[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022173138A1 - 리니어 압축기 - Google Patents

리니어 압축기 Download PDF

Info

Publication number
WO2022173138A1
WO2022173138A1 PCT/KR2022/000890 KR2022000890W WO2022173138A1 WO 2022173138 A1 WO2022173138 A1 WO 2022173138A1 KR 2022000890 W KR2022000890 W KR 2022000890W WO 2022173138 A1 WO2022173138 A1 WO 2022173138A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat dissipation
oil
shell
cylinder
dissipation fins
Prior art date
Application number
PCT/KR2022/000890
Other languages
English (en)
French (fr)
Inventor
이균영
김주형
이혁
오원식
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2022173138A1 publication Critical patent/WO2022173138A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/0005Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00 adaptations of pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/06Cooling; Heating; Prevention of freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/10Kind or type
    • F05B2210/14Refrigerants with particular properties, e.g. HFC-134a

Definitions

  • the present invention relates to a linear compressor, and more particularly, to a linear compressor having a structure for preventing a decrease in compression efficiency due to overheating of a suction temperature.
  • the compressor may be classified into a reciprocating compressor, a rotary compressor, and a scroll compressor according to a method of compressing a refrigerant.
  • the reciprocating compressor is a method in which a compression space is formed between the piston and the cylinder and the piston moves linearly to compress the fluid. It is a method of compressing the fluid by rotating a pair of scrolls in engagement.
  • Reciprocating compressors are known in a crank method for compressing a refrigerant by converting a rotational force of a rotary motor into a linear motion, and a vibration method for compressing a refrigerant using a linear motor performing a linear reciprocating motion.
  • a vibration-type reciprocating compressor is called a linear compressor, and such a linear compressor has advantages in that there is no mechanical loss associated with converting a rotary motion into a linear reciprocating motion, thereby improving efficiency and having a simple structure.
  • Patent Document 1 Korean Patent Application No. 10-2018-0065583 (June 6, 2018) discloses a compressor capable of reducing friction loss by reducing a substantial friction area between a cylinder and a piston.
  • the heat emitted to the inside causes the temperature of the suction gas to increase, thereby degrading the performance of the linear compressor.
  • the oil lubricating between the cylinder and the piston which accounts for a large portion of the heat transferred through the discharge cover, and the high-temperature oil cooling the discharge cover are stored inside the shell including heat, and convective heat and A phenomenon in which the suction refrigerant filled in the shell is overheated due to radiant heat occurs, and it is required to develop a structure that can solve this problem.
  • the present invention has been devised to solve the above problems, and an object of the present invention is to lubricate between the cylinder and the piston, which occupies a large portion of the heat transferred through the discharge cover, and high-temperature oil to cool the discharge cover. It is to provide a linear compressor having a structure that is stored in the shell while including this heat, and has a structure that can solve the phenomenon that the suction refrigerant filled in the shell is overheated due to convective heat and radiant heat by these oils.
  • Another object of the present invention is to provide a heat dissipation member at a position where it can contact oil lubricated between the cylinder and the piston inside the shell, which occupies a large portion of the heat transferred through the discharge cover, and high-temperature oil that has cooled the discharge cover.
  • the oil inside the shell can improve heat transfer to the outside.
  • Another object of the present invention is to transfer heat from the high-temperature cylinder of the discharge chamber to the piston so that the intake gas in the piston may be overheated.
  • An object of the present invention is to provide a linear compressor having a structure capable of reducing suction loss by preventing overheating (preheating) of the refrigerant.
  • the linear compressor of the present invention is provided with an oil storage unit for accommodating oil, a shell forming an external appearance; a cylinder installed inside the shell and having an internal space; a piston installed in the cylinder so as to reciprocate in the inner space, and enabling a compression space to be formed in the inner space; and a discharge member provided at one side of the cylinder and having a discharge chamber communicateable with the inner space therein, wherein one side of the shell protrudes so as to allow the internal heat of the shell to be discharged to the outside.
  • a heat dissipation member formed of is installed.
  • the heat dissipation member is disposed inside the shell, a first heat dissipation fin formed to protrude in one direction, is connected to the first heat dissipation fin, and is disposed outside the shell, and a second heat dissipation fin formed to protrude in a direction opposite to the one direction.
  • first heat dissipation fin is formed to protrude in the inner direction of the shell
  • second heat dissipation fin is formed to protrude toward the outside of the shell.
  • the heat dissipation member may further include a fin support portion disposed between the first and second heat dissipation fins in a direction crossing the one direction and supporting the first and second heat dissipation fins.
  • a length of the first heat dissipation fin protruding in one direction may be longer than a length of the second heat dissipation fin protruding in a direction opposite to the one direction.
  • a plurality of first and second heat dissipation fins may be provided, respectively, and an oil flow path for allowing the oil to flow may be provided between the first heat dissipation fins.
  • the first heat dissipation fin extends in a direction crossing the one direction, and an oil suction unit for accommodating oil to be sucked in is provided between one end of the plurality of first heat dissipation fins.
  • the first heat dissipation fins may be disposed in a radial direction.
  • the oil suction part may be provided in a circular or rectangular shape between one end of the plurality of first heat dissipation fins.
  • some of the plurality of first heat dissipation fins are disposed in a radial direction, and another portion of the plurality of first heat dissipation fins crosses the one direction in the radial direction. can be placed as
  • the first heat dissipation fin may have a variable width along the inner direction.
  • An oil passage limiting flow passage through which the flow of the oil is restricted may be provided between the first heat dissipation fins, the ends of which are in contact with the oil flow limiting fins.
  • the heat dissipation member may be coupled to the shell by one of welding, bolting, and press-fitting.
  • An oil supply unit for supplying oil to the cylinder by pumping the oil contained in the oil suction unit to be suckable may be provided inside the shell.
  • the linear compressor of the present invention can communicate with the inside of the oil supply unit to receive the oil from the oil supply unit and supply the supplied oil to the discharge member on one surface of the cylinder. and a frame having an oil supply passage connected thereto and coupled to an outer periphery of the cylinder so as to fix the cylinder, wherein oil passing through the oil supply passage can flow outside the discharge member provided around the discharge chamber .
  • the discharge member may include: an inner discharge cover installed on one side of the cylinder to form the discharge chamber; and a discharge valve disposed in the discharge chamber and opened when the pressure in the compression space is greater than or equal to a predetermined pressure to allow a refrigerant to flow into the discharge chamber, wherein the oil passing through the oil supply passage is disposed around the inner discharge cover. can flow in
  • the heat dissipation member may be coupled through the shell.
  • the linear compressor of the present invention is provided with an oil storage unit for accommodating oil, a shell forming an appearance; a cylinder installed inside the shell and having an internal space; a piston installed in the cylinder so as to reciprocate in the inner space, and enabling a compression space to be formed in the inner space; and a discharge member provided at one side of the cylinder and having a discharge chamber communicateable with the inner space therein, wherein one side of the shell protrudes so as to allow the internal heat of the shell to be discharged to the outside.
  • a heat dissipation member formed of is installed, the oil storage unit is provided at an inner lower portion of the shell, and the heat dissipation member is installed in the oil storage unit.
  • the heat dissipation member includes a first heat dissipation fin disposed inside the shell and formed to protrude in one direction, connected to the first heat dissipation fin, disposed outside the shell, and protruding in a direction opposite to the one direction
  • the second heat dissipation fin may include a formed second heat dissipation fin and a fin support portion disposed between the first and second heat dissipation fins in a direction crossing the one direction and supporting the first and second heat dissipation fins.
  • the heat dissipation member may be coupled through the shell.
  • the oil storage unit may be provided under the shell, and the heat dissipation member may be installed such that at least a portion is submerged in the oil stored in the oil storage unit.
  • An oil suction unit for accommodating oil to be sucked is provided between one end of the first heat dissipation fin, and the oil suction unit is disposed inside the shell to be surrounded by one end of the first heat dissipation fin.
  • An oil supply unit for supplying oil to the cylinder by pumping the oil contained in the oil suction unit to be suckable by having an oil suction pipe is provided, the first heat dissipation fins are provided in plurality, and the plurality of first heat dissipation fins are provided. Between them, an oil flow path for allowing the oil to flow may be provided.
  • the oil storage unit may be provided below the oil supply unit in the interior of the shell.
  • the plurality of first heat dissipation fins are disposed in a radial direction, some of the plurality of first heat dissipation fins are disposed in a radial direction, and another portion of the plurality of first heat dissipation fins is disposed in a radial direction in one direction and They may be arranged in an intersecting direction.
  • the plurality of first heat dissipation fins may be disposed in a radial direction.
  • a guide rib disposed between the plurality of first heat dissipation fins and protruded in a direction parallel to the plurality of first heat dissipation fins to guide the flow of oil may be installed in the fin support part.
  • a plurality of labyrinth ribs protruding from the plurality of first heat dissipation fins in a direction crossing the first heat dissipation fins may be installed in the fin support part.
  • a sealing member may be installed between the shell to which the heat dissipation member is coupled and the heat dissipation member to prevent oil leakage between the shell and the heat dissipation member.
  • an oil storage unit for accommodating oil, the shell forming an exterior; a cylinder installed inside the shell and having an internal space; a piston installed in the cylinder so as to reciprocate in the inner space, and enabling a compression space to be formed in the inner space; and a discharge member having a discharge chamber communicateable with the inner space therein, the discharge member being installed at one side of the cylinder, wherein the discharge member is installed at one side of the cylinder to form the discharge chamber discharge cover; and a discharge valve disposed in the discharge chamber and opened when the pressure of the compression space is greater than or equal to a predetermined pressure to allow a refrigerant to flow into the discharge chamber, and one side of the shell is configured to dissipate heat inside the shell to the outside.
  • a heat dissipation member formed in a protruding structure to enable discharging to the furnace may be installed.
  • the heat dissipation member includes a first heat dissipation fin disposed inside the shell and formed to protrude in one direction, connected to the first heat dissipation fin, disposed outside the shell, and protruding in a direction opposite to the one direction It may include a second heat dissipation fin formed.
  • the heat dissipation member may further include a fin support that is disposed between the first and second heat dissipation fins in a direction crossing the one direction and supports the first and second heat dissipation fins.
  • a plurality of first and second heat dissipation fins may be provided, respectively, and an oil flow path for allowing the oil to flow may be provided between the first heat dissipation fins.
  • the first heat dissipation fins extend in a direction crossing the one direction, and between one end of the plurality of first heat dissipation fins, an oil suction unit for accommodating oil to be sucked is provided, the plurality of first heat dissipation fins It may be arranged in a radial direction.
  • some of the plurality of first heat dissipation fins may be disposed in one radial direction, and another portion of the plurality of first heat dissipation fins may be disposed in a direction crossing the one radial direction.
  • the heat dissipation fin structure increases the contact area between the oil and the shell in the shell to increase the amount of heat dissipation.
  • the linear compressor of the present invention increases the heat transfer area (A) by mounting a heat dissipation member including the first and second heat dissipation fins in the oil storage unit having a high convective heat transfer coefficient (h) compared to the refrigerant, thereby increasing the heat transfer area (A) inside the shell. It is possible to maximize the amount of heat dissipation to the outside.
  • the value of the convective heat transfer coefficient is increased due to the structure of the first heat dissipation fin in the direction toward the oil suction part in order to maximize the oil flow rate.
  • the linear compressor of the present invention is transferred from the inside of the shell to the shell through the first heat dissipation fin, and as the amount of heat emitted from the shell to the outside of the shell increases, the temperature of the shell rises more so that the temperature difference with the outside of the shell rises and the shell
  • the heat transfer area is increased through the external heat dissipation fin, and the amount of convective heat transfer and radiant heat transfer between the shell and external air increases, thereby increasing the amount of heat emitted to the outside of the shell, reducing the suction refrigerant temperature, and increasing the efficiency of the linear compressor.
  • FIG. 1 is a cross-sectional view showing a linear compressor of the present invention.
  • FIG. 2 is an exploded perspective view illustrating the cylinder and the piston in FIG. 1 in an exploded view
  • Figure 3 is a perspective view showing the combination of the cylinder and the piston of Figure 2;
  • Fig. 4 is an enlarged cross-sectional view showing an example in which a heat dissipation member is installed inside the shell of the linear compressor;
  • Fig. 5 is a perspective view showing an example in which a heat dissipation member is provided at the bottom of the shell;
  • FIG. 6 is a plan view of the heat dissipation member.
  • FIG. 7 is a perspective view of a heat dissipation member.
  • FIG. 8 is a perspective view of the heat dissipation member of FIG. 7 viewed from below;
  • Fig. 9 is a plan view showing an example of a heat dissipating member in which an oil suction portion is formed in an elongated rectangle in the reciprocating direction;
  • Fig. 10 is a plan view showing an example of a radiating member having a radial structure
  • Fig. 11 is a plan view showing an example of a heat dissipation member having a labyrinth structure
  • FIG. 12 is a cross-sectional view showing the flow of heat emitted through the heat dissipation member and the flow of heat radiated to the outside of the shell.
  • FIG. 13 is a table showing effects due to a heat dissipation member.
  • a structure applied to one embodiment may be equally applied to another embodiment as long as there is no structural and functional contradiction in the different embodiments.
  • FIG. 1 is a cross-sectional view showing the inside of a linear compressor 100 according to the present embodiment.
  • the linear compressor 100 according to the present embodiment is provided with an oil storage unit 110c for accommodating oil, a shell 110 forming an external appearance, and an interior of the shell 110 .
  • It has a discharge chamber (D) that can communicate with the space, and includes a discharge member 160 installed on one side of the cylinder (120).
  • a heat dissipation member 111 is installed on one side of the shell 110 to have a protruding structure to allow the heat inside the shell 110 to be radiated to the outside.
  • the linear compressor 100 of the present invention has a structure for preventing a decrease in compression efficiency due to overheating of the suction temperature.
  • the linear compressor 100 of the present invention has a structure capable of improving heat transfer to the outside of the shell 110 by using the piston 130 lubricating oil, which occupies a large portion of the heat transferred through the discharge cover. .
  • the shell 110 may be configured by combining the lower shell 110a and the upper shell 110b as shown in FIG. 1 .
  • the shell 110 includes a suction unit 101 through which the refrigerant is introduced and a discharge unit 105 through which the refrigerant compressed in the cylinder 120 is discharged.
  • the discharge unit 105 may be, for example, a pipe that enables the compressed refrigerant to be discharged.
  • the refrigerant sucked through the suction unit 101 moves to the inside of the piston 130 through the suction muffler 150 . Noise may be reduced while the refrigerant passes through the suction muffler 150 .
  • 1, 4 and 5 show an example in which the heat dissipation member 111 is installed in the lower shell 110a.
  • FIG. 6 a plan view of the heat dissipation member 111 is shown in FIG. 6
  • FIGS. 7 and 8 a perspective view of the heat dissipation member 111 is shown in FIGS. 7 and 8 .
  • the heat dissipation member 111 may be installed in the lower shell 110a, and more specifically, may be located in the vicinity of the suction unit 190 side, and more precisely, the suction unit 190. of the oil suction pipe 193 is partially accommodated by the heat dissipation member 111 .
  • the heat dissipation member 111 may be coupled to penetrate the lower shell 110a from the bottom surface of the lower shell 110a, and this structure is shown in FIGS. 1, 4 and 5 .
  • a sealing member is installed to prevent oil from leaking from the bottom surface of the lower shell 110a to the periphery of the heat dissipation member 111 .
  • the heat dissipation member 111 may have a cylindrical shape having a predetermined width as a whole, and is formed to include a protruding structure that enables the heat inside the shell 110 to be discharged to the outside.
  • each of the first and second heat dissipation fins 111a and 111b to be described later is disposed in a radial direction, and the first and second heat dissipation fins 111a and 111b along the circumferential direction are disposed while maintaining a preset interval. can be confirmed through FIG. 6 .
  • the shape of the heat dissipation member 111 is not necessarily limited to such a cylindrical shape structure, and a polygonal shape that enables efficient heat dissipation in consideration of the shape of the shell 110 or configurations around the heat dissipation member 111 . or any other shape.
  • the heat dissipation member 111 may include a first heat dissipation fin 111a and a second heat dissipation fin 111b.
  • the first heat dissipation fin 111a is disposed inside the shell 110 and is formed to protrude in one direction.
  • the second heat dissipation fin 111b is connected to the first heat dissipation fin 111a, is disposed outside the shell 110, and protrudes in a direction opposite to the one direction.
  • the first heat dissipation fin 111a may be formed to be longer than the second heat dissipation fin 111b. it is preferable
  • the linear compressor is installed in the machine room of the refrigerator. , may be formed in the same direction as the first heat dissipation fin.
  • the present invention is not necessarily limited to this structure, and the second heat dissipation fin 111b may be formed in a radial structure as in the arrangement of the first heat dissipation fins 311a and 411b of FIGS. 10 and 11 to be described later.
  • the first heat dissipation fin 111a is formed to protrude inward from the inside of the shell 110
  • the second heat dissipation fin 111b protrudes toward the outside of the shell 110 in FIGS. 7 and FIG. 8 is shown in detail.
  • the first heat dissipation fin 111a has a predetermined width in the circumferential direction in the shell 110, and the first heat dissipation fin 111a protrudes upwardly. has been
  • the second heat dissipation fin 111b has a predetermined width in the circumferential direction, and the second heat dissipation fin 111b is formed to protrude downward. .
  • the heat dissipation member 111 may further include a fin support 114 supporting the first and second heat dissipation fins 111a and 111b.
  • the fin support 114 includes the first and second heat dissipation fins 111a and 111b. ) between the first and second heat dissipation fins 111a and 111b.
  • the fin support 114 having a disk shape of a predetermined width is shown.
  • the first and second heat dissipation fins 111a and 111b) Since it extends to the circumferential surface of the silver disk, it may have a cylindrical shape as a whole.
  • a plurality of first and second heat dissipation fins 111a and 111b may be provided.
  • An oil flow path 111c allowing oil to flow may be provided between the plurality of first heat dissipation fins 111a disposed inside the shell 110 .
  • a plurality of first heat dissipation fins 111a are arranged to be spaced apart in the circumferential direction, and an oil flow path 111c is provided between the first heat dissipation fins 111a.
  • Each oil flow path 111c is formed in a radial direction and provided to communicate with an oil suction part 111d to be described later.
  • FIG. 7 shows an example in which the oil passage 111c is provided between the first heat dissipation fins 111a in the circumferential direction and is formed up to the oil suction part 111d in the radial direction.
  • the oil accommodated in the oil storage unit 110c may be supplied to the oil suction unit 111d through the oil passage 111c.
  • the oil passage restricting flow path in which the flow of the oil is restricted. (111e) is provided.
  • FIGS. 7 and 8 An example in which an oil passage limiting passage 111e in which oil is restricted by an oil flow limiting pin 113 is provided around the oil passage 111c is shown in FIGS. 7 and 8 .
  • an oil supply unit 190 to be described later may be connected to the oil suction unit 111d.
  • the oil storage unit 110c may be provided at an inner lower portion of the shell 110 , and the heat dissipation member 111 may be installed in the oil storage unit 110c.
  • a place where the heat dissipation member 111 is installed in FIG. 5 may be understood as a place where oil is stored inside the shell 110 .
  • the first heat dissipation fins 111a extend in a direction crossing the one direction in which the first heat dissipation fins 111a protrude. In addition, between one end of the plurality of first heat dissipation fins 111a, the plurality of first heat dissipation fins 111a are disposed in a radial direction so that an oil suction unit 111d for accommodating oil to be sucked is provided.
  • the oil accommodated in the oil suction unit 111d is pumped by the oil supply unit 190 to be described later, and the oil is supplied to the cylinder 120 .
  • the oil suction part 111d may be formed in a cylindrical shape having a predetermined volume inside the ends of the plurality of first heat dissipation fins 111a toward the center of the fin support part 114 .
  • the first heat dissipation fins 111a may have different widths along the inner direction.
  • the first heat dissipation fin 111a may have different widths in the central direction of the fin support 114 , and gradually inward toward the center of the fin support 114 .
  • a wide width can be provided.
  • the speed of the oil flowing to the oil suction unit 111d may be improved, which may be understood as a direct oil suction structure.
  • the heat dissipation member 111 may further include an oil flow limiting fin 113 , the oil flow limiting fin 113 being disposed between some of the plurality of first heat dissipating fins 111a and the other to restrict the flow of oil. to limit
  • FIG. 7 and 8 show an example in which four oil flow limiting pins 113 are arranged while maintaining a predetermined angle. Between the four oil flow limiting fins 113, a plurality of first heat dissipation fins 111a are disposed, some of the first heat dissipation fins 111a extend in the front and rear directions based on the drawing, and some of the first heat dissipation fins 111a extend in the left and right directions. The heat dissipation fin 111a is extended.
  • the number of the first heat dissipation fins 111a is not necessarily limited to this number.
  • some of the plurality of first heat dissipation fins 111a are disposed in a radial direction, and other portions of the plurality of first heat dissipation fins 111a are disposed in a direction crossing the radial direction.
  • each of the aforementioned front and rear are arranged in one radial direction (front-rear direction in the drawing), and 9 on the right side and 11 on the left side intersect with one radial direction (left-right direction in the drawing) can be placed as
  • FIGS. 4 and 5 an example in which the second heat dissipation fin 111b is formed to protrude outward from the outside of the shell 110 is shown in FIGS. 4 and 5 .
  • the second heat dissipation fin 111b has a predetermined width in the circumferential direction from the outside of the shell 110, and the second heat dissipation fin 111b is formed to protrude downward. has been
  • a plurality of second heat dissipation fins 111b are arranged to be spaced apart in the circumferential direction, and as described above, an oil flow path 111c is provided between the first heat dissipation fins 111a.
  • Each oil flow path 111c is formed in a radial direction and provided to communicate with an oil suction part 111d to be described later.
  • the oil accommodated in the oil storage unit 110c can be supplied to the oil suction unit 111d through the oil passage 111c, and at this time, the oil flow limiting fin from the first heat dissipation fin 111a Heat may be transferred to the second heat dissipation fin 111b through 113 , and heat is discharged from the second heat dissipation fin 111b to the outside.
  • the oil storage unit 110c may be provided at an inner lower portion of the shell 110 , and the heat dissipation member 111 may be installed in the oil storage unit 110c.
  • a place where the heat dissipation member 111 is installed may be understood as a place where oil is stored inside the lower shell 110b.
  • the second heat dissipation fin 111b extends in a direction crossing the one direction in which the second heat dissipation fin 111b protrudes, similarly to the structure of the first heat dissipation fin 111a.
  • the second heat dissipation fin 111b may also have different widths along the inner direction.
  • the second heat dissipation fin 111b may have different widths in the center direction of the fin support 114 , the fin support 114 . ), it is possible to gradually provide a wider width in the inner direction, which is the center direction.
  • FIG. 7 shows an example in which four oil flow limiting pins 113 are arranged while maintaining a predetermined angle.
  • a plurality of second heat dissipation fins 111b are disposed between the four oil flow limiting plates, and although not clearly shown in the drawing, some of the second heat dissipation fins 111b extend in the front and rear directions based on the drawing, and in the left and right directions Another part of the second heat dissipation fin 111b is extended.
  • the number of the second heat dissipation fins 111b is not necessarily limited to this number.
  • some of the plurality of second heat dissipation fins 111b are disposed in a radial direction, and other portions of the plurality of second heat dissipation fins 111b are disposed in the radial direction. It can be arranged in a direction that intersects with one direction toward the .
  • each of the aforementioned front and rear are arranged in one radial direction (front-rear direction in the drawing), and 9 on the right side and 11 on the left side intersect with one radial direction (left-right direction in the drawing) can be placed as
  • the heat dissipation member 111 may be coupled to the lower shell 110a by one of welding, bolting, and press-fitting.
  • 5 shows an example in which the heat dissipation member 111 is coupled to the bottom surface of the lower shell 110a, and although it is not clearly shown which coupling method it is, it can be understood that it is coupled by one of welding, bolting, and press-fitting. have.
  • the heat dissipation member 111 is coupled to the lower shell 110a by one of welding, bolting and press-fitting, as described above, between a portion of the bottom surface of the lower shell 110a and the heat dissipation member 111 . It is preferable that a sealing member is installed to prevent oil from leaking from the bottom surface of the lower shell 110a to the periphery of the heat dissipation member 111 .
  • FIG. 9 is a plan view showing an example of the heat dissipation member 211 in which the oil suction part 211d is formed in a long rectangular shape in the reciprocating direction.
  • the heat dissipation member 211 of the embodiment shown in FIG. 9 has no difference from the heat dissipation member 111 described above in the description of FIG. 6 in that the arrangement of the first heat dissipation fins 211a is arranged in the vertical and left and right directions. , the oil suction part 111d is formed in a circular structure in FIG. 6, whereas the heat dissipation member 211 in FIG. It is different from the above-described heat dissipation member 111 in that respect.
  • FIG. 10 is a plan view showing an example of the radiation member 311 having a radial structure.
  • the heat dissipation member 311 of the embodiment shown in FIG. 10 is the heat dissipation member ( 111, 211) are different.
  • the oil suction part 311d is formed in a circular structure as shown in FIG. 6 .
  • a guide rib 311e disposed between the plurality of first heat dissipation fins 311a and formed to protrude in a direction parallel to the plurality of first heat dissipation fins 311a to guide the flow of oil. installed to guide the smooth flow of oil.
  • FIG. 11 is a plan view showing an example of the heat dissipation member 411 having a labyrinth structure.
  • the heat dissipation member 411 of the embodiment shown in FIG. 11 is different from the heat dissipation member 311 described above in FIG. There is no difference.
  • the oil suction part 411d has a circular structure as shown in FIGS. 6 and 10 .
  • FIG. 11 an example in which a plurality of labyrinth ribs 411e protruding from the plurality of first heat dissipation fins 411a in a direction intersecting with the first heat dissipation fins 411a are installed in the fin support 414 is shown in FIG. 11 . It allows the oil to stay for a long time to further increase the efficiency of heat transfer.
  • a compression space P in which the refrigerant is compressed by the piston 130 is formed in the cylinder 120 .
  • a suction hole 131b for introducing a refrigerant into the compression space P is formed in the piston 130, and a suction valve 133 for selectively opening the suction hole 131b is provided at one side of the suction hole 131b.
  • the suction valve 133 may be made of a steel plate.
  • a discharge member 160 for discharging the refrigerant compressed in the compression space (P) is provided on one side of the compression space (P). That is, the compression space P may be understood as a space formed between one end of the piston 130 and the discharge member 160 . Also, in the present invention, the discharge member 160 may be understood as a discharge valve assembly, which is a structure including the discharge valve 162 .
  • the discharge member 160 forms a discharge chamber D of the refrigerant, and the inner discharge cover 161 installed on one side of the cylinder 120 and the compression space P are opened when the pressure in the compression space P is equal to or greater than the discharge pressure. and a discharge valve 162 for introducing the refrigerant into the discharge chamber (D).
  • Oil passing through the oil supply passage 173 of the frame 170 to be described later is allowed to flow around the inner discharge cover 161 around the inner discharge cover 161 .
  • an oil groove through which oil can flow may be provided on the outer periphery of the inner discharge cover 161 .
  • the discharge member 160 may further include a valve spring 163 provided between the discharge valve 162 and the inner discharge cover 161 to provide an elastic force in the reciprocating direction of the piston 130 .
  • the reciprocating direction of the piston 130 may be understood as “axial direction”, and may also be understood as the same meaning as moving in the direction in which the piston 130 moves from side to side in FIG. 1 .
  • the suction valve 133 may be formed on one side of the compression space P, and the discharge valve 162 may be provided on the other side of the compression space P, that is, on the opposite side of the suction valve 133 .
  • the inner discharge cover 161 may reduce the flow noise of the compressed refrigerant, and the loop pipe 164 guides the compressed refrigerant to the discharge unit 105 .
  • the roof pipe 164 is coupled to the inner discharge cover 161 to extend curvedly, and is coupled to the discharge unit 105 .
  • heat generated in the discharge chamber D during compression through the discharge unit 105 may be discharged to the outside of the shell 110 .
  • the discharge member 160 may further include an outer discharge cover 165 coupled to the inner discharge cover 161 .
  • the roof pipe 164 may be coupled to the outer discharge cover 165 spaced apart from the inner discharge cover 161 by a predetermined distance.
  • the linear compressor 100 of the present invention may further include a frame 170 .
  • the frame 170 is a member for fixing the cylinder 120 , and may be configured integrally with the cylinder 120 or may be fastened by a separate fastening member.
  • the inner discharge cover 161 may be coupled to the frame 170 .
  • the frame 170 includes an oil supply flow path 173 , the oil supply flow path 173 can communicate with the interior of the oil supply unit 190 to receive the oil from the oil supply unit 190 and receive the supplied oil. It is connected to one surface of the cylinder 120 so that oil can be supplied to the discharge member 160 .
  • the oil supply flow path 173 is formed from the lower side of the shell 110 to the upper left direction on a cross-sectional basis, but is not necessarily limited to this direction.
  • Oil passes through the oil supply passage 173 and can flow from the outside of the discharge member 160 provided around the discharge chamber D.
  • a flow path formed to pass oil to enable heat dissipation and to be supplied back to the oil storage unit 110c may be provided on the outer periphery of the discharge member 160 .
  • the heat of the discharge chamber (D) generated by the compression of the piston 130 is discharged to the outside of the shell 110 through the above-described discharge portion 105 or a frame adjacent to the discharge chamber (D) Heat transfer is made through 170 and the cylinder 120 .
  • a heat transfer system inside and outside the shell 110 through oil in the linear compressor 100 of the present invention will be described.
  • the oil accommodated in the oil storage unit is pumped through the oil supply unit 190, and is provided to the end of the cylinder 120 through the oil supply passage 173 of the frame 170. .
  • oil flows into the discharge member 160 , and as shown in FIG. 1 , the oil introduced into the discharge member 160 is a discharge member provided around the discharge chamber (D). (160) will flow on the outer periphery.
  • the oil flowing from the outer periphery of the discharge member 160 is laminated on the oil storage unit 110c of the shell 110 .
  • the oil receives heat from the discharge chamber D in the discharge member 160 , and the heated oil is stacked on the oil storage unit 110c, and the first and second heat dissipation fins 111a of the heat dissipation member 111 are heated. , 111b) through the heat is emitted to the bottom of the shell 110.
  • heat is emitted to the outside of the shell 110 or oil flowing around the discharge member 160 is stored in the oil storage unit 110c, and the heat dissipation member 111 .
  • the heat dissipation member 111 including the first and second heat dissipation fins 111a and 111b in the oil storage unit 110c having a convective heat transfer coefficient (h) higher than that of the refrigerant. ) to increase the heat transfer area (A) to maximize the amount of heat dissipation from the inside of the shell 110 to the outside of the shell 110 .
  • Equation 1 Q cov is the amount of heat transferred due to conduction, h is the convective heat transfer coefficient, A is the heat transfer area, and ⁇ T is the temperature difference.
  • Equation 2 is a more concrete expression of [Equation 1].
  • Equation 2 Q cov is the amount of heat transferred due to conduction, h is the convective heat transfer coefficient, A s is the heat transfer area through which heat is conducted in the shell 110, T s - T ⁇ is the outside temperature and the shell 110 ) represents the difference between the temperatures.
  • the thermal conductivity coefficient of refrigerant is 0.0177 W/m-K (at 0.559 bar pressure and 32.2 °C temperature), and the thermal conductivity coefficient of oil is 0.18 W/m-K (based on 40 °C temperature) to be.
  • Equation 3 Q rad is the amount of heat transferred due to radiation, ⁇ is the radiative heat transfer coefficient, A is the heat transfer area, and T s -T ⁇ is the difference between the outside air temperature and the temperature of the shell 110 .
  • Equation 4 Q rad is the amount of heat transferred due to radiation, ⁇ is the Stefan Boltzmann constant 5.6703 * 10 -8 [W/(m2 * K4)], ⁇ s is the radiative heat transfer coefficient, A s is the shell (110 ), the heat transfer area through which heat is conducted, T ⁇ is the outside air temperature, and T s represents the temperature of the shell 110 .
  • linear compressor 100 of the present invention may further include a motor unit 140 .
  • the motor unit 140 applies a driving force to the piston 130 .
  • the motor unit 140 includes an outer stator 141 fixed to the frame 170 and disposed to surround the cylinder 120 , an inner stator 142 spaced apart from the inner side of the outer stator 141 , and the outer and a magnet 143 positioned in a space between the stator 141 and the inner stator 142 .
  • the magnet 143 is made of a permanent magnet and can reciprocate linearly by mutual electromagnetic force between the outer stator 141 and the inner stator 142 . And, the magnet 143 may be composed of a single magnet having one pole, or a plurality of magnets having three poles are combined.
  • the magnet 143 may be coupled to the piston 130 by the connecting member 144 .
  • the connecting member 144 may extend from one end of the piston 130 to the magnet 143 . Accordingly, as the magnet 143 moves linearly, the piston 130 may linearly reciprocate in the axial direction together with the magnet 143 .
  • the outer stator 141 includes a stator core 141a and a coil winding body 145 .
  • a plurality of laminations are stacked in the stator core 141a in a circumferential direction, and the stator core 141a may be disposed to surround the coil winding body 145 .
  • the magnetic flux flowing along the outer stator 141 and the inner stator 142 and the magnetic flux of the magnet 143 interact to generate a force to move the magnet 143 .
  • a stator cover 146 is provided on one side of the outer stator 141 .
  • One end of the outer stator 141 may be supported by the frame 170 , and the other end may be supported by the stator cover 146 .
  • the inner stator 142 is fixed to the outer periphery of the cylinder 120 .
  • a plurality of stator cores are radially stacked on the outer circumferential surface of the cylinder 120 in the circumferential direction.
  • the linear compressor 100 further includes a supporter 181 for supporting the piston 130 and a back cover 182 extending from the piston 130 toward the suction unit 101 .
  • the back cover 1182 may be disposed to cover at least a portion of the suction muffler 150 .
  • the linear compressor 100 includes a plurality of springs 183a and 183b so that the piston 130 can resonate.
  • the spring consists of a compression coil spring provided in the axial direction.
  • the plurality of springs 183a and 183b includes a first spring 183a supported between the supporter 181 and the stator cover 146 and a second spring supported between the supporter 181 and the back cover 182 ( 183b).
  • the elastic modulus of the first spring 183a and the second spring 183b may be the same.
  • a position where the first spring 183a is installed may be defined as a “front” and a position where the second spring 183b is installed may be defined as a rearward.
  • the front may be defined in a direction toward the compression space P or in a direction from the piston 130 toward the suction unit, and the rear as a direction away from the compression space P or in a direction from the suction unit toward the discharge member 160.
  • a predetermined oil may be stored on the inner bottom surface of the shell 110 .
  • a portion in which oil is stored on the inner bottom surface of the shell 110 may be referred to as an oil storage unit 110c.
  • the oil storage unit 110c may be provided as a separate space enabling storage of oil on the bottom surface of the shell 110 , or may simply be accommodated on the inner bottom surface of the shell 110 without a separate space.
  • an oil supply unit 190 for pumping oil may be provided at a lower portion of the shell 110 .
  • the oil supply unit 190 makes it possible to supply oil to the cylinder 120 by pumping the oil accommodated in the oil suction part 111d of the above-described heat dissipation member 111 to be suctionable.
  • the oil supply unit 190 may be operated by vibration generated as the piston 130 reciprocates linear motion to pump oil upward. Accordingly, the oil pumped from the oil supply unit 190 is supplied to the space between the cylinder 120 and the piston 130, and performs a series of cooling and lubrication actions.
  • the cylinder 120 is provided with an oil supply hole (128).
  • the oil supplied between the inner circumferential surface of the cylinder 120 and the outer circumferential surface of the piston 130 through the oil supply unit 190 lubricates between the inner circumferential surface of the cylinder 120 and the outer circumferential surface of the piston 130 .
  • the friction loss between the cylinder 120 and the piston 130 still occurs.
  • This embodiment minimizes the friction area between the cylinder 120 and the piston 130 while maintaining the concentricity of the cylinder 120 and the piston 130 to reduce the friction loss between the cylinder 120 and the piston 130. is to make it
  • FIG. 2 is an exploded perspective view showing the cylinder 120 and the piston 130 according to FIG. 1
  • FIG. 3 is a perspective view showing the cylinder 120 and the piston 130 assembled in FIG. 2 .
  • the piston 130 has a substantially cylindrical shape and extends in the axial direction in the piston 130 body 131 and the piston 130 in the radial direction from the rear end of the body 131 .
  • the piston 130 extending to the flange 132 is included.
  • the piston 130 body 131 includes a front portion 131a forming the front end of the piston 130 body 131 .
  • a suction valve 133 is installed on the front part 131a. Accordingly, the refrigerant flowing in the piston 130 body 131 may be sucked into the compression space P through the suction hole 131b.
  • the piston 130 body 131 further includes an inclined portion 131c extending obliquely backward from the front portion 131a.
  • the inclined portion 131c may extend in a direction in which the outer diameter of the main body 131 of the piston 130 is greater than the outer diameter of the front portion 131a. Accordingly, the piston 130 main body 131 may be inclined so that the outer diameter increases from the front part 131a to the rear by the inclined part 131c. Accordingly, when the piston 130 moves forward, a portion of the refrigerant in the compression space P moves to the front-end space formed between the inclined portion 131c and the inner circumferential surface of the cylinder 120 . Then, the refrigerant that has moved to the front-end space is gradually compressed so that the front-end of the piston 130 can be suppressed from contacting the inner circumferential surface of the cylinder 120 .
  • the piston 130 main body 131 is a bearing portion on the side of the first piston 130 in a direction away from the compression space P based on the compression space P (hereinafter, the first piston portion 135). 135 and the second piston 130-side bearing portion (hereinafter, the second piston portion 136) 136 are formed to be spaced apart by a predetermined interval.
  • the piston 130 side avoiding part ( Hereinafter, a first avoidance portion) 137 is formed. 2 to 4 , the piston 130 side avoidance portion may be formed between the second piston portion 136 and the piston 130 flange 132 .
  • the outer diameter of the first piston part 135 and the outer diameter of the second piston part 136 are formed equal to each other, or the outer diameter of the first piston part 135 is slightly larger than the outer diameter of the second piston part 136.
  • the first piston unit 135 may function as a main bearing
  • the second piston unit 136 may function as a sub bearing. This is to minimize leakage of the refrigerant compressed in the compression space P between the cylinder 120 and the piston 130 as the compression space P is formed on the front side of the first piston part 135 . .
  • the reciprocating length (or axial length) of the first piston part 135 is greater than the reciprocating length of the first cylinder 120-side bearing part to be described later, and the reciprocating length of the first cylinder 120-side bearing part and the cylinder (120) It may be formed smaller than the total length of the second sum of the reciprocating length of the side avoidance portion. This will be explained again later.
  • a surface where the first piston part 135 and the first avoiding part 137 meet or a surface where the first avoiding part 137 and the second piston part 136 meet may be formed as inclined surfaces 137a, respectively. Accordingly, the oil accumulated in the first avoidance part 137 may be smoothly introduced into each bearing surface along each inclined surface 137a during the reciprocating linear motion of the piston 130 .
  • the cylinder 120 is formed in a substantially cylindrical shape like the piston (130).
  • the cylinder 120 has an inner diameter larger than the outer diameter of the piston 130 body 131 by several ⁇ m. Accordingly, the inner circumferential surface of the cylinder 120 and the outer circumferential surface of the piston 130 main body 131 are almost in contact or correspond to each other with a fine lubricating film therebetween.
  • the inner circumferential surface of the cylinder 120 has the first cylinder 120 side bearing part (hereinafter, the first cylinder part) 125 and the second cylinder ( 120) side bearing parts (hereinafter, second cylinder parts) 126 are formed at regular intervals.
  • a second avoidance portion 127 is formed to extend between the first cylinder portion 125 and the second cylinder portion 126 .
  • the inner diameters of the first cylinder part 125 and the second cylinder part 126 are formed to be substantially the same.
  • the first cylinder part 125 includes the first piston part 135
  • the second cylinder part 126 includes the second piston part 136
  • the second avoidance part 127 includes the first avoidance part 137 and Each is formed to overlap at least a part.
  • the reciprocating length of the first cylinder part 125 may be at least equal to or longer than the maximum moving distance of the piston 130 .
  • the reciprocating length (A) of the first cylinder part 125 is formed to be larger than the maximum moving distance.
  • the maximum moving distance of the piston 130 is the distance that the front part 131a of the piston 130 can move the furthest from the discharge valve 162, which can be defined as a state in which the second spring 183b is fully pressed. have.
  • the reciprocating length of the first piston part 135 is formed to be larger than the reciprocating length of the second avoiding part 127
  • the reciprocating direction length of the first avoiding part 137 is that of the first cylinder part 125 . It may be formed to be larger than the reciprocating direction length. Accordingly, even if the piston 130 moves as much as the maximum movement distance, the first piston part 135 does not catch or fall off the second avoidance part 127 , so that the piston 130 smoothly reciprocates in the cylinder 120 . You can exercise.
  • the reciprocating length of the first piston part 135 is too long, when the piston 130 moves by the maximum moving distance, the first piston part 135 moves to the first cylinder part 125 as well as the second cylinder part ( 126) can also be used. Then, as a whole, the contact area between the cylinder 120 and the piston 130 increases to increase the friction area as well as the rear end of the first piston part 135 to the front end of the second cylinder part 126 .
  • the reciprocating linear motion of the piston 130 may be obstructed by being caught. Therefore, it is preferable that the reciprocating length of the first piston part 135 is smaller than the second total length of the first cylinder part 125 in the reciprocating direction and the reciprocating length of the second avoiding part 127 .
  • the sum of the reciprocating length of the first piston part 135 and the maximum moving distance of the piston 130 is the reciprocating length of the first cylinder part 125 and the reciprocating length of the second avoiding part 127 . It is preferable to be formed smaller than the sum of the second total length.
  • the first avoidance part 137 is covered by the second cylinder part 126 so that the oil is transferred to the first It may be prevented from flowing into the avoidance part 137 . Then, the oil may be blocked from being supplied between the second cylinder part 126 and the second piston part 136 . Therefore, the reciprocating length of the first piston part 135 is longer than the length of the first cylinder part 125 as defined above, but even when the piston 130 moves by the maximum moving distance, the second avoidance part 127 . and the first avoiding portion 137 may overlap the length, ie, it is preferable to form such that it does not exceed the second avoiding portion 127 .
  • first cylinder part 125, the second avoidance part 127, and the second cylinder part 126 are sequentially formed on the inner peripheral surface of the cylinder 120, and the second cylinder part 125 is formed on the inner peripheral surface of the piston 130 corresponding thereto.
  • the first piston part 135 , the first avoiding part 137 , and the second piston part 136 may be sequentially formed.
  • the first piston part 135 is the first cylinder part 125 and the second piston part 136 is the second cylinder part ( 126) and each bearing contact.
  • the piston 130 moves forward, the piston 130 moves toward the discharge valve 162 while compressing the refrigerant in the compression space P.
  • the first piston part 135 moves toward the discharge valve 162 while compressing the refrigerant in the compression space P.
  • the first piston part 135 in a state in which the first piston part 135 is in bearing contact with the first cylinder part 125 , the front side of the first piston part 135 is within the range of the first cylinder part 125 , the first piston part 135 .
  • the first piston part 135 is outside the range of the first cylinder 125 by a predetermined interval. This is because the reciprocating length of the first piston part 135 is longer than the reciprocating length of the first cylinder part 125 .
  • the piston 130 does not sag in the radial direction as the first piston unit 135 is supported by the first cylinder unit 125 .
  • the second piston unit 136 is in bearing contact with the second cylinder unit 126 , so that the piston 130 can be supported more stably.
  • the first avoiding part 137 is formed on the outer peripheral surface of the piston 130 and the second avoiding part 127 is formed on the inner peripheral surface of the cylinder 120 , respectively, and the first avoiding part 137 is the cylinder 120 . ), and the second avoidance portion 127 does not come into contact with the piston 130 . Accordingly, the frictional area between the cylinder 120 and the piston 130 is reduced as a whole, thereby reducing the frictional loss.
  • the contact area between the first piston part 135 and the first cylinder part 125 increases when the piston 130 performs a compression stroke.
  • the pressure of the compression space P increases during the compression stroke, it may be advantageous in terms of sealing to increase the contact area between the first piston part 135 and the first cylinder part 125 .
  • the contact area between the first piston part 135 and the first cylinder part 125 is reduced.
  • the pressure in the compression space P is reduced when the suction stroke is performed, the compressor efficiency is not greatly affected.
  • the bearing contact length between the cylinder 120 and the piston 130 is the same regardless of the movement distance of the piston 130, but in this embodiment, the cylinder 120 and the piston ( 130), the contact length of the bearings decreases linearly. Then, since the average friction length per cycle of the piston 130 is reduced, the friction loss between the cylinder 120 and the piston 130 is reduced, so that the compressor efficiency can be improved. In addition, through this, it is possible to suppress damage to the cylinder 120 and the piston 130 while facilitating the manufacture of the cylinder 120 or the piston 130 .
  • the piston 130 is supported in a cantilever shape by a plurality of springs 183a and 183b made of compression coil springs, if the support area for the piston 130 is small, the piston 130 is Deflection may occur depending on its own weight.
  • the first piston part 135 and the second piston part 136 are arranged in the axial direction, and these piston 130 side bearing parts 135 and 136 are respectively connected to the first cylinder part 125 and As it is radially supported by the second cylinder part 126 , it is possible to stably support the sagging of the piston 130 .
  • first piston part 135 and the second piston part 136 in the piston 130 are spaced apart by the reciprocating length of the first avoiding part along the axial direction, but the piston At 130, only one piston 130-side bearing portion is formed.
  • the inner circumferential surface of the cylinder 120 is the same as in the above-described embodiment. That is, the first cylinder portion 125 and the second cylinder portion 126 are formed on the inner circumferential surface of the cylinder 120 with the second avoidance portion 127 interposed therebetween.
  • the inner diameter of the first cylinder part 125 and the inner diameter of the second cylinder part 126 are formed to be the same, and the inner diameter of the second avoidance part 127 is formed to be larger than the inner diameter of both cylinder parts 125 and 126 .
  • the second avoiding portion 127 is formed to be recessed by a predetermined depth from the inner circumferential surface of the cylinder 120 toward the outer circumferential surface.
  • the piston 130 side bearing part 135 is formed on the outer peripheral surface of the piston 130 body 131 on the front side, and the piston 130 side bearing part 135 is formed on the rear end of the piston 130 side bearing part 135 .
  • the piston 130 side avoidance portion 137 having an outer diameter smaller than the outer diameter of the portion 135 is formed.
  • the piston 130 flange 132 described above is formed. Accordingly, one piston 130-side bearing portion corresponding to the aforementioned first piston 130-side bearing portion is formed in the piston 130 body 131 according to the present embodiment.
  • the basic configuration of the cylinder 120 and the piston 130 according to the present embodiment as described above is substantially the same as that of the above-described embodiment.
  • the piston 130 side bearing part 135 is formed only at the front end of the piston 130 body 131, the cylinder 120 and the piston 130 compared to the above-described embodiment.
  • the friction area between them can be further reduced. Through this, the friction loss between the cylinder 120 and the piston 130 can be further reduced.
  • compressor efficiency may be improved.
  • a plurality of springs are provided on the rear side of the piston 130 to induce a resonant motion of the piston 130, but the spring is not necessarily required.
  • the piston 130 may resonate by using the thrust and return force of the magnet except for the spring.
  • FIG. 13 is a table showing the improvement effect according to the reference condition of the suction port temperature, the energy efficiency ratio (EER) improvement, and the refrigerator shutdown. As shown in FIG. 13 , the suction port temperature was decreased by 1.5°C, the EER was increased by 0.06, and 0.6% was improved in relation to the refrigerator burnout.
  • EER energy efficiency ratio
  • the heat dissipating member 111 of the shell 110 is increased, making it possible to reduce the suction refrigerant temperature.
  • the first and second heat dissipation fins 111a and 111b are installed in the oil storage unit 110c in which the oil is accommodated to increase the heat transfer coefficient and heat dissipation surface area. , the heat dissipation effect can be maximized.
  • linear compressor 100 is not limited to the configuration and method of the embodiments described above, and embodiments may be configured by selectively combining all or part of each embodiment so that various modifications can be made.
  • the present invention can be used in a linear compressor having a structure for preventing a decrease in compression efficiency due to overheating of the suction temperature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)

Abstract

오일을 수용 가능하게 하는 오일 저장부가 구비되고, 외관을 형성하는 쉘; 상기 쉘의 내부에 설치되며, 내부 공간을 구비하는 실린더; 상기 내부 공간에 왕복 운동 가능하도록 상기 실린더에 설치되고, 상기 내부 공간에 압축 공간을 형성 가능하게 하는 피스톤; 및 상기 내부 공간과 연통가능한 토출실을 내부에 구비하고, 상기 실린더의 일 측에 설치되는 토출부재를 포함하고, 상기 쉘의 일 측에는 상기 쉘의 내부의 열을 외부로 방출 가능하게 하도록 돌출되는 구조로 형성되는 방열부재가 설치되는 것을 특징으로 하는 리니어 압축기를 제공한다.

Description

리니어 압축기
본 발명은 리니어 압축기에 관한 것으로, 보다 상세하게는 흡입온도 과열에 의한 압축효율 저하를 방지하기 위한 구조를 가지는 리니어 압축기에 관한 것이다.
압축기는 냉매를 압축하는 방식에 따라 왕복동식 압축기, 로터리 압축기, 스크롤 압축기로 구분될 수 있다. 왕복동식 압축기는 피스톤과 실린더 사이에 압축공간이 형성되고 피스톤이 직선 왕복 운동하여 유체를 압축하는 방식이고, 로터리 압축기는 실린더 내부에서 편심 회전되는 롤러에 의해 유체를 압축하는 방식이며, 스크롤 압축기는 나선형으로 이루어지는 한 쌍의 스크롤이 맞물려 회전되어 유체를 압축하는 방식이다.
왕복동식 압축기는 회전 모터의 회전력을 직선운동으로 전환시켜 냉매를 압축하는 크랭크 방식과, 직선 왕복 운동을 하는 리니어 모터를 이용하여 냉매를 압축하는 진동 방식이 알려져 있다. 진동 방식의 왕복동식 압축기를 리니어 압축기라고 하며, 이러한 리니어 압축기는 회전 운동을 직선 왕복 운동으로 전환하는데 따르는 기계적인 손실이 없어 효율이 향상되고, 구조가 단순한 장점이 있다.
특허문헌 1(한국 특허 출원 제10-2018-0065583호(2018.6.7))에는 실린더와 피스톤 사이의 실질적인 마찰면적을 줄여 마찰손실을 줄일 수 있는 압축기가 개시되어 있다.
이러한 종래의 리니어 압축기에서 압축시에 발생되는 토출방의 열은 토출파이프를 통해 쉘의 외부로 방출되기도 하고 토출방과 접하고 있는 프레임과 실린더로 열이 전달되기도 하며, 토출커버를 통하여 열이 전달되기도 한다.
이 중, 내부로 방출되어지는 열은 흡입가스의 온도를 높이는 결과를 초래하여 리니어 압축기의 성능을 저하시키는 문제가 있다.
특히, 토출 커버를 통하여 전달되는 열 중에서 많은 부분을 차지하는 실린더와 피스톤 사이를 윤활한 오일 및 토출커버를 냉각시킨 고온의 오일이 열을 포함한채 쉘의 내부에 저장되고, 이들 오일에 의한 대류열 및 복사열로 인해 쉘 내부에 채워진 흡입 냉매가 과열되는 현상이 발생되는데, 이를 해소할 수 있는 구조의 개발이 요구된다.
본 발명은 상기의 과제를 해결하기 위해 안출된 것으로서, 본 발명의 일 목적은, 토출 커버를 통하여 전달되는 열 중에서 많은 부분을 차지하는 실린더와 피스톤 사이를 윤활한 오일 및 토출커버를 냉각시킨 고온의 오일이 열을 포함한채 쉘의 내부에 저장되고, 이들 오일에 의한 대류열 및 복사열로 인해 쉘 내부에 채워진 흡입 냉매가 과열되는 현상을 해소할 수 있는 구조를 가지는 리니어 압축기를 제공하는 것이다.
본 발명의 다른 일 목적은, 토출 커버를 통하여 전달되는 열 중에서 많은 부분을 차지하는 쉘 내부의 실린더와 피스톤 사이를 윤활한 오일 및 토출커버를 냉각시킨 고온의 오일과 접촉할 수 있는 위치에 방열부재가 설치되는, 쉘 내부의 상기 오일이 외부로 열전달을 향상시킬 수 있게 하는 구조를 가지는 리니어 압축기를 제공하는 것이다.
본 발명의 또 다른 일 목적은, 토출방의 고온의 실린더에서 피스톤으로 열을 전달하여 피스톤 내 흡입가스가 과열될 수 있기에, 펌핑되는 오일을 냉각시키면 토출커버에 대한 방열효과를 높여 전도열에 의한 압축실 내 냉매의 과열(예열)을 방지하여 흡입손실을 줄일 수 있는 구조를 가지는 리니어 압축기를 제공하는 것이다.
상기의 과제를 해결하기 위해, 본 발명의 리니어 압축기는, 오일을 수용 가능하게 하는 오일 저장부가 구비되고, 외관을 형성하는 쉘; 상기 쉘의 내부에 설치되며, 내부 공간을 구비하는 실린더; 상기 내부 공간에 왕복 운동 가능하도록 상기 실린더에 설치되고, 상기 내부 공간에 압축 공간을 형성 가능하게 하는 피스톤; 및 상기 내부 공간과 연통가능한 토출실을 내부에 구비하고, 상기 실린더의 일 측에 설치되는 토출부재를 포함하고, 상기 쉘의 일 측에는 상기 쉘의 내부의 열을 외부로 방출 가능하게 하도록 돌출되는 구조로 형성되는 방열부재가 설치된다.
본 발명과 관련된 일 예에 따르면, 상기 방열부재는, 상기 쉘의 내부에 배치되고, 일 방향으로 돌출되도록 형성되는 제1방열핀과, 상기 제1방열핀에 연결되고, 상기 쉘의 외부에 배치되며, 상기 일 방향과 반대 방향으로 돌출되도록 형성되는 제2방열핀을 포함한다.
또한, 상기 제1방열핀은, 쉘의 내측 방향으로 돌출 형성되고, 상기 제2방열핀은 상기 쉘의 외측을 향하도록 돌출 형성된다.
또한, 상기 방열부재는, 상기 제1 및 제2방열핀 사이에서 상기 일 방향과 교차하는 방향으로 배치되고, 상기 제1 및 제2방열핀을 지지하는 핀 지지부를 더 포함할 수 있다.
상기 제1방열핀의 일 방향으로 돌출 형성되는 길이는 상기 제2방열핀의 상기 일 방향과 반대 방향으로 돌출되도록 형성되는 길이 보다 길 수 있다.
제1 및 제2방열핀은 각각 복수 개로 구비되고, 상기 제1방열핀 사이에는, 상기 오일을 유동 가능하게 하는 오일 유로가 구비될 수 있다.
바람직하게는, 상기 제1방열핀은 상기 일 방향과 교차하는 방향으로 연장되며, 상기 복수 개의 제1방열핀의 일 측 단부 사이에, 오일을 흡입 가능하게 하도록 수용하는 오일 흡입부가 구비되도록, 상기 복수 개의 제1방열핀은 반경 방향으로 배치될 수 있다.
상기 오일 흡입부는, 상기 복수 개의 제1방열핀의 일 측 단부 사이에서 원형 또는 장방형의 형상으로 구비될 수 있다.
본 발명과 관련된 다른 일 예에 따르면, 상기 복수 개의 제1방열핀 중 일부는 반경 방향을 향하는 일 방향으로 배치되고, 상기 복수 개의 제1방열핀 중 다른 일부는 상기 반경 방향을 향하는 일 방향과 교차하는 방향으로 배치될 수 있다.
상기 제1방열핀은 내측 방향을 따라서 폭이 가변되도록 이루어질 수 있다.
단부가 오일 유동 제한핀과 접촉되는 제1방열핀 사이에는, 상기 오일의 유동이 제한되는 오일 통과 제한 유로가 구비될 수 있다.
상기 방열부재는, 상기 쉘에 용접, 볼팅 및 압입 중 하나의 방식으로 결합될 수 있다.
상기 쉘의 내부에는, 상기 오일 흡입부에 수용된 오일을 흡입 가능하도록 펌핑하여 상기 실린더로 오일의 공급을 가능하게 하는 급유유닛이 구비될 수 있다.
본 발명과 관련된 다른 일 예에 따르면, 본 발명의 리니어 압축기는, 상기 급유유닛으로부터 오일의 제공을 받도록 급유유닛의 내부와 연통 가능하고 제공받은 오일을 상기 토출부재로 공급 가능하도록 실린더의 일 면에 연결되는 오일 공급 유로를 구비하고, 상기 실린더를 고정 가능하도록 실린더의 외주에 결합되는 프레임을 더 포함하고, 오일 공급 유로를 통과하는 오일은 토출실의 주위에 구비된 토출부재의 외부에서 유동 가능하다.
본 발명과 관련된 또 다른 일 예에 따르면, 상기 토출부재는, 상기 실린더의 일 측에 설치되어, 상기 토출실을 형성하는 내부 토출 커버; 및 상기 토출실에 배치되고, 상기 압축공간의 압력이 기 결정된 압력 이상이 되면 개방되어 냉매를 상기 토출실로 유입 가능하게 하는 토출밸브를 포함하고, 오일 공급 유로를 통과하는 오일은 내부 토출 커버의 주위에서 유동 가능하다.
바람직하게는, 상기 방열부재는, 상기 쉘에 관통하여 결합될 수 있다.
상기의 또 다른 과제를 해결하기 위해, 본 발명의 리니어 압축기는, 오일을 수용 가능하게 하는 오일 저장부가 구비되고, 외관을 형성하는 쉘; 상기 쉘의 내부에 설치되며, 내부 공간을 구비하는 실린더; 상기 내부 공간에 왕복 운동 가능하도록 상기 실린더에 설치되고, 상기 내부 공간에 압축 공간을 형성 가능하게 하는 피스톤; 및 상기 내부 공간과 연통가능한 토출실을 내부에 구비하고, 상기 실린더의 일 측에 설치되는 토출부재를 포함하고, 상기 쉘의 일 측에는 상기 쉘의 내부의 열을 외부로 방출 가능하게 하도록 돌출되는 구조로 형성되는 방열부재가 설치되고, 상기 오일 저장부는, 상기 쉘의 내측 아래 부분에 구비되고, 상기 방열부재는 상기 오일 저장부에 설치된다.
상기 방열부재는, 상기 쉘의 내부에 배치되고, 일 방향으로 돌출되도록 형성되는 제1방열핀과, 상기 제1방열핀에 연결되고, 상기 쉘의 외부에 배치되며, 상기 일 방향과 반대 방향으로 돌출되도록 형성되는 제2방열핀과, 상기 제1 및 제2방열핀 사이에서 상기 일 방향과 교차하는 방향으로 배치되고, 상기 제1 및 제2방열핀을 지지하는 핀 지지부를 포함할 수 있다.
상기 방열부재는, 상기 쉘에 관통하여 결합될 수 있다.
본 발명과 관련된 다른 일 예에 따르면, 상기 오일 저장부는 상기 쉘의 하부에 구비되며, 상기 방열부재는, 상기 오일 저장부에 저장된 오일에 적어도 일부가 잠기도록 설치될 수 있다.
상기 제1방열핀의 일 측 단부 사이에는, 오일을 흡입 가능하게 하도록 수용하는 오일 흡입부가 구비되고, 상기 쉘의 내부에는, 상기 제1방열핀의 일 측 단부에 의해 감싸지도록 상기 오일 흡입부에 배치되는 오일 흡입관을 구비하여 상기 오일 흡입부에 수용된 오일을 흡입 가능하도록 펌핑하여 상기 실린더로 오일의 공급을 가능하게 하는 급유 유닛이 구비되고, 상기 제1방열핀은 복수 개로 구비되고, 상기 복수 개의 제1방열핀 사이에는, 상기 오일을 유동 가능하게 하는 오일 유로가 구비될 수 있다.
바람직하게는, 상기 오일 저장부는, 상기 쉘의 내부에서 상기 급유 유닛 보다 하측에 구비될 수 있다.
상기 복수 개의 제1방열핀은 반경 방향으로 배치되고, 상기 복수 개의 제1방열핀 중 일부는 반경 방향을 향하는 일 방향으로 배치되고, 상기 복수 개의 제1방열핀 중 다른 일부는 상기 반경 방향을 향하는 일 방향과 교차하는 방향으로 배치될 수 있다.
상기 복수 개의 제1방열핀은 방사형의 방향으로 배치될 수 있다.
상기 핀 지지부에는, 상기 복수 개의 제1방열핀 사이에 배치되고 상기 복수 개의 제1방열핀과 나란한 방향으로 돌출 형성되어 오일의 유동을 가이드하는 가이드 리브가 설치될 수 있다.
상기 핀 지지부에는, 상기 복수 개의 제1방열핀에서 상기 제1방열핀과 교차하는 방향으로 복수 개로 돌출 형성되는 미로 리브가 설치될 수 있다.
상기 쉘과 방열부재 사이에서의 오일의 유출을 방지하도록, 상기 방열부재가 결합되는 상기 쉘과 상기 방열부재 사이에는 실링부재가 설치될 수 있다.
오일을 수용 가능하게 하는 오일 저장부가 구비되고, 외관을 형성하는 쉘; 상기 쉘의 내부에 설치되며, 내부 공간을 구비하는 실린더; 상기 내부 공간에 왕복 운동 가능하도록 상기 실린더에 설치되고, 상기 내부 공간에 압축 공간을 형성 가능하게 하는 피스톤; 및 상기 내부 공간과 연통가능한 토출실을 내부에 구비하고, 상기 실린더의 일 측에 설치되는 토출부재를 포함하고, 상기 토출부재는, 상기 실린더의 일 측에 설치되어, 상기 토출실을 형성하는 내부 토출 커버; 및 상기 토출실에 배치되고, 상기 압축공간의 압력이 기 결정된 압력 이상이 되면 개방되어 냉매를 상기 토출실로 유입 가능하게 하는 토출밸브를 포함하고, 상기 쉘의 일 측에는 상기 쉘의 내부의 열을 외부로 방출 가능하게 하도록 돌출되는 구조로 형성되는 방열부재가 설치될 수 있다.
상기 방열부재는, 상기 쉘의 내부에 배치되고, 일 방향으로 돌출되도록 형성되는 제1방열핀과, 상기 제1방열핀에 연결되고, 상기 쉘의 외부에 배치되며, 상기 일 방향과 반대 방향으로 돌출되도록 형성되는 제2방열핀을 포함할 수 있다.
상기 방열부재는, 상기 제1 및 제2방열핀 사이에서 상기 일 방향과 교차하는 방향으로 배치되고, 상기 제1 및 제2방열핀을 지지하는 핀 지지부를 더 포함할 수 있다.
제1 및 제2방열핀은 각각 복수 개로 구비되고, 상기 제1방열핀 사이에는, 상기 오일을 유동 가능하게 하는 오일 유로가 구비될 수 있다.
상기 제1방열핀은 상기 일 방향과 교차하는 방향으로 연장되며, 상기 복수 개의 제1방열핀의 일 측 단부 사이에, 오일을 흡입 가능하게 하도록 수용하는 오일 흡입부가 구비되도록, 상기 복수 개의 제1방열핀은 반경 방향으로 배치될 수 있다.
바람직하게는, 상기 복수 개의 제1방열핀 중 일부는 반경 방향을 향하는 일 방향으로 배치되고, 상기 복수 개의 제1방열핀 중 다른 일부는 상기 반경 방향을 향하는 일 방향과 교차하는 방향으로 배치될 수 있다.
본 발명의 리니어 압축기는, 방열핀 구조가 쉘 내 오일과 쉘의 접촉면적을 넓혀 방열량을 증가시킬 수 있게 한다.
또한, 본 발명의 리니어 압축기는, 대류 열전달 계수(h)가 냉매에 비해 높은 오일 저장부에 제1 및 제2방열핀을 포함하는 방열부재를 장착하여 전열 면적(A)을 증가시켜서 쉘 내부에서 쉘 외부로의 열방출량을 극대화할 수 있다.
또한, 본 발명의 리니어 압축기는, 오일의 유속을 극대화시키기 위하여 오일 흡입부를 향하는 방향의 제1방열핀의 구조로 인해, 대류 열전달 계수의 값을 증가시키게 하였다.
본 발명의 리니어 압축기는, 제1방열핀을 통하여 쉘의 내부에서 쉘로 전달되고, 다시 쉘로부터 쉘의 외부로 방출되는 열의 양이 많아지면서 쉘의 온도는 보다 상승하여 쉘 외부와의 온도차가 상승하고 쉘 외부 방열핀을 통하여 전열 면적이 증가하여 쉘과 외부 공기와의 대류열전달과 복사열전달량이 증가하여 쉘의 외부로 방출하는 열량을 증가시켜서 흡입 냉매온도를 저감시키며 리니어 압축기의 효율은 증가되게 된다.
도 1은 본 발명의 리니어 압축기를 도시하는 단면도.
도 2는 도 1에서 실린더와 피스톤의 부분을 분해하여 도시한 분해 사시도.
도 3은 도 2의 실린더와 피스톤을 결합하여 도시한 사시도.
도 4는 리니어 압축기의 쉘 내부에 방열부재가 설치되어 있는 예를 확대하여 도시하는 확대 단면도.
도 5는 쉘의 저부에 방열부재가 설치되어 있는 예를 도시하는 사시도.
도 6은 방열부재의 평면도.
도 7은 방열부재의 사시도.
도 8은 도 7의 방열부재를 아래에서 바라본 사시도.
도 9는 오일흡입부가 왕복방향으로 긴 장방형으로 형성된 방열부재의 예를 도시하는 평면도.
도 10은 방사형 구조의 방열부재의 예를 도시하는 평면도.
도 11은 미로형 구조의 방열부재의 예를 도시하는 평면도.
도 12은 방열부재를 통한 방출되는 열의 유동과 그 외에 쉘의 외부로 방출되는 열의 유동을 도시하는 단면도.
도 13는 방열부재로 인한 효과를 도시하는 표.
본 명세서에서는 서로 다른 실시예라도 동일 또는 유사한 구성에 대해서는 동일 또는 유사한 참조번호를 부여하고, 이에 대한 중복되는 설명은 생략하기로 한다.
또한, 서로 다른 실시예라도 구조적, 기능적으로 모순이 되지 않는 한 어느 하나의 실시예에 적용되는 구조는 다른 하나의 실시예에도 동일하게 적용될 수 있다.
단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 명세서에 개시된 실시 예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 실시 예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
첨부된 도면은 본 명세서에 개시된 실시 예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되지 않으며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
이하, 본 발명에 의한 리니어 압축기(100)를 첨부도면에 도시된 일실시예에 의거하여 상세하게 설명한다.
도 1은 본 실시예에 따른 리니어 압축기(100)의 내부를 보인 단면도이다. 도 1을 참조하면, 본 실시예에 따른 리니어 압축기(100)는, 오일을 수용 가능하게 하는 오일 저장부(110c)가 구비되고, 외관을 형성하는 쉘(110)과, 쉘(110)의 내부에 설치되며, 내부 공간을 구비하는 실린더(120)와, 내부 공간에 왕복 운동 가능하도록 실린더(120)에 설치되고, 내부 공간에 압축공간(P)을 형성 가능하게 하는 피스톤(130)과, 내부 공간과 연통가능한 토출실(D)을 구비하고, 실린더(120)의 일 측에 설치되는 토출부재(160)를 포함한다.
또한, 쉘(110)의 일 측에는 상기 쉘(110)의 내부의 열을 외부로 방출 가능하게 하도록 돌출되는 구조로 형성되는 방열부재(111)가 설치된다.
본 발명의 리니어 압축기(100)는 흡입온도 과열에 의한 압축효율 저하를 방지하기 위한 구조를 가진다.
또한, 본 발명의 리니어 압축기(100)는, 토출 커버를 통하여 전달되는 열 중에서 많은 부분을 차지하는 피스톤(130) 윤활 오일을 이용하여 쉘(110)의 외부로의 열전달을 향상시킬 수 있는 구조를 가진다.
이하, 본 발명의 리니어 압축기(100)의 구조에 대하여 보다 상세히 서술하기로 한다.
쉘(110)은 도 1에 도시되는 바와 같이, 하부 쉘(110a) 및 상부 쉘(110b)이 결합되어 구성될 수 있다.
쉘(110)에는 냉매가 유입되는 흡입부(101) 및 실린더(120)의 내부에서 압축된 냉매가 배출되는 토출부(105)가 포함된다. 토출부(105)는 일례로, 압축된 냉매를 배출 가능하게 하는 파이프일 수 있다. 흡입부(101)를 통하여 흡입된 냉매는 흡입머플러(150)를 거쳐 피스톤(130)의 내부로 이동한다. 냉매가 흡입머플러(150)를 통과하는 과정에서 소음이 저감될 수 있다.
도 1, 도 4 및 도 5에는 하부 쉘(110a)에 방열부재(111)가 설치되는 예가 도시된다.
또한, 방열부재(111)의 평면도가 도 6에 도시되고, 방열부재(111)의 사시도가 도 7 및 도 8에 도시되어 있다.
이하, 도 6 내지 도 8을 참조하여, 방열부재(111)의 구성에 대하여 서술한다.
전술한 바와 같이, 방열부재(111)는 하부 쉘(110a)에 설치될 수 있는데, 보다 상세하게는, 흡입부(190) 측의 주변에 위치될 수 있고, 보다 정확하게는, 흡입부(190)의 오일 흡입관(193)이 방열부재(111)에 의해 일부가 수용되는 구조이다.
또한, 방열부재(111)는 하부 쉘(110a)의 저면에서 하부 쉘(110a)을 관통하도록 결합될 수 있으며, 이러한 구조가 도 1, 도 4 및 도 5에 도시된다.
한편, 하부 쉘(110a)의 저면과 방열부재(111) 사이에서의 오일의 유출을 방지하도록, 방열부재(111)이 결합되는 하부 쉘(110a)의 저면의 일부와 방열부재(111) 사이에는 실링부재가 설치되어 하부 쉘(110a)의 저면에서 방열부재(111)의 주변으로 오일이 누수되지 않도록 이루어지는 것이 바람직하다.
도 6에 도시되는 바와 같이, 방열부재(111)는 전체적으로 기 결정된 폭을 구비하는 원통형의 형상일 수 있는데, 쉘(110)의 내부의 열을 외부로 방출 가능하게 하는 돌출되는 구조를 포함하도록 형성되게 된다.
또한, 전체적으로 후술하는 제1 및 제2방열핀(111a, 111b)들 각각은 반경 방향으로 배치되며, 원주 방향을 따라 제1 및 제2방열핀(111a, 111b)들이 기 설정된 간격을 유지하면서 배치되는 예를 도 6을 통해 확인할 수 있다.
하지만, 방열부재(111)의 형상은 반드시 이러한 원통형의 형상 구조에 한정되는 것은 아니며, 쉘(110)의 형상이나 방열부재(111) 주변의 구성들을 고려하여 방열을 효율적으로 가능하게 하는 다각형의 형태나 기타 다른 형상으로 이루어질 수 있다.
방열부재(111)는 제1방열핀(111a)과 제2방열핀(111b)을 포함할 수 있다.
제1방열핀(111a)은, 쉘(110)의 내부에 배치되고, 일 방향으로 돌출되도록 형성된다.
제2방열핀(111b)은, 상기 제1방열핀(111a)에 연결되고, 상기 쉘(110)의 외부에 배치되며, 상기 일 방향과 반대 방향으로 돌출되도록 형성된다.
도 1 및 도 7 등을 참조하면, 제1방열핀(111a)은 제2방열핀(111b) 보다 길게 형성될 수 있는데, 제1방열핀(111a)은 최대한 높게 형성되어 방열면적을 최대한 확보할 수 있게 하는 것이 바람직하다.
반면, 제2방열핀(111b)의 배열 구조와 관련하여, 리니어 압축기의 경우 냉장고의 기계실에 설치되는데, 냉장고의 기계실에는 팬이 설치되어 있기에, 공기의 유동은 일방향으로 이루어지게 되며, 이점을 고려하여, 제1방열핀과 같은 방향으로 형성될 수 있다.
하지만, 반드시 이러한 구조에 한정되는 것은 아니고, 제2방열핀(111b)은 후술하는 도 10 및 도 11의 제1방열핀(311a, 411b)의 배열되는 것과 같이, 방사형 구조로 형성될 수도 있다.
일례로, 제1방열핀(111a)은, 쉘(110)의 내부에서 내측 방향으로 돌출 형성되고, 상기 제2방열핀(111b)은 상기 쉘(110)의 외측을 향하도록 돌출되는 예가 도 7 및 도 8에 상세히 도시된다.
보다 구체적으로, 도 5, 도 7 및 도 8에는 쉘(110)의 내부에서, 제1방열핀(111a)은 원주 방향으로 기결정된 폭을 가지고 있으며, 제1방열핀(111a)은 상부를 향하여 돌출 형성되어 있다.
마찬가지로, 도 5, 도 7 및 도 8에는 쉘(110)의 외부에서, 제2방열핀(111b)은 원주 방향으로 기결정된 폭을 가지고 있으며, 제2방열핀(111b)은 하부를 향하여 돌출 형성되어 있다.
또한, 방열부재(111)는 제1 및 제2방열핀(111a, 111b)을 지지하는 핀 지지부(114)를 더 포함할 수 있는데, 핀 지지부(114)는 제1 및 제2방열핀(111a, 111b) 사이에서 상기 제1 및 제2방열핀(111a, 111b)과 교차하는 방향으로 배치된다.
도 7 및 도 8에는 제1 및 제2방열핀(111a, 111b) 사이에서, 제1 및 제2방열핀(111a, 111b)을 지지하는 핀 지지부(114)와, 핀 지지부(114)에 연결되어 있는 제1 및 제2방열핀(111a, 111b)이 도시된다.
도 6 내지 도 8을 참조하면, 핀 지지부(114)는 기 결정된 폭의 원판 형상인 예가 도시되는데, 핀 지지부(114)가 원판 형상으로 형성됨에 따라, 제1 및 제2방열핀(111a, 111b)은 원판의 원주면까지 연장되어 있어서, 전체적으로 원통형의 형상일 수 있다.
한편, 제1 및 제2방열핀(111a, 111b)은 복수 개로 구비될 수 있다. 쉘(110)의 내측에 배치된 복수의 제1방열핀(111a)의 사이에는 오일을 유동 가능하게 하는 오일 유로(111c)가 구비될 수 있다.
도 7 및 도 8에는 복수 개의 제1방열핀(111a)이 원주 방향으로 이격되도록 배치되어 있으며, 제1방열핀(111a) 사이에 오일 유로(111c)가 구비되어 있다. 각각의 오일 유로(111c)는 반경방향으로 형성되어 후술하는 오일 흡입부(111d)에 연통되도록 구비된다.
또한, 도 7에는 오일 유로(111c)가 원주 방향으로 제1방열핀(111a) 사이에서 구비되어 있고, 반경방향으로 오일 흡입부(111d)까지 형성되어 있는 예가 도시된다.
이러한 구조에 의해, 오일 저장부(110c)에 수용된 오일은 오일 유로(111c)를 통해 오일 흡입부(111d)에 오일이 공급될 수 있게 된다.
복수의 제1방열핀(111a) 중에서, 제1방열핀(111a)의 단부가 오일 유동 제한핀(113)과 접촉되는 제1방열핀(111a)들 사이에는, 상기 오일의 유동이 제한되는 오일 통과 제한 유로(111e)가 구비되게 된다.
오일 유로(111c)의 주변에 오일 유동 제한핀(113)에 의해 오일이 제한되는 오일 통과 제한 유로(111e)가 구비되는 예가 도 7 및 도 8에 도시된다.
한편, 오일 흡입부(111d)에는 후술하는 급유유닛(190)이 연결될 수 있다.
오일 저장부(110c)는 쉘(110)의 내측 아래 부분에 구비될 수 있고, 방열부재(111)는 오일 저장부(110c)에 설치될 수 있다. 도 5에서 방열부재(111)가 설치된 곳이, 쉘(110)의 내부에서 오일이 저장되는 곳으로 이해될 수 있다.
제1방열핀(111a)은, 제1방열핀(111a)이 돌출되는 방향인 일 방향과 교차하는 방향으로 연장된다. 또한, 복수 개의 제1방열핀(111a)의 일 측 단부 사이에는, 오일을 흡입 가능하게 하도록 수용하는 오일 흡입부(111d)가 구비되도록, 상기 복수 개의 제1방열핀(111a)은 반경 방향으로 배치될 수 있다.
오일 흡입부(111d)에 수용된 오일은 후술하는 급유유닛(190)에 의해 펌핑되어 실린더(120)로 오일이 공급되게 된다.
오일 흡입부(111d)는 도 7에 도시된 바와 같이, 핀 지지부(114)의 중심을 향하는 복수의 제1방열핀(111a)의 단부 내측으로 기 결정된 부피를 가지는 원통형의 형상으로 형성될 수 있다.
하지만, 반드시 이러한 구조에 한정되는 것은 아니다.
한편, 제1방열핀(111a)은 내측 방향을 따라서 다른 폭을 구비할 수 있다.
다시 말해서, 도 7 및 도 8을 참조하면, 제1방열핀(111a)은 핀 지지부(114)의 중심 방향으로 다른 폭을 구비할 수 있는데, 핀 지지부(114)의 중심 방향인 내측 방향으로 점진적으로 넓은 폭을 구비할 수 있게 된다.
제1방열핀(111a)이 다른 폭을 구비하는 구조에 의해, 오일 흡입부(111d)로 유동하는 오일의 속도는 향상될 수 있으며, 이는 다이렉트 오일 흡입 구조로 이해될 수 있다.
방열부재(111)는 오일 유동 제한핀(113)을 더 포함할 수 있는데, 오일 유동 제한핀(113)은, 복수 개의 제1방열핀(111a) 중 일부와 다른 일부 사이에 배치되어서 오일의 유동을 제한하게 한다.
도 7 및 도 8에는 오일 유동 제한핀(113)이 기 결정된 각을 유지하면서, 4개로 배치되어 있는 예가 도시되어 있다. 4개의 오일 유동 제한핀(113) 사이에는, 복수 개의 제1방열핀(111a)이 배치되는데, 도면 기준으로 전후 방향으로 일부의 제1방열핀(111a)이 연장되고, 좌우 방향으로 다른 일부의 제1방열핀(111a)이 연장되게 된다.
도 7 및 도 8에는, 총 40개의 제1방열핀(111a)과, 그들 사이에 4개의 오일 유동 제한핀(113)이 도시되어 있으며, 전방에 10개, 우측에 9개, 좌측에 11개 및 후방에 10개가 배치되어 있는 예가 도시된다.
하지만, 제1방열핀(111a)은 이러한 개수에 반드시 한정되는 것은 아니다.
이와 같이, 복수 개의 제1방열핀(111a) 중 일부는 반경 방향을 향하는 일 방향으로 배치되고, 복수 개의 제1방열핀(111a) 중 다른 일부는 상기 반경 방향을 향하는 일 방향과 교차하는 방향으로 배치될 수 있게 된다.
전술한 전방 및 후방 각각의 10개가 반경 방향을 향하는 일 방향(도면 상의 전후 방향)으로 배치되고, 우측의 9개 및 좌측의 11개가 반경 방향을 향하는 일 방향과 교차하는 방향(도면 상의 좌우 방향)으로 배치될 수 있다.
한편, 제2방열핀(111b)은, 쉘(110)의 외부에서 외측 방향으로 돌출 형성되는 예가 도 4 및 도 5에 도시된다.
보다 구체적으로, 도 5, 도 7 및 도 8에는 쉘(110)의 외부에서, 제2방열핀(111b)은 원주 방향으로 기결정된 폭을 가지고 있으며, 제2방열핀(111b)은 하부를 향하여 돌출 형성되어 있다.
도 7 및 도 8에는 복수 개의 제2방열핀(111b)이 원주 방향으로 이격되도록 배치되어 있으며, 전술한 바와 같이, 제1방열핀(111a) 사이에 오일 유로(111c)가 구비되어 있다. 각각의 오일 유로(111c)는 반경방향으로 형성되어 후술하는 오일 흡입부(111d)에 연통되도록 구비된다.
이러한 구조에 의해, 오일 저장부(110c)에 수용된 오일은 오일 유로(111c)를 통해 오일 흡입부(111d)에 오일이 공급될 수 있게 되며, 이때, 제1방열핀(111a)으로부터 오일 유동 제한핀(113)을 통해 제2방열핀(111b)으로 열이 전달될 수 있고, 제2방열핀(111b)으로부터 외부로 열이 배출된다.
오일 저장부(110c)는 쉘(110)의 내측 아래 부분에 구비될 수 있고, 방열부재(111)는 오일 저장부(110c)에 설치될 수 있다. 도 5에서 방열부재(111)가 설치된 곳이, 하부 쉘(110b)의 내부에서 오일이 저장되는 곳으로 이해될 수 있다.
제2방열핀(111b)은, 제1방열핀(111a)의 구조와 마찬가지로, 제2방열핀(111b)이 돌출되는 방향인 일 방향과 교차하는 방향으로 연장된다.
한편, 제2방열핀(111b)도 내측 방향을 따라서 다른 폭을 구비할 수 있는데, 이러한 구조에 의해 제1방열핀(111a)으로에서 오일 유동 제한핀(113)을 통해 전달되는 열이 효과적으로 외부로 방출되게 된다.
다시 말해서, 도 8에 도시된 바와 같이, 제1방열핀(111a)의 구조와 마찬가지로, 제2방열핀(111b)은 핀 지지부(114)의 중심 방향으로 다른 폭을 구비할 수 있는데, 핀 지지부(114)의 중심 방향인 내측 방향으로 점진적으로 넓은 폭을 구비할 수 있게 된다.
도 7에는 오일 유동 제한핀(113)이 기 결정된 각을 유지하면서, 4개로 배치되어 있는 예가 도시되어 있다. 4개의 오일 유동 제한판 사이에는, 복수 개의 제2방열핀(111b)이 배치되는데, 도면에 명백히 도시되지는 않았지만, 도면 기준으로 전후 방향으로 일부의 제2방열핀(111b)이 연장되고, 좌우 방향으로 다른 일부의 제2방열핀(111b)이 연장되게 된다.
도 8에 도시된 바와 같이, 제2방열핀(111b)의 개수와 관련하여 전술한 바와 같이, 총 40개의 제2방열핀(111b)과, 그들 사이에 4개의 오일 유동 제한핀(113)이 도시되어 있으며, 아래쪽에 10개, 우측에 9개, 좌측에 11개 및 위쪽에 10개가 배치되어 있는 것으로 이해될 수 있다.
하지만, 제2방열핀(111b)은 이러한 개수에 반드시 한정되는 것은 아니다.
이와 같이, 전술한 제1방열핀(111a)과 마찬가지로, 복수 개의 제2방열핀(111b) 중 일부는 반경 방향을 향하는 일 방향으로 배치되고, 복수 개의 제2방열핀(111b) 중 다른 일부는 상기 반경 방향을 향하는 일 방향과 교차하는 방향으로 배치될 수 있게 된다.
전술한 전방 및 후방 각각의 10개가 반경 방향을 향하는 일 방향(도면 상의 전후 방향)으로 배치되고, 우측의 9개 및 좌측의 11개가 반경 방향을 향하는 일 방향과 교차하는 방향(도면 상의 좌우 방향)으로 배치될 수 있다.
한편, 방열부재(111)는, 하부 쉘(110a)에 용접, 볼팅 및 압입 중 하나의 방식으로 결합될 수 있다. 도 5에는 하부 쉘(110a)의 저면에 방열부재(111)가 결합되어 있는 예가 도시되며, 어떠한 결합방식인지 명백히 도시되어 있지는 않지만, 용접, 볼팅 및 압입 중 하나의 방식으로 결합된 것으로 이해될 수 있다.
또한, 방열부재(111)는, 하부 쉘(110a)에 용접, 볼팅 및 압입 중 하나의 방식으로 결합되면서, 전술한 바와 같이, 하부 쉘(110a)의 저면의 일부와 방열부재(111) 사이에는 실링부재가 설치되어 하부 쉘(110a)의 저면에서 방열부재(111)의 주변으로 오일이 누수되지 않도록 이루어지는 것이 바람직하다.
한편, 도 9에는 오일 흡입부(211d)가 왕복방향으로 긴 장방형으로 형성된 방열부재(211)의 예를 도시하는 평면도가 도시된다.
도 9를 참조하여, 다른 실시예의 방열부재(211)에 대하여 서술한다.
도 9에서 도시된 실시예의 방열부재(211)는, 제1방열핀(211a)의 배열이 상하 및 좌우 방향으로 배열된 점에 대해서는 도 6의 설명 부분에서 전술한 방열부재(111)와는 차이가 없으나, 오일 흡입부(111d)가 도 6에서는 원형의 구조로 형성되는 반면 도 9에서의 방열부재(211)는 오일 흡입부(211d)가 왕복방향(좌우방향)으로 긴 장방형의 타원형의 구조로 이루어진 점에서 전술한 방열부재(111)와 차이가 있다.
이런 구조에 의해 급유유닛(190)이 오일 흡입관(193)이 왕복 방향으로 진동할 때 오일 흡입부(211d)의 내부면을 이루는 제1방열핀(211a)의 내주면과의 충돌 가능성을 최소화할 수 있게 된다.
또한, 도 9에는 제2방열핀(211b), 오일 유로(211c), 핀 지지부(214), 오일 흡입부(211d), 오일 통과 제한 유로(211e) 및 오일 유동 제한핀(213)이 도시되어 있으며, 이러한 구성은 도 6 내지 도 8의 방열부재(111)에 관한 설명으로 갈음하기로 한다.
도 10에는 방사형 구조의 방열부재(311)의 예를 도시하는 평면도가 도시된다.
이하, 도 10을 참조하여, 또 다른 실시예인 방사형 구조의 방열부재(311)에 대하여 서술한다.
도 10에서 도시된 실시예의 방열부재(311)는, 제1방열핀(311a)의 배열이 방열부재(311)의 중심 부근을 향하도록 배열되어 있는 점에서 도 6 및 도 9에서 전술한 방열부재(111, 211)와 차이가 있다. 오일 흡입부(311d)가 도 6에서와 같은 원형의 구조로 형성된다.
이러한, 제1방열핀(311a)의 배열이 방열부재(311)의 중심 부근을 향하도록 배열되는 방사형 구조의 경우, 도 6에서 전술한 구조의 방열부재(111)에서와 오일 유동 제한핀(113)과 같은 오일 통과 제한 유로(111e)가 구비되지 않아, 막힘구조 없이 오일 유로(311c)를 통한 오일의 유동이 원활히 가능하게 된다.
한편, 핀 지지부(314)에는, 상기 복수 개의 제1방열핀(311a) 사이에 배치되고 상기 복수 개의 제1방열핀(311a)과 나란한 방향으로 돌출 형성되어 오일의 유동을 가이드하는 가이드 리브(311e)가 설치되어, 오일의 원활한 유동을 가이드할 수 있게 한다.
한편, 도 11에는 미로형 구조의 방열부재(411)의 예를 도시하는 평면도가 도시된다.
이하, 도 11을 참조하여, 또 다른 실시예인 미로형 구조의 방열부재(411)에 대하여 서술한다.
도 11에서 도시된 실시예의 방열부재(411)는, 제1방열핀(411a)의 배열이 방열부재(311)의 중심 부근을 향하도록 배열되어 있는 점에서 도 10에서 전술한 방열부재(311)와는 차이가 없다. 오일 흡입부(411d)는 도 6 및 도 10에서와 같은 원형의 구조로 형성된다.
이러한, 미로형 구조의 방열부재(411)는 제1방열핀(411a)의 배열이 방열부재(411)의 중심 부근을 향하도록 배열되는 방사형 구조의 경우, 도 10에서 전술한 바와 같이, 도 6의 구조의 방열부재(111)에서와 오일 유동 제한핀(113)과 같은 오일 통과 제한 유로(111e)가 구비되지 않아, 막힘구조 없이 오일 유로(411c)를 통한 오일의 유동이 원활히 가능하게 된다.
한편, 상기 핀 지지부(414)에는, 상기 복수 개의 제1방열핀(411a)에서 상기 제1방열핀(411a)과 교차하는 방향으로 복수 개로 돌출 형성되는 미로 리브(411e)가 설치되는 예가 도 11에 도시되는데, 오일을 오래 머물게 하여 열전달의 효율을 보다 증가시킬 수 있게 한다.
실린더(120)의 내부에는 피스톤(130)에 의하여 냉매가 압축되는 압축공간(P)이 형성된다. 그리고, 피스톤(130)에는 압축공간(P)으로 냉매를 유입시키는 흡입구멍(131b)이 형성되며, 흡입구멍(131b)의 일측에는 흡입구멍(131b)을 선택적으로 개방하는 흡입밸브(133)가 구비된다. 흡입밸브(133)는 강판으로 이루어질 수 있다.
압축공간(P)의 일측에는 그 압축공간(P)에서 압축된 냉매를 배출시키기 위한 토출부재(160)가 구비된다. 즉, 압축공간(P)은 피스톤(130)의 일측 단부와 토출부재(160)의 사이에 형성되는 공간으로 이해될 수 있다. 또한, 본 발명에서, 토출부재(160)는 토출밸브(162)를 포함하는 구조체인 토출 밸브 조립체로 이해될 수 있다.
토출부재(160)는 냉매의 토출실(D)을 형성하고, 실린더(120)의 일 측에 설치되는 내부 토출 커버(161)와, 압축공간(P)의 압력이 토출압력 이상이 되면 개방되어 냉매를 토출실(D)로 유입시키는 토출밸브(162)를 포함한다.
내부 토출 커버(161)의 주위에는 후술하는 프레임(170)의 오일 공급 유로(173)를 통과하는 오일이 내부 토출 커버(161)의 주위에서 유동 가능하게 된다. 일례로, 도 1 및 도 4에 명백히 도시되지는 않았지만, 내부 토출 커버(161)의 외주에 오일이 유동할 수 있는 오일홈을 구비할 수 있다.
또한, 토출부재(160)는 토출밸브(162)와 내부 토출 커버(161)의 사이에 구비되어 피스톤(130)의 왕복방향으로 탄성력을 부여하는 밸브스프링(163)을 더 포함할 수 있다. 여기서, 피스톤(130)의 왕복방향은 "축방향"으로 이해될 수 있는데, 또한, 도 1에서 좌우로 피스톤(130)이 이동하는 방향으로 이동하는 것과 동일한 의미로 이해될 수 있다.
흡입밸브(133)는 압축공간(P)의 일측에 형성되고, 토출밸브(162)는 압축공간(P)의 타측, 즉 흡입밸브(133)의 반대측에 구비될 수 있다.
피스톤(130)이 실린더(120)의 내부에서 왕복운동을 하는 과정에서, 압축공간(P)의 압력이 토출압력보다 낮고 흡입압력 이하가 되면 흡입밸브(133)가 개방되어 냉매는 압축공간(P)으로 흡입된다. 반면, 압축공간(P)의 압력이 흡입압력 이상이 되면 흡입밸브(133)가 닫힌 상태에서 압축공간(P)의 냉매가 압축된다.
한편, 압축공간(P)의 압력이 토출압력 이상이 되면, 밸브스프링(163)이 변형하여 토출밸브(162)를 개방시키고, 냉매는 압축공간(P)으로부터 토출되어, 내부 토출 커버(161)의 토출실(D)으로 배출된다.
그리고, 토출실(D)의 냉매는 내부 토출 커버(161)를 거쳐 루프 파이프(164)로 유입된다. 내부 토출 커버(161)는 압축된 냉매의 유동 소음을 저감시킬 수 있으며, 루프 파이프(164)는 압축된 냉매를 토출부(105)로 안내한다. 루프 파이프(164)는 내부 토출 커버(161)에 결합되어 굴곡지게 연장되며, 토출부(105)에 결합된다. 또한, 토출부(105)를 통하여 압축시에 토출실(D)에서 발생된 열이 쉘(110)의 외부로 방출될 수 있다. 토출부재(160)는 내부 토출 커버(161)에 결합되는 외부 토출 커버(165)를 더 포함할 수 있다. 루프 파이프(164)는 내부 토출 커버(161)와 기 결정된 거리만큼 이격 배치된 외부 토출 커버(165)에 결합될 수 있다.
한편, 본 발명의 리니어 압축기(100)는 프레임(170)을 더 포함할 수 있다. 프레임(170)은 실린더(120)를 고정시키는 부재로서, 실린더(120)와 일체로 구성되거나 별도의 체결부재에 의하여 체결될 수 있다. 또한, 내부 토출 커버(161)는 프레임(170)에 결합될 수 있다.
또한, 프레임(170)은, 오일 공급 유로(173)를 구비하는데, 오일 공급 유로(173)는, 급유유닛(190)으로부터 오일의 제공을 받도록 급유유닛(190)의 내부와 연통 가능하고 제공받은 오일을 상기 토출부재(160)로 공급 가능하도록 실린더(120)의 일 면에 연결된다.
오일 공급 유로(173)은 도 1에 도시되는 바와 같이, 단면기준으로 쉘(110)의 아래쪽에서 좌상방향을 향해서 형성되어 있으나 반드시 이러한 방향에 한정되는 것은 아니다.
오일은 오일 공급 유로(173)를 통과하여 토출실(D)의 주위에 구비된 토출부재(160)의 외부에서 유동 가능하다. 이를 위해, 토출부재(160)의 외주에는 방열을 가능하게 하도록 오일을 통과시키고, 다시 오일 저장부(110c)로 공급 가능하도록 형성되는 유로가 구비될 수 있다.
본 발명에서, 피스톤(130)의 압축에 의해 발생되어지는 토출실(D)의 열은 전술한 토출부(105)를 통해 쉘(110)의 외부로 방출되거나 토출실(D)과 인접하는 프레임(170) 및 실린더(120)를 통하여 열전달이 이루어지게 된다.
본 발명의 리니어 압축기(100)에서의 오일을 통한 쉘(110) 내부와 외부에서의 열전달 시스템에 대하여 서술한다.
도 1 및 도 12에는 실선의 화살표는 오일을 통한 쉘(110)의 내부와 외부에서의 열전달 시스템이 도시되고, 점선의 화살표는 내부 토출 커버(161)에서 쉘(110) 내부로의 복사 대류 열전달 시스템이 도시된다.
도 1 및 도 12에 도시된 바와 같이, 오일저장부에 수용된 오일은 급유유닛(190)을 통하여 펌핑되고, 프레임(170)의 오일 공급 유로(173)를 통하여 실린더(120)의 단부로 제공된다. 실린더(120)의 단부에서, 토출부재(160)로 오일이 유입되는데, 도 1에서 도시되는 바와 같이, 토출부재(160)로 유입된 오일은, 토출실(D)의 주위에 구비된 토출부재(160)의 외주에서 유동하게 된다.
또한, 토출부재(160)의 외주에서 유동한 오일은 쉘(110)의 오일 저장부(110c)에 적층되게 된다.
이와 같이, 오일은 토출부재(160)에서 토출실(D)로부터 열을 전달받고, 가열된 오일은 오일 저장부(110c)에 적층되고, 방열부재(111)의 제1 및 제2방열핀(111a, 111b)를 통하여 쉘(110)의 저면으로 열이 방출되게 된다.
도 12에는 방열부재(111)를 통한 방출되는 열의 유동과 그 외에 쉘(110)의 외부로 방출되는 열의 유동이 도시된다.
도 12을 참조하면, 전술한 바와 같이, 쉘(110)의 외부로 열이 방출되거나, 토출부재(160)의 주위에서 유동하는 오일이 오일 저장부(110c)에 저장되고, 방열부재(111)를 통하여 열을 외부로 배출 가능하게 하는 예가 도시된다.
이와 관련하여, 본 발명의 리니어 압축기(100)는, 대류 열전달 계수(h)가 냉매에 비해 높은 오일 저장부(110c)에 제1 및 제2방열핀(111a, 111b)을 포함하는 방열부재(111)를 장착하여 전열 면적(A)을 증가시켜서 쉘(110) 내부에서 쉘(110) 외부로의 열방출량을 극대화할 수 있다.
또한, 오일의 유속을 극대화시키기 위하여 오일 흡입부(111d)를 향하는 방향의 제1방열핀(111a)의 구조로 인해, 대류 열전달 계수의 값을 증가시키게 하였다.
또한, 제1방열핀(111a)을 통하여 쉘(110)의 내부에서 쉘(110)로 전달되고, 다시 쉘(110)로부터 쉘(110)의 외부로 방출되는 열의 양이 많아지면서 쉘(110)의 온도는 보다 상승하여 쉘(110) 외부와의 온도차(ΔT)가 상승하고 쉘(110) 외부 방열핀을 통하여 전열 면적(A)가 증가하여 쉘(110)과 외부 공기와의 대류열전달과 복사열전달량이 증가하여 쉘(110)의 외부로 방출하는 열량을 증가시켜서 흡입 냉매온도를 저감시키며 리니어 압축기(100)의 효율은 증가되게 된다.
이러한 전도 및 복사로 인한 열의 방출과 관련하여, 하기의 [수학식 1] 내지 [수학식 4]이 적용될 수 있다.
실린더(120), 토출부재(160) 및 쉘(110) 등에서의 전도로 인한 열 전달과 관련하여서는, [수학식 1]이 적용될 수 있다.
[수학식 1]
Qcov = h * A * ΔT
[수학식 1]에서, Qcov는 전도로 인해 전달되는 열량, h는 대류 열전달 계수, A는 전열 면적, ΔT 온도차를 나타낸다.
[수학식 2]는 [수학식 1]을 보다 구체화한 식이다.
[수학식 2]
Qcov = h * As * (Ts - T)
[수학식 2]에서, Qcov는 전도로 인해 전달되는 열량, h는 대류 열전달 계수, As는 쉘(110)에서 열이 전도되는 전열 면적, Ts - T는 외기 온도 및 쉘(110)의 온도 간의 차이를 나타낸다.
전도로 인해 전달되는 열량과 관련하여, 냉매(R600a)의 열전도 계수는 0.0177 W/m-K(0.559 bar 압력과, 32.2 ℃온도 기준)이고, 오일의 열전도 계수는 0.18 W/m-K (40 ℃온도 기준)이다.
실린더(120), 토출부재(160) 및 쉘(110) 등에서의 복사로 인한 열 전달과 관련하여서는, [수학식 3]이 적용될 수 있다.
[수학식 3]
Qrad = ε * A * (Ts - T)
[수학식 3]에서, Qrad는 복사로 인해 전달되는 열량, ε는 복사 열전달 계수, A는 전열 면적, Ts-T는 외기 온도 및 쉘(110)의 온도 간의 차이를 나타낸다.
[수학식 4]
Qrad = σ * εs * s * (Ts 4 - T 4)
[수학식 4]에서, Qrad는 복사로 인해 전달되는 열량, σ는 스테판 볼츠만 상수 5.6703 * 10-8 [W/(㎡ * K4)], εs 는 복사 열전달 계수, As는 쉘(110)에서 열이 전도되는 전열 면적, T는 외기 온도이고, Ts는 쉘(110)의 온도를 나타낸다.
방열부재(111)에 의한 개선효과에 대해서는 후술하기로 한다.
또한, 본 발명의 리니어 압축기(100)는 모터유닛(140)을 더 포함할 수 있다.
모터유닛(140)은, 피스톤(130)에 구동력을 부여하게 한다. 모터유닛(140)은, 프레임(170)에 고정되어 실린더(120)를 둘러싸도록 배치되는 아우터 스테이터(141)와, 아우터 스테이터(141)의 내측으로 이격되어 배치되는 이너 스테이터(142)와, 아우터 스테이터(141)와 이너 스테이터(142)의 사이 공간에 위치하는 마그네트(143)를 포함한다.
마그네트(143)는 영구자석으로 이루어져 아우터 스테이터(141) 및 이너 스테이터(142)와의 상호 전자기력에 의하여 직선 왕복 운동할 수 있다. 그리고, 마그네트(143)는 1개의 극을 가지는 단일 자석으로 구성되거나, 3개의 극을 가지는 다수의 자석이 결합되어 구성될 수 있다.
또한, 마그네트(143)는 연결부재(144)에 의하여 피스톤(130)에 결합될 수 있다. 연결부재(144)는 피스톤(130)의 일측 단부로부터 마그네트(143)으로 연장될 수 있다. 이로써, 마그네트(143)가 직선 이동함에 따라, 피스톤(130)은 마그네트(143)와 함께 축 방향으로 직선 왕복 운동할 수 있다.
한편, 아우터 스테이터(141)에는 스테이터 코어(141a) 및 코일 권선체(145)가 포함된다. 스테이터 코어(141a)는 복수 개의 라미네이션(lamination)이 원주방향으로 적층되며, 코일 권선체(145)를 둘러싸도록 배치될 수 있다
상기와 같은, 본 실시예에 따른 리니어 압축기(100)는, 모터유닛(140)에 전류가 인가되면, 코일 권선체(145)에 전류가 흐르게 되고, 코일 권선체(145)에 흐르는 전류에 의해 코일 권선체(145)의 주변에 자속(flux)이 형성되며, 자속은 아우터 스테이터(141) 및 이너 스테이터(142)를 따라 폐회로를 형성하면서 흐르게 된다.
아우터 스테이터(141)와 이너 스테이터(142)를 따라 흐르는 자속과, 마그네트(143)의 자속이 상호 작용하여, 마그네트(143)를 이동시키는 힘이 발생될 수 있다.
아우터 스테이터(141)의 일측에는 스테이터 커버(146)가 구비된다. 아우터 스테이터(141)의 일측단은 프레임(170)에 의하여 지지되며, 타측단은 상기 스테이터 커버(146)에 의하여 지지될 수 있다.
이너 스테이터(142)는 실린더(120)의 외주에 고정된다 그리고, 이너 스테이터(142)는 다수 개의 스테이터 코어가 실린더(120)의 외주면에 원주 방향을 따라 방사상으로 적층된다.
리니어 압축기(100)에는, 피스톤(130)을 지지하는 서포터(181) 및 피스톤(130)으로부터 흡입부(101)를 향하여 연장되는 백 커버(182)가 더 포함된다. 백 커버(1182)는 흡입머플러(150)의 적어도 일부분을 커버하도록 배치될 수 있다.
리니어 압축기(100)에는 피스톤(130)이 공진 운동할 수 있도록 복수의 스프링(183a,183b)이 포함된다. 스프링은 축방향으로 구비된 압축코일 스프링으로 이루어진다.
복수의 스프링(183a,183b)에는 서포터(181)와 스테이터 커버(146)의 사이에 지지되는 제1 스프링(183a) 및 서포터(181)와 백 커버(182)의 사이에 지지되는 제2 스프링(183b)으로 이루어진다. 제1 스프링(183a) 및 제2 스프링(183b)의 탄성 계수는 동일하게 형성될 수 있다.
여기서, 제1 스프링(183a)이 설치되는 위치를 "전방", 제2 스프링(183b)이 설치되는 위치를 후방이라고 정의할 수 있다. 따라서, 전방은 압축공간(P)을 향하는 방향 또는 피스톤(130)으로부터 흡입부를 향하는 방향, 후방은 압축공간(P)으로부터 멀어지는 방향 또는 흡입부로부터 토출부재(160)를 향하는 방향으로 정의될 수 있다.
쉘(110)의 내부 바닥면에는 소정의 오일이 저장될 수 있다. 전술한 바와 같이, 쉘(110)의 내부 바닥면에 오일이 저장되는 부분을 오일 저장부(110c)로 명명할 수 있다. 오일 저장부(110c)는, 쉘(110)의 저면에서 오일의 저장을 가능하게 하는 별도의 공간으로 구비될 수도 있고, 별도의 공간 없이 단순히 쉘(110)의 내부의 저면에 수용될 수도 있다.
또한, 쉘(110)의 하부에는 오일을 펌핑하는 급유유닛(190)이 구비될 수 있다.
급유유닛(190)은 전술한 방열부재(111)의 오일 흡입부(111d)에 수용된 오일을 흡입 가능하게 하도록 펌핑하여 실린더(120)로 오일의 공급을 가능하게 한다.
한편, 급유유닛(190)은 피스톤(130)이 왕복 직선운동을 함에 따라 발생되는 진동에 의하여 작동되어 오일을 상방으로 펌핑할 수 있다. 이로써, 급유유닛(190)으로부터 펌핑된 오일은 실린더(120)와 피스톤(130)의 사이 공간으로 공급되어, 일련의 냉각 및 윤활 작용을 수행한다. 또한, 실린더(120)에는 급유구멍(128)이 구비된다.
한편, 앞서 설명한 바와 같이, 급유유닛(190)를 통해 실린더(120)의 내주면과 피스톤(130)의 외주면 사이로 공급되는 오일은 그 실린더(120)의 내주면과 피스톤(130)의 외주면 사이를 윤활하게 되지만, 실린더(120)의 내주면과 피스톤(130)의 외주면 사이가 베어링 접촉하는 한, 실린더(120)와 피스톤(130) 사이에서의 마찰손실은 여전히 발생하게 된다.
따라서, 실린더(120)의 내주면과 피스톤(130)의 외주면 사이의 마찰손실을 줄이기 위해서는 실린더(120)와 피스톤(130) 사이의 마찰면적을 최소화하는 것이 바람직하다. 하지만, 실린더(120)와 피스톤(130) 사이의 마찰면적을 무조건 최소화할 경우, 리니어 압축기(100)의 특성상 스프링에 의해 외팔보 형태로 지지되는 피스톤(130)의 처짐을 안정적으로 지지하지 못하게 될 수 있다. 그러면, 실린더(120)와 피스톤(130)의 동심도가 불일치된 상태에서 피스톤(130)이 왕복 직선운동을 하게 되고, 이 과정에서 실린더(120)와 피스톤(130) 사이의 마찰손실이 더욱 증가할 수 있다.
본 실시예는 실린더(120)와 피스톤(130) 사이의 마찰면적을 최소화하면서도 실린더(120)와 피스톤(130)의 동심도를 유지하여 실린더(120)와 피스톤(130) 사이의 마찰손실을 줄일 수 있도록 하는 것이다.
도 2는 도 1에 따른 실린더(120)와 피스톤(130)을 분해하여 보인 사시도이고, 도 3은 도 2에서 실린더(120)와 피스톤(130)을 조립하여 보인 사시도이다.
이에 도시된 바와 같이, 본 실시예에 따른 피스톤(130)은 대략 원통 형상을 가지며 축 방향으로 연장되는 피스톤(130) 본체(131)과, 피스톤(130) 본체(131)의 후방 단부로부터 반경 방향으로 연장되는 피스톤(130) 플랜지(132)가 포함된다.
피스톤(130) 본체(131)에는 피스톤(130) 본체(131)의 전단부를 형성하는 전면부(131a)가 포함된다. 전면부(131a)에는 흡입밸브(133)가 설치된다. 이로써, 피스톤(130) 본체(131)의 내부를 유동하는 냉매는 흡입구멍(131b)을 통하여 압축공간(P)으로 흡입될 수 있다.
피스톤(130) 본체(131)에는 전면부(131a)로부터 후방으로 경사지게 연장되는 경사부(131c)가 더 포함된다. 경사부(131c)는 피스톤(130) 본체(131)의 외경이 전면부(131a)의 외경보다 커지는 방향으로 경사지게 연장될 수 있다. 이에 따라, 피스톤(130) 본체(131)는 경사부(131c)에 의하여 전면부(131a)로부터 후방을 향하여 외경이 커지도록 경사지게 형성될 수 있다. 이로써, 피스톤(130)이 전방으로 이동할 때, 압축공간(P)의 냉매의 일부가 경사부(131c)와 실린더(120)의 내주면이 이루는 선단측 공간으로 이동하게 된다. 그러면, 선단측 공간으로 이동한 냉매는 점점 압축되어 피스톤(130)의 선단이 실린더(120)의 내주면에 접촉되는 것을 억제할 수 있다.
한편, 피스톤(130) 본체(131)는 압축공간(P)을 기준으로 하여 그 압축공간(P)에서 멀어지는 방향으로 제1 피스톤(130)측 베어링부(이하, 제1 피스톤부(135))(135)와 제2 피스톤(130)측 베어링부(이하, 제2 피스톤부(136))(136)가 일정 간격만큼 이격되어 형성된다.
제1 피스톤부(135)와 제2 피스톤부(136)의 사이에는 그 각각의 피스톤(130)측 베어링부(135)(136)보다 작은 외경을 가지도록 함몰된 피스톤(130)측 회피부(이하, 제1 회피부)(137)가 형성된다. 도 2 내지 도 4에서와 같이, 피스톤(130)측 회피부는 제2 피스톤부(136)와 피스톤(130) 플랜지(132) 사이에도 형성될 수 있다.
제1 피스톤부(135)의 외경과 제2 피스톤부(136)의 외경은 서로 동일하게 형성되거나 또는 제1 피스톤부(135)의 외경이 제2 피스톤부(136)의 외경보다 약간 크게 형성될 수 있다. 이에 따라, 제1 피스톤부(135)가 메인 베어링의 역할을, 제2 피스톤부(136)가 서브 베어링의 역할을 할 수 있다. 이는, 제1 피스톤부(135)의 전방측에 압축공간(P)이 형성됨에 따라, 압축공간(P)에서 압축되는 냉매가 실린더(120)와 피스톤(130) 사이로 누설되는 것을 최소화하기 위함이다.
제1 피스톤부(135)의 왕복방향 길이(또는, 축방향 길이)는 후술할 제1 실린더(120)측 베어링부의 왕복방향 길이보다는 크고, 제1 실린더(120)측 베어링부의 왕복방향 길이와 실린더(120)측 회피부의 왕복방향 길이를 합한 제2 총길이보다는 작게 형성될 수 있다. 이에 대해서는 나중에 다시 설명한다.
제1 피스톤부(135)와 제1 회피부(137)가 만나는 면 또는 제1 회피부(137)와 제2 피스톤부(136)가 만나는 면은 각각 경사면(137a)으로 형성될 수 있다. 이에 따라, 제1 회피부(137)에 고인 오일이 피스톤(130)의 왕복 직선운동시 각각의 경사면(137a)을 따라 각각의 베어링면으로 원활하게 유입될 수 있다.
한편, 실린더(120)는 피스톤(130)과 같이 대략 원통 모양으로 형성된다. 실린더(120)는 그 내경이 피스톤(130) 본체(131)의 외경보다 수 ㎛ 정도 크게 형성된다. 이에 따라, 실린더(120)의 내주면과 피스톤(130) 본체(131)의 외주면은 거의 접촉되거나 또는 미세한 윤활막을 사이에 두고 대응하게 된다.
실린더(120)의 내주면은 압축공간(P)을 기준으로 그 압축공간(P)에서 멀어지는 방향으로 제1 실린더(120)측 베어링부(이하, 제1 실린더부)(125)와 제2 실린더(120)측 베어링부(이하, 제2 실린더부)(126)가 일정 간격을 두고 형성된다. 제1 실린더부(125)와 제2 실린더부(126)의 사이에는 제2 회피부(127)가 연장 형성된다. 제1 실린더부(125)와 제2 실린더부(126)의 내경은 거의 동일하게 형성된다.
제1 실린더부(125)는 제1 피스톤부(135)와, 제2 실린더부(126)는 제2 피스톤부(136)와, 제2 회피부(127)는 제1 회피부(137)와 각각 적어도 일부가 중첩되도록 형성된다.
하지만, 제1 실린더부(125)와 제1 피스톤부(135)의 중첩구간이 너무 길면 마찰손실이 증가하는 반면, 상기의 중첩구간이 너무 짧으면 실링면적이 확보되지 못하면서 압축공간(P)의 냉매가 누설될 수 있다. 따라서, 제1 실린더부(125)의 왕복방향 길이는 피스톤(130)의 최대 이동거리보다 적어도 같거나 길게 형성될 수 있다. 다만, 실링면적을 고려하면 제1 실린더부(125)의 왕복방향 길이(A)는 최대 이동거리보다는 크게 형성되는 것이 바람직하다. 여기서, 피스톤(130)의 최대 이동거리는 피스톤(130)의 전면부(131a)가 토출밸브(162)로부터 가장 멀리 이동할 수 있는 거리이며, 이는 제2 스프링(183b)이 완전히 눌린 상태로 정의될 수 있다.
한편, 제1 피스톤부(135)의 왕복방향 길이는 제2 회피부(127)의 왕복방향 길이보다 크게 형성되고, 제1 회피부(137)의 왕복방향 길이는 제1 실린더부(125)의 왕복방향 길이보다 크게 형성될 수 있다. 이에 따라, 피스톤(130)이 최대 이동거리만큼 이동을 하더라도 제1 피스톤부(135)가 제2 회피부(127)에 걸리거나 빠지지 않게 되어 피스톤(130)이 실린더(120)에서 원활하게 왕복 직선운동을 할 수 있다.
또한, 제1 피스톤부(135)의 왕복방향 길이가 너무 길면 피스톤(130)이 최대 이동거리만큼 이동하였을 때 제1 피스톤부(135)가 제1 실린더부(125)는 물론 제2 실린더부(126)와도 접촉될 수 있다. 그러면 전체적으로 실린더(120)와 피스톤(130) 사이의 접촉면적이 증가하게 되어 마찰면적이 증가하게 될 뿐만 아니라, 제1 피스톤부(135)의 후방단이 제2 실린더부(126)의 전방단에 걸려 피스톤(130)의 왕복 직선운동이 방해를 받게 될 수 있다. 따라서, 제1 피스톤부(135)의 왕복방향 길이는 제1 실린더부(125)의 왕복방향 길이와 제2 회피부(127)의 왕복방향 길이를 합한 제2 총길이보다는 작게 형성되는 것이 바람직하다. 또는, 제1 피스톤부(135)의 왕복방향 길이와 피스톤(130)의 최대 이동거리를 합한 값이 제1 실린더부(125)의 왕복방향 길이와 제2 회피부(127)의 왕복방향 길이를 합한 제2 총길이보다는 작게 형성되는 것이 바람직하다.
또한, 제1 피스톤부(135)의 왕복방향 길이가 더 길어져 항상 제2 실린더부(126)와 접촉하게 되면, 제1 회피부(137)가 제2 실린더부(126)에 가려져 오일이 제1 회피부(137)로 유입되지 못하게 될 수도 있다. 그러면 제2 실린더부(126)와 제2 피스톤부(136) 사이로 오일이 공급되는 것을 차단하게 될 수 있다. 따라서, 제1 피스톤부(135)의 왕복방향 길이는 앞서 한정한 것과 같이 제1 실린더부(125)의 길이보다는 길지만 피스톤(130)이 최대 이동거리만큼 이동한 경우에도 제2 회피부(127)와 제1 회피부(137)가 중첩될 수 있는 길이, 즉 제2 회피부(127)를 초과하지 않도록 형성하는 것이 바람직하다.
본 실시예에서는 실린더(120)의 내주면에는 제1 실린더부(125)와 제2 회피부(127) 그리고 제2 실린더부(126)가 연이어 형성되고, 이에 대응되는 피스톤(130)의 내주면에는 제1 피스톤부(135)와 제1 회피부(137) 그리고 제2 피스톤부(136)가 연이어 형성될 수 있다.
그러면, 피스톤(130)이 실린더(120)에 대해 왕복 직선운동을 할 때, 제1 피스톤부(135)는 제1 실린더부(125)와, 제2 피스톤부(136)는 제2 실린더부(126)에 각각 베어링 접촉을 하게 된다.
피스톤(130)이 전진운동을 하면, 피스톤(130)이 압축공간(P)의 냉매를 압축하면서 토출밸브(162) 쪽으로 이동을 하게 된다. 이때, 제1 피스톤부(135)는 제1 실린더부(125)와 베어링 접촉된 상태에서 제1 피스톤부(135)의 전방측은 제1 실린더부(125)의 범위 안에, 제1 피스톤부(135)의 후방측은 일정 간격 만큼 제1 실린더(125)의 범위 밖에 존재하게 된다. 이는, 제1 피스톤부(135)의 왕복방향 길이가 제1 실린더부(125)의 왕복방향 길이 보다 길게 형성되기 때문이다. 따라서, 피스톤(130)이 냉매를 완전히 토출하게 되는 토출완료시점까지 이동을 하더라도 제1 피스톤부(135)가 제1 실린더부(125)에 지지됨에 따라 피스톤(130)은 처지지 않고 반경방향으로 지지될 수 있다. 이 경우, 제2 피스톤부(136)가 제2 실린더부(126)에 베어링 접촉하게 되어 피스톤(130)은 더욱 안정적으로 지지될 수 있다.
피스톤(130)은 후진운동을 하면, 피스톤(130)이 압축공간(P)으로 냉매를 흡입하면서 토출밸브(162)로부터 멀어지는 쪽으로 이동을 하게 된다. 이때, 제1 피스톤부(135)는 제1 실린더부(125)에 대해 베어링 접촉된 상태에서 미끄럼운동을 하게 된다. 그리고 제1 피스톤부(135)의 후방측은 제2 실린더부(125)를 향해 이동을 하게 된다. 하지만, 제2 회피부(127)의 왕복방향 길이가 충분히 길게 형성됨에 따라, 제1 피스톤부(135)의 후방단이 제2 회피부(127)의 내부에 항상 위치하게 된다. 따라서, 제1 피스톤부(135)의 후방단과 제2 실린더부(125)의 전방단 사이에는 일정 간격 만큼 거리가 유지된다. 이로 인해 제1 피스톤부(135)가 제2 실린더부(125)에 걸리지 않게 되므로, 피스톤(130)의 왕복운동이 저지되는 것을 미연에 방지할 수 있게 된다.
상기와 같이, 피스톤(130)의 외주면에는 제1 회피부(137)가, 실린더(120)의 내주면에는 제2 회피부(127)가 각각 형성되어, 제1 회피부(137)는 실린더(120)와 접촉되지 않고, 제2 회피부(127)는 피스톤(130)과 접촉하지 않게 된다. 이에 따라, 전체적으로 실린더(120)와 피스톤(130) 사이의 마찰면적이 감소하게 되어 마찰손실이 줄어들게 된다.
나아가, 제1 피스톤부(135)와 제1 실린더부(125)는 피스톤(130)이 압축행정을 할 때 접촉면적이 증가하게 된다. 하지만, 압축행정을 할 때에 압축공간(P)의 압력이 상승하게 되므로, 제1 피스톤부(135)와 제1 실린더부(125) 사이의 접촉면적이 증가하는 것이 실링 측면에서 유리할 수 있다. 이를 통해, 압축공간(P)에서 압축되는 냉매가 실린더(120)와 피스톤(130) 사이의 베어링면으로 누설되는 것을 효과적으로 억제할 수 있다. 반면, 피스톤(130)이 흡입행정을 실시할 때, 제1 피스톤부(135)와 제1 실린더부(125) 사이의 접촉면적이 감소하게 된다. 하지만, 흡입행정을 실시할 때에는 압축공간(P)의 압력이 감소하게 되므로 압축기 효율에 크게 영향을 끼치지 않게 된다.
피스톤(130)이 토출완료시점(압축공간(P)의 체적이 0인 지점)으로 이동할 때, 압축공간(P)의 압력은 급격하게 증가하게 된다. 따라서, 압축행정시 실린더(120)와 피스톤(130) 사이에는 넓은 실링면적이 필요하게 된다. 이는, 앞서 설명한 바와 같이 제1 실린더부(125)와 제1 피스톤부(135)의 마찰면적이 압축행정시 점차 증가하게 되므로 압축공간(P)의 냉매가 실린더(120)와 피스톤(130) 사이로 누설되는 것을 억제될 수 있다.
종래에는 피스톤(130)의 이동거리에 관계없이 실린더(120)와 피스톤(130) 사이의 베어링 접촉길이가 동일하였으나, 본 실시예에서는 피스톤(130)의 이동거리에 따라 실린더(120)와 피스톤(130) 사이의 베어링 접촉길이가 선형적으로 감소하게 된다. 그러면, 피스톤(130)의 사이클 당 평균 마찰 길이가 줄어들게 되므로, 실린더(120)와 피스톤(130) 사이의 마찰손실이 감소하게 되어 압축기 효율이 향상될 수 있다. 또한, 이를 통해 실린더(120) 또는 피스톤(130)의 제작을 용이하게 하면서도 실린더(120)와 피스톤(130)의 손상을 억제할 수 있다.
또한, 본 실시예의 경우, 피스톤(130)이 압축코일스프링로 된 복수 개의 스프링(183a,183b)에 의해 외팔보 형태로 지지됨에 따라, 피스톤(130)에 대한 지지면적이 작으면 피스톤(130)이 자체 무게에 따라 처짐이 발생할 수 있다. 하지만, 본 실시예와 같이 제1 피스톤부(135)와 제2 피스톤부(136)가 축방향으로 배열되고, 이들 피스톤(130)측 베어링부(135,136)가 각각 제1 실린더부(125)와 제2 실린더부(126)에 의해 반경방향으로 지지됨에 따라, 피스톤(130)을 처지는 것을 안정적으로 지지할 수 있다. 이에 따라, 실린더(120)와 피스톤(130)의 실질적인 마찰면적을 줄이면서도 외팔보 형태로 지지되는 피스톤(130)의 처짐을 억제할 수 있어 실린더(120)와 피스톤(130) 사이의 마찰손실을 더욱 낮출 수 있다.
즉, 전술한 실시예에서는 피스톤(130)에 제1 피스톤부(135)와 제2 피스톤부(136)가 축방향을 따라 제1 회피부의 왕복방향 길이만큼 간격을 두고 형성되는 것이었으나, 피스톤(130)에 한 개의 피스톤(130)측 베어링부만 형성되는 것이다.
이에 도시된 바와 같이, 본 실시예에 따른 실린더(120)의 내주면에는 전술한 실시예와 동일하다. 즉, 실린더(120)의 내주면에는 제1 실린더부(125)와 제2 실린더부(126)가 제2 회피부(127)를 사이에 두고 형성된다. 제1 실린더부(125)의 내경과 제2 실린더부(126)의 내경은 동일하게 형성되고, 제2 회피부(127)의 내경은 양쪽 실린더부(125, 126)의 내경보다 크게 형성된다. 이에 따라, 제2 회피부(127)는 실린더(120)의 내주면에서 외주면을 향해 소정의 깊이만큼 함몰지게 형성된다.
한편, 피스톤(130) 본체(131)의 외주면에는 전방측에 피스톤(130)측 베어링부(135)가 형성되고, 피스톤(130)측 베어링부(135)의 후단에는 그 피스톤(130)측 베어링부(135)의 외경보다 작은 외경을 가지는 피스톤(130)측 회피부(137)가 형성된다. 피스톤(130) 회피부(137)의 후방단에서 앞서 설명한 피스톤(130) 플랜지(132)가 형성된다. 이에 따라, 본 실시예에 따른 피스톤(130) 본체(131)에는 전술한 제1 피스톤(130)측 베어링부에 해당하는 한 개의 피스톤(130)측 베어링부가 형성되게 된다.
상기와 같은 본 실시예에 따른 실린더(120)와 피스톤(130)에서의 기본적인 구성은 전술한 실시예와 대동소이하다. 다만, 본 실시예에서는 피스톤(130) 본체(131)의 전방단에만 한 개의 피스톤(130)측 베어링부(135)가 형성됨에 따라, 전술한 실시예에 비해 실린더(120)와 피스톤(130) 사이의 마찰면적을 더욱 줄일 수 있다. 이를 통해 실린더(120)와 피스톤(130) 사이의 마찰손실을 더 낮출 수 있다. 아울러, 피스톤(130)의 무게가 감소하여 압축기 효율이 향상될 수 있다.
한편, 전술한 실시예들에서는 피스톤(130)의 후방측에 복수 개의 스프링이 구비되어 피스톤(130)의 공진운동을 유도하는 것이었으나, 반드시 스프링이 필요한 것은 아니다. 예를 들어, 스프링을 제외하고 마그네트의 추력과 복귀력을 이용하여서도 피스톤(130)을 공진시킬 수 있다.
이 경우에도 실린더(120)와 피스톤(130)의 사이에는 각각 전술한 실시예와 같은 실린더(120)측 베어링부와 피스톤(130)측 베어링부, 그리고 실린더(120)측 회피부와 피스톤(130)측 회피부를 형성할 수 있다. 이에 대한 구체적인 설명은 생략한다.
도 13에는 흡입포트 온도, EER(energy efficiency ratio, 에너지 효율) 개선 및 냉장고 소전의 기준 조건에 따른 개선효과가 표로 나타나 있다. 도 13에 도시된 바와 같이, 흡입포트 온도는 1.5℃저감되었고, EER은 0.06 상승되었으며, 냉장고 소전과 관련하여 0.6%개선되었다.
전술한 바와 같이, 쉘(110)에 방열부재(111)를 설치함으로써 쉘(110)의 방열부재(111)는 증가하게 되고, 흡입 냉매 온도를 저감 가능하게 한다.
오일은 냉매 보다 대류 열전달 효과가 10배 이상 차이가 나기에, 오일이 수용되는 오일 저장부(110c)에 제1 및 제2방열핀(111a, 111b)을 설치하여 열전달 계수 및 방열 표면적의 증가로 인해, 방열 효과가 극대화될 수 있다.
이상에서 설명한 리니어 압축기(100)는 위에서 설명된 실시예들의 구성과 방법에 한정되는 것이 아니라, 실시예들은 다양한 변형이 이루어질 수 있도록 각 실시예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수도 있다.
본 발명은 본 발명의 정신 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 통상의 기술자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
본 발명은 흡입온도 과열에 의한 압축효율 저하를 방지하기 위한 구조를 가지는 리니어 압축기에 이용될 수 있다.

Claims (33)

  1. 오일을 수용 가능하게 하는 오일 저장부가 구비되고, 외관을 형성하는 쉘;
    상기 쉘의 내부에 설치되며, 내부 공간을 구비하는 실린더;
    상기 내부 공간에 왕복 운동 가능하도록 상기 실린더에 설치되고, 상기 내부 공간에 압축 공간을 형성 가능하게 하는 피스톤; 및
    상기 내부 공간과 연통가능한 토출실을 내부에 구비하고, 상기 실린더의 일 측에 설치되는 토출부재를 포함하고,
    상기 쉘의 일 측에는 상기 쉘의 내부의 열을 외부로 방출 가능하게 하도록 돌출되는 구조로 형성되는 방열부재가 설치되는 것을 특징으로 하는 리니어 압축기.
  2. 제1항에 있어서,
    상기 방열부재는,
    상기 쉘의 내부에 배치되고, 일 방향으로 돌출되도록 형성되는 제1방열핀과,
    상기 제1방열핀에 연결되고, 상기 쉘의 외부에 배치되며, 상기 일 방향과 반대 방향으로 돌출되도록 형성되는 제2방열핀을 포함하는 것을 특징으로 하는 리니어 압축기.
  3. 제2항에 있어서,
    상기 제1방열핀은, 쉘의 내측 방향으로 돌출 형성되고, 상기 제2방열핀은 상기 쉘의 외측을 향하도록 돌출 형성되는 것을 특징으로 하는 리니어 압축기.
  4. 제2항에 있어서,
    상기 방열부재는,
    상기 제1 및 제2방열핀 사이에서 상기 일 방향과 교차하는 방향으로 배치되고, 상기 제1 및 제2방열핀을 지지하는 핀 지지부를 더 포함하는 것을 특징으로 하는 리니어 압축기.
  5. 제2항에 있어서,
    상기 제1방열핀의 일 방향으로 돌출 형성되는 길이는 상기 제2방열핀의 상기 일 방향과 반대 방향으로 돌출되도록 형성되는 길이 보다 긴 것을 특징으로 하는 리니어 압축기.
  6. 제2항에 있어서,
    제1 및 제2방열핀은 각각 복수 개로 구비되고,
    상기 제1방열핀 사이에는, 상기 오일을 유동 가능하게 하는 오일 유로가 구비되는 것을 특징으로 하는 리니어 압축기.
  7. 제6항에 있어서,
    상기 제1방열핀은 상기 일 방향과 교차하는 방향으로 연장되며, 상기 복수 개의 제1방열핀의 일 측 단부 사이에, 오일을 흡입 가능하게 하도록 수용하는 오일 흡입부가 구비되도록, 상기 복수 개의 제1방열핀은 반경 방향으로 배치되는 것을 특징으로 하는 리니어 압축기.
  8. 제7항에 있어서,
    상기 오일 흡입부는, 상기 복수 개의 제1방열핀의 일 측 단부 사이에서 원형 또는 장방형의 형상으로 구비되는 것을 특징으로 하는 리니어 압축기.
  9. 제7항에 있어서,
    상기 복수 개의 제1방열핀 중 일부는 반경 방향을 향하는 일 방향으로 배치되고,
    상기 복수 개의 제1방열핀 중 다른 일부는 상기 반경 방향을 향하는 일 방향과 교차하는 방향으로 배치되는 것을 특징으로 하는 리니어 압축기.
  10. 제9항에 있어서,
    상기 제1방열핀은 내측 방향을 따라서 폭이 가변되도록 이루어지는 것을 특징으로 하는 리니어 압축기.
  11. 제4항에 있어서,
    단부가 오일 유동 제한핀과 접촉되는 제1방열핀 사이에는, 상기 오일의 유동이 제한되는 오일 통과 제한 유로가 구비되는 것을 특징으로 하는 리니어 압축기.
  12. 제1항에 있어서,
    상기 방열부재는, 상기 쉘에 용접, 볼팅 및 압입 중 하나의 방식으로 결합되는 것을 특징으로 하는 리니어 압축기.
  13. 제7항에 있어서,
    상기 쉘의 내부에는, 상기 오일 흡입부에 수용된 오일을 흡입 가능하도록 펌핑하여 상기 실린더로 오일의 공급을 가능하게 하는 급유유닛이 구비되는 것을 특징으로 하는 리니어 압축기.
  14. 제13항에 있어서,
    상기 급유유닛으로부터 오일의 제공을 받도록 급유유닛의 내부와 연통 가능하고 제공받은 오일을 상기 토출부재로 공급 가능하도록 실린더의 일 면에 연결되는 오일 공급 유로를 구비하고, 상기 실린더를 고정 가능하도록 실린더의 외주에 결합되는 프레임을 더 포함하고,
    오일 공급 유로를 통과하는 오일은 토출실의 주위에 구비된 토출부재의 외부에서 유동 가능한 것을 특징으로 하는 리니어 압축기.
  15. 제14항에 있어서,
    상기 토출부재는,
    상기 실린더의 일 측에 설치되어, 상기 토출실을 형성하는 내부 토출 커버; 및
    상기 토출실에 배치되고, 상기 압축공간의 압력이 기 결정된 압력 이상이 되면 개방되어 냉매를 상기 토출실로 유입 가능하게 하는 토출밸브를 포함하고,
    오일 공급 유로를 통과하는 오일은 내부 토출 커버의 주위에서 유동 가능한 것을 특징으로 하는 리니어 압축기.
  16. 제1항에 있어서,
    상기 방열부재는, 상기 쉘에 관통하여 결합되는 것을 특징으로 하는 리니어 압축기.
  17. 오일을 수용 가능하게 하는 오일 저장부가 구비되고, 외관을 형성하는 쉘;
    상기 쉘의 내부에 설치되며, 내부 공간을 구비하는 실린더;
    상기 내부 공간에 왕복 운동 가능하도록 상기 실린더에 설치되고, 상기 내부 공간에 압축 공간을 형성 가능하게 하는 피스톤; 및
    상기 내부 공간과 연통가능한 토출실을 내부에 구비하고, 상기 실린더의 일 측에 설치되는 토출부재를 포함하고,
    상기 쉘의 일 측에는 상기 쉘의 내부의 열을 외부로 방출 가능하게 하도록 돌출되는 구조로 형성되는 방열부재가 설치되고,
    상기 오일 저장부는, 상기 쉘의 내측 아래 부분에 구비되고, 상기 방열부재는 상기 오일 저장부에 설치되는 것을 특징으로 하는 리니어 압축기.
  18. 제17항에 있어서,
    상기 방열부재는,
    상기 쉘의 내부에 배치되고, 일 방향으로 돌출되도록 형성되는 제1방열핀과,
    상기 제1방열핀에 연결되고, 상기 쉘의 외부에 배치되며, 상기 일 방향과 반대 방향으로 돌출되도록 형성되는 제2방열핀과,
    상기 제1 및 제2방열핀 사이에서 상기 일 방향과 교차하는 방향으로 배치되고, 상기 제1 및 제2방열핀을 지지하는 핀 지지부를 포함하는 것을 특징으로 하는 리니어 압축기.
  19. 제18항에 있어서,
    상기 방열부재는, 상기 쉘에 관통하여 결합되는 것을 특징으로 하는 리니어 압축기.
  20. 제19항에 있어서,
    상기 오일 저장부는 상기 쉘의 하부에 구비되며, 상기 방열부재는, 상기 오일 저장부에 저장된 오일에 적어도 일부가 잠기도록 설치되는 것을 특징으로 하는 리니어 압축기.
  21. 제19항에 있어서,
    상기 제1방열핀의 일 측 단부 사이에는, 오일을 흡입 가능하게 하도록 수용하는 오일 흡입부가 구비되고,
    상기 쉘의 내부에는, 상기 제1방열핀의 일 측 단부에 의해 감싸지도록 상기 오일 흡입부에 배치되는 오일 흡입관을 구비하여 상기 오일 흡입부에 수용된 오일을 흡입 가능하도록 펌핑하여 상기 실린더로 오일의 공급을 가능하게 하는 급유 유닛이 구비되고,
    상기 제1방열핀은 복수 개로 구비되고, 상기 복수 개의 제1방열핀 사이에는, 상기 오일을 유동 가능하게 하는 오일 유로가 구비되는 것을 특징으로 하는 리니어 압축기.
  22. 제21항에 있어서,
    상기 오일 저장부는,
    상기 쉘의 내부에서 상기 급유 유닛 보다 하측에 구비되는 것을 특징으로 하는 리니어 압축기.
  23. 제22항에 있어서,
    상기 복수 개의 제1방열핀은 반경 방향으로 배치되고,
    상기 복수 개의 제1방열핀 중 일부는 반경 방향을 향하는 일 방향으로 배치되고,
    상기 복수 개의 제1방열핀 중 다른 일부는 상기 반경 방향을 향하는 일 방향과 교차하는 방향으로 배치되는 것을 특징으로 하는 리니어 압축기.
  24. 제22항에 있어서,
    상기 복수 개의 제1방열핀은 방사형의 방향으로 배치되는 것을 특징으로 하는 리니어 압축기.
  25. 제24항에 있어서,
    상기 핀 지지부에는, 상기 복수 개의 제1방열핀 사이에 배치되고 상기 복수 개의 제1방열핀과 나란한 방향으로 돌출 형성되어 오일의 유동을 가이드하는 가이드 리브가 설치되는 것을 특징으로 하는 리니어 압축기.
  26. 제24항에 있어서,
    상기 핀 지지부에는, 상기 복수 개의 제1방열핀에서 상기 제1방열핀과 교차하는 방향으로 복수 개로 돌출 형성되는 미로 리브가 설치되는 것을 특징으로 하는 리니어 압축기.
  27. 제19항에 있어서,
    상기 쉘과 방열부재 사이에서의 오일의 유출을 방지하도록, 상기 방열부재가 결합되는 상기 쉘과 상기 방열부재 사이에는 실링부재가 설치되는 것을 특징으로 하는 리니어 압축기.
  28. 오일을 수용 가능하게 하는 오일 저장부가 구비되고, 외관을 형성하는 쉘;
    상기 쉘의 내부에 설치되며, 내부 공간을 구비하는 실린더;
    상기 내부 공간에 왕복 운동 가능하도록 상기 실린더에 설치되고, 상기 내부 공간에 압축 공간을 형성 가능하게 하는 피스톤; 및
    상기 내부 공간과 연통가능한 토출실을 내부에 구비하고, 상기 실린더의 일 측에 설치되는 토출부재를 포함하고,
    상기 토출부재는,
    상기 실린더의 일 측에 설치되어, 상기 토출실을 형성하는 내부 토출 커버; 및
    상기 토출실에 배치되고, 상기 압축공간의 압력이 기 결정된 압력 이상이 되면 개방되어 냉매를 상기 토출실로 유입 가능하게 하는 토출밸브를 포함하고,
    상기 쉘의 일 측에는 상기 쉘의 내부의 열을 외부로 방출 가능하게 하도록 돌출되는 구조로 형성되는 방열부재가 설치되는 것을 특징으로 하는 리니어 압축기.
  29. 제28항에 있어서,
    상기 방열부재는,
    상기 쉘의 내부에 배치되고, 일 방향으로 돌출되도록 형성되는 제1방열핀과,
    상기 제1방열핀에 연결되고, 상기 쉘의 외부에 배치되며, 상기 일 방향과 반대 방향으로 돌출되도록 형성되는 제2방열핀을 포함하는 것을 특징으로 하는 리니어 압축기.
  30. 제29항에 있어서,
    상기 방열부재는,
    상기 제1 및 제2방열핀 사이에서 상기 일 방향과 교차하는 방향으로 배치되고, 상기 제1 및 제2방열핀을 지지하는 핀 지지부를 더 포함하는 것을 특징으로 하는 리니어 압축기.
  31. 제29항에 있어서,
    제1 및 제2방열핀은 각각 복수 개로 구비되고,
    상기 제1방열핀 사이에는, 상기 오일을 유동 가능하게 하는 오일 유로가 구비되는 것을 특징으로 하는 리니어 압축기.
  32. 제31항에 있어서,
    상기 제1방열핀은 상기 일 방향과 교차하는 방향으로 연장되며, 상기 복수 개의 제1방열핀의 일 측 단부 사이에, 오일을 흡입 가능하게 하도록 수용하는 오일 흡입부가 구비되도록, 상기 복수 개의 제1방열핀은 반경 방향으로 배치되는 것을 특징으로 하는 리니어 압축기.
  33. 제32항에 있어서,
    상기 복수 개의 제1방열핀 중 일부는 반경 방향을 향하는 일 방향으로 배치되고,
    상기 복수 개의 제1방열핀 중 다른 일부는 상기 반경 방향을 향하는 일 방향과 교차하는 방향으로 배치되는 것을 특징으로 하는 리니어 압축기.
PCT/KR2022/000890 2021-02-15 2022-01-18 리니어 압축기 WO2022173138A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210019974A KR102494485B1 (ko) 2021-02-15 2021-02-15 리니어 압축기
KR10-2021-0019974 2021-02-15

Publications (1)

Publication Number Publication Date
WO2022173138A1 true WO2022173138A1 (ko) 2022-08-18

Family

ID=82837732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/000890 WO2022173138A1 (ko) 2021-02-15 2022-01-18 리니어 압축기

Country Status (2)

Country Link
KR (1) KR102494485B1 (ko)
WO (1) WO2022173138A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050015685A (ko) * 2003-08-07 2005-02-21 엘지전자 주식회사 리니어 압축기의 냉각 구조
KR20050121053A (ko) * 2004-06-21 2005-12-26 삼성전자주식회사 압축기
KR20060081482A (ko) * 2005-01-07 2006-07-13 엘지전자 주식회사 리니어 압축기
JP2008240574A (ja) * 2007-03-26 2008-10-09 Jtekt Corp 遠心圧縮機
KR20190040429A (ko) * 2017-10-10 2019-04-18 엘지전자 주식회사 리니어 압축기

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100613516B1 (ko) * 2004-11-03 2006-08-17 엘지전자 주식회사 리니어 압축기
KR20180065583A (ko) 2016-12-08 2018-06-18 지아동 린 높은 연성 및 솔더링 플럭스를 가진 납-무함유 솔더 조성물을 함유하는 솔더 페이스트

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050015685A (ko) * 2003-08-07 2005-02-21 엘지전자 주식회사 리니어 압축기의 냉각 구조
KR20050121053A (ko) * 2004-06-21 2005-12-26 삼성전자주식회사 압축기
KR20060081482A (ko) * 2005-01-07 2006-07-13 엘지전자 주식회사 리니어 압축기
JP2008240574A (ja) * 2007-03-26 2008-10-09 Jtekt Corp 遠心圧縮機
KR20190040429A (ko) * 2017-10-10 2019-04-18 엘지전자 주식회사 리니어 압축기

Also Published As

Publication number Publication date
KR102494485B1 (ko) 2023-02-06
KR20220116743A (ko) 2022-08-23

Similar Documents

Publication Publication Date Title
WO2018147574A1 (ko) 리니어 압축기
WO2017018578A1 (en) Electric motor and manufacturing method thereof
WO2016024691A1 (en) Vacuum cleaner
WO2013047975A1 (en) Optical semiconductor-based lighting apparatus
WO2018143705A1 (ko) 팬 모터
WO2016195148A1 (ko) 전동기용 케이스 및 그의 제조방법, 전동기용 케이스를 구비한 전동기
WO2018143699A1 (ko) 냉온장고
WO2019221417A1 (ko) 터보 압축기
WO2019031887A1 (en) LAUNDRY PROCESSING APPARATUS AND METHOD OF CONTROLLING THE SAME
WO2019031885A1 (en) LAUNDRY PROCESSING APPARATUS AND METHOD FOR CONTROLLING SUCH A LAUNDRY TREATMENT APPARATUS
WO2016098977A1 (en) Rotating electric machine
WO2021194113A1 (ko) 로터리 엔진
WO2010062131A2 (ko) 열기관
WO2018070618A1 (ko) 감시 카메라용 냉각장치
WO2019031886A1 (en) LAUNDRY PROCESSING APPARATUS AND METHOD OF CONTROLLING THE SAME
WO2009136726A2 (en) Heat exchange system
WO2022173138A1 (ko) 리니어 압축기
WO2020059909A1 (ko) 전동기 및 이를 구비하는 지능형 동력생성모듈
WO2019164303A1 (ko) 리니어 모터 및 이를 구비한 리니어 압축기
WO2022145805A1 (ko) 리니어 압축기
WO2022149671A1 (ko) 리니어 압축기
WO2022035015A1 (ko) 팬모터
WO2019059651A1 (ko) 냉장고
WO2018135746A1 (ko) 리니어 압축기의 제어 장치 및 제어 방법
WO2022149670A1 (ko) 리니어 압축기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22752898

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22752898

Country of ref document: EP

Kind code of ref document: A1