[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022172481A1 - Operation assistance device, operation assistance method, and operation assistance program - Google Patents

Operation assistance device, operation assistance method, and operation assistance program Download PDF

Info

Publication number
WO2022172481A1
WO2022172481A1 PCT/JP2021/026965 JP2021026965W WO2022172481A1 WO 2022172481 A1 WO2022172481 A1 WO 2022172481A1 JP 2021026965 W JP2021026965 W JP 2021026965W WO 2022172481 A1 WO2022172481 A1 WO 2022172481A1
Authority
WO
WIPO (PCT)
Prior art keywords
image data
driving support
state
driving
boiler
Prior art date
Application number
PCT/JP2021/026965
Other languages
French (fr)
Japanese (ja)
Inventor
孝朗 関合
鶯仙 鄭
洋人 武内
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to AU2021427367A priority Critical patent/AU2021427367B2/en
Publication of WO2022172481A1 publication Critical patent/WO2022172481A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring

Definitions

  • the present invention relates to a driving support device, a driving support method, and a driving support program that support the operation of various devices, plants, and systems (hereinafter simply referred to as devices).
  • ICT Information and Communication Technology
  • IoT Internet of Things
  • thermal power plants play a role not only as load control but also as a base load power source, and are required to be operated in consideration of operational performance such as efficiency, environmental performance, and operating rate.
  • Patent Document 1 discloses a control device that reduces the nitrogen oxide concentration and carbon monoxide concentration, which are environmental performance.
  • an operation signal is generated by combining a model that simulates the characteristics of a plant and a learning means that learns an optimum operation method for this model. Using this technique, the operating conditions can be moved to optimum values.
  • the operation condition is a value used for generating the operation signal.
  • a thermal power plant measures various state quantities (operating data) at various locations within the thermal power plant, and executes processing using this measurement data.
  • state quantities operating data
  • a thermal power plant when ash generated when coal is burned adheres to heat exchangers and furnace walls, the heat transfer characteristics change and the amount of heat absorption decreases. Also, the ash adhering to the heat exchanger is removed by a soot blower (steam injection).
  • cameras have been conventionally used to monitor various devices. For example, if the device is a thermal power plant, the combustion state of the burner is photographed and monitored. However, the conventional camera monitoring monitors the combustion state by paying attention to the time-series changes in the acquired images. In addition, cameras are used to monitor various locations in thermal power plants, but these are only used to monitor the locations where the images were taken, and do not focus on the relationship between images taken at different locations. .
  • Patent Document 1 or surveillance cameras can be applied not only to thermal power plants but also to general equipment.
  • a driving support device that makes it possible to provide effective guidance using image information from a plurality of cameras that monitor the state of each part of the equipment.
  • An object is to provide a support method and a driving support program.
  • a driving support device that obtains image data of a device photographed by a camera and provides guidance regarding operation of the device by an optimal control algorithm using the image data, wherein the optimal control algorithm is: A driving support device characterized by using image data as feature quantities in numerical form, and wherein the image data is image data captured by equipment at different locations and at different times.”
  • a driving support method that provides guidance regarding the operation of equipment by means of an optimum control algorithm using image data obtained by photographing the equipment with a camera, wherein the optimum control algorithm digitizes the image data as a feature amount. and the image data is image data photographed at different locations and times by the device. ”.
  • a driving support program that provides guidance regarding the operation of a device using a plurality of image data obtained by photographing a plurality of locations of the device with a camera.
  • a state recognition program that recognizes the state, a state evaluation program that evaluates the state based on other image data as a numerical feature value and obtains an evaluation value, and a state evaluation program that learns actions to transition to the state that maximizes the evaluation value.
  • the state of ash adhesion can be grasped based on image data, and the combustion state can be controlled so that the amount of ash adhesion does not increase. That is, as image information from multiple cameras that monitor the state of each part, the image data of the combustion area and the image data of the ash adhesion state are correlated and learned, so that the combustion state will be the desired ash adhesion state. , can control the air flow balance. Also, by locally blowing the soot at the place where the ash adheres, it is possible to eliminate the soot blowing to unnecessary places and reduce the amount of steam consumed. The above can give useful guidance that can improve the efficiency of the boiler plant.
  • FIG. 1 is a block diagram illustrating a configuration example of a driving assistance device according to an embodiment of the present invention
  • FIG. 4 is a flowchart for explaining the operation of the driving assistance device according to the embodiment of the present invention
  • running data D11 preserve
  • FIG. 4 is a diagram showing an example of image data D12 stored in an image data database DB2;
  • FIG. 4 is a diagram for explaining an example of processing operation of the preprocessing means 40, particularly for image data D12;
  • 4A and 4B are diagrams for explaining the operation of the preprocessing means 40 when the data recording cycles are different;
  • FIG. 10 is a diagram showing the result of extracting feature amounts from image data D12; 4 is a diagram showing a neural network model as a model included in learning means 70.
  • FIG. 5 is a diagram showing an example of a result of operating the learning means 70;
  • FIG. 3 is a diagram showing an example of image data D12a of the vicinity of the burner 102, which is the combustion area of the boiler 101, photographed by the camera 71a.
  • FIG. 5 is a diagram showing an example of feature amounts extracted by processing the image data D12a of the combustion region by the state recognition means 600;
  • FIG. 5 is a diagram showing an example of feature amounts extracted by processing the image data D12b of the heat exchanger 106 by the state evaluation means;
  • 4 is a flowchart for explaining the operation contents of learning means 700 when a coal-fired power plant is used as equipment. The figure explaining the learning result at the time of using a coal-fired power plant as apparatus.
  • FIG. 1 is a block diagram illustrating a configuration example of a driving support device 20 according to an embodiment of the present invention and related devices.
  • the driving support device 20 is connected to the control device 18 and the target device 10 including the device 19 to be controlled, and the external device 90 .
  • the driving assistance device 20 in FIG. 1 is generally configured by a computer device (computer). That is, an arithmetic unit such as a CPU executes various processing functions according to a program for realizing an optimum control algorithm. If the processing functions (optimal control algorithm) in the arithmetic unit are schematically shown, preprocessing means 40, state evaluation means 50, state recognition means 60, learning means 70, action determination means 80, and these processing functions are operated. It can be said that the driving support device operation control means 25 is provided to allow the operation to be performed.
  • Each program described in this embodiment can be distributed to each device via a network, or can be stored in a storage medium and distributed. Details of the processing functions, which are the operations of the respective units in the driving support device 20, will be described with reference to FIG. 2 and subsequent figures. Note that each means described above can also be implemented as hardware.
  • each component is expressed as ⁇ means'', but expressions such as ⁇ unit'', ⁇ unit'', etc. are not limited.
  • the driving support device 20 includes a measurement signal database DB1 and a processing result database DB2 as databases DB.
  • the measurement signal database DB1 includes a driving data database DB11 and an image data database DB12 (DB12a, DB12b, DB12n).
  • Electronic information is stored in each database DB, and the information is stored in a form usually called an electronic file (electronic data).
  • these databases DB may be provided outside the driving assistance device 20 and configured to be connectable via a network.
  • the driving assistance device 20 also includes an external input interface 21 and an external output interface 22 as interfaces with the outside.
  • the driving operation support device 20 is connected to the target device 10 to which it is applied and the external device 90 via these devices.
  • the implementation of the driving support device 20 includes each aspect described below.
  • the first is cloudization of the driving support device 20 .
  • This is a configuration in which the driving support device 20 is configured on a public network and can be used by the external device 90 .
  • the second is a mode in which the operating company of the target device 10 operates and manages the driving support device 20 .
  • This is a configuration in which the driving support device 20 is connected to the in-house network of the operating company of the target device 10 and operated and managed by the operating company.
  • the present invention may be according to any of these aspects.
  • the external device 90 is composed of a computing device (computer). That is, an arithmetic unit such as a CPU executes various processing functions described below according to a program. Also, the external device 90 can be realized as a terminal device, and includes a tablet, a smart phone, a notebook PC, and the like.
  • the external device 90 includes an external input device 91 implemented by a keyboard 92 and a mouse 93 and an image display device 94 . The operator of the target device 10 can operate the external input device 91 based on the information displayed on the image display device 94 to operate the target device 10 .
  • the target device 10 is composed of a control device 18 and a device 19 .
  • a measurement signal Sg70 is transmitted from the device 19 to the control device 18, and an operation signal Sg80 is transmitted from the control device 18 to the device 19.
  • the device 19 is provided with a plurality of cameras 71 (71a, 71b, 71n) for capturing images at different locations.
  • the measurement signal Sg70 includes operation data indicating the operation of the device 19 (time-series process value data collected by a sensor provided in the device) and image data captured by a camera.
  • the operation signal Sg80 indicates what kind of signal the control device 18 outputs according to the operation.
  • the driving support device 20 takes in the external input signal Sg1 and the measurement signal Sg2 via the external input interface 21, and these measurement signals Sg3 are stored in the measurement signal database DB1.
  • the measurement signal Sg3 includes driving data D11 and image data D12, which are stored in the driving data database DB11 and the image data database DB12, respectively.
  • the image data database DB12 manages the image data D12 for each shooting location.
  • the image data D12a captured by the camera 71a is stored in the a-point image database DB12a
  • the image data D12b captured by the camera 71b is stored in the b-point image database DB12b
  • the image data D12n captured by the camera 71n is stored in the n-point image database DB12n. saved respectively.
  • the stored image data DB 12 is images captured by fixed-point cameras, drones, underwater drones, and human cameras, and various image data are stored according to the purpose.
  • the camera used for photographing may be a high-sensitivity CMOS camera, an infrared camera, a laser camera, or a combination of various cameras.
  • the preprocessing means 40 acquires the measurement signal Sg4 stored in the measurement signal database DB1, performs data preprocessing as appropriate, and then converts the preprocessed data Sg5 used for state evaluation to the state evaluation means 50. , the preprocessed data Sg6 used for state recognition is transmitted to the state recognition means 60.
  • FIG. The preprocessing means 40 performs correction processing of the measurement signals stored in the measurement signal database, taking into consideration the dead time and delay time in the equipment.
  • the state evaluation means 50 extracts a feature amount from the preprocessed data Sg5 used for state evaluation, evaluates whether or not this feature amount is a desirable value, and outputs a state evaluation result Sg7.
  • the state evaluation result Sg7 is transmitted to the learning means 70 and the processing result database DB2.
  • the state recognition means 60 extracts a feature amount from the preprocessed data Sg6 used for state recognition, recognizes the operating state of the target device based on this feature amount, and outputs a state recognition result Sg8.
  • the state recognition result Sg8 is transmitted to the learning means 70, the action determination means 80, and the processing result database DB2.
  • the feature quantities extracted by the state evaluation means 50 and the state recognition means 60 are the value, size, color, density, temperature, brightness, wavelength, and the value obtained by specifying the object in the image and encoding its contents. rate of change and the like.
  • the learning means 70 learns an operation method that makes the state evaluation result Sg7 a desired value, and outputs a learning result Sg9.
  • the learning result Sg9 is transmitted to the processing result database DB2.
  • the learning result Sg9 includes information on actions suitable for the current state recognition result.
  • the learning means 70 can be implemented using an optimization algorithm such as reinforcement learning, genetic algorithm, nonlinear programming, etc. However, the present invention does not limit the implementation method of the learning means 70 .
  • the processing result database DB2 stores the state evaluation result Sg7, the state recognition result Sg8, and the learning result Sg9 obtained as a result of operating the state evaluation means 50, the state recognition means 60, and the learning means 70.
  • the action determination means 80 refers to the learning result Sg10, determines an action suitable for the current state recognition result Sg8, and outputs an action Sg11. Behavior Sg11 is transmitted to the external output interface 22 .
  • the external output interface 22 converts the action Sg11 into an operation recommendation signal Sg12 and transmits it to the control device 18 or the image display device 94.
  • the target device 10 can be directly controlled using the operation recommendation signal Sg12, or the target device 10 can be manually operated with reference to the operation recommendation signal Sg12 displayed on the image display device 94. .
  • the arithmetic device constituting the computer device and the database DB are provided inside the driving operation assistance device 20 .
  • some of these devices may be arranged outside the driving support device 20, and only data may be communicated between the devices.
  • each database DB can be displayed on the image display device 94 via the external output interface 22 .
  • the values of these signals can be modified by an external input signal Sg1 generated by operating the external input device 91.
  • the external input device 91 is composed of a keyboard 92 and a mouse 93, but any device for inputting data such as a microphone for voice input and a touch panel may be used.
  • the present embodiment also includes a method using the driving support device 20.
  • the guidance target device 10 to which the driving support device 20 is applied is composed of the control device 18 and the equipment 19, but it goes without saying that the device can be implemented as equipment other than this configuration.
  • FIG. 2 is a flowchart for explaining the operation of the driving support device 20.
  • FIG. This flowchart is realized by the driving support device operation control means 25 operating each arithmetic device.
  • the operation of the arithmetic device can be divided into functions related to learning and functions related to action.
  • the left side of FIG. 2 right is a flow chart for generating an operation recommendation signal for the target device 10 based on the learning result.
  • processing step S10 past measurement signals are taken in and stored in the measurement signal database DB1.
  • the preprocessing means 40 is operated to generate preprocessed data Sg5 used for state evaluation and preprocessed data Sg6 used for state recognition from the measurement signal Sg4.
  • step Sg12 the state evaluation means 50 and the state recognition means 60 are operated to generate a state evaluation result Sg7 and a state recognition result Sg8.
  • step S13 the learning means 70 is operated to generate a learning result Sg9.
  • the state evaluation result Sg7, the state recognition result Sg8, and the learning result Sg9 generated in this flowchart are stored in the processing result database DB2.
  • processing step S20 the latest measurement signal Sg2 is taken into the measurement signal database DB1 and stored.
  • processing step S21 the preprocessing means 40 is operated with respect to the latest measurement signal Sg4 to generate post-preprocessing data Sg6 used for state recognition.
  • processing step S22 the state recognition means 60 is operated to generate a state recognition result Sg8.
  • action determining means 80 is operated to generate action Sg11. Then, the operation recommendation signal Sg12 is transmitted to the control device 18 or the image display device 94 via the external output interface 22 .
  • processing step S24 it is determined whether or not driving assistance should be continued by the driving assistance device 20. If necessary, the process returns to processing step S20.
  • a method for determining whether or not driving assistance is required to be continued in processing step S24 there is a method in which the operator of the target device 10 inputs information on whether or not driving assistance is required to be continued using the external input device 91, and determination is made according to the content of the information. .
  • FIGs. 3 and 4 are diagrams for explaining aspects of data stored in the measurement signal database DB1.
  • FIG. 3 shows an example of the operating data D11 stored in the operating data database DB11
  • FIG. 4 shows an example of the image data D12 stored in the image data database DB2.
  • the operating data database DB11 stores, for example, time-series data for each data item (item A, item B, item C, . . . ) for each sampling period.
  • Item A is, for example, temperature
  • item B is flow rate
  • item C is pressure.
  • the image data database DB2 stores, for example, the temperature distribution measured at a cross section of the device 19 for each sampling period. Operation data and image data of the target device 10 can be displayed on the image display device 94 .
  • FIG. 5 and 6 are diagrams for explaining an example of the processing operation of the preprocessing means 40.
  • FIG. 5 particularly relates to image data D12.
  • the time (dead time and delay time) required for a substance such as fluid to reach point a from point a to point b is ⁇ t12 under operating condition 1
  • the image captured at point b is corrected forward by ⁇ t12. and then process it.
  • the time required for a substance such as fluid to reach point a from point b (waste time and delay time) is set to ⁇ t34 under operating condition 2, and the delay compensation time is appropriately corrected while judging the operating conditions. It's good.
  • FIG. 6 is a diagram for explaining the operation of the preprocessing means 40 when the data recording cycles are different.
  • the data recording cycle such as once per second, once per day, once per week, and once per inspection cycle (several months or one year). For example, if point a is recorded once per second (real time) and point n is recorded once a week, the average feature value for the period t5-t6 at point a and , with the value of the feature amount at t6 of point n.
  • the state evaluation means 50 and the state recognition means 60 will be described.
  • the feature amount Ci is extracted from the image data D12, and based on the extraction result, the state evaluation means 50
  • the state of the imaged device is evaluated, and the state of the imaged device is recognized by the state recognition means 60 .
  • i is a code for identifying the item of the feature amount. Therefore, the feature amount Ci is time-series information including the acquisition time information of the image data D12, and also the feature amount of the image data D12a, the feature amount of the image data D12b, and the feature amount of the image data D12n.
  • the item of the feature amount is identified by the symbol i.
  • FIG. 7 shows the result of extracting the feature amount from the image data D12 (D12a, D12b, D12n).
  • the feature quantity an object in the image is specified, and its contents are coded values, size, color, density, temperature, brightness, wavelength, and rate of change thereof. Extracted as time-series data. This means that the state of the device indicated by the image data has been re-understood as a numerical feature amount.
  • FIG. 7 shows an example of object 1, if the multiple image data D12 shot at multiple locations capture multiple objects, the data group of FIG. 7 is generated for each object. ing.
  • the state evaluation means 50 calculates the evaluation value E using, for example, formula (1).
  • f(Ci) is a function for calculating the evaluation value E.
  • the evaluation value is the sum of products of the weighting parameter Wi and the feature amount Ci. Note that the form of f(Ci) can be arbitrarily set according to the purpose in addition to the formula described above.
  • both the state evaluation means 50 and the state recognition means 60 extract and use the characteristic amount Ci from the image data D12, but the state of one image (for example, the image data D12a) in the equipment is If there is a relationship that affects the state of the other image (for example, image data D12b), the state recognition means 60 handles the image data D12a on the cause side, and the state evaluation means 50 handles the image data D12b on the result side.
  • the state evaluation means 50 uses the state on the result side as an evaluation value, so that the state on the cause side when optimizing the result can be clearly distinguished and grasped.
  • image data D12 (D12a) obtained at a plurality of locations accumulated in the image data database DB12 (DB12a, DB12b, DB12n) is used for learning by the learning means 70.
  • D12b, D12n are used.
  • FIG. 8(a) and 8(b) are diagrams for explaining the details of the model included in the learning means 70.
  • FIG. The model is constructed by a neural network model as shown in FIG. 8(a), and outputs evaluation values in response to state inputs.
  • FIG. 8(b) is a diagram showing the relationship between the input and output of the neural network model. According to the neural network model, the input evaluation value can be interpolated to obtain the evaluation value for any state.
  • FIG. 8(c) is an example showing the result of operating the learning means 70.
  • FIG. 8(c) when the current state is in region A, the action is determined to increase the state value, and when the current state is in region B, the action is determined to decrease the state value. .
  • the evaluation value becomes a minimum value, and the evaluation value can be improved.
  • the model to be installed in the learning means 70 and the learning means 70 can be constructed by a neural network model or other techniques, as shown in FIGS. 8(a), 8(b), and 8(c). stomach.
  • the information of the camera images taken at different locations of the equipment is digitized and provided for learning.
  • image information can be used to provide effective guidance.
  • the present invention it is possible to obtain from image data information that cannot be obtained from driving data measured by a sensor alone. This is due to the fact that it was used for In particular, by using images taken at a plurality of different locations, there is an effect that it is possible to acquire, for example, the relationship between the upstream and downstream sides of the fluid, or the phenomenon of cause and effect by learning.
  • FIG. 9 shows a configuration example when a coal-fired power plant is used as the equipment 19 in FIG. First, with reference to FIG. 9, the mechanism of power generation by a coal-fired power plant will be briefly described.
  • pulverized coal which is fuel obtained by finely pulverizing coal in a mill 134, primary air for pulverized coal transportation, and 2 air for combustion adjustment.
  • a plurality of burners 102 are provided for supplying secondary air. Then, the pulverized coal supplied through this burner 102 is burned inside the boiler 101 .
  • the structure of the burners 102 is arranged in a plurality of stages in the vertical direction of the wall surface of the boiler 101, and in each stage a plurality of burners are arranged in a row.
  • the pulverized coal is burned from the front surface (hereinafter referred to as "can front") and the back surface (hereinafter referred to as "can rear”) of the boiler wall surface.
  • the pulverized coal and the primary air are led to the burner 102 from the pipe 139 and the secondary air from the pipe 141, respectively.
  • the primary air is guided from the fan 120 to the pipe 130, and branches into a pipe 132 passing through the air heater 104 installed on the downstream side of the boiler 101 on the way and a pipe 131 bypassing the air heater 104. do.
  • the pipe 133 arranged downstream of the air heater 104 merges again and is led to the mill 134 installed upstream of the burner 102 for producing pulverized coal.
  • the primary air passing through the air heater 104 is heated by exchanging heat with combustion gas flowing down the boiler 101 . Together with this heated primary air, the primary air bypassing the air heater 104 conveys the differentiated coal ground in the mill 134 to the burner 102 .
  • the mills 134 are arranged so as to correspond to each burner stage (four units in FIG. 9), and supply pulverized coal and primary air to the burners constituting each stage. That is, when the supply of coal is to be reduced, such as when the output of power generation is reduced, the mill can be stopped and the burners can be stopped for each burner stage. In the mill 134, the rotation speed of the mill is adjusted in consideration of the combustibility of the boiler 101 so as to obtain pulverized coal with a desired particle size depending on the properties of the coal to be used. Also, the coal stored in the coal bunker 136 is guided to the coal feeder 135 via the coal conveyor 137, and the coal feeder 135 adjusts the supply amount. It is then fed to mill 134 via coal conveyor 138 .
  • the boiler 101 is provided with an after air port 103 that introduces air for two-stage combustion into the boiler 101 .
  • Air for second-stage combustion is led from the pipe 142 to the after air port 103 .
  • the air introduced from the pipe 140 using the fan 121 is similarly heated by the air heater 104 .
  • the secondary air is branched into a pipe 141 for secondary air and a pipe 142 for an after-air port, and led to the burner 102 and the after-air port 103 of the boiler 101, respectively.
  • the flow rate of the air supplied to the burner 102 and the after air port 103 can be adjusted by operating air dampers (not shown) installed in the pipes 141 and 142, respectively.
  • High-temperature combustion gas generated by burning pulverized coal inside the boiler 101 flows downstream along a path inside the boiler 101 and is supplied with water by a heat exchanger 106 arranged inside the boiler 101. and heat exchange to generate steam.
  • the exhaust gas flows into the air heater 104 installed on the downstream side of the boiler 101 , heat is exchanged by the air heater 104 , and the temperature of the air supplied to the boiler 101 is raised.
  • the exhaust gas that has passed through the air heater 104 is subjected to exhaust gas treatment (not shown) and then released into the atmosphere from the chimney.
  • the feed water circulating through the heat exchanger 106 of the boiler 101 is supplied to the heat exchanger 106 via the feed water pump 105, is superheated in the heat exchanger 106 by the combustion gas flowing down the boiler 101, and is converted into high-temperature, high-pressure steam.
  • the number of heat exchangers is one in this embodiment, a plurality of heat exchangers may be arranged.
  • the high-temperature, high-pressure steam generated by the heat exchanger 106 is guided to the steam turbine 108 via the turbine governor 107 , and the steam turbine 108 is driven by the energy of the steam to generate electricity by the power generator 109 .
  • Operation data D1 which are measurement signals of the coal-fired power plant acquired from measuring instruments arranged in the coal-fired power plant, are stored in the operation database DB11 in the measurement signal database DB1 shown in FIG.
  • a sensor for acquiring the operation data D1
  • a temperature measuring instrument 151 that measures the temperature of the high-temperature, high-pressure steam supplied from the heat exchanger 106 to the steam turbine 108
  • a pressure measuring instrument 152 that measures the pressure of the steam
  • an amount of electric power generated by the generator 109 is measured.
  • a power generation output measuring instrument 153 and the like.
  • feed water generated by cooling steam by a condenser (not shown) of the steam turbine 108 is supplied to the heat exchanger 106 of the boiler 101 by the feed water pump 105.
  • Measured by 150 A measurement signal of a state quantity relating to the concentration of components contained in exhaust gas, which is combustion gas discharged from the boiler 101 , is measured by a concentration measuring device 154 provided downstream of the boiler 101 .
  • Components contained in the exhaust gas include nitrogen oxides (NOx), carbon monoxide (CO), hydrogen sulfide (H 2 S), and the like.
  • a primary air flow meter 155 for measuring the flow rate of primary air supplied to the mill 134 through the pipe 133, and a coal feeder 135 to measure the amount of coal supplied to the mill 134 through the coal conveyor 138.
  • the following information is used as the operating data D11 accumulated in the operating data database DB11, for example.
  • These are the coal flow rate supplied to the boiler 101, the rotation speed of the mill 134, and the primary and secondary air supplied to the boiler 101, which are the state quantities of the target device 10, which is a coal-fired power plant, measured by the above measuring instruments.
  • the flow rate, the feed water flow rate supplied to the heat exchanger 106 of the boiler 101, the temperature of the steam generated in the heat exchanger 106 of the boiler 101 and supplied to the steam turbine 108, the feed water supplied to the heat exchanger 106 of the boiler 101 are the feedwater pressure, the gas temperature and gas concentration of the exhaust gas discharged from the boiler 101, the exhaust gas recirculation flow rate for recirculating part of the exhaust gas discharged from the boiler 101 to the boiler 101, and the like.
  • the above is an example of the operation data D11 stored in the operation database DB11 in the measurement signal database DB1.
  • a plurality of sets of image data D12 are saved.
  • the image data D12 stored in the image data database DB12 includes, for example, image data D12a captured by the camera 71a that captures the combustion area on the wall surface of the boiler 101, and the heat exchanger 106 of the boiler 101.
  • image data D12b captured by the camera 71a image data D12c captured by the piping of the boiler 101, and the like.
  • a large number of measuring instruments or cameras other than those shown in FIG. 9 are arranged in the coal-fired power plant, but the illustration is omitted here.
  • the driving support device 20 of the present invention grasps the state of ash adhesion based on the image data D12b. Then, the combustion state can be controlled so that the ash adhesion amount does not increase. That is, the image data D12a of the combustion area and the image data D12b of the ash adhesion state are learned in association with each other, and the balance of the air flow rate can be controlled so as to achieve the desired combustion state of the ash adhesion state.
  • the image data D12b can grasp the position where the ash adheres, by blowing the soot locally, it is possible to eliminate the soot blower to unnecessary places and reduce the amount of steam consumed. The above effect can improve the efficiency of the boiler plant.
  • FIG. 10a is an example of image data D12a of the vicinity of the burner 102, which is the combustion area of the boiler 101, photographed by the camera 71a. From this image, the vicinity of the burners 102 arranged vertically and horizontally on the wall surface of the boiler 101 has the highest temperature of 1050 degrees, and the outer edge indicates the areas of 1000 degrees and 950 degrees as appropriate.
  • the temperature distribution in the combustion region, such as direction, can be grasped. Although the temperature distribution is described in this embodiment, information such as color, density, brightness, and wavelength may be included in the image data.
  • FIG. 10b is an example of image data D12b of the vicinity of the heat exchanger 106 of the boiler 101 photographed by the camera 71b. From this image, the amount of ash adhering to the heat exchanger 106 can be grasped.
  • This example focuses on the upstream combustion region and the downstream heat exchange region in the thermal fluid, and has a causal relationship between the cause and effect of the upstream state affecting the downstream state. .
  • By arranging the cameras at these positions it is possible to photograph the combustion state and heat exchange state. In addition, it is possible to grasp the above causal relationship.
  • FIG. 11a is an example of the feature amount extracted by processing the image data D12a of the combustion area by the state recognition means 60.
  • FIG. The average value of the temperatures on the left side and the right side of the can is extracted as a feature quantity and saved as time-series data.
  • FIG. 11b is an example of feature amounts extracted by processing the image data D12b of the heat exchanger 106 by the state evaluation means 50.
  • FIG. The amount of ash adhered in the heat exchangers 106 such as the primary superheater (1SH) and the secondary superheater (2SH) is extracted as feature quantities and stored as time-series data.
  • FIG. 12 is a flow chart explaining the operation contents of the learning means 70 when a coal-fired power plant is used as equipment.
  • the load plan is captured.
  • the load plan is a plan for the power output (load) of the thermal power plant, and is determined so as to satisfy the power demand.
  • the operation plan includes the timing of injecting the soot blower, the set value of the air amount, the type of coal (coal type), and the like.
  • processing step S32 the amount of ash adhered when the operation plan change proposal is implemented is estimated.
  • the state corresponding to the operation plan (the state grasped by the state recognition means 60 when processing the past image data) and the ash adhesion amount are associated and learned, and based on the result, the ash adhesion amount is determined. presume.
  • efficiency is estimated based on the amount of ash adhered, and an evaluation value is calculated.
  • the efficiency is calculated according to the amount of ash adhered.
  • the evaluation value is calculated by a function with efficiency as an input, and the higher the efficiency, the higher the evaluation value.
  • processing step S34 the pros and cons of the operation plan change proposal created in processing step S31 are learned. In other words, it learns that an operation plan change proposal with a high evaluation value is a good change plan, and an operation plan change proposal with a low evaluation value is a bad change plan. Create a proposal that will be expensive.
  • processing step S35 learning end determination is performed. If YES, the learning is terminated, and if NO, the process returns to step S31. For example, when processing steps S30 to S35 are repeated a predetermined number of times, the learning ends.
  • FIG. 13 is a diagram for explaining learning results when a coal-fired power plant is used as equipment.
  • the horizontal axis indicates time
  • the vertical axis indicates, from top to bottom, the load plan for a certain month, the timing of soot blower injection, the two-stage combustion ratio, which is an example of the air amount set value, and the coal type.
  • the soot blower injection in FIG. 13 shows an example in which the injection area is divided into 4 areas of the can right and can left of the heat exchanger for the primary heat exchanger 1SH and the secondary heat exchanger 2SH.
  • soot blower it is desirable to divide the soot blower into small areas and perform each area at the appropriate timing, instead of performing the soot blower injection on the entire heat exchanger at once. Also, it is desirable to spray the soot blower to the position of the heat exchanger where the ash adheres.
  • the driving assistance device 20 of the present invention it is possible to grasp the position where the ash adheres from the image data, and to blow the soot to that position, which contributes to the efficiency improvement.
  • air operation makes it possible to maintain combustion conditions that reduce the amount of ash adhesion and to select coal types that take ash adhesion into consideration, which also contributes to efficiency improvement.
  • Programs to be provided in the ROM may correspond to each processing function shown in FIG. It has a state evaluation program that processes image data of the state of the downstream side of the fluid and obtains an evaluation value, and a learning program that learns using the image processing results and obtains the operation method of the equipment as an action.
  • the driving support program which is composed of these individual programs, is used as appropriately specialized by the target device.
  • Sg1 external input signal
  • Sg2 measurement signal
  • Sg3 measurement signal
  • Sg4 measurement signal
  • Sg5 preprocessed data used for state evaluation
  • Sg6 preprocessed data used for state recognition
  • Sg7 state evaluation result
  • Sg8 state recognition result
  • Sg9 learning result
  • Sg10 learning result
  • Sg12 operation recommendation signal
  • Sg70 measurement signal
  • 71 camera
  • Sg80 operation signal
  • 10 target device
  • 18 control device
  • 19 equipment
  • 20 driving support device
  • 21 external input interface
  • 22 external output interface
  • DB1 measurement signal database
  • DB11 driving data database
  • DB12 image data database
  • DB2 processing result database
  • 40 front Processing means 50: State evaluation means 60: State recognition means 70: Learning means 80: Action determination means 90: External device 91: External input device 92: Keyboard 93: Mouse 94: Image display device

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Evolutionary Computation (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Electrophonic Musical Instruments (AREA)
  • Electrotherapy Devices (AREA)

Abstract

Provided are an operation assistance device, an operation assistance method, and an operation assistance program, which are capable of providing effective guidance for a control device to operate equipment by using image information received from a plurality of cameras that monitor the state of each part of the equipment. This operation assistance device acquires image data obtained by photographing the equipment by the cameras, and provides guidance on operation of the equipment by an optimal control algorithm using the image data. The operation assistance device is characterized in that the optimal control algorithm quantifies the image data as features and uses the quantified image data, and the image data is obtained by photographing different positions of the equipment at different time points.

Description

運転支援装置、運転支援方法および運転支援プログラムDriving support device, driving support method, and driving support program
 本発明は、各種機器、プラント、システム(以下、単に機器という)の操作を支援する運転支援装置、運転支援方法、および運転支援プログラムに関する。 The present invention relates to a driving support device, a driving support method, and a driving support program that support the operation of various devices, plants, and systems (hereinafter simply referred to as devices).
 近年、ICT(Information and Communication Technology )、IoT(Internet of Thing)の技術革新に伴い、高速な計算機やネットワーク通信、大容量なデータ保存装置を利用できる環境が整いつつある。多くの産業分野で大量に蓄積したデータの利活用に注目が集まるなか、機器の計測データや点検・保全データなどの現地サイトで収集したデータと、企業の経営及び資産情報を管理するシステムの統合により、重要業績評価指標を改善する運用が求められている。 In recent years, with the technological innovations of ICT (Information and Communication Technology) and IoT (Internet of Things), an environment is being prepared in which high-speed computers, network communications, and large-capacity data storage devices can be used. As the utilization of large amounts of data accumulated in many industrial fields is attracting attention, integration of data collected at local sites such as equipment measurement data, inspection and maintenance data, and systems that manage corporate management and asset information. Therefore, operations to improve key performance indicators are required.
 例えば、発電事業の分野では、風力発電や太陽光発電などの再生可能エネルギーの利用増加に伴う発電量の変動が電力系統の安定性を低下させるという懸念から、バックアップ電源としての火力発電プラントの重要性が増している。また、火力発電プラントは負荷調整としての役割だけでなく、ベースロード電源としての役割も担っており、効率、環境性能、稼働率などの運用性能を考慮した運用が求められている。 For example, in the field of power generation, there is concern that fluctuations in the amount of power generated due to the increased use of renewable energy such as wind power and solar power will reduce the stability of the power system. sexuality is increasing. In addition, thermal power plants play a role not only as load control but also as a base load power source, and are required to be operated in consideration of operational performance such as efficiency, environmental performance, and operating rate.
 係る火力発電プラントの運用性能を改善するため、特許文献1には環境性能である窒素酸化物濃度、一酸化炭素濃度を低減させる制御装置が開示されている。特許文献1に記載された技術によれば、プラントの特性を模擬するモデルと、このモデルを対象に最適な操作方法を学習する学習手段を組み合わせて、操作信号を生成する。この技術を用いることで、操作条件を最適値に移動させることができる。ここで、操作条件とは操作信号の生成に用いる値である。 In order to improve the operational performance of such thermal power plants, Patent Document 1 discloses a control device that reduces the nitrogen oxide concentration and carbon monoxide concentration, which are environmental performance. According to the technique described in Patent Literature 1, an operation signal is generated by combining a model that simulates the characteristics of a plant and a learning means that learns an optimum operation method for this model. Using this technique, the operating conditions can be moved to optimum values. Here, the operation condition is a value used for generating the operation signal.
特開2009-128972号公報JP 2009-128972 A
 火力発電プラントでは、火力発電プラント内各所の各種の状態量(運転データ)を計測し、この計測データを用いた処理を実行する。具体的な例で述べると火力発電プラントでは、石炭を燃焼した際に発生する灰が熱交換器、炉壁に付着すると、伝熱の特性が変化し、熱吸収量が低下する。また、熱交換器に付着した灰は、スートブロワ(蒸気噴射)により除去している。 A thermal power plant measures various state quantities (operating data) at various locations within the thermal power plant, and executes processing using this measurement data. To give a specific example, in a thermal power plant, when ash generated when coal is burned adheres to heat exchangers and furnace walls, the heat transfer characteristics change and the amount of heat absorption decreases. Also, the ash adhering to the heat exchanger is removed by a soot blower (steam injection).
 然るに、灰付着の状況を前記の計測した火力発電プラント内の各所の各種の状態量(運転データ)のみから把握するのが難しい。さらには、伝熱特性の変化、熱吸収量低下によりヒートバランスが変化する、あるいはスートブロワにより蒸気を使用すると、一時的には効率が低下するという問題がある。 However, it is difficult to grasp the state of ash adhesion only from the various state quantities (operation data) measured at various locations in the thermal power plant. Furthermore, there is a problem that the heat balance changes due to a change in heat transfer characteristics, a decrease in heat absorption, or a temporary decrease in efficiency when steam is used by a soot blower.
 他方、各種機器の監視場面において、カメラを用いることが従来から行われている。例えば機器が火力発電プラントであればバーナの燃焼状態を撮影して監視することが行われている。然るに従来のカメラ監視は、取得画像の時系列的な変化分に着目して燃焼状態を監視するものである。また火力発電プラントの各所でカメラによる監視が行われているが、これらは当該撮影場所の監視に用いられるのみであって、異なる場所で撮影された画像間での関係性に着目したものではない。 On the other hand, cameras have been conventionally used to monitor various devices. For example, if the device is a thermal power plant, the combustion state of the burner is photographed and monitored. However, the conventional camera monitoring monitors the combustion state by paying attention to the time-series changes in the acquired images. In addition, cameras are used to monitor various locations in thermal power plants, but these are only used to monitor the locations where the images were taken, and do not focus on the relationship between images taken at different locations. .
 なお特許文献1あるいは監視カメラの適用の技術は、火力発電プラントのみならず、一般的な機器に適用可能であることは言うまでもない。 It goes without saying that the technique of applying Patent Document 1 or surveillance cameras can be applied not only to thermal power plants but also to general equipment.
 以上のことから本発明においては、機器を制御装置により運転するにあたり、機器の各部状態を監視する複数カメラからの画像情報を利用して有効なガイダンスを与えることを可能とする運転支援装置、運転支援方法および運転支援プログラムを提供することを目的とする。 In view of the above, in the present invention, when operating equipment using a control device, there is provided a driving support device that makes it possible to provide effective guidance using image information from a plurality of cameras that monitor the state of each part of the equipment. An object is to provide a support method and a driving support program.
 以上のことから本発明においては、「機器をカメラで撮影した画像データを入手し、画像データを用いた最適制御アルゴリズムにより機器の運転に関するガイダンスを与える運転支援装置であって、最適制御アルゴリズムは、画像データを特徴量として数値化して用いるとともに、画像データは機器の異なる場所、時間に撮影した画像データであることを特徴とする運転支援装置。」としたものである。 Based on the above, in the present invention, "a driving support device that obtains image data of a device photographed by a camera and provides guidance regarding operation of the device by an optimal control algorithm using the image data, wherein the optimal control algorithm is: A driving support device characterized by using image data as feature quantities in numerical form, and wherein the image data is image data captured by equipment at different locations and at different times.”
 また本発明においては、「機器をカメラで撮影した画像データを用いた最適制御アルゴリズムにより機器の運転に関するガイダンスを与える運転支援方法であって、最適制御アルゴリズムは、画像データを特徴量として数値化して用いるとともに、画像データは機器の異なる場所、時間に撮影した画像データであることを特徴とする運転支援方法。
」としたものである。
In addition, in the present invention, "a driving support method that provides guidance regarding the operation of equipment by means of an optimum control algorithm using image data obtained by photographing the equipment with a camera, wherein the optimum control algorithm digitizes the image data as a feature amount. and the image data is image data photographed at different locations and times by the device.
”.
 また本発明においては、「機器の複数個所をカメラで撮影した複数の画像データを用いて機器の運転に関するガイダンスを与える運転支援プログラムであって、数値化した特徴量とした画像データに基づいて状態を認識する状態認識プログラムと、数値化した特徴量として他の画像データに基づいて状態を評価し評価値を得る状態評価プログラムと、評価値が最大となる状態に遷移するための行動を学習する学習プログラムを含むことを特徴とする運転支援プログラム。」としたものである。 In addition, in the present invention, there is provided a "driving support program that provides guidance regarding the operation of a device using a plurality of image data obtained by photographing a plurality of locations of the device with a camera. A state recognition program that recognizes the state, a state evaluation program that evaluates the state based on other image data as a numerical feature value and obtains an evaluation value, and a state evaluation program that learns actions to transition to the state that maximizes the evaluation value A driving assistance program characterized by including a learning program."
 本発明によれば、機器を制御装置により運転するにあたり、機器の各部状態を監視する複数カメラからの画像情報を利用して有効なガイダンスを与えることができる。 According to the present invention, effective guidance can be given using image information from a plurality of cameras that monitor the state of each part of the equipment when the equipment is operated by the control device.
 例えば本発明の火力発電プラントへの適用により、灰付着の状況を、画像データに基づき把握し、そして、灰付着量の増加幅が大きくならないように、燃焼状態を制御することができる。すなわち、各部状態を監視する複数カメラからの画像情報として、燃焼領域の画像データと、灰付着状況の画像データを関連付けして学習し、所望の灰付着状況になるような燃焼状態になるように、空気流量のバランスを制御できる。また、灰が付着している所を局所的にスートブロワすることにより、不必要な所へのスートブロワをなくして、消費する蒸気量を減らすことが可能となる。上記により、ボイラプラントの効率を向上できる有効なガイダンスを与えることができる。 For example, by applying the present invention to a thermal power plant, the state of ash adhesion can be grasped based on image data, and the combustion state can be controlled so that the amount of ash adhesion does not increase. That is, as image information from multiple cameras that monitor the state of each part, the image data of the combustion area and the image data of the ash adhesion state are correlated and learned, so that the combustion state will be the desired ash adhesion state. , can control the air flow balance. Also, by locally blowing the soot at the place where the ash adheres, it is possible to eliminate the soot blowing to unnecessary places and reduce the amount of steam consumed. The above can give useful guidance that can improve the efficiency of the boiler plant.
本発明の実施例に係る運転支援装置の構成例を説明するブロック図。1 is a block diagram illustrating a configuration example of a driving assistance device according to an embodiment of the present invention; FIG. 本発明の実施例に係る運転支援装置の動作を説明するフローチャート。4 is a flowchart for explaining the operation of the driving assistance device according to the embodiment of the present invention; 運転データデータベースDB11に保存される運転データD11の例を示す図。The figure which shows the example of the driving|running data D11 preserve|saved at driving|running data database DB11. 画像データデータベースDB2に保存される画像データD12の例を示す図。FIG. 4 is a diagram showing an example of image data D12 stored in an image data database DB2; 特に画像データD12について前処理手段40の処理動作例を説明する図。FIG. 4 is a diagram for explaining an example of processing operation of the preprocessing means 40, particularly for image data D12; データ収録周期が異なる時の前処理手段40の動作を説明する図。4A and 4B are diagrams for explaining the operation of the preprocessing means 40 when the data recording cycles are different; FIG. 画像データD12から特徴量を抽出した結果を示す図。FIG. 10 is a diagram showing the result of extracting feature amounts from image data D12; 学習手段70に含まれるモデルとしてニューラルネットワークモデルを示す図。4 is a diagram showing a neural network model as a model included in learning means 70. FIG. ニューラルネットワークモデルの入力と出力の関係を示す図。The figure which shows the relationship between the input of a neural network model, and an output. 学習手段70を動作させた結果例を示す図。FIG. 5 is a diagram showing an example of a result of operating the learning means 70; 図1の機器19として、石炭火力プラントを用いた場合の構成例を示す図。The figure which shows the structural example at the time of using a coal-fired power plant as the apparatus 19 of FIG. ボイラ101の燃焼領域であるバーナ102の近辺をカメラ71aにより撮影した画像データD12aの一例を示す図。FIG. 3 is a diagram showing an example of image data D12a of the vicinity of the burner 102, which is the combustion area of the boiler 101, photographed by the camera 71a. ボイラ101の熱交換器106の近辺をカメラ71bにより撮影した画像データD12bの一例を示す図。The figure which shows an example of the image data D12b which image|photographed the vicinity of the heat exchanger 106 of the boiler 101 with the camera 71b. 状態認識手段600にて燃焼領域の画像データD12aを処理して抽出した特徴量の例を示す図。FIG. 5 is a diagram showing an example of feature amounts extracted by processing the image data D12a of the combustion region by the state recognition means 600; 状態評価手段にて熱交換器106の画像データD12bを処理して抽出した特徴量の例を示す図。FIG. 5 is a diagram showing an example of feature amounts extracted by processing the image data D12b of the heat exchanger 106 by the state evaluation means; 機器として石炭火力プラントを用いた場合の学習手段700の動作内容を説明するフローチャート。4 is a flowchart for explaining the operation contents of learning means 700 when a coal-fired power plant is used as equipment. 機器として石炭火力プラントを用いた場合の学習結果を説明する図。The figure explaining the learning result at the time of using a coal-fired power plant as apparatus.
 以下、本発明の実施例について図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、本発明の実施例に係る運転支援装置20およびこれに関連する装置の構成例を説明するブロック図である。本実施例では、運転支援装置20は制御装置18や制御対象である機器19を含む対象装置10、及び外部装置90と接続されている。 FIG. 1 is a block diagram illustrating a configuration example of a driving support device 20 according to an embodiment of the present invention and related devices. In this embodiment, the driving support device 20 is connected to the control device 18 and the target device 10 including the device 19 to be controlled, and the external device 90 .
 図1の運転支援装置20は、一般には計算機装置(コンピュータ)により構成されている。つまり、CPUの如き演算装置が最適制御アルゴリズムを実現するためのプログラムに従って各種処理機能を実行する。その演算装置における処理機能(最適制御アルゴリズム)を模式的に示すならば、前処理手段40、状態評価手段50、状態認識手段60、学習手段70、行動決定手段80、ならびにこれらの処理機能を動作させる運転支援装置動作制御手段25を備えたものということができる。なお、本実施例で説明する各プログラムについては、ネットワーク経由で各装置に配信したり、記憶媒体に格納されて配布したりすることが可能である。運転支援装置20における各部の動作である処理機能の詳細については、図2以降で説明する。なお、上述した各手段は、ハードウェアとしても実現できる。ここで、本実施例では、各構成要素を「~手段」と表現しているが、「~部」「~ユニット」などとその表現は問わない。 The driving assistance device 20 in FIG. 1 is generally configured by a computer device (computer). That is, an arithmetic unit such as a CPU executes various processing functions according to a program for realizing an optimum control algorithm. If the processing functions (optimal control algorithm) in the arithmetic unit are schematically shown, preprocessing means 40, state evaluation means 50, state recognition means 60, learning means 70, action determination means 80, and these processing functions are operated. It can be said that the driving support device operation control means 25 is provided to allow the operation to be performed. Each program described in this embodiment can be distributed to each device via a network, or can be stored in a storage medium and distributed. Details of the processing functions, which are the operations of the respective units in the driving support device 20, will be described with reference to FIG. 2 and subsequent figures. Note that each means described above can also be implemented as hardware. Here, in the present embodiment, each component is expressed as ``means'', but expressions such as ``unit'', ``unit'', etc. are not limited.
 運転支援装置20は、データベースDBとして計測信号データベースDB1、処理結果データベースDB2を備える。計測信号データベースDB1には、運転データデータベースDB11、画像データデータベースDB12(DB12a、DB12b、DB12n)が備えられている。各データベースDBには、電子化された情報が保存されており、通常電子ファイル(電子データ)と呼ばれる形態で情報が保存される。尚、これらデータベースDBについては、運転支援装置20の外部に設け、ネットワークを介して接続可能な構成でもよい。 The driving support device 20 includes a measurement signal database DB1 and a processing result database DB2 as databases DB. The measurement signal database DB1 includes a driving data database DB11 and an image data database DB12 (DB12a, DB12b, DB12n). Electronic information is stored in each database DB, and the information is stored in a form usually called an electronic file (electronic data). Incidentally, these databases DB may be provided outside the driving assistance device 20 and configured to be connectable via a network.
 また、運転支援装置20は、外部とのインターフェイスとして外部入力インターフェイス21及び外部出力インターフェイス22を備える。そして、運転操作支援装置20は、これらを介して、適用対象である対象装置10、及び外部装置90に接続している。 The driving assistance device 20 also includes an external input interface 21 and an external output interface 22 as interfaces with the outside. The driving operation support device 20 is connected to the target device 10 to which it is applied and the external device 90 via these devices.
 運転支援装置20の実装には、以下に述べる各態様が含まれる。1つ目は、運転支援装置20のクラウド化である。これは、運転支援装置20を、公衆のネットワーク上に構成し、外部装置90で利用可能とする構成である。2つ目は、運転支援装置20を、対象装置10の運用会社で運用・管理する態様である。これは、運転支援装置20を、対象装置10の運用会社の社内ネットワークに接続し、当該運用会社でこれらを運用・管理する構成である。本発明はこれらのいずれの態様によるものであってもよい。 The implementation of the driving support device 20 includes each aspect described below. The first is cloudization of the driving support device 20 . This is a configuration in which the driving support device 20 is configured on a public network and can be used by the external device 90 . The second is a mode in which the operating company of the target device 10 operates and manages the driving support device 20 . This is a configuration in which the driving support device 20 is connected to the in-house network of the operating company of the target device 10 and operated and managed by the operating company. The present invention may be according to any of these aspects.
 次に、外部装置90は、計算機装置(コンピュータ)により構成されている。つまり、CPUの如き演算装置がプログラムに従って以下に示す各種処理機能を実行する。また、外部装置90は、端末装置として実現でき、タブレット、スマートフォン、ノートPCなどが含まれる。外部装置90には、キーボード92やマウス93で実現される外部入力装置91と、画像表示装置94が備えられている。対象装置10の運転員は、画像表示装置94に表示された情報に基づいて、外部入力装置91へ操作を行い、対象装置10に対する操作を実施できる。 Next, the external device 90 is composed of a computing device (computer). That is, an arithmetic unit such as a CPU executes various processing functions described below according to a program. Also, the external device 90 can be realized as a terminal device, and includes a tablet, a smart phone, a notebook PC, and the like. The external device 90 includes an external input device 91 implemented by a keyboard 92 and a mouse 93 and an image display device 94 . The operator of the target device 10 can operate the external input device 91 based on the information displayed on the image display device 94 to operate the target device 10 .
 また、対象装置10は、制御装置18と機器19で構成される。ここで、機器19から制御装置18に計測信号Sg70を送信し、制御装置18から機器19に操作信号Sg80を送信する。機器19には画像を撮影するカメラ71(71a、71b、71n)が互いに相違する場所に複数備えられている。計測信号Sg70は、機器19の動作を示す運転データ(機器に備えられているセンサで収集した時系列のプロセス値データ)、カメラで撮影した画像データが含まれる。また、操作信号Sg80は、操作に応じて制御装置18がどのような信号を出力しているか示すことになる。 Also, the target device 10 is composed of a control device 18 and a device 19 . Here, a measurement signal Sg70 is transmitted from the device 19 to the control device 18, and an operation signal Sg80 is transmitted from the control device 18 to the device 19. FIG. The device 19 is provided with a plurality of cameras 71 (71a, 71b, 71n) for capturing images at different locations. The measurement signal Sg70 includes operation data indicating the operation of the device 19 (time-series process value data collected by a sensor provided in the device) and image data captured by a camera. Further, the operation signal Sg80 indicates what kind of signal the control device 18 outputs according to the operation.
 運転支援装置20は、外部入力インターフェイス21を介して外部入力信号Sg1、計測信号Sg2を取り込み、これらの計測信号Sg3は計測信号データベースDB1に保存される。計測信号Sg3には運転データD11と画像データD12があり、それぞれ運転データデータベースDB11、画像データデータベースDB12に保存される。尚、画像データデータベースDB12は、撮影した地点毎に画像データD12を管理している。本実施例では、カメラ71aで撮影した画像データD12aはa地点画像データベースDB12a、カメラ71bで撮影した画像データD12bはb地点画像データベースDB12b、カメラ71nで撮影した画像データD12nはn地点画像データベースDB12nにそれぞれ保存される。 The driving support device 20 takes in the external input signal Sg1 and the measurement signal Sg2 via the external input interface 21, and these measurement signals Sg3 are stored in the measurement signal database DB1. The measurement signal Sg3 includes driving data D11 and image data D12, which are stored in the driving data database DB11 and the image data database DB12, respectively. The image data database DB12 manages the image data D12 for each shooting location. In this embodiment, the image data D12a captured by the camera 71a is stored in the a-point image database DB12a, the image data D12b captured by the camera 71b is stored in the b-point image database DB12b, and the image data D12n captured by the camera 71n is stored in the n-point image database DB12n. saved respectively.
 保存される画像データDB12は、定点カメラ、ドローン、水中ドローン、人によるカメラなどで撮影された画像であり、目的に応じて種々の画像データが保存される。また、撮影するカメラは高感度CMOSカメラ、赤外線カメラ、レーザーカメラなど、種々のカメラ、もしくはこれらを組み合わせたカメラであっても良い。 The stored image data DB 12 is images captured by fixed-point cameras, drones, underwater drones, and human cameras, and various image data are stored according to the purpose. Moreover, the camera used for photographing may be a high-sensitivity CMOS camera, an infrared camera, a laser camera, or a combination of various cameras.
 前処理手段40は、計測信号データベースDB1に保存されている計測信号Sg4を取得し、適宜必要に応じたデータ前処理を施した後、状態評価に使用する前処理後データSg5を状態評価手段50、状態認識に使用する前処理後データSg6を状態認識手段60に送信する。前処理手段40では、機器における無駄時間や遅れ時間を考慮して、計測信号データベースに保存されている計測信号の補正処理を実施する。 The preprocessing means 40 acquires the measurement signal Sg4 stored in the measurement signal database DB1, performs data preprocessing as appropriate, and then converts the preprocessed data Sg5 used for state evaluation to the state evaluation means 50. , the preprocessed data Sg6 used for state recognition is transmitted to the state recognition means 60. FIG. The preprocessing means 40 performs correction processing of the measurement signals stored in the measurement signal database, taking into consideration the dead time and delay time in the equipment.
 状態評価手段50は、状態評価に使用する前処理後データSg5から特徴量を抽出し、この特徴量が望ましい値であるかどうかを評価し、状態評価結果Sg7を出力する。状態評価結果Sg7は学習手段70、および処理結果データベースDB2に送信する。 The state evaluation means 50 extracts a feature amount from the preprocessed data Sg5 used for state evaluation, evaluates whether or not this feature amount is a desirable value, and outputs a state evaluation result Sg7. The state evaluation result Sg7 is transmitted to the learning means 70 and the processing result database DB2.
 状態認識手段60は、状態認識に使用する前処理後データSg6から特徴量を抽出し、この特徴量に基づいて対象装置の運転状態を認識し、状態認識結果Sg8を出力する。状態認識結果Sg8は学習手段70、行動決定手段80、および処理結果データベースDB2に送信する。 The state recognition means 60 extracts a feature amount from the preprocessed data Sg6 used for state recognition, recognizes the operating state of the target device based on this feature amount, and outputs a state recognition result Sg8. The state recognition result Sg8 is transmitted to the learning means 70, the action determination means 80, and the processing result database DB2.
 状態評価手段50、状態認識手段60で抽出する特徴量は、画像に映っている物体を特定し、その内容を符号化した値、大きさ、色、濃度、温度、輝度、波長、およびこれらの変化率などが挙げられる。 The feature quantities extracted by the state evaluation means 50 and the state recognition means 60 are the value, size, color, density, temperature, brightness, wavelength, and the value obtained by specifying the object in the image and encoding its contents. rate of change and the like.
 学習手段70では、状態評価結果Sg7が所望の値となるような操作方法を学習し、学習結果Sg9を出力する。学習結果Sg9は処理結果データベースDB2に送信する。学習結果Sg9は、現在の状態認識結果に適する行動に関する情報が含まれる。学習手段70は、強化学習、遺伝的アルゴリズム、非線形計画法などの最適化アルゴリズムを用いて実装できるが、本発明では学習手段70の実装方法を限定しない。 The learning means 70 learns an operation method that makes the state evaluation result Sg7 a desired value, and outputs a learning result Sg9. The learning result Sg9 is transmitted to the processing result database DB2. The learning result Sg9 includes information on actions suitable for the current state recognition result. The learning means 70 can be implemented using an optimization algorithm such as reinforcement learning, genetic algorithm, nonlinear programming, etc. However, the present invention does not limit the implementation method of the learning means 70 .
 処理結果データベースDB2には、状態評価手段50、状態認識手段60、学習手段70を動作させた結果として得られる状態評価結果Sg7、状態認識結果Sg8、学習結果Sg9が保存される。 The processing result database DB2 stores the state evaluation result Sg7, the state recognition result Sg8, and the learning result Sg9 obtained as a result of operating the state evaluation means 50, the state recognition means 60, and the learning means 70.
 行動決定手段80では、学習結果Sg10を参照し、現在の状態認識結果Sg8に適する行動を決定し、行動Sg11を出力する。行動Sg11は外部出力インターフェイス22に送信する。 The action determination means 80 refers to the learning result Sg10, determines an action suitable for the current state recognition result Sg8, and outputs an action Sg11. Behavior Sg11 is transmitted to the external output interface 22 .
 外部出力インターフェイス22では、行動Sg11を操作推奨信号Sg12に変換し、制御装置18、もしくは画像表示装置94に送信する。これにより、操作推奨信号Sg12を用いて直接対象装置10を制御すること、もしくは画像表示装置94に表示された操作推奨信号Sg12を参照して、対象機器10を手動で操作することが可能である。 The external output interface 22 converts the action Sg11 into an operation recommendation signal Sg12 and transmits it to the control device 18 or the image display device 94. As a result, the target device 10 can be directly controlled using the operation recommendation signal Sg12, or the target device 10 can be manually operated with reference to the operation recommendation signal Sg12 displayed on the image display device 94. .
 尚、本実施例の運転支援装置20においては、計算機装置を構成する演算装置、およびデータベースDBが運転操作支援装置20の内部に備えられている例を示している。但し、これらの一部の装置を運転支援装置20の外部に配置し、データのみを装置間で通信するようにしてもよい。 In addition, in the driving assistance device 20 of the present embodiment, an example is shown in which the arithmetic device constituting the computer device and the database DB are provided inside the driving operation assistance device 20 . However, some of these devices may be arranged outside the driving support device 20, and only data may be communicated between the devices.
 また、各データベースDBに保存されている信号であるデータベース信号は、それら各信号を外部出力インターフェイス22を介して画像表示装置94に表示できる。また、これらの信号の値は外部入力装置91を操作して生成する外部入力信号Sg1で修正できる。 Also, the database signals stored in each database DB can be displayed on the image display device 94 via the external output interface 22 . Moreover, the values of these signals can be modified by an external input signal Sg1 generated by operating the external input device 91. FIG.
 本実施例では、外部入力装置91をキーボード92とマウス93で構成しているが、音声入力のためのマイク、タッチパネルなど、データを入力するための装置であれば良い。 In this embodiment, the external input device 91 is composed of a keyboard 92 and a mouse 93, but any device for inputting data such as a microphone for voice input and a touch panel may be used.
 また、本実施例には、運転支援装置20を用いた方法も含まれることは言うまでもない。また、本実施例では運転支援装置20の適用対象であるガイダンス対象装置10を制御装置18と機器19で構成しているが、この構成以外の設備としても実施可能であることは言うまでもない。 It goes without saying that the present embodiment also includes a method using the driving support device 20. In this embodiment, the guidance target device 10 to which the driving support device 20 is applied is composed of the control device 18 and the equipment 19, but it goes without saying that the device can be implemented as equipment other than this configuration.
 図2は運転支援装置20の動作を説明するフローチャート図である。本フローチャートは、運転支援装置動作制御手段25が各演算装置を動作させることによって実現する。演算装置における動作は、学習に関する機能と行動に関する機能に分けることができ、図2左は、過去に蓄積した計測信号を用いて、対象装置10の操作方法を学習するためのフローチャートであり、図2右は学習結果に基づいて対象装置10に対する操作推奨信号を生成するためのフローチャートである。 FIG. 2 is a flowchart for explaining the operation of the driving support device 20. FIG. This flowchart is realized by the driving support device operation control means 25 operating each arithmetic device. The operation of the arithmetic device can be divided into functions related to learning and functions related to action. The left side of FIG. 2 right is a flow chart for generating an operation recommendation signal for the target device 10 based on the learning result.
 まず、図2左の学習に関する機能の動作を説明する。処理ステップS10では、過去の計測信号を計測信号データベースDB1に取り込み、保存する。処理ステップS11では、前処理手段40を動作させることにより、計測信号Sg4から状態評価に使用する前処理後データSg5、状態認識に使用する前処理後データSg6を生成する。ステップSg12では、状態評価手段50、状態認識手段60を動作させて、状態評価結果Sg7、状態認識結果Sg8を生成する。最後に、処理ステップS13では、学習手段70を動作させて、学習結果Sg9を生成する。本フローチャートで生成した状態評価結果Sg7、状態認識結果Sg8、学習結果Sg9は、処理結果データベースDB2に保存する。 First, the operation of the functions related to learning on the left side of Fig. 2 will be explained. In processing step S10, past measurement signals are taken in and stored in the measurement signal database DB1. In processing step S11, the preprocessing means 40 is operated to generate preprocessed data Sg5 used for state evaluation and preprocessed data Sg6 used for state recognition from the measurement signal Sg4. In step Sg12, the state evaluation means 50 and the state recognition means 60 are operated to generate a state evaluation result Sg7 and a state recognition result Sg8. Finally, in processing step S13, the learning means 70 is operated to generate a learning result Sg9. The state evaluation result Sg7, the state recognition result Sg8, and the learning result Sg9 generated in this flowchart are stored in the processing result database DB2.
 次に、図2右の行動に関する機能の動作を説明する。処理ステップS20では、最新の計測信号Sg2を計測信号データベースDB1に取り込み、保存する。処理ステップS21では、最新の計測信号Sg4に対して、前処理手段40を動作させ、状態認識に使用する前処理後データSg6を生成する。処理ステップS22では、状態認識手段60を動作させ、状態認識結果Sg8を生成する。処理ステップS23では、行動決定手段80を動作させ、行動Sg11を生成する。そして、外部出力インターフェイス22を介して、操作推奨信号Sg12を制御装置18、もしくは画像表示装置94に送信する。 Next, the operation of the function related to the action on the right side of Fig. 2 will be explained. In processing step S20, the latest measurement signal Sg2 is taken into the measurement signal database DB1 and stored. In processing step S21, the preprocessing means 40 is operated with respect to the latest measurement signal Sg4 to generate post-preprocessing data Sg6 used for state recognition. In processing step S22, the state recognition means 60 is operated to generate a state recognition result Sg8. In processing step S23, action determining means 80 is operated to generate action Sg11. Then, the operation recommendation signal Sg12 is transmitted to the control device 18 or the image display device 94 via the external output interface 22 .
 処理ステップS24では、運転支援装置20による運転支援継続要否を判定し、要の場合は処理ステップS20に戻り、否の場合は終了する。尚、処理ステップS24で運転支援継続要否の判定方法としては、対象装置10の運転員が運転支援継続要否に関する情報を外部入力装置91を用いて入力し、その内容に従って判定する方法がある。 In processing step S24, it is determined whether or not driving assistance should be continued by the driving assistance device 20. If necessary, the process returns to processing step S20. As a method for determining whether or not driving assistance is required to be continued in processing step S24, there is a method in which the operator of the target device 10 inputs information on whether or not driving assistance is required to be continued using the external input device 91, and determination is made according to the content of the information. .
 図3、図4は計測信号データベースDB1に保存されたデータの態様を説明する図である。図3は運転データデータベースDB11に保存される運転データD11を示す一例であり、図4は画像データデータベースDB2に保存される画像データD12を示す一例である。  Figs. 3 and 4 are diagrams for explaining aspects of data stored in the measurement signal database DB1. FIG. 3 shows an example of the operating data D11 stored in the operating data database DB11, and FIG. 4 shows an example of the image data D12 stored in the image data database DB2.
 図3に示すように、運転データデータベースDB11には、例えばデータ項目(項目A、項目B、項目C…)毎の時系列データがサンプリング周期毎に保存されている。項目Aは例えば温度、項目Bは流量、項目Cは圧力である。また、図4に示すように、画像データデータベースDB2には、例えば機器19のある断面で計測した温度の分布がサンプリング周期毎に保存されている。なお、対象装置10の運転データ及び画像データは、画像表示装置94に表示可能となっている。 As shown in FIG. 3, the operating data database DB11 stores, for example, time-series data for each data item (item A, item B, item C, . . . ) for each sampling period. Item A is, for example, temperature, item B is flow rate, and item C is pressure. Further, as shown in FIG. 4, the image data database DB2 stores, for example, the temperature distribution measured at a cross section of the device 19 for each sampling period. Operation data and image data of the target device 10 can be displayed on the image display device 94 .
 図5、図6は、前処理手段40の処理動作例を説明する図である。まず図5は、特に画像データD12に関する。ここでは、a地点で撮影した画像とb地点で撮影した画像がある場合の補正方法の概要を説明する。a地点からb地点へ流体などの物質が到達するのに必要な時間(無駄時間と遅れ時間)が運転条件1の時にはΔt12である場合、b地点で撮影した画像をΔt12分だけ前方向に補正した上で処理する。これにより、因果関係を正確に学習できる。またa地点からb地点へ流体などの物質が到達するのに必要な時間(無駄時間と遅れ時間)を運転条件2の時にはΔt34にするなど、運転条件を判断しながら適宜遅れ補整時間を修正するのがよい。 5 and 6 are diagrams for explaining an example of the processing operation of the preprocessing means 40. FIG. First, FIG. 5 particularly relates to image data D12. Here, an outline of a correction method when there are an image shot at point a and an image shot at point b will be described. If the time (dead time and delay time) required for a substance such as fluid to reach point a from point a to point b is Δt12 under operating condition 1, the image captured at point b is corrected forward by Δt12. and then process it. This allows accurate learning of causal relationships. Also, the time required for a substance such as fluid to reach point a from point b (waste time and delay time) is set to Δt34 under operating condition 2, and the delay compensation time is appropriately corrected while judging the operating conditions. It's good.
 本発明においては対象機器内の流体などの移動の上下流関係にある少なくとも2点間の画像を学習することで対象機器の状態把握をしようとしている。この時は、同時刻に計測した画像間の比較ではなく、上流側で計測した時の画像とこの時の流体が下流側計測点に到達した状態での画像について学習する必要があることから、前処理においては遅れ時間補整を行うのがよい。 In the present invention, we are trying to grasp the state of the target device by learning images between at least two points in the upstream and downstream relationship of the movement of fluid etc. in the target device. At this time, instead of comparing images measured at the same time, it is necessary to learn about the image when the fluid was measured on the upstream side and the image when the fluid reached the downstream measurement point. It is preferable to perform delay time compensation in the preprocessing.
 図6はデータ収録周期が異なる時の前処理手段40の動作を説明する図である。ここで、データ収録周期は1秒間に1回、1日に1回、1週間に1回、検査周期(数か月or1年)に一回など、種々のバリエーションがある。例えば、a地点では1秒間に一回(リアルタイム)に収録、n地点では1週間に1回に収録しているような場合、a地点のt5-t6の期間の平均的な特徴量の値と、n地点のt6における特徴量の値と関係づける。 FIG. 6 is a diagram for explaining the operation of the preprocessing means 40 when the data recording cycles are different. Here, there are various variations of the data recording cycle, such as once per second, once per day, once per week, and once per inspection cycle (several months or one year). For example, if point a is recorded once per second (real time) and point n is recorded once a week, the average feature value for the period t5-t6 at point a and , with the value of the feature amount at t6 of point n.
 次に状態評価手段50、状態認識手段60の動作について説明する。ここでの処理では最初に複数個所で撮影した複数画像データD12(D12a、D12b、D12n)の夫々について、画像データD12からその特徴量Ciを抽出し、その抽出結果に基づいて状態評価手段50において撮像された機器の状態を評価し、状態認識手段60において撮像された機器の状態を認識する。ここで、iは特徴量の項目を識別するための符号である。
従って、特徴量Ciは画像データD12の取得時刻情報を含み、さらに画像データD12aの特徴量、画像データD12bの特徴量、画像データD12nの特徴量のいずれをも含む時系列的情報であり、これらは符号iにより特徴量の項目が識別されている。
Next, the operation of the state evaluation means 50 and the state recognition means 60 will be described. In this process, first, for each of the multiple image data D12 (D12a, D12b, D12n) photographed at multiple locations, the feature amount Ci is extracted from the image data D12, and based on the extraction result, the state evaluation means 50 The state of the imaged device is evaluated, and the state of the imaged device is recognized by the state recognition means 60 . Here, i is a code for identifying the item of the feature amount.
Therefore, the feature amount Ci is time-series information including the acquisition time information of the image data D12, and also the feature amount of the image data D12a, the feature amount of the image data D12b, and the feature amount of the image data D12n. The item of the feature amount is identified by the symbol i.
 画像データD12(D12a、D12b、D12n)から特徴量を抽出した結果を図7に示す。特徴量としては、画像に映っている物体を特定し、その内容を符号化した値、大きさ、色、濃度、温度、輝度、波長、およびこれらの変化率などが挙げられ、これらの値が時系列データとして抽出される。このことは、画像データが示す機器の状態を、数値化された特徴量として把握し直したことを意味している。なお図7の例では、物体1の例を示しているが、複数個所で撮影した複数画像データD12が複数の物体を撮影しているのであれば、物体ごとに図7のデータ群が生成されている。 FIG. 7 shows the result of extracting the feature amount from the image data D12 (D12a, D12b, D12n). As the feature quantity, an object in the image is specified, and its contents are coded values, size, color, density, temperature, brightness, wavelength, and rate of change thereof. Extracted as time-series data. This means that the state of the device indicated by the image data has been re-understood as a numerical feature amount. Note that although the example of FIG. 7 shows an example of object 1, if the multiple image data D12 shot at multiple locations capture multiple objects, the data group of FIG. 7 is generated for each object. ing.
 状態評価手段50では、例えば(1)式を用いて評価値Eを計算する。
[数1]
  E = f(Ci) = Σ Wi × Ci    (1)
 ここで、f(Ci)は評価値Eを計算する関数である。(1)式では、重みパラメータWiと特徴量Ciを乗じた総和を評価値としている。尚、関するf(Ci)の形態については上記に述べた計算式だけでなく、目的に応じて任意に設定可能である。
The state evaluation means 50 calculates the evaluation value E using, for example, formula (1).
[Number 1]
E = f(Ci) = ΣWi x Ci (1)
Here, f(Ci) is a function for calculating the evaluation value E. In equation (1), the evaluation value is the sum of products of the weighting parameter Wi and the feature amount Ci. Note that the form of f(Ci) can be arbitrarily set according to the purpose in addition to the formula described above.
 ここで、状態評価手段50と状態認識手段60はいずれも、画像データD12からその特徴量Ciを抽出し、利用するものであるが、機器内において一方の画像の状態(例えば画像データD12a)が他方の画像の状態(例えば画像データD12b)に影響を与える関係にある場合には、状態認識手段60が原因側の画像データD12aを取り扱い、状態評価手段50が結果側の画像データD12bを取り扱うようにするのがよい。これにより状態評価手段50では、結果側における状態を評価値とすることで、結果を最適化するときの原因側の状態を明確に区別して把握することが可能となる。 Here, both the state evaluation means 50 and the state recognition means 60 extract and use the characteristic amount Ci from the image data D12, but the state of one image (for example, the image data D12a) in the equipment is If there is a relationship that affects the state of the other image (for example, image data D12b), the state recognition means 60 handles the image data D12a on the cause side, and the state evaluation means 50 handles the image data D12b on the result side. should be As a result, the state evaluation means 50 uses the state on the result side as an evaluation value, so that the state on the cause side when optimizing the result can be clearly distinguished and grasped.
 次に、学習手段70の動作を説明する。この学習手段70の学習には、運転データデータベースDB11に蓄積された運転データD11の他に、画像データデータベースDB12(DB12a、DB12b、DB12n)に蓄積された複数個所で得られた画像データD12(D12a、D12b、D12n)を数値化して得られた特徴量のデータが使用される。 Next, the operation of the learning means 70 will be explained. In addition to the driving data D11 accumulated in the driving data database DB11, image data D12 (D12a) obtained at a plurality of locations accumulated in the image data database DB12 (DB12a, DB12b, DB12n) is used for learning by the learning means 70. , D12b, D12n) are used.
 実施例1では、状態評価手段50で算出した評価値Eが最小になるような行動を学習することを目的とした場合について説明する。図8(a)、図8(b)は、学習手段70に含まれるモデルの詳細を説明する図である。モデルは、図8(a)に示すようなニューラルネットワークモデルで構築され、状態の入力に対して、評価値を出力する。 In the first embodiment, a case will be described in which the purpose is to learn an action that minimizes the evaluation value E calculated by the state evaluation means 50 . 8(a) and 8(b) are diagrams for explaining the details of the model included in the learning means 70. FIG. The model is constructed by a neural network model as shown in FIG. 8(a), and outputs evaluation values in response to state inputs.
 図8(b)は、ニューラルネットワークモデルの入力と出力の関係を示す図であり、ニューラルネットワークモデルによれば入力である評価値を補間し、任意の状態に対する評価値を求めることができる。 FIG. 8(b) is a diagram showing the relationship between the input and output of the neural network model. According to the neural network model, the input evaluation value can be interpolated to obtain the evaluation value for any state.
 図8(c)は、学習手段70を動作させた結果を示す例である。図8(c)の例では、現在の状態が領域Aにある時は状態の値を増加させるように行動を決定し、領域Bにある時は状態の値を減少させるように行動を決定する。このように状態を変化させることで、評価値が極小値となり、評価値を改善できる。 FIG. 8(c) is an example showing the result of operating the learning means 70. FIG. In the example of FIG. 8(c), when the current state is in region A, the action is determined to increase the state value, and when the current state is in region B, the action is determined to decrease the state value. . By changing the state in this way, the evaluation value becomes a minimum value, and the evaluation value can be improved.
 尚、以上の説明においては、図8(a)、図8(b)、図8(c)により、学習手段70に搭載するモデル、学習手段70をニューラルネットワークモデルそのほかの技術により構築できることは言うまでもない。 In the above description, it is needless to say that the model to be installed in the learning means 70 and the learning means 70 can be constructed by a neural network model or other techniques, as shown in FIGS. 8(a), 8(b), and 8(c). stomach.
 実施例1によれば、機器の異なる場所で撮影したカメラ画像の情報を数値化して、学習に提供しているので、機器を制御装置により運転するにあたり、機器の各部状態を監視する複数カメラからの画像情報を利用して有効なガイダンスを与えることができる。 According to the first embodiment, the information of the camera images taken at different locations of the equipment is digitized and provided for learning. image information can be used to provide effective guidance.
 更に述べると、本発明によればセンサで計測した運転データのみでは得られない情報を、画像データから取得することが可能であり、これは画像データを数値化した特徴量として把握しなおして学習に使用したことによるものである。特に、異なる場所の複数個所で撮影した画像を用いることで、例えば流体の上下流における関係であるとか、原因と結果の事象などを学習により取得することが可能となる効果がある。 More specifically, according to the present invention, it is possible to obtain from image data information that cannot be obtained from driving data measured by a sensor alone. This is due to the fact that it was used for In particular, by using images taken at a plurality of different locations, there is an effect that it is possible to acquire, for example, the relationship between the upstream and downstream sides of the fluid, or the phenomenon of cause and effect by learning.
 実施例2では、実施例1で述べた運転支援装置、運転支援方法を石炭火力プラントに適用する事例について説明する。図9に、図1の機器19として、石炭火力プラントを用いた場合の構成例を示す。まず、図9を用いて、石炭火力プラントによる発電の仕組みについて簡単に説明する。 In the second embodiment, a case will be described in which the operation support device and the operation support method described in the first embodiment are applied to a coal-fired power plant. FIG. 9 shows a configuration example when a coal-fired power plant is used as the equipment 19 in FIG. First, with reference to FIG. 9, the mechanism of power generation by a coal-fired power plant will be briefly described.
 図9において、機器19である石炭火力プラントを構成するボイラ101の壁面には、ミル134で石炭を細かく粉砕した燃料である微粉炭と、微粉炭搬送用の1次空気及び燃焼調整用の2次空気とを供給する複数のバーナ102が設けられている。そして、このバーナ102を通じて供給した微粉炭を、ボイラ101の内部で燃焼させる。 In FIG. 9, on the wall surface of a boiler 101 that constitutes a coal-fired power plant, which is equipment 19, pulverized coal, which is fuel obtained by finely pulverizing coal in a mill 134, primary air for pulverized coal transportation, and 2 air for combustion adjustment. A plurality of burners 102 are provided for supplying secondary air. Then, the pulverized coal supplied through this burner 102 is burned inside the boiler 101 .
 バーナ102の構造は、図示しているようにボイラ101の壁面の上下方向に複数段配置され、かつ各段には複数のバーナが1列に配置されている。図9に示されたバーナ構造、配置により、ボイラ101の内部ではボイラ壁面の前面(以降、缶前と表記)と背面(以降、缶後と表記)から微粉炭を燃焼させる。缶前後のバーナ燃焼バランスを改善することにより、ボイラの熱回収効果が向上し、プラントの熱効率も改善する。 As shown in the drawing, the structure of the burners 102 is arranged in a plurality of stages in the vertical direction of the wall surface of the boiler 101, and in each stage a plurality of burners are arranged in a row. With the burner structure and arrangement shown in FIG. 9, inside the boiler 101, the pulverized coal is burned from the front surface (hereinafter referred to as "can front") and the back surface (hereinafter referred to as "can rear") of the boiler wall surface. By improving the burner combustion balance before and after the can, the heat recovery effect of the boiler is improved, and the thermal efficiency of the plant is also improved.
 尚、微粉炭と1次空気は配管139から、2次空気は配管141から夫々バーナ102に導かれる。1次空気は、ファン120から配管130に導かれ、途中でボイラ101の下流側に設置されたエアーヒーター104を通過する配管132と、エアーヒーター104を通過せずにバイパスする配管131とに分岐する。但し、エアーヒーター104の下流側に配設した配管133となって再び合流し、バーナ102の上流側に設置された微粉炭を製造するミル134に導かれる。エアーヒーター104を通過する1次空気は、ボイラ101を流下する燃焼ガスと熱交換することによって加熱される。この加熱された1次空気と共に、エアーヒーター104をバイパスした1次空気は、ミル134において粉砕した微分炭をバーナ102に搬送する。 The pulverized coal and the primary air are led to the burner 102 from the pipe 139 and the secondary air from the pipe 141, respectively. The primary air is guided from the fan 120 to the pipe 130, and branches into a pipe 132 passing through the air heater 104 installed on the downstream side of the boiler 101 on the way and a pipe 131 bypassing the air heater 104. do. However, the pipe 133 arranged downstream of the air heater 104 merges again and is led to the mill 134 installed upstream of the burner 102 for producing pulverized coal. The primary air passing through the air heater 104 is heated by exchanging heat with combustion gas flowing down the boiler 101 . Together with this heated primary air, the primary air bypassing the air heater 104 conveys the differentiated coal ground in the mill 134 to the burner 102 .
 ミル134は、各バーナ段に対応するように配置され(図9では4台)、各段を構成するバーナへ微粉炭と1次空気を供給する。すなわち、発電出力低下時など石炭供給量を低下させる場合にはミルを停止してバーナ段毎にバーナ休止させることができる。ミル134では、ボイラ101の燃焼性を考慮し、使用する石炭の性質に応じて望ましい粒度の微粉炭が得られるよう、ミルの回転数を調整する。また、石炭バンカ136に貯蔵された石炭は石炭コンベア137を経由して給炭機135へ導かれ給炭機135によって供給量を調整される。その後、石炭コンベア138を介してミル134に供給される。 The mills 134 are arranged so as to correspond to each burner stage (four units in FIG. 9), and supply pulverized coal and primary air to the burners constituting each stage. That is, when the supply of coal is to be reduced, such as when the output of power generation is reduced, the mill can be stopped and the burners can be stopped for each burner stage. In the mill 134, the rotation speed of the mill is adjusted in consideration of the combustibility of the boiler 101 so as to obtain pulverized coal with a desired particle size depending on the properties of the coal to be used. Also, the coal stored in the coal bunker 136 is guided to the coal feeder 135 via the coal conveyor 137, and the coal feeder 135 adjusts the supply amount. It is then fed to mill 134 via coal conveyor 138 .
 また、ボイラ101には、2段燃焼用の空気をボイラ101に投入するアフタエアポート103が設けられている。2段燃焼用の空気は、配管142からアフタエアポート103に導かれる。図9に示したボイラ101において、ファン121を用いて配管140から投入された空気は、エアーヒーター104で同様にして加熱される。そしてその後に、2次空気用の配管141とアフタエアポート用の配管142とに分岐して、夫々、ボイラ101のバーナ102とアフタエアポート103とに導かれる。この、バーナ102及びアフタエアポート103へ供給される空気流量は、夫々の配管141及び142に設置された空気ダンパ(図示せず)の操作によって調整できる。 In addition, the boiler 101 is provided with an after air port 103 that introduces air for two-stage combustion into the boiler 101 . Air for second-stage combustion is led from the pipe 142 to the after air port 103 . In the boiler 101 shown in FIG. 9, the air introduced from the pipe 140 using the fan 121 is similarly heated by the air heater 104 . After that, the secondary air is branched into a pipe 141 for secondary air and a pipe 142 for an after-air port, and led to the burner 102 and the after-air port 103 of the boiler 101, respectively. The flow rate of the air supplied to the burner 102 and the after air port 103 can be adjusted by operating air dampers (not shown) installed in the pipes 141 and 142, respectively.
 ボイラ101の内部で微粉炭を燃焼することによって発生した高温の燃焼ガスは、ボイラ101の内部の経路に沿って下流側に流下して、ボイラ101の内部に配置された熱交換器106で給水と熱交換して蒸気を発生させる。そしてその後に、排ガスとなってボイラ101の下流側に設置されたエアーヒーター104に流入し、このエアーヒーター104で熱交換してボイラ101に供給する空気を昇温する。この結果、このエアーヒーター104を通過した排ガスは、図示していない排ガス処理を施した後に、煙突から大気に放出される。 High-temperature combustion gas generated by burning pulverized coal inside the boiler 101 flows downstream along a path inside the boiler 101 and is supplied with water by a heat exchanger 106 arranged inside the boiler 101. and heat exchange to generate steam. After that, the exhaust gas flows into the air heater 104 installed on the downstream side of the boiler 101 , heat is exchanged by the air heater 104 , and the temperature of the air supplied to the boiler 101 is raised. As a result, the exhaust gas that has passed through the air heater 104 is subjected to exhaust gas treatment (not shown) and then released into the atmosphere from the chimney.
 また、ボイラ101の熱交換器106を循環する給水は、給水ポンプ105を介して熱交換器106に供給され、熱交換器106においてボイラ101を流下する燃焼ガスによって過熱され、高温高圧の蒸気となる。尚、本実施例では熱交換器の数を1つとしているが、熱交換器を複数配置するようにしてもよい。また、熱交換器106で発生した高温高圧の蒸気は、タービンガバナ107を介して蒸気タービン108に導かれ、蒸気の持つエネルギーによって蒸気タービン108を駆動して発電機109で発電する。 In addition, the feed water circulating through the heat exchanger 106 of the boiler 101 is supplied to the heat exchanger 106 via the feed water pump 105, is superheated in the heat exchanger 106 by the combustion gas flowing down the boiler 101, and is converted into high-temperature, high-pressure steam. Become. In addition, although the number of heat exchangers is one in this embodiment, a plurality of heat exchangers may be arranged. The high-temperature, high-pressure steam generated by the heat exchanger 106 is guided to the steam turbine 108 via the turbine governor 107 , and the steam turbine 108 is driven by the energy of the steam to generate electricity by the power generator 109 .
 ここで、本実施例の石炭火力プラントには、その運転状態を示す状態量を検出する様々な計測器が配置されている。石炭火力プラントに配置された計測器から取得された石炭火力プラントの計測信号である運転データD1は、図1に示す計測信号データベースDB1内の運転データベースDB11に保存される。石炭火力プラントの場合に、運転データD1を取得するセンサ(計測器)としては、例えば図9に示すものがある。つまり、熱交換器106から蒸気タービン108に供給される高温高圧の蒸気の温度を計測する温度計測器151、蒸気の圧力を計測する圧力計測器152、発電機109で発電される電力量を計測する発電出力計測器153などがある。 Here, in the coal-fired power plant of this embodiment, various measuring instruments are arranged to detect state quantities that indicate the operating state of the plant. Operation data D1, which are measurement signals of the coal-fired power plant acquired from measuring instruments arranged in the coal-fired power plant, are stored in the operation database DB11 in the measurement signal database DB1 shown in FIG. In the case of a coal-fired power plant, as a sensor (measuring instrument) for acquiring the operation data D1, there is, for example, one shown in FIG. That is, a temperature measuring instrument 151 that measures the temperature of the high-temperature, high-pressure steam supplied from the heat exchanger 106 to the steam turbine 108, a pressure measuring instrument 152 that measures the pressure of the steam, and an amount of electric power generated by the generator 109 is measured. There is a power generation output measuring instrument 153 and the like.
 また、蒸気タービン108の復水器(図示せず)によって蒸気を冷却して生じた給水は、給水ポンプ105によってボイラ101の熱交換器106に供給されるが、この給水の流量は流量計測器150によって計測されている。そして、ボイラ101から排出する燃焼ガスである排ガス中に含まれている成分の濃度に関する状態量の計測信号は、ボイラ101の下流側に設けた濃度計測器154によって計測される。なお、排ガス中に含まれている成分には、窒素酸化物(NOx)、一酸化炭素(CO)、及び硫化水素(HS)などが含まれる。 Also, feed water generated by cooling steam by a condenser (not shown) of the steam turbine 108 is supplied to the heat exchanger 106 of the boiler 101 by the feed water pump 105. Measured by 150. A measurement signal of a state quantity relating to the concentration of components contained in exhaust gas, which is combustion gas discharged from the boiler 101 , is measured by a concentration measuring device 154 provided downstream of the boiler 101 . Components contained in the exhaust gas include nitrogen oxides (NOx), carbon monoxide (CO), hydrogen sulfide (H 2 S), and the like.
 また、給炭系統に関する計測器としては、以下のものがある。配管133を通ってミル134へ供給される1次空気の流量を計測する1次空気流量計155、給炭機135より石炭コンベア138を通りミル134へ供給される石炭の給炭量を計測する給炭量計156及びミル134の回転数を計測する回転数計157がある。これらは夫々のミル及び給炭機について上記情報を計測できる構成となっている。 In addition, there are the following measuring instruments related to the coal supply system. A primary air flow meter 155 for measuring the flow rate of primary air supplied to the mill 134 through the pipe 133, and a coal feeder 135 to measure the amount of coal supplied to the mill 134 through the coal conveyor 138. There is a coal feed meter 156 and a tachometer 157 that measures the number of revolutions of the mill 134 . These are configured to measure the above information for each mill and coal feeder.
 即ち、石炭火力プラントに適用する実施例2において運転データデータベースDB11に蓄積する運転データD11として、例えば、以下の情報を用いる。これらは、上記各計測器によって計測した石炭火力プラントである対象装置10の状態量であるボイラ101に供給される石炭流量、ミル134の回転数およびボイラ101に供給される1次及び2次空気流量、ボイラ101の熱交換器106に供給される給水流量、ボイラ101の熱交換器106で発生して蒸気タービン108に供給される蒸気温度、ボイラ101の熱交換器106に供給される給水の給水圧力、ボイラ101から排出される排ガスのガス温度および排ガスのガス濃度、ボイラ101から排出される排ガスの一部をボイラ101に再循環させる排ガス再循環流量等である。 That is, in the second embodiment applied to a coal-fired power plant, the following information is used as the operating data D11 accumulated in the operating data database DB11, for example. These are the coal flow rate supplied to the boiler 101, the rotation speed of the mill 134, and the primary and secondary air supplied to the boiler 101, which are the state quantities of the target device 10, which is a coal-fired power plant, measured by the above measuring instruments. The flow rate, the feed water flow rate supplied to the heat exchanger 106 of the boiler 101, the temperature of the steam generated in the heat exchanger 106 of the boiler 101 and supplied to the steam turbine 108, the feed water supplied to the heat exchanger 106 of the boiler 101 These are the feedwater pressure, the gas temperature and gas concentration of the exhaust gas discharged from the boiler 101, the exhaust gas recirculation flow rate for recirculating part of the exhaust gas discharged from the boiler 101 to the boiler 101, and the like.
 以上は、計測信号データベースDB1内の運転データベースDB11に保存される運転データD11を例示したものであるが、本発明においてはこればかりではなく、計測信号データベースDB1内の画像データベースDB12に複数個所で撮影した複数組の画像データD12を保存する。 The above is an example of the operation data D11 stored in the operation database DB11 in the measurement signal database DB1. A plurality of sets of image data D12 are saved.
 石炭火力プラントに適用する実施例2において、画像データデータベースDB12に保存する画像データD12としては、例えばボイラ101の壁面の燃焼領域を撮影するカメラ71aによる画像データD12a、ボイラ101の熱交換器106を撮影するカメラ71aによる画像データD12b、ボイラ101の配管を撮影した画像データD12c等がある。尚、一般的には図9に図示した以外にも多数の計測器、あるいはカメラが石炭火力プラントに配置されるが、ここでは図示を省略する。 In the second embodiment applied to a coal-fired power plant, the image data D12 stored in the image data database DB12 includes, for example, image data D12a captured by the camera 71a that captures the combustion area on the wall surface of the boiler 101, and the heat exchanger 106 of the boiler 101. There are image data D12b captured by the camera 71a, image data D12c captured by the piping of the boiler 101, and the like. In general, a large number of measuring instruments or cameras other than those shown in FIG. 9 are arranged in the coal-fired power plant, but the illustration is omitted here.
 ここで、石炭火力発電プラントにおける問題点を明らかにしておく。石炭火力発電プラントでは、石炭を燃焼した際に発生する灰が熱交換器、炉壁に付着すると、伝熱の特性が変化し、熱吸収量が低下する。また、熱交換器に付着した灰は、スートブロワ(蒸気噴射)により除去している。スートブロワは、熱交換器毎に蒸気を噴射するようになっている。 Here, I would like to clarify the problems with coal-fired power plants. In a coal-fired power plant, when ash generated when coal is burned adheres to heat exchangers and furnace walls, the heat transfer characteristics change and the amount of heat absorption decreases. Also, the ash adhering to the heat exchanger is removed by a soot blower (steam injection). A soot blower is designed to inject steam into each heat exchanger.
 係る問題について、従来からセンサで検出した火力発電プラントの各所における運転データD11を用いた解析がなされているが、灰付着の状況を運転データD11のみから把握するのが難しい。また、伝熱特性の変化、熱吸収量低下によりヒートバランスが変化する。スートブロワにより蒸気を使用すると、一時的には効率が低下する。 Regarding this problem, analysis has conventionally been performed using the operating data D11 detected by sensors at various locations in the thermal power plant, but it is difficult to grasp the state of ash adhesion from the operating data D11 alone. In addition, heat balance changes due to changes in heat transfer characteristics and a decrease in heat absorption. The use of steam by the sootblower is temporarily less efficient.
 このことから、本発明の運転支援装置20を石炭火力プラントに適用するにあたり、熱交換器106の灰付着の画像データD12bを処理する際は、熱交換器106に灰が付着していない時に撮影した画像を基準に、灰付着量を評価するのがよい。 From this, when applying the operation support device 20 of the present invention to a coal-fired power plant, when processing the image data D12b of the ash adherence of the heat exchanger 106, it is taken when the heat exchanger 106 is not adhered with ash. It is preferable to evaluate the amount of ash adhered on the basis of the printed image.
 また、画像データD12で把握できた情報と、プロセスデータD11から把握できた情報の整合性を取ることで精度向上を図ることも可能である。すなわちプロセスデータD11から推定した汚れ度合いを、画像データD12bで把握した灰付着の状況で補正することで汚れ度合いの推定精度を向上できる。 Also, it is possible to improve the accuracy by matching the information grasped from the image data D12 and the information grasped from the process data D11. That is, by correcting the degree of contamination estimated from the process data D11 based on the state of adhesion of ash ascertained from the image data D12b, the accuracy of estimating the degree of contamination can be improved.
 本発明の運転支援装置20は、灰付着の状況を、画像データD12bに基づき把握する。そして、灰付着量が増加しないように、燃焼状態を制御できる。すなわち、燃焼領域の画像データD12aと、灰付着状況の画像データD12bを関連付けして学習し、所望の灰付着状況になるような燃焼状態になるように、空気流量のバランスを制御できる。また、灰が付着している位置を画像データD12bにより把握できるので、局所的にスートブロワすることにより、不必要な所へのスートブロワをなくして、消費する蒸気量を減らすことが可能となる。上記の効果により、ボイラプラントの効率を向上できる。 The driving support device 20 of the present invention grasps the state of ash adhesion based on the image data D12b. Then, the combustion state can be controlled so that the ash adhesion amount does not increase. That is, the image data D12a of the combustion area and the image data D12b of the ash adhesion state are learned in association with each other, and the balance of the air flow rate can be controlled so as to achieve the desired combustion state of the ash adhesion state. In addition, since the image data D12b can grasp the position where the ash adheres, by blowing the soot locally, it is possible to eliminate the soot blower to unnecessary places and reduce the amount of steam consumed. The above effect can improve the efficiency of the boiler plant.
 次に機器として石炭火力プラントを用いた場合の画像データD12の例を説明する。図10aはボイラ101の燃焼領域であるバーナ102の近辺をカメラ71aにより撮影した画像データD12aの一例である。本画像により、ボイラ101の壁面に縦横に配置されたバーナ102の付近が最も高温の1050度であり、その外縁部が適宜1000度、950度の領域を示しており、かつ各フレームの位置や方向といった燃焼領域における温度分布を把握することができる。本実施例では温度分布について記載したが、色、濃度、輝度、波長などの情報を画像データに含めても良い。 Next, an example of image data D12 when a coal-fired power plant is used as equipment will be described. FIG. 10a is an example of image data D12a of the vicinity of the burner 102, which is the combustion area of the boiler 101, photographed by the camera 71a. From this image, the vicinity of the burners 102 arranged vertically and horizontally on the wall surface of the boiler 101 has the highest temperature of 1050 degrees, and the outer edge indicates the areas of 1000 degrees and 950 degrees as appropriate. The temperature distribution in the combustion region, such as direction, can be grasped. Although the temperature distribution is described in this embodiment, information such as color, density, brightness, and wavelength may be included in the image data.
 また、図10bはボイラ101の熱交換器106の近辺をカメラ71bにより撮影した画像データD12bの一例である。本画像により、熱交換器106に付着している灰の量を把握できる。 Also, FIG. 10b is an example of image data D12b of the vicinity of the heat exchanger 106 of the boiler 101 photographed by the camera 71b. From this image, the amount of ash adhering to the heat exchanger 106 can be grasped.
 この例は、熱流体における上流側の燃焼領域と下流側の熱交換領域に着目したものであり、上流側の状態が下流側の状態に影響を及ぼす原因と結果の因果関係を有している。カメラはこれらの位置に配置されることで、燃焼状態と熱交換状態を撮影可能であり、かつ数値化された特徴量に変換されることで初めて、学習に利用可能となり、明確にされていなかった上記の因果関係を把握可能とする。 This example focuses on the upstream combustion region and the downstream heat exchange region in the thermal fluid, and has a causal relationship between the cause and effect of the upstream state affecting the downstream state. . By arranging the cameras at these positions, it is possible to photograph the combustion state and heat exchange state. In addition, it is possible to grasp the above causal relationship.
 次に、機器として石炭火力プラントを用いた場合の画像データD12から抽出した特徴量の例を説明する。図11aは、状態認識手段60にて燃焼領域の画像データD12aを処理して抽出した特徴量の例である。缶左側と缶右側の温度の平均値などが特徴量として抽出され、時系列データとして保存される。 Next, an example of the feature amount extracted from the image data D12 when using a coal-fired power plant as the equipment will be described. FIG. 11a is an example of the feature amount extracted by processing the image data D12a of the combustion area by the state recognition means 60. FIG. The average value of the temperatures on the left side and the right side of the can is extracted as a feature quantity and saved as time-series data.
 図11bは、状態評価手段50にて熱交換器106の画像データD12bを処理して抽出した特徴量の例である。1次過熱器(1SH)、2次過熱器(2SH)などの熱交換器106における灰付着量などが特徴量として抽出され、時系列データとして保存される。 FIG. 11b is an example of feature amounts extracted by processing the image data D12b of the heat exchanger 106 by the state evaluation means 50. FIG. The amount of ash adhered in the heat exchangers 106 such as the primary superheater (1SH) and the secondary superheater (2SH) is extracted as feature quantities and stored as time-series data.
 図12は、機器として石炭火力プラントを用いた場合の学習手段70の動作内容を説明するフローチャートである。まず、処理ステップS30では負荷計画を取り込む。ここで負荷計画とは、火力発電プラントの発電出力(負荷)の計画であり、電力の需要を満足するように決定される。 FIG. 12 is a flow chart explaining the operation contents of the learning means 70 when a coal-fired power plant is used as equipment. First, in processing step S30, the load plan is captured. Here, the load plan is a plan for the power output (load) of the thermal power plant, and is determined so as to satisfy the power demand.
 次に、処理ステップS31では運用計画変更案を作成する。ここで、運用計画とはスートブロワを噴射するタイミング、空気量の設定値、石炭の種類(炭種)などである。 Next, in processing step S31, an operation plan change proposal is created. Here, the operation plan includes the timing of injecting the soot blower, the set value of the air amount, the type of coal (coal type), and the like.
 処理ステップS32では、運用計画変更案を実施した時の灰付着量を推定する。本処理ステップS32では、運用計画に対応する状態(過去の画像データを処理した際に状態認識手段60で把握した状態)と灰付着量を関連付けて学習し、その結果に基づいて灰付着量を推定する。 In processing step S32, the amount of ash adhered when the operation plan change proposal is implemented is estimated. In this processing step S32, the state corresponding to the operation plan (the state grasped by the state recognition means 60 when processing the past image data) and the ash adhesion amount are associated and learned, and based on the result, the ash adhesion amount is determined. presume.
 処理ステップS33では、灰付着量に基づいて効率を推定値し、評価値を計算する。ここで、効率は灰付着量に応じて計算される。また、評価値は効率を入力とした関数によって計算され、効率が高いほど評価値は高くなる。 In processing step S33, efficiency is estimated based on the amount of ash adhered, and an evaluation value is calculated. Here, the efficiency is calculated according to the amount of ash adhered. Also, the evaluation value is calculated by a function with efficiency as an input, and the higher the efficiency, the higher the evaluation value.
 処理ステップS34では、処理ステップS31で作成した運用計画変更案の良し悪しを学習する。すなわち、評価値が高くなる運用計画変更案は良い変更案、評価値が低くなる運用計画変更案は悪い変更案であることを学習し、次に運用計画変更案を作成する際は評価値が高くなるような案を作成する。 In processing step S34, the pros and cons of the operation plan change proposal created in processing step S31 are learned. In other words, it learns that an operation plan change proposal with a high evaluation value is a good change plan, and an operation plan change proposal with a low evaluation value is a bad change plan. Create a proposal that will be expensive.
 処理ステップS35では、学習終了判定を実施する。YESの場合は学習を終了し、NOの場合は処理ステップS31に戻る。例えば、処理ステップS30から処理ステップS35をあらかじめ定められた回数繰り返した場合に、学習を終了する。 In processing step S35, learning end determination is performed. If YES, the learning is terminated, and if NO, the process returns to step S31. For example, when processing steps S30 to S35 are repeated a predetermined number of times, the learning ends.
 図13は、機器として石炭火力プラントを用いた場合の学習結果を説明する図である。
図13は、横軸に時間、縦軸に上から順に例えばある月の負荷計画、スートブロワ噴射のタイミング、空気量設定値の例である2段燃焼比率、炭種を示している。
FIG. 13 is a diagram for explaining learning results when a coal-fired power plant is used as equipment.
In FIG. 13, the horizontal axis indicates time, and the vertical axis indicates, from top to bottom, the load plan for a certain month, the timing of soot blower injection, the two-stage combustion ratio, which is an example of the air amount set value, and the coal type.
 図13のスートブロワ噴射は、噴射領域を一次熱交換器1SHと二次熱交換器2SHについて熱交換器の缶右、缶左の4領域に分割して行う事例を示している。各領域について適宜のタイミングで蒸気を熱交換器に噴射し、熱交換器に付着した灰を除去することで熱交換器の収熱量を改善することができ、効率を向上できる。他方、スートブロワ噴射にはプラント内の高温の蒸気を使用するため、その後には補給水(純水など)を補充し、かつ高温の蒸気とする必要があることから、スートブロワ噴射により蒸気を使用すると、一時的に効率が低下する。 The soot blower injection in FIG. 13 shows an example in which the injection area is divided into 4 areas of the can right and can left of the heat exchanger for the primary heat exchanger 1SH and the secondary heat exchanger 2SH. By injecting steam into the heat exchanger at an appropriate timing for each region and removing the ash adhering to the heat exchanger, the heat absorption amount of the heat exchanger can be improved, and the efficiency can be improved. On the other hand, since the soot blower injection uses high-temperature steam in the plant, it is necessary to replenish make-up water (pure water, etc.) after that, and to make high-temperature steam. , temporarily reduces efficiency.
 したがって、スートブロワ噴射は熱交換器全体を一度に行うのではなく、小領域に分割したうえで各領域を適切なタイミングで実施することが望ましい。また熱交換器の灰が付着している位置にスートブロワ噴射することが望ましい。本発明の運転支援装置20では、灰が付着している位置を画像データにより把握し、その位置にスートブロワ噴射することが可能であり、効率改善に寄与できる。 Therefore, it is desirable to divide the soot blower into small areas and perform each area at the appropriate timing, instead of performing the soot blower injection on the entire heat exchanger at once. Also, it is desirable to spray the soot blower to the position of the heat exchanger where the ash adheres. In the driving assistance device 20 of the present invention, it is possible to grasp the position where the ash adheres from the image data, and to blow the soot to that position, which contributes to the efficiency improvement.
 また、空気操作により、灰付着量が少なくなるような燃焼状態を維持すること、灰付着を考慮した炭種を選定することが可能となり、これも効率改善に寄与する。 In addition, air operation makes it possible to maintain combustion conditions that reduce the amount of ash adhesion and to select coal types that take ash adhesion into consideration, which also contributes to efficiency improvement.
 以上述べた通り、石炭火力プラントに本発明の運転支援装置20を用いることにより、プラントの効率改善が可能となる。 As described above, by using the operation support device 20 of the present invention in a coal-fired power plant, it is possible to improve the efficiency of the plant.
 実施例3では、計算機を用いて構成される運転支援装置がROMに備えるべきプログラムについて説明する。 In the third embodiment, a program that a driving support device configured using a computer should have in the ROM will be described.
 ROMに備えるべきプログラムは、図1の各処理機能に対応したものとされればよいが、ここで主要なものは機器における流体上流側の状態を撮影した画像データを処理する状態認識プログラムと、流体下流側の状態を撮影した画像データを処理して評価値を得る状態評価プログラムと、画像処理結果を用いて学習を行い行動として機器の運転手法を得る学習プログラムを備えるものである。 Programs to be provided in the ROM may correspond to each processing function shown in FIG. It has a state evaluation program that processes image data of the state of the downstream side of the fluid and obtains an evaluation value, and a learning program that learns using the image processing results and obtains the operation method of the equipment as an action.
 これらの個々のプログラムにより構成される運転支援プログラムは、対象装置により適宜特化されたものとして利用される。 The driving support program, which is composed of these individual programs, is used as appropriately specialized by the target device.
Sg1:外部入力信号、Sg2:計測信号、Sg3:計測信号、Sg4:計測信号、Sg5:状態評価に使用する前処理後データ、Sg6:状態認識に使用する前処理後データ、Sg7:状態評価結果、Sg8:状態認識結果、Sg9:学習結果、Sg10:学習結果、Sg11:行動、Sg12:操作推奨信号、Sg70:計測信号、71:カメラ、Sg80:操作信号、10:対象装置、18:制御装置、19:機器、20:運転支援装置、21:外部入力インターフェイス、22:外部出力インターフェイス、DB1:計測信号データベース、DB11:運転データデータベース、DB12:画像データデータベース、DB2:処理結果データベース、40:前処理手段、50:状態評価手段、60:状態認識手段、70:学習手段、80:行動決定手段、90:外部装置、91:外部入力装置、92:キーボード、93:マウス、94:画像表示装置 Sg1: external input signal, Sg2: measurement signal, Sg3: measurement signal, Sg4: measurement signal, Sg5: preprocessed data used for state evaluation, Sg6: preprocessed data used for state recognition, Sg7: state evaluation result , Sg8: state recognition result, Sg9: learning result, Sg10: learning result, Sg11: action, Sg12: operation recommendation signal, Sg70: measurement signal, 71: camera, Sg80: operation signal, 10: target device, 18: control device , 19: equipment, 20: driving support device, 21: external input interface, 22: external output interface, DB1: measurement signal database, DB11: driving data database, DB12: image data database, DB2: processing result database, 40: front Processing means 50: State evaluation means 60: State recognition means 70: Learning means 80: Action determination means 90: External device 91: External input device 92: Keyboard 93: Mouse 94: Image display device

Claims (15)

  1.  機器をカメラで撮影した画像データを入手し、前記画像データを用いた最適制御アルゴリズムにより前記機器の運転に関するガイダンスを与える運転支援装置であって、
     前記最適制御アルゴリズムは、前記画像データを特徴量として数値化して用いるとともに、前記画像データは前記機器の異なる場所、時間に撮影した画像データであることを特徴とする運転支援装置。
    A driving support device that obtains image data of a device captured by a camera and provides guidance on driving the device by an optimum control algorithm using the image data,
    The driving support system, wherein the optimum control algorithm uses the image data as a feature quantity after being digitized, and the image data is image data captured by the device at different locations and times.
  2.  請求項1に記載の運転支援装置であって、
     前記最適制御アルゴリズムは、前記画像データに基づいて状態を認識し、前記画像データに基づいて評価値を計算し、評価値が最大となる状態に遷移するための行動を学習するアルゴリズムであり、
     前記状態の認識に用いる画像データと、評価値の計算に用いる画像データは前記機器の異なる位置で撮影した画像データであることを特徴とする運転支援装置。
    The driving support device according to claim 1,
    The optimal control algorithm is an algorithm that recognizes a state based on the image data, calculates an evaluation value based on the image data, and learns behavior for transitioning to a state with the maximum evaluation value,
    The driving assistance device, wherein the image data used for recognizing the state and the image data used for calculating the evaluation value are image data photographed at different positions of the device.
  3.  請求項2に記載の運転支援装置であって、
     前記最適制御アルゴリズムは、前記画像データを前処理したデータを用いて学習し、
     前記前処理では、機器における無駄時間や遅れ時間を考慮して画像データを補正することを特徴とする運転支援装置。
    The driving support device according to claim 2,
    The optimal control algorithm learns using data obtained by preprocessing the image data,
    The driving assistance device, wherein the preprocessing corrects the image data in consideration of dead time and delay time in the device.
  4.  前記機器がボイラプラントである請求項2または請求項3に記載の運転支援装置であって、
     前記ボイラプラントの熱流体の上流側の燃焼部と、熱流体の下流側について前記画像データを取得し、熱流体の下流側の状況が所望の特性となるようなボイラプラントの運転をガイダンスすることを特徴とする運転支援装置。
    The operation support device according to claim 2 or 3, wherein the equipment is a boiler plant,
    Acquiring the image data of the combustion section on the upstream side of the thermal fluid and the downstream side of the thermal fluid of the boiler plant, and providing guidance on the operation of the boiler plant so that the conditions on the downstream side of the thermal fluid have desired characteristics. A driving support device characterized by:
  5.  請求項4に記載の運転支援装置であって、
     前記ガイダンスは、ボイラのパラメータ、もしくはスートブロワの操作方法であることを特徴とする運転支援装置。
    The driving support device according to claim 4,
    The driving assistance device, wherein the guidance is boiler parameters or a sootblower operation method.
  6.  請求項4に記載の運転支援装置であって、
     前記状態は、前記ボイラプラントの熱流体の上流側の燃焼部の画像データを用いて認識し、前記評価値は、前記熱流体の下流側の画像データを用いて計算し、強化学習における行動として定めるガイダンスは、ボイラのパラメータ、もしくはスートブロワの操作方法であることを特徴とする運転支援装置。
    The driving support device according to claim 4,
    The state is recognized using image data of the combustion section on the upstream side of the thermal fluid of the boiler plant, the evaluation value is calculated using the image data on the downstream side of the thermal fluid, and as an action in reinforcement learning A driving support device characterized in that the determined guidance is parameters of a boiler or an operation method of a sootblower.
  7.  請求項6に記載の運転支援装置であって、
     前記熱流体の下流側の画像データが熱交換器の灰付着の画像データであるとき、熱交換器に灰が付着していない時に撮影した画像を基準に、灰付着量を評価することを特徴とする運転支援装置。
    The driving support device according to claim 6,
    When the image data on the downstream side of the thermal fluid is image data of ash adhesion on the heat exchanger, the amount of ash adhesion is evaluated based on an image taken when ash is not adhered to the heat exchanger. driving support device.
  8.  機器をカメラで撮影した画像データを用いた最適制御アルゴリズムにより前記機器の運転に関するガイダンスを与える運転支援方法であって、
     前記最適制御アルゴリズムは、前記画像データを特徴量として数値化して用いるとともに、前記画像データは前記機器の異なる場所、時間に撮影した画像データであることを特徴とする運転支援方法。
    A driving assistance method that provides guidance regarding the operation of the equipment by an optimum control algorithm using image data of the equipment captured by a camera,
    The driving support method, wherein the optimum control algorithm uses the image data as a feature quantity after being digitized, and the image data is image data captured by the equipment at different locations and times.
  9.  請求項8に記載の運転支援方法であって、
     前記最適制御アルゴリズムは、前記画像データに基づいて状態を認識し、前記画像データに基づいて評価値を計算し、評価値が最大となる状態に遷移するための行動を学習するアルゴリズムであり、
     前記状態の認識に用いる画像データと、評価値の計算に用いる画像データは前記機器の異なる位置で撮影した画像データであることを特徴とする運転支援方法。
    The driving support method according to claim 8,
    The optimal control algorithm is an algorithm that recognizes a state based on the image data, calculates an evaluation value based on the image data, and learns behavior for transitioning to a state with the maximum evaluation value,
    A driving support method, wherein the image data used for recognizing the state and the image data used for calculating the evaluation value are image data photographed at different positions of the device.
  10.  請求項9に記載の運転支援方法であって、
     前記最適制御アルゴリズムは、前記画像データを前処理したデータを用いて学習し、
     前記前処理では、機器における無駄時間や遅れ時間を考慮して画像データを補正することを特徴とする運転支援方法。
    The driving support method according to claim 9,
    The optimal control algorithm learns using data obtained by preprocessing the image data,
    The driving support method, wherein in the preprocessing, the image data is corrected in consideration of dead time and delay time in the device.
  11.  前記機器がボイラプラントである請求項9または請求項10に記載の運転支援方法であって、
     前記ボイラプラントの熱流体の上流側の燃焼部と、熱流体の下流側について前記画像データを取得し、熱流体の下流側の状況が所望の特性となるようなボイラプラントの運転をガイダンスすることを特徴とする運転支援方法。
    The operation support method according to claim 9 or 10, wherein the equipment is a boiler plant,
    Acquiring the image data of the combustion section on the upstream side of the thermal fluid and the downstream side of the thermal fluid of the boiler plant, and providing guidance on the operation of the boiler plant so that the conditions on the downstream side of the thermal fluid have desired characteristics. A driving assistance method characterized by:
  12.  請求項11に記載の運転支援方法であって、
     前記ガイダンスは、ボイラのパラメータ、もしくはスートブロワの操作方法であることを特徴とする運転支援方法。
    The driving support method according to claim 11,
    The driving support method, wherein the guidance is boiler parameters or a sootblower operation method.
  13.  請求項11に記載の運転支援方法であって、
     前記状態は、前記ボイラプラントの熱流体の上流側の燃焼部の画像データを用いて認識し、前記評価値は、前記熱流体の下流側の画像データを用いて計算し、強化学習における行動として定めるガイダンスは、ボイラのパラメータ、もしくはスートブロワの操作方法であることを特徴とする運転支援方法。
    The driving support method according to claim 11,
    The state is recognized using image data of the combustion section on the upstream side of the thermal fluid of the boiler plant, the evaluation value is calculated using the image data on the downstream side of the thermal fluid, and as an action in reinforcement learning A driving support method, wherein the determined guidance is a boiler parameter or a soot blower operation method.
  14.  請求項13に記載の運転支援方法であって、
     前記熱流体の下流側の画像データが熱交換器の灰付着の画像データであるとき、熱交換器に灰が付着していない時に撮影した画像を基準に、灰付着量を評価することを特徴とする運転支援方法。
    The driving assistance method according to claim 13,
    When the image data on the downstream side of the thermal fluid is image data of ash adhesion on the heat exchanger, the amount of ash adhesion is evaluated based on an image taken when ash is not adhered to the heat exchanger. driving support method.
  15.  機器の複数個所をカメラで撮影した複数の画像データを用いて前記機器の運転に関するガイダンスを与える運転支援プログラムであって、
     数値化した特徴量とした前記画像データに基づいて状態を認識する状態認識プログラムと、数値化した特徴量とした他の前記画像データに基づいて状態を評価し評価値を得る状態評価プログラムと、前記評価値が最大となる状態に遷移するための行動を学習する学習プログラムを含むことを特徴とする運転支援プログラム。
    A driving assistance program that provides guidance on driving the equipment using a plurality of image data obtained by photographing a plurality of locations of the equipment with a camera,
    A state recognition program for recognizing a state based on the image data as a numerical feature amount, a state evaluation program for evaluating a state based on the other image data as a numerical feature amount and obtaining an evaluation value, A driving assistance program comprising a learning program for learning actions for transitioning to a state in which the evaluation value is maximized.
PCT/JP2021/026965 2021-02-15 2021-07-19 Operation assistance device, operation assistance method, and operation assistance program WO2022172481A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2021427367A AU2021427367B2 (en) 2021-02-15 2021-07-19 Operation assistance device, operation assistance method, and operation assistance program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-021720 2021-02-15
JP2021021720A JP7474208B2 (en) 2021-02-15 2021-02-15 Driving assistance device, driving assistance method, and driving assistance program

Publications (1)

Publication Number Publication Date
WO2022172481A1 true WO2022172481A1 (en) 2022-08-18

Family

ID=82837682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/026965 WO2022172481A1 (en) 2021-02-15 2021-07-19 Operation assistance device, operation assistance method, and operation assistance program

Country Status (3)

Country Link
JP (1) JP7474208B2 (en)
AU (1) AU2021427367B2 (en)
WO (1) WO2022172481A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06266410A (en) * 1993-03-11 1994-09-22 Toshiba Corp Visual feedback controller
JP2019114168A (en) * 2017-12-26 2019-07-11 宇部興産株式会社 Plant management system, plant management server, plant management device, generation method for estimation model, and generation method for learning data

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06266410A (en) * 1993-03-11 1994-09-22 Toshiba Corp Visual feedback controller
JP2019114168A (en) * 2017-12-26 2019-07-11 宇部興産株式会社 Plant management system, plant management server, plant management device, generation method for estimation model, and generation method for learning data

Also Published As

Publication number Publication date
AU2021427367A9 (en) 2024-10-17
JP2022124130A (en) 2022-08-25
JP7474208B2 (en) 2024-04-24
AU2021427367A1 (en) 2023-07-27
AU2021427367B2 (en) 2024-07-11

Similar Documents

Publication Publication Date Title
Tang et al. The multi-objective optimization of combustion system operations based on deep data-driven models
Gu et al. Online adaptive least squares support vector machine and its application in utility boiler combustion optimization systems
Toth et al. Image-based deep neural network prediction of the heat output of a step-grate biomass boiler
Chen et al. Gaussian process regression based optimal design of combustion systems using flame images
CN108241360B (en) Online monitoring device and online monitoring method
JP5918663B2 (en) Thermal power plant control device and control method
JP4741968B2 (en) Plant control equipment
Shi et al. Soot blowing optimization for frequency in economizers to improve boiler performance in coal-fired power plant
Rossi et al. A methodology for energy savings verification in industry with application for a CHP (combined heat and power) plant
CN113074459A (en) Boiler control optimization method and system
CN105573261A (en) Optimized monitoring method for power plant boiler combustion
Pan et al. Combustion state identification of MSWI processes using ViT-IDFC
WO2022172481A1 (en) Operation assistance device, operation assistance method, and operation assistance program
JP2009282750A (en) Apparatus for processing plant data, and method for processing plant data
Garami et al. Reaction zone monitoring in biomass combustion
JP7296436B2 (en) Control device
CN114091276B (en) Boiler heat efficiency online calculation method of household garbage incineration boiler
JP5203763B2 (en) Coal-fired boiler type identification device and coal-fired boiler type identification method
Zou et al. Online evaluation of the boiler energy efficiency associated with the soot blowing in coal‐fired power plants
JP2010237892A (en) Method and apparatus for classifying data
Cao et al. Rated load state performance assessment and analysis of ultra-supercritical coal-fired power plant
CN112884789B (en) Method and system for calculating internal circulation multiplying power of circulating fluidized bed
Sujatha et al. Internet of things for flame monitoring power station boilers
JP7222943B2 (en) Operation improvement support system, operation improvement support method, and operation improvement support program
Lu et al. Prediction of Unburned Carbon in Flue Dust based on Teacher-student Ensemble Method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21925729

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021427367

Country of ref document: AU

Date of ref document: 20210719

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21925729

Country of ref document: EP

Kind code of ref document: A1