[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022173232A2 - 병변의 발생 위험성을 예측하는 방법 및 시스템 - Google Patents

병변의 발생 위험성을 예측하는 방법 및 시스템 Download PDF

Info

Publication number
WO2022173232A2
WO2022173232A2 PCT/KR2022/002008 KR2022002008W WO2022173232A2 WO 2022173232 A2 WO2022173232 A2 WO 2022173232A2 KR 2022002008 W KR2022002008 W KR 2022002008W WO 2022173232 A2 WO2022173232 A2 WO 2022173232A2
Authority
WO
WIPO (PCT)
Prior art keywords
risk
lesion
occurrence
medical image
learning
Prior art date
Application number
PCT/KR2022/002008
Other languages
English (en)
French (fr)
Other versions
WO2022173232A3 (ko
Inventor
김기환
남현섭
Original Assignee
주식회사 루닛
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 루닛 filed Critical 주식회사 루닛
Priority to EP22752992.2A priority Critical patent/EP4273881A4/en
Priority to US18/270,895 priority patent/US20240071621A1/en
Priority claimed from KR1020220017203A external-priority patent/KR20220115081A/ko
Publication of WO2022173232A2 publication Critical patent/WO2022173232A2/ko
Publication of WO2022173232A3 publication Critical patent/WO2022173232A3/ko

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/20ICT specially adapted for the handling or processing of medical images for handling medical images, e.g. DICOM, HL7 or PACS
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/40ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/70ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for mining of medical data, e.g. analysing previous cases of other patients
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30068Mammography; Breast
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30096Tumor; Lesion

Definitions

  • the present disclosure relates to a method and system for predicting the risk of lesion occurrence, and more specifically, to a method and system for providing information on the risk of lesion occurrence to a target patient based on a medical image of the target patient.
  • Machine learning models can provide meaningful output data by discovering features hidden in complex input data. Accordingly, machine learning models are being actively used in various research fields including the medical field.
  • the machine learning model may be used to detect a lesion included in a medical image based on a medical image of a target patient.
  • annotation information about the location of the lesion in the medical image and the medical image including the lesion may be required as learning data. Such learning data can be obtained relatively easily by annotating the medical image including the lesion.
  • the machine learning model is actively used to predict a lesion or disease that has already occurred from a medical image, it is not actively used to predict the risk of a lesion or disease that has not yet occurred. This is because it is a very challenging task to learn how to learn a machine learning model for predicting the risk of a lesion using a medical image in a state in which a disease has not yet occurred. Accordingly, the machine learning model has a problem in that it is not very helpful in preventing diseases or early detection of diseases through regular check-ups because they cannot provide risk information about future diseases.
  • the present disclosure provides a method for predicting the risk of occurrence of a lesion, a computer program stored in a recording medium, and an apparatus (system).
  • a method of predicting the risk of occurrence of a lesion includes acquiring a medical image of an object, and using a machine learning model, the acquired medical care Predicting the possibility of occurrence of a lesion in the object from an image and outputting a prediction result, wherein the machine learning model is a model in which a plurality of learning medical images and a lesion occurrence risk associated with each learning medical image are learned.
  • the plurality of learning medical images includes a high-risk learning medical image and a low-risk learning medical image
  • the high-risk learning medical image is a lesion occurrence site of a patient in which the lesion occurs before the lesion occurs. Includes a first learning medical image taken in.
  • the plurality of learning medical images includes a high-risk group learning medical image and a low-risk group learning medical image
  • the high-risk learning medical image is a region in which a lesion does not occur in a patient with a lesion. and a second learning medical image.
  • a region where a lesion does not occur in a patient in which a lesion occurs includes at least one of a region opposite or a peripheral region of the lesion occurrence region.
  • the high-risk group learning medical image is classified into a plurality of classes according to the degree of risk of lesion occurrence.
  • the machine learning model includes a first classifier trained to classify a plurality of training medical images into a high-risk group learning medical image or a low-risk group learning medical image, and the classified high-risk group learning medical image into a plurality of classes. and a second classifier trained to classify.
  • the machine learning model is a model that has been further trained to infer mask annotation information in the training medical image from the training medical image, and the predicting of the likelihood of occurrence of a lesion may include using the machine learning model. , outputting an area where a lesion is expected to occur in the acquired medical image.
  • the medical image includes a plurality of sub-medical images
  • the predicting of the possibility of occurrence of a lesion includes inputting the plurality of sub-medical images into the machine learning model and at least included in the machine learning model. extracting a plurality of feature maps output from one layer, synthesizing the extracted feature maps, and outputting a prediction result for the risk of occurrence of a lesion using the synthesized plurality of feature maps.
  • the step of synthesizing the extracted plurality of feature maps includes concatenating or summing each of the plurality of feature maps.
  • the step of outputting a prediction result for the risk of occurrence of a lesion using a plurality of synthesized feature maps may include applying a weight to a specific region within each of the plurality of feature maps, thereby generating a lesion. and outputting a prediction result for the risk.
  • a medical image includes a mammography image
  • the plurality of sub-medical images include two Craniocaudal (CC) images and two Mediolateral (MLO) images.
  • Oblique includes images.
  • the method further includes receiving additional information related to a risk of occurrence of a lesion, wherein predicting the likelihood of occurrence of a lesion may include: using a machine learning model, the acquired medical image and additional information and outputting a prediction result for the risk of occurrence of a lesion based on the .
  • the machine learning model is a model further trained to output a reference prediction result for the risk of occurrence of a lesion based on a plurality of learning medical images and additional learning information.
  • the method further includes receiving additional information related to the risk of occurrence of a lesion, and predicting the likelihood of occurrence of a lesion may include: using a machine learning model, based on the acquired medical image. Outputting a first prediction result on the risk of occurrence of lesions, using an additional machine learning model, and outputting a second prediction result on the risk of occurrence of lesions based on the additional information, and the first prediction result and the second prediction result 2 using the prediction results to generate a final prediction result for the risk of occurrence of lesions, wherein the additional machine learning model is a model trained to output a reference prediction result for the risk of occurrence of lesions based on the additional learning information.
  • outputting the prediction result further includes outputting information related to at least one of a medical examination, diagnosis, prevention, or treatment based on the prediction result.
  • a computer program stored in a computer-readable recording medium is provided for executing the method according to an embodiment of the present disclosure in a computer.
  • An information processing system includes a memory and at least one processor connected to the memory and configured to execute at least one computer-readable program included in the memory, the at least one program comprising: Obtaining a medical image obtained by photographing , using a machine learning model, predicting a possibility that a lesion will occur in the object from the obtained medical image, and outputting a prediction result, and the machine learning model includes a plurality of It is a model in which the learning medical image and the risk of lesion occurrence associated with each learning medical image are learned.
  • the risk of occurrence of a lesion in a target patient may be predicted based on a medical image of the target patient, and occurrence of a lesion in the target patient based on additional information about the target patient as well as the medical image of the target patient As the risk is predicted, the accuracy of the prediction may be improved.
  • the machine learning model by learning the machine learning model using the learning medical image taken before the onset of the diseased patient's onset site, the hidden characteristic indicated by the medical image with a high risk of lesion occurrence is learned, The risk of developing a lesion in a target patient can be predicted.
  • a machine learning model by learning a machine learning model using a learning medical image in which at least one of a region opposite to or surrounding an onset site of an onset patient is photographed, a medical image with a high risk of occurrence of a lesion is displayed. By learning the hidden characteristics, the risk of lesion occurrence of the target patient can be predicted.
  • the accuracy of prediction may be improved by predicting the risk of lesion occurrence in a target patient using a plurality of sub-medical images obtained by photographing a target site at multiple locations or at multiple angles.
  • information on appropriate measures or schedules related to treatment/diagnosis/examination/prevention according to the prediction result and/or risk level for the risk of occurrence of lesions in patients is provided, thereby receiving information Medical staff can efficiently and effectively manage limited resources (eg, personnel, devices, drugs, etc.).
  • high-risk patients by providing information according to the prediction result and/or the degree of risk for the risk of occurrence of lesions in patients, high-risk patients can prevent disease or treat disease through additional examination or short-period examination, etc. It can be detected and treated early, and low-risk patients can save money and time through long-term screening.
  • FIG. 1 is an exemplary configuration diagram illustrating a system for providing a prediction result for the risk of occurrence of a lesion according to an embodiment of the present disclosure.
  • FIG. 2 is a block diagram illustrating an internal configuration of an information processing system according to an embodiment of the present disclosure.
  • FIG. 3 is a block diagram illustrating an internal configuration of a user terminal and an information processing system according to an embodiment of the present disclosure.
  • FIG. 4 is a diagram illustrating an internal configuration of a processor of an information processing system according to an embodiment of the present disclosure.
  • FIG. 5 is a diagram illustrating an example of a learning data DB according to an embodiment of the present disclosure.
  • FIG. 6 is a diagram illustrating an example of a machine learning model according to an embodiment of the present disclosure.
  • FIG. 7 is a diagram illustrating an example of learning a machine learning model according to an embodiment of the present disclosure.
  • FIG. 8 is a diagram illustrating an example of learning a machine learning model according to another embodiment of the present disclosure.
  • FIG. 9 is a diagram illustrating an example in which a machine learning model according to an embodiment of the present disclosure outputs a prediction result for a risk of lesion occurrence based on a plurality of sub-medical images.
  • FIG. 10 is a diagram illustrating an example of generating a prediction result for the risk of occurrence of a lesion based on a medical image and additional information according to an embodiment of the present disclosure.
  • FIG. 11 is a diagram illustrating an example of generating a prediction result for the risk of occurrence of a lesion based on a medical image and additional information according to another embodiment of the present disclosure.
  • FIG. 12 is a diagram illustrating an example of providing medical information based on a prediction result according to an embodiment of the present disclosure.
  • FIG. 13 is a diagram illustrating a prediction result and an example of providing medical information based on the prediction result according to an embodiment of the present disclosure.
  • FIG. 14 is an exemplary diagram illustrating an artificial neural network model according to an embodiment of the present disclosure.
  • 15 is a flowchart illustrating an example of a method for predicting the risk of occurrence of a lesion according to an embodiment of the present disclosure.
  • 16 is an exemplary system configuration diagram for predicting the risk of occurrence of a lesion according to an embodiment of the present disclosure.
  • 'module' or 'unit' used in the specification means a software or hardware component, and 'module' or 'unit' performs certain roles.
  • 'module' or 'unit' is not meant to be limited to software or hardware.
  • a 'module' or 'unit' may be configured to reside on an addressable storage medium or may be configured to reproduce one or more processors.
  • a 'module' or 'unit' refers to components such as software components, object-oriented software components, class components and task components, processes, functions, properties, may include at least one of procedures, subroutines, segments of program code, drivers, firmware, microcode, circuitry, data, database, data structures, tables, arrays or variables.
  • Components and 'modules' or 'units' are the functions provided within are combined into a smaller number of components and 'modules' or 'units' or additional components and 'modules' or 'units' can be further separated.
  • a 'module' or a 'unit' may be implemented with a processor and a memory.
  • 'Processor' shall be construed broadly to include general purpose processors, central processing units (CPUs), graphic processing units (GPUs), microprocessors, digital signal processors (DSPs), controllers, microcontrollers, state machines, and the like.
  • a 'processor' may refer to an application specific semiconductor (ASIC), a programmable logic device (PLD), a field programmable gate array (FPGA), or the like.
  • ASIC application specific semiconductor
  • PLD programmable logic device
  • FPGA field programmable gate array
  • 'Processor' refers to a combination of processing devices, such as, for example, a combination of a DSP and a microprocessor, a combination of a plurality of microprocessors, a combination of one or more microprocessors in combination with a DSP core, or any other such configurations. You may. Also, 'memory' should be construed broadly to include any electronic component capable of storing electronic information.
  • RAM random access memory
  • ROM read-only memory
  • NVRAM non-volatile random access memory
  • PROM programmable read-only memory
  • EPROM erase-programmable read-only memory
  • a memory is said to be in electronic communication with the processor if the processor is capable of reading information from and/or writing information to the memory.
  • a memory integrated in the processor is in electronic communication with the processor.
  • a 'system' may include at least one of a server device and a cloud device, but is not limited thereto.
  • a system may consist of one or more server devices.
  • a system may consist of one or more cloud devices.
  • the system may be operated with a server device and a cloud device configured together.
  • a 'medical image' is an image and/or image taken for diagnosis, treatment, prevention, etc. of a disease, and may refer to an image and/or image taken inside/outside of a patient's body.
  • medical image data may include mammography image (MMG), ultrasound image, chest radiograph, X-ray, Computed Tomography (CT), Positron emission tomography (PET), Magnetic Resonance Imaging (MRI), Includes imaging data and/or image data of any modality, including Sonography (Ultrasound, US), Functional Magnetic Resonance Imaging (fMRI), Digital pathology whole slide image (WSI), Digital Breast Tomosynthesis (DBT), etc. can do.
  • a 'medical image' may refer to one or more medical images
  • a 'training medical image' may refer to one or more learning medical images.
  • 'additional information related to the risk of occurrence of a lesion' or 'additional information' may include any information that can be obtained and recorded from a patient.
  • the additional information may include lab data and biological data.
  • the additional information is information that the medical staff can obtain and record from the patient, including information obtained through history taking from the patient (eg, address, symptoms, past medical history, family history, smoking status, etc.), physical examination results ( For example: patient's height, blood pressure, heart rate, abdominal examination, etc.) and additional test data (eg blood test results, electrocardiogram, blue test, etc.) may be included.
  • additional information may include age, weight, family history, height, sex, age at menarche, menopause, childbirth history, hormone replacement therapy treatment history, genomic information (e.g. BRCA, BRD, PTEN, TP53, CDH1, SKT11/LKB1, PALB2, etc.), breast density (eg, density of mammary gland tissue in the breast), blood pressure, body temperature, cough, underlying disease, etc. may include all clinical information about the patient.
  • genomic information e.g. BRCA, BRD, PTEN, TP53, CDH1, SKT11/LKB1, PALB2, etc.
  • breast density eg, density of mammary gland tissue in the breast
  • blood pressure e.g., body temperature, cough, underlying disease, etc.
  • a 'machine learning model' may include any model used to infer an answer to a given input.
  • the machine learning model may include an artificial neural network model including an input layer (layer), a plurality of hidden layers, and an output layer.
  • each layer may include one or more nodes.
  • the machine learning model may be trained to output a prediction result for the risk of lesion occurrence of the target patient based on the medical image and/or additional information of the target patient.
  • label information generated through annotation work may be used to train the machine learning model.
  • the machine learning model may include weights associated with a plurality of nodes included in the machine learning model.
  • the weight may include any parameter associated with the machine learning model.
  • a machine learning model may refer to an artificial neural network model, and the artificial neural network model may refer to a machine learning model.
  • the machine learning model according to the present disclosure may be a model learned using various learning methods. For example, various learning methods such as supervised learning, unsupervised learning, and reinforcement learning may be used in the present disclosure.
  • 'learning' may refer to any process of changing a weight associated with a machine learning model using training data and/or a correct answer label.
  • the learning is performed by forward propagation and backward propagation of the machine learning model one or more times using the medical image of the learning object and the correct answer label (eg, the risk of occurrence of lesions, etc.) This may refer to a process of changing or updating weights associated with the machine learning model.
  • 'annotation means an operation of tagging a data sample with histological information or the like or the tagged information (ie, annotation) itself.
  • Annotations may be used interchangeably with terms such as tagging and labeling in the art.
  • 'each of a plurality of A' or 'each of a plurality of A' may refer to each of all components included in the plurality of As or may refer to each of some components included in the plurality of As. .
  • 'similar' may include all meanings of the same or similar. For example, that two pieces of information are similar may indicate that two pieces of information are the same or similar to each other.
  • an 'instruction' may refer to a component of a computer program and executed by a processor as a series of instructions grouped based on a function.
  • a 'user' may refer to a person who uses a user terminal.
  • the user may include a medical staff, a patient, a researcher, etc. who are provided with a prediction result on the risk of occurrence of a lesion.
  • a user may refer to a user terminal, and conversely, a user terminal may refer to a user. That is, the terms user and user terminal may be used interchangeably herein.
  • the system for providing the prediction result for the risk of occurrence of a lesion in a patient may include an information processing system 100 , a user terminal 110 , and a storage system 120 .
  • the information processing system 100 may be configured to be connected to and communicate with each of the user terminal 110 and the storage system 120 .
  • one user terminal 110 is illustrated in FIG. 1 , the present invention is not limited thereto, and a plurality of user terminals 110 may be configured to be connected to and communicate with the information processing system 100 .
  • the information processing system 100 is illustrated as one computing device in FIG.
  • each component of the system that provides a prediction result for the risk of occurrence of a lesion in a patient represents functionally distinct functional elements, and a plurality of components are implemented in a form that is integrated with each other in an actual physical environment.
  • the information processing system 100 and the user terminal 110 are arbitrary computing devices used to generate and provide prediction results for the risk of occurrence of a lesion in a patient.
  • the computing device may refer to any type of device equipped with a computing function, and may be, for example, a notebook, a desktop, a laptop, a server, a cloud system, etc., but is limited thereto. doesn't happen
  • the information processing system 100 may receive a medical image of the target patient and/or additional information of the target patient.
  • the additional information of the target patient may include clinical data, lab data, and/or biological data of the target patient.
  • information processing system 100 may include storage system 120 (eg, hospital systems, electronic medical records, prescription delivery systems, medical imaging systems, examination information systems, other local/cloud storage systems, etc.) and/or Alternatively, a medical image of the target patient and/or additional information of the target patient may be received from the user terminal 110 . Then, the information processing system 100 may generate a prediction result for the risk of occurrence of a lesion in the patient and provide it to the user 130 through the user terminal 110 .
  • storage system 120 eg, hospital systems, electronic medical records, prescription delivery systems, medical imaging systems, examination information systems, other local/cloud storage systems, etc.
  • the information processing system 100 uses a machine learning model to generate a prediction result for the risk of occurrence of a lesion in a target patient based on a medical image of the target patient and/or additional information of the target patient can be printed out.
  • the prediction result of the risk of occurrence of lesions in the target patient is information in which the risk of occurrence of lesions is expressed by means (numbers or colors, etc.) that can express the degree of risk, and a plurality of classes ( It may include information classified as high risk, intermediate risk, and low risk).
  • the information processing system 100 may provide information related to at least one of a medical examination, diagnosis, prevention, or treatment based on the prediction result of the risk of occurrence of a lesion. For example, the information processing system 100 may determine the prognosis of the target patient based on the prediction result of the risk of occurrence of the lesion, and the necessary intervention (eg, treatment/diagnosis/intervention) required for the patient in a specific situation. testing/prevention policies and timing), or drug reactivity. As a specific example, the information processing system 100 may provide a personalized examination schedule according to the degree of the risk of lesion occurrence.
  • the information processing system 100 may recommend an additional examination (eg, MRI or CT scan, etc.) to a patient with a high risk of lesion, and may provide a checkup schedule for regular checkups at short intervals. On the other hand, it is possible to provide a checkup schedule for regular checkups with a long cycle to a patient with a low risk of lesion occurrence.
  • an additional examination eg, MRI or CT scan, etc.
  • the information processing system 100 may provide the user terminal 110 with a prediction result and/or various medical information generated based on the prediction result on the risk of occurrence of a lesion in a patient.
  • the user terminal 110 may receive from the information processing system 100 a prediction result on the risk of occurrence of a lesion in a patient and/or various medical information generated based on the prediction result and output it through a display device. That is, the user (eg, medical staff, patient, researcher, etc.) 130 may provide information on the target patient based on the prediction result and/or the various medical information generated based on the prediction result on the risk of occurrence of the patient's lesion. Medical measures and/or clinical decisions may be made.
  • the storage system 120 is a device or cloud system that stores and manages various data related to a medical image, additional information, and/or machine learning model associated with a target patient to provide a prediction result for the risk of occurrence of a lesion in a patient. .
  • the storage system 120 may store and manage various data using a database.
  • the various data may include arbitrary data related to the machine learning model, for example, file/meta information of the training data, file/meta information of the target data, label information of the target data that is the result of annotation work, It may include, but is not limited to, data related to the annotation operation, a machine learning model (eg, an artificial neural network model), and the like.
  • the information processing system 100 and the storage system 120 are illustrated as separate systems, but the present invention is not limited thereto, and may be integrated into one system.
  • the user 130 may be provided with a prediction result and/or various medical information based on the prediction result about the risk of occurrence of a lesion in a target patient.
  • the user 130 may be a medical staff or a patient himself/herself.
  • the medical staff may take necessary measures for the target patient by receiving various medical information, and may receive assistance in making a clinical decision on the target patient.
  • information on appropriate measures or schedules related to treatment/diagnosis/checkup/prevention according to the prediction result and/or risk level of the risk of occurrence of lesions in patients is provided, thereby providing information
  • the provided medical staff can efficiently and effectively manage limited resources (eg, manpower, equipment, drugs, etc.) can be detected early, and low-risk patients who receive information can save money and time through long-term screening.
  • a mammography image will be described as a specific example of a medical image
  • the risk of breast cancer will be described as a specific example of the risk of lesion, but this is only for a clear understanding of the present disclosure, and the scope of the present disclosure is not limited thereto. That is, according to the present disclosure, the risk of occurrence of any lesion may be predicted based on an arbitrary medical image.
  • the information processing system 100 may include a memory 210 , a processor 220 , a communication module 230 , and an input/output interface 240 . As shown in FIG. 2 , the information processing system 100 may be configured to communicate information and/or data through a network using the communication module 230 . According to an embodiment, the information processing system 100 may include at least one device including a memory 210 , a processor 220 , a communication module 230 , and an input/output interface 240 .
  • the memory 210 may include any non-transitory computer-readable recording medium.
  • the memory 210 is a non-volatile mass storage device such as random access memory (RAM), read only memory (ROM), disk drive, solid state drive (SSD), flash memory, etc. mass storage device).
  • a non-volatile mass storage device such as a ROM, an SSD, a flash memory, a disk drive, etc. may be included in the information processing system 100 as a separate permanent storage device distinct from the memory 210 .
  • the memory 210 may store an operating system and at least one program code (eg, a code for predicting the risk of occurrence of lesions installed and driven in the information processing system 100 ).
  • the separate computer-readable recording medium may include a recording medium directly connectable to the information processing system 100, for example, a floppy drive, a disk, a tape, a DVD/CD-ROM drive, a memory card, and the like. It may include a computer-readable recording medium together.
  • the software components may be loaded into the memory 210 through the communication module 230 rather than a computer-readable recording medium.
  • the at least one program is a computer program (eg, predicting the risk of occurrence of a lesion) installed by the files provided by the developer or the file distribution system that distributes the installation file of the application through the communication module 230 . program, etc.) may be loaded into the memory 210 .
  • the processor 220 may be configured to process instructions of a computer program by performing basic arithmetic, logic, and input/output operations.
  • the command may be provided to a user terminal (not shown) or another external system by the memory 210 or the communication module 230 .
  • the processor 220 may receive a medical image and generate and provide a prediction result for the risk of occurrence of a lesion based on the received medical image using a machine learning model.
  • the communication module 230 may provide a configuration or function for the user terminal (not shown) and the information processing system 100 to communicate with each other through a network, and the information processing system 100 may provide an external system (eg, a separate A configuration or function for communicating with a cloud system, etc.) may be provided.
  • control signals, commands, data, etc. provided under the control of the processor 220 of the information processing system 100 are transmitted to the user through the communication module 230 and the network through the user terminal and/or the communication module of the external system. It may be transmitted to a terminal and/or an external system.
  • the prediction result generated by the information processing system 100 and/or medical information generated based on the prediction result is transmitted through the communication module 230 and the network through the user terminal and/or the communication module of the external system. It may be transmitted to a user terminal and/or an external system.
  • the user terminal and/or the external system that has received the prediction result and/or the medical information generated based on the prediction result may output the received information through a display output capable device.
  • the input/output interface 240 of the information processing system 100 is connected to the information processing system 100 or means for an interface with a device (not shown) for input or output that the information processing system 100 may include.
  • a device not shown
  • the input/output interface 240 is illustrated as an element configured separately from the processor 220 in FIG. 2 , the present invention is not limited thereto, and the input/output interface 240 may be configured to be included in the processor 220 .
  • the information processing system 100 may include more components than those of FIG. 2 . However, there is no need to clearly show most of the prior art components.
  • the processor 220 of the information processing system 100 may be configured to manage, process and/or store information and/or data received from a plurality of user terminals and/or a plurality of external systems. According to an embodiment, the processor 220 may receive a medical image from a user terminal and/or an external system. The processor 220 may generate various medical information based on the prediction result and/or the prediction result about the risk of occurrence of lesions based on the received medical image by using the machine learning model, and use the generated information as information. The output may be performed through a display output capable device connected to the processing system 100 .
  • the user terminal 310 may refer to any computing device capable of executing an application or a web browser providing a lesion risk prediction service and capable of wired/wireless communication, for example, a mobile phone terminal, a tablet terminal, It may include a PC terminal and the like. As shown, the user terminal 310 may include a memory 312 , a processor 314 , a communication module 316 , and an input/output interface 318 .
  • the user terminal 310 and the information processing system 100 are configured to communicate information and/or data via a network 330 using respective communication modules 316 and 336 .
  • the input/output device 320 may be configured to input information and/or data to the user terminal 310 through the input/output interface 318 or to output information and/or data generated from the user terminal 310 .
  • the memories 312 and 210 may include any non-transitory computer-readable recording medium.
  • the memories 312 and 210 are non-volatile mass storage devices such as random access memory (RAM), read only memory (ROM), disk drives, solid state drives (SSDs), flash memory, and the like. (permanent mass storage device) may be included.
  • a non-volatile mass storage device such as a ROM, an SSD, a flash memory, a disk drive, etc. may be included in the user terminal 310 or the information processing system 100 as a separate permanent storage device distinct from the memory.
  • the memory 312 and 210 may store an operating system and at least one program code (eg, a code for predicting the risk of occurrence of a lesion, etc. installed and driven in the user terminal 310 ).
  • the separate computer-readable recording medium may include a recording medium directly connectable to the user terminal 310 and the information processing system 100, for example, a floppy drive, disk, tape, DVD/CD- It may include a computer-readable recording medium such as a ROM drive and a memory card.
  • the software components may be loaded into the memories 312 and 210 through a communication module rather than a computer-readable recording medium.
  • the at least one program is loaded into the memories 312 and 210 based on a computer program installed by files provided through the network 330 by developers or a file distribution system that distributes installation files of applications. can be
  • the processors 314 and 220 may be configured to process instructions of a computer program by performing basic arithmetic, logic, and input/output operations. Instructions may be provided to the processor 314 , 220 by the memory 312 , 210 or the communication module 316 , 230 . For example, the processors 314 and 220 may be configured to execute received instructions according to program code stored in a recording device such as the memories 312 and 210 .
  • the communication modules 316 and 230 may provide a configuration or function for the user terminal 310 and the information processing system 100 to communicate with each other through the network 330 , and the user terminal 310 and/or information processing
  • the system 100 may provide a configuration or function for communicating with another user terminal or another system (eg, a separate cloud system, etc.).
  • a request or data generated by the processor 314 of the user terminal 310 according to a program code stored in a recording device such as the memory 312 eg, data associated with a request for predicting the risk of occurrence of a lesion, etc. It may be transmitted to the information processing system 100 through the network 330 under the control of the communication module 316 .
  • a control signal or command provided under the control of the processor 220 of the information processing system 100 is transmitted through the communication module 230 and the network 330 through the communication module 316 of the user terminal 310 . It may be received by the user terminal 310 .
  • the user terminal 310 may receive, from the information processing system 100 , data associated with a result of predicting the risk of occurrence of a lesion, and the like.
  • the input/output interface 318 may be a means for interfacing with the input/output device 320 .
  • an input device may include a device such as a camera, keyboard, microphone, mouse, etc., including an audio sensor and/or an image sensor
  • an output device may include a device such as a display, speaker, haptic feedback device, etc.
  • the input/output interface 318 may be a means for an interface with a device in which a configuration or function for performing input and output, such as a touch screen, is integrated into one. For example, when the processor 314 of the user terminal 310 processes a command of a computer program loaded in the memory 312, information and/or data provided by the information processing system 100 or other user terminals are used.
  • a service screen, etc. configured by doing this may be displayed on the display through the input/output interface 318 .
  • the input/output device 320 is not included in the user terminal 310 , but the present invention is not limited thereto, and may be configured as a single device with the user terminal 310 .
  • the input/output interface 318 is illustrated as an element configured separately from the processor 314 in FIG. 3 , the present invention is not limited thereto, and the input/output interface 318 may be configured to be included in the processor 314 .
  • the information processing system 100 may also be configured to include an input/output interface (not shown).
  • the input/output interface of the information processing system 100 may be a means for an interface with a device (not shown) for input or output that is connected to the information processing system 100 or that the information processing system 100 may include. .
  • the user terminal 310 and the information processing system 100 may include more components than those of FIG. 3 . However, there is no need to clearly show most of the prior art components. According to an embodiment, the user terminal 310 may be implemented to include at least a part of the above-described input/output device 320 . In addition, the user terminal 310 may further include other components such as a transceiver, a global positioning system (GPS) module, a camera, various sensors, and a database.
  • GPS global positioning system
  • the user terminal 310 when it is a smartphone, it may include components that are generally included in the smartphone, for example, an acceleration sensor, a gyro sensor, an image sensor, a proximity sensor, a touch sensor, Various components such as an illuminance sensor, a camera module, various physical buttons, a button using a touch panel, an input/output port, and a vibrator for vibration may be implemented to be further included in the user terminal 310 .
  • the processor 314 of the user terminal 310 may be configured to operate an application that provides a lesion occurrence risk prediction service. In this case, a code associated with the corresponding application and/or program may be loaded into the memory 312 of the user terminal 310 .
  • the processor 314 While a program for an application providing a lesion risk prediction service is being operated, the processor 314 operates a touch screen connected to the input/output interface 318, a keyboard, a camera including an audio sensor and/or an image sensor, a microphone, etc. It is possible to receive text, image, video, voice and/or action inputted or selected through the input device, and store the received text, image, video, voice and/or action in the memory 312 or the communication module ( 316 ) and the network 330 , to the information processing system 100 . For example, the processor 314 may receive a user's input requesting prediction of the risk of lesion occurrence with respect to the medical image. It may be provided to the information processing system 100 through the communication module 316 and the network 330 .
  • the processor 314 of the user terminal 310 manages, processes and/or stores information and/or data received from the input/output device 320, other user terminals, the information processing system 100, and/or a plurality of external systems. can be configured to The information and/or data processed by the processor 314 may be provided to the information processing system 100 via the communication module 316 and the network 330 .
  • the processor 314 of the user terminal 310 may transmit and output information and/or data to the input/output device 320 through the input/output interface 318 . For example, the processor 314 may display the received information and/or data on the screen of the user terminal.
  • the processor 220 of the information processing system 100 may be configured to manage, process, and/or store information and/or data received from a plurality of user terminals 310 and/or a plurality of external systems. Information and/or data processed by the processor 220 may be provided to the user terminal 310 through the communication module 230 and the network 330 .
  • the processor 220 may include a model learning unit 410 , a lesion occurrence risk prediction unit 420 , and an information providing unit 430 .
  • the internal configuration of the processor 220 is described separately for each function in FIG. 4 , this does not necessarily mean that the processor 220 is physically separated.
  • the internal configuration of the processor 220 shown in FIG. 3 is only an example, and only essential configurations are not shown. Accordingly, in some embodiments, the processor 220 may be implemented differently, such as by additionally including other components other than the illustrated internal configuration, or by omitting some of the illustrated internal components.
  • the processor 220 may acquire a medical image of a target patient, which is a target for predicting the risk of occurrence of a lesion.
  • the medical image is an image and/or image taken for diagnosis, treatment, prevention, etc. of a disease, and may refer to an image and/or image taken inside/outside of a patient's body.
  • the medical image may include a plurality of sub-medical images.
  • the medical image may include a mammography image, and the plurality of sub-medical images may include two top-down (CC) images and two internal and external scan (MLO) images.
  • the processor 220 may further receive additional information related to the risk of occurrence of a lesion.
  • the additional information may include clinical data, lab data, and/or biological data.
  • additional information may include the patient's age, weight, family history, height, sex, age at menarche, menopause status, childbirth history, hormone replacement therapy treatment history, genomic information (e.g. BRCA, BRD, PTEN, TP53, CDH1, SKT11/LKB1, PALB2, etc.), and breast density.
  • the above-mentioned images and/or information, etc. may be stored in a storage system connected or communicable with an information processing system (eg, a hospital system, an electronic medical record, a prescription delivery system, a medical imaging system, an examination information system, other local/cloud storage systems, etc.) ), an internal memory and/or a user terminal, and the like.
  • the received medical image and/or additional information may be provided to the lesion occurrence risk prediction unit 420 to generate a prediction result for the lesion occurrence risk.
  • the model learning unit 410 may receive training data necessary for learning the model and train the machine learning model. Training data necessary for learning the model may be stored in the training data DB 440 .
  • the learning data DB 440 is a high-risk learning medical image, a low-risk learning medical image, additional learning information, a reference prediction result for the risk of occurrence of a lesion associated with each learning medical image and/or each additional learning information, a high-risk learning medical image. may include mask annotation information and the like.
  • An example of the learning data stored in the learning data DB 440 will be described later in detail with reference to FIG. 5 .
  • the model learning unit 410 uses a machine learning model to output a reference prediction result for the risk of lesion occurrence from each of a plurality of training medical images including a high-risk group learning medical image and a low-risk group learning medical image. can learn Additionally, the model learning unit 410 may further train the machine learning model to infer mask annotation information in the high-risk learning medical image from the high-risk learning medical image.
  • a specific example of training the machine learning model so that the model learning unit 410 outputs a reference prediction result for the risk of occurrence of a lesion from a plurality of training medical images will be described in detail below with reference to FIG. 6 .
  • the learning medical image may be classified into a plurality of classes according to the degree of risk of lesion occurrence.
  • the model learning unit 410 may train the machine learning model to classify the plurality of training medical images into a plurality of classes.
  • a specific example in which the model learning unit 410 trains the machine learning model to classify the plurality of training medical images into a plurality of classes will be described in detail below with reference to FIGS. 7 to 8 .
  • the model learning unit 410 may train the machine learning model to output a reference prediction result for the risk of occurrence of a lesion by using a plurality of learning medical images and additional learning information.
  • An example of training the machine learning model so that the model learning unit 410 outputs a reference prediction result for the risk of occurrence of a lesion using a plurality of learning medical images and additional learning information will be described later in detail with reference to FIGS. 10 to 11 . .
  • the lesion occurrence risk prediction unit 420 may generate or output a prediction result for the lesion occurrence risk using the learned machine learning model.
  • the machine learning model may be a model learned by the model learning unit 410 .
  • the lesion risk prediction unit 420 may use a machine learning model to generate a prediction result for the lesion risk based on a medical image.
  • the lesion occurrence risk prediction unit 420 may generate information on a region (eg, one or more pixel regions) where a lesion is expected to occur in the received medical image by using a machine learning model. .
  • a region eg, one or more pixel regions
  • the medical image may include a plurality of sub-medical images.
  • the lesion risk prediction unit 420 may input a plurality of sub-medical images to the machine learning model and extract a plurality of feature maps output from at least one layer included in the machine learning model, and the extracted A plurality of feature maps may be synthesized, and a prediction result for the risk of occurrence of a lesion may be generated using the synthesized plurality of feature maps.
  • An example in which the lesion occurrence risk prediction unit 420 generates a prediction result for the lesion occurrence risk based on a plurality of sub-medical images will be described in detail below with reference to FIG. 9 .
  • the lesion occurrence risk prediction unit 420 may generate a prediction result for the lesion occurrence risk using the received medical image and additional information.
  • the lesion risk prediction unit 420 uses one machine learning model to generate a prediction result for the risk of lesion occurrence based on the received medical image and additional information, or uses a plurality of models.
  • An example in which the lesion occurrence risk prediction unit 420 generates a prediction result for the lesion occurrence risk using the received medical image and additional information will be described below in detail with reference to FIGS. 10 to 11 .
  • the lesion risk prediction unit 420 may be configured to output information related to the generated prediction result through an output device connected to the information processing system or an output device of the user terminal.
  • the information providing unit 430 may provide information related to at least one of a medical examination, diagnosis, prevention, or treatment based on the prediction result generated by the lesion risk prediction unit 420 .
  • the information providing unit 430 may provide information related to at least one of a medical examination, diagnosis, prevention, or treatment based on the prediction result, the prognosis of the target patient, and a necessary action required for the patient in a specific situation (eg: treatment/diagnosis/test/prevention policy and timing), or drug reactivity.
  • the information providing unit 430 may provide a personalized checkup schedule according to the degree of risk of lesion occurrence.
  • the information providing unit 430 may recommend an additional examination (eg, MRI or CT scan) to a patient with a high risk of lesion, and may provide a checkup schedule for regular checkups at short intervals. On the other hand, the information providing unit 430 may provide a checkup schedule for regular checkups with a long cycle to a patient with a low risk of lesion occurrence.
  • an additional examination eg, MRI or CT scan
  • the information providing unit 430 may provide a checkup schedule for regular checkups with a long cycle to a patient with a low risk of lesion occurrence.
  • the information providing unit 430 may provide information related to at least one of a medical examination, diagnosis, prevention, or treatment to the user terminal, and the provided information may be output through a screen of the user terminal.
  • At least some of the processes described above as being performed by the processor 220 of the information processing system may be performed by the processor of the user terminal.
  • at least a portion of the prediction result and/or medical information generated by the processor 220 of the information processing system may be generated by the user terminal.
  • the training data DB 440 may include training data for learning the machine learning model.
  • the learning data DB 440 may be included in the information processing system 100 or may be connected to communicate with the information processing system 100 .
  • the training data may include reference prediction results for each of the high-risk group training medical image, the low-risk group training medical image, and the training medical image.
  • the high-risk learning medical image may refer to medical images of reference patients having a relatively high risk of developing a target disease
  • the low-risk learning medical image may refer to medical images of reference patients having a relatively low risk of developing the target disease.
  • the reference prediction result for each of the learning medical images may include a degree of risk of occurrence of a lesion for each of the learning medical images.
  • the reference prediction result is information in which the risk of occurrence of a lesion is expressed as a means (eg, a number or color, etc.) capable of expressing the degree of risk, and multiple classes (eg, high risk, information classified as intermediate risk, low risk, etc.).
  • the reference prediction result for each training medical image may be included as annotation information labeled in each training medical image.
  • the high-risk group learning medical image and/or the low-risk group learning medical image may be classified into a plurality of classes according to the degree of risk of lesion occurrence.
  • the high-risk group learning medical image is a learning medical image 510 in which the lesion occurrence site of a patient with lesion is captured, and a learning medical image 520 in which the lesion occurrence site of the lesioned patient is photographed before the lesion occurs.
  • it may include at least one of the learning medical images 530 in which a lesion-free region of a patient with a lesion is captured.
  • the learning medical image 530 obtained by photographing a non-lesioned area of a patient with a lesion is a learning medical image 530 obtained by photographing at least one of a region opposite or a surrounding area of the lesioned patient's lesion site.
  • the medical image 530 may be identified as a learning medical image having a high risk of lesion occurrence.
  • a learning medical image of a patient with lung cancer on the right a learning medical image of a patient with lung cancer, a learning medical image of a patient with a right kidney on the left kidney, and a patient with a specific lesion on the right foot
  • a training medical image obtained by photographing the left foot may be included in the medical training image 530 obtained by photographing a non-lesioned area of a patient with a lesion.
  • the low-risk group learning medical image may include a learning medical image 540 obtained by photographing a target site of a patient who has never had a lesion.
  • the learning medical image for predicting the risk of breast cancer is a mammography image 510 of patients diagnosed with breast cancer where cancer occurs, and a mammography image of patients diagnosed with breast cancer before being diagnosed with breast cancer ( 520), a mammography image 530 obtained by photographing the opposite breast of patients who have had breast cancer in one breast, and a mammography image 540 of patients who have never been diagnosed with breast cancer.
  • a mammography image 510 of patients diagnosed with breast cancer a mammography image 520 of the breasts of patients diagnosed with breast cancer before they were diagnosed with breast cancer, and the opposite breast of patients with breast cancer in one breast
  • One mammography image 530 may be included in the high-risk learning medical image
  • the mammography image 540 of patients who have never been diagnosed with breast cancer may be included in the low-risk learning medical image.
  • the learning data may further include information on a lesion associated with a high-risk group learning medical image.
  • the information on the lesion associated with the high-risk learning medical image may be included in the high-risk learning medical image as mask annotation information labeled at a pixel level. Such information may be used to infer an area where a lesion is expected to occur in the received medical image.
  • each of the mammography images 510 of a patient diagnosed with breast cancer may further include mask annotation information in which an area 512 in which cancer occurs is labeled at a pixel level.
  • each of the mammography images 520 of the breast of a patient diagnosed with breast cancer before being diagnosed with breast cancer is an area 522 where cancer occurs after the patient is diagnosed with breast cancer. It may further include mask annotation information labeled at this pixel level.
  • each learning medical image may include a plurality of sub-learning medical images.
  • each of the learning medical images 510 , 520 , 530 , and 540 includes two Craniocaudal (CC) images and two Mediolateral Oblique (MLO) images.
  • CC Craniocaudal
  • MLO Mediolateral Oblique
  • the learning data may further include additional learning information related to the risk of occurrence of a lesion of each reference patient.
  • the learning supplement may include each patient's clinical data, lab data, and/or biological data.
  • additional learning information is the reference patient's age, weight, family history, height, sex, age at menarche, menopause status, childbirth history, hormone replacement therapy treatment history, genomic information (eg, BRCA, BRD, PTEN, TP53, CDH1, SKT11/LKB1, PALB2, etc.), and breast density.
  • the number of high-risk learning medical images and the number of low-risk learning medical images among the learning medical images may not be balanced.
  • the information processing system may balance learning by processing at least a part of the learning medical image or adjusting the learning weight. For example, if there are significantly more low-risk training medical images than high-risk training medical images, the machine learning model may not be able to classify high-risk groups well, and thus the performance of the model may deteriorate.
  • the information processing system increases the number of high-risk learning medical images by processing high-risk learning medical images (over sampling), or reducing the number of low-risk learning medical images (under sampling),
  • the two methods described above can be used simultaneously (hybrid sampling), or learning can be performed by adjusting the learning weight.
  • the machine learning model 620 may output a prediction result 630 for the risk of occurrence of a lesion based on the medical image 610 .
  • the prediction result 630 for the risk of lesion occurrence is information in which the risk of lesion occurrence is expressed as a means (eg, score, probability or color, etc.) capable of expressing the degree of risk, information about the risk of lesion occurrence. It may be output as information classified into a plurality of classes (high risk, intermediate risk, low risk, etc.) according to the degree.
  • the machine learning model 620 may be trained to receive a plurality of training medical images and to infer a reference prediction result for the risk of occurrence of a lesion.
  • the processor eg, 220 of FIG. 2
  • the processor may receive a plurality of training medical images and reference prediction results associated with the plurality of training medical images.
  • the processor may use information about reference prediction results associated with a plurality of training medical images as correct answer data (ground truth).
  • the processor may further receive information on the lesion associated with the training medical image.
  • information on a lesion associated with the training medical image may be included in the training medical image as mask annotation information labeled at a pixel level. Such information may be used to infer an area where a lesion is expected to occur in the received medical image.
  • the processor outputs an area where cancer is expected to occur in a received medical image as a specific color, or outputs a boundary of an area where cancer is expected to occur, or each pixel is expected to develop cancer. It is possible to output a heat map, etc. expressed in color according to the degree to which it is made. All of this information may be included in the prediction result 630 for the risk of lesion occurrence.
  • the processor classifies the plurality of learning medical images 710 into a plurality of classes in order to generate or train a machine learning model 720 that outputs a prediction result for the risk of occurrence of a lesion in a target patient.
  • a machine learning model 720 may be used.
  • the processor may learn training medical images classified to correspond to a plurality of classes.
  • the machine learning model 720 may include one or more classifiers, and may be trained to output a classification result 730 obtained by classifying a plurality of training medical images 710 into a plurality of classes.
  • the processor may train the machine learning model 720 to classify the plurality of training medical images 710 into one of a high-risk group learning medical image or a low-risk group learning medical image.
  • the processor uses the plurality of learning medical images 710 to be a learning medical image 732 obtained by photographing a lesion occurrence site of a patient with a lesion, and a learning medical image 732 obtained by photographing a lesion occurrence site of a lesioned patient before the lesion occurs.
  • a machine learning model 720 to classify one of a medical image 734, a learning medical image 736 of a non-lesioned area of a patient with a lesion, or a learning medical image 738 of a patient with no lesion history. can be learned
  • the machine learning model 720 is illustrated as including one classifier, but is not limited thereto.
  • the machine learning model may include a plurality of classifiers as shown in FIG. 8 .
  • the processor classifies the plurality of learning medical images 810 into a plurality of classes in order to generate or train a machine learning model 820 that outputs a prediction result for the risk of occurrence of a lesion in a target patient.
  • the machine learning model 820 may be trained to output the classification result 830 .
  • the machine learning model 820 may include a plurality of classifiers 822 , 824 , and 826 , and the processor determines that the training medical image 810 selects at least one of the plurality of classifiers 822 , 824 , and 826 . Then, the machine learning model 820 may be trained to be classified into a plurality of classes.
  • the machine learning model 820 includes a first classifier 822 for classifying the medical training image 810 into a first class and a remaining class, and a second class and a remaining class for the training medical image 810. It may include a second classifier 824 for classifying and a third classifier 826 for classifying the medical training image 810 into a third class and the remaining classes.
  • the processor transmits the training medical image 810 through at least one of the plurality of classifiers 822 , 824 , and 826 included in the machine learning model 820 , to the first class, the second class, the third class, or the second class.
  • the machine learning model 820 may be trained to be classified into one of four classes.
  • the machine learning model 820 includes a first classifier 822 for classifying the training medical image 810 into a training medical image obtained by photographing a lesion-occurring region of a patient with a lesion and the remaining training medical images, A second classifier 824 for classifying the medical image 810 into a learning medical image taken before the lesion occurs in the lesion-occurring region of a patient with a lesion and the remaining learning medical images, and the learning medical image 810 into a lesion A third classifier 826 may be included for classifying a part of the patient where a lesion does not occur, into a learning medical image and the remaining learning medical image.
  • the machine learning model 820 is a learning medical image obtained by photographing a patient's lesion site, a learning medical image photographing a patient's lesion site prior to the lesion, or a learning image capturing a non-lesioned area of the patient's lesion site. It may be trained to classify at least one of the medical images as a high-risk group and classify the learning medical images of a patient who does not have the disease into a low-risk group.
  • the processor passes through at least one of the plurality of classifiers 822 , 824 , and 826 included in the machine learning model 820 , in which the learning medical image 810 captures the lesion occurrence site of the patient.
  • the machine learning model 820 may be trained to be classified as one of the images.
  • the processor may train the machine learning model 820 to classify the training medical image 810 hierarchically.
  • the machine learning model 820 includes a first classifier 822 that detects all classes other than the first class among the training medical images 810 , and a second classifier among the training medical images detected by the first classifier 822 .
  • a second classifier 824 for detecting all classes other than the second class, and a third classifier 826 for detecting all classes other than the third class among the training medical images detected by the second classifier 824 may be included.
  • the processor may train the machine learning model 820 so that the training medical image 810 is classified into one of the first class, the second class, the third class, or the fourth class sequentially through at least one classifier. .
  • the machine learning model 820 is a first classifier 822 that detects all learning medical images other than the learning medical images of a patient without a history of lesion occurrence among the learning medical images 810 and the first classifier 822.
  • a third classifier 826 may include a third classifier 826 that detects all learning medical images other than the learning medical images taken before the lesion occurred at the lesion occurrence site of the patient in the medical image.
  • the processor sequentially passes through at least one of the plurality of classifiers 822 , 824 , and 826 included in the machine learning model 820 for the learning medical image 810 to photograph the lesion occurrence site of the patient.
  • the machine learning model 820 may be trained to be classified as one of the training medical images.
  • a more accurate prediction result may be provided by more accurately classifying the degree of risk of lesion occurrence based on the patient's medical image.
  • a medical image obtained by photographing one object may be composed of a plurality of sub-medical images.
  • a medical image of a breast photographed by mammography for diagnosing breast cancer is a total of four sub-medical images composed of images obtained by taking both internal and external oblique images and upper and lower images of both breasts. can be composed of
  • the processor may output a prediction result 940 for the risk of occurrence of a lesion based on the medical image 910 by using the machine learning model 920 , where the medical image 910 .
  • the medical image 910 may include a plurality of sub-medical images 912 , 914 , 916 , and 918 .
  • the medical image 910 may include a plurality of sub-medical images 912 , 914 , 916 , and 918 obtained by photographing a target site in which a target disease may occur at various positions or at various angles.
  • the medical image 910 may include a mammography image, and the plurality of sub-medical images include two top-down (CC) images and two internal and external scans (MLO) images. May include video.
  • the machine learning model 920 may be, for example, a Convolutional Neural Network (CNN) model.
  • the processor uses the plurality of sub-medical images 912 , 914 , 916 , and 918 as a machine learning model.
  • Input to 920 for each of the plurality of sub-medical images 912 , 914 , 916 , and 918 from at least one layer (eg, an intermediate layer or an output layer) included in the machine learning model 920 .
  • a plurality of output feature maps 932 , 934 , 936 , and 938 can be extracted, and a prediction result 940 for the risk of lesion occurrence by synthesizing the plurality of extracted feature maps 932 , 934 , 936 , 938 . can be printed out.
  • the processor inputs a plurality of sub-medical images 912 , 914 , 916 , and 918 to the machine learning model, and includes a plurality of feature maps 932 , 934 , 936 , output from an intermediate layer of the machine learning model 920 , 938) by concatenating or summing each of the plurality of feature maps 932, 934, 936, 938, and predicting the risk of occurrence of lesions using the combined plurality of feature maps 940 may be output.
  • the processor inputs a plurality of sub-medical images 912 , 914 , 916 , and 918 to the machine learning model 920 , and a plurality of feature maps 932 , 934 , output from an intermediate layer of the machine learning model 920 .
  • a prediction result 940 for the risk of lesion occurrence may be output.
  • the processor passes the plurality of feature maps 932 , 934 , 936 , and 938 output from at least one layer included in the machine learning model 920 through an attention module or a transformer module, and a plurality of feature maps 932 .
  • Such an attention module or a transformer module may be included in the machine learning model 920 , or may be a module or a network connected to the machine learning model 920 .
  • FIG. 10 is a diagram illustrating an example of generating a prediction result 1040 for a risk of lesion occurrence based on a medical image 1010 and additional information 1020 according to an embodiment of the present disclosure.
  • the processor obtains not only the medical image 1010 of the patient, but also additional information 1020 of the patient related to the risk of occurrence of the lesion. can receive more.
  • the additional information 1020 may include clinical data, lab data, and/or biological data.
  • the additional information 1020 may include the patient's age, weight, family history, height, sex, menarche age, menopause, childbirth history, hormone replacement therapy treatment history, genomic information (eg, BRCA). , BRD, PTEN, TP53, CDH1, SKT11/LKB1, PALB2, etc.), and breast density.
  • the processor may use the received medical image 1010 and the additional information 1020 to output a prediction result 1040 for the risk of lesion occurrence.
  • the processor uses the machine learning model 1030 trained to output a reference prediction result for the risk of occurrence of a lesion based on the plurality of learning medical images and additional learning information, and the received medical image 1010 and Based on the additional information 1020 , a prediction result 1040 for the risk of lesion occurrence may be output.
  • the processor uses the plurality of models 1120 and 1050 and outputs a final prediction result 1170 for the risk of lesion occurrence based on the received medical image 1110 and the additional information 1140 .
  • the processor uses the first model 1120 that is a trained model to output a reference prediction result for the risk of occurrence of lesions based on the learning medical image, and the risk of occurrence of lesions based on the medical image 1110 .
  • a first prediction result 1130 may be output.
  • the processor uses the second model 1150, which is a trained model to output a reference prediction result for the risk of occurrence of lesions based on the learning additional information, to determine the risk of occurrence of lesions based on the additional information 1140.
  • a second prediction result 1160 may be output.
  • the processor may use the first prediction result 1130 and the second prediction result 1160 to output the final prediction result 1170 for the risk of lesion occurrence.
  • FIG. 10 to 11 illustrate only an example of a configuration of a model for generating a prediction result based on a medical image and additional information, and may be implemented differently.
  • a model of any configuration capable of generating a prediction result based on a medical image and additional information may be used.
  • at least one of the illustrated models 1030 , 1120 , and 1150 may be an arbitrary algorithm other than a machine learning model.
  • the second model 1150 does not receive only the additional information 1140 , but the additional information 1140 and the risk of occurrence of lesions output by the first model 1120 .
  • the first prediction result 1130 (or information processed by the first prediction result 1130) for It may be configured to output a final prediction result 1170 for the risk of lesion occurrence based on the first prediction result 1130 .
  • the accuracy of prediction may be further improved by predicting the risk of lesion occurrence by considering not only the medical image but also additional information about the patient.
  • the information processing system may output a prediction result for the risk of occurrence of a lesion. Additionally or alternatively, the information processing system may output information related to at least one of medical examination, diagnosis, prevention, or treatment, based on the prediction result of the risk of occurrence of the lesion. For example, the information processing system may provide a prediction result and/or various medical information generated based on the prediction result on the risk of occurrence of a lesion in a patient to the user terminal. In addition, the user terminal may receive from the information processing system a prediction result and/or a variety of medical information generated based on the prediction result on the risk of occurrence of a lesion in a patient, and output it through the display device.
  • the prediction result of the risk of occurrence of lesions is information in which the risk of occurrence of lesions is expressed as a means (number or color, etc.) capable of expressing the degree of risk, and a plurality of classes according to the degree of risk of occurrence of lesions. It may include information classified as (eg, high risk, intermediate risk, low risk).
  • the medical information based on the prediction result of the risk of occurrence of lesions is the prognosis of the target patient, the necessary measures required for the patient in a specific situation (eg, treatment/diagnosis/test/prevention policy and timing), or drugs It may include information about reactivity and the like.
  • the medical information may include a personalized examination schedule according to the degree of risk of lesion occurrence.
  • an additional examination eg, MRI or CT scan
  • a checkup schedule may be provided for intensive examination at short intervals.
  • the medical information may include necessary measures according to the degree of risk of lesion occurrence. Intensive screening may be recommended for patients with a high risk of lesion occurrence, and routine screening may be recommended for patients with a low risk of lesion occurrence.
  • the information processing system may classify the prediction result 1310 into a plurality of classes (high risk, intermediate risk, and low risk) according to the degree of risk of lesion and output it. For example, as illustrated, a prediction result of 'Intermediate' may be output with respect to a medical image of a target patient having a moderate risk of lesion occurrence. Additionally, the information processing system may output medical information 1320 based on the prediction result. For example, the information processing system may output the personalized examination schedule 1320 according to the degree of risk of lesion occurrence.
  • a checkup schedule for regular checkups with a long cycle may be output for a patient having a relatively low risk of lesion occurrence.
  • an additional examination eg, MRI or CT scan
  • a checkup schedule for intensive examination at a short cycle may be output.
  • the medical staff receiving the information provides limited resources (e.g., For example, manpower, devices, drugs, etc.) can be efficiently and effectively managed.
  • limited resources e.g., For example, manpower, devices, drugs, etc.
  • high-risk patients receiving information can prevent diseases or detect diseases early through additional screening or short-period screening, and low-risk patients receiving information can reduce costs or time through long-cycle screening. can save
  • the artificial neural network model 1400 is an example of a machine learning model, and in machine learning technology and cognitive science, a statistical learning algorithm implemented based on the structure of a biological neural network or a structure for executing the algorithm.
  • the artificial neural network model 1400 as in a biological neural network, nodes, which are artificial neurons that form a network by combining synapses, repeatedly adjust the weights of synapses, By learning to reduce the error between the output and the inferred output, it is possible to represent a machine learning model with problem-solving ability.
  • the artificial neural network model 1400 may include arbitrary probabilistic models, neural network models, etc. used in artificial intelligence learning methods such as machine learning and deep learning.
  • the artificial neural network model 1400 is configured to predict the risk of occurrence of a lesion in a target patient based on an input medical image of the target patient (eg, to generate information on a prediction result). It may include a constructed artificial neural network model. Additionally or alternatively, the artificial neural network model 1400 may include an artificial neural network model configured to predict the risk of occurrence of a lesion in a target patient based on input additional information of the target patient. Additionally or alternatively, the artificial neural network model 1400 may include an artificial neural network model configured to predict the risk of occurrence of a lesion in a target patient based on an input medical image of the target patient and additional information of the target patient. have.
  • the input medical image of the target patient may include a plurality of sub-medical images
  • the artificial neural network model 1400 is configured based on the plurality of input sub-medical images and/or additional information of the target patient. It may include an artificial neural network model configured to predict the risk of occurrence of a lesion in a target patient.
  • the artificial neural network model 1400 is implemented as a multilayer perceptron (MLP) composed of multilayer nodes and connections between them.
  • the artificial neural network model 1400 according to the present embodiment may be implemented using one of various artificial neural network model structures including MLP.
  • the artificial neural network model 1400 includes an input layer 1420 that receives an input signal or data 1410 from the outside, and an output layer that outputs an output signal or data 1450 corresponding to the input data.
  • 1440 which is located between the input layer 1420 and the output layer 1440, receives a signal from the input layer 1420, extracts characteristics, and transfers the characteristics to the output layer 1440 (where n is a positive integer) of It is composed of hidden layers 1430_1 to 1430_n.
  • the output layer 1440 receives signals from the hidden layers 1430_1 to 1430_n and outputs them to the outside.
  • the learning method of the artificial neural network model 1400 includes a supervised learning method that learns to be optimized to solve a problem by input of a teacher signal (correct answer), and an unsupervised learning method that does not require a teacher signal. ) is a way.
  • the information processing system may supervise and/or unsupervise the artificial neural network model 1400 to generate information related to a prediction result for the risk of occurrence of a lesion of the target patient based on the medical image of the target patient.
  • the information processing system may supervise the artificial neural network model 1400 to generate reference information related to a reference prediction result for the reference patient, based on the learning medical image of the reference patient.
  • the information processing system may supervised and/or unsupervised the artificial neural network model 1400 to generate information related to a prediction result of the risk of occurrence of a lesion based on additional information of the target patient.
  • the information processing system may supervise the artificial neural network model 1400 to generate reference information related to the reference prediction result for the reference patient, based on the learning additional information of the reference patient.
  • the information processing system supervises the artificial neural network model 1400 to generate information related to a prediction result for the risk of occurrence of a lesion based on a medical image of the target patient and additional information of the target patient, and/or It can be taught unsupervised.
  • the information processing system may supervise the artificial neural network model 1400 to generate reference information related to the reference prediction result for the reference patient based on the medical image of the reference patient and the learning additional information of the reference patient. .
  • the medical image of the target patient may include a plurality of sub-medical images
  • the information processing system predicts the risk of occurrence of a lesion based on the plurality of sub-medical images and/or additional information of the target patient
  • the artificial neural network model 1400 may be supervised and/or unsupervised to generate information related to the result.
  • the information processing system may be configured to generate reference information related to a reference prediction result for the reference patient based on the plurality of sub-learning medical images of the reference patient and/or the learning additional information of the reference patient. can be supervised learning.
  • the artificial neural network model 1400 learned in this way may be stored in a memory (not shown) of the information processing system, and in response to an input to the medical image of the target patient received from the communication module and/or memory, the lesion of the target patient By predicting the risk of occurrence of , it is possible to generate a prediction result for the risk of occurrence of a lesion in a target patient. Additionally or alternatively, the artificial neural network model 1400 predicts the risk of occurrence of a lesion in the target patient in response to an input for additional information of the target patient, thereby predicting the risk of occurrence of a lesion in the target patient.
  • the artificial neural network model 1400 predicts the risk of occurrence of the target patient's lesion in response to an input to the target patient's medical image and the target patient's additional information, so that the target patient's lesion It is possible to generate predictive results for the risk of occurrence.
  • the input variable of the artificial neural network model for generating information on the prediction result of the risk of occurrence of a lesion in the target patient may be a medical image of the target patient and/or additional information of the target patient.
  • the input variable input to the input layer 1420 of the artificial neural network model 1400 includes an image vector 1410 consisting of a medical image of the target patient as one vector data element and/or additional information of the target patient. It may be a vector 1410 composed of one vector data element.
  • the output variable output from the output layer 1440 of the artificial neural network model 1400 may be a vector 1450 indicating or characterizing information on the prediction result for the risk of occurrence of a lesion in the target patient. have.
  • the output layer 1440 of the artificial neural network model 1400 may be configured to output a vector indicating or characterizing information related to a prediction result for the risk of occurrence of a lesion in a target patient.
  • the output variable of the artificial neural network model 1400 is not limited to the type described above, and may include any information/data indicating information on the prediction result for the risk of occurrence of a lesion in the target patient.
  • the output layer 1440 of the artificial neural network model 1400 may be configured to output a vector indicating reliability and/or accuracy, such as information related to a prediction result of a risk of occurrence of a lesion in a target patient.
  • a plurality of output variables corresponding to a plurality of input variables are respectively matched to the input layer 1420 and the output layer 1440 of the artificial neural network model 1400, and the input layer 1420, the hidden layers 1430_1 to 1430_n, and By adjusting the synaptic value between the nodes included in the output layer 1440, it can be learned so that a correct output corresponding to a specific input can be extracted. Through this learning process, characteristics hidden in the input variable of the artificial neural network model 1400 can be identified, and the error between the output variable calculated based on the input variable and the target output is reduced. You can adjust the synapse value (or weight) between them.
  • the artificial neural network model 1400 trained in this way may output information related to the prediction result of the risk of lesion occurrence in the target patient in response to input of a medical image of the target patient and/or additional information of the target patient.
  • the method 1500 may be started when a processor (eg, at least one processor of an information processing system or a user terminal) acquires a medical image obtained by photographing an object ( S1510 ).
  • the object may refer to a site to be subjected to prediction of the risk of occurrence of a lesion.
  • acquiring the image obtained by photographing the object includes receiving a medical image from an external device (user terminal, medical diagnosis apparatus, etc.), receiving a medical image from a server, and receiving a medical image stored in an internal memory. obtaining, and the like.
  • the medical image may include a plurality of sub-medical images.
  • the medical image may include a mammography image
  • the plurality of sub-medical images may include two top-down (CC) images and two internal and external scan (MLO) images.
  • the processor may further receive additional information related to the risk of occurrence of the lesion.
  • the additional information may include clinical data, lab data, and/or biological data.
  • additional information may include the patient's age, weight, family history, height, sex, age at menarche, menopause status, childbirth history, hormone replacement therapy treatment history, genomic information (e.g. BRCA, BRD, PTEN, TP53, CDH1, SKT11/LKB1, PALB2, etc.), and breast density.
  • the processor may predict the possibility that a lesion will occur in the object from the received medical image using the machine learning model ( S1520 ).
  • the machine learning model may be a model in which a plurality of learning medical images and a lesion occurrence risk associated with each learning medical image are learned.
  • the plurality of learning medical images may include high-risk learning medical images and low-risk learning medical images, and the high-risk learning medical images may be classified into a plurality of classes according to the degree of risk of lesion occurrence.
  • the high-risk group learning medical image is a learning medical image that captures the lesion site of a patient with a lesion, a learning medical image that captures the lesion site of a lesioned patient before the lesion, or a medical image of a patient with a lesion. It may include at least one of learning medical images obtained by photographing a region in which a lesion does not occur.
  • the lesion-free region of the patient in which the lesion has occurred may include at least one of a region opposite or a peripheral region of the lesion-generating region.
  • the machine learning model may include one or more classifiers.
  • the machine learning model may include a first classifier trained to classify a plurality of training medical images into a high-risk group training medical image or a low-risk group training medical image, and a second classifier trained to classify the classified high-risk training medical image into a plurality of classes. It may include a classifier.
  • the machine learning model may be a model further trained to infer mask annotation information in the high-risk learning medical image from the high-risk learning medical image.
  • the processor may output a region (eg, one or more pixel regions) in which a lesion is expected to occur in the received medical image by using the machine learning model.
  • the processor when the medical image includes a plurality of sub-medical images, the processor inputs the plurality of sub-medical images to the machine learning model to generate a plurality of feature maps output from at least one layer included in the machine learning model. may be extracted, and a plurality of extracted feature maps may be synthesized, and a prediction result of the risk of occurrence of a lesion may be output using the plurality of synthesized feature maps.
  • the processor inputs a plurality of sub-medical images to the machine learning model and concatenates or sums a plurality of feature maps output from at least one layer included in the machine learning model.
  • the processor can synthesize the feature maps of , and output a prediction result for the risk of lesion occurrence using the plurality of synthesized feature maps.
  • the processor inputs a plurality of sub-medical images to the machine learning model and applies a weight to a specific region included in each of a plurality of feature maps output from at least one layer included in the machine learning model, thereby risking the occurrence of lesions. It is possible to output the prediction result for .
  • the processor passes a plurality of feature maps output from at least one layer included in the machine learning model to an attention layer or a transformer attention layer, and a more important part (for example, , a specific pixel region or a feature map output based on a specific sub-medical image) may be focused, and a prediction result for the risk of lesion occurrence may be output.
  • a more important part for example, , a specific pixel region or a feature map output based on a specific sub-medical image
  • the processor may use the machine learning model to output a prediction result of the risk of occurrence of a lesion based on the received medical image and the received additional information.
  • the processor uses the machine learning model further trained to output a reference prediction result for the risk of occurrence of a lesion based on the plurality of learning medical images and the additional learning information to collect the received medical image and the received additional information. Based on this, the prediction result for the risk of occurrence of lesions can be output.
  • the processor outputs a first prediction result for the risk of occurrence of a lesion based on a medical image received using a machine learning model, and uses the additional machine learning model to determine the risk of occurrence of a lesion based on additional information.
  • a second prediction result for the lesion may be output, and a final prediction result for the risk of occurrence of a lesion may be generated using the first prediction result and the second prediction result.
  • the additional machine learning model may be a model trained to output a reference prediction result for the risk of occurrence of a lesion based on the additional learning information.
  • the processor may output a prediction result (S1530).
  • outputting the prediction result includes transmitting an image indicating the prediction result to an external display device, transmitting a report including the prediction result to the user terminal, uploading the prediction result to the server, an information processing system and It may include at least one of directly displaying to a user using a connected display device.
  • the processor may provide information related to at least one of medical examination, diagnosis, prevention, or treatment based on the prediction result of the risk of lesion occurrence.
  • information related to at least one of a medical examination, diagnosis, prevention or treatment may include, but is not limited to, the patient's prognosis, the intervention required of the patient in the particular situation (eg, treatment/diagnostic/testing/preventive policy). and timing), or drug reactivity.
  • the processor may provide a personalized checkup schedule according to the degree of risk of lesion occurrence.
  • the processor may recommend an additional examination (eg, MRI or CT scan) to a patient with a high risk of lesion, and may provide a checkup schedule for regular checkups at short intervals.
  • FIG. 16 is an exemplary system configuration diagram for predicting the risk of occurrence of a lesion according to an embodiment of the present disclosure.
  • the information processing system 1600 of FIG. 16 may be an example of the information processing system 100 described with reference to FIG. 2 .
  • the information processing system 1600 includes one or more processors 1610 , a bus 1630 , a communication interface 1640 , and a memory for loading a computer program 1660 executed by the processor 1610 . (1620).
  • processors 1610 a bus 1630 , a communication interface 1640 , and a memory for loading a computer program 1660 executed by the processor 1610 .
  • FIG. 16 Only components related to the embodiment of the present disclosure are illustrated in FIG. 16 . Accordingly, those skilled in the art to which the present disclosure pertains can see that other general-purpose components other than those shown in FIG. 16 may be further included.
  • the processor 1610 controls the overall operation of each component of the information processing system (eg, the information processing system 100 ).
  • the processor 1610 of the present disclosure may include a plurality of processors.
  • the processor 1610 may include a central processing unit (CPU), a micro processor unit (MPU), a micro controller unit (MCU), a graphic processing unit (GPU), a field programmable gate array (FPGA), any well known in the art of the present disclosure. It may be configured to include at least two processors among the type of processors.
  • the processor 1610 may perform an operation on at least one application or program for executing the method according to the embodiments of the present disclosure.
  • the memory 1620 may store various data, commands, and/or information.
  • the memory 1620 may load one or more computer programs 1660 to execute methods/operations according to various embodiments of the present disclosure.
  • the memory 1620 may be implemented as a volatile memory such as RAM, but the technical scope of the present disclosure is not limited thereto.
  • the memory 1620 may include a non-volatile memory such as a read only memory (ROM), an erasable programmable ROM (EPROM), an electrically erasable programmable ROM (EEPROM), a flash memory, a hard disk, a removable disk, or to which the present disclosure pertains. It may be configured to include any type of computer-readable recording medium well known in the art.
  • the bus 1630 may provide a communication function between components of the information processing system.
  • the bus 1630 may be implemented as various types of buses, such as an address bus, a data bus, and a control bus.
  • the communication interface 1640 may support wired/wireless Internet communication of the information processing system. Also, the communication interface 1640 may support various communication methods other than Internet communication. To this end, the communication interface 1640 may be configured to include a communication module well-known in the technical field of the present disclosure.
  • the computer program 1660 may include one or more instructions that cause the processor 1610 to perform an operation/method according to various embodiments of the present disclosure. That is, the processor 1610 may perform operations/methods according to various embodiments of the present disclosure by executing one or more instructions.
  • the computer program 1660 may perform an operation of receiving a medical image, an operation of outputting a prediction result for the risk of occurrence of a lesion based on the received medical image using a machine learning model, etc. It may contain instructions.
  • a system for predicting the risk of occurrence of a lesion may be implemented through the information processing system 1600 according to some embodiments of the present disclosure.
  • example implementations may refer to utilizing aspects of the presently disclosed subject matter in the context of one or more standalone computer systems, the subject matter is not so limited, but rather in connection with any computing environment, such as a network or distributed computing environment. may be implemented. Still further, aspects of the presently disclosed subject matter may be implemented in or across a plurality of processing chips or devices, and storage may be similarly affected across the plurality of devices. Such devices may include PCs, network servers, and handheld devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Epidemiology (AREA)
  • Biomedical Technology (AREA)
  • Data Mining & Analysis (AREA)
  • Pathology (AREA)
  • Databases & Information Systems (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Software Systems (AREA)
  • Computing Systems (AREA)
  • Evolutionary Computation (AREA)
  • Mathematical Physics (AREA)
  • Artificial Intelligence (AREA)
  • General Engineering & Computer Science (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Image Analysis (AREA)

Abstract

본 개시는 적어도 하나의 프로세서에 의해 수행되는 병변의 발생 위험성을 예측하는 방법에 관한 것이다. 이 방법은, 대상체를 촬영한 의료 영상을 획득하는 단계, 기계학습 모델을 이용하여, 획득된 의료 영상으로부터 대상체에 병변이 발생할 가능성을 예측하는 단계 및 예측 결과를 출력하는 단계를 포함할 수 있다. 여기서, 기계학습 모델은, 복수의 학습 의료 영상 및 각 학습 의료 영상과 연관된 병변 발생 위험도가 학습된 모델일 수 있다.

Description

병변의 발생 위험성을 예측하는 방법 및 시스템
본 개시는 병변의 발생 위험성을 예측하는 방법 및 시스템에 관한 것으로, 구체적으로 대상 환자의 의료 영상에 기초하여, 대상 환자에게 병변이 발생할 위험성에 대한 정보를 제공하는 방법 및 시스템에 관한 것이다.
기계학습 모델은 복잡한 입력 데이터에 숨겨져 있는 특성을 발견하여, 의미 있는 출력 데이터를 제공할 수 있다. 이에 따라, 기계학습 모델은 의학 분야를 비롯한 다양한 연구 분야에 활발히 이용되고 있다. 예를 들어, 기계학습 모델은 대상 환자의 의료 영상을 기초로 의료 영상에 포함된 병변을 검출하는 데 사용될 수 있다. 이 경우, 기계학습 모델을 지도학습 시키기 위해, 병변이 포함된 의료 영상 및 의료 영상에 병변의 위치에 관한 어노테이션 정보가 학습 데이터로서 필요할 수 있다. 이러한 학습 데이터는 병변이 포함된 의료 영상에 어노테이션 작업을 수행함으로써 비교적 용이하게 획득할 수 있다.
다만, 기계학습 모델은 의료 영상으로부터 이미 발생된 병변 또는 질병을 예측하는 것에는 활발히 사용되고 있으나, 아직 발생되지 않은 병변 또는 질병이 발생할 위험성을 예측하는 것에는 활발히 사용되지 않고 있다. 질병이 아직 발생되지 않은 상태의 의료 영상을 이용하여, 병변의 발생 위험성을 예측하기 위한 기계학습 모델을 어떠한 학습 방식으로 학습할지가 매우 도전적인 과제이기 때문이다. 이에 따라, 기계학습 모델은 앞으로 발생할 질병에 대한 위험성 정보를 제공하지 못해, 질병의 예방 또는 정기적인 검진을 통한 질병의 조기 발견에는 큰 도움이 되지 않는다는 문제점이 있다.
본 개시는 병변의 발생 위험성 예측 방법, 기록매체에 저장된 컴퓨터 프로그램 및 장치(시스템)를 제공한다.
본 개시의 일 실시예에 따르면, 적어도 하나의 프로세서에 의해 수행되는, 병변의 발생 위험성을 예측하는 방법은, 대상체를 촬영한 의료 영상을 획득하는 단계, 기계학습 모델을 이용하여, 상기 획득된 의료 영상으로부터 상기 대상체에 병변이 발생할 가능성을 예측하는 단계 및 예측 결과를 출력하는 단계를 포함하고, 기계학습 모델은, 복수의 학습 의료 영상 및 각 학습 의료 영상과 연관된 병변 발생 위험도가 학습된 모델이다.
본 개시의 일 실시예에 따르면, 복수의 학습 의료 영상은, 고위험군 학습 의료 영상 및 저위험군 학습 의료 영상을 포함하고, 고위험군 학습 의료 영상은, 병변이 발생한 환자의 병변 발생 부위를 병변이 발생하기 이전에 촬영한 제1 학습 의료 영상을 포함한다.
본 개시의 일 실시예에 따르면, 복수의 학습 의료 영상은, 고위험군 학습 의료 영상 및 저위험군 학습 의료 영상을 포함하고, 고위험군 학습 의료 영상은, 병변이 발생한 환자의 병변이 발생하지 않은 부위를 촬영한 제2 학습 의료 영상을 포함한다.
본 개시의 일 실시예에 따르면, 병변이 발생한 환자의 병변이 발생하지 않은 부위는 병변 발생 부위의 반대편 부위 또는 주변 부위 중 적어도 하나를 포함한다.
본 개시의 일 실시예에 따르면, 고위험군 학습 의료 영상은, 병변의 발생 위험성의 정도에 따라 복수의 클래스로 분류된다.
본 개시의 일 실시예에 따르면, 기계학습 모델은, 복수의 학습 의료 영상을 고위험군 학습 의료 영상 또는 저위험군 학습 의료 영상으로 분류하도록 학습된 제1 분류기 및 분류된 고위험군 학습 의료 영상을 복수의 클래스로 분류하도록 학습된 제2 분류기를 포함한다.
본 개시의 일 실시예에 따르면, 기계학습 모델은, 학습 의료 영상으로부터 학습 의료 영상 내의 마스크 어노테이션 정보를 추론하도록 더 학습된 모델이고, 병변이 발생할 가능성을 예측하는 단계는, 기계학습 모델을 이용하여, 획득된 의료 영상 내에서 병변이 발생할 것으로 예상되는 영역을 출력하는 단계를 포함한다.
본 개시의 일 실시예에 따르면, 의료 영상은 복수의 서브 의료 영상을 포함하고, 병변이 발생할 가능성을 예측하는 단계는, 복수의 서브 의료 영상을 기계학습 모델에 입력하여 기계학습 모델에 포함된 적어도 하나의 레이어로부터 출력된 복수의 특징 맵을 추출하는 단계, 추출된 복수의 특징 맵을 종합하는 단계 및 종합된 복수의 특징 맵을 이용하여 병변의 발생 위험성에 대한 예측 결과를 출력하는 단계를 포함한다.
본 개시의 일 실시예에 따르면, 추출된 복수의 특징 맵을 종합하는 단계는, 복수의 특징 맵의 각각을 연결시키거나(concatenate) 더하는(sum) 단계를 포함한다.
본 개시의 일 실시예에 따르면, 종합된 복수의 특징 맵을 이용하여 병변의 발생 위험성에 대한 예측 결과를 출력하는 단계는, 복수의 특징 맵의 각각 내의 특정 영역에 가중치를 적용하여, 병변의 발생 위험성에 대한 예측 결과를 출력하는 단계를 포함한다.
본 개시의 일 실시예에 따르면, 의료 영상은, 유방 촬영술(Mammography) 영상을 포함하고, 복수의 서브 의료 영상은, 두 개의 상하 촬영(CC; Craniocaudal) 영상 및 두 개의 내외사 촬영(MLO; Mediolateral Oblique) 영상을 포함한다.
본 개시의 일 실시예에 따르면, 병변의 발생 위험성과 관련된 추가 정보를 수신하는 단계를 더 포함하고, 병변이 발생할 가능성을 예측하는 단계는, 기계학습 모델을 이용하여, 획득된 의료 영상 및 추가 정보를 기초로 병변의 발생 위험성에 대한 예측 결과를 출력하는 단계를 포함한다.
본 개시의 일 실시예에 따르면, 기계학습 모델은, 복수의 학습 의료 영상 및 학습 추가 정보를 기초로 병변의 발생 위험성에 대한 참조 예측 결과를 출력하도록 더 학습된 모델이다.
본 개시의 일 실시예에 따르면, 병변의 발생 위험성과 관련된 추가 정보를 수신하는 단계를 더 포함하고, 병변이 발생할 가능성을 예측하는 단계는, 기계학습 모델을 이용하여, 획득된 의료 영상을 기초로 병변의 발생 위험성에 대한 제1 예측 결과를 출력하는 단계, 추가 기계학습 모델을 이용하여, 추가 정보를 기초로, 병변의 발생 위험성에 대한 제2 예측 결과를 출력하는 단계 및 제1 예측 결과 및 제2 예측 결과를 이용하여 병변의 발생 위험성에 대한 최종 예측 결과를 생성하는 단계를 포함하고, 추가 기계 학습 모델은 학습 추가 정보를 기초로 병변의 발생 위험성에 대한 참조 예측 결과를 출력하도록 학습된 모델이다.
본 개시의 일 실시예에 따르면, 예측 결과를 출력하는 단계는, 예측 결과를 기초로, 의학적 검사, 진단, 예방 또는 치료 중 적어도 하나와 관련된 정보를 출력하는 단계를 더 포함한다.
본 개시의 일 실시예에 따른 방법을 컴퓨터에서 실행하기 위해 컴퓨터 판독 가능한 기록 매체에 저장된 컴퓨터 프로그램이 제공된다.
본 개시의 일 실시예에 따른 정보 처리 시스템은, 메모리 및 메모리와 연결되고, 메모리에 포함된 컴퓨터 판독 가능한 적어도 하나의 프로그램을 실행하도록 구성된 적어도 하나의 프로세서를 포함하고, 적어도 하나의 프로그램은, 대상체를 촬영한 의료 영상을 획득하고, 기계학습 모델을 이용하여, 획득된 의료 영상으로부터 상기 대상체에 병변이 발생할 가능성을 예측하고, 예측 결과를 출력하기 위한 명령어들을 포함하고, 기계학습 모델은, 복수의 학습 의료 영상 및 각 학습 의료 영상과 연관된 병변 발생 위험도가 학습된 모델이다.
본 개시의 일부 실시예에 따르면, 대상 환자의 의료 영상에 기초하여 대상 환자의 병변 발생 위험성이 예측될 수 있으며, 대상 환자의 의료 영상뿐만 아니라 대상 환자에 대한 추가 정보에 기초하여 대상 환자의 병변 발생 위험성을 예측함에 따라, 예측의 정확도가 향상될 수 있다.
본 개시의 일부 실시예에 따르면, 발병된 환자의 발병 부위가 발병되기 이전에 촬영된 학습 의료 영상을 이용하여 기계학습 모델을 학습함으로써, 병변 발생 위험성이 큰 의료 영상이 나타내는 숨겨진 특성을 학습하여, 대상 환자의 병변 발생 위험성이 예측될 수 있다.
본 개시의 일부 실시예에 따르면, 발병된 환자의 발병 부위의 반대편 부위 또는 주변 부위 중 적어도 하나가 촬영된 학습 의료 영상을 이용하여 기계학습 모델을 학습함으로써, 병변의 발생 위험성이 큰 의료 영상이 나타내는 숨겨진 특성을 학습하여, 대상 환자의 병변 발생 위험성이 예측될 수 있다.
본 개시의 일부 실시예에 따르면, 대상 부위를 여러 위치 또는 여러 각도에서 촬영한 복수의 서브 의료 영상을 이용하여 대상 환자의 병변 발생 위험성을 예측함에 따라, 예측의 정확도가 향상될 수 있다.
본 개시의 일부 실시예에 따르면, 환자들의 병변의 발생 위험성에 대한 예측 결과 및/또는 위험성 정도에 따른 치료/진단/검진/예방과 관련된 적절한 조치 또는 스케줄 등에 대한 정보가 제공됨으로써, 정보를 제공받는 의료진은 한정된 자원(예를 들어, 인력, 장치, 약제 등)을 효율적이고, 효과적으로 관리할 수 있다.
본 개시의 일부 실시예에 따르면, 환자들의 병변의 발생 위험성에 대한 예측 결과 및/또는 위험성 정도에 따른 정보가 제공됨으로써, 고위험군 환자는 추가 검진 또는 짧은 주기의 검진 등을 통해 질병을 예방하거나 질병을 조기에 발견하고 치료할 수 있고, 저위험군 환자는 긴 주기의 검진 등을 통해 비용이나 시간을 절약할 수 있다.
본 개시의 효과는 이상에서 언급한 효과로 제한되지 않으며, 언급되지 않은 다른 효과들은 청구범위의 기재로부터 본 개시가 속하는 기술분야에서 통상의 지식을 가진 자("통상의 기술자"라 함)에게 명확하게 이해될 수 있을 것이다.
본 개시의 실시예들은, 이하 설명하는 첨부 도면들을 참조하여 설명될 것이며, 여기서 유사한 참조 번호는 유사한 요소들을 나타내지만, 이에 한정되지는 않는다.
도 1은 본 개시의 일 실시예에 따른 병변의 발생 위험성에 대한 예측 결과를 제공하는 시스템을 나타내는 예시적인 구성도이다.
도 2는 본 개시의 일 실시예에 따른 정보 처리 시스템의 내부 구성을 나타내는 블록도이다.
도 3은 본 개시의 일 실시예에 따른 사용자 단말 및 정보 처리 시스템의 내부 구성을 나타내는 블록도이다.
도 4는 본 개시의 일 실시예에 따른 정보 처리 시스템의 프로세서의 내부 구성을 나타내는 도면이다.
도 5는 본 개시의 일 실시예에 따른 학습 데이터 DB의 예시를 나타내는 도면이다.
도 6은 본 개시의 일 실시예에 따른 기계학습 모델의 예시를 나타내는 도면이다.
도 7은 본 개시의 일 실시예에 따라 기계학습 모델을 학습하는 예시를 나타내는 도면이다.
도 8은 본 개시의 다른 실시예에 따라 기계학습 모델을 학습하는 예시를 나타내는 도면이다.
도 9는 본 개시의 일 실시예에 따른 기계학습 모델이 복수의 서브 의료 영상을 기초로 병변의 발생 위험성에 대한 예측 결과를 출력하는 예시를 나타내는 도면이다.
도 10은 본 개시의 일 실시예에 따라 의료 영상 및 추가 정보를 기초로 병변의 발생 위험성에 대한 예측 결과를 생성하는 예시를 나타내는 도면이다.
도 11은 본 개시의 다른 실시예에 따라 의료 영상 및 추가 정보를 기초로 병변의 발생 위험성에 대한 예측 결과를 생성하는 예시를 나타내는 도면이다.
도 12는 본 개시의 일 실시예에 따른 예측 결과에 기초하여 의학적 정보를 제공하는 예시를 나타내는 도면이다.
도 13은 본 개시의 일 실시예에 따른 예측 결과 및 예측 결과에 기초한 의학적 정보를 제공하는 예시를 나타내는 도면이다.
도 14는 본 개시의 일 실시예에 따른 인공신경망 모델을 나타내는 예시도이다.
도 15는 본 개시의 일 실시예에 따른 병변의 발생 위험성을 예측하는 방법의 예시를 나타내는 흐름도이다.
도 16은 본 개시의 일 실시예에 따른 병변의 발생 위험성을 예측하는 예시적인 시스템 구성도이다.
이하, 본 개시의 실시를 위한 구체적인 내용을 첨부된 도면을 참조하여 상세히 설명한다. 다만, 이하의 설명에서는 본 개시의 요지를 불필요하게 흐릴 우려가 있는 경우, 널리 알려진 기능이나 구성에 관한 구체적 설명은 생략하기로 한다.
첨부된 도면에서, 동일하거나 대응하는 구성요소에는 동일한 참조부호가 부여되어 있다. 또한, 이하의 실시예들의 설명에 있어서, 동일하거나 대응되는 구성요소를 중복하여 기술하는 것이 생략될 수 있다. 그러나 구성요소에 관한 기술이 생략되어도, 그러한 구성요소가 어떤 실시예에 포함되지 않는 것으로 의도되지는 않는다.
개시된 실시예의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 개시는 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 개시가 완전하도록 하고, 본 개시가 통상의 기술자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것일 뿐이다.
본 명세서에서 사용되는 용어에 대해 간략히 설명하고, 개시된 실시예에 대해 구체적으로 설명하기로 한다. 본 명세서에서 사용되는 용어는 본 개시에서의 기능을 고려하면서 가능한 현재 널리 사용되는 일반적인 용어들을 선택하였으나, 이는 관련 분야에 종사하는 기술자의 의도 또는 판례, 새로운 기술의 출현 등에 따라 달라질 수 있다. 또한, 특정한 경우는 출원인이 임의로 선정한 용어도 있으며, 이 경우 해당되는 발명의 설명 부분에서 상세히 그 의미를 기재할 것이다. 따라서 본 개시에서 사용되는 용어는 단순한 용어의 명칭이 아닌, 그 용어가 가지는 의미와 본 개시의 전반에 걸친 내용을 토대로 정의되어야 한다.
본 명세서에서의 단수의 표현은 문맥상 명백하게 단수인 것으로 특정하지 않는 한, 복수의 표현을 포함한다. 또한, 복수의 표현은 문맥상 명백하게 복수인 것으로 특정하지 않는 한, 단수의 표현을 포함한다. 명세서 전체에서 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있음을 의미한다.
또한, 명세서에서 사용되는 '모듈' 또는 '부'라는 용어는 소프트웨어 또는 하드웨어 구성요소를 의미하며, '모듈' 또는 '부'는 어떤 역할들을 수행한다. 그렇지만 '모듈' 또는 '부'는 소프트웨어 또는 하드웨어에 한정되는 의미는 아니다. '모듈' 또는 '부'는 어드레싱할 수 있는 저장 매체에 있도록 구성될 수도 있고 하나 또는 그 이상의 프로세서들을 재생시키도록 구성될 수도 있다. 따라서, 일 예로서 '모듈' 또는 '부'는 소프트웨어 구성요소들, 객체지향 소프트웨어 구성요소들, 클래스 구성요소들 및 태스크 구성요소들과 같은 구성요소들과, 프로세스들, 함수들, 속성들, 프로시저들, 서브루틴들, 프로그램 코드의 세그먼트들, 드라이버들, 펌웨어, 마이크로 코드, 회로, 데이터, 데이터베이스, 데이터 구조들, 테이블들, 어레이들 또는 변수들 중 적어도 하나를 포함할 수 있다. 구성요소들과 '모듈' 또는 '부'들은 안에서 제공되는 기능은 더 작은 수의 구성요소들 및 '모듈' 또는 '부'들로 결합되거나 추가적인 구성요소들과 '모듈' 또는 '부'들로 더 분리될 수 있다.
본 개시의 일 실시예에 따르면 '모듈' 또는 '부'는 프로세서 및 메모리로 구현될 수 있다. '프로세서'는 범용 프로세서, 중앙 처리 장치(CPU), GPU(Graphic Processing Unit), 마이크로프로세서, 디지털 신호 프로세서(DSP), 제어기, 마이크로제어기, 상태 머신 등을 포함하도록 넓게 해석되어야 한다. 몇몇 환경에서는, '프로세서'는 주문형 반도체(ASIC), 프로그램가능 로직 디바이스(PLD), 필드 프로그램가능 게이트 어레이(FPGA) 등을 지칭할 수도 있다. '프로세서'는, 예를 들어, DSP와 마이크로프로세서의 조합, 복수의 마이크로프로세서들의 조합, DSP 코어와 결합한 하나 이상의 마이크로프로세서들의 조합, 또는 임의의 다른 그러한 구성들의 조합과 같은 처리 디바이스들의 조합을 지칭할 수도 있다. 또한, '메모리'는 전자 정보를 저장 가능한 임의의 전자 컴포넌트를 포함하도록 넓게 해석되어야 한다. '메모리'는 임의 액세스 메모리(RAM), 판독-전용 메모리(ROM), 비-휘발성 임의 액세스 메모리(NVRAM), 프로그램가능 판독-전용 메모리(PROM), 소거-프로그램가능 판독 전용 메모리(EPROM), 전기적으로 소거가능 PROM(EEPROM), 플래쉬 메모리, 자기 또는 광학 데이터 저장장치, 레지스터들 등과 같은 프로세서-판독가능 매체의 다양한 유형들을 지칭할 수도 있다. 프로세서가 메모리로부터 정보를 판독하고/하거나 메모리에 정보를 기록할 수 있다면 메모리는 프로세서와 전자 통신 상태에 있다고 불린다. 프로세서에 집적된 메모리는 프로세서와 전자 통신 상태에 있다.
본 개시에서, '시스템'은 서버 장치와 클라우드 장치 중 적어도 하나의 장치를 포함할 수 있으나, 이에 한정되는 것은 아니다. 예를 들어, 시스템은 하나 이상의 서버 장치로 구성될 수 있다. 다른 예로서, 시스템은 하나 이상의 클라우드 장치로 구성될 수 있다. 또 다른 예로서, 시스템은 서버 장치와 클라우드 장치가 함께 구성되어 동작될 수 있다.
본 개시에서, '의료 영상'은 질병의 진단, 치료, 예방 등을 위해 촬영된 영상 및/또는 이미지로서, 환자의 인체 내/외부가 촬영된 영상 및/또는 이미지 등을 지칭할 수 있다. 예를 들어, 의료 영상 데이터는 유방촬영술 영상(MMG), 초음파 영상, 흉부 방사선 영상(Chest radiograph), X-ray, Computed Tomography(CT), Positron emission tomography(PET), Magnetic Resonance Imaging(MRI), Sonography(Ultrasound, US), Functional Magnetic Resonance Imaging (fMRI), 병리 조직 이미지(Digital pathology whole slide image, WSI), Digital Breast Tomosynthesis(DBT) 등 모든 유형(modality)의 영상 데이터 및/또는 이미지 데이터를 포함할 수 있다. 본 개시에서, '의료 영상'는 하나 이상의 의료 영상을 지칭할 수 있으며, 본 개시에서, '학습 의료 영상'은 하나 이상의 학습 의료 영상을 지칭할 수 있다.
본 개시에서, '병변의 발생 위험성과 관련된 추가 정보' 또는 '추가 정보'는 환자에게서 획득하고 기록할 수 있는 모든 정보를 포함할 수 있다. 예를 들어, 추가 정보는 랩(lab) 데이터와 생물학적 데이터를 포함할 수 있다. 일 실시예에서, 추가 정보는 의료진이 환자에게서 획득하고 기록할 수 있는 정보로서, 환자에게서 병력청취를 통해 얻은 정보(예: 주소, 증상, 과거병력, 가족력, 흡연 여부 등), 신체검진 결과(예: 환자의 키, 혈압, 심박동수, 복부 진찰 등), 추가 검사 데이터(예: 피검사 결과, 심전도, 청 검사 등)를 포함할 수 있다. 예를 들어, 추가 정보는 나이, 체중, 가족력, 키, 성별, 초경 나이, 폐경 여부, 출산 이력, 호르몬 대체 요법(Hormone Replacement Therapy) 치료 이력, 유전체 정보(예: BRCA, BRD, PTEN, TP53, CDH1, SKT11/LKB1, PALB2 등), 유방 밀도(예: 유방 내의 유선 조직의 밀도), 혈압, 체온, 기침, 기저질환 등의 환자에 대한 모든 임상 정보를 포함할 수 있다.
본 개시에서, '기계학습 모델'은 주어진 입력에 대한 답을 추론하는데 사용하는 임의의 모델을 포함할 수 있다. 일 실시예에 따르면, 기계학습 모델은 입력 레이어(층), 복수 개의 은닉 레이어 및 출력 레이어를 포함한 인공신경망 모델을 포함할 수 있다. 여기서, 각 레이어는 하나 이상의 노드를 포함할 수 있다. 예를 들어, 기계학습 모델은 대상 환자의 의료 영상 및/또는 추가 정보를 기초로, 대상 환자의 병변 발생 위험성에 대한 예측 결과를 출력하도록 학습될 수 있다. 이 경우, 어노테이션 작업을 통해 생성된 레이블 정보가 기계학습 모델을 학습시키는데 이용될 수 있다. 또한, 기계학습 모델은 기계학습 모델에 포함된 복수의 노드와 연관된 가중치를 포함할 수 있다. 여기서, 가중치는 기계학습 모델과 연관된 임의의 파라미터를 포함할 수 있다. 본 개시에서, 기계학습 모델은 인공신경망 모델을 지칭할 수 있으며, 인공신경망 모델은 기계학습 모델을 지칭할 수 있다. 본 개시에 따른 기계학습 모델은 다양한 학습 방법을 이용하여 학습된 모델일 수 있다. 예를 들어, 지도 학습(Supervised Learning), 자율 학습(Unsupervised Learning), 강화 학습(Reinforcement Learning) 등 다양한 학습 방법이 본 개시에 이용될 수 있다.
본 개시에서, '학습'은 학습 데이터 및/또는 정답 레이블을 이용하여 기계학습 모델과 연관된 가중치를 변경하는 임의의 과정을 지칭할 수 있다. 일 실시예에 따르면, 학습은 학습 대상의 의료 영상 및 정답 레이블(예를 들어, 병변의 발생 위험성 등)을 이용하여 기계학습 모델을 한번 이상의 순방향 전파(forward propagation) 및 역방향 전파(backward propagation)를 통해 기계학습 모델과 연관된 가중치를 변경하거나 업데이트하는 과정을 지칭할 수 있다.
본 개시에서, '어노테이션(annotation)'이란, 데이터 샘플에 조직학적 정보 등을 태깅하는 작업 또는 태깅된 정보(즉, 주석) 그 자체를 의미한다. 어노테이션은 당해 기술 분야에서 태깅(tagging), 레이블링(labeling) 등의 용어와 혼용되어 사용될 수 있다.
본 개시에서, '복수의 A의 각각' 또는 '복수의 A 각각'은 복수의 A에 포함된 모든 구성 요소의 각각을 지칭하거나, 복수의 A에 포함된 일부 구성 요소의 각각을 지칭할 수 있다.
본 개시에서, '유사'는 동일 또는 유사하다는 의미를 모두 포함할 수 있다. 예를 들어, 두 정보가 유사하다는 것은 두 정보가 서로 동일하거나 유사하다는 것을 지칭할 수 있다.
본 개시에서, '인스트럭션(instruction)'은, 기능을 기준으로 묶인 일련의 명령어들로서 컴퓨터 프로그램의 구성 요소이자 프로세서에 의해 실행되는 것을 지칭할 수 있다.
본 개시에서, '사용자'는 사용자 단말을 이용하는 자를 지칭할 수 있다. 예를 들어, 사용자는 병변의 발생 위험성에 대한 예측 결과를 제공받는 의료진, 환자, 연구원 등을 포함할 수 있다. 또한, 사용자는 사용자 단말을 지칭할 수 있으며, 이와 반대로, 사용자 단말은 사용자를 지칭할 수 있다. 즉, 사용자와 사용자 단말은 본 명세서에서 혼용되어 사용될 수 있다.
도 1은 본 개시의 일 실시예에 따라 환자의 병변의 발생 위험성에 대한 예측 결과를 제공하는 시스템을 나타내는 예시적인 구성도이다. 도시된 바와 같이, 환자의 병변 발생 위험성에 대한 예측 결과를 제공하는 시스템은 정보 처리 시스템(100), 사용자 단말(110) 및 저장 시스템(120)을 포함할 수 있다. 여기서, 정보 처리 시스템(100)은 사용자 단말(110) 및 저장 시스템(120)의 각각과 연결되어 통신 가능하도록 구성될 수 있다. 도 1에서는 하나의 사용자 단말(110)이 도시되어 있으나, 이에 한정되지 않으며, 복수의 사용자 단말(110)이 정보 처리 시스템(100)과 연결되어 통신되도록 구성될 수 있다. 또한, 도 1에서는 정보 처리 시스템(100)이 하나의 컴퓨팅 장치로서 도시되어 있으나, 이에 한정되지 않으며, 정보 처리 시스템(100)은 복수의 컴퓨팅 장치를 통해 정보 및/또는 데이터를 분산 처리하도록 구성될 수 있다. 또한, 도 1에서는 저장 시스템(120)이 하나의 장치로서 도시되어 있으나, 이에 한정되지 않으며, 복수의 저장 장치로 구성되거나 클라우드(cloud)를 지원하는 시스템으로 구성될 수 있다. 또한, 도 1에서는 환자의 병변의 발생 위험성에 대한 예측 결과를 제공하는 시스템의 각각의 구성요소들은 기능적으로 구분되는 기능 요소들을 나타낸 것으로, 복수의 구성 요소가 실제 물리적 환경에서 서로 통합되는 형태로 구현될 수 있다.
정보 처리 시스템(100) 및 사용자 단말(110)은 환자의 병변의 발생 위험성에 대한 예측 결과를 생성하고, 제공하는데 이용되는 임의의 컴퓨팅 장치이다. 여기서, 컴퓨팅 장치는, 컴퓨팅 기능이 구비된 임의의 종류의 장치를 지칭할 수 있으며, 예를 들어, 노트북, 데스크톱(desktop), 랩탑(laptop), 서버, 클라우드 시스템 등이 될 수 있으나, 이에 한정되지 않는다.
정보 처리 시스템(100)은 대상 환자의 의료 영상 및/또는 대상 환자의 추가 정보를 수신할 수 있다. 여기서, 대상 환자의 추가 정보는, 대상 환자의 임상 데이터, 랩(lab) 데이터 및/또는 생물학적 데이터를 포함할 수 있다. 예를 들어, 정보 처리 시스템(100)은 저장 시스템(120)(예를 들어, 병원 시스템, 전자 의무 기록, 처방 전달 시스템, 의료 영상 시스템, 검사 정보 시스템, 기타 로컬/클라우드 저장 시스템 등) 및/또는 사용자 단말(110)으로부터 대상 환자의 의료 영상 및/또는 대상 환자의 추가 정보를 수신할 수 있다. 그런 다음, 정보 처리 시스템(100)은 환자의 병변의 발생 위험성에 대한 예측 결과를 생성하여, 사용자 단말(110)을 통해 사용자(130)에게 제공할 수 있다.
일 실시예에 따르면, 정보 처리 시스템(100)은 기계학습 모델을 이용하여, 대상 환자의 의료 영상 및/또는 대상 환자의 추가 정보를 기초로, 대상 환자의 병변의 발생 위험성에 대한 예측 결과를 생성하여 출력할 수 있다. 여기서, 대상 환자의 병변의 발생 위험성에 대한 예측 결과는, 병변의 발생 위험성이 위험성 정도를 표현할 수 있는 수단(수치 또는 색상 등)으로 표현된 정보, 병변의 발생 위험성의 정도에 따라 복수의 클래스(high risk, intermediate risk, low risk)로 분류된 정보 등을 포함할 수 있다.
추가적으로 또는 대안적으로, 정보 처리 시스템(100)은 병변의 발생 위험성에 대한 예측 결과를 기초로, 의학적 검사, 진단, 예방 또는 치료 중 적어도 하나와 관련된 정보를 제공할 수 있다. 예를 들어, 정보 처리 시스템(100)은 병변의 발생 위험성에 대한 예측 결과를 기초로, 대상 환자의 예후(prognosis), 특정 상황에서 환자에게 요구되는 필요 조치(intervention)(예: 치료/진단/검사/예방 방침과 시기), 또는 약물 반응성 등에 대한 정보를 제공할 수 있다. 구체적 예로, 정보 처리 시스템(100)은 병변의 발생 위험성의 정도에 따라, 개인화된 검진 스케줄을 제공할 수 있다. 정보 처리 시스템(100)은 병변의 발생 위험성이 높은 환자에게는 추가적인 검사(예: MRI 또는 CT 촬영 등)를 권유할 수 있으며, 짧은 주기로 정기 검진하는 검진 스케줄을 제공할 수 있다. 반면, 병변의 발생 위험성이 낮은 환자에게는 긴 주기로 정기 검진하는 검진 스케줄을 제공할 수 있다.
정보 처리 시스템(100)은 환자의 병변의 발생 위험성에 대한 예측 결과 및/또는 예측 결과를 기초로 생성된 다양한 의학적 정보를 사용자 단말(110)에 제공할 수 있다. 사용자 단말(110)은 정보 처리 시스템(100)으로부터 환자의 병변의 발생 위험성에 대한 예측 결과 및/또는 예측 결과를 기초로 생성된 다양한 의학적 정보를 수신하여 디스플레이 장치를 통해 출력할 수 있다. 즉, 사용자(예를 들어, 의료진, 환자, 연구원 등)(130)는 환자의 병변의 발생 위험성에 대한 예측 결과 및/또는 예측 결과를 기초로 생성된 다양한 의학적 정보를 기초로, 대상 환자에 대한 의학적 조치 및/또는 임상적 결정을 수행할 수 있다.
저장 시스템(120)은 환자의 병변의 발생 위험성에 대한 예측 결과를 제공하기 위한, 대상 환자와 연관된 의료 영상, 추가 정보 및/또는 기계학습 모델과 연관된 각종 데이터를 저장하고 관리하는 장치 또는 클라우드 시스템이다. 데이터의 효율적인 관리를 위해, 저장 시스템(120)은, 데이터베이스를 이용하여 각종 데이터를 저장하고 관리할 수 있다. 여기서, 각종 데이터는 기계학습 모델과 연관된 임의의 데이터를 포함할 수 있으며, 예를 들어, 학습 데이터의 파일/메타 정보, 목적 데이터의 파일/메타 정보, 어노테이션 작업 결과물인 목적 데이터에 대한 레이블 정보, 어노테이션 작업에 관한 데이터, 기계학습 모델(예: 인공신경망 모델) 등을 포함할 수 있으나, 이에 한정되지 않는다. 도 1에서는 정보 처리 시스템(100)과 저장 시스템(120)이 별도의 시스템으로 도시되어 있으나, 이에 한정되지 않으며, 하나의 시스템으로 통합되어 구성될 수 있다.
본 개시의 일부 실시예에 따르면, 사용자(130)는 대상 환자의 병변의 발생 위험성에 대한 예측 결과 및/또는 예측 결과를 기초로 한 다양한 의학적 정보를 제공받을 수 있다. 사용자(130)는, 의료진이거나 환자 자신일 수 있다. 예를 들어, 사용자(130)가 의료진인 경우, 의료진은 다양한 의학적 정보를 제공받음으로써, 대상 환자에게 필요한 조치를 취할 수 있으며, 대상 환자에 대한 임상적 결정을 하는데 있어서 도움을 받을 수 있다.
또한, 본 개시의 일부 실시예에 따르면, 환자들의 병변의 발생 위험성에 대한 예측 결과 및/또는 위험성 정도에 따른 치료/진단/검진/예방과 관련된 적절한 조치 또는 스케줄 등에 대한 정보가 제공됨으로써, 정보를 제공받는 의료진은 한정된 자원(예를 들어, 인력, 장치, 약제 등)을 효율적이고, 효과적으로 관리할 수 있고, 정보를 제공받는 고위험군 환자는 추가 검진 또는 짧은 주기의 검진 등을 통해 질병을 예방하거나 질병을 조기에 발견할 수 있으며, 정보를 제공받는 저위험군 환자는 긴 주기의 검진 등을 통해 비용이나 시간을 절약할 수 있다.
이하의 설명에서 유방 촬영술 영상을 의료 영상의 구체적 예시로 들어 설명하고, 유방암의 발생 위험성을 병변의 발생 위험성의 구체적 예시로 들어 설명하나, 이는 본 개시의 명확한 이해를 위한 것일 뿐이며, 본 개시의 범위는 이에 한정되지 않는다. 즉, 본 개시에 따라, 임의의 의료 영상을 기초로 임의의 병변의 발생 위험성을 예측할 수 있다.
도 2는 본 개시의 일 실시예에 따른 정보 처리 시스템(100)의 내부 구성을 나타내는 블록도이다. 정보 처리 시스템(100)은 메모리(210), 프로세서(220), 통신 모듈(230) 및 입출력 인터페이스(240)를 포함할 수 있다. 도 2에 도시된 바와 같이, 정보 처리 시스템(100)은 통신 모듈(230)을 이용하여 네트워크를 통해 정보 및/또는 데이터를 통신할 수 있도록 구성될 수 있다. 일 실시예에 따르면, 정보 처리 시스템(100)은 메모리(210), 프로세서(220), 통신 모듈(230) 및 입출력 인터페이스(240)를 포함하는 적어도 하나의 장치로 구성될 수 있다.
메모리(210)는 비-일시적인 임의의 컴퓨터 판독 가능한 기록매체를 포함할 수 있다. 일 실시예에 따르면, 메모리(210)는 RAM(random access memory), ROM(read only memory), 디스크 드라이브, SSD(solid state drive), 플래시 메모리(flash memory) 등과 같은 비소멸성 대용량 저장 장치(permanent mass storage device)를 포함할 수 있다. 다른 예로서, ROM, SSD, 플래시 메모리, 디스크 드라이브 등과 같은 비소멸성 대용량 저장 장치는 메모리(210)와는 구분되는 별도의 영구 저장 장치로서 정보 처리 시스템(100)에 포함될 수 있다. 또한, 메모리(210)에는 운영체제와 적어도 하나의 프로그램 코드(예를 들어, 정보 처리 시스템(100)에 설치되어 구동되는 병변의 발생 위험성 예측 등을 위한 코드)가 저장될 수 있다.
이러한 소프트웨어 구성요소들은 메모리(210)와는 별도의 컴퓨터에서 판독 가능한 기록매체로부터 로딩될 수 있다. 이러한 별도의 컴퓨터에서 판독 가능한 기록매체는 이러한 정보 처리 시스템(100)에 직접 연결가능한 기록 매체를 포함할 수 있는데, 예를 들어, 플로피 드라이브, 디스크, 테이프, DVD/CD-ROM 드라이브, 메모리 카드 등과 같이 컴퓨터에서 판독 가능한 기록매체를 포함할 수 있다. 다른 예로서, 소프트웨어 구성요소들은 컴퓨터에서 판독 가능한 기록매체가 아닌 통신 모듈(230)을 통해 메모리(210)에 로딩될 수도 있다. 예를 들어, 적어도 하나의 프로그램은 개발자들 또는 애플리케이션의 설치 파일을 배포하는 파일 배포 시스템이 통신 모듈(230)을 통해 제공하는 파일들에 의해 설치되는 컴퓨터 프로그램(예를 들어, 병변의 발생 위험성 예측 등을 위한 프로그램 등)에 기반하여 메모리(210)에 로딩될 수 있다.
프로세서(220)는 기본적인 산술, 로직 및 입출력 연산을 수행함으로써, 컴퓨터 프로그램의 명령을 처리하도록 구성될 수 있다. 명령은 메모리(210) 또는 통신 모듈(230)에 의해 사용자 단말(미도시) 또는 다른 외부 시스템으로 제공될 수 있다. 예를 들어, 프로세서(220)는 의료 영상을 수신하고, 기계학습 모델을 이용하여, 수신된 의료 영상을 기초로 병변의 발생 위험성에 대한 예측 결과를 생성하여 제공할 수 있다.
통신 모듈(230)은 네트워크를 통해 사용자 단말(미도시)과 정보 처리 시스템(100)이 서로 통신하기 위한 구성 또는 기능을 제공할 수 있으며, 정보 처리 시스템(100)이 외부 시스템(일례로 별도의 클라우드 시스템 등)과 통신하기 위한 구성 또는 기능을 제공할 수 있다. 일례로, 정보 처리 시스템(100)의 프로세서(220)의 제어에 따라 제공되는 제어 신호, 명령, 데이터 등이 통신 모듈(230)과 네트워크를 거쳐 사용자 단말 및/또는 외부 시스템의 통신 모듈을 통해 사용자 단말 및/또는 외부 시스템으로 전송될 수 있다. 예를 들어, 정보 처리 시스템(100)에 의해 생성된 예측 결과 및/또는 예측 결과를 기초로 생성된 의학적 정보가 통신 모듈(230)과 네트워크를 거쳐 사용자 단말 및/또는 외부 시스템의 통신 모듈을 통해 사용자 단말 및/또는 외부 시스템으로 전송될 수 있다. 또한, 예측 결과 및/또는 예측 결과를 기초로 생성된 의학적 정보를 수신한 사용자 단말 및/또는 외부 시스템은 수신한 정보를 디스플레이 출력 가능 장치를 통해 출력할 수 있다.
또한, 정보 처리 시스템(100)의 입출력 인터페이스(240)는 정보 처리 시스템(100)과 연결되거나 정보 처리 시스템(100)이 포함할 수 있는 입력 또는 출력을 위한 장치(미도시)와의 인터페이스를 위한 수단일 수 있다. 도 2에서는 입출력 인터페이스(240)가 프로세서(220)와 별도로 구성된 요소로서 도시되었으나, 이에 한정되지 않으며, 입출력 인터페이스(240)가 프로세서(220)에 포함되도록 구성될 수 있다. 정보 처리 시스템(100)은 도 2의 구성요소들보다 더 많은 구성요소들을 포함할 수 있다. 그러나, 대부분의 종래기술적 구성요소들을 명확하게 도시할 필요성은 없다.
정보 처리 시스템(100)의 프로세서(220)는 복수의 사용자 단말 및/또는 복수의 외부 시스템으로부터 수신된 정보 및/또는 데이터를 관리, 처리 및/또는 저장하도록 구성될 수 있다. 일 실시예에 따르면, 프로세서(220)는 사용자 단말 및/또는 외부 시스템으로부터 의료 영상을 수신할 수 있다. 프로세서(220)는 기계학습 모델을 이용하여, 수신된 의료 영상을 기초로 병변의 발생 위험성에 대한 예측 결과 및/또는 예측 결과를 기초로 한 다양한 의학적 정보를 생성할 수 있으며, 생성된 정보를 정보 처리 시스템(100)과 연결된 디스플레이 출력 가능 장치를 통해 출력할 수 있다.
도 3은 본 개시의 일 실시예에 따른 사용자 단말(310) 및 정보 처리 시스템(100)의 내부 구성을 나타내는 블록도이다. 도 3에 대한 이하의 설명에서는 도 2를 참조하여 상술한 내용과 중복되는 내용에 대해서는 간략히 서술하거나 생략되며, 도 3에서 추가된 구성을 위주로 설명된다. 사용자 단말(310)은 병변의 발생 위험성 예측 서비스를 제공하는 애플리케이션 또는 웹 브라우저 등을 실행 가능하고 유/무선 통신이 가능한 임의의 컴퓨팅 장치를 지칭할 수 있으며, 예를 들어, 휴대폰 단말, 태블릿 단말, PC 단말 등을 포함할 수 있다. 도시된 바와 같이, 사용자 단말(310)은 메모리(312), 프로세서(314), 통신 모듈(316) 및 입출력 인터페이스(318)를 포함할 수 있다. 도 3에 도시된 바와 같이, 사용자 단말(310) 및 정보 처리 시스템(100)은 각각의 통신 모듈(316, 336)을 이용하여 네트워크(330)를 통해 정보 및/또는 데이터를 통신할 수 있도록 구성될 수 있다. 또한, 입출력 장치(320)는 입출력 인터페이스(318)를 통해 사용자 단말(310)에 정보 및/또는 데이터를 입력하거나 사용자 단말(310)로부터 생성된 정보 및/또는 데이터를 출력하도록 구성될 수 있다.
메모리(312, 210)는 비-일시적인 임의의 컴퓨터 판독 가능한 기록매체를 포함할 수 있다. 일 실시예에 따르면, 메모리(312, 210)는 RAM(random access memory), ROM(read only memory), 디스크 드라이브, SSD(solid state drive), 플래시 메모리(flash memory) 등과 같은 비소멸성 대용량 저장 장치(permanent mass storage device)를 포함할 수 있다. 다른 예로서, ROM, SSD, 플래시 메모리, 디스크 드라이브 등과 같은 비소멸성 대용량 저장 장치는 메모리와는 구분되는 별도의 영구 저장 장치로서 사용자 단말(310) 또는 정보 처리 시스템(100)에 포함될 수 있다. 또한, 메모리(312, 210)에는 운영체제와 적어도 하나의 프로그램 코드(예를 들어, 사용자 단말(310)에 설치되어 구동되는 병변의 발생 위험성 예측 등을 위한 코드)가 저장될 수 있다.
이러한 소프트웨어 구성요소들은 메모리(312, 210)와는 별도의 컴퓨터에서 판독가능한 기록매체로부터 로딩될 수 있다. 이러한 별도의 컴퓨터에서 판독가능한 기록매체는 이러한 사용자 단말(310) 및 정보 처리 시스템(100)에 직접 연결가능한 기록 매체를 포함할 수 있는데, 예를 들어, 플로피 드라이브, 디스크, 테이프, DVD/CD-ROM 드라이브, 메모리 카드 등의 컴퓨터에서 판독 가능한 기록매체를 포함할 수 있다. 다른 예로서, 소프트웨어 구성요소들은 컴퓨터에서 판독 가능한 기록매체가 아닌 통신 모듈을 통해 메모리(312, 210)에 로딩될 수도 있다. 예를 들어, 적어도 하나의 프로그램은 개발자들 또는 애플리케이션의 설치 파일을 배포하는 파일 배포 시스템이 네트워크(330)를 통해 제공하는 파일들에 의해 설치되는 컴퓨터 프로그램에 기반하여 메모리(312, 210)에 로딩될 수 있다.
프로세서(314, 220)는 기본적인 산술, 로직 및 입출력 연산을 수행함으로써, 컴퓨터 프로그램의 명령을 처리하도록 구성될 수 있다. 명령은 메모리(312, 210) 또는 통신 모듈(316, 230)에 의해 프로세서(314, 220)로 제공될 수 있다. 예를 들어, 프로세서(314, 220)는 메모리(312, 210)와 같은 기록 장치에 저장된 프로그램 코드에 따라 수신되는 명령을 실행하도록 구성될 수 있다.
통신 모듈(316, 230)은 네트워크(330)를 통해 사용자 단말(310)과 정보 처리 시스템(100)이 서로 통신하기 위한 구성 또는 기능을 제공할 수 있으며, 사용자 단말(310) 및/또는 정보 처리 시스템(100)이 다른 사용자 단말 또는 다른 시스템(일례로 별도의 클라우드 시스템 등)과 통신하기 위한 구성 또는 기능을 제공할 수 있다. 일례로, 사용자 단말(310)의 프로세서(314)가 메모리(312) 등과 같은 기록 장치에 저장된 프로그램 코드에 따라 생성한 요청 또는 데이터(예를 들어, 병변의 발생 위험성 예측 요청과 연관된 데이터 등)는 통신 모듈(316)의 제어에 따라 네트워크(330)를 통해 정보 처리 시스템(100)으로 전달될 수 있다. 역으로, 정보 처리 시스템(100)의 프로세서(220)의 제어에 따라 제공되는 제어 신호나 명령이 통신 모듈(230)과 네트워크(330)를 거쳐 사용자 단말(310)의 통신 모듈(316)을 통해 사용자 단말(310)에 수신될 수 있다. 예를 들어, 사용자 단말(310)은 정보 처리 시스템(100)으로부터 병변의 발생 위험성 예측 결과와 연관된 데이터 등을 수신할 수 있다.
입출력 인터페이스(318)는 입출력 장치(320)와의 인터페이스를 위한 수단일 수 있다. 일 예로서, 입력 장치는 오디오 센서 및/또는 이미지 센서를 포함한 카메라, 키보드, 마이크로폰, 마우스 등의 장치를, 그리고 출력 장치는 디스플레이, 스피커, 햅틱 피드백 디바이스(haptic feedback device) 등과 같은 장치를 포함할 수 있다. 다른 예로, 입출력 인터페이스(318)는 터치스크린 등과 같이 입력과 출력을 수행하기 위한 구성 또는 기능이 하나로 통합된 장치와의 인터페이스를 위한 수단일 수 있다. 예를 들어, 사용자 단말(310)의 프로세서(314)가 메모리(312)에 로딩된 컴퓨터 프로그램의 명령을 처리함에 있어서 정보 처리 시스템(100)이나 다른 사용자 단말이 제공하는 정보 및/또는 데이터를 이용하여 구성되는 서비스 화면 등이 입출력 인터페이스(318)를 통해 디스플레이에 표시될 수 있다. 도 3에서는 입출력 장치(320)가 사용자 단말(310)에 포함되지 않도록 도시되어 있으나, 이에 한정되지 않으며, 사용자 단말(310)과 하나의 장치로 구성될 수 있다. 도 3에서는 입출력 인터페이스(318)가 프로세서(314)와 별도로 구성된 요소로서 도시되었으나, 이에 한정되지 않으며, 입출력 인터페이스(318)가 프로세서(314)에 포함되도록 구성될 수 있다. 다른 실시예에서, 정보 처리 시스템(100) 역시 입출력 인터페이스(미도시)를 포함하도록 구성될 수 있다. 여기서, 정보 처리 시스템(100)의 입출력 인터페이스는 정보 처리 시스템(100)과 연결되거나 정보 처리 시스템(100)이 포함할 수 있는 입력 또는 출력을 위한 장치(미도시)와의 인터페이스를 위한 수단일 수 있다.
사용자 단말(310) 및 정보 처리 시스템(100)은 도 3의 구성요소들보다 더 많은 구성요소들을 포함할 수 있다. 그러나, 대부분의 종래기술적 구성요소들을 명확하게 도시할 필요성은 없다. 일 실시예에 따르면, 사용자 단말(310)은 상술된 입출력 장치(320) 중 적어도 일부를 포함하도록 구현될 수 있다. 또한, 사용자 단말(310)은 트랜시버(transceiver), GPS(Global Positioning system) 모듈, 카메라, 각종 센서, 데이터베이스 등과 같은 다른 구성요소들을 더 포함할 수 있다. 예를 들어, 사용자 단말(310)이 스마트폰인 경우, 일반적으로 스마트폰이 포함하고 있는 구성요소를 포함할 수 있으며, 예를 들어, 가속도 센서, 자이로 센서, 이미지 센서, 근접 센서, 터치 센서, 조도 센서, 카메라 모듈, 각종 물리적인 버튼, 터치패널을 이용한 버튼, 입출력 포트, 진동을 위한 진동기 등의 다양한 구성요소들이 사용자 단말(310)에 더 포함되도록 구현될 수 있다. 일 실시예에 따르면, 사용자 단말(310)의 프로세서(314)는 병변의 발생 위험성 예측 서비스를 제공하는 애플리케이션 등이 동작하도록 구성될 수 있다. 이 때, 해당 애플리케이션 및/또는 프로그램과 연관된 코드가 사용자 단말(310)의 메모리(312)에 로딩될 수 있다.
병변의 발생 위험성 예측 서비스를 제공하는 애플리케이션 등을 위한 프로그램이 동작되는 동안에, 프로세서(314)는 입출력 인터페이스(318)와 연결된 터치 스크린, 키보드, 오디오 센서 및/또는 이미지 센서를 포함한 카메라, 마이크로폰 등의 입력 장치를 통해 입력되거나 선택된 텍스트, 이미지, 영상, 음성 및/또는 동작 등을 수신할 수 있으며, 수신된 텍스트, 이미지, 영상, 음성 및/또는 동작 등을 메모리(312)에 저장하거나 통신 모듈(316) 및 네트워크(330)를 통해 정보 처리 시스템(100)에 제공할 수 있다. 예를 들어, 프로세서(314)는 의료 영상에 대한 병변 발생 위험성 예측을 요청하는 사용자의 입력을 수신하여. 통신 모듈(316) 및 네트워크(330)를 통해 정보 처리 시스템(100)에 제공할 수 있다.
사용자 단말(310)의 프로세서(314)는 입출력 장치(320), 다른 사용자 단말, 정보 처리 시스템(100) 및/또는 복수의 외부 시스템으로부터 수신된 정보 및/또는 데이터를 관리, 처리 및/또는 저장하도록 구성될 수 있다. 프로세서(314)에 의해 처리된 정보 및/또는 데이터는 통신 모듈(316) 및 네트워크(330)를 통해 정보 처리 시스템(100)에 제공될 수 있다. 사용자 단말(310)의 프로세서(314)는 입출력 인터페이스(318)를 통해 입출력 장치(320)로 정보 및/또는 데이터를 전송하여, 출력할 수 있다. 예를 들면, 프로세서(314)는 수신한 정보 및/또는 데이터를 사용자 단말의 화면에 디스플레이할 수 있다.
정보 처리 시스템(100)의 프로세서(220)는 복수의 사용자 단말(310) 및/또는 복수의 외부 시스템으로부터 수신된 정보 및/또는 데이터를 관리, 처리 및/또는 저장하도록 구성될 수 있다. 프로세서(220)에 의해 처리된 정보 및/또는 데이터는 통신 모듈(230) 및 네트워크(330)를 통해 사용자 단말(310)에 제공할 수 있다.
도 4는 본 개시의 일 실시예에 따른 정보 처리 시스템의 프로세서(220)의 내부 구성을 나타내는 도면이다. 일 실시예에 따르면, 프로세서(220)는 모델 학습부(410), 병변의 발생 위험성 예측부(420) 및 정보 제공부(430)를 포함할 수 있다. 도 4에서 프로세서(220)의 내부 구성을 기능별로 구분하여 설명하지만, 이는 반드시 물리적으로 구분되는 것을 의미하지 않는다. 또한, 도 3에서 도시한 프로세서(220)의 내부 구성은 예시일 뿐이며, 필수 구성만을 도시한 것은 아니다. 따라서, 일부 실시예에서 프로세서(220)는 도시한 내부 구성 외 다른 구성을 추가로 포함하거나, 도시한 구성 내부 중 일부 구성이 생략되는 등 다르게 구현될 수 있다.
프로세서(220)는 병변의 발생 위험성 예측 대상인 대상 환자의 의료 영상을 획득할 수 있다. 여기서, 의료 영상은 질병의 진단, 치료, 예방 등을 위해 촬영된 영상 및/또는 이미지로서, 환자의 인체 내/외부가 촬영된 영상 및/또는 이미지 등을 지칭할 수 있다. 일 실시예에 따르면, 의료 영상은 복수의 서브 의료 영상을 포함할 수 있다. 예를 들어, 의료 영상은 유방 촬영술 영상을 포함할 수 있으며, 복수의 서브 의료 영상은 두 개의 상하 촬영(CC) 영상 및 두 개의 내외사 촬영(MLO) 영상을 포함할 수 있다.
추가적으로, 프로세서(220)는 병변의 발생 위험성과 관련된 추가 정보를 더 수신할 수 있다. 여기서, 추가 정보는 임상 데이터, 랩 데이터 및/또는 생물학적 데이터를 포함할 수 있다. 구체적 예로, 유방암 발생 위험성을 예측하는 경우, 추가 정보는 환자의 나이, 체중, 가족력, 키, 성별, 초경 나이, 폐경 여부, 출산 이력, 호르몬 대체 요법 치료 이력, 유전체 정보(예: BRCA, BRD, PTEN, TP53, CDH1, SKT11/LKB1, PALB2 등), 유방 밀도 중 적어도 하나를 포함할 수 있다.
상술한 영상 및/또는 정보 등은 정보 처리 시스템과 연결된 또는 통신가능한 저장 시스템(예를 들어, 병원 시스템, 전자 의무 기록, 처방 전달 시스템, 의료 영상 시스템, 검사 정보 시스템, 기타 로컬/클라우드 저장 시스템 등), 내부 메모리 및/또는 사용자 단말 등으로부터 수신될 수 있다. 수신된 의료 영상 및/또는 추가 정보는 병변의 발생 위험성 예측부(420)에 제공되어, 병변의 발생 위험성에 대한 예측 결과를 생성하는데 사용될 수 있다.
모델 학습부(410)는 모델의 학습에 필요한 학습 데이터를 수신하고, 기계학습 모델을 학습시킬 수 있다. 모델의 학습에 필요한 학습 데이터는 학습 데이터 DB(440)에 저장되어 있을 수 있다. 학습 데이터 DB(440)는 고위험군 학습 의료 영상, 저위험군 학습 의료 영상, 학습 추가 정보, 각 학습 의료 영상 및/또는 각 학습 추가 정보와 연관된 병변의 발생 위험성에 대한 참조 예측 결과, 고위험군 학습 의료 영상에 대한 마스크 어노테이션 정보 등을 포함할 수 있다. 학습 데이터 DB(440)에 저장된 학습 데이터의 예시는 도 5를 참조하여 상세히 후술된다.
일 실시예에 따르면, 모델 학습부(410)는 고위험군 학습 의료 영상 및 저위험군 학습 의료 영상을 포함하는 복수의 학습 의료 영상의 각각으로부터 병변의 발생 위험성에 대한 참조 예측 결과를 출력하도록 기계학습 모델을 학습시킬 수 있다. 추가적으로, 모델 학습부(410)는 기계학습 모델이 고위험군 학습 의료 영상으로부터 고위험군 학습 의료 영상 내의 마스크 어노테이션 정보를 추론하도록 기계학습 모델을 더 학습시킬 수 있다. 모델 학습부(410)가 복수의 학습 의료 영상으로부터 병변의 발생 위험성에 대한 참조 예측 결과를 출력하도록 기계학습 모델을 학습시키는 구체적인 예시는 도 6을 참조하여 상세히 후술된다.
일 실시예에 따르면, 학습 의료 영상은 병변의 발생 위험성의 정도에 따라 복수의 클래스로 분류될 수 있다. 이 경우, 모델 학습부(410)는 복수의 학습 의료 영상을 복수의 클래스로 분류하도록 기계학습 모델을 학습시킬 수 있다. 모델 학습부(410)가 복수의 학습 의료 영상을 복수의 클래스로 분류하도록 기계학습 모델을 학습시키는 구체적인 예시는 도 7 내지 도 8을 참조하여 상세히 후술된다.
추가적으로 또는 대안적으로, 모델 학습부(410)는 복수의 학습 의료 영상 및 학습 추가 정보를 이용하여, 병변의 발생 위험성에 대한 참조 예측 결과를 출력하도록 기계학습 모델을 학습시킬 수 있다. 모델 학습부(410)가 복수의 학습 의료 영상 및 학습 추가 정보를 이용하여 병변의 발생 위험성에 대한 참조 예측 결과를 출력하도록 기계학습 모델을 학습시키는 예시는 도 10 내지 도 11을 참조하여 상세히 후술된다.
병변의 발생 위험성 예측부(420)는 학습된 기계학습 모델을 이용하여, 병변의 발생 위험성에 대한 예측 결과를 생성 또는 출력할 수 있다. 일 실시예에서, 기계학습 모델은 모델 학습부(410)에 의해 학습된 모델일 수 있다. 예를 들어, 병변의 발생 위험성 예측부(420)는 기계학습 모델을 이용하여, 의료 영상을 기초로, 병변의 발생 위험성에 대한 예측 결과를 생성할 수 있다. 추가적으로, 병변의 발생 위험성 예측부(420)는 기계학습 모델을 이용하여, 수신된 의료 영상 내에서 병변이 발생할 것으로 예상되는 영역(예를 들어, 하나 이상의 픽셀 영역)에 대한 정보를 생성할 수 있다. 병변의 발생 위험성 예측부(420)가 기계학습 모델을 이용하여 의료 영상을 기초로 병변의 발생 위험성에 대한 예측 결과를 생성하는 예시는 도 6을 참조하여 상세히 후술된다.
일 실시예에 따르면, 의료 영상은 복수의 서브 의료 영상을 포함할 수 있다. 이 경우, 병변의 발생 위험성 예측부(420)는 복수의 서브 의료 영상을 기계학습 모델에 입력하여 기계학습 모델에 포함된 적어도 하나의 레이어로부터 출력된 복수의 특징 맵을 추출할 수 있으며, 추출된 복수의 특징 맵을 종합하고, 종합된 복수의 특징 맵을 이용하여 병변의 발생 위험성에 대한 예측 결과를 생성할 수 있다. 병변의 발생 위험성 예측부(420)가 복수의 서브 의료 영상을 기초로, 병변의 발생 위험성에 대한 예측 결과를 생성하는 예시는 도 9를 참조하여 상세히 후술된다.
추가적으로 또는 대안적으로, 병변의 발생 위험성 예측부(420)는 수신된 의료 영상 및 추가 정보를 이용하여, 병변의 발생 위험성에 대한 예측 결과를 생성할 수 있다. 예를 들어, 병변의 발생 위험성 예측부(420)는 하나의 기계학습 모델을 이용하여, 수신된 의료 영상 및 추가 정보를 기초로 병변의 발생 위험성에 대한 예측 결과를 생성하거나, 복수의 모델을 이용하여 수신된 의료 영상 및 추가 정보를 기초로 병변의 발생 위험성에 대한 예측 결과를 생성할 수 있다. 병변의 발생 위험성 예측부(420)가 수신된 의료 영상 및 추가 정보를 이용하여, 병변의 발생 위험성에 대한 예측 결과를 생성하는 예시는 도 10 내지 도 11을 참조하여 상세히 후술된다.
추가적으로, 병변의 발생 위험성 예측부(420)는 생성된 예측 결과와 연관된 정보를 정보 처리 시스템과 연결된 출력 장치 또는 사용자 단말의 출력 장치를 통해 출력하도록 구성될 수 있다.
정보 제공부(430)는 병변의 발생 위험성 예측부(420)에 의해 생성된 예측 결과를 기초로, 의학적 검사, 진단, 예방 또는 치료 중 적어도 하나와 관련된 정보를 제공할 수 있다. 예를 들어, 정보 제공부(430)는 예측 결과를 기초로, 의학적 검사, 진단, 예방 또는 치료 중 적어도 하나와 관련된 정보는, 대상 환자의 예후, 특정 상황에서 환자에게 요구되는 필요 조치(예: 치료/진단/검사/예방 방침과 시기), 또는 약물 반응성 등에 대한 정보를 제공할 수 있다. 구체적 예로, 정보 제공부(430)는 병변의 발생 위험성의 정도에 따라, 그에 맞는 개인화된 검진 스케줄을 제공할 수 있다. 정보 제공부(430)는 병변의 발생 위험성이 높은 환자에게는 추가적인 검사(예: MRI 또는 CT 촬영 등)를 권유할 수 있으며, 짧은 주기로 정기 검진하는 검진 스케줄을 제공할 수 있다. 반면, 정보 제공부(430)는 병변의 발생 위험성이 낮은 환자에게는 긴 주기로 정기 검진하는 검진 스케줄을 제공할 수 있다.
일 실시예에 따르면, 정보 제공부(430)는 의학적 검사, 진단, 예방 또는 치료 중 적어도 하나와 관련된 정보를 사용자 단말로 제공할 수 있으며, 제공된 정보는 사용자 단말의 화면을 통해 출력될 수 있다.
정보 처리 시스템의 프로세서(220)에 의해 수행되는 것으로 상술한 과정 중 적어도 일부의 과정은 사용자 단말의 프로세서에 의해 수행될 수 있다. 예를 들어, 정보 처리 시스템의 프로세서(220)에 의해 생성되는 예측 결과 및/또는 의학적 정보 중 적어도 일부는 사용자 단말에 의해 생성될 수 있다.
도 5는 본 개시의 일 실시예에 따른 학습 데이터 DB(440)의 예시를 나타내는 도면이다. 일 실시예에 따르면, 학습 데이터 DB(440)는 기계학습 모델을 학습하기 위한 학습 데이터들을 포함할 수 있다. 일 실시예에서, 학습 데이터 DB(440)는 정보 처리 시스템(100)에 포함되거나 정보 처리 시스템(100)과 통신 가능하도록 연결될 수 있다.
일 실시예에 따르면, 학습 데이터는 고위험군 학습 의료 영상, 저위험군 학습 의료 영상 및 학습 의료 영상 각각에 대한 참조 예측 결과를 포함할 수 있다. 고위험군 학습 의료 영상은 대상 질병이 발생할 위험성이 상대적으로 높은 참조 환자들의 의료 영상을 지칭할 수 있으며, 저위험군 학습 의료 영상은 대상 질병이 발생할 위험성이 상대적으로 낮은 참조 환자들의 의료 영상을 지칭할 수 있다. 학습 의료 영상 각각에 대한 참조 예측 결과는 학습 의료 영상 각각에 대한 병변의 발생 위험성 정도를 포함할 수 있다. 예를 들어, 참조 예측 결과는 병변의 발생 위험성이 위험성 정도를 표현할 수 있는 수단(예: 수치 또는 색상 등)으로 표현된 정보, 병변의 발생 위험성의 정도에 따라 복수의 클래스(예: high risk, intermediate risk, low risk 등)로 분류된 정보 등을 포함할 수 있다. 일 실시예에서, 학습 의료 영상 각각에 대한 참조 예측 결과는 각 학습 의료 영상에 라벨링된 어노테이션 정보로서 포함될 수 있다.
일 실시예에 따르면, 고위험군 학습 의료 영상 및/또는 저위험군 학습 의료 영상은 병변의 발생 위험성 정도에 따라 복수의 클래스로 분류될 수 있다. 예를 들어, 고위험군 학습 의료 영상은 병변이 발생한 환자의 병변 발생 부위를 촬영한 학습 의료 영상(510), 병변이 발생한 환자의 병변 발생 부위를 병변이 발생하기 이전에 촬영한 학습 의료 영상(520) 또는 병변이 발생한 환자의 병변이 발생하지 않은 부위를 촬영한 학습 의료 영상(530) 중 적어도 하나를 포함할 수 있다. 여기서, 병변이 발생한 환자의 병변이 발생하지 않은 부위를 촬영한 학습 의료 영상(530)은 병변이 발생한 환자의 병변 발생 부위의 반대편 부위 또는 주변 부위 중 적어도 하나를 촬영한 학습 의료 영상(530)을 포함할 수 있다. 병변이 발생한 환자의 병변이 발생하지 않은 부위는 병변이 발생하지 않은 사람의 동일한 부위에 비해, 병변이 발생할 가능성이 높은 경향이 있기 때문에, 병변이 발생한 환자의 병변이 발생하지 않은 부위를 촬영한 학습 의료 영상(530)은 병변 발생 위험이 높은 학습 의료 영상으로서 식별될 수 있다. 예를 들어, 오른쪽 폐에 폐암이 발병된 환자의 왼쪽 폐를 촬영한 학습 의료 영상, 오른쪽 신장에 신장암이 발병된 환자의 왼쪽 신장을 촬영한 학습 의료 영상, 오른쪽 발에 특정 병변이 발생한 환자의 왼쪽 발을 촬영한 학습 의료 영상 등이 병변이 발생한 환자의 병변이 발생하지 않은 부위를 촬영한 학습 의료 영상(530)에 포함될 수 있다. 저위험군 학습 의료 영상은 병변이 발생한 바 없는 환자의, 대상 부위를 촬영한 학습 의료 영상(540)을 포함할 수 있다.
구체적 예로, 유방암 발생 위험성을 예측하기 위한 학습 의료 영상의 예시가 도 5에 도시되어 있다. 유방암 발생 위험성을 예측하기 위한 학습 의료 영상은 유방암을 진단받은 환자들의 암 발생 부위를 촬영한 유방 촬영술 영상(510), 유방암을 진단받은 환자들의 유방을 유방암을 진단받기 이전에 촬영한 유방 촬영술 영상(520), 한쪽 유방에 유방암이 발생한 환자들의 반대편 유방을 촬영한 유방 촬영술 영상(530) 및 유방암을 진단받은 적이 없는 환자들의 유방 촬영술 영상(540)을 포함할 수 있다. 여기서, 유방암을 진단받은 환자들의 유방 촬영술 영상(510), 유방암을 진단받은 환자들의 유방을 유방암을 진단받기 이전에 촬영한 유방 촬영술 영상(520), 한쪽 유방에 유방암이 발생한 환자들의 반대편 유방을 촬영한 유방 촬영술 영상(530)은 고위험군 학습 의료 영상에 포함될 수 있으며, 유방암을 진단받은 적이 없는 환자들의 유방 촬영술 영상(540)은 저위험군 학습 의료 영상에 포함될 수 있다.
추가적으로, 학습 데이터는 고위험군 학습 의료 영상과 연관된 병변에 대한 정보를 더 포함할 수 있다. 일 실시예에 따르면, 고위험군 학습 의료 영상과 연관된 병변에 대한 정보는 고위험군 학습 의료 영상에 픽셀 레벨로 라벨링된 마스크 어노테이션 정보로서 포함될 수 있다. 이러한 정보는 수신된 의료 영상 내에서 병변이 발생할 것으로 예상되는 영역을 추론하는데 사용될 수 있다. 예를 들어, 도 5에 도시된 예에서, 유방암을 진단받은 환자의 유방 촬영술 영상(510) 각각은 암이 발생한 영역(512)이 픽셀 레벨로 라벨링된 마스크 어노테이션 정보를 더 포함할 수 있다. 다른 예로, 도 5에 도시된 예에서, 유방암을 진단받은 환자의 유방을 유방암을 진단받기 이전에 촬영한 유방 촬영술 영상(520) 각각은 해당 환자가 유방암을 진단받은 이후 암이 발생한 영역(522)이 픽셀 레벨로 라벨링된 마스크 어노테이션 정보를 더 포함할 수 있다.
일 실시예에 따르면, 각 학습 의료 영상은 복수의 서브 학습 의료 영상을 포함할 수 있다. 예를 들어, 도 5에 도시된 예에서, 각 학습 의료 영상(510, 520, 530, 540)은 두 개의 상하 촬영(CC; Craniocaudal) 영상 및 두 개의 내외사 촬영(MLO; Mediolateral Oblique) 영상을 포함할 수 있다.
추가적으로, 학습 데이터는 각 참조 환자의 병변의 발생 위험성과 관련된 학습 추가 정보를 더 포함할 수 있다. 예를 들어, 학습 추가 정보는, 각 환자의 임상 데이터, 랩(lab) 데이터 및/또는 생물학적 데이터를 포함할 수 있다. 구체적 예로, 유방암 발생 위험성을 예측하는 경우, 학습 추가 정보는 참조 환자의 나이, 체중, 가족력, 키, 성별, 초경 나이, 폐경 여부, 출산 이력, 호르몬 대체 요법(Hormone Replacement Therapy) 치료 이력, 유전체 정보(예: BRCA, BRD, PTEN, TP53, CDH1, SKT11/LKB1, PALB2 등), 유방 밀도 중 적어도 하나를 포함할 수 있다.
일 실시예에서, 학습 의료 영상 중 고위험군 학습 의료 영상의 수 및 저위험군 학습 의료 영상의 수의 균형이 맞지 않을 수 있다. 이 경우, 정보 처리 시스템은 학습 의료 영상 중 적어도 일부를 가공하거나 학습 가중치를 조정하는 등의 작업을 통해 학습의 균형을 맞출 수 있다. 예를 들어, 저위험군 학습 의료 영상이 고위험군 학습 의료 영상보다 월등히 많은 경우, 기계학습 모델이 고위험군을 잘 분류하지 못하여 모델의 성능이 저하될 수 있다. 이러한 경우, 일 실시예에 따르면, 정보 처리 시스템은 고위험군 학습 의료 영상을 가공하여 고위험군 학습 의료 영상의 수를 증가시키거나(Over sampling), 저위험군 학습 의료 영상의 수를 줄이거나(Under sampling), 전술한 두가지 방법을 동시에 사용하거나(Hybrid sampling), 학습 가중치를 조절하여 학습할 수 있다.
도 6은 본 개시의 일 실시예에 따른 기계학습 모델(620)의 예시를 나타내는 도면이다. 도시된 바와 같이, 기계학습 모델(620)은 의료 영상(610)을 기초로, 병변의 발생 위험성에 대한 예측 결과(630)를 출력할 수 있다. 일 실시예에 따르면, 병변의 발생 위험성에 대한 예측 결과(630)는 병변의 발생 위험성이 위험성 정도를 표현할 수 있는 수단(예: 스코어, 확률 또는 색상 등)으로 표현된 정보, 병변의 발생 위험성의 정도에 따라 복수의 클래스(high risk, intermediate risk, low risk 등)로 분류된 정보 등으로서 출력될 수 있다.
일 실시예에 따르면, 기계학습 모델(620)은 복수의 학습 의료 영상을 입력 받아, 병변의 발생 위험성에 대한 참조 예측 결과를 추론하도록 학습될 수 있다. 예를 들어, 기계학습 모델(620)을 생성하고 학습시키기 위해, 프로세서(예: 도 2의 220)는 복수의 학습 의료 영상 및 복수의 학습 의료 영상과 연관된 참조 예측 결과를 수신할 수 있다. 프로세서는 기계학습 모델(620)을 학습할 때 복수의 학습 의료 영상과 연관된 참조 예측 결과에 대한 정보를 정답 데이터(ground truth)로서 이용할 수 있다.
추가적으로, 프로세서는 기계학습 모델(620)을 생성하고 학습시키기 위해, 학습 의료 영상과 연관된 병변에 대한 정보를 더 수신할 수 있다. 일 실시예에 따르면, 학습 의료 영상과 연관된 병변에 대한 정보는 학습 의료 영상에 픽셀 레벨로 라벨링된 마스크 어노테이션 정보로서 포함될 수 있다. 이러한 정보는 수신된 의료 영상 내에서 병변이 발생할 것으로 예상되는 영역을 추론하는데 사용될 수 있다. 예를 들어, 프로세서는 수신된 의료 영상 내에서 암이 발생될 것으로 예상되는 영역을 특정 색상으로 출력하거나, 암이 발생될 것으로 예상되는 영역의 경계를 출력하거나, 각 픽셀이 암이 발생될 것으로 예상되는 정도에 따른 색상으로 표현된 히트맵 등을 출력할 수 있다. 이러한 정보는 모두 병변의 발생 위험성에 대한 예측 결과(630)에 포함될 수 있다.
도 7은 본 개시의 일 실시예에 따라 기계학습 모델(720)을 학습하는 예시를 나타내는 도면이다. 일 실시예에 따르면, 프로세서는 대상 환자의 병변의 발생 위험성에 대한 예측 결과를 출력하는 기계학습 모델(720)을 생성하거나 학습시키기 위해, 복수의 학습 의료 영상(710)을 복수의 클래스로 분류하도록 기계학습 모델(720)을 이용할 수 있다. 일 실시예에 따르면, 프로세서는, 복수의 클래스들에 대응하도록 분류된 학습 의료 영상들을 학습할 수 있다. 예를 들어, 기계학습 모델(720)은 하나 이상의 분류기를 포함할 수 있으며, 복수의 학습 의료 영상(710)을 복수의 클래스로 분류한 분류 결과(730)를 출력하도록 학습될 수 있다.
예를 들어, 프로세서는 복수의 학습 의료 영상(710)을 고위험군 학습 의료 영상 또는 저위험군 학습 의료 영상 중 하나로 분류하도록 기계학습 모델(720)을 학습시킬 수 있다. 다른 예로, 프로세서는 복수의 학습 의료 영상(710)을 병변이 발생한 환자의 병변 발생 부위를 촬영한 학습 의료 영상(732), 병변이 발생한 환자의 병변 발생 부위를 병변이 발생하기 이전에 촬영한 학습 의료 영상(734), 병변이 발생한 환자의 병변이 발생하지 않은 부위를 촬영한 학습 의료 영상(736) 또는 병변 발생 이력이 없는 환자의 학습 의료 영상(738) 중 하나로 분류하도록 기계학습 모델(720)을 학습시킬 수 있다.
도 7에서, 기계학습 모델(720)은 하나의 분류기를 포함하는 것으로 도시되었으나, 이에 한정되지 않는다. 예를 들어, 기계학습 모델은 도 8에 도시된 것과 같이, 복수의 분류기를 포함할 수 있다.
도 8은 본 개시의 다른 실시예에 따라 기계학습 모델(820)을 학습하는 예시를 나타내는 도면이다. 일 실시예에 따르면, 프로세서는 대상 환자의 병변의 발생 위험성에 대한 예측 결과를 출력하는 기계학습 모델(820)을 생성하거나 학습시키기 위해, 복수의 학습 의료 영상(810)을 복수의 클래스로 분류한 분류 결과(830)를 출력하도록 기계학습 모델(820)을 학습시킬 수 있다. 예를 들어, 기계학습 모델(820)은 복수의 분류기(822, 824, 826)를 포함할 수 있으며, 프로세서는 학습 의료 영상(810)이 복수의 분류기(822, 824, 826) 중 적어도 하나를 거쳐, 복수의 클래스로 분류되도록 기계학습 모델(820)을 학습시킬 수 있다.
일 실시예에 따르면, 기계학습 모델(820)은 학습 의료 영상(810)을 제1 클래스와 나머지 클래스로 분류하는 제1 분류기(822), 학습 의료 영상(810)을 제2 클래스와 나머지 클래스로 분류하는 제2 분류기(824), 학습 의료 영상(810)을 제3 클래스와 나머지 클래스로 분류하는 제3 분류기(826)를 포함할 수 있다. 이 경우, 프로세서는 학습 의료 영상(810)이 기계학습 모델(820)에 포함된 복수의 분류기(822, 824, 826) 중 적어도 하나를 거쳐, 제1 클래스, 제2 클래스, 제3 클래스 또는 제4 클래스 중 하나로 분류되도록 기계학습 모델(820)을 학습시킬 수 있다.
일 실시예에 따르면, 기계학습 모델(820)은 학습 의료 영상(810)을 병변이 발생한 환자의 병변 발생 부위를 촬영한 학습 의료 영상과 나머지 학습 의료 영상으로 분류하는 제1 분류기(822), 학습 의료 영상(810)을 병변이 발생한 환자의 병변 발생 부위를 병변이 발생하기 이전에 촬영한 학습 의료 영상과 나머지 학습 의료 영상으로 분류하는 제2 분류기(824), 학습 의료 영상(810)을 병변이 발생한 환자의 병변이 발생하지 않은 부위를 촬영한 학습 의료 영상과 나머지 학습 의료 영상으로 분류하는 제3 분류기(826)를 포함할 수 있다. 기계학습 모델(820)은, 환자의 병변 발생 부위를 촬영한 학습 의료 영상, 환자의 병변 발생 부위를 병변 발생 이전에 촬영한 학습 의료 영상 또는 병변 발생 환자의 병변이 발생하지 않은 부위를 촬영한 학습 의료 영상 중 적어도 하나를 고위험군으로 분류하고, 발병하지 않은 환자의 학습 의료 영상을 저위험군으로 분류하도록 훈련될 수 있다.
이 경우, 프로세서는 학습 의료 영상(810)이 기계학습 모델(820)에 포함된 복수의 분류기(822, 824, 826) 중 적어도 하나를 거쳐, 병변이 발생한 환자의 병변 발생 부위를 촬영한 학습 의료 영상, 병변이 발생한 환자의 병변 발생 부위를 병변이 발생하기 이전에 촬영한 학습 의료 영상, 병변이 발생한 환자의 병변이 발생하지 않은 부위를 촬영한 학습 의료 영상 또는 병변 발생 이력이 없는 환자의 학습 의료 영상 중 하나로 분류되도록 기계학습 모델(820)을 학습시킬 수 있다.
다른 실시예에 따르면, 프로세서는 기계학습 모델(820)이 학습 의료 영상(810)을 계층적으로(Hierarchically) 분류하도록 학습시킬 수 있다. 예를 들어, 기계학습 모델(820)은 학습 의료 영상(810) 중 제1 클래스가 아닌 모든 클래스를 검출하는 제1 분류기(822), 제1 분류기(822)에 의해 검출된 학습 의료 영상 중 제2 클래스가 아닌 모든 클래스를 검출하는 제2 분류기(824), 제2 분류기(824)에 의해 검출된 학습 의료 영상 중 제3 클래스가 아닌 모든 클래스를 검출하는 제3 분류기(826)를 포함할 수 있다. 이 경우, 프로세서는 학습 의료 영상(810)이 적어도 하나의 분류기를 순차적으로 거쳐 제1 클래스, 제2 클래스, 제3 클래스 또는 제4 클래스 중 하나로 분류되도록 기계학습 모델(820)을 학습시킬 수 있다.
구체적 예로, 기계학습 모델(820)은 학습 의료 영상(810) 중 병변 발생 이력이 없는 환자의 학습 의료 영상이 아닌 모든 학습 의료 영상을 검출하는 제1 분류기(822), 제1 분류기(822)에 의해 검출된 학습 의료 영상 중 병변 발생 환자의 병변이 발생하지 않은 부위를 촬영한 학습 의료 영상이 아닌 모든 학습 의료 영상을 검출하는 제2 분류기(824), 제2 분류기(824)에 의해 검출된 학습 의료 영상 중 병변이 발생한 환자의 병변 발생 부위를 병변이 발생하기 이전에 촬영한 학습 의료 영상이 아닌 모든 학습 의료 영상을 검출하는 제3 분류기(826)를 포함할 수 있다. 이 경우, 프로세서는 학습 의료 영상(810)이 기계학습 모델(820)에 포함된 복수의 분류기(822, 824, 826) 중 적어도 하나를 순차적으로 거쳐, 병변이 발생한 환자의 병변 발생 부위를 촬영한 학습 의료 영상, 병변이 발생한 환자의 병변 발생 부위를 병변이 발생하기 이전에 촬영한 학습 의료 영상, 병변이 발생한 환자의 병변이 발생하지 않은 부위를 촬영한 학습 의료 영상 또는 병변 발생 이력이 없는 환자의 학습 의료 영상 중 하나로 분류되도록 기계학습 모델(820)을 학습시킬 수 있다.
이와 같이, 복수의 분류기를 포함한 기계학습 모델(820)을 이용하는 경우, 환자의 의료 영상을 기초로 병변의 발생 위험성 정도를 더 정확하게 분류함으로써, 더 정확한 예측 결과를 제공할 수 있다.
도 9는 본 개시의 일 실시예에 따른 기계학습 모델(920)이 복수의 서브 의료 영상(912, 914, 916, 918)을 기초로 병변의 발생 위험성에 대한 예측 결과(940)를 출력하는 예시를 나타내는 도면이다. 하나의 대상체를 촬영한 의료 영상은, 복수의 서브 의료 영상들로 구성될 수 있다. 예를 들어, 유방암을 진단하기 위한 유방 촬영술(mammography)에 의해 촬영된 유방의 의료 영상은, 양측 유방들 각각을 내외사위 촬영한 영상들과 상하위 촬영한 영상들로 구성된 총 4개의 서브 의료 영상들로 구성될 수 있다.
일 실시예에 따르면, 프로세서는 기계학습 모델(920)을 이용하여, 의료 영상(910)을 기초로 병변의 발생 위험성에 대한 예측 결과(940)를 출력할 수 있으며, 여기서, 의료 영상(910)은 복수의 서브 의료 영상(912, 914, 916, 918)을 포함할 수 있다. 예를 들어, 의료 영상(910)은 대상 질병이 발생될 수 있는 대상 부위를 여러 위치 또는 여러 각도에서 촬영한 복수의 서브 의료 영상(912, 914, 916, 918)을 포함할 수 있다. 구체적 예로, 유방암의 발생 위험성을 예측하는 경우, 의료 영상(910)은 유방 촬영술 영상을 포함할 수 있으며, 복수의 서브 의료 영상은 두 개의 상하 촬영(CC) 영상 및 두 개의 내외사 촬영(MLO) 영상을 포함할 수 있다. 또한, 기계학습 모델(920)은 예를 들어, CNN(Convolutional Neural Network) 모델일 수 있다.
일 실시예에서, 의료 영상(910)이 복수의 서브 의료 영상(912, 914, 916, 918)을 포함하는 경우, 프로세서는 복수의 서브 의료 영상(912, 914, 916, 918)을 기계학습 모델(920)에 입력하여, 기계학습 모델(920)에 포함된 적어도 하나의 레이어(예를 들어, 중간 레이어 또는 출력 레이어 등)로부터 복수의 서브 의료 영상(912, 914, 916, 918) 각각에 대해 출력된 복수의 특징 맵(932, 934, 936, 938)을 추출할 수 있으며, 추출된 복수의 특징 맵(932, 934, 936, 938)을 종합하여 병변의 발생 위험성에 대한 예측 결과(940)를 출력할 수 있다. 예를 들어, 프로세서는 복수의 서브 의료 영상(912, 914, 916, 918)을 기계학습 모델에 입력하여 기계학습 모델(920)의 중간 레이어로부터 출력된 복수의 특징 맵(932, 934, 936, 938)을 각각을 연결시키거나(concatenate) 더함(sum)으로써 복수의 특징 맵(932, 934, 936, 938)을 종합하고, 종합된 복수의 특징 맵을 이용하여 병변의 발생 위험성에 대한 예측 결과(940)를 출력할 수 있다.
다른 예로, 프로세서는 복수의 서브 의료 영상(912, 914, 916, 918)을 기계학습 모델(920)에 입력하여 기계학습 모델(920)의 중간 레이어로부터 출력된 복수의 특징 맵(932, 934, 936, 938) 각각에 포함된 특정 영역에 가중치를 적용하여, 병변의 발생 위험성에 대한 예측 결과(940)를 출력할 수 있다. 구체적으로, 프로세서는 기계학습 모델(920)에 포함된 적어도 하나의 레이어로부터 출력된 복수의 특징 맵(932, 934, 936, 938)을 attention 모듈 또는 transformer 모듈에 통과시켜, 복수의 특징 맵(932, 934, 936, 938) 중 예측 결과를 추론하는데 더 중요한 부분(예를 들어, 특정 서브 의료 영상에 기초하여 출력된 특징 맵 또는 특정 픽셀 영역에 기초하여 출력된 특징 맵의 특정 부분 등)에 초점을 두어, 병변의 발생 위험성에 대한 예측 결과(940)를 출력할 수 있다. 이러한 attention 모듈 또는 transformer 모듈은 기계학습 모델(920) 내에 포함되거나, 기계학습 모델(920)에 연결된 모듈 또는 네트워크일 수 있다.
이와 같이, 복수의 서브 의료 영상(912, 914, 916, 918)에 기초하여, 병변의 발생 위험성에 대한 예측 결과(940)를 출력함으로써, 더 정확한 예측 결과를 제공할 수 있으며, 특히 그 중에서도 예측 결과 생성에 더 중요한 부분에 초점을 맞춰 예측함으로써, 예측의 정확도가 더욱 향상될 수 있다.
도 10은 본 개시의 일 실시예에 따라 의료 영상(1010) 및 추가 정보(1020)를 기초로 병변의 발생 위험성에 대한 예측 결과(1040)를 생성하는 예시를 나타내는 도면이다. 일 실시예에 따르면, 프로세서는 환자의 병변의 발생 위험성에 대한 예측 결과(1040)를 생성하기 위해, 환자의 의료 영상(1010)뿐만 아니라, 병변의 발생 위험성과 관련된 환자의 추가 정보(1020)를 더 수신할 수 있다. 여기서, 추가 정보(1020)는 임상 데이터, 랩 데이터 및/또는 생물학적 데이터를 포함할 수 있다. 구체적 예로, 유방암 발생 위험성을 예측하는 경우, 추가 정보(1020)는 환자의 나이, 체중, 가족력, 키, 성별, 초경 나이, 폐경 여부, 출산 이력, 호르몬 대체 요법 치료 이력, 유전체 정보(예: BRCA, BRD, PTEN, TP53, CDH1, SKT11/LKB1, PALB2 등), 유방 밀도 중 적어도 하나를 포함할 수 있다.
일 실시예에 따르면, 프로세서는 수신된 의료 영상(1010) 및 추가 정보(1020)를 이용하여, 병변의 발생 위험성에 대한 예측 결과(1040)를 출력할 수 있다. 예를 들어, 프로세서는 복수의 학습 의료 영상 및 학습 추가 정보를 기초로 병변의 발생 위험성에 대한 참조 예측 결과를 출력하도록 학습된 기계학습 모델(1030)을 이용하여, 수신된 의료 영상(1010) 및 추가 정보(1020)를 기초로 병변의 발생 위험성에 대한 예측 결과(1040)를 출력할 수 있다.
도 11은 본 개시의 다른 실시예에 따라 의료 영상(1110) 및 추가 정보(1140)를 기초로 병변의 발생 위험성에 대한 최종 예측 결과(1170)를 생성하는 예시를 나타내는 도면이다. 일 실시예에 따르면, 프로세서는 복수 개의 모델(1120, 1050)을 이용하여, 수신된 의료 영상(1110) 및 추가 정보(1140)를 기초로 병변의 발생 위험성에 대한 최종 예측 결과(1170)를 출력할 수 있다. 예를 들어, 프로세서는 학습 의료 영상을 기초로 병변의 발생 위험성에 대한 참조 예측 결과를 출력하도록 학습된 모델인 제1 모델(1120)을 이용하여, 의료 영상(1110)을 기초로 병변의 발생 위험성에 대한 제1 예측 결과(1130)를 출력할 수 있다. 또한, 프로세서는 학습 추가 정보를 기초로 병변의 발생 위험성에 대한 참조 예측 결과를 출력하도록 학습된 모델인 제2 모델(1150)을 이용하여, 추가 정보(1140)를 기초로 병변의 발생 위험성에 대한 제2 예측 결과(1160)를 출력할 수 있다. 그런 다음, 프로세서는 제1 예측 결과(1130) 및 제2 예측 결과(1160)를 이용하여 병변의 발생 위험성에 대한 최종 예측 결과(1170)를 출력할 수 있다.
도 10 내지 도 11에는 의료 영상, 추가 정보를 기초로 예측 결과를 생성하기 위한 모델의 구성의 일 예시가 도시되어 있을 뿐, 다르게 구현될 수 있다. 예를 들어, 의료 영상 및 추가 정보를 기초로 예측 결과 생성할 수 있는 임의의 구성의 모델이 사용될 수 있다. 구체적 예로, 도시된 모델(1030, 1120, 1150) 중 적어도 하나가 기계학습 모델이 아닌 임의의 알고리즘일 수 있다. 다른 구체적 예로, 도 11에 도시된 예시에서, 제2 모델(1150)은 추가 정보(1140)만 입력받는 것이 아니라, 추가 정보(1140)와 제1 모델(1120)에 의해 출력된 병변의 발생 위험성에 대한 제1 예측 결과(1130)(또는 제1 예측 결과(1130)를 가공한 정보)를 함께 입력 받아, 추가 정보(1140)와 제1 모델(1120)에 의해 출력된 병변의 발생 위험성에 대한 제1 예측 결과(1130)를 기초로 병변의 발생 위험성에 대한 최종 예측 결과(1170)를 출력하도록 구성될 수 있다.
이와 같이, 의료 영상뿐만 아니라 환자에 대한 추가 정보를 함께 고려하여, 병변의 발생 위험성을 예측함으로써, 예측의 정확도가 더욱 향상될 수 있다.
도 12 내지 도 13은 본 개시의 일 실시예에 따른 예측 결과(1310) 및 예측 결과에 기초한 의학적 정보(1200, 1320)를 제공하는 예시를 나타내는 도면이다. 정보 처리 시스템은 병변의 발생 위험성에 대한 예측 결과를 출력할 수 있다. 추가적으로 또는 대안적으로, 정보 처리 시스템은 병변의 발생 위험성에 대한 예측 결과에 기초하여, 의학적 검사, 진단, 예방 또는 치료 중 적어도 하나와 관련된 정보를 출력할 수 있다. 예를 들어, 정보 처리 시스템은 환자의 병변의 발생 위험성에 대한 예측 결과 및/또는 예측 결과를 기초로 생성된 다양한 의학적 정보를 사용자 단말에 제공할 수 있다. 또한, 사용자 단말은 정보 처리 시스템으로부터 환자의 병변의 발생 위험성에 대한 예측 결과 및/또는 예측 결과를 기초로 생성된 다양한 의학적 정보를 수신하여 디스플레이 장치를 통해 출력할 수 있다.
일 실시예에 따르면, 병변의 발생 위험성에 대한 예측 결과는, 병변의 발생 위험성이 위험성 정도를 표현할 수 있는 수단(수치 또는 색상 등)으로 표현된 정보, 병변의 발생 위험성의 정도에 따라 복수의 클래스(예: high risk, intermediate risk, low risk)로 분류된 정보 등을 포함할 수 있다.
일 실시예에 따르면, 병변의 발생 위험성에 대한 예측 결과에 기초한 의학적 정보는 대상 환자의 예후, 특정 상황에서 환자에게 요구되는 필요 조치(예: 치료/진단/검사/예방 방침과 시기), 또는 약물 반응성 등에 대한 정보를 포함할 수 있다. 예를 들어, 의학적 정보는 병변의 발생 위험성의 정도에 따른, 개인화된 검진 스케줄을 포함할 수 있다. 구체적 예로, 병변의 발생 위험성이 높은 환자에게는 추가적인 검사(예: MRI 또는 CT 촬영 등)를 권유하고, 짧은 주기로 집중 검진하는 검진 스케줄을 제공할 수 있다. 반면, 병변의 발생 위험성이 낮은 환자에게는 긴 주기로 정기 검진하는 검진 스케줄을 제공할 수 있다.
도 12에는 본 개시의 일 실시예에 따른 예측 결과에 기초하여 의학적 정보(1200)가 출력된 예시가 도시되어 있다. 도 12에 도시된 바와 같이, 의학적 정보는 병변의 발생 위험성의 정도에 따른 필요 조치를 포함할 수 있다. 병변의 발생 위험성이 높은 환자에게는 집중 검진(Intensive Screening)이 추천될 수 있으며, 병변의 발생 위험성이 낮은 환자에게는 정기 검진(Routine Screening)이 추천될 수 있다.
도 13에는 본 개시의 일 실시예에 따른 예측 결과(1310) 및 예측 결과에 기초한 의학적 정보(1320)가 출력된 예시가 도시되어 있다. 도 13에 도시된 바와 같이, 정보 처리 시스템은 예측 결과(1310)를 병변의 발생 위험성 정도에 따라 복수의 클래스(high risk, intermediate risk, low risk)로 분류하여 출력할 수 있다. 예를 들어, 도시된 바와 같이, 중간 정도의 병변 발생 위험성을 가진 대상 환자의 의료 영상에 대해 'Intermediate'의 예측 결과가 출력될 수 있다. 추가적으로, 정보 처리 시스템은 예측 결과에 기초한 의학적 정보(1320)를 출력할 수 있다. 예를 들어, 정보 처리 시스템은 병변의 발생 위험성의 정도에 따라 개인화된 검진 스케줄(1320)을 출력할 수 있다. 구체적 예로, 도시된 바와 같이, 병변의 발생 위험성이 상대적으로 낮은 환자에 대하여는 긴 주기(예: 1년 또는 2년 등)로 정기 검진하는 검진 스케줄이 출력될 수 있다. 반면, 병변의 발생 위험성이 상대적으로 높은 환자에 대하여는 추가적인 검사(예: MRI 또는 CT 촬영 등)를 권유하고, 짧은 주기로 집중 검진하는 검진 스케줄이 출력될 수 있다.
이와 같이, 환자들의 병변의 발생 위험성에 대한 예측 결과 및/또는 위험성 정도에 따른 치료/진단/검진/예방과 관련된 적절한 조치 또는 스케줄 등에 대한 정보를 제공함으로써, 정보를 제공받는 의료진은 한정된 자원(예를 들어, 인력, 장치, 약제 등)을 효율적이면서 효과적으로 관리할 수 있다. 나아가, 정보를 제공받는 고위험군 환자는 추가 검진 또는 짧은 주기의 검진 등을 통해 질병을 예방하거나 질병을 조기에 발견할 수 있으며, 정보를 제공받는 저위험군 환자는 긴 주기의 검진 등을 통해 비용이나 시간을 절약할 수 있다.
도 14는 본 개시의 일 실시예에 따른 인공신경망 모델(1400)을 나타내는 예시도이다. 인공신경망 모델(1400)은, 기계학습 모델의 일 예로서, 기계학습(Machine Learning) 기술과 인지과학에서, 생물학적 신경망의 구조에 기초하여 구현된 통계학적 학습 알고리즘 또는 그 알고리즘을 실행하는 구조이다.
일 실시예에 따르면, 인공신경망 모델(1400)은, 생물학적 신경망에서와 같이 시냅스의 결합으로 네트워크를 형성한 인공 뉴런인 노드(Node)들이 시냅스의 가중치를 반복적으로 조정하여, 특정 입력에 대응한 올바른 출력과 추론된 출력 사이의 오차가 감소되도록 학습함으로써, 문제 해결 능력을 가지는 기계학습 모델을 나타낼 수 있다. 예를 들어, 인공신경망 모델(1400)은 기계학습, 딥러닝 등의 인공지능 학습법에 사용되는 임의의 확률 모델, 뉴럴 네트워크 모델 등을 포함할 수 있다.
일 실시예에 따르면, 인공신경망 모델(1400)은 입력되는 대상 환자의 의료 영상을 기초로 대상 환자의 병변의 발생 위험성에 대한 예측을 수행하도록(예를 들어, 예측 결과에 대한 정보를 생성하도록) 구성된 인공신경망 모델을 포함할 수 있다. 추가적으로 또는 대안적으로, 인공신경망 모델(1400)은 입력되는 대상 환자의 추가 정보를 기초로 대상 환자의 병변의 발생 위험성에 대한 예측을 수행하도록 구성된 인공신경망 모델을 포함할 수 있다. 추가적으로 또는 대안적으로, 인공신경망 모델(1400)은 입력되는 대상 환자의 의료 영상 및 대상 환자의 추가 정보를 기초로 대상 환자의 병변의 발생 위험성에 대한 예측을 수행하도록 구성된 인공신경망 모델을 포함할 수 있다. 추가적으로 또는 대안적으로, 입력되는 대상 환자의 의료 영상은 복수의 서브 의료 영상을 포함할 수 있고, 인공신경망 모델(1400)은 입력되는 복수의 서브 의료 영상 및/또는 대상 환자의 추가 정보를 기초로 대상 환자의 병변의 발생 위험성에 대한 예측을 수행하도록 구성된 인공신경망 모델을 포함할 수 있다.
인공신경망 모델(1400)은 다층의 노드들과 이들 사이의 연결로 구성된 다층 퍼셉트론(MLP: multilayer perceptron)으로 구현된다. 본 실시예에 따른 인공신경망 모델(1400)은 MLP를 포함하는 다양한 인공신경망 모델 구조들 중의 하나를 이용하여 구현될 수 있다. 도 14에 도시된 바와 같이, 인공신경망 모델(1400)은, 외부로부터 입력 신호 또는 데이터(1410)를 수신하는 입력층(1420), 입력 데이터에 대응한 출력 신호 또는 데이터(1450)를 출력하는 출력층(1440), 입력층(1420)과 출력층(1440) 사이에 위치하며 입력층(1420)으로부터 신호를 받아 특성을 추출하여 출력층(1440)으로 전달하는 n개(여기서, n은 양의 정수)의 은닉층(1430_1 내지 1430_n)으로 구성된다. 여기서, 출력층(1440)은 은닉층(1430_1 내지 1430_n)으로부터 신호를 받아 외부로 출력한다.
인공신경망 모델(1400)의 학습 방법에는, 교사 신호(정답)의 입력에 의해서 문제의 해결에 최적화되도록 학습하는 지도 학습(Supervised Learning) 방법과, 교사 신호를 필요로 하지 않는 비지도 학습(Unsupervised Learning) 방법이 있다. 일 실시예에서, 정보 처리 시스템은 대상 환자의 의료 영상을 기초로 대상 환자의 병변의 발생 위험성에 대한 예측 결과와 관련된 정보를 생성하도록 인공신경망 모델(1400)을 지도 학습 및/또는 비지도 학습시킬 수 있다. 예를 들어, 정보 처리 시스템은 참조 환자의 학습 의료 영상을 기초로, 참조 환자에 대한 참조 예측 결과와 관련된 참조 정보를 생성하도록 인공신경망 모델(1400)을 지도 학습할 수 있다.
다른 실시예에서, 정보 처리 시스템은 대상 환자의 추가 정보를 기초로 병변의 발생 위험성에 대한 예측 결과와 관련된 정보를 생성하도록 인공신경망 모델(1400)을 지도 학습 및/또는 비지도 학습시킬 수 있다. 예를 들어, 정보 처리 시스템은 참조 환자의 학습 추가 정보를 기초로, 참조 환자에 대한 참조 예측 결과와 관련된 참조 정보를 생성하도록 인공신경망 모델(1400)을 지도 학습할 수 있다.
또 다른 실시예에서, 정보 처리 시스템은 대상 환자의 의료 영상 및 대상 환자의 추가 정보를 기초로 병변의 발생 위험성에 대한 예측 결과와 관련된 정보를 생성하도록 인공신경망 모델(1400)을 지도 학습 및/또는 비지도 학습시킬 수 있다. 예를 들어, 정보 처리 시스템은 참조 환자의 의료 영상 및 참조 환자의 학습 추가 정보를 기초로, 참조 환자에 대한 참조 예측 결과와 관련된 참조 정보를 생성하도록 인공신경망 모델(1400)을 지도 학습할 수 있다.
또 다른 실시예에서, 대상 환자의 의료 영상은 복수의 서브 의료 영상을 포함할 수 있고, 정보 처리 시스템은 복수의 서브 의료 영상 및/또는 대상 환자의 추가 정보를 기초로 병변의 발생 위험성에 대한 예측 결과와 관련된 정보를 생성하도록 인공신경망 모델(1400)을 지도 학습 및/또는 비지도 학습시킬 수 있다. 예를 들어, 정보 처리 시스템은 참조 환자의 복수의 서브 학습 의료 영상 및/또는 참조 환자의 학습 추가 정보를 기초로, 참조 환자에 대한 참조 예측 결과와 관련된 참조 정보를 생성하도록 인공신경망 모델(1400)을 지도 학습할 수 있다.
이렇게 학습된 인공신경망 모델(1400)은 정보 처리 시스템의 메모리(미도시)에 저장될 수 있으며, 통신 모듈 및/또는 메모리로부터 수신된 대상 환자의 의료 영상에 대한 입력에 응답하여, 대상 환자의 병변의 발생 위험성에 대한 예측을 수행함으로써, 대상 환자의 병변의 발생 위험성에 대한 예측 결과를 생성할 수 있다. 추가적으로 또는 대안적으로, 인공신경망 모델(1400)은 대상 환자의 추가 정보에 대한 입력에 응답하여, 대상 환자의 병변의 발생 위험성에 대한 예측을 수행함으로써, 대상 환자의 병변의 발생 위험성에 대한 예측 결과를 생성할 수 있다. 추가적으로 또는 대안적으로, 인공신경망 모델(1400)은 대상 환자의 의료 영상 및 대상 환자의 추가 정보에 대한 입력에 응답하여, 대상 환자의 병변의 발생 위험성에 대한 예측을 수행함으로써, 대상 환자의 병변의 발생 위험성에 대한 예측 결과를 생성할 수 있다.
일 실시예에 따르면, 대상 환자의 병변의 발생 위험성에 대한 예측 결과에 대한 정보를 생성하는 인공신경망 모델의 입력변수는, 대상 환자의 의료 영상 및/또는 대상 환자의 추가 정보일 수 있다. 예를 들어, 인공신경망 모델(1400)의 입력층(1420)에 입력되는 입력변수는, 대상 환자의 의료 영상을 하나의 벡터 데이터 요소로 구성한 이미지 벡터(1410) 및/또는 대상 환자의 추가 정보를 하나의 벡터 데이터 요소로 구성한 벡터(1410)가 될 수 있다. 이러한 입력에 응답하여, 인공신경망 모델(1400)의 출력층(1440)에서 출력되는 출력 변수는 대상 환자의 병변의 발생 위험성에 대한 예측 결과에 대한 정보를 나타내거나 특징화하는 벡터(1450)가 될 수 있다. 즉, 인공신경망 모델(1400)의 출력층(1440)은 대상 환자의 병변의 발생 위험성에 대한 예측 결과와 관련된 정보를 나타내거나 특징화하는 벡터를 출력하도록 구성될 수 있다. 본 개시에 있어서, 인공신경망 모델(1400)의 출력변수는, 이상에서 설명된 유형에 한정되지 않으며, 대상 환자의 병변의 발생 위험성에 대한 예측 결과에 대한 정보를 나타내는 임의의 정보/데이터를 포함할 수 있다. 이에 더하여, 인공신경망 모델(1400)의 출력층(1440)은 대상 환자의 병변의 발생 위험성에 대한 예측 결과와 관련된 정보 등의 신뢰도 및/또는 정확도를 나타내는 벡터를 출력하도록 구성될 수 있다.
이와 같이, 인공신경망 모델(1400)의 입력층(1420)과 출력층(1440)에 복수의 입력변수와 대응되는 복수의 출력변수가 각각 매칭되고, 입력층(1420), 은닉층(1430_1 내지 1430_n) 및 출력층(1440)에 포함된 노드들 사이의 시냅스 값이 조정됨으로써, 특정 입력에 대응한 올바른 출력이 추출될 수 있도록 학습될 수 있다. 이러한 학습 과정을 통해, 인공신경망 모델(1400)의 입력변수에 숨겨져 있는 특성을 파악할 수 있고, 입력변수에 기초하여 계산된 출력변수와 목표 출력 간의 오차가 줄어들도록 인공신경망 모델(1400)의 노드들 사이의 시냅스 값(또는 가중치)을 조정할 수 있다. 이렇게 학습된 인공신경망 모델(1400)은 대상 환자의 의료 영상 및/또는 대상 환자의 추가 정보의 입력에 응답하여, 대상 환자의 병변의 발생 위험성에 대한 예측 결과와 관련된 정보를 출력할 수 있다.
도 15는는 본 개시의 일 실시예에 따른 병변의 발생 위험성을 예측하는 방법(1500)의 예시를 나타내는 흐름도이다. 일 실시예에 따르면, 방법(1500)은 프로세서(예를 들어, 정보 처리 시스템 또는 사용자 단말의 적어도 하나의 프로세서)가 대상체를 촬영한 의료 영상을 획득함으로써 개시될 수 있다(S1510). 여기서, 대상체는 병변의 발생 위험성 예측의 대상이 되는 부위를 지칭할 수 있다. 일 실시예에서, 대상체를 촬영한 영상을 획득하는 것은, 외부 장치(사용자 단말, 의료 진단 장치 등)로부터 의료 영상을 수신하는 것, 서버로부터 의료 영상을 수신하는 것, 내부 메모리에 저장된 의료 영상을 획득하는 것 등을 포함할 수 있다.
일 실시예에 따르면, 의료 영상은 복수의 서브 의료 영상을 포함할 수 있다. 예를 들어, 의료 영상은 유방 촬영술 영상을 포함할 수 있으며, 복수의 서브 의료 영상은 두 개의 상하 촬영(CC) 영상 및 두 개의 내외사 촬영(MLO) 영상을 포함할 수 있다.
추가적으로, 프로세서는 병변의 발생 위험성과 관련된 추가 정보를 더 수신할 수 있다. 여기서, 추가 정보는 임상 데이터, 랩(lab) 데이터 및/또는 생물학적 데이터를 포함할 수 있다. 구체적 예로, 유방암 발생 위험성을 예측하는 경우, 추가 정보는 환자의 나이, 체중, 가족력, 키, 성별, 초경 나이, 폐경 여부, 출산 이력, 호르몬 대체 요법 치료 이력, 유전체 정보(예: BRCA, BRD, PTEN, TP53, CDH1, SKT11/LKB1, PALB2 등), 유방 밀도 중 적어도 하나를 포함할 수 있다.
그런 다음, 프로세서는 기계학습 모델을 이용하여, 수신된 의료 영상으로부터 대상체에 병변이 발생할 가능성을 예측할 수 있다(S1520). 여기서, 기계학습 모델은, 복수의 학습 의료 영상 및 각 학습 의료 영상과 연관된 병변 발생 위험도가 학습된 모델일 수 있다.
일 실시예에 따르면, 복수의 학습 의료 영상은 고위험군 학습 의료 영상 및 저위험군 학습 의료 영상을 포함할 수 있으며, 고위험군 학습 의료 영상은 병변의 발생 위험성의 정도에 따라 복수의 클래스로 분류될 수 있다. 예를 들어, 고위험군 학습 의료 영상은 병변이 발생한 환자의 병변 발생 부위를 촬영한 학습 의료 영상, 병변이 발생한 환자의 병변 발생 부위를 병변이 발생하기 이전에 촬영한 학습 의료 영상 또는 병변이 발생한 환자의 병변이 발생하지 않은 부위를 촬영한 학습 의료 영상 중 적어도 하나를 포함할 수 있다. 일 실시예에서, 병변이 발생한 환자의 병변이 발생하지 않은 부위는 병변 발생 부위의 반대편 부위 또는 주변 부위 중 적어도 하나를 포함할 수 있다.
일 실시예에 따르면, 기계학습 모델은 하나 이상의 분류기를 포함할 수 있다. 예를 들어, 기계학습 모델은 복수의 학습 의료 영상을 고위험군 학습 의료 영상 또는 저위험군 학습 의료 영상으로 분류하도록 학습된 제1 분류기, 분류된 고위험군 학습 의료 영상을 복수의 클래스로 분류하도록 학습된 제2 분류기를 포함할 수 있다.
추가적으로, 기계학습 모델은 고위험군 학습 의료 영상으로부터 고위험군 학습 의료 영상 내의 마스크 어노테이션 정보를 추론하도록 더 학습된 모델일 수 있다. 이 경우, 프로세서는 기계학습 모델을 이용하여, 수신된 의료 영상 내에서 병변이 발생할 것으로 예상되는 영역(예를 들어, 하나 이상의 픽셀 영역)을 출력할 수 있다.
일 실시예에서, 의료 영상이 복수의 서브 의료 영상을 포함하는 경우, 프로세서는 복수의 서브 의료 영상을 기계학습 모델에 입력하여 기계학습 모델에 포함된 적어도 하나의 레이어로부터 출력된 복수의 특징 맵을 추출할 수 있으며, 추출된 복수의 특징 맵을 종합하고, 종합된 복수의 특징 맵을 이용하여 병변의 발생 위험성에 대한 예측 결과를 출력할 수 있다. 예를 들어, 프로세서는 복수의 서브 의료 영상을 기계학습 모델에 입력하여 기계학습 모델에 포함된 적어도 하나의 레이어로부터 출력된 복수의 특징 맵을 각각을 연결시키거나(concatenate) 더함(sum)으로써 복수의 특징 맵을 종합하고, 종합된 복수의 특징 맵을 이용하여 병변의 발생 위험성에 대한 예측 결과를 출력할 수 있다. 다른 예로, 프로세서는 복수의 서브 의료 영상을 기계학습 모델에 입력하여 기계학습 모델에 포함된 적어도 하나의 레이어로부터 출력된 복수의 특징 맵 각각에 포함된 특정 영역에 가중치를 적용하여, 병변의 발생 위험성에 대한 예측 결과를 출력할 수 있다. 구체적으로, 프로세서는 기계학습 모델에 포함된 적어도 하나의 레이어로부터 출력된 복수의 특징 맵을 attention 레이어 또는 transformer attention 레이어에 통과시켜, 복수의 특징 맵 중 예측 결과를 추론하는데 더 중요한 부분(예를 들어, 특정 픽셀 영역 또는 특정 서브 의료 영상에 기초하여 출력된 특징 맵)에 초점을 두어, 병변의 발생 위험성에 대한 예측 결과를 출력할 수 있다.
추가적으로 또는 대안적으로, 프로세서는 기계학습 모델을 이용하여, 수신된 의료 영상 및 수신된 추가 정보를 기초로 병변의 발생 위험성에 대한 예측 결과를 출력할 수 있다. 예를 들어, 프로세서는 복수의 학습 의료 영상 및 학습 추가 정보를 기초로 병변의 발생 위험성에 대한 참조 예측 결과를 출력하도록 더 학습된 기계학습 모델을 이용하여, 수신된 의료 영상 및 수신된 추가 정보를 기초로 병변의 발생 위험성에 대한 예측 결과를 출력할 수 있다. 다른 예로, 프로세서는 기계학습 모델을 이용하여 수신된 의료 영상을 기초로 병변의 발생 위험성에 대한 제1 예측 결과를 출력하고, 추가 기계학습 모델을 이용하여 추가 정보를 기초로, 병변의 발생 위험성에 대한 제2 예측 결과를 출력하고, 제1 예측 결과 및 제2 예측 결과를 이용하여 병변의 발생 위험성에 대한 최종 예측 결과를 생성할 수 있다. 여기서, 추가 기계 학습 모델은 학습 추가 정보를 기초로 병변의 발생 위험성에 대한 참조 예측 결과를 출력하도록 학습된 모델일 수 있다.
그런 다음, 프로세서는 예측 결과를 출력할 수 있다(S1530). 여기서, 예측 결과를 출력하는 것은, 외부 디스플레이 장치에 예측 결과를 나타내는 영상을 송신하는 것, 사용자 단말에 예측 결과를 포함하는 리포트를 전달하는 것, 서버에 예측 결과를 업로드하는 것, 정보 처리 시스템과 연결된 디스플레이 장치를 이용하여 사용자에게 직접 디스플레이 하는 것 중 적어도 하나를 포함할 수 있다.
일 실시예에 따르면, 프로세서는 병변의 발생 위험성에 대한 예측 결과를 기초로, 의학적 검사, 진단, 예방 또는 치료 중 적어도 하나와 관련된 정보를 제공할 수 있다. 예를 들어 의학적 검사, 진단, 예방 또는 치료 중 적어도 하나와 관련된 정보는, 대상 환자의 예후(prognosis), 특정 상황에서 환자에게 요구되는 필요 조치(intervention)(예: 치료/진단/검사/예방 방침과 시기), 또는 약물 반응성 등에 대한 정보를 제공할 수 있다. 구체적 예로, 프로세서는 병변의 발생 위험성의 정도에 따라, 그에 맞는 개인화된 검진 스케줄을 제공할 수 있다. 프로세서는 병변의 발생 위험성이 높은 환자에게는 추가적인 검사(예: MRI 또는 CT 촬영 등)를 권유할 수 있으며, 짧은 주기로 정기 검진하는 검진 스케줄을 제공할 수 있다. 반면, 병변의 발생 위험성이 낮은 환자에게는 긴 주기로 정기 검진하는 검진 스케줄을 제공할 수 있다.
도 15에서 도시한 흐름도 및 상술한 설명은 일 예시일 뿐이며, 다양한 방식으로 구현될 수 있다. 예를 들어, 하나 이상의 단계가 추가되거나, 생략될 수 있으며, 각 단계의 순서가 바뀌거나, 적어도 일부의 단계가 중첩적으로 수행될 수 있다.
도 16은 본 개시의 일 실시예에 따른 병변의 발생 위험성을 예측하는 예시적인 시스템 구성도이다. 도 16의 정보 처리 시스템(1600)은 도 2에서 설명한 정보 처리 시스템(100)의 일 예시일 수 있다. 도시된 바와 같이, 정보 처리 시스템(1600)은 하나 이상의 프로세서(1610), 버스(1630), 통신 인터페이스(1640), 프로세서(1610)에 의해 수행되는 컴퓨터 프로그램(1660)을 로드(load)하는 메모리(1620)를 포함할 수 있다. 다만, 도 16에는 본 개시의 실시예와 관련 있는 구성요소들만이 도시되어 있다. 따라서, 본 개시가 속한 기술분야의 통상의 기술자라면 도 16에 도시된 구성요소들 외에 다른 범용적인 구성 요소들이 더 포함될 수 있음을 알 수 있다.
프로세서(1610)는 정보 처리 시스템(예: 정보 처리 시스템(100))의 각 구성의 전반적인 동작을 제어한다. 본 개시의 프로세서(1610)는 복수의 프로세서로 구성될 수 있다. 프로세서(1610)는 CPU(Central Processing Unit), MPU(Micro Processor Unit), MCU(Micro Controller Unit), GPU(Graphic Processing Unit), FPGA(Field Programmable Gate Array), 본 개시의 기술 분야에 잘 알려진 임의의 형태의 프로세서 중 적어도 두 개의 프로세서를 포함하여 구성될 수 있다. 또한, 프로세서(1610)는 본 개시의 실시예들에 따른 방법을 실행하기 위한 적어도 하나의 애플리케이션 또는 프로그램에 대한 연산을 수행할 수 있다.
메모리(1620)는 각종 데이터, 명령 및/또는 정보를 저장할 수 있다. 메모리(1620)는 본 개시의 다양한 실시예들에 따른 방법/동작을 실행하기 위하여 하나 이상의 컴퓨터 프로그램(1660)을 로드할 수 있다. 메모리(1620)는 RAM과 같은 휘발성 메모리로 구현될 수 있으나, 본 개시의 기술적 범위는 이에 한정되지 아니한다. 예를 들어, 메모리(1620)는 ROM(Read Only Memory), EPROM(Erasable Programmable ROM), EEPROM(Electrically Erasable Programmable ROM), 플래시 메모리 등과 같은 비휘발성 메모리, 하드 디스크, 착탈형 디스크, 또는 본 개시가 속하는 기술 분야에서 잘 알려진 임의의 형태의 컴퓨터로 읽을 수 있는 기록 매체를 포함하여 구성될 수 있다.
버스(1630)는 정보 처리 시스템의 구성 요소 간 통신 기능을 제공할 수 있다. 버스(1630)는 주소 버스(Address Bus), 데이터 버스(Data Bus) 및 제어 버스(Control Bus) 등 다양한 형태의 버스로 구현될 수 있다.
통신 인터페이스(1640)는 정보 처리 시스템의 유무선 인터넷 통신을 지원할 수 있다. 또한, 통신 인터페이스(1640)는 인터넷 통신 외의 다양한 통신 방식을 지원할 수도 있다. 이를 위해, 통신 인터페이스(1640)는 본 개시의 기술 분야에 잘 알려진 통신 모듈을 포함하여 구성될 수 있다.
컴퓨터 프로그램(1660)은 프로세서(1610)로 하여금 본 개시의 다양한 실시예들에 따른 동작/방법을 수행하도록 하는 하나 이상의 인스트럭션들(instructions)을 포함할 수 있다. 즉, 프로세서(1610)는 하나 이상의 인스트럭션들을 실행함으로써, 본 개시의 다양한 실시예들에 따른 동작/방법들을 수행할 수 있다.
예를 들어, 컴퓨터 프로그램(1660)은 의료 영상을 수신하는 동작, 기계학습 모델을 이용하여, 수신된 의료 영상을 기초로 병변의 발생 위험성에 대한 예측 결과를 출력하는 동작 등을 수행하도록 하는 하나 이상의 인스트럭션들을 포함할 수 있다. 이와 같은 경우, 정보 처리 시스템(1600)을 통해 본 개시의 몇몇 실시예들에 따라 병변의 발생 위험성을 예측하기 위한 시스템이 구현될 수 있다.
본 개시의 앞선 설명은 통상의 기술자들이 본 개시를 행하거나 이용하는 것을 가능하게 하기 위해 제공된다. 본 개시의 다양한 수정예들이 통상의 기술자들에게 쉽게 자명할 것이고, 본원에 정의된 일반적인 원리들은 본 개시의 취지 또는 범위를 벗어나지 않으면서 다양한 변형예들에 적용될 수도 있다. 따라서, 본 개시는 본원에 설명된 예들에 제한되도록 의도된 것이 아니고, 본원에 개시된 원리들 및 신규한 특징들과 일관되는 최광의의 범위가 부여되도록 의도된다.
비록 예시적인 구현예들이 하나 이상의 독립형 컴퓨터 시스템의 맥락에서 현재 개시된 주제의 양태들을 활용하는 것을 언급할 수도 있으나, 본 주제는 그렇게 제한되지 않고, 오히려 네트워크나 분산 컴퓨팅 환경과 같은 임의의 컴퓨팅 환경과 연계하여 구현될 수도 있다. 또 나아가, 현재 개시된 주제의 양상들은 복수의 프로세싱 칩들이나 디바이스들에서 또는 그들에 걸쳐 구현될 수도 있고, 스토리지는 복수의 디바이스들에 걸쳐 유사하게 영향을 받게 될 수도 있다. 이러한 디바이스들은 PC들, 네트워크 서버들, 및 핸드헬드 디바이스들을 포함할 수도 있다.
본 명세서에서는 본 개시가 일부 실시예들과 관련하여 설명되었지만, 본 발명이 속하는 기술분야의 통상의 기술자가 이해할 수 있는 본 개시의 범위를 벗어나지 않는 범위에서 다양한 변형 및 변경이 이루어질 수 있다는 점을 알아야 할 것이다. 또한, 그러한 변형 및 변경은 본 명세서에서 첨부된 특허청구의 범위 내에 속하는 것으로 생각되어야 한다.

Claims (20)

  1. 적어도 하나의 프로세서에 의해 수행되는, 병변의 발생 위험성을 예측하는 방법에 있어서,
    대상체를 촬영한 의료 영상을 획득하는 단계;
    기계학습 모델을 이용하여, 상기 획득된 의료 영상으로부터 상기 대상체에 병변이 발생할 가능성을 예측하는 단계; 및
    상기 예측 결과를 출력하는 단계
    를 포함하고,
    상기 기계학습 모델은, 복수의 학습 의료 영상 및 각 학습 의료 영상과 연관된 병변 발생 위험도가 학습된 모델인, 병변의 발생 위험성을 예측하는 방법.
  2. 제1항에 있어서,
    상기 복수의 학습 의료 영상은, 고위험군 학습 의료 영상 및 저위험군 학습 의료 영상을 포함하고,
    상기 고위험군 학습 의료 영상은,
    병변이 발생한 환자의 병변 발생 부위를 병변이 발생하기 이전에 촬영한 제1 학습 의료 영상을 포함하는, 병변의 발생 위험성을 예측하는 방법.
  3. 제1항에 있어서,
    상기 복수의 학습 의료 영상은, 고위험군 학습 의료 영상 및 저위험군 학습 의료 영상을 포함하고,
    상기 고위험군 학습 의료 영상은,
    병변이 발생한 환자의 병변이 발생하지 않은 부위를 촬영한 제2 학습 의료 영상을 포함하는, 병변의 발생 위험성을 예측하는 방법.
  4. 제3항에 있어서,
    상기 병변이 발생한 환자의 병변이 발생하지 않은 부위는 병변 발생 부위의 반대편 부위 또는 주변 부위 중 적어도 하나를 포함하는, 병변의 발생 위험성을 예측하는 방법.
  5. 제1항에 있어서,
    상기 복수의 학습 의료 영상은, 상기 병변의 발생 위험성의 정도에 따라 복수의 클래스로 분류되는, 병변의 발생 위험성을 예측하는 방법.
  6. 제1항에 있어서,
    상기 기계학습 모델은,
    상기 복수의 학습 의료 영상을 고위험군 학습 의료 영상 또는 저위험군 학습 의료 영상으로 분류하도록 학습된 제1 분류기; 및
    상기 분류된 고위험군 학습 의료 영상을 복수의 클래스로 분류하도록 학습된 제2 분류기를 포함하는, 병변의 발생 위험성을 예측하는 방법.
  7. 제1항에 있어서,
    상기 기계학습 모델은, 상기 학습 의료 영상으로부터 상기 학습 의료 영상 내의 마스크 어노테이션 정보를 추론하도록 더 학습된 모델이고,
    상기 병변이 발생할 가능성을 예측하는 단계는,
    상기 기계학습 모델을 이용하여, 상기 획득된 의료 영상 내에서 병변이 발생할 것으로 예상되는 영역을 출력하는 단계
    를 포함하는, 병변의 발생 위험성을 예측하는 방법.
  8. 제1항에 있어서,
    상기 의료 영상은 복수의 서브 의료 영상을 포함하고,
    상기 병변이 발생할 가능성을 예측하는 단계는,
    상기 복수의 서브 의료 영상을 상기 기계학습 모델에 입력하여 상기 기계학습 모델에 포함된 적어도 하나의 레이어로부터 출력된 복수의 특징 맵을 추출하는 단계;
    상기 추출된 복수의 특징 맵을 종합하는 단계; 및
    상기 종합된 복수의 특징 맵을 이용하여 상기 병변의 발생 위험성에 대한 예측 결과를 출력하는 단계
    를 포함하는, 병변의 발생 위험성을 예측하는 방법.
  9. 제8항에 있어서,
    상기 추출된 복수의 특징 맵을 종합하는 단계는,
    상기 복수의 특징 맵의 각각을 연결시키거나(concatenate) 더하는(sum) 단계
    를 포함하는, 병변의 발생 위험성을 예측하는 방법.
  10. 제8항에 있어서,
    상기 종합된 복수의 특징 맵을 이용하여 상기 병변의 발생 위험성에 대한 예측 결과를 출력하는 단계는,
    상기 복수의 특징 맵의 각각 내의 특정 영역에 가중치를 적용하여, 상기 병변의 발생 위험성에 대한 예측 결과를 출력하는 단계
    를 포함하는, 병변의 발생 위험성을 예측하는 방법.
  11. 제8항에 있어서,
    상기 의료 영상은, 유방 촬영술(Mammography) 영상을 포함하고,
    상기 복수의 서브 의료 영상은, 두 개의 상하 촬영(CC; Craniocaudal) 영상 및 두 개의 내외사 촬영(MLO; Mediolateral Oblique) 영상을 포함하는,
    병변의 발생 위험성을 예측하는 방법.
  12. 제1항에 있어서,
    병변의 발생 위험성과 관련된 추가 정보를 수신하는 단계
    를 더 포함하고,
    상기 병변이 발생할 가능성을 예측하는 단계는,
    상기 기계학습 모델을 이용하여, 상기 획득된 의료 영상 및 상기 추가 정보를 기초로 병변의 발생 위험성에 대한 예측 결과를 출력하는 단계
    를 포함하는, 병변의 발생 위험성을 예측하는 방법.
  13. 제12항에 있어서,
    상기 기계학습 모델은, 상기 복수의 학습 의료 영상 및 학습 추가 정보를 기초로 병변의 발생 위험성에 대한 참조 예측 결과를 출력하도록 더 학습된 모델인, 병변의 발생 위험성을 예측하는 방법.
  14. 제1항에 있어서,
    병변의 발생 위험성과 관련된 추가 정보를 수신하는 단계
    를 더 포함하고,
    상기 병변이 발생할 가능성을 예측하는 단계는,
    상기 기계학습 모델을 이용하여, 상기 획득된 의료 영상을 기초로 상기 병변의 발생 위험성에 대한 제1 예측 결과를 출력하는 단계;
    추가 기계학습 모델을 이용하여, 상기 추가 정보를 기초로, 상기 병변의 발생 위험성에 대한 제2 예측 결과를 출력하는 단계; 및
    상기 제1 예측 결과 및 상기 제2 예측 결과를 이용하여 상기 병변의 발생 위험성에 대한 최종 예측 결과를 생성하는 단계
    를 포함하고,
    상기 추가 기계 학습 모델은 학습 추가 정보를 기초로 병변의 발생 위험성에 대한 참조 예측 결과를 출력하도록 학습된 모델인,
    병변의 발생 위험성을 예측하는 방법.
  15. 제1항에 있어서,
    상기 예측 결과를 출력하는 단계는,
    상기 예측 결과에 기초하여, 의학적 검사, 진단, 예방 또는 치료 중 적어도 하나와 관련된 정보를 출력하는 단계
    를 포함하는, 병변의 발생 위험성을 예측하는 방법.
  16. 제1항에 따른 방법을 컴퓨터에서 실행하기 위한 명령어들을 기록한 컴퓨터 판독 가능한 비일시적 기록매체.
  17. 정보 처리 시스템으로서,
    메모리; 및
    상기 메모리와 연결되고, 상기 메모리에 포함된 컴퓨터 판독 가능한 적어도 하나의 프로그램을 실행하도록 구성된 적어도 하나의 프로세서
    를 포함하고,
    상기 적어도 하나의 프로그램은,
    대상체를 촬영한 의료 영상을 획득하고,
    기계학습 모델을 이용하여, 상기 획득된 의료 영상으로부터 상기 대상체에 병변이 발생할 가능성을 예측하고,
    상기 예측 결과를 출력하기 위한 명령어들을 포함하고,
    상기 기계학습 모델은, 복수의 학습 의료 영상 및 각 학습 의료 영상과 연관된 병변 발생 위험도가 학습된 모델인, 정보 처리 시스템.
  18. 제17항에 있어서,
    상기 복수의 학습 의료 영상은, 고위험군 학습 의료 영상 및 저위험군 학습 의료 영상을 포함하고,
    상기 고위험군 학습 의료 영상은,
    병변이 발생한 환자의 병변 발생 부위를 병변이 발생하기 이전에 촬영한 제1 학습 의료 영상을 포함하는, 정보 처리 시스템.
  19. 제17항에 있어서,
    상기 복수의 학습 의료 영상은, 고위험군 학습 의료 영상 및 저위험군 학습 의료 영상을 포함하고,
    상기 고위험군 학습 의료 영상은,
    병변이 발생한 환자의 병변이 발생하지 않은 부위를 촬영한 제2 학습 의료 영상을 포함하는, 정보 처리 시스템.
  20. 제17항에 있어서,
    상기 기계학습 모델은,
    상기 복수의 학습 의료 영상을 고위험군 학습 의료 영상 또는 저위험군 학습 의료 영상으로 분류하도록 학습된 제1 분류기; 및
    상기 분류된 고위험군 학습 의료 영상을 복수의 클래스로 분류하도록 학습된 제2 분류기를 포함하는, 정보 처리 시스템.
PCT/KR2022/002008 2021-02-09 2022-02-09 병변의 발생 위험성을 예측하는 방법 및 시스템 WO2022173232A2 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22752992.2A EP4273881A4 (en) 2021-02-09 2022-02-09 METHOD AND SYSTEM FOR PREDICTING THE RISK OF APPEARANCE OF AN INJURY
US18/270,895 US20240071621A1 (en) 2021-02-09 2022-02-09 Method and system for predicting risk of occurrence of lesions

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20210018405 2021-02-09
KR10-2021-0018405 2021-02-09
KR1020220017203A KR20220115081A (ko) 2021-02-09 2022-02-09 병변의 발생 위험성을 예측하는 방법 및 시스템
KR10-2022-0017203 2022-02-09

Publications (2)

Publication Number Publication Date
WO2022173232A2 true WO2022173232A2 (ko) 2022-08-18
WO2022173232A3 WO2022173232A3 (ko) 2022-10-06

Family

ID=82838018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/002008 WO2022173232A2 (ko) 2021-02-09 2022-02-09 병변의 발생 위험성을 예측하는 방법 및 시스템

Country Status (2)

Country Link
US (1) US20240071621A1 (ko)
WO (1) WO2022173232A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024162032A1 (ja) * 2023-01-30 2024-08-08 株式会社シンクメディカル ヘルスケア情報ネットワーク

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230041804A1 (en) * 2021-08-04 2023-02-09 GE Precision Healthcare LLC Methods and systems for early detection and localization of a lesion

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101857624B1 (ko) * 2017-08-21 2018-05-14 동국대학교 산학협력단 임상 정보를 반영한 의료 진단 방법 및 이를 이용하는 장치
KR20190046471A (ko) * 2017-10-26 2019-05-07 삼성전자주식회사 의료 영상 처리 방법 및 그에 따른 의료 영상 처리 장치
KR101898575B1 (ko) * 2018-01-18 2018-09-13 주식회사 뷰노 진행성 병변에 대한 미래 상태를 예측하는 방법 및 이를 이용한 장치
KR20200089146A (ko) * 2019-01-16 2020-07-24 삼성전자주식회사 의료 영상 처리 장치 및 방법
KR102366290B1 (ko) * 2019-05-13 2022-02-22 (주)비주얼터미놀로지 의료기계 학습 시스템

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024162032A1 (ja) * 2023-01-30 2024-08-08 株式会社シンクメディカル ヘルスケア情報ネットワーク

Also Published As

Publication number Publication date
US20240071621A1 (en) 2024-02-29
WO2022173232A3 (ko) 2022-10-06

Similar Documents

Publication Publication Date Title
Esteva et al. Deep learning-enabled medical computer vision
WO2022173232A2 (ko) 병변의 발생 위험성을 예측하는 방법 및 시스템
WO2019103440A1 (ko) 피검체의 의료 영상의 판독을 지원하는 방법 및 이를 이용한 장치
WO2021049729A1 (ko) 인공지능 모델을 이용한 폐암 발병 가능성 예측 방법 및 분석 장치
WO2021060899A1 (ko) 인공지능 모델을 사용 기관에 특화시키는 학습 방법, 이를 수행하는 장치
WO2022139246A1 (ko) 골절 검출 방법 및 이를 이용한 디바이스
WO2022131642A1 (ko) 의료 영상 기반 질환 중증도 결정 장치 및 방법
WO2021230534A1 (ko) 안와 및 안와주변 병변 예측 장치 및 그 예측 방법
WO2020231007A2 (ko) 의료기계 학습 시스템
Doshi et al. Artificial Intelligence's Significance in Diseases with Malignant Tumours
WO2021137454A1 (ko) 인공지능 기반의 사용자 의료정보 분석 방법 및 시스템
WO2021261808A1 (ko) 병변 판독 결과 표시 방법
WO2021177771A1 (ko) 의료 영상으로부터 바이오마커 발현을 예측하는 방법 및 시스템
WO2021096276A1 (ko) 개체에 대한 관찰정보의 입력 및 공유 서비스를 제공하기 위한 방법, 및 컴퓨터 판독 가능한 저장 매체
Young et al. Efficacy of smartphone-based telescreening for retinopathy of prematurity with and without artificial intelligence in India
WO2022050713A1 (ko) 흉부 이미지 판독 방법
WO2022124705A1 (ko) 의료 영상 기반 홀로그램 제공 장치 및 방법
WO2022231329A1 (ko) 생체 이미지 조직 표시 방법 및 장치
JP2021028808A (ja) 情報処理システム、情報処理装置、情報処理方法、プログラム、及び学習済モデル
WO2021201582A1 (ko) 피부 병변의 원인 분석 방법 및 장치
WO2023008699A1 (ko) 환자에 대한 해석가능한 예측 결과를 생성하는 방법 및 시스템
WO2023121051A1 (ko) 환자 정보 제공 방법, 환자 정보 제공 장치, 및 컴퓨터 판독 가능한 기록 매체
WO2018147674A1 (ko) 의료 영상에 기반하여 상태를 진단하는 장치 및 방법
WO2022080864A1 (ko) 개체 관찰정보의 입력 및 공유 서비스를 제공하는 방법, 및 컴퓨터 판독 가능한 저장 매체
KR20220115081A (ko) 병변의 발생 위험성을 예측하는 방법 및 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22752992

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 18270895

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022752992

Country of ref document: EP

Effective date: 20230803

NENP Non-entry into the national phase

Ref country code: DE