a second strain sensing device
  • the conductive element is a conductive strip
  • the first strain sensing device includes a A plurality of first conductive strips arranged in one direction
  • the second strain sensing device includes a plurality of second conductive strips arranged in a second direction, two adjacent first conductive strips are insulated, and two adjacent first conductive strips are insulated.
  • the second conductive strips are insulated, and the first direction is perpendicular to the second direction.
  • the electrical strain signal includes the electrical signals between the first conductive strips of the first strain sensing device and the second conductive strips of the second strain sensing device.
  • Mutual capacitance change signal includes the electrical signals between the first conductive strips of the first strain sensing device and the second conductive strips of the second strain sensing device.
  • the strain sensing part includes a first strain sensing device and a second strain sensing device
  • the first strain sensing device includes a first rectangular conductive element array
  • the first rectangular Each first conductive element of the conductive element array is insulated
  • the second strain sensing device includes a second rectangular conductive element array
  • each second conductive element of the second rectangular conductive element array is insulated between each other
  • the first rectangular conductive element array Each of the first conductive elements is disposed opposite to each of the second conductive elements of the second rectangular conductive element array.
  • the strain electrical signal includes first and second conductive elements disposed opposite to the first rectangular conductive element array and the second rectangular conductive element array Mutual capacitance change signal between.
  • the insulating gap is filled with a flexible insulating substance.
  • a driving electrical signal is simultaneously applied to all conductive elements of the strain sensing device, and the self-capacitance of each conductive element is measured at the same time, if the self-capacitance of the conductive element changes Then a self-capacitance change signal is generated.
  • a driving electrical signal is sequentially applied to each conductive element of all conductive elements of the strain sensing device, and the self-capacitance of each conductive element is measured in sequence.
  • a self-capacitance change signal is generated when the self-capacitance changes.
  • the deformation degree is determined based on the magnitude of the self-capacitance change signal
  • the deformation position is determined based on the position of the conductive element whose self-capacitance changes in the two-dimensional array.
  • the conductive elements arranged in the first direction of the two-dimensional array are divided into multiple groups along the second direction, and each group of conductive elements of the multiple groups of conductive elements is simultaneously Do the following:
  • a driving electrical signal is sequentially applied to a mutual capacitor formed by two adjacent conductive elements, and the mutual capacitance is measured, and a mutual capacitance change signal is generated if the mutual capacitance changes.
  • the conductive elements arranged in the first direction of the two-dimensional array are divided into multiple groups along the second direction, and each group of conductive elements in the multiple groups of conductive elements is divided according to Do the following in sequence:
  • a driving electrical signal is sequentially applied to a mutual capacitor formed by two adjacent conductive elements, and the mutual capacitance is measured, and a mutual capacitance change signal is generated if the mutual capacitance changes.
  • the conductive elements arranged in the second direction of the two-dimensional array are divided into multiple groups along the first direction, and the conductive elements of each group of the multiple groups of conductive elements are simultaneously Do the following:
  • a driving electrical signal is sequentially applied to a mutual capacitor formed by two adjacent conductive elements, and the mutual capacitance is measured, and a mutual capacitance change signal is generated if the mutual capacitance changes.
  • the conductive elements arranged in the second direction of the two-dimensional array are divided into multiple groups along the first direction, and each group of conductive elements of the multiple groups of conductive elements is divided according to Do the following in sequence:
  • a driving electrical signal is sequentially applied to a mutual capacitor formed by two adjacent conductive elements, and the mutual capacitance is measured, and a mutual capacitance change signal is generated if the mutual capacitance changes.
  • the conductive elements arranged in the first direction of the two-dimensional array are divided into multiple groups along the second direction, and each group of conductive elements of the multiple groups of conductive elements is simultaneously Do the following:
  • a driving electric signal is sequentially applied to a mutual capacitor formed by two conductive elements with a predetermined conductive element interval, and the mutual capacitance is measured, and a mutual capacitance change signal is generated if the mutual capacitance changes.
  • the conductive elements arranged in the second direction of the two-dimensional array are divided into multiple groups along the first direction, and the conductive elements of each group of the multiple groups of conductive elements are simultaneously Do the following:
  • a driving electric signal is sequentially applied to a mutual capacitor formed by two conductive elements with a predetermined conductive element interval, and the mutual capacitance is measured, and a mutual capacitance change signal is generated if the mutual capacitance changes.
  • the conductive elements arranged in the first direction of the two-dimensional array are divided into multiple groups along the second direction, and each group of conductive elements in the multiple groups of conductive elements is divided according to Do the following in sequence:
  • a driving electric signal is sequentially applied to a mutual capacitor formed by two conductive elements with a predetermined conductive element interval, and the mutual capacitance is measured, and a mutual capacitance change signal is generated if the mutual capacitance changes.
  • the conductive elements arranged in the second direction of the two-dimensional array are divided into multiple groups along the first direction, and each group of conductive elements of the multiple groups of conductive elements is divided according to Do the following in sequence:
  • a driving electric signal is sequentially applied to a mutual capacitor formed by two conductive elements with a predetermined conductive element interval, and the mutual capacitance is measured, and a mutual capacitance change signal is generated if the mutual capacitance changes.
  • the two-dimensional array includes a first sub-array and a second sub-array, and the first sub-array and the second sub-array are arranged in the same plane area ;
  • the first sub-array includes a plurality of first series conductive element groups, the first series conductive element group including a plurality of conductive elements connected in series along a first direction, a plurality of the first series conductive element groups in a second direction arrangement; insulation between each first series conductive element group;
  • the second sub-array includes a plurality of second series conductive element groups, the second series conductive element group includes a plurality of conductive elements connected in series along a second direction, the plurality of second series conductive element groups are along the first direction arrangement; insulation between each second group of conductive elements in series;
  • the first direction and the second direction are perpendicular to each other.
  • the shape of the conductive elements of the first sub-array is the same as the shape of the conductive elements of the second sub-array.
  • driving electrical signals are simultaneously applied to all first series-connected conductive element groups of the first sub-array and to all second series-connected conductive element groups of the second sub-array, And simultaneously measure the self-capacitance of all the first series conductive element groups of the first sub-array and all the second series-connected conductive element groups of the second sub-array, and generate a self-capacitance change signal if the self-capacitance changes.
  • the position information in the first sub-array of the first series-connected conductive element group in which at least one self-capacitance of the first sub-array changes and the second sub-array The position information of at least one second series conductive element group of the array whose self-capacitance changes in the second sub-array determines the deformation position of the two-dimensional array.
  • driving electrical signals are simultaneously applied to all first series-connected conductive element groups of the first sub-array and to all second series-connected conductive element groups of the second sub-array, At the same time, the mutual capacitance of each mutual capacitor formed by each first series conductive element group of the first sub-array and each second series conductive element group of the second sub-array is measured, and if the mutual capacitance changes, it will be generated.
  • Mutual capacitance change signal is simultaneously applied to all first series-connected conductive element groups of the first sub-array and to all second series-connected conductive element groups of the second sub-array.
  • the position information of the first series conductive element group of the mutual capacitor in the first sub-array is based on the change of the mutual capacitance, and the second series conductive element group is located in the first sub-array.
  • the position information in the two sub-arrays determines the deformation position of the two-dimensional array.
  • the battery deformation detection device is characterized in that, the strain sensing part further includes a first substrate layer and a second substrate layer, and the strain sensing device is disposed on the first substrate layer and the second substrate layer. between the second substrate layers and held by the first substrate layer and the second substrate layer.
  • the first substrate layer and the second substrate layer are both insulating materials.
  • both the first substrate layer and the second substrate layer are flexible substrates.
  • the strain sensing part further includes a first substrate layer and a second substrate layer, and the two strain sensing devices are respectively disposed on the first substrate layer and the second substrate layer. on the second substrate layer.
  • the strain sensing portion further includes a support portion disposed between the first substrate layer and the second substrate layer.
  • the support portion is provided at an edge of the first substrate layer and the second substrate layer.
  • the support portion includes a plurality of discrete support portions, or the support portions are of an integrated structure.
  • the first substrate layer and the second substrate layer are both insulating materials.
  • the first substrate layer and the second substrate layer are both flexible materials.
  • the strain sensing part can be disposed between two adjacent batteries.
  • the strain sensing portion can be provided between the battery and the case.
  • the strain sensing part can also generate the strain electrical signal based on the deformation of the casing of the battery device.
  • the battery deformation detection device further includes a drive detection part that applies a drive electrical signal to the strain sensing part and performs an operation on the strain electrical signal generated by the strain sensing part detection.
  • the driving detection part includes: a driving circuit for providing a driving electrical signal to the strain sensing part; and a detection circuit for Detecting the electrical strain signal; and a controller, the controller controls the driving circuit to provide a driving signal to the strain sensing portion, and processes the electrical strain signal obtained by the detecting circuit to generate a processed electrical strain signal. Strain electrical signal.
  • the drive detection part further includes a memory, and the memory stores the electric strain signal processed by the controller.
  • the detection circuit includes a capacitance detection circuit, and the capacitance detection circuit detects the self-capacitance change signal of each conductive element, and/or detects the difference between the two conductive elements. The mutual capacitance change signal is detected.
  • the capacitance detection circuit includes a charge signal conversion sub-circuit that converts the self-capacitance accumulated charge of each conductive element into a voltage signal, and/or Converts the accumulated charges in the mutual capacitance between the two conductive elements into a voltage signal.
  • the capacitance detection circuit further includes a signal post-processing circuit, and the signal post-processing circuit performs post-processing on the voltage signal output by the charge signal conversion sub-circuit, the Post-processing includes filtering and analog-to-digital conversion.
  • the charge signal conversion sub-circuit includes a first amplifier; a driving signal is applied to the self-capacitance or the mutual capacitance; the first amplifier converts the self-capacitance The accumulated charge of the capacitance or the mutual capacitance is converted into a voltage signal.
  • the signal post-processing circuit further includes a demodulator, an oscillator, an accumulator, and a register.
  • the capacitance detection circuit includes a charge signal conversion sub-circuit that converts the self-capacitance accumulated charge of each conductive element into a frequency signal, and/or Converts the accumulative charge of the mutual capacitance between the two conductive elements into a frequency signal.
  • the charge signal conversion sub-circuit includes a constant current source, a first comparator, a second comparator, and a multiplexer, and the constant current source is controlled to The self-capacitance or the mutual capacitance is charged or discharged, and the triangular waveform voltage signal generated by the charging and discharging of the self-capacitance or the mutual capacitance is input to the first comparator and the second comparator respectively , the first comparator has a first threshold voltage, the second comparator has a second threshold voltage, the first comparator and the second comparator convert the triangular waveform voltage signal into a square wave electrical
  • the multiplexer adjusts the amplitude of the square-wave electrical signal, and the frequency of the square-wave electrical signal output by the multiplexer is the charge and discharge of the self-capacitance or the mutual capacitance function of current.
  • the capacitance detection circuit includes a charge signal conversion sub-circuit that converts the self-capacitance accumulated charge of each conductive element into a pulse width signal, and/ Or convert the accumulated charge of mutual capacitance between two conductive elements into a pulse width signal.
  • the charge signal conversion sub-circuit includes a constant current source, a transconductance amplifier, and a comparator, and the constant current source is controlled to adjust the self-capacitance or the mutual
  • the capacitor is charged or discharged
  • the self-capacitance or mutual capacitance is connected across the input and output of the transconductance amplifier
  • the output of the transconductance amplifier is a triangular waveform voltage signal
  • the comparator compares the triangular waveform The voltage signal and the threshold voltage signal are compared, and when the triangular waveform voltage signal is greater than the threshold voltage signal, the comparator outputs a high level.
  • the capacitance detection circuit includes a charge signal conversion sub-circuit that converts the self-capacitance accumulated charge of each conductive element into a digital signal, and/or Converts the charge accumulated in the mutual capacitance between two conductive elements into a digital signal.
  • the charge signal conversion sub-circuit includes an integrator and a comparator, and the integrator is controlled to accumulate the accumulated charges of the mutual capacitance or the self-capacitance and converted into a voltage signal, and the integrator is controlled to accumulate and convert the accumulated charge of the self-capacitance or the capacitance difference of the mutual capacitance and the reference capacitance into a voltage signal, based on the positive and negative of the voltage signal,
  • the comparator outputs a high level or a low level.
  • the capacitance detection circuit includes a charge signal conversion subcircuit and a signal amplification subcircuit
  • the charge signal conversion subcircuit converts the self-capacitance accumulated charge of each conductive element into a voltage signal, and/or convert the accumulated charges of the mutual capacitance between the two conductive elements into a voltage signal
  • the signal amplifying sub-circuit amplifies the voltage signal to generate an amplified voltage signal.
  • the capacitance detection circuit further includes a signal post-processing sub-circuit, and the signal post-processing sub-circuit includes at least a filter and an analog-to-digital converter.
  • the charge signal conversion sub-circuit includes a reference capacitor, a first amplifier, and a second amplifier, and the first amplifier converts the accumulation of the self-capacitance or the mutual capacitance The charge is converted into a first voltage signal, and the second amplifier converts the accumulated charge of the reference capacitor into a second voltage signal.
  • the signal amplifying sub-circuit includes a common-mode amplifier, and the common-mode amplifier amplifies the difference between the first voltage signal and the second voltage signal output.
  • the charge signal conversion sub-circuit includes a reference capacitor, a first amplifier, a second amplifier, and a rectifier & filter
  • the first amplifier converts the self-capacitance or all
  • the accumulated charge of the mutual capacitance is converted into a first voltage signal
  • the second amplifier converts the accumulated charge of the reference capacitor into a second voltage signal
  • the rectifier & filter is used to convert the first voltage signal and the second voltage signal.
  • the two voltage signals are respectively rectified and filtered and then output.
  • the signal amplifying sub-circuit includes an instrumentation amplifier, and the instrumentation amplifier amplifies the difference between the first voltage signal and the second voltage signal and outputs it.
  • a battery management system comprising: the battery deformation detection device according to any one of the above.
  • FIG. 1 is a schematic structural diagram of a battery device provided with a battery deformation detection device according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic structural diagram of a battery device provided with a battery deformation detection device according to still another embodiment of the present disclosure.
  • FIG. 3 is a schematic structural diagram of a strain sensing portion of a battery strain detection device according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of a strain sensing device of a strain sensing portion of a battery strain detection device according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a strain sensing portion of a battery strain detection device according to still another embodiment of the present disclosure.
  • FIG. 6 is one of the schematic diagrams of the manner in which a mutual capacitor can be formed between the conductive elements of the strain sensing device of the strain sensing part of the battery strain detection device according to an embodiment of the disclosure.
  • FIG. 7 is a schematic structural diagram of a strain sensing portion of a battery strain detection device according to still another embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of one of the strain sensing devices of the strain sensing portion of the battery strain detection device according to still another embodiment of the disclosure.
  • FIG. 9 is a schematic structural diagram of the second strain sensing device of the strain sensing portion of the battery strain detection device according to still another embodiment of the disclosure.
  • FIG. 10 is a schematic structural diagram of a strain sensing device of a strain sensing portion of a battery strain detection device according to still another embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of the first sub-array of the strain sensing device shown in FIG. 10 .
  • FIG. 12 is a schematic structural diagram of the second sub-array of the strain sensing device shown in FIG. 10 .
  • FIG. 13 is a schematic structural diagram of a strain sensing device of a strain sensing portion of a battery strain detection device according to still another embodiment of the disclosure.
  • FIG. 14 is a schematic structural diagram of a drive detection part of a battery deformation detection device according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic structural diagram of a detection circuit of a drive detection unit of a battery deformation detection device according to an embodiment of the present disclosure.
  • 16 is a schematic structural diagram of a charge signal conversion sub-circuit of a detection circuit of a drive detection unit of a battery strain detection device according to an embodiment of the present disclosure.
  • 17 is a schematic structural diagram of a charge signal conversion sub-circuit of a detection circuit of a drive detection unit of a battery strain detection device according to still another embodiment of the present disclosure.
  • FIG. 18 is a schematic structural diagram of a detection circuit of a drive detection unit of a battery strain detection device according to an embodiment of the present disclosure.
  • FIG. 19 is a schematic structural diagram of a charge signal conversion sub-circuit of a detection circuit of a drive detection unit of a battery strain detection device according to still another embodiment of the present disclosure.
  • FIG. 20 is a schematic structural diagram of a charge signal conversion sub-circuit of a detection circuit of a drive detection part of a battery strain detection device according to still another embodiment of the present disclosure.
  • 21 is a schematic structural diagram of a charge signal conversion sub-circuit of a detection circuit of a drive detection part of a battery strain detection device according to still another embodiment of the disclosure.
  • FIG. 22 is a timing chart of the clock signal (ck) and the output (D) of the comparator in FIG. 21 .
  • FIG. 23 is a schematic structural diagram of a detection circuit of a drive detection unit of a battery deformation detection device according to still another embodiment of the present disclosure.
  • FIG. 24 is a schematic structural diagram of a detection circuit of a drive detection unit of a battery strain detection device according to still another embodiment of the present disclosure.
  • 25 is a schematic structural diagram of a detection circuit of a drive detection unit of a battery deformation detection device according to still another embodiment of the present disclosure.
  • 26 is a schematic diagram of a battery management system according to one embodiment of the present disclosure.
  • cross-hatching and/or hatching in the drawings is generally used to clarify boundaries between adjacent components.
  • the presence or absence of cross-hatching or shading does not convey or represent any particular material, material properties, dimensions, proportions, commonalities between the illustrated components and/or any other characteristics of the components, any preferences or requirements for attributes, properties, etc.
  • the size and relative sizes of components may be exaggerated for clarity and/or descriptive purposes.
  • the specific process sequence may be performed in a different order than described. For example, two successively described processes may be performed substantially concurrently or in the reverse order of that described.
  • the same reference numerals denote the same components.
  • connection When an element is referred to as being “on” or “over”, “connected to” or “coupled to” another element, the element can be directly on, directly connected to, the other element Either directly coupled to the other component, or intermediate components may be present. However, when an element is referred to as being “directly on,” “directly connected to,” or “directly coupled to” another element, there are no intervening elements present. To this end, the term “connected” may refer to a physical connection, electrical connection, etc., with or without intervening components.
  • the present disclosure may use terms such as “under”, “under”, “under”, “under”, “above”, “on”, “at” Spatially relative terms such as “above,” “higher,” and “side (eg, as in “sidewall”)” to describe one element to another (other) element as shown in the figures Relationship.
  • spatially relative terms are intended to encompass different orientations of the device in use, operation, and/or manufacture. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features.
  • the exemplary term “under” can encompass both an orientation of "above” and “below.”
  • the device may be otherwise oriented (eg, rotated 90 degrees or at other orientations) and, as such, the spatially relative descriptors used herein should be interpreted accordingly.
  • the present disclosure provides a battery deformation detection device, wherein the battery deformation detection device can at least be used to detect the deformation of the battery, wherein the deformation can be the battery bulge-type deformation, or the deformation formed after the battery is externally squeezed.
  • the cause of the external squeeze may include, for example, a collision or an acceleration, or the like.
  • FIG. 1 is a schematic structural diagram of a battery device provided with a battery deformation detection device according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic structural diagram of a battery device provided with a battery deformation detection device according to still another embodiment of the present disclosure.
  • FIG. 3 is a schematic structural diagram of a strain sensing portion of a battery strain detection device according to an embodiment of the present disclosure.
  • 4 is a schematic structural diagram of a strain sensing device of a strain sensing portion of a battery strain detection device according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a strain sensing portion of a battery strain detection device according to still another embodiment of the present disclosure.
  • FIG. 6 is one of the schematic diagrams of the manner in which a mutual capacitor can be formed between the conductive elements of the strain sensing device of the strain sensing portion of the battery strain detection device according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a strain sensing portion of a battery strain detection device according to still another embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of one of the strain sensing devices of the strain sensing portion of the battery strain detection device according to still another embodiment of the disclosure.
  • 9 is a schematic structural diagram of the second strain sensing device of the strain sensing portion of the battery strain detection device according to still another embodiment of the disclosure.
  • FIG. 10 is a schematic structural diagram of a strain sensing device of a strain sensing portion of a battery strain detection device according to still another embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of the first sub-array of the strain sensing device shown in FIG. 10 .
  • FIG. 12 is a schematic structural diagram of the second sub-array of the strain sensing device shown in FIG. 10 .
  • 13 is a schematic structural diagram of a strain sensing device of a strain sensing portion of a battery strain detection device according to still another embodiment of the disclosure.
  • 14 is a schematic structural diagram of a drive detection part of a battery deformation detection device according to an embodiment of the present disclosure.
  • 15 is a schematic structural diagram of a detection circuit of a drive detection unit of a battery deformation detection device according to an embodiment of the present disclosure.
  • 16 is a schematic structural diagram of a charge signal conversion sub-circuit of a detection circuit of a drive detection unit of a battery strain detection device according to an embodiment of the present disclosure.
  • 17 is a schematic structural diagram of a charge signal conversion sub-circuit of a detection circuit of a drive detection unit of a battery strain detection device according to still another embodiment of the present disclosure.
  • 18 is a schematic structural diagram of a detection circuit of a drive detection unit of a battery strain detection device according to an embodiment of the present disclosure.
  • 19 is a schematic structural diagram of a charge signal conversion sub-circuit of a detection circuit of a drive detection unit of a battery strain detection device according to still another embodiment of the present disclosure.
  • 20 is a schematic structural diagram of a charge signal conversion sub-circuit of a detection circuit of a drive detection part of a battery strain detection device according to still another embodiment of the present disclosure.
  • 21 is a schematic structural diagram of a charge signal conversion sub-circuit of a detection circuit of a drive detection part of a battery strain detection device according to still another embodiment of the disclosure.
  • FIG. 22 is a timing chart of the clock signal (ck) and the output (D) of the comparator in FIG. 21 .
  • 23 is a schematic structural diagram of a detection circuit of a drive detection unit of a battery deformation detection device according to still another embodiment of the present disclosure.
  • 24 is a schematic structural diagram of a detection circuit of a drive detection unit of a battery strain detection device according to still another embodiment of the present disclosure.
  • 25 is a schematic structural diagram of a detection circuit of a drive detection unit of a battery deformation detection device according to still another embodiment of the present disclosure.
  • 26 is a schematic diagram of a battery management system according to one embodiment of the present disclosure.
  • the battery deformation detection device and the battery management system of the present disclosure will be described in detail below with reference to FIGS. 1 to 26 .
  • a battery deformation detection device includes:
  • At least one strain sensing portion 12 is disposed on at least one surface of the battery 11 of the battery device 10 , and the strain sensing portion 12 can at least generate a strain electrical signal based on the deformation of the battery 11 of the battery device 10 .
  • the signal at least indicates the occurrence of deformation
  • the strain sensing portion 12 includes at least one strain sensing device 121 , the strain sensing device 121 includes a plurality of conductive elements 1211 , and the plurality of conductive elements 1211 are evenly arranged in a two-dimensional array. Insulation; the strain sensing device 121 can deform the position of the two-dimensional array corresponding to the deformation of the battery in response to the deformation of the battery, and the strain sensing part 12 generates a strain electrical signal based on the deformation of the two-dimensional array.
  • the conductive element 1211 may be a sheet-like conductive film, such as ITO (Indium Tin Oxide).
  • the battery device 10 may include only one battery 11 , and the battery 11 may be a battery pack including a plurality of battery cells, or may be a battery cell. It can be seen from FIG. 2 that the battery device 10 includes a plurality of batteries 11, and FIG. 2 exemplarily shows four batteries 11. The batteries 11 may be a battery pack including a plurality of battery cells, or may be a battery cell.
  • the battery deformation detection device shown in FIG. 1 has four strain sensing parts 12 , and the four strain sensing parts 12 are respectively disposed between the four side surfaces of the battery 11 and the casing 15 .
  • the strain sensing portion 12 may also be provided between the top surface of the battery 11 and the case 15 , or may be provided between the bottom surface of the battery 11 and the case 15 .
  • the strain sensing portion 12 is provided between each battery 11 , and the strain sensing portion 12 is also provided between the side surface of the battery 11 and the case 15 .
  • the electrical strain signal includes the self-capacitance change signal of any one of the conductive elements 1211 in the two-dimensional array.
  • the electrical strain signal includes the change signal of mutual capacitance between two adjacent conductive elements 1211 in the two-dimensional array.
  • the two-dimensional array includes a plurality of conductive elements 1211 arranged in a first direction and a plurality of conductive elements 1211 arranged in a second direction.
  • the first direction perpendicular to the second direction.
  • the two adjacent conductive elements 1211 are two adjacent conductive elements along the first direction or two adjacent conductive elements along the second direction, and the first direction is perpendicular to the second direction.
  • the strain electrical signal includes a mutual capacitance change signal between any two non-adjacent conductive elements 1211 of the two-dimensional array.
  • the strain sensing portion 12 shown in FIG. 3 has only one strain sensing device 121
  • the strain sensing portion 12 shown in FIG. 5 has two strain sensing devices 121 .
  • the strain sensing portion 12 includes two strain sensing devices 121 , the two strain sensing devices 121 are disposed opposite to each other, and an insulating gap is disposed between the two strain sensing devices 121 .
  • the above-mentioned insulating gap can be realized by a flexible insulating material, and the above-mentioned insulating gap can also be air or vacuum.
  • the driving electrical signal is applied to all the conductive elements 1211 of the strain sensing device 121 at the same time, and the self-capacitance of each conductive element 1211 is measured at the same time, if the self-capacitance of the conductive element 1211 A change occurs to generate a self-capacitance change signal.
  • driving electrical signals are sequentially applied to each conductive element 1211 of all conductive elements 1211 of the strain sensing device 121, and the self-capacitance of each conductive element 1211 is measured in turn.
  • the self-capacitance of the element 1211 changes, a self-capacitance change signal is generated.
  • the degree of deformation is determined based on the magnitude of the self-capacitance change signal, and the deformation position is determined based on the position of the conductive element 1211 whose self-capacitance changes in the two-dimensional array.
  • the conductive elements 1211 arranged in the first direction (the horizontal direction in the figure) of the two-dimensional array are divided into multiple groups along the second direction. , the following operations are simultaneously performed for each group of conductive elements 1211 of the multiple groups of conductive elements 1211:
  • a driving electric signal is sequentially applied to the mutual capacitor formed by two adjacent conductive elements 1211, and the mutual capacitance is measured, and a mutual capacitance change signal is generated if the mutual capacitance changes.
  • the conductive elements 1211 arranged in the first direction (the horizontal direction in the figure) of the two-dimensional array are divided into multiple groups along the second direction. , perform the following operations in sequence for each group of conductive elements 1211 of the multiple groups of conductive elements 1211:
  • a driving electric signal is sequentially applied to the mutual capacitor formed by two adjacent conductive elements 1211, and the mutual capacitance is measured, and a mutual capacitance change signal is generated if the mutual capacitance changes.
  • the conductive elements 1211 arranged in the second direction (the vertical direction shown in the figure) of the two-dimensional array are divided into multiple For each group of conductive elements 1211 of the multiple groups of conductive elements 1211, the following operations are performed simultaneously:
  • a driving electric signal is sequentially applied to the mutual capacitor formed by two adjacent conductive elements 1211, and the mutual capacitance is measured, and a mutual capacitance change signal is generated if the mutual capacitance changes.
  • the conductive elements 1211 arranged in the second direction (the vertical direction shown in the figure) of the two-dimensional array are divided into multiple
  • the following operations are performed in sequence:
  • a driving electric signal is sequentially applied to the mutual capacitor formed by two adjacent conductive elements 1211, and the mutual capacitance is measured, and a mutual capacitance change signal is generated if the mutual capacitance changes.
  • the conductive elements 1211 arranged in the first direction (the horizontal direction in the figure) of the two-dimensional array are divided into multiple groups along the second direction. , the following operations are simultaneously performed for each group of conductive elements 1211 of the multiple groups of conductive elements 1211:
  • a driving electric signal is sequentially applied to a mutual capacitor formed by two conductive elements 1211 with a predetermined conductive element interval, and the mutual capacitance is measured, and a mutual capacitance change signal is generated if the mutual capacitance changes.
  • the conductive elements 1211 arranged in the second direction (the vertical direction shown in the figure) of the two-dimensional array are divided into multiple For each group of conductive elements 1211 of the multiple groups of conductive elements 1211, the following operations are performed simultaneously:
  • a driving electric signal is sequentially applied to a mutual capacitor formed by two conductive elements 1211 with a predetermined conductive element interval, and the mutual capacitance is measured, and a mutual capacitance change signal is generated if the mutual capacitance changes.
  • the conductive elements 1211 arranged in the first direction (the horizontal direction in the figure) of the two-dimensional array are divided into multiple groups along the second direction. , perform the following operations in sequence for each group of conductive elements 1211 of the multiple groups of conductive elements 1211:
  • a driving electric signal is sequentially applied to a mutual capacitor formed by two conductive elements 1211 with a predetermined conductive element interval, and the mutual capacitance is measured, and a mutual capacitance change signal is generated if the mutual capacitance changes.
  • the conductive elements 1211 arranged in the second direction (the vertical direction shown in the figure) of the two-dimensional array are divided into multiple
  • the following operations are performed in sequence:
  • a driving electric signal is sequentially applied to a mutual capacitor formed by two conductive elements 1211 with a predetermined conductive element interval, and the mutual capacitance is measured, and a mutual capacitance change signal is generated if the mutual capacitance changes.
  • FIG. 7 is a schematic structural diagram of a strain sensing portion of a battery strain detection device according to still another embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of one of the strain sensing devices of the strain sensing portion of the battery strain detection device according to still another embodiment of the disclosure.
  • 9 is a schematic structural diagram of the second strain sensing device of the strain sensing portion of the battery strain detection device according to still another embodiment of the disclosure.
  • the strain sensing part of the battery deformation detection device includes a first strain sensing device 121 and a second strain sensing device 122
  • the conductive element is a conductive strip
  • the first strain sensing device 121 includes a first strain sensing device 121 along the first direction ( A plurality of first conductive strips 1211 arranged in the horizontal direction in the figure
  • the second strain sensing device 122 includes a plurality of second conductive strips 1221 arranged in the second direction (the vertical direction in the figure), and two adjacent first conductive strips 1221
  • the conductive strips 1211 are insulated, two adjacent second conductive strips 1221 are insulated, and the first direction is perpendicular to the second direction.
  • the strain electrical signal includes a mutual capacitance change signal between each first conductive strip 1211 of the first strain sensing device 121 and each second conductive strip 1221 of the second strain sensing device 122 .
  • the strain sensing portion 12 includes a first strain sensing device and a second strain sensing device, the first strain sensing device includes a first rectangular conductive element array, and the first rectangular conductive element Each first conductive element of the array is insulated, the second strain sensing device includes a second rectangular conductive element array, each second conductive element of the second rectangular conductive element array is insulated between each other, and each of the first rectangular conductive element arrays is insulated.
  • the conductive elements are disposed opposite to the respective second conductive elements of the second array of rectangular conductive elements.
  • the strain electrical signal includes the mutual capacitance change signal between the first conductive element and the second conductive element disposed oppositely in the first rectangular conductive element array and the second rectangular conductive element array.
  • FIG. 7 to 9 show schematic structural diagrams of the strain sensing device 121 according to still another embodiment of the present disclosure.
  • the two-dimensional array of the strain sensing devices 121 of the strain sensing portion 12 of the battery deformation detection device includes a first sub-array (V1, V2, V3, V4) and a second sub-array (H1, H2, H3, H4), the first sub-array and the second sub-array are arranged in the same plane area;
  • the first sub-array includes a plurality of first series conductive element groups (V1, V2, V3, V4), the first series conductive element group includes a plurality of conductive elements connected in series along a first direction, and the plurality of first series conductive element groups are arranged along the first direction. Arrangement in the second direction; insulation between each first series conductive element group;
  • the second sub-array includes a plurality of second series conductive element groups (H1, H2, H3, H4), the second series conductive element group includes a plurality of conductive elements connected in series along the second direction, and the plurality of second series conductive element groups are along the Arrangement in the first direction; insulation between each second group of conductive elements in series;
  • the first direction and the second direction are perpendicular to each other.
  • strain sensing device 121 shown in FIG. 3 and FIG. 5 may adopt the strain sensing device 121 shown in FIG. 7 to FIG. 9 .
  • first series conductive element groups of the first sub-array and the number of second series conductive element groups of the second sub-array shown in FIGS. 7-9 are merely exemplary.
  • the shape of the conductive elements of the first sub-array is the same as the shape of the conductive elements of the second sub-array.
  • the conductive elements may take the shape of a rhombus as in FIGS. 7 to 9 , or other shapes, and the shapes of the conductive elements shown in FIGS. 7 to 9 are only preferred shapes.
  • the driving electrical signal is applied to all the first series conductive element groups of the first sub-array and all the second series conductive element groups of the second sub-array simultaneously, and the first The self-capacitances of all first series conductive element groups of the sub-array and all second series-connected conductive element groups of the second sub-array are measured, and a self-capacitance change signal is generated if the self-capacitance changes.
  • the battery deformation detection device of the above embodiment preferably, based on the position information of the first series conductive element group in the first sub-array whose self-capacitance of at least one of the first sub-array changes and at least one self-capacitance of the second sub-array The position information of the second series conductive element group whose capacitance changes in the second sub-array determines the deformation position of the two-dimensional array.
  • the driving electrical signal is applied to all the first series conductive element groups of the first sub-array and all the second series conductive element groups of the second sub-array simultaneously, and the first The mutual capacitance of each mutual capacitor formed by each first series conductive element group of the sub-array and each second series conductive element group of the second sub-array is measured, and a mutual capacitance change signal is generated if the mutual capacitance changes.
  • the battery deformation detection device of the above-mentioned embodiment preferably, based on the position information of the first series conductive element group in the first subarray of the mutual capacitor whose mutual capacitance has changed, and the second series conductive element group in the second subarray The position information in , determines the deformation position of the two-dimensional array.
  • the strain sensing portion 12 further includes a first substrate layer 125 and a second substrate layer 126 , and the strain sensing device 121 is disposed on the first substrate layer 125 and the second substrate layer 126 . between the second substrate layers 126 and held by the first substrate layer 125 and the second substrate layer 126 .
  • the first substrate layer 125 and the second substrate layer 126 are both insulating materials.
  • the first substrate layer 125 and the second substrate layer 126 are both flexible substrates.
  • the two strain sensing devices 121 are respectively disposed on the first substrate layer 125 and the second substrate layer 126 .
  • the strain sensing portion 12 further includes a support portion 124 , and the support portion 124 is disposed between the first substrate layer 125 and the second substrate layer 126 .
  • the support portion 124 is disposed at the edges of the first substrate layer 125 and the second substrate layer 126 .
  • the support portion 124 includes a plurality of discrete support portions, or the support portion 124 has an integrated structure.
  • the strain sensing portion 12 of the battery deformation detection device of each of the above-described embodiments can be provided between two adjacent batteries 11 .
  • the strain sensing portion 12 of the battery deformation detection device of each of the above embodiments can be provided between the battery 11 and the casing 15 , and the strain sensing portion 12 can also generate a strain electrical signal based on the deformation of the casing 15 of the battery device 10 .
  • the battery deformation detection device further includes a drive detection part 13 , and the drive detection part 13 applies a drive electrical signal to the strain sensing part 12 and applies a drive electric signal to the strain sensing part 12 .
  • the generated strain electrical signal is detected.
  • the drive detection unit 13 includes:
  • a drive circuit for providing a drive electrical signal to the strain sensing portion 12; a detection circuit for detecting the strain electrical signal; and a controller for controlling the drive circuit to provide a drive signal to the strain sensing portion 12, and The strain electrical signal obtained by the detection circuit is processed to generate a processed strain electrical signal.
  • the drive detection unit 13 further includes a memory, and the memory stores the electrical strain signal processed by the controller.
  • the detection circuit 132 of the battery deformation detection device of the present disclosure will be described in detail below with reference to FIGS. 15 to 25 .
  • the detection circuit 132 includes a capacitance detection circuit, and the capacitance detection circuit detects the self-capacitance change signal of each conductive element, and/or the mutual capacitance change between the two conductive elements. signal is detected.
  • the capacitance detection circuit includes a charge signal conversion sub-circuit that converts the self-capacitance accumulated charges of each conductive element into a voltage signal, and/or converts the mutual capacitance between the two conductive elements The accumulated charge is converted into a voltage signal.
  • the capacitance detection circuit of the battery deformation detection device in the above embodiment further includes a signal post-processing circuit, which performs post-processing on the voltage signal output by the charge signal conversion subcircuit, and the post-processing includes filtering processing and analog-to-digital conversion processing.
  • the charge signal conversion sub-circuit includes a first amplifier, and the driving signal (V Stim ) is applied to the self-capacitance (Cx) or the mutual capacitance (Cx) ); the first amplifier converts the accumulated charge of the self-capacitance or mutual capacitance into a voltage signal Vout1.
  • the signal post-processing circuit further includes a demodulator 325 , an oscillator 326 , an accumulator 327 and a register 328 .
  • the capacitance detection circuit includes a charge signal conversion sub-circuit, which converts the self-capacitance accumulated charge of each conductive element into a frequency signal, and/or converts the mutual communication between the two conductive elements The accumulated charge of the capacitor is converted into a frequency signal.
  • the charge signal conversion sub-circuit includes a constant current source (I b ), a first comparator, a second comparator and a multiplexer, and the constant current source is controlled so as to control the self-capacitance (Cx ) or the mutual capacitance (Cx) is charged or discharged, and the triangular waveform voltage signal generated by the charging and discharging of the self-capacitance or the mutual capacitance is input to the first comparator and the second comparator respectively, and the first comparator has a first threshold voltage ( Vth1), the second comparator has a second threshold voltage (Vth2), the first comparator and the second comparator convert the triangular waveform voltage signal into a square wave electrical signal, and the multiplexer performs the amplitude of the square wave electrical signal.
  • Vth1 first threshold voltage
  • Vth2 second threshold voltage
  • Vth2 second threshold voltage
  • the frequency of the square wave electrical signal output by the multiplexer is a function of the charging and discharging current of the self-capacitance or mutual capacitance. Based on this, a capacitance change signal of self-capacitance or mutual capacitance can be generated.
  • the capacitance detection circuit includes a charge signal conversion sub-circuit, which converts the self-capacitance accumulated charge of each conductive element into a pulse width signal, and/or converts the electrical charge between the two conductive elements Mutual capacitance accumulated charges are converted into pulse width signals.
  • the charge signal conversion sub-circuit includes a constant current source (I b ), a transconductance amplifier (Gm) and a comparator, and the constant current source is controlled to adjust the self-capacitance (Cx) or the mutual capacitance (Cx) ) to charge or discharge, the self-capacitance or mutual capacitance is connected across the input and output ends of the transconductance amplifier, the output of the transconductance amplifier is a triangular waveform voltage signal, and the comparator compares the triangular waveform voltage signal and the threshold voltage signal, when When the triangular waveform voltage signal is greater than the threshold voltage signal, the comparator outputs a high level.
  • I b constant current source
  • Gm transconductance amplifier
  • the comparator compares the triangular waveform voltage signal and the threshold voltage signal, when When the triangular waveform voltage signal is greater than the threshold voltage signal, the comparator outputs a high level.
  • the capacitance detection circuit includes a charge signal conversion sub-circuit, which converts the self-capacitance accumulated charge of each conductive element into a digital signal, and/or converts the mutual communication between the two conductive elements The accumulated charge of the capacitor is converted into a digital signal.
  • the charge signal conversion sub-circuit includes an integrator and a comparator, the integrator is controlled to accumulate the mutual capacitance or the accumulated charge of the self capacitance and convert it into a voltage signal, and the integrator is controlled to compare the self capacitance or the mutual capacitance with the voltage signal.
  • the accumulated charge of the capacitance difference of the reference capacitance is accumulated and converted into a voltage signal, and the comparator outputs a high level or a low level based on the positive or negative of the voltage signal.
  • an amplifier with C int in its feedback loop is used as an integrator.
  • the output of the comparator (D) is zero, as shown in FIGS. 21 and 22, when D is zero, the two control signals ⁇ 1, ⁇ 2 are low.
  • the clock CK is high, Cx is charged by Vref , and in the second phase (CK is low), the amount of charge VrefCx is transferred to the integrating capacitor Cint .
  • the comparator output is zero.
  • the capacitance detection circuit includes a charge signal conversion subcircuit and a signal amplification subcircuit, the charge signal conversion subcircuit converts the self-capacitance accumulated charges of each conductive element into a voltage signal, and/ Or convert the accumulated charges of the mutual capacitance between the two conductive elements into a voltage signal, and the signal amplifying sub-circuit amplifies the voltage signal to generate an amplified voltage signal.
  • the capacitance detection circuit further includes a signal post-processing sub-circuit, which at least includes a filter and an analog-to-digital converter.
  • the charge signal conversion sub-circuit includes a reference capacitor (C ref ), a first amplifier ( OP1 ) and a second amplifier ( OP2 ), and the first amplifier converts the self-capacitance (C ref ) x ) or the accumulated charge of the mutual capacitance (C x ) is converted into a first voltage signal, and the second amplifier converts the accumulated charge of the reference capacitance (C ref ) into a second voltage signal.
  • the signal amplifying sub-circuit includes a common mode amplifier (CM1), and the common mode amplifier amplifies the difference between the first voltage signal and the second voltage signal and outputs it.
  • CM1 common mode amplifier
  • the charge signal conversion sub-circuit includes a reference capacitor (C ref ), a first amplifier, a second amplifier, and a rectifier & filter
  • the first amplifier converts the self-capacitance (C x ) ) or the accumulated charge of the mutual capacitance (C x ) is converted into a first voltage signal
  • the second amplifier converts the accumulated charge of the reference capacitor (C ref ) into a second voltage signal
  • the rectifier & filter converts the first voltage signal and the second voltage signal
  • the voltage signals are respectively rectified and filtered and then output.
  • the signal amplifying sub-circuit includes an instrumentation amplifier, and the instrumentation amplifier amplifies the difference between the first voltage signal and the second voltage signal and outputs it.
  • the present disclosure also provides a battery management system, including the battery deformation detection device of any one of the above embodiments.
  • Fig. 26 shows the battery management system in which the drive detection part 13 described above can be integrated into a chip, and the pin strain sensing part of the chip is connected.
  • references to the terms “one embodiment/mode”, “some embodiments/modes”, “example”, “specific example”, or “some examples”, etc. are intended to be combined with the description of the embodiment/mode
  • a particular feature, structure, material, or characteristic described by way of example or example is included in at least one embodiment/mode or example of the present application.
  • schematic representations of the above terms are not necessarily directed to the same embodiment/mode or example.
  • the particular features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments/means or examples.
  • those skilled in the art may combine and combine the different embodiments/modes or examples described in this specification and the features of the different embodiments/modes or examples without conflicting each other.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature delimited with “first”, “second” may expressly or implicitly include at least one of that feature.
  • plurality means at least two, such as two, three, etc., unless expressly and specifically defined otherwise.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

本公开提供了一种电池形变检测装置,包括:至少一个应变感应部,至少一个应变感应部被设置在电池装置的电池的至少一个表面上,应变感应部至少能够基于电池装置的电池的形变生成应变电信号,应变电信号至少指示形变的发生;其中,应变感应部包括至少一个应变感应器件,应变感应器件包括多个导电元件,多个导电元件均匀排列成二维阵列,每个导电元件与其他导电元件之间均绝缘;应变感应器件能够响应于电池的形变而使得二维阵列的与电池的形变对应的位置发生形变,应变感应部基于二维阵列的形变生成应变电信号。本公开还提供了一种电池管理系统。

Description

电池形变检测装置及电池管理系统 技术领域
本公开属于电池安全检测技术领域,本公开尤其涉及一种电池形变检测装置及电池管理系统。
背景技术
锂电池受到外力时将会发生形变,并且在电池老化后也会产生鼓包。当锂电池出现上述问题时,将会发生内部短路、起火爆炸等问题。因此锂电池的安全检测是必须的。
如何有效准确地检测电池形变并且如何预测电池将会出现的故障,是电池安全领域需要解决的问题。
发明内容
为了解决上述技术问题之一,本公开提供了一种电池形变检测装置及电池管理系统。
根据本公开的一个方面,提供一种电池形变检测装置,包括:
至少一个应变感应部,所述至少一个应变感应部被设置在电池装置的电池的至少一个表面上,所述应变感应部至少能够基于电池装置的电池的形变生成应变电信号,所述应变电信号至少指示所述形变的发生;
其中,所述应变感应部包括至少一个应变感应器件,所述应变感应器件包括多个导电元件,多个所述导电元件均匀排列成二维阵列,每个导电元件与其他导电元件之间均绝缘;所述应变感应器件能够响应于电池的形变而使得所述二维阵列的与电池的形变对应的位置发生形变,所述应变感应部基于所述二维阵列的所述形变生成所述应变电信号。
根据本公开的至少一个实施方式的电池形变检测装置,所述应变电信号包括所述二维阵列的任意一个导电元件的自电容变化信号。
根据本公开的至少一个实施方式的电池形变检测装置,所述应变电信号包括所述二维阵列的相邻的两个导电元件之间的互电容变化信号。
根据本公开的至少一个实施方式的电池形变检测装置,所述二维阵列包括沿第一方向排列的多个导电元件以及沿第二方向排列的多个导电元件,所述第一方向垂直于所述第二方向。
根据本公开的至少一个实施方式的电池形变检测装置,所述相邻的两个导电元件为沿第一方向相邻的两个导电元件或者沿第二方向相 邻的两个导电元件,所述第一方向垂直于所述第二方向。
根据本公开的至少一个实施方式的电池形变检测装置,所述应变电信号包括所述二维阵列的任意两个不相邻的导电元件之间的互电容变化信号。
根据本公开的至少一个实施方式的电池形变检测装置,所述应变感应部包括两个应变感应器件,两个所述应变感应器件相对地设置,且两个所述应变感应器件之间设置有绝缘间隙。
根据本公开的至少一个实施方式的电池形变检测装置,所述应变感应部包括第一应变感应器件以及第二应变感应器件,所述导电元件为导电条,所述第一应变感应器件包括沿第一方向排列的多个第一导电条,所述第二应变感应器件包括沿第二方向排列的多个第二导电条,相邻的两个第一导电条之间绝缘,相邻的两个第二导电条之间绝缘,所述第一方向垂直于所述第二方向。
根据本公开的至少一个实施方式的电池形变检测装置,所述应变电信号包括所述第一应变感应器件的各个第一导电条与所述第二应变感应器件的各个第二导电条之间的互电容变化信号。
根据本公开的至少一个实施方式的电池形变检测装置,所述应变感应部包括第一应变感应器件以及第二应变感应器件,所述第一应变感应器件包括第一矩形导电元件阵列,第一矩形导电元件阵列的各个第一导电元件之间绝缘,所述第二应变感应器件包括第二矩形导电元件阵列,第二矩形导电元件阵列的各个第二导电元件之间绝缘,第一矩形导电元件阵列的各个第一导电元件与第二矩形导电元件阵列的各个第二导电元件相对设置。
根据本公开的至少一个实施方式的电池形变检测装置,所述应变电信号包括所述第一矩形导电元件阵列与所述第二矩形导电元件阵列的相对设置的第一导电元件与第二导电元件之间的互电容变化信号。
根据本公开的至少一个实施方式的电池形变检测装置,所述绝缘间隙被柔性绝缘物质填充。
根据本公开的至少一个实施方式的电池形变检测装置,对所述应变感应器件的所有导电元件同时施加驱动电信号,并同时对各个导电元件的自电容进行测量,如果导电元件的自电容发生变化则生成自电容变化信号。
根据本公开的至少一个实施方式的电池形变检测装置,对所述应变感应器件的所有导电元件的各个导电元件依次施加驱动电信号,并依次对各个导电元件的自电容进行测量,如果导电元件的自电容发生变化则生成自电容变化信号。
根据本公开的至少一个实施方式的电池形变检测装置,基于所述自电容变化信号的大小判断形变程度,以及基于自电容发生变化的导电元件在二维阵列中的位置判断形变位置。
根据本公开的至少一个实施方式的电池形变检测装置,对于所述二维阵列的沿第一方向排列的导电元件,沿第二方向划分为多组,对于多组导电元件的各组导电元件同时进行以下操作:
对于由两个相邻的导电元件构成的互电容器按序施加驱动电信号,并对互电容进行测量,如果互电容发生变化则生成互电容变化信号。
根据本公开的至少一个实施方式的电池形变检测装置,对于所述二维阵列的沿第一方向排列的导电元件,沿第二方向划分为多组,对于多组导电元件的各组导电元件按序进行以下操作:
对于由两个相邻的导电元件构成的互电容器按序施加驱动电信号,并对互电容进行测量,如果互电容发生变化则生成互电容变化信号。
根据本公开的至少一个实施方式的电池形变检测装置,对于所述二维阵列的沿第二方向排列的导电元件,沿第一方向划分为多组,对于多组导电元件的各组导电元件同时进行以下操作:
对于由两个相邻的导电元件构成的互电容器按序施加驱动电信号,并对互电容进行测量,如果互电容发生变化则生成互电容变化信号。
根据本公开的至少一个实施方式的电池形变检测装置,对于所述二维阵列的沿第二方向排列的导电元件,沿第一方向划分为多组,对于多组导电元件的各组导电元件按序进行以下操作:
对于由两个相邻的导电元件构成的互电容器按序施加驱动电信号,并对互电容进行测量,如果互电容发生变化则生成互电容变化信号。
根据本公开的至少一个实施方式的电池形变检测装置,对于所述二维阵列的沿第一方向排列的导电元件,沿第二方向划分为多组,对于多组导电元件的各组导电元件同时进行以下操作:
对于具有预定导电元件间隔的两个导电元件构成的互电容器按序施加驱动电信号,并对互电容进行测量,如果互电容发生变化则生成互电容变化信号。
根据本公开的至少一个实施方式的电池形变检测装置,对于所述二维阵列的沿第二方向排列的导电元件,沿第一方向划分为多组,对于多组导电元件的各组导电元件同时进行以下操作:
对于具有预定导电元件间隔的两个导电元件构成的互电容器按序施加驱动电信号,并对互电容进行测量,如果互电容发生变化则生成互电容变化信号。
根据本公开的至少一个实施方式的电池形变检测装置,对于所述二维阵列的沿第一方向排列的导电元件,沿第二方向划分为多组,对于多组导电元件的各组导电元件按序进行以下操作:
对于具有预定导电元件间隔的两个导电元件构成的互电容器按序施加驱动电信号,并对互电容进行测量,如果互电容发生变化则生成互电容变化信号。
根据本公开的至少一个实施方式的电池形变检测装置,对于所述二维阵列的沿第二方向排列的导电元件,沿第一方向划分为多组,对于多组导电元件的各组导电元件按序进行以下操作:
对于具有预定导电元件间隔的两个导电元件构成的互电容器按序施加驱动电信号,并对互电容进行测量,如果互电容发生变化则生成互电容变化信号。
根据本公开的至少一个实施方式的电池形变检测装置,所述二维阵列包括第一子阵列以及第二子阵列,所述第一子阵列与所述第二子阵列设置在同一平面区域之内;
所述第一子阵列包括多个第一串联导电元件组,所述第一串联导电元件组包括沿第一方向串联的多个导电元件,多个所述第一串联导电元件组沿第二方向排列;各个第一串联导电元件组之间绝缘;
所述第二子阵列包括多个第二串联导电元件组,所述第二串联导电元件组包括沿第二方向串联的多个导电元件,多个所述第二串联导电元件组沿第一方向排列;各个第二串联导电元件组之间绝缘;
所述第一子阵列与所述第二子阵列之间绝缘;
所述第一方向与所述第二方向互相垂直。
根据本公开的至少一个实施方式的电池形变检测装置,所述第一子阵列的导电元件的形状与所述第二子阵列的导电元件的形状相同。
根据本公开的至少一个实施方式的电池形变检测装置,对所述第一子阵列的所有第一串联导电元件组以及所述第二子阵列的所有第二串联导电元件组同时施加驱动电信号,并同时对所述第一子阵列的所有第一串联导电元件组以及所述第二子阵列的所有第二串联导电元件组的自电容进行测量,如果自电容发生变化则生成自电容变化信号。
根据本公开的至少一个实施方式的电池形变检测装置,基于所述第一子阵列的至少一个自电容发生变化的第一串联导电元件组在第一子阵列中的位置信息以及所述第二子阵列的至少一个自电容发生变化的第二串联导电元件组在第二子阵列中的位置信息确定所述二维阵列的形变位置。
根据本公开的至少一个实施方式的电池形变检测装置,对所述第一子阵列的所有第一串联导电元件组以及所述第二子阵列的所有第二串联导电元件组同时施加驱动电信号,并同时对所述第一子阵列的各个第一串联导电元件组与所述第二子阵列的各个第二串联导电元件组形成的各个互电容器的互电容进行测量,如果互电容发生变化则生成互电容变化信号。
根据本公开的至少一个实施方式的电池形变检测装置,基于互电 容发生变化的所述互电容器的第一串联导电元件组在第一子阵列中的位置信息,以及第二串联导电元件组在第二子阵列中的位置信息,确定所述二维阵列的形变位置。
根据本公开的至少一个实施方式的电池形变检测装置,其特征在于,所述应变感应部还包括第一衬底层以及第二衬底层,所述应变感应器件设置在所述第一衬底层与所述第二衬底层之间,并被所述第一衬底层以及第二衬底层保持。
根据本公开的至少一个实施方式的电池形变检测装置,所述第一衬底层以及所述第二衬底层均为绝缘材料。
根据本公开的至少一个实施方式的电池形变检测装置,所述第一衬底层与所述第二衬底层均为柔性衬底。
根据本公开的至少一个实施方式的电池形变检测装置,所述应变感应部还包括第一衬底层以及第二衬底层,两个所述应变感应器件分别设置在所述第一衬底层上以及所述第二衬底层上。
根据本公开的至少一个实施方式的电池形变检测装置,所述应变感应部还包括支撑部,所述支撑部设置在所述第一衬底层与所述第二衬底层之间。
根据本公开的至少一个实施方式的电池形变检测装置,所述支撑部设置在所述第一衬底层与所述第二衬底层的边缘处。
根据本公开的至少一个实施方式的电池形变检测装置,所述支撑部包括多个分立的支撑部,或者,所述支撑部为一体结构。
根据本公开的至少一个实施方式的电池形变检测装置,所述第一衬底层以及所述第二衬底层均为绝缘材料。
根据本公开的至少一个实施方式的电池形变检测装置,所述第一衬底层以及所述第二衬底层均为柔性材料。
根据本公开的至少一个实施方式的电池形变检测装置,所述应变感应部能够被设置在两个相邻的电池之间。
根据本公开的至少一个实施方式的电池形变检测装置,所述应变感应部能够被设置在电池与壳体之间。
根据本公开的至少一个实施方式的电池形变检测装置,所述应变感应部还能够基于电池装置的壳体的形变生成所述应变电信号。
根据本公开的至少一个实施方式的电池形变检测装置,还包括驱动检测部,所述驱动检测部对所述应变感应部施加驱动电信号以及对所述应变感应部生成的所述应变电信号进行检测。
根据本公开的至少一个实施方式的电池形变检测装置,所述驱动检测部包括:驱动电路,所述驱动电路用于向所述应变感应部提供驱动电信号;检测电路,所述检测电路用于对所述应变电信号进行检测;以及控制器,所述控制器控制所述驱动电路向所述应变感应部提供驱动信号,以及对所述检测电路获得的应变电信号进行处理,生成处理 后的应变电信号。
根据本公开的至少一个实施方式的电池形变检测装置,所述驱动检测部还包括存储器,所述存储器对所述控制器处理后的应变电信号进行存储。
根据本公开的至少一个实施方式的电池形变检测装置,所述检测电路包括电容检测电路,所述电容检测电路对各个导电元件的自电容变化信号进行检测,和/或对两个导电元件之间的互电容变化信号进行检测。
根据本公开的至少一个实施方式的电池形变检测装置,所述电容检测电路包括电荷信号转换子电路,所述电荷信号转换子电路将各个导电元件的自电容累积电荷转换为电压信号,和/或将两个导电元件之间的互电容累积电荷转换为电压信号。
根据本公开的至少一个实施方式的电池形变检测装置,所述电容检测电路还包括信号后处理电路,所述信号后处理电路对所述电荷信号转换子电路输出的电压信号进行后处理,所述后处理包括滤波处理以及模数转换处理。
根据本公开的至少一个实施方式的电池形变检测装置,所述电荷信号转换子电路包括第一放大器;驱动信号被施加至所述自电容或者所述互电容;所述第一放大器将所述自电容或所述互电容的累积电荷转换为电压信号。
根据本公开的至少一个实施方式的电池形变检测装置,所述信号后处理电路还包括解调器、振荡器、累加器以及寄存器。
根据本公开的至少一个实施方式的电池形变检测装置,所述电容检测电路包括电荷信号转换子电路,所述电荷信号转换子电路将各个导电元件的自电容累积电荷转换为频率信号,和/或将两个导电元件之间的互电容累积电荷转换为频率信号。
根据本公开的至少一个实施方式的电池形变检测装置,所述电荷信号转换子电路包括恒流源、第一比较器、第二比较器以及多路复用器,所述恒流源被控制以对所述自电容或者所述互电容进行充电或者放电,所述自电容或者所述互电容的充放电生成的三角波形电压信号被分别输入至所述第一比较器以及所述第二比较器,所述第一比较器具有第一阈值电压,所述第二比较器具有第二阈值电压,所述第一比较器和所述第二比较器将所述三角波形电压信号转换为方波电信号,所述多路复用器对所述方波电信号的幅值进行调整,所述多路复用器输出的方波电信号的频率为所述自电容或者所述互电容的充放电电流的函数。
根据本公开的至少一个实施方式的电池形变检测装置,所述电容检测电路包括电荷信号转换子电路,所述电荷信号转换子电路将各个导电元件的自电容累积电荷转换为脉宽信号,和/或将两个导电元件之 间的互电容累积电荷转换为脉宽信号。
根据本公开的至少一个实施方式的电池形变检测装置,所述电荷信号转换子电路包括恒流源、跨导放大器以及比较器,所述恒流源被控制以对所述自电容或者所述互电容进行充电或者放电,所述自电容或者互电容跨接在所述跨导放大器的输入端和输出端,所述跨导放大器的输出为三角波形电压信号,所述比较器对所述三角波形电压信号和阈值电压信号进行比较,当三角波形电压信号大于所述阈值电压信号时,所述比较器输出高电平。
根据本公开的至少一个实施方式的电池形变检测装置,所述电容检测电路包括电荷信号转换子电路,所述电荷信号转换子电路将各个导电元件的自电容累积电荷转换为数字信号,和/或将两个导电元件之间的互电容累积电荷转换为数字信号。
根据本公开的至少一个实施方式的电池形变检测装置,所述电荷信号转换子电路包括积分器及比较器,所述积分器被控制以对所述互电容或者所述自电容的累积电荷进行累积并转换为电压信号,以及所述积分器被控制以对所述自电容或所述互电容与参考电容的电容差的累积电荷进行累积并转换为电压信号,基于所述电压信号的正负,所述比较器输出高电平或者低电平。
根据本公开的至少一个实施方式的电池形变检测装置,所述电容检测电路包括电荷信号转换子电路以及信号放大子电路,所述电荷信号转换子电路将各个导电元件的自电容累积电荷转换为电压信号,和/或将两个导电元件之间的互电容累积电荷转换为电压信号,所述信号放大子电路对所述电压信号进行放大,生成放大后的电压信号。
根据本公开的至少一个实施方式的电池形变检测装置,所述电容检测电路还包括信号后处理子电路,所述信号后处理子电路至少包括滤波器以及模数转换器。
根据本公开的至少一个实施方式的电池形变检测装置,所述电荷信号转换子电路包括参考电容、第一放大器以及第二放大器,所述第一放大器将所述自电容或者所述互电容的累积电荷转换为第一电压信号,所述第二放大器将所述参考电容的累积电荷转换为第二电压信号。
根据本公开的至少一个实施方式的电池形变检测装置,所述信号放大子电路包括共模放大器,所述共模放大器对所述第一电压信号以及所述第二电压信号的差值进行放大后输出。
根据本公开的至少一个实施方式的电池形变检测装置,所述电荷信号转换子电路包括参考电容、第一放大器、第二放大器以及整流&滤波器,所述第一放大器将所述自电容或者所述互电容的累积电荷转换为第一电压信号,所述第二放大器将所述参考电容的累积电荷转换为第二电压信号,所述整流&滤波器对所述第一电压信号以及所述第二电压信号分别进行整流滤波后输出。
根据本公开的至少一个实施方式的电池形变检测装置,所述信号放大子电路包括仪表放大器,所述仪表放大器对所述第一电压信号以及所述第二电压信号的差值进行放大后输出。
根据本公开的又一个方面,提供一种电池管理系统,包括:上述任一项的电池形变检测装置。
附图说明
附图示出了本公开的示例性实施方式,并与其说明一起用于解释本公开的原理,其中包括了这些附图以提供对本公开的进一步理解,并且附图包括在本说明书中并构成本说明书的一部分。
图1为本公开的一个实施方式的设置有电池形变检测装置的电池装置的结构示意图。
图2为本公开的又一个实施方式的设置有电池形变检测装置的电池装置的结构示意图。
图3为本公开的一个实施方式的电池形变检测装置的应变感应部的结构示意图。
图4为本公开的一个实施方式的电池形变检测装置的应变感应部的应变感应器件的结构示意图。
图5为本公开的又一个实施方式的电池形变检测装置的应变感应部的结构示意图。
图6为本公开的一个实施方式的电池形变检测装置的应变感应部的应变感应器件的导电元件之间能够组成互电容器的方式的示意图之一。
图7为本公开的又一个实施方式的电池形变检测装置的应变感应部的结构示意图。
图8为本公开的又一个实施方式的电池形变检测装置的应变感应部的应变感应器件之一的结构示意图。
图9为本公开的又一个实施方式的电池形变检测装置的应变感应部的应变感应器件之二的结构示意图。
图10为本公开的又一个实施方式的电池形变检测装置的应变感应部的应变感应器件的结构示意图。
图11为图10中示出的应变感应器件的第一子阵列的结构示意图。
图12为图10中示出的应变感应器件的第二子阵列的结构示意图。
图13为本公开的又一个实施方式的电池形变检测装置的应变感应部的应变感应器件的结构示意图。
图14为本公开的一个实施方式的电池形变检测装置的驱动检测部的结构示意图。
图15为本公开的一个实施方式的电池形变检测装置的驱动检测部的检测电路的结构示意图。
图16为本公开的一个实施方式的电池形变检测装置的驱动检测部的 检测电路的电荷信号转换子电路的结构示意图。
图17为本公开的又一个实施方式的电池形变检测装置的驱动检测部的检测电路的电荷信号转换子电路的结构示意图。
图18为本公开的一个实施方式的电池形变检测装置的驱动检测部的检测电路的结构示意图。
图19为本公开的又一个实施方式的电池形变检测装置的驱动检测部的检测电路的电荷信号转换子电路的结构示意图。
图20为本公开的又一个实施方式的电池形变检测装置的驱动检测部的检测电路的电荷信号转换子电路的结构示意图。
图21为本公开的又一个实施方式的电池形变检测装置的驱动检测部的检测电路的电荷信号转换子电路的结构示意图。
图22为图21中的时钟信号(ck)和比较器的输出(D)的时序图。
图23为本公开的又一个实施方式的电池形变检测装置的驱动检测部的检测电路的结构示意图。
图24为本公开的又一个实施方式的电池形变检测装置的驱动检测部的检测电路的结构示意图。
图25为本公开的又一个实施方式的电池形变检测装置的驱动检测部的检测电路的结构示意图。
图26为根据本公开的一个实施方式的电池管理系统的示意图。
具体实施方式
下面结合附图和实施方式对本公开作进一步的详细说明。可以理解的是,此处所描述的具体实施方式仅用于解释相关内容,而非对本公开的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本公开相关的部分。
需要说明的是,在不冲突的情况下,本公开中的实施方式及实施方式中的特征可以相互组合。下面将参考附图并结合实施方式来详细说明本公开的技术方案。
除非另有说明,否则示出的示例性实施方式/实施例将被理解为提供可以在实践中实施本公开的技术构思的一些方式的各种细节的示例性特征。因此,除非另有说明,否则在不脱离本公开的技术构思的情况下,各种实施方式/实施例的特征可以另外地组合、分离、互换和/或重新布置。
在附图中使用交叉影线和/或阴影通常用于使相邻部件之间的边界变得清晰。如此,除非说明,否则交叉影线或阴影的存在与否均不传达或表示对部件的具体材料、材料性质、尺寸、比例、示出的部件之间的共性和/或部件的任何其它特性、属性、性质等的任何偏好或者要求。此外,在附图中,为了清楚和/或描述性的目的,可以夸大部件的尺寸和相对尺寸。当可以不同地实施示例性实施例时,可以以不同于所描述的顺序来执行具体的工艺顺序。例如,可以基本同时执行或者以与所描述的顺序 相反的顺序执行两个连续描述的工艺。此外,同样的附图标记表示同样的部件。
当一个部件被称作“在”另一部件“上”或“之上”、“连接到”或“结合到”另一部件时,该部件可以直接在所述另一部件上、直接连接到或直接结合到所述另一部件,或者可以存在中间部件。然而,当部件被称作“直接在”另一部件“上”、“直接连接到”或“直接结合到”另一部件时,不存在中间部件。为此,术语“连接”可以指物理连接、电气连接等,并且具有或不具有中间部件。
为了描述性目的,本公开可使用诸如“在……之下”、“在……下方”、“在……下”、“下”、“在……上方”、“上”、“在……之上”、“较高的”和“侧(例如,如在“侧壁”中)”等的空间相对术语,从而来描述如附图中示出的一个部件与另一(其它)部件的关系。除了附图中描绘的方位之外,空间相对术语还意图包含设备在使用、操作和/或制造中的不同方位。例如,如果附图中的设备被翻转,则被描述为“在”其它部件或特征“下方”或“之下”的部件将随后被定位为“在”所述其它部件或特征“上方”。因此,示例性术语“在……下方”可以包含“上方”和“下方”两种方位。此外,设备可被另外定位(例如,旋转90度或者在其它方位处),如此,相应地解释这里使用的空间相对描述语。
这里使用的术语是为了描述具体实施例的目的,而不意图是限制性的。如这里所使用的,除非上下文另外清楚地指出,否则单数形式“一个(种、者)”和“所述(该)”也意图包括复数形式。此外,当在本说明书中使用术语“包含”和/或“包括”以及它们的变型时,说明存在所陈述的特征、整体、步骤、操作、部件、组件和/或它们的组,但不排除存在或附加一个或更多个其它特征、整体、步骤、操作、部件、组件和/或它们的组。还要注意的是,如这里使用的,术语“基本上”、“大约”和其它类似的术语被用作近似术语而不用作程度术语,如此,它们被用来解释本领域普通技术人员将认识到的测量值、计算值和/或提供的值的固有偏差。
本公开提供了一种电池形变检测装置,其中该电池形变检测装置至少可以用于检测电池的形变,其中该形变可以是电池鼓包型形变,也可以是电池受到外部挤压后所形成的形变。外部挤压的原因例如可以包括碰撞或者加速度等。
图1为本公开的一个实施方式的设置有电池形变检测装置的电池装置的结构示意图。图2为本公开的又一个实施方式的设置有电池形变检测装置的电池装置的结构示意图。图3为本公开的一个实施方式的电池形变检测装置的应变感应部的结构示意图。图4为本公开的一个实施方式的电池形变检测装置的应变感应部的应变感应器件的结构示意图。图5为本公开的又一个实施方式的电池形变检测装置的应变感应部的结构示意图。图6为本公开的一个实施方式的电池形变检测装置的应变感应部的应变感应器件的导电元件之间能够组成互电容器的方式的示意图之 一。图7为本公开的又一个实施方式的电池形变检测装置的应变感应部的结构示意图。图8为本公开的又一个实施方式的电池形变检测装置的应变感应部的应变感应器件之一的结构示意图。图9为本公开的又一个实施方式的电池形变检测装置的应变感应部的应变感应器件之二的结构示意图。图10为本公开的又一个实施方式的电池形变检测装置的应变感应部的应变感应器件的结构示意图。图11为图10中示出的应变感应器件的第一子阵列的结构示意图。图12为图10中示出的应变感应器件的第二子阵列的结构示意图。图13为本公开的又一个实施方式的电池形变检测装置的应变感应部的应变感应器件的结构示意图。图14为本公开的一个实施方式的电池形变检测装置的驱动检测部的结构示意图。图15为本公开的一个实施方式的电池形变检测装置的驱动检测部的检测电路的结构示意图。图16为本公开的一个实施方式的电池形变检测装置的驱动检测部的检测电路的电荷信号转换子电路的结构示意图。图17为本公开的又一个实施方式的电池形变检测装置的驱动检测部的检测电路的电荷信号转换子电路的结构示意图。图18为本公开的一个实施方式的电池形变检测装置的驱动检测部的检测电路的结构示意图。图19为本公开的又一个实施方式的电池形变检测装置的驱动检测部的检测电路的电荷信号转换子电路的结构示意图。图20为本公开的又一个实施方式的电池形变检测装置的驱动检测部的检测电路的电荷信号转换子电路的结构示意图。图21为本公开的又一个实施方式的电池形变检测装置的驱动检测部的检测电路的电荷信号转换子电路的结构示意图。图22为图21中的时钟信号(ck)和比较器的输出(D)的时序图。图23为本公开的又一个实施方式的电池形变检测装置的驱动检测部的检测电路的结构示意图。图24为本公开的又一个实施方式的电池形变检测装置的驱动检测部的检测电路的结构示意图。图25为本公开的又一个实施方式的电池形变检测装置的驱动检测部的检测电路的结构示意图。图26为根据本公开的一个实施方式的电池管理系统的示意图。
下文结合图1至图26对本公开的电池形变检测装置以及电池管理系统做详细说明。
根据本公开的一个实施方式,电池形变检测装置,包括:
至少一个应变感应部12,至少一个应变感应部12被设置在电池装置10的电池11的至少一个表面上,应变感应部12至少能够基于电池装置10的电池11的形变生成应变电信号,应变电信号至少指示形变的发生;
其中,应变感应部12包括至少一个应变感应器件121,应变感应器件121包括多个导电元件1211,多个导电元件1211均匀排列成二维阵列,每个导电元件1211与其他导电元件1211之间均绝缘;应变感应器件121能够响应于电池的形变而使得二维阵列的与电池的形变对应的位置发生形变,应变感应部12基于二维阵列的形变生成应变电信号。
导电元件1211可以为片状导电薄膜,例如ITO(氧化铟锡)。
由图1可以看出,电池装置10可以只包括一个电池11,电池11可以是包括多个电池单体的电池组,也可以是电池单体。由图2可以看出,电池装置10包括多个电池11,图2示例性地示出了四个电池11,电池11可以是包括多个电池单体的电池组,也可以是电池单体。
图1中示出的电池形变检测装置具有四个应变感应部12,四个应变感应部12分别设置在电池11的四个侧面与壳体15之间。应变感应部12也可以设置在电池11的顶面与壳体15之间,也可以设置在电池11的底面与壳体15之间。
图2中示出的电池装置10的各个电池11之间设置有应变感应部12,电池11的侧面与壳体15之间也设置有应变感应部12。
本领域技术人员应当理解,图1和图2示出的电池11的数量、应变感应部12的设置位置均是示例性的。
对于上述实施方式的电池形变检测装置,应变电信号包括二维阵列的任意一个导电元件1211的自电容变化信号。
对于上述实施方式的电池形变检测装置,应变电信号包括二维阵列的相邻的两个导电元件1211之间的互电容变化信号。
根据本公开的一个实施方式的电池形变检测装置,如图4所示,二维阵列包括沿第一方向排列的多个导电元件1211以及沿第二方向排列的多个导电元件1211,第一方向垂直于第二方向。
上述实施方式中,相邻的两个导电元件1211为沿第一方向相邻的两个导电元件或者沿第二方向相邻的两个导电元件,第一方向垂直于第二方向。
根据本公开的可替换的优选实施方式的电池形变检测装置,应变电信号包括二维阵列的任意两个不相邻的导电元件1211之间的互电容变化信号。
图3示出的应变感应部12只具有一个应变感应器件121,图5示出的应变感应部12具有两个应变感应器件121。
如图5所示,应变感应部12包括两个应变感应器件121,两个应变感应器件121相对地设置,且两个应变感应器件121之间设置有绝缘间隙。
上述绝缘间隙可以通过柔性绝缘物质实现,上述绝缘间隙也可以是空气或者真空。
对于上述各个实施方式的电池形变检测装置,优选地,对应变感应器件121的所有导电元件1211同时施加驱动电信号,并同时对各个导电元件1211的自电容进行测量,如果导电元件1211的自电容发生变化则生成自电容变化信号。
对于上述各个实施方式的电池形变检测装置,优选地,对应变感应器件121的所有导电元件1211的各个导电元件1211依次施加驱动电信号,并依次对各个导电元件1211的自电容进行测量,如果导电元件1211 的自电容发生变化则生成自电容变化信号。
上述各个实施方式中,基于自电容变化信号的大小判断形变程度,以及基于自电容发生变化的导电元件1211在二维阵列中的位置判断形变位置。
对于上述各个实施方式的电池形变检测装置,优选地,如图4所示,对于二维阵列的沿第一方向(图示的水平方向)排列的导电元件1211,沿第二方向划分为多组,对于多组导电元件1211的各组导电元件1211同时进行以下操作:
对于由两个相邻的导电元件1211构成的互电容器按序施加驱动电信号,并对互电容进行测量,如果互电容发生变化则生成互电容变化信号。
对于上述各个实施方式的电池形变检测装置,优选地,如图4所示,对于二维阵列的沿第一方向(图示的水平方向)排列的导电元件1211,沿第二方向划分为多组,对于多组导电元件1211的各组导电元件1211按序进行以下操作:
对于由两个相邻的导电元件1211构成的互电容器按序施加驱动电信号,并对互电容进行测量,如果互电容发生变化则生成互电容变化信号。
对于上述各个实施方式的电池形变检测装置,优选地,如图4所示,对于二维阵列的沿第二方向(图示的竖直方向)排列的导电元件1211,沿第一方向划分为多组,对于多组导电元件1211的各组导电元件1211同时进行以下操作:
对于由两个相邻的导电元件1211构成的互电容器按序施加驱动电信号,并对互电容进行测量,如果互电容发生变化则生成互电容变化信号。
对于上述各个实施方式的电池形变检测装置,优选地,如图4所示,对于二维阵列的沿第二方向(图示的竖直方向)排列的导电元件1211,沿第一方向划分为多组,对于多组导电元件1211的各组导电元件1211按序进行以下操作:
对于由两个相邻的导电元件1211构成的互电容器按序施加驱动电信号,并对互电容进行测量,如果互电容发生变化则生成互电容变化信号。
对于上述各个实施方式的电池形变检测装置,优选地,如图4所示,对于二维阵列的沿第一方向(图示的水平方向)排列的导电元件1211,沿第二方向划分为多组,对于多组导电元件1211的各组导电元件1211同时进行以下操作:
对于具有预定导电元件间隔的两个导电元件1211构成的互电容器按序施加驱动电信号,并对互电容进行测量,如果互电容发生变化则生成互电容变化信号。
对于上述各个实施方式的电池形变检测装置,优选地,如图4所示,对于二维阵列的沿第二方向(图示的竖直方向)排列的导电元件1211,沿第一方向划分为多组,对于多组导电元件1211的各组导电元件1211同时进行以下操作:
对于具有预定导电元件间隔的两个导电元件1211构成的互电容器按序施加驱动电信号,并对互电容进行测量,如果互电容发生变化则生成互电容变化信号。
对于上述各个实施方式的电池形变检测装置,优选地,如图4所示,对于二维阵列的沿第一方向(图示的水平方向)排列的导电元件1211,沿第二方向划分为多组,对于多组导电元件1211的各组导电元件1211按序进行以下操作:
对于具有预定导电元件间隔的两个导电元件1211构成的互电容器按序施加驱动电信号,并对互电容进行测量,如果互电容发生变化则生成互电容变化信号。
对于上述各个实施方式的电池形变检测装置,优选地,如图4所示,对于二维阵列的沿第二方向(图示的竖直方向)排列的导电元件1211,沿第一方向划分为多组,对于多组导电元件1211的各组导电元件1211按序进行以下操作:
对于具有预定导电元件间隔的两个导电元件1211构成的互电容器按序施加驱动电信号,并对互电容进行测量,如果互电容发生变化则生成互电容变化信号。
图7为本公开的又一个实施方式的电池形变检测装置的应变感应部的结构示意图。图8为本公开的又一个实施方式的电池形变检测装置的应变感应部的应变感应器件之一的结构示意图。图9为本公开的又一个实施方式的电池形变检测装置的应变感应部的应变感应器件之二的结构示意图。
如图7至图9所示,电池形变检测装置的应变感应部包括第一应变感应器件121以及第二应变感应器件122,导电元件为导电条,第一应变感应器件121包括沿第一方向(图示水平方向)排列的多个第一导电条1211,第二应变感应器件122包括沿第二方向(图示竖直方向)排列的多个第二导电条1221,相邻的两个第一导电条1211之间绝缘,相邻的两个第二导电条1221之间绝缘,第一方向垂直于第二方向。
其中,应变电信号包括第一应变感应器件121的各个第一导电条1211与第二应变感应器件122的各个第二导电条1221之间的互电容变化信号。
如图5所示,根据本公开的又一个实施方式,应变感应部12包括第一应变感应器件以及第二应变感应器件,第一应变感应器件包括第一矩形导电元件阵列,第一矩形导电元件阵列的各个第一导电元件之间绝缘,第二应变感应器件包括第二矩形导电元件阵列,第二矩形导电元件阵列的各个第二导电元件之间绝缘,第一矩形导电元件阵列的各个第一导电元件与第二矩形导电元件阵列的各个第二导电元件相对设置。
其中,应变电信号包括第一矩形导电元件阵列与第二矩形导电元件阵列的相对设置的第一导电元件与第二导电元件之间的互电容变化信 号。
图7至9示出了本公开的又一个实施方式的应变感应器件121的结构示意图。
如图7至9所示,电池形变检测装置的应变感应部12的应变感应器件121的二维阵列包括第一子阵列(V1、V2、V3、V4)以及第二子阵列(H1、H2、H3、H4),第一子阵列与第二子阵列设置在同一平面区域之内;
第一子阵列包括多个第一串联导电元件组(V1、V2、V3、V4),第一串联导电元件组包括沿第一方向串联的多个导电元件,多个第一串联导电元件组沿第二方向排列;各个第一串联导电元件组之间绝缘;
第二子阵列包括多个第二串联导电元件组(H1、H2、H3、H4),第二串联导电元件组包括沿第二方向串联的多个导电元件,多个第二串联导电元件组沿第一方向排列;各个第二串联导电元件组之间绝缘;
第一子阵列与第二子阵列之间绝缘;
第一方向与第二方向互相垂直。
本领域技术人员应当理解,图3、图5中示出的应变感应器件121可以采用图7至图9中示出的应变感应器件121。
本领域技术人员应当理解,图7至图9中示出的第一子阵列的第一串联导电元件组的数量以及第二子阵列的第二串联导电元件组的数量仅是示例性的。
本实施方式的电池形变检测装置,第一子阵列的导电元件的形状与第二子阵列的导电元件的形状相同。
导电元件可以采用如图7至9中的菱形形状,也可以采用其他形状,图7至图9中示出的导电元件的形状仅是优选的形状。
对于上述实施方式的电池形变检测装置,优选地,对第一子阵列的所有第一串联导电元件组以及第二子阵列的所有第二串联导电元件组同时施加驱动电信号,并同时对第一子阵列的所有第一串联导电元件组以及第二子阵列的所有第二串联导电元件组的自电容进行测量,如果自电容发生变化则生成自电容变化信号。
对于上述实施方式的电池形变检测装置,优选地,基于第一子阵列的至少一个自电容发生变化的第一串联导电元件组在第一子阵列中的位置信息以及第二子阵列的至少一个自电容发生变化的第二串联导电元件组在第二子阵列中的位置信息确定二维阵列的形变位置。
对于上述实施方式的电池形变检测装置,优选地,对第一子阵列的所有第一串联导电元件组以及第二子阵列的所有第二串联导电元件组同时施加驱动电信号,并同时对第一子阵列的各个第一串联导电元件组与第二子阵列的各个第二串联导电元件组形成的各个互电容器的互电容进行测量,如果互电容发生变化则生成互电容变化信号。
对于上述实施方式的电池形变检测装置,优选地,基于互电容发生 变化的互电容器的第一串联导电元件组在第一子阵列中的位置信息,以及第二串联导电元件组在第二子阵列中的位置信息,确定二维阵列的形变位置。
对于上述各个实施方式的电池形变检测装置,如图3和图5所示,应变感应部12还包括第一衬底层125以及第二衬底层126,应变感应器件121设置在第一衬底层125与第二衬底层126之间,并被第一衬底层125以及第二衬底层126保持。
优选地,第一衬底层125以及第二衬底层126均为绝缘材料。
优选地,第一衬底层125与第二衬底层126均为柔性衬底。
优选地,两个应变感应器件121分别设置在第一衬底层125上以及第二衬底层126上。
根据本公开的优选实施方式的电池形变检测装置,应变感应部12还包括支撑部124,支撑部124设置在第一衬底层125与第二衬底层126之间。
优选地,支撑部124设置在第一衬底层125与第二衬底层126的边缘处。
其中,支撑部124包括多个分立的支撑部,或者,支撑部124为一体结构。
上述各个实施方式的电池形变检测装置的应变感应部12能够被设置在两个相邻的电池11之间。
上述各个实施方式的电池形变检测装置的应变感应部12能够被设置在电池11与壳体15之间,应变感应部12还能够基于电池装置10的壳体15的形变生成应变电信号。
对于上述各个实施方式的电池形变检测装置,优选地,如图11所示,电池形变检测装置还包括驱动检测部13,驱动检测部13对应变感应部12施加驱动电信号以及对应变感应部12生成的应变电信号进行检测。
优选地,驱动检测部13包括:
驱动电路,驱动电路用于向应变感应部12提供驱动电信号;检测电路,检测电路用于对应变电信号进行检测;以及控制器,控制器控制驱动电路向应变感应部12提供驱动信号,以及对检测电路获得的应变电信号进行处理,生成处理后的应变电信号。
优选地,驱动检测部13还包括存储器,存储器对控制器处理后的应变电信号进行存储。
下文结合图15至图25对本公开的电池形变检测装置的检测电路132做详细说明。
根据本公开的一个实施方式的电池形变检测装置,检测电路132包括电容检测电路,电容检测电路对各个导电元件的自电容变化信号进行检测,和/或对两个导电元件之间的互电容变化信号进行检测。
根据本公开的一个实施方式,电容检测电路包括电荷信号转换子电 路,电荷信号转换子电路将各个导电元件的自电容累积电荷转换为电压信号,和/或将两个导电元件之间的互电容累积电荷转换为电压信号。
上述实施方式的电池形变检测装置的电容检测电路还包括信号后处理电路,信号后处理电路对电荷信号转换子电路输出的电压信号进行后处理,后处理包括滤波处理以及模数转换处理。
根据本公开的一个实施方式的电池形变检测装置,如图16至18所示,电荷信号转换子电路包括第一放大器,驱动信号(V Stim)被施加至自电容(Cx)或者互电容(Cx);第一放大器将自电容或互电容的累积电荷转换为电压信号Vout1。
本领域技术人员应当理解,图16至图18中的第一放大器的具体结构是本公开的优选结构,本领域技术人员在本公开的启示下能够对第一放大器的具体结构做出适当调整。
如图18所示,根据本公开的一个实施方式,信号后处理电路还包括解调器325、振荡器326、累加器327以及寄存器328。
本领域技术人员应当理解,图18中的信号后处理电路的具体结构仅是示例性地。
根据本公开的又一个实施方式,电容检测电路包括电荷信号转换子电路,电荷信号转换子电路将各个导电元件的自电容累积电荷转换为频率信号,和/或将两个导电元件之间的互电容累积电荷转换为频率信号。
如图19所示,优选地,电荷信号转换子电路包括恒流源(I b)、第一比较器、第二比较器以及多路复用器,恒流源被控制以对自电容(Cx)或者互电容(Cx)进行充电或者放电,自电容或者互电容的充放电生成的三角波形电压信号被分别输入至第一比较器以及第二比较器,第一比较器具有第一阈值电压(Vth1),第二比较器具有第二阈值电压(Vth2),第一比较器和第二比较器将三角波形电压信号转换为方波电信号,多路复用器对方波电信号的幅值进行调整,多路复用器输出的方波电信号的频率为自电容或者互电容的充放电电流的函数。基于此,可以生成自电容或者互电容的电容变化信号。
根据本公开的又一个实施方式,电容检测电路包括电荷信号转换子电路,电荷信号转换子电路将各个导电元件的自电容累积电荷转换为脉宽信号,和/或将两个导电元件之间的互电容累积电荷转换为脉宽信号。
如图20所示,优选地,电荷信号转换子电路包括恒流源(I b)、跨导放大器(Gm)以及比较器,恒流源被控制以对自电容(Cx)或者互电容(Cx)进行充电或者放电,自电容或者互电容跨接在跨导放大器的输入端和输出端,跨导放大器的输出为三角波形电压信号,比较器对三角波形电压信号和阈值电压信号进行比较,当三角波形电压信号大于阈值电压信号时,比较器输出高电平。
根据本公开的又一个实施方式,电容检测电路包括电荷信号转换子电路,电荷信号转换子电路将各个导电元件的自电容累积电荷转换为数 字信号,和/或将两个导电元件之间的互电容累积电荷转换为数字信号。
优选地,电荷信号转换子电路包括积分器及比较器,积分器被控制以对互电容或者自电容的累积电荷进行累积并转换为电压信号,以及积分器被控制以对自电容或互电容与参考电容的电容差的累积电荷进行累积并转换为电压信号,基于电压信号的正负,比较器输出高电平或者低电平。
优选地,如图21至22所示,在其反馈环路中具有C int的放大器用作积分器。假设积分器的输出电压在测量开始时为负。因此,比较器(D)的输出为零,如图21和图22所示,当D为零时,两个控制信号φ1、φ2为低。当时钟CK为高时,C x由V ref充电,在第二相(CK为低),电荷量V refC x被转移到积分电容器C int。只要积分器的输出V refC x/C int为负,比较器输出为零。当积分器的输出V refC x/C int为正时,电荷量(C x-C ref)V ref被转移到积分电容器C int。因此,在第一时间段(D为1时),(C x-C ref)V ref/C int被施加到积分器的输出,在第二时间段(D为0时),V refC x/C int被施加到积分器的输出,第一时间段在第一时间段与第二时间段之和中的占比即等于C x与C ref的比值。
根据本公开的又一个实施方式的电池形变检测装置,电容检测电路包括电荷信号转换子电路以及信号放大子电路,电荷信号转换子电路将各个导电元件的自电容累积电荷转换为电压信号,和/或将两个导电元件之间的互电容累积电荷转换为电压信号,信号放大子电路对电压信号进行放大,生成放大后的电压信号。
如图23所示,优选地,电容检测电路还包括信号后处理子电路,信号后处理子电路至少包括滤波器以及模数转换器。
根据本公开的又一个实施方式,如图24所示,电荷信号转换子电路包括参考电容(C ref)、第一放大器(OP1)以及第二放大器(OP2),第一放大器将自电容(C x)或者互电容(C x)的累积电荷转换为第一电压信号,第二放大器将参考电容(C ref)的累积电荷转换为第二电压信号。
优选地,上述实施方式中,如图24所示,信号放大子电路包括共模放大器(CM1),共模放大器对第一电压信号以及第二电压信号的差值进行放大后输出。
根据本公开的又一个实施方式,如图25所示,电荷信号转换子电路包括参考电容(C ref)、第一放大器、第二放大器以及整流&滤波器,第一放大器将自电容(C x)或者互电容(C x)的累积电荷转换为第一电压信号,第二放大器将参考电容(C ref)的累积电荷转换为第二电压信号,整流&滤波器对第一电压信号以及第二电压信号分别进行整流滤波后输出。
优选地,如图25所示,信号放大子电路包括仪表放大器,仪表放大器对第一电压信号以及第二电压信号的差值进行放大后输出。
本公开还提供了一种电池管理系统,包括上述任一个实施方式的电池形变检测装置。图26示出了该电池管理系统,其中上面描述的驱动检 测部13可以集成至芯片中,并且芯片的管脚应变感应部连接。
在本说明书的描述中,参考术语“一个实施例/方式”、“一些实施例/方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例/方式或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例/方式或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例/方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例/方式或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例/方式或示例以及不同实施例/方式或示例的特征进行结合和组合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
本领域的技术人员应当理解,上述实施方式仅仅是为了清楚地说明本公开,而并非是对本公开的范围进行限定。对于所属领域的技术人员而言,在上述公开的基础上还可以做出其它变化或变型,并且这些变化或变型仍处于本公开的范围内。

Claims (62)

  1. 一种电池形变检测装置,其特征在于,包括:
    至少一个应变感应部,所述至少一个应变感应部被设置在电池装置的电池的至少一个表面上,所述应变感应部至少能够基于电池装置的电池的形变生成应变电信号,所述应变电信号至少指示所述形变的发生;
    其中,所述应变感应部包括至少一个应变感应器件,所述应变感应器件包括多个导电元件,多个所述导电元件均匀排列成二维阵列,每个导电元件与其他导电元件之间均绝缘;所述应变感应器件能够响应于电池的形变而使得所述二维阵列的与电池的形变对应的位置发生形变,所述应变感应部基于所述二维阵列的所述形变生成所述应变电信号。
  2. 根据权利要求1所述的电池形变检测装置,其特征在于,所述应变电信号包括所述二维阵列的任意一个导电元件的自电容变化信号。
  3. 根据权利要求1所述的电池形变检测装置,其特征在于,所述应变电信号包括所述二维阵列的相邻的两个导电元件之间的互电容变化信号。
  4. 根据权利要求1所述的电池形变检测装置,其特征在于,所述二维阵列包括沿第一方向排列的多个导电元件以及沿第二方向排列的多个导电元件,所述第一方向垂直于所述第二方向。
  5. 根据权利要求3所述的电池形变检测装置,其特征在于,所述相邻的两个导电元件为沿第一方向相邻的两个导电元件或者沿第二方向相邻的两个导电元件,所述第一方向垂直于所述第二方向。
  6. 根据权利要求1所述的电池形变检测装置,其特征在于,所述应变电信号包括所述二维阵列的任意两个不相邻的导电元件之间的互电容变化信号。
  7. 根据权利要求1所述的电池形变检测装置,其特征在于,所述应变感应部包括两个应变感应器件,两个所述应变感应器件相对地设置,且两个所述应变感应器件之间设置有绝缘间隙。
  8. 根据权利要求7所述的电池形变检测装置,其特征在于,所述应变感应部包括第一应变感应器件以及第二应变感应器件,所述导电 元件为导电条,所述第一应变感应器件包括沿第一方向排列的多个第一导电条,所述第二应变感应器件包括沿第二方向排列的多个第二导电条,相邻的两个第一导电条之间绝缘,相邻的两个第二导电条之间绝缘,所述第一方向垂直于所述第二方向。
  9. 根据权利要求8所述的电池形变检测装置,其特征在于,所述应变电信号包括所述第一应变感应器件的各个第一导电条与所述第二应变感应器件的各个第二导电条之间的互电容变化信号。
  10. 根据权利要求7所述的电池形变检测装置,其特征在于,所述应变感应部包括第一应变感应器件以及第二应变感应器件,所述第一应变感应器件包括第一矩形导电元件阵列,第一矩形导电元件阵列的各个第一导电元件之间绝缘,所述第二应变感应器件包括第二矩形导电元件阵列,第二矩形导电元件阵列的各个第二导电元件之间绝缘,第一矩形导电元件阵列的各个第一导电元件与第二矩形导电元件阵列的各个第二导电元件相对设置。
  11. 根据权利要求10所述的电池形变检测装置,其特征在于,所述应变电信号包括所述第一矩形导电元件阵列与所述第二矩形导电元件阵列的相对设置的第一导电元件与第二导电元件之间的互电容变化信号。
  12. 根据权利要求7所述的电池形变检测装置,其特征在于,所述绝缘间隙被柔性绝缘物质填充。
  13. 根据权利要求2所述的电池形变检测装置,其特征在于,对所述应变感应器件的所有导电元件同时施加驱动电信号,并同时对各个导电元件的自电容进行测量,如果导电元件的自电容发生变化则生成自电容变化信号。
  14. 根据权利要求2所述的电池形变检测装置,其特征在于,对所述应变感应器件的所有导电元件的各个导电元件依次施加驱动电信号,并依次对各个导电元件的自电容进行测量,如果导电元件的自电容发生变化则生成自电容变化信号。
  15. 根据权利要求13所述的电池形变检测装置,其特征在于,基于所述自电容变化信号的大小判断形变程度,以及基于自电容发生变化的导电元件在二维阵列中的位置判断形变位置。
  16. 根据权利要求3所述的电池形变检测装置,其特征在于,对 于所述二维阵列的沿第一方向排列的导电元件,沿第二方向划分为多组,对于多组导电元件的各组导电元件同时进行以下操作:
    对于由两个相邻的导电元件构成的互电容器按序施加驱动电信号,并对互电容进行测量,如果互电容发生变化则生成互电容变化信号。
  17. 根据权利要求3所述的电池形变检测装置,其特征在于,对于所述二维阵列的沿第一方向排列的导电元件,沿第二方向划分为多组,对于多组导电元件的各组导电元件按序进行以下操作:
    对于由两个相邻的导电元件构成的互电容器按序施加驱动电信号,并对互电容进行测量,如果互电容发生变化则生成互电容变化信号。
  18. 根据权利要求3所述的电池形变检测装置,其特征在于,对于所述二维阵列的沿第二方向排列的导电元件,沿第一方向划分为多组,对于多组导电元件的各组导电元件同时进行以下操作:
    对于由两个相邻的导电元件构成的互电容器按序施加驱动电信号,并对互电容进行测量,如果互电容发生变化则生成互电容变化信号。
  19. 根据权利要求3所述的电池形变检测装置,其特征在于,对于所述二维阵列的沿第二方向排列的导电元件,沿第一方向划分为多组,对于多组导电元件的各组导电元件按序进行以下操作:
    对于由两个相邻的导电元件构成的互电容器按序施加驱动电信号,并对互电容进行测量,如果互电容发生变化则生成互电容变化信号。
  20. 根据权利要求6所述的电池形变检测装置,其特征在于,对于所述二维阵列的沿第一方向排列的导电元件,沿第二方向划分为多组,对于多组导电元件的各组导电元件同时进行以下操作:
    对于具有预定导电元件间隔的两个导电元件构成的互电容器按序施加驱动电信号,并对互电容进行测量,如果互电容发生变化则生成互电容变化信号。
  21. 根据权利要求6所述的电池形变检测装置,其特征在于,对于所述二维阵列的沿第二方向排列的导电元件,沿第一方向划分为多组,对于多组导电元件的各组导电元件同时进行以下操作:
    对于具有预定导电元件间隔的两个导电元件构成的互电容器按序施加驱动电信号,并对互电容进行测量,如果互电容发生变化则生成互电容变化信号。
  22. 根据权利要求6所述的电池形变检测装置,其特征在于,对于所述二维阵列的沿第一方向排列的导电元件,沿第二方向划分为多组,对于多组导电元件的各组导电元件按序进行以下操作:
    对于具有预定导电元件间隔的两个导电元件构成的互电容器按序施加驱动电信号,并对互电容进行测量,如果互电容发生变化则生成互电容变化信号。
  23. 根据权利要求6所述的电池形变检测装置,其特征在于,对于所述二维阵列的沿第二方向排列的导电元件,沿第一方向划分为多组,对于多组导电元件的各组导电元件按序进行以下操作:
    对于具有预定导电元件间隔的两个导电元件构成的互电容器按序施加驱动电信号,并对互电容进行测量,如果互电容发生变化则生成互电容变化信号。
  24. 根据权利要求1所述的电池形变检测装置,其特征在于,所述二维阵列包括第一子阵列以及第二子阵列,所述第一子阵列与所述第二子阵列设置在同一平面区域之内;
    所述第一子阵列包括多个第一串联导电元件组,所述第一串联导电元件组包括沿第一方向串联的多个导电元件,多个所述第一串联导电元件组沿第二方向排列;各个第一串联导电元件组之间绝缘;
    所述第二子阵列包括多个第二串联导电元件组,所述第二串联导电元件组包括沿第二方向串联的多个导电元件,多个所述第二串联导电元件组沿第一方向排列;各个第二串联导电元件组之间绝缘;
    所述第一子阵列与所述第二子阵列之间绝缘;
    所述第一方向与所述第二方向互相垂直。
  25. 根据权利要求24所述的电池形变检测装置,其特征在于,所述第一子阵列的导电元件的形状与所述第二子阵列的导电元件的形状相同。
  26. 根据权利要求24所述的电池形变检测装置,其特征在于,对所述第一子阵列的所有第一串联导电元件组以及所述第二子阵列的所有第二串联导电元件组同时施加驱动电信号,并同时对所述第一子阵列的所有第一串联导电元件组以及所述第二子阵列的所有第二串联导电元件组的自电容进行测量,如果自电容发生变化则生成自电容变化信号。
  27. 根据权利要求26所述的电池形变检测装置,其特征在于,基于所述第一子阵列的至少一个自电容发生变化的第一串联导电元件组 在第一子阵列中的位置信息以及所述第二子阵列的至少一个自电容发生变化的第二串联导电元件组在第二子阵列中的位置信息确定所述二维阵列的形变位置。
  28. 根据权利要求24所述的电池形变检测装置,其特征在于,对所述第一子阵列的所有第一串联导电元件组以及所述第二子阵列的所有第二串联导电元件组同时施加驱动电信号,并同时对所述第一子阵列的各个第一串联导电元件组与所述第二子阵列的各个第二串联导电元件组形成的各个互电容器的互电容进行测量,如果互电容发生变化则生成互电容变化信号。
  29. 根据权利要求24所述的电池形变检测装置,其特征在于,基于互电容发生变化的所述互电容器的第一串联导电元件组在第一子阵列中的位置信息,以及第二串联导电元件组在第二子阵列中的位置信息,确定所述二维阵列的形变位置。
  30. 根据权利要求1所述的电池形变检测装置,其特征在于,所述应变感应部还包括第一衬底层以及第二衬底层,所述应变感应器件设置在所述第一衬底层与所述第二衬底层之间,并被所述第一衬底层以及第二衬底层保持。
  31. 根据权利要求30所述的电池形变检测装置,其特征在于,所述第一衬底层以及所述第二衬底层均为绝缘材料。
  32. 根据权利要求31所述的电池形变检测装置,其特征在于,所述第一衬底层与所述第二衬底层均为柔性衬底。
  33. 根据权利要求7所述的电池形变检测装置,其特征在于,所述应变感应部还包括第一衬底层以及第二衬底层,两个所述应变感应器件分别设置在所述第一衬底层上以及所述第二衬底层上。
  34. 根据权利要求33所述的电池形变检测装置,其特征在于,所述应变感应部还包括支撑部,所述支撑部设置在所述第一衬底层与所述第二衬底层之间。
  35. 根据权利要求34所述的电池形变检测装置,其特征在于,所述支撑部设置在所述第一衬底层与所述第二衬底层的边缘处。
  36. 根据权利要求34所述的电池形变检测装置,其特征在于,所述支撑部包括多个分立的支撑部,或者,所述支撑部为一体结构。
  37. 根据权利要求33所述的电池形变检测装置,其特征在于,所述第一衬底层以及所述第二衬底层均为绝缘材料。
  38. 根据权利要求33所述的电池形变检测装置,其特征在于,所述第一衬底层以及所述第二衬底层均为柔性材料。
  39. 根据权利要求1所述的电池形变检测装置,其特征在于,所述应变感应部能够被设置在两个相邻的电池之间。
  40. 根据权利要求1所述的电池形变检测装置,其特征在于,所述应变感应部能够被设置在电池与壳体之间。
  41. 根据权利要求1所述的电池形变检测装置,其特征在于,所述应变感应部还能够基于电池装置的壳体的形变生成所述应变电信号。
  42. 根据权利要求1至41中任一项所述的电池形变检测装置,其特征在于,还包括驱动检测部,所述驱动检测部对所述应变感应部施加驱动电信号以及对所述应变感应部生成的所述应变电信号进行检测。
  43. 根据权利要求42所述的电池形变检测装置,其特征在于,所述驱动检测部包括:
    驱动电路,所述驱动电路用于向所述应变感应部提供驱动电信号;
    检测电路,所述检测电路用于对所述应变电信号进行检测;以及
    控制器,所述控制器控制所述驱动电路向所述应变感应部提供驱动信号,以及对所述检测电路获得的应变电信号进行处理,生成处理后的应变电信号。
  44. 根据权利要求43所述的电池形变检测装置,其特征在于,所述驱动检测部还包括存储器,所述存储器对所述控制器处理后的应变电信号进行存储。
  45. 根据权利要求43所述的电池形变检测装置,其特征在于,所述检测电路包括电容检测电路,所述电容检测电路对各个导电元件的自电容变化信号进行检测,和/或对两个导电元件之间的互电容变化信号进行检测。
  46. 根据权利要求45所述的电池形变检测装置,其特征在于,所 述电容检测电路包括电荷信号转换子电路,所述电荷信号转换子电路将各个导电元件的自电容累积电荷转换为电压信号,和/或将两个导电元件之间的互电容累积电荷转换为电压信号。
  47. 根据权利要求46所述的电池形变检测装置,其特征在于,所述电容检测电路还包括信号后处理电路,所述信号后处理电路对所述电荷信号转换子电路输出的电压信号进行后处理,所述后处理包括滤波处理以及模数转换处理。
  48. 根据权利要求46所述的电池形变检测装置,其特征在于,所述电荷信号转换子电路包括第一放大器;驱动信号被施加至所述自电容或者所述互电容;所述第一放大器将所述自电容或所述互电容的累积电荷转换为电压信号。
  49. 根据权利要求47所述的电池形变检测装置,其特征在于,所述信号后处理电路还包括解调器、振荡器、累加器以及寄存器。
  50. 根据权利要求45所述的电池形变检测装置,其特征在于,所述电容检测电路包括电荷信号转换子电路,所述电荷信号转换子电路将各个导电元件的自电容累积电荷转换为频率信号,和/或将两个导电元件之间的互电容累积电荷转换为频率信号。
  51. 根据权利要求50所述的电池形变检测装置,其特征在于,所述电荷信号转换子电路包括恒流源、第一比较器、第二比较器以及多路复用器,所述恒流源被控制以对所述自电容或者所述互电容进行充电或者放电,所述自电容或者所述互电容的充放电生成的三角波形电压信号被分别输入至所述第一比较器以及所述第二比较器,所述第一比较器具有第一阈值电压,所述第二比较器具有第二阈值电压,所述第一比较器和所述第二比较器将所述三角波形电压信号转换为方波电信号,所述多路复用器对所述方波电信号的幅值进行调整,所述多路复用器输出的方波电信号的频率为所述自电容或者所述互电容的充放电电流的函数。
  52. 根据权利要求45所述的电池形变检测装置,其特征在于,所述电容检测电路包括电荷信号转换子电路,所述电荷信号转换子电路将各个导电元件的自电容累积电荷转换为脉宽信号,和/或将两个导电元件之间的互电容累积电荷转换为脉宽信号。
  53. 根据权利要求52所述的电池形变检测装置,其特征在于,所述电荷信号转换子电路包括恒流源、跨导放大器以及比较器,所述恒 流源被控制以对所述自电容或者所述互电容进行充电或者放电,所述自电容或者互电容跨接在所述跨导放大器的输入端和输出端,所述跨导放大器的输出为三角波形电压信号,所述比较器对所述三角波形电压信号和阈值电压信号进行比较,当三角波形电压信号大于所述阈值电压信号时,所述比较器输出高电平。
  54. 根据权利要求45所述的电池形变检测装置,其特征在于,所述电容检测电路包括电荷信号转换子电路,所述电荷信号转换子电路将各个导电元件的自电容累积电荷转换为数字信号,和/或将两个导电元件之间的互电容累积电荷转换为数字信号。
  55. 根据权利要求54所述的电池形变检测装置,其特征在于,所述电荷信号转换子电路包括积分器及比较器,所述积分器被控制以对所述互电容或者所述自电容的累积电荷进行累积并转换为电压信号,以及所述积分器被控制以对所述自电容或所述互电容与参考电容的电容差的累积电荷进行累积并转换为电压信号,基于所述电压信号的正负,所述比较器输出高电平或者低电平。
  56. 根据权利要求45所述的电池形变检测装置,其特征在于,所述电容检测电路包括电荷信号转换子电路以及信号放大子电路,所述电荷信号转换子电路将各个导电元件的自电容累积电荷转换为电压信号,和/或将两个导电元件之间的互电容累积电荷转换为电压信号,所述信号放大子电路对所述电压信号进行放大,生成放大后的电压信号。
  57. 根据权利要求56所述的电池形变检测装置,其特征在于,所述电容检测电路还包括信号后处理子电路,所述信号后处理子电路至少包括滤波器以及模数转换器。
  58. 根据权利要求56所述的电池形变检测装置,其特征在于,所述电荷信号转换子电路包括参考电容、第一放大器以及第二放大器,所述第一放大器将所述自电容或者所述互电容的累积电荷转换为第一电压信号,所述第二放大器将所述参考电容的累积电荷转换为第二电压信号。
  59. 根据权利要求58所述的电池形变检测装置,其特征在于,所述信号放大子电路包括共模放大器,所述共模放大器对所述第一电压信号以及所述第二电压信号的差值进行放大后输出。
  60. 根据权利要求56所述的电池形变检测装置,其特征在于,所述电荷信号转换子电路包括参考电容、第一放大器、第二放大器以及 整流&滤波器,所述第一放大器将所述自电容或者所述互电容的累积电荷转换为第一电压信号,所述第二放大器将所述参考电容的累积电荷转换为第二电压信号,所述整流&滤波器对所述第一电压信号以及所述第二电压信号分别进行整流滤波后输出。
  61. 根据权利要求60所述的电池形变检测装置,其特征在于,所述信号放大子电路包括仪表放大器,所述仪表放大器对所述第一电压信号以及所述第二电压信号的差值进行放大后输出。
  62. 一种电池管理系统,其特征在于,包括:权利要求1至61中任一项所述的电池形变检测装置。
PCT/CN2022/073950 2021-02-22 2022-01-26 电池形变检测装置及电池管理系统 WO2022174728A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110197726 2021-02-22
CN202110197726.9 2021-02-22

Publications (1)

Publication Number Publication Date
WO2022174728A1 true WO2022174728A1 (zh) 2022-08-25

Family

ID=82931197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/073950 WO2022174728A1 (zh) 2021-02-22 2022-01-26 电池形变检测装置及电池管理系统

Country Status (1)

Country Link
WO (1) WO2022174728A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116294959A (zh) * 2023-05-11 2023-06-23 合肥皖科智能技术有限公司 一种电池鼓包在线监测系统及方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103134996A (zh) * 2013-01-31 2013-06-05 珠海中慧微电子有限公司 采用电荷补偿的互电容感测电路及方法
WO2014100937A1 (en) * 2012-12-24 2014-07-03 Schneider Electric It Corporation Method for monitoring battery gas pressure and adjusting charging parameters
CN104092458A (zh) * 2014-07-10 2014-10-08 东莞市乐升电子有限公司 基于互电容的触摸按键信号检测方法及其检测电路
CN105548889A (zh) * 2014-10-24 2016-05-04 奇诺沃公司 用于估计电池的膨胀的方法和系统及自适应充电技术
CN111819451A (zh) * 2020-03-03 2020-10-23 深圳市汇顶科技股份有限公司 电容检测电路、传感器、芯片以及电子设备
CN112018461A (zh) * 2020-08-21 2020-12-01 常州瑞德丰精密技术有限公司 电池包、电动车及储能装置
CN112762813A (zh) * 2021-01-22 2021-05-07 珠海迈巨微电子有限责任公司 电池形变检测装置及电池管理系统
CN112857199A (zh) * 2021-02-24 2021-05-28 珠海迈巨微电子有限责任公司 电池安全检测装置及电池管理系统
CN113008126A (zh) * 2021-01-29 2021-06-22 珠海迈巨微电子有限责任公司 电池安全检测装置及电池管理系统
CN214276797U (zh) * 2021-01-29 2021-09-24 珠海迈巨微电子有限责任公司 电池形变检测装置
CN216052086U (zh) * 2021-05-25 2022-03-15 珠海迈巨微电子有限责任公司 检测装置及电池管理系统

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014100937A1 (en) * 2012-12-24 2014-07-03 Schneider Electric It Corporation Method for monitoring battery gas pressure and adjusting charging parameters
CN103134996A (zh) * 2013-01-31 2013-06-05 珠海中慧微电子有限公司 采用电荷补偿的互电容感测电路及方法
CN104092458A (zh) * 2014-07-10 2014-10-08 东莞市乐升电子有限公司 基于互电容的触摸按键信号检测方法及其检测电路
CN105548889A (zh) * 2014-10-24 2016-05-04 奇诺沃公司 用于估计电池的膨胀的方法和系统及自适应充电技术
CN111819451A (zh) * 2020-03-03 2020-10-23 深圳市汇顶科技股份有限公司 电容检测电路、传感器、芯片以及电子设备
CN112018461A (zh) * 2020-08-21 2020-12-01 常州瑞德丰精密技术有限公司 电池包、电动车及储能装置
CN112762813A (zh) * 2021-01-22 2021-05-07 珠海迈巨微电子有限责任公司 电池形变检测装置及电池管理系统
CN113188435A (zh) * 2021-01-22 2021-07-30 珠海迈巨微电子有限责任公司 电池安全检测装置及电池管理系统
CN113008126A (zh) * 2021-01-29 2021-06-22 珠海迈巨微电子有限责任公司 电池安全检测装置及电池管理系统
CN214276797U (zh) * 2021-01-29 2021-09-24 珠海迈巨微电子有限责任公司 电池形变检测装置
CN112857199A (zh) * 2021-02-24 2021-05-28 珠海迈巨微电子有限责任公司 电池安全检测装置及电池管理系统
CN216052086U (zh) * 2021-05-25 2022-03-15 珠海迈巨微电子有限责任公司 检测装置及电池管理系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116294959A (zh) * 2023-05-11 2023-06-23 合肥皖科智能技术有限公司 一种电池鼓包在线监测系统及方法
CN116294959B (zh) * 2023-05-11 2024-01-09 合肥皖科智能技术有限公司 一种电池鼓包在线监测系统及方法

Similar Documents

Publication Publication Date Title
Zhong et al. Smart face mask based on an ultrathin pressure sensor for wireless monitoring of breath conditions
CN112857199A (zh) 电池安全检测装置及电池管理系统
CN108489541B (zh) 一种人工皮肤及其检测压力、温度和湿度的方法
CN103954394B (zh) 基于介电高弹聚合物的柔性压力传感器及传感压力的方法
US3940974A (en) Electrically compensated sensor
US10801903B2 (en) Pressure sensor having a plurality of sheet-like and laminated piezoelectric elements
WO2022174728A1 (zh) 电池形变检测装置及电池管理系统
DE102012209397A1 (de) Batteriezelle mit drucksensitivem Foliensensor
US11469365B2 (en) Sensing film and method of making same and electronic device using sensing film
US20150185257A1 (en) Circuit and method for sensing a differential capacitance
CN214276797U (zh) 电池形变检测装置
US10102977B2 (en) High energy density capacitor with micrometer structures and nanometer components
CN108709585B (zh) 一种人工皮肤及其检测压力、温湿度和调节温度的方法
CN111122020B (zh) 电容式压力检测装置及传感器
CN110210349B (zh) 指纹传感器和移动终端
CN214542337U (zh) 电池安全检测装置及电池管理系统
CN113188435A (zh) 电池安全检测装置及电池管理系统
CN103970352A (zh) 一种纸基柔性触控传感器及其制造方法
Gao et al. Piezoelectric material based technique for concurrent force sensing and energy harvesting for interactive displays
CN215218649U (zh) 电池安全检测装置、电池管理芯片及电池管理系统
CN215005790U (zh) 测量装置、电池安全管理器件和电池安全管理系统
CN110495103B (zh) 无源连接电路和电压测量电路
CN207231534U (zh) 集成检测传感器及触摸感应设备
CN113008126A (zh) 电池安全检测装置及电池管理系统
WO2022155910A1 (zh) 电池形变检测装置及电池管理系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22755501

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/01/2024)

122 Ep: pct application non-entry in european phase

Ref document number: 22755501

Country of ref document: EP

Kind code of ref document: A1