WO2022172374A1 - Composite light gernation device and manufacturing method therefor - Google Patents
Composite light gernation device and manufacturing method therefor Download PDFInfo
- Publication number
- WO2022172374A1 WO2022172374A1 PCT/JP2021/005045 JP2021005045W WO2022172374A1 WO 2022172374 A1 WO2022172374 A1 WO 2022172374A1 JP 2021005045 W JP2021005045 W JP 2021005045W WO 2022172374 A1 WO2022172374 A1 WO 2022172374A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pedestal
- laser diode
- substrate
- layer
- optical multiplexer
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 20
- 239000002131 composite material Substances 0.000 title abstract 2
- 230000003287 optical effect Effects 0.000 claims abstract description 64
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 claims description 59
- 239000010410 layer Substances 0.000 claims description 42
- 239000000758 substrate Substances 0.000 claims description 29
- 238000010030 laminating Methods 0.000 claims description 15
- 239000012792 core layer Substances 0.000 claims description 14
- 238000005253 cladding Methods 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 10
- 239000002184 metal Substances 0.000 claims description 8
- 238000005530 etching Methods 0.000 claims description 4
- 238000002360 preparation method Methods 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 3
- 238000000206 photolithography Methods 0.000 claims description 3
- 238000000059 patterning Methods 0.000 claims description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/022—Mountings; Housings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/40—Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
Definitions
- the present invention relates to a combined light generating device in which a plurality of laser diodes having electrodes are used as light sources, and a power supply circuit fabricated on the same substrate as an optical multiplexer is electrically connected to the electrodes. More specifically, a plurality of laser diodes having electrodes and containing at least red light (R), green light (G) and blue light (B) are used as light sources, and the light emission center of each laser diode is connected to the optical multiplexer.
- the present invention relates to a synthetic light generating device and a method of manufacturing the same, which can easily align the emission center of a laser diode with the center of an input port of an optical multiplexer without requiring adjustment work for aligning the center of each input port. .
- a microlens is placed between the laser diode and the optical multiplexer, and the output from the laser diode. It is known to shape the output light with a microlens and guide it to the input port of an optical multiplexer, or to once guide the light output from a laser diode to an optical fiber and guide it to the input port of the optical multiplexer. (see Patent Documents 2 and 3, for example). However, since a microlens or an optical fiber is used between the laser diode and the optical multiplexer, there is a limit to miniaturization of the combined light generating device and the manufacturing cost increases.
- JP 2013-195603 A JP-A-11-346028 JP-A-7-168040 JP-A-2000-012958
- a substrate an optical multiplexer disposed on the substrate and having a plurality of input ports and at least one output port, and a plurality of light sources disposed on the substrate;
- Each of the light sources is composed of a laser diode and arranged to face each of a plurality of input ports of the optical multiplexer, and the laser diode is attached with an electrode in the combined light generating device,
- Pedestals each made up of at least one pedestal piece are arranged on the substrate corresponding to the arrangement positions of the plurality of laser diodes, and each of the plurality of laser diodes has its lower surface is placed on the pedestal in contact with the upper surface of the pedestal,
- the pedestal is set at a height such that the center of light emission of each of the plurality of laser diodes mounted thereon coincides with the center of the input port of the optical multiplexer arranged facing each laser diode.
- a synthetic light generation device characterized by: Note that the laser diode can be replaced with an edge-emitting LED.
- the substrate has a function as an undercladding layer, or an undercladding layer preparation step of laminating an undercladding layer on the substrate; (2) a core layer forming step of forming a core layer to be an optical waveguide of the optical multiplexer on the undercladding layer after the undercladding layer preparing step; (3) After the core layer forming step, an optical waveguide forming step of patterning an optical waveguide in the core layer by photolithography using a photomask having a pattern corresponding to the shape of the optical waveguide; (4) an overcladding layer laminating step of laminating an overcladding layer covering the optical waveguide and the undercladding layer after the optical waveguide forming step; (5) after the step of laminating the over-cladding layer, etching the over-cladding layer and the under-cladding layer to form a pedestal consisting of at least one pedestal piece for mounting the plurality of laser diodes; a pedestal forming step, wherein the pedestal is formed so as to be arranged corresponding to the arrangement positions of the pedestal
- a plurality of laser diodes having electrodes and containing at least red light (R), green light (G), and blue light (B) are used as light sources, and the light emission centers of the respective laser diodes are used to combine light.
- R red light
- G green light
- B blue light
- FIG. 1 is a perspective view of a synthetic light generating device of the present invention
- FIG. 2 is an enlarged view showing a pedestal on which a laser diode is mounted when two pedestal pieces in FIG. 1 are used as one set
- FIG. It is a figure which shows the front view (left side) and side view (right side) in each manufacturing process of the synthetic
- (a) is the undercladding layer laminating step
- (b) is the core layer forming step
- (c) is the optical waveguide forming step
- (d) is the overcladding layer laminating step
- (e) is the pedestal forming step
- ( f) shows an electric circuit formation step.
- 4 is a diagram showing the height of the pedestal in Example 1.
- FIG. FIG. 11 is a diagram showing the height of the pedestal in Example 2;
- FIG. 1 shows a perspective view of a synthetic light generating device 1 of the present invention.
- 3 sets of pedestals 4 each consisting of 4 sets of pedestal pieces are formed.
- 3(B) is placed.
- An electrode (not shown) attached to the lower surface of the laser diode 3 is connected to an electrode connecting member 5 to which current is supplied by a metal wire 6 .
- An optical multiplexer 8 is formed on the right side of the silicon substrate 2. Inside the optical multiplexer 8, three input ports 9, An optical waveguide 10 for combining three types of light and an output port 11 for outputting the combined light are formed.
- the center of each light emitting portion 7 of the laser diode 3 (referred to as "light emission center") is aligned with the center of each input port 9. , the height and shape of the pedestal 4 are formed. Specifically, since the height and shape of the light emission center of the laser diode 3 differ depending on the product, when the laser diode 3 is placed on the pedestal piece of the base 4, the height of the light emission center of the laser diode 3 is the same as that of the input port. The height of each pedestal piece of the pedestal 4 is formed so as to match the height of the center of the pedestal 9, and when the laser diode 3 is mounted on the pedestal 4, it is aligned with the axis of the emission center of the laser diode 3.
- FIG. 1 shows the pedestal 4 having four pedestal pieces in one set.
- the pedestal may be a set of two rectangular parallelepiped pedestal pieces formed by connecting one piece, and a U-shaped shape formed by connecting four of the above-mentioned pedestal pieces to one piece. may be one pedestal.
- the electrodes are attached to the lower surface of the laser diode 3 in FIG. 1, the surface to which the electrodes are attached is not limited to the lower surface. It may be attached in contact with either surface. In that case, since the electrode connecting member 5 and the metal wire 6 are connected to the electrode to supply current, the configuration is slightly different from that shown in FIG.
- the fact that the light emission center of the laser diode 3 coincides with the center of the input port 9 does not only mean that the center axis of the light emission center and the center axis of the input port are strictly aligned.
- the light emitted from the light emitting part 7 of the laser diode 3 is input to the waveguide 10 from the input port 9 of the optical multiplexer 8, and then is transmitted by the waveguide 10. It means that the light is optically multiplexed and output from the output port 11 as a multiplexed light that can be used as a light source for an image projection device.
- the intensity of output light without axial misalignment is 100%
- the intensity of output light with axial misalignment is set to be in the range of 50% or more and less than 100%.
- the intensity of the output light is set to 50% when there is axial misalignment
- the active layer (light-emitting layer) of a general laser diode is extremely thin in the height direction.
- the amount of axial misalignment is about 1/2 wavelength to 2 wavelengths.
- the horizontal direction since the width of the active layer of the laser diode is wide in the horizontal direction, the axial deviation tolerance tends to be larger than that in the height direction.
- FIG. 2(a) is an enlarged view showing the pedestal 4 on which the laser diode is mounted when two pedestal pieces in the pedestal 4 in FIG. 1 are paired.
- an electrode (not shown) attached to the bottom surface of the laser diode 3 is connected to an electrode connection member 5 (not shown) to which current is supplied by a metal wire 6.
- the surface on which the electrodes of the laser diode 3 are attached is not limited to the bottom surface. 1, the height and shape of the pedestal 4 are formed so that the emission center of each laser diode 3 coincides with the center of each input port 9. As shown in FIG. FIG.
- FIG. 2(b) is an example in which the entrance shape of the waveguide at the input port 9 is expanded into a tapered shape in order to further increase the tolerance for axial misalignment in the horizontal direction.
- the output light in the case of no axial misalignment is somewhat reduced, but the tolerance for axial misalignment on the input port 9 side is greatly expanded to several times the wavelength.
- FIG. 2(b) shows an example in which the tapered shape is expanded only in the horizontal direction, but if necessary, the tapered shape may be expanded only in the height direction, and both the horizontal direction and the height direction may be expanded. It may expand in a tapered shape.
- FIGS. 3(a) to 3(f) are diagrams showing a front view (left side) and a side view (right side) in the manufacturing method of the synthetic light generating device of the present invention.
- FIG. 3A shows an under-cladding layer 12 formed by forming a silicon oxide film having a low refractive index of about 1.46, for example, on a substrate 2 made of silicon by chemical vapor deposition. shows an under-cladding layer preparation step for laminating the .
- the substrate 2 having a function as the under clad layer 12 may be used.
- FIG. 3(b) shows that after the undercladding layer preparation step, high refractive index silicon with a refractive index difference of about 0.5 to 1.5% from the undercladding layer is deposited on the undercladding layer 12.
- a core layer forming step of depositing an oxide film and laminating a core layer 13 forming an optical waveguide of an optical multiplexer is shown.
- FIG. 3C shows that after the core layer forming step, the optical waveguide 10 is patterned on the core layer 13 by photolithography using a photomask having a pattern corresponding to the shape of the optical waveguide 10.
- 3 shows an optical waveguide forming process for
- FIG. 3(d) shows that after the optical waveguide formation step, a low refractive index silicon oxide film having an absolute refractive index of about 1.46, for example, is formed on the optical waveguide 10 and the undercladding layer 12. 4 shows an over-cladding layer lamination step of laminating the over-cladding layer 14 by laminating.
- FIG. 3(e) shows, after the over-cladding layer laminating process, the over-cladding layer 14 on the front side (left front view) or left side (right side view) on the silicon substrate 2, the optical waveguide 10 and the A pedestal forming step is shown in which the pedestal 4 is formed by etching the under-cladding layer 12 to form a pedestal 4 consisting of a set of four pedestal pieces for mounting the plurality of laser diodes 3 thereon.
- each of the pedestals 4 is formed so as to be arranged corresponding to the arrangement positions of the plurality of laser diodes 3, and each of the pedestals 4 is arranged to correspond to the plurality of laser diodes mounted thereon.
- the light emission centers of the laser diodes 3 are set at a height that coincides with the centers of the plurality of input ports 9 of the optical multiplexer 8, and the plurality of input ports 9 of the optical multiplexer 8. and the end face of the output port 11 are polished and exposed to the respective faces.
- the etching process may be performed on the substrate 2 under the under clad layer 12 as necessary.
- an electrode connection material 5 is provided on the pedestal portion and a metal wire 6 is formed.
- 4 shows an electric circuit formation process.
- the electrode connection member 5 may have any shape as long as it has a contact with the electrode attached to the laser diode 3 .
- the metal wire 6 can be formed by a known method such as forming by printing conductive ink using an inkjet printer, forming by using wiring using lead wires, and the like.
- the laser diode 3 is placed on the substrate by bringing the lower surface of the laser diode 3 into contact with the upper surface of the pedestal 4. placement process.
- the distance from the lower surface of the light emitting part 7 in the main body of the laser diode 3 differs for each color, so that the height of the upper surface of the pedestal 4 differs for each laser diode 3 of each color.
- the upper surface of the pedestal 4 of the blue laser diode 3 (B) is higher than the upper surface of the pedestal 4 of the red laser diode 3 (R)
- the upper surface of the pedestal 4 of the green laser diode 3 (G) is positioned above the red laser diode 3 (G).
- the diode 3(R) By forming the diode 3(R) so as to be lower than the upper surface of the pedestal 4, the heights of the light-emitting portions 7 of the three-color laser diodes 3 are unified, and the bodies of the laser diodes 3 are placed on the respective pedestals.
- the emission centers of the red (R), blue (B), and green (G) laser diodes 3 can all be aligned with the centers of their respective input ports 9 simply by placing them.
- the distance from the lower surface of the light emitting portion 7 in the main body of the laser diode 3 is approximately the same for each color.
- An example is shown in which the central axis of the light emitting portion 7 of the laser diode 3 and the central axis of the input port 9 are slightly misaligned in the height direction.
- the height of the light emitting portion 7 of the blue laser diode 3 (B) is slightly lower than that of the light emitting portion 7 of the green laser diode 3 (G).
- each laser diode 3 is input to the waveguide 10 from the input port 9 of the optical multiplexer 8, and then optically multiplexed by the waveguide 10, Since the output port 11 outputs combined light that can be used as a light source for an image projection device, the emission centers of the red (R), blue (B), and green (G) laser diodes 3 are all coincides with the center of the input port 9 of .
- the synthetic light generating device of the present invention achieves miniaturization, high production efficiency, and reduced manufacturing costs, and can be used as a light source for image projection devices such as glasses-type terminals and portable projectors.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- Optical Couplings Of Light Guides (AREA)
Abstract
Provided are: a composite light generation device for which miniaturization is achieved, production efficiency is high, and manufacturing costs are reduced; and a manufacturing method therefor. Due to a plurality of individual pedestals being formed at a height at which the light-emitting centers of each of a plurality of laser diodes placed thereon respectively align the centers of a plurality of individual input ports of an optical multiplexer, an adjustment operation for aligning centers is not required
Description
本発明は、電極を有する複数のレーザダイオードを光源として用い、光合波器と同一基盤上に作製された電源供給回路が前記電極と導通している合成光生成装置に関する。より詳しくは、電極を有する、少なくとも赤色光(R)、緑色光(G)および青色光(B)を含む複数のレーザダイオードを光源として用い、それぞれのレーザダイオードの発光中心を、光合波器のそれぞれの入力ポートの中心に合致するための調整作業を必要とせず、レーザダイオードの発光中心と光合波器の入力ポートの中心を容易に合致させることが可能な合成光生成装置及びその製造方法に関する。
The present invention relates to a combined light generating device in which a plurality of laser diodes having electrodes are used as light sources, and a power supply circuit fabricated on the same substrate as an optical multiplexer is electrically connected to the electrodes. More specifically, a plurality of laser diodes having electrodes and containing at least red light (R), green light (G) and blue light (B) are used as light sources, and the light emission center of each laser diode is connected to the optical multiplexer. The present invention relates to a synthetic light generating device and a method of manufacturing the same, which can easily align the emission center of a laser diode with the center of an input port of an optical multiplexer without requiring adjustment work for aligning the center of each input port. .
近年、眼鏡型端末や携帯型プロジェクタ等の画像投影装置の光源として用いられる合成光生成装置において、複数のレーザダイオードを光源として用いた光合波器からなる、小型化された合成光生成装置が知られている(例えば特許文献1を参照)。
レーザダイオードから出力された光が光合波器の入力ポートから入力され、光導波路を経由して合波され、光合波器の出力ポートから合波光が出力される合成光生成装置において、レーザダイオードから出力された光を、損失が発生せず、高い効率で光合波器の入力ポートに導くための手段、方法としては、レーザダイオードと光合波器の間にマイクロレンズを配置し、レーザダイオードから出力された光をマイクロレンズによって整形し、光合波器の入力ポートへ導くことや、レーザダイオードから出力された光を一旦光ファイバに導光して光合波器の入力ポートへ導くことが知られている(例えば特許文献2、3を参照)。
しかし、レーザダイオードと光合波器の間にマイクロレンズや光ファイバを用いることから、合成光生成装置の小型化には限界があると共に製造コストが増大する。 In recent years, in synthetic light generation devices used as light sources for image projection devices such as glasses-type terminals and portable projectors, miniaturized synthetic light generation devices that consist of an optical multiplexer using a plurality of laser diodes as light sources have been known. (SeePatent Document 1, for example).
In a combined light generating device in which light output from a laser diode is input from an input port of an optical multiplexer, multiplexed via an optical waveguide, and output from an output port of the optical multiplexer, the combined light is output from the laser diode. As a means and method for guiding the output light to the input port of the optical multiplexer with high efficiency without causing loss, a microlens is placed between the laser diode and the optical multiplexer, and the output from the laser diode. It is known to shape the output light with a microlens and guide it to the input port of an optical multiplexer, or to once guide the light output from a laser diode to an optical fiber and guide it to the input port of the optical multiplexer. (see Patent Documents 2 and 3, for example).
However, since a microlens or an optical fiber is used between the laser diode and the optical multiplexer, there is a limit to miniaturization of the combined light generating device and the manufacturing cost increases.
レーザダイオードから出力された光が光合波器の入力ポートから入力され、光導波路を経由して合波され、光合波器の出力ポートから合波光が出力される合成光生成装置において、レーザダイオードから出力された光を、損失が発生せず、高い効率で光合波器の入力ポートに導くための手段、方法としては、レーザダイオードと光合波器の間にマイクロレンズを配置し、レーザダイオードから出力された光をマイクロレンズによって整形し、光合波器の入力ポートへ導くことや、レーザダイオードから出力された光を一旦光ファイバに導光して光合波器の入力ポートへ導くことが知られている(例えば特許文献2、3を参照)。
しかし、レーザダイオードと光合波器の間にマイクロレンズや光ファイバを用いることから、合成光生成装置の小型化には限界があると共に製造コストが増大する。 In recent years, in synthetic light generation devices used as light sources for image projection devices such as glasses-type terminals and portable projectors, miniaturized synthetic light generation devices that consist of an optical multiplexer using a plurality of laser diodes as light sources have been known. (See
In a combined light generating device in which light output from a laser diode is input from an input port of an optical multiplexer, multiplexed via an optical waveguide, and output from an output port of the optical multiplexer, the combined light is output from the laser diode. As a means and method for guiding the output light to the input port of the optical multiplexer with high efficiency without causing loss, a microlens is placed between the laser diode and the optical multiplexer, and the output from the laser diode. It is known to shape the output light with a microlens and guide it to the input port of an optical multiplexer, or to once guide the light output from a laser diode to an optical fiber and guide it to the input port of the optical multiplexer. (see
However, since a microlens or an optical fiber is used between the laser diode and the optical multiplexer, there is a limit to miniaturization of the combined light generating device and the manufacturing cost increases.
また、レーザダイオードと光合波器の間に何も使用せず、レーザダイオードと光合波器を近接配置した合成光生成装置も知られている(例えば特許文献4を参照)。
しかし、この場合、レーザダイオードの発光中心と光合波器の入力ポートの中心を合致させるための調整作業が必要であり、レーザダイオードの電極に電源を供給して光を出力しながら、レーザダイオードの発光中心を光合波器の入力ポートの中心と合致させるため、3次元での位置決めを行わなければならず、熟練した技術者が作業したとしても一定以上の時間を要することから、生産効率が低く、製造コストの低減には限界がある。 Also known is a combined light generating device in which nothing is used between the laser diode and the optical multiplexer and the laser diode and the optical multiplexer are arranged close to each other (see, for example, Patent Document 4).
However, in this case, adjustment work is required to match the center of the light emission of the laser diode with the center of the input port of the optical multiplexer. In order to align the center of light emission with the center of the input port of the optical multiplexer, three-dimensional positioning must be performed. , there is a limit to the reduction in manufacturing cost.
しかし、この場合、レーザダイオードの発光中心と光合波器の入力ポートの中心を合致させるための調整作業が必要であり、レーザダイオードの電極に電源を供給して光を出力しながら、レーザダイオードの発光中心を光合波器の入力ポートの中心と合致させるため、3次元での位置決めを行わなければならず、熟練した技術者が作業したとしても一定以上の時間を要することから、生産効率が低く、製造コストの低減には限界がある。 Also known is a combined light generating device in which nothing is used between the laser diode and the optical multiplexer and the laser diode and the optical multiplexer are arranged close to each other (see, for example, Patent Document 4).
However, in this case, adjustment work is required to match the center of the light emission of the laser diode with the center of the input port of the optical multiplexer. In order to align the center of light emission with the center of the input port of the optical multiplexer, three-dimensional positioning must be performed. , there is a limit to the reduction in manufacturing cost.
本発明は、このような事情に鑑みてなされたものであり、小型化を実現すると共に、生産効率が高く、製造コストを低減する合成光生成装置及びその製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a synthetic light generating apparatus and a method of manufacturing the same, which can achieve miniaturization, high production efficiency, and reduced manufacturing costs. .
基板と、該基板上に配設され、複数個の入力ポートおよび少なくとも1個の出力ポートを有する光合波器と、該基板上に配設された複数個の光源とを含み、該複数個の光源のそれぞれはレーザダイオードから構成され、かつ該光合波器の複数個の入力ポートのそれぞれに対向して配置されており、該レーザダイオードには電極が付設されている合成光生成装置であって、
該基板上には、該複数個のレーザダイオードの配置位置に対応して、それぞれ少なくとも1個の台座片からなる台座が配設されており、該複数個のレーザダイオードのそれぞれは、その下面を該台座の上面に当接せしめて、該台座上に載置されており、
該台座は、これに載置された該複数個のレーザダイオードのそれぞれの発光中心を、それぞれのレーザダイオードに対向して配置された光合波器の入力ポートの中心に合致する高さに設定されていることを特徴とする合成光生成装置を提供する。
なお、レーザダイオードは、端面発光型LEDに置き換えることもできる。 a substrate, an optical multiplexer disposed on the substrate and having a plurality of input ports and at least one output port, and a plurality of light sources disposed on the substrate; Each of the light sources is composed of a laser diode and arranged to face each of a plurality of input ports of the optical multiplexer, and the laser diode is attached with an electrode in the combined light generating device, ,
Pedestals each made up of at least one pedestal piece are arranged on the substrate corresponding to the arrangement positions of the plurality of laser diodes, and each of the plurality of laser diodes has its lower surface is placed on the pedestal in contact with the upper surface of the pedestal,
The pedestal is set at a height such that the center of light emission of each of the plurality of laser diodes mounted thereon coincides with the center of the input port of the optical multiplexer arranged facing each laser diode. Provided is a synthetic light generation device characterized by:
Note that the laser diode can be replaced with an edge-emitting LED.
該基板上には、該複数個のレーザダイオードの配置位置に対応して、それぞれ少なくとも1個の台座片からなる台座が配設されており、該複数個のレーザダイオードのそれぞれは、その下面を該台座の上面に当接せしめて、該台座上に載置されており、
該台座は、これに載置された該複数個のレーザダイオードのそれぞれの発光中心を、それぞれのレーザダイオードに対向して配置された光合波器の入力ポートの中心に合致する高さに設定されていることを特徴とする合成光生成装置を提供する。
なお、レーザダイオードは、端面発光型LEDに置き換えることもできる。 a substrate, an optical multiplexer disposed on the substrate and having a plurality of input ports and at least one output port, and a plurality of light sources disposed on the substrate; Each of the light sources is composed of a laser diode and arranged to face each of a plurality of input ports of the optical multiplexer, and the laser diode is attached with an electrode in the combined light generating device, ,
Pedestals each made up of at least one pedestal piece are arranged on the substrate corresponding to the arrangement positions of the plurality of laser diodes, and each of the plurality of laser diodes has its lower surface is placed on the pedestal in contact with the upper surface of the pedestal,
The pedestal is set at a height such that the center of light emission of each of the plurality of laser diodes mounted thereon coincides with the center of the input port of the optical multiplexer arranged facing each laser diode. Provided is a synthetic light generation device characterized by:
Note that the laser diode can be replaced with an edge-emitting LED.
基板と、該基板上に配設され、複数個の入力ポートおよび少なくとも1個の出力ポートを有する光合波器と、該基板上に配設された複数個の光源を含み、該複数個の光源のそれぞれはレーザダイオードから構成され、かつ該光合波器の複数個の入力ポートのそれぞれに対向して配置されており、該レーザダイオードには電極が付設されている合成光生成装置の製造方法において、
(1)該基板がアンダークラッド層としての機能を有するものであるか、または該基板上に、アンダークラッド層を積層するアンダークラッド層準備工程、
(2)該アンダークラッド層準備工程の後に、該アンダークラッド層上に該光合波器の光導波路となるコア層を形成するコア層形成工程、
(3)該コア層形成工程の後に、光導波路の形状に応じたパターンを有するフォトマスクを用いて、フォトリソグラフィー法により、コア層に光導波路をパターニング形成する光導波路形成工程、
(4)該光導波路形成工程の後に、該光導波路及び該アンダークラッド層を覆うオーバークラッド層を積層するオーバークラッド層積層工程、
(5)該オーバークラッド層積層工程の後に、該オーバークラッド層および該アンダークラッド層をエッチング加工によって、該複数個のレーザダイオードを載置するためそれぞれ少なくとも1個の台座片からなる台座を形成する台座形成工程、ここで、該台座は、該複数個のレーザダイオードの配設位置に対応して配置されるように形成されると共に、該台座のそれぞれは、これに載置された該複数個のレーザダイオードのそれぞれの発光中心を、該光合波器の該複数個の入力ポートのそれぞれの中心に合致する高さに設定されており、
(6)該台座形成工程の後に、該レーザダイオードに付設された電極に電流を供給するために、該台座部分に電極接続材を設けると共に、金属線を形成する電気回路形成工程、
(7)該電気回路形成工程の後に、該台座の上面に該レーザダイオードの下面を当接せしめて、該レーザダイオードを該基板上に配設するレーザダイオード配設工程、
を含むことを特徴とする合成光生成装置の製造方法を提供する。 A substrate, an optical multiplexer disposed on the substrate and having a plurality of input ports and at least one output port, and a plurality of light sources disposed on the substrate, the plurality of light sources is composed of a laser diode, and is arranged to face each of a plurality of input ports of the optical multiplexer, and the laser diode is provided with an electrode. ,
(1) The substrate has a function as an undercladding layer, or an undercladding layer preparation step of laminating an undercladding layer on the substrate;
(2) a core layer forming step of forming a core layer to be an optical waveguide of the optical multiplexer on the undercladding layer after the undercladding layer preparing step;
(3) After the core layer forming step, an optical waveguide forming step of patterning an optical waveguide in the core layer by photolithography using a photomask having a pattern corresponding to the shape of the optical waveguide;
(4) an overcladding layer laminating step of laminating an overcladding layer covering the optical waveguide and the undercladding layer after the optical waveguide forming step;
(5) after the step of laminating the over-cladding layer, etching the over-cladding layer and the under-cladding layer to form a pedestal consisting of at least one pedestal piece for mounting the plurality of laser diodes; a pedestal forming step, wherein the pedestal is formed so as to be arranged corresponding to the arrangement positions of the plurality of laser diodes, and The emission center of each of the laser diodes is set to a height that matches the center of each of the plurality of input ports of the optical multiplexer,
(6) After the pedestal forming step, an electric circuit forming step of providing an electrode connecting material on the pedestal portion and forming a metal wire in order to supply current to the electrode attached to the laser diode;
(7) a laser diode disposing step of disposing the laser diode on the substrate by bringing the lower surface of the laser diode into contact with the upper surface of the pedestal after the electric circuit forming step;
A method for manufacturing a synthetic light generating device is provided, comprising:
(1)該基板がアンダークラッド層としての機能を有するものであるか、または該基板上に、アンダークラッド層を積層するアンダークラッド層準備工程、
(2)該アンダークラッド層準備工程の後に、該アンダークラッド層上に該光合波器の光導波路となるコア層を形成するコア層形成工程、
(3)該コア層形成工程の後に、光導波路の形状に応じたパターンを有するフォトマスクを用いて、フォトリソグラフィー法により、コア層に光導波路をパターニング形成する光導波路形成工程、
(4)該光導波路形成工程の後に、該光導波路及び該アンダークラッド層を覆うオーバークラッド層を積層するオーバークラッド層積層工程、
(5)該オーバークラッド層積層工程の後に、該オーバークラッド層および該アンダークラッド層をエッチング加工によって、該複数個のレーザダイオードを載置するためそれぞれ少なくとも1個の台座片からなる台座を形成する台座形成工程、ここで、該台座は、該複数個のレーザダイオードの配設位置に対応して配置されるように形成されると共に、該台座のそれぞれは、これに載置された該複数個のレーザダイオードのそれぞれの発光中心を、該光合波器の該複数個の入力ポートのそれぞれの中心に合致する高さに設定されており、
(6)該台座形成工程の後に、該レーザダイオードに付設された電極に電流を供給するために、該台座部分に電極接続材を設けると共に、金属線を形成する電気回路形成工程、
(7)該電気回路形成工程の後に、該台座の上面に該レーザダイオードの下面を当接せしめて、該レーザダイオードを該基板上に配設するレーザダイオード配設工程、
を含むことを特徴とする合成光生成装置の製造方法を提供する。 A substrate, an optical multiplexer disposed on the substrate and having a plurality of input ports and at least one output port, and a plurality of light sources disposed on the substrate, the plurality of light sources is composed of a laser diode, and is arranged to face each of a plurality of input ports of the optical multiplexer, and the laser diode is provided with an electrode. ,
(1) The substrate has a function as an undercladding layer, or an undercladding layer preparation step of laminating an undercladding layer on the substrate;
(2) a core layer forming step of forming a core layer to be an optical waveguide of the optical multiplexer on the undercladding layer after the undercladding layer preparing step;
(3) After the core layer forming step, an optical waveguide forming step of patterning an optical waveguide in the core layer by photolithography using a photomask having a pattern corresponding to the shape of the optical waveguide;
(4) an overcladding layer laminating step of laminating an overcladding layer covering the optical waveguide and the undercladding layer after the optical waveguide forming step;
(5) after the step of laminating the over-cladding layer, etching the over-cladding layer and the under-cladding layer to form a pedestal consisting of at least one pedestal piece for mounting the plurality of laser diodes; a pedestal forming step, wherein the pedestal is formed so as to be arranged corresponding to the arrangement positions of the plurality of laser diodes, and The emission center of each of the laser diodes is set to a height that matches the center of each of the plurality of input ports of the optical multiplexer,
(6) After the pedestal forming step, an electric circuit forming step of providing an electrode connecting material on the pedestal portion and forming a metal wire in order to supply current to the electrode attached to the laser diode;
(7) a laser diode disposing step of disposing the laser diode on the substrate by bringing the lower surface of the laser diode into contact with the upper surface of the pedestal after the electric circuit forming step;
A method for manufacturing a synthetic light generating device is provided, comprising:
本発明によれば、電極を有する、少なくとも赤色光(R)、緑色光(G)および青色光(B)を含む複数のレーザダイオードを光源として用い、それぞれのレーザダイオードの発光中心を、光合波器のそれぞれの入力ポートの中心に合致するための調整作業を必要とせず、レーザダイオードの発光中心と光合波器の入力ポートの中心を容易に合致させることにより、小型化を実現すると共に、生産効率が高く、製造コストを低減する合成光生成装置及びその製造方法に関する。
According to the present invention, a plurality of laser diodes having electrodes and containing at least red light (R), green light (G), and blue light (B) are used as light sources, and the light emission centers of the respective laser diodes are used to combine light. By easily aligning the emission center of the laser diode with the center of the input port of the optical multiplexer, miniaturization and production can be achieved. TECHNICAL FIELD The present invention relates to a synthetic light generating device with high efficiency and reduced manufacturing cost, and a manufacturing method thereof.
以下、本発明を実施するための形態について、図面を参照しながら説明する。
図1は、本発明の合成光生成装置1の斜視図を示す。シリコン基板2上の左側に台座片が4個1組からなる台座4を3組形成し、その上に、手前からそれぞれ赤色レーザダイオード3(R)、緑色レーザダイオード3(G)および青色レーザダイオード3(B)が載置されている。ここで、レーザダイオード3の下面に付設された電極(図示されていない)は、金属線6により電流が供給される電極接続材5と接続する。
また、シリコン基板2上の右側には光合波器8が形成されており、光合波器8の内部には、レーザダイオード3のそれぞれの発光部7に近接して、3個の入力ポート9、3種類の光を合波する光導波路10、及び合波光を出力する出力ポート11が形成されている。
そして、台座4上にレーザダイオード3を載置するだけで、レーザダイオード3のそれぞれの発光部7の中心(これを「発光中心」という。)が、入力ポート9のそれぞれの中心に合致するように、台座4の高さ及び形状が形成されている。具体的には、レーザダイオード3の発光中心の高さ及び外形形状は製品によって異なることから、台座4の台座片上にレーザダイオード3を載置した時にレーザダイオード3の発光中心の高さが入力ポート9の中心の高さに合致するように、それぞれの台座4の台座片の高さが形成されていると共に、台座4上にレーザダイオード3を載置した時にレーザダイオード3の発光中心の軸と入力ポート9の中心の軸が合致するように、台座4のそれぞれの台座片上部にレーザダイオード3の下面の4つの角部を当接して嵌合させるための凹部または凸部が形成されている。必要に応じて該凹部または凸部は形成されていなくてもよい。 EMBODIMENT OF THE INVENTION Hereinafter, the form for implementing this invention is demonstrated, referring drawings.
FIG. 1 shows a perspective view of a syntheticlight generating device 1 of the present invention. On the left side of the silicon substrate 2, 3 sets of pedestals 4 each consisting of 4 sets of pedestal pieces are formed. 3(B) is placed. An electrode (not shown) attached to the lower surface of the laser diode 3 is connected to an electrode connecting member 5 to which current is supplied by a metal wire 6 .
Anoptical multiplexer 8 is formed on the right side of the silicon substrate 2. Inside the optical multiplexer 8, three input ports 9, An optical waveguide 10 for combining three types of light and an output port 11 for outputting the combined light are formed.
By simply placing thelaser diode 3 on the pedestal 4, the center of each light emitting portion 7 of the laser diode 3 (referred to as "light emission center") is aligned with the center of each input port 9. , the height and shape of the pedestal 4 are formed. Specifically, since the height and shape of the light emission center of the laser diode 3 differ depending on the product, when the laser diode 3 is placed on the pedestal piece of the base 4, the height of the light emission center of the laser diode 3 is the same as that of the input port. The height of each pedestal piece of the pedestal 4 is formed so as to match the height of the center of the pedestal 9, and when the laser diode 3 is mounted on the pedestal 4, it is aligned with the axis of the emission center of the laser diode 3. Concave portions or convex portions are formed on the upper portions of the base pieces of the base 4 so that the four corners of the lower surface of the laser diode 3 are brought into contact with each other so that the center axis of the input port 9 is aligned. . The concave portion or convex portion may not be formed as required.
図1は、本発明の合成光生成装置1の斜視図を示す。シリコン基板2上の左側に台座片が4個1組からなる台座4を3組形成し、その上に、手前からそれぞれ赤色レーザダイオード3(R)、緑色レーザダイオード3(G)および青色レーザダイオード3(B)が載置されている。ここで、レーザダイオード3の下面に付設された電極(図示されていない)は、金属線6により電流が供給される電極接続材5と接続する。
また、シリコン基板2上の右側には光合波器8が形成されており、光合波器8の内部には、レーザダイオード3のそれぞれの発光部7に近接して、3個の入力ポート9、3種類の光を合波する光導波路10、及び合波光を出力する出力ポート11が形成されている。
そして、台座4上にレーザダイオード3を載置するだけで、レーザダイオード3のそれぞれの発光部7の中心(これを「発光中心」という。)が、入力ポート9のそれぞれの中心に合致するように、台座4の高さ及び形状が形成されている。具体的には、レーザダイオード3の発光中心の高さ及び外形形状は製品によって異なることから、台座4の台座片上にレーザダイオード3を載置した時にレーザダイオード3の発光中心の高さが入力ポート9の中心の高さに合致するように、それぞれの台座4の台座片の高さが形成されていると共に、台座4上にレーザダイオード3を載置した時にレーザダイオード3の発光中心の軸と入力ポート9の中心の軸が合致するように、台座4のそれぞれの台座片上部にレーザダイオード3の下面の4つの角部を当接して嵌合させるための凹部または凸部が形成されている。必要に応じて該凹部または凸部は形成されていなくてもよい。 EMBODIMENT OF THE INVENTION Hereinafter, the form for implementing this invention is demonstrated, referring drawings.
FIG. 1 shows a perspective view of a synthetic
An
By simply placing the
そうすると、台座4上にレーザダイオード3を載置するだけで、レーザダイオード3のそれぞれの発光中心が、入力ポート9のそれぞれの中心に容易に合致することから、前記中心を合致させるための調整作業は不要である。
Then, simply by placing the laser diodes 3 on the pedestal 4, the light emission centers of the laser diodes 3 easily match the centers of the input ports 9. Therefore, adjustment work for matching the centers is necessary. is unnecessary.
図1では、出力ポート11は1個のみ示されているが、必要に応じて出力ポート11は2個以上であってもよい。
また、図1では、台座片が4個1組からなる台座4が示されているが、台座4は、上記台座片4個のうちレーザダイオード3の出力光方向と同一方向に並ぶ2個が1個に連なることにより形成される、直方体形状の台座片2個1組からなる台座であってもよく、さらに上記台座片4個が1個に連なることにより形成される、コの字型形状の1個の台座であってもよい。
さらに、図1では、レーザダイオード3の下面に電極が付設されているが、電極が付設される面は下面に限定されるものではなく、必要に応じてレーザダイオード3本体の上面、側面等いずれかの面に当接して付設されていてもよい。その場合、電極接続材5および金属線6は当該電極に接続して電流を供給するため、図1とはやや異なる形態となる。 Although only oneoutput port 11 is shown in FIG. 1, there may be two or more output ports 11 if necessary.
FIG. 1 shows thepedestal 4 having four pedestal pieces in one set. The pedestal may be a set of two rectangular parallelepiped pedestal pieces formed by connecting one piece, and a U-shaped shape formed by connecting four of the above-mentioned pedestal pieces to one piece. may be one pedestal.
Furthermore, although the electrodes are attached to the lower surface of thelaser diode 3 in FIG. 1, the surface to which the electrodes are attached is not limited to the lower surface. It may be attached in contact with either surface. In that case, since the electrode connecting member 5 and the metal wire 6 are connected to the electrode to supply current, the configuration is slightly different from that shown in FIG.
また、図1では、台座片が4個1組からなる台座4が示されているが、台座4は、上記台座片4個のうちレーザダイオード3の出力光方向と同一方向に並ぶ2個が1個に連なることにより形成される、直方体形状の台座片2個1組からなる台座であってもよく、さらに上記台座片4個が1個に連なることにより形成される、コの字型形状の1個の台座であってもよい。
さらに、図1では、レーザダイオード3の下面に電極が付設されているが、電極が付設される面は下面に限定されるものではなく、必要に応じてレーザダイオード3本体の上面、側面等いずれかの面に当接して付設されていてもよい。その場合、電極接続材5および金属線6は当該電極に接続して電流を供給するため、図1とはやや異なる形態となる。 Although only one
FIG. 1 shows the
Furthermore, although the electrodes are attached to the lower surface of the
ここで、レーザダイオードから構成される複数個の光源のそれぞれが、光合波器の複数個の入力ポートのそれぞれに「対向して配置」されていることは、光源における出力光面が光合波器の入力ポート面に対して正対して配置されることを含むが、正対して配置されることに限定されるものではなく、必要に応じて斜めに配置されることも含む。
Here, the fact that each of the plurality of light sources composed of laser diodes is "arranged facing" each of the plurality of input ports of the optical multiplexer means that the output light plane of the light source is the same as that of the optical multiplexer. However, it is not limited to facing the input port surface of the input port, and may be arranged obliquely as necessary.
また、レーザダイオード3の発光中心が、入力ポート9の中心に合致するとは、発光中心の中心軸と入力ポートの中心の中心軸が厳密に一直線になることだけを意味するものではなく、両中心軸に多少の軸ズレがあってもよく、少なくとも、レーザダイオード3の発光部7から発光された光が、光合波器8の入力ポート9から導波路10に入力された後、導波路10によって光合波され、出力ポート11から、画像投影装置の光源として用いることが可能な合波光が出力されることを意味する。
通常は、軸ズレがない場合の出力光の強度を100%とすると、軸ズレがある場合の出力光の強度は、50%以上、100%未満の範囲内となるよう設定される。
例えば、軸ズレがある場合の出力光の強度を50%に設定した場合、一般のレーザダイオードの活性層(発光層)の高さ方向の厚みが極めて薄いことから、結果として、高さ方向の軸ズレ量(軸ズレ許容度)は、1/2波長から2波長程度の長さとなる。水平方向については、レーザダイオードの活性層幅が水平方向に広いことから、軸ズレ許容度は、高さ方向に比べ、より大きくなる傾向がある。 Further, the fact that the light emission center of thelaser diode 3 coincides with the center of the input port 9 does not only mean that the center axis of the light emission center and the center axis of the input port are strictly aligned. At least, the light emitted from the light emitting part 7 of the laser diode 3 is input to the waveguide 10 from the input port 9 of the optical multiplexer 8, and then is transmitted by the waveguide 10. It means that the light is optically multiplexed and output from the output port 11 as a multiplexed light that can be used as a light source for an image projection device.
Normally, if the intensity of output light without axial misalignment is 100%, the intensity of output light with axial misalignment is set to be in the range of 50% or more and less than 100%.
For example, when the intensity of the output light is set to 50% when there is axial misalignment, the active layer (light-emitting layer) of a general laser diode is extremely thin in the height direction. The amount of axial misalignment (axis misalignment tolerance) is about 1/2 wavelength to 2 wavelengths. As for the horizontal direction, since the width of the active layer of the laser diode is wide in the horizontal direction, the axial deviation tolerance tends to be larger than that in the height direction.
通常は、軸ズレがない場合の出力光の強度を100%とすると、軸ズレがある場合の出力光の強度は、50%以上、100%未満の範囲内となるよう設定される。
例えば、軸ズレがある場合の出力光の強度を50%に設定した場合、一般のレーザダイオードの活性層(発光層)の高さ方向の厚みが極めて薄いことから、結果として、高さ方向の軸ズレ量(軸ズレ許容度)は、1/2波長から2波長程度の長さとなる。水平方向については、レーザダイオードの活性層幅が水平方向に広いことから、軸ズレ許容度は、高さ方向に比べ、より大きくなる傾向がある。 Further, the fact that the light emission center of the
Normally, if the intensity of output light without axial misalignment is 100%, the intensity of output light with axial misalignment is set to be in the range of 50% or more and less than 100%.
For example, when the intensity of the output light is set to 50% when there is axial misalignment, the active layer (light-emitting layer) of a general laser diode is extremely thin in the height direction. The amount of axial misalignment (axis misalignment tolerance) is about 1/2 wavelength to 2 wavelengths. As for the horizontal direction, since the width of the active layer of the laser diode is wide in the horizontal direction, the axial deviation tolerance tends to be larger than that in the height direction.
図2(a)は、図1における台座4における台座片を2個1組とした場合の、レーザダイオードを載置した台座4を示す拡大図である。ここで、図1と同様に、レーザダイオード3の下面に付設された電極(図示されていない)は、金属線6により電流が供給される電極接続材5(図示されていない)と接続する。ここで、図1で説明したようにレーザダイオード3の電極が付設される面は下面に限定されるものではない。
また、図1と同様に、レーザダイオード3のそれぞれの発光中心が、入力ポート9のそれぞれの中心に合致するように、台座4の高さ及び形状は形成されている。
図2(b)は更に、水平方向における軸ズレ許容度を拡大するため、入力ポート9における導波路の入り口形状をテーパー状に拡大して形成した例である。図2(a)と比較すると、軸ズレが無い場合の出力光は、多少低下してしまうが、入力ポート9側の軸ズレ許容度は波長の数倍程度まで大幅に拡大する。また、図2(b)は水平方向のみテーパー状に拡大した例を示しているが、必要に応じて、高さ方向のみテーパー状に拡大してもよく、水平方向及び高さ方向の両方をテーパー状に拡大してもよい。 FIG. 2(a) is an enlarged view showing thepedestal 4 on which the laser diode is mounted when two pedestal pieces in the pedestal 4 in FIG. 1 are paired. Here, as in FIG. 1, an electrode (not shown) attached to the bottom surface of the laser diode 3 is connected to an electrode connection member 5 (not shown) to which current is supplied by a metal wire 6. Here, as described with reference to FIG. 1, the surface on which the electrodes of the laser diode 3 are attached is not limited to the bottom surface.
1, the height and shape of thepedestal 4 are formed so that the emission center of each laser diode 3 coincides with the center of each input port 9. As shown in FIG.
FIG. 2(b) is an example in which the entrance shape of the waveguide at theinput port 9 is expanded into a tapered shape in order to further increase the tolerance for axial misalignment in the horizontal direction. Compared with FIG. 2A, the output light in the case of no axial misalignment is somewhat reduced, but the tolerance for axial misalignment on the input port 9 side is greatly expanded to several times the wavelength. Also, FIG. 2(b) shows an example in which the tapered shape is expanded only in the horizontal direction, but if necessary, the tapered shape may be expanded only in the height direction, and both the horizontal direction and the height direction may be expanded. It may expand in a tapered shape.
また、図1と同様に、レーザダイオード3のそれぞれの発光中心が、入力ポート9のそれぞれの中心に合致するように、台座4の高さ及び形状は形成されている。
図2(b)は更に、水平方向における軸ズレ許容度を拡大するため、入力ポート9における導波路の入り口形状をテーパー状に拡大して形成した例である。図2(a)と比較すると、軸ズレが無い場合の出力光は、多少低下してしまうが、入力ポート9側の軸ズレ許容度は波長の数倍程度まで大幅に拡大する。また、図2(b)は水平方向のみテーパー状に拡大した例を示しているが、必要に応じて、高さ方向のみテーパー状に拡大してもよく、水平方向及び高さ方向の両方をテーパー状に拡大してもよい。 FIG. 2(a) is an enlarged view showing the
1, the height and shape of the
FIG. 2(b) is an example in which the entrance shape of the waveguide at the
図3(a)~(f)は、本発明の合成光生成装置の製造方法における正面図(左側)及び側面図(右側)を示す図であり、以下に具体的な合成光生成装置の製造工程を説明する。
(i)図3(a)は、シリコン製の基板2上に、例えば絶対屈折率が1.46程度の低屈折率のシリコン酸化膜を化学気相成長法で成膜してアンダークラッド層12を積層するアンダークラッド層準備工程を示す。この時、該基板2がアンダークラッド層12としての機能を有するものを用いてもよい。 FIGS. 3(a) to 3(f) are diagrams showing a front view (left side) and a side view (right side) in the manufacturing method of the synthetic light generating device of the present invention. Explain the process.
(i) FIG. 3A shows an under-cladding layer 12 formed by forming a silicon oxide film having a low refractive index of about 1.46, for example, on a substrate 2 made of silicon by chemical vapor deposition. shows an under-cladding layer preparation step for laminating the . At this time, the substrate 2 having a function as the under clad layer 12 may be used.
(i)図3(a)は、シリコン製の基板2上に、例えば絶対屈折率が1.46程度の低屈折率のシリコン酸化膜を化学気相成長法で成膜してアンダークラッド層12を積層するアンダークラッド層準備工程を示す。この時、該基板2がアンダークラッド層12としての機能を有するものを用いてもよい。 FIGS. 3(a) to 3(f) are diagrams showing a front view (left side) and a side view (right side) in the manufacturing method of the synthetic light generating device of the present invention. Explain the process.
(i) FIG. 3A shows an under-
(ii)図3(b)は、該アンダークラッド層準備工程の後に、アンダークラッド層12上に、該クラッド層との屈折率差が0.5~1.5%程度の高屈折率のシリコン酸化膜を製膜して、光合波器の光導波路を形成するコア層13を積層するコア層形成工程を示す。
(ii) FIG. 3(b) shows that after the undercladding layer preparation step, high refractive index silicon with a refractive index difference of about 0.5 to 1.5% from the undercladding layer is deposited on the undercladding layer 12. A core layer forming step of depositing an oxide film and laminating a core layer 13 forming an optical waveguide of an optical multiplexer is shown.
(iii)図3(c)は、該コア層形成工程の後に、光導波路10の形状に応じたパターンを有するフォトマスクを用いて、フォトリソグラフィー法により、コア層13に光導波路10をパターニング形成する光導波路形成工程を示す。
(iii) FIG. 3C shows that after the core layer forming step, the optical waveguide 10 is patterned on the core layer 13 by photolithography using a photomask having a pattern corresponding to the shape of the optical waveguide 10. 3 shows an optical waveguide forming process for
(iv)図3(d)は、該光導波路形成工程の後に、光導波路10及びアンダークラッド層12上に、例えば絶対屈折率が1.46程度の低屈折率のシリコン酸化膜を製膜してオーバークラッド層14を積層するオーバークラッド層積層工程を示す。
(iv) FIG. 3(d) shows that after the optical waveguide formation step, a low refractive index silicon oxide film having an absolute refractive index of about 1.46, for example, is formed on the optical waveguide 10 and the undercladding layer 12. 4 shows an over-cladding layer lamination step of laminating the over-cladding layer 14 by laminating.
(v)図3(e)は、該オーバークラッド層積層工程の後に、シリコン基板2上の正面手前(左側の正面図)または左側(右側の側面図)のオーバークラッド層14、光導波路10及びアンダークラッド層12をエッチング加工によって、該複数個のレーザダイオード3を載置するためのそれぞれ台座片が4個1組からなる台座4を形成する台座形成工程を示す。ここで、該台座4のそれぞれは、該複数個のレーザダイオード3の配設位置に対応して配置されるように形成されると共に、該台座4のそれぞれは、これに載置された該複数個のレーザダイオード3の発光中心を、該光合波器8の該複数個の入力ポート9の中心に合致する高さに設定されており、また該光合波器8の該複数個の入力ポート9の端面及び出力ポート11の端面は研磨加工されて、それぞれの面に露出している。
また、該エッチング加工については、必要に応じてアンダークラッド層12の下の基板2まで加工してもよい。 (v) FIG. 3(e) shows, after the over-cladding layer laminating process, theover-cladding layer 14 on the front side (left front view) or left side (right side view) on the silicon substrate 2, the optical waveguide 10 and the A pedestal forming step is shown in which the pedestal 4 is formed by etching the under-cladding layer 12 to form a pedestal 4 consisting of a set of four pedestal pieces for mounting the plurality of laser diodes 3 thereon. Here, each of the pedestals 4 is formed so as to be arranged corresponding to the arrangement positions of the plurality of laser diodes 3, and each of the pedestals 4 is arranged to correspond to the plurality of laser diodes mounted thereon. The light emission centers of the laser diodes 3 are set at a height that coincides with the centers of the plurality of input ports 9 of the optical multiplexer 8, and the plurality of input ports 9 of the optical multiplexer 8. and the end face of the output port 11 are polished and exposed to the respective faces.
In addition, the etching process may be performed on thesubstrate 2 under the under clad layer 12 as necessary.
また、該エッチング加工については、必要に応じてアンダークラッド層12の下の基板2まで加工してもよい。 (v) FIG. 3(e) shows, after the over-cladding layer laminating process, the
In addition, the etching process may be performed on the
(vi)図3(f)は、該台座形成工程の後に、レーザダイオード3に付設された電極に電流を供給するために、台座部分に電極接続材5を設けると共に、金属線6を形成する電気回路形成工程を示す。ここで、電極接続材5はレーザダイオード3に付設された電極と接点を有するのであれば、どのような形状であってもよい。また、金属線6はインクジェットプリンタを用いて導電性インクを印刷することにより形成すること、リード線を用いた配線を用いて形成すること等公知の方法により形成することができる。
(vi) In FIG. 3(f), in order to supply a current to the electrodes attached to the laser diode 3 after the pedestal forming step, an electrode connection material 5 is provided on the pedestal portion and a metal wire 6 is formed. 4 shows an electric circuit formation process. Here, the electrode connection member 5 may have any shape as long as it has a contact with the electrode attached to the laser diode 3 . Moreover, the metal wire 6 can be formed by a known method such as forming by printing conductive ink using an inkjet printer, forming by using wiring using lead wires, and the like.
(vii)図1に示されているように、該電気回路形成工程の後に、台座4の上面にレーザダイオード3の下面を当接せしめて、該レーザダイオードを該基板上に配設するレーザダイオード配設工程。
(vii) As shown in FIG. 1, after the electric circuit forming step, the laser diode 3 is placed on the substrate by bringing the lower surface of the laser diode 3 into contact with the upper surface of the pedestal 4. placement process.
実施例1は、図4に示すように、レーザダイオード3の本体における発光部7の下面からの距離が各色によって異なっているため、各色のレーザダイオード3ごとに台座4の上面の高さが異なっている。ここで、青色レーザダイオード3(B)の台座4の上面は、赤色レーザダイオード3(R)の台座4の上面より高い位置に、緑色レーザダイオード3(G)の台座4の上面は、赤色レーザダイオード3(R)の台座4の上面より低い位置になるように形成されることによって、3色のレーザダイオード3の発光部7の高さが統一され、レーザダイオード3の本体をそれぞれの台座に載置するだけで、赤色(R)、青色(B)、緑色(G)のレーザダイオード3の発光中心は、すべてそれぞれの入力ポート9の中心に合致させることができる。
In the first embodiment, as shown in FIG. 4, the distance from the lower surface of the light emitting part 7 in the main body of the laser diode 3 differs for each color, so that the height of the upper surface of the pedestal 4 differs for each laser diode 3 of each color. ing. Here, the upper surface of the pedestal 4 of the blue laser diode 3 (B) is higher than the upper surface of the pedestal 4 of the red laser diode 3 (R), and the upper surface of the pedestal 4 of the green laser diode 3 (G) is positioned above the red laser diode 3 (G). By forming the diode 3(R) so as to be lower than the upper surface of the pedestal 4, the heights of the light-emitting portions 7 of the three-color laser diodes 3 are unified, and the bodies of the laser diodes 3 are placed on the respective pedestals. The emission centers of the red (R), blue (B), and green (G) laser diodes 3 can all be aligned with the centers of their respective input ports 9 simply by placing them.
実施例2は、図5に示すように、レーザダイオード3の本体における発光部7の下面からの距離が各色とも、ほぼ同じであるため、各色のレーザダイオード3の台座4の上面の高さが同一であり、レーザダイオード3の発光部7の中心軸と入力ポート9の中心軸について、高さ方向に多少の軸ズレがある例を示す。ここで、赤色レーザダイオード3(R)の発光部7の高さに比べ、青色レーザダイオード3(B)の発光部7の高さはわずかに低く、緑色レーザダイオード3(G)の発光部7の高さはわずかに高くなっているが、それぞれのレーザダイオード3から発光された光が、光合波器8の入力ポート9から導波路10に入力された後、導波路10によって光合波され、出力ポート11から、画像投影装置の光源として用いることが可能な合波光が出力されることから、赤色(R)、青色(B)、緑色(G)のレーザダイオード3の発光中心は、すべてそれぞれの入力ポート9の中心に合致しているといえる。
In the second embodiment, as shown in FIG. 5, the distance from the lower surface of the light emitting portion 7 in the main body of the laser diode 3 is approximately the same for each color. An example is shown in which the central axis of the light emitting portion 7 of the laser diode 3 and the central axis of the input port 9 are slightly misaligned in the height direction. Here, compared to the height of the light emitting portion 7 of the red laser diode 3 (R), the height of the light emitting portion 7 of the blue laser diode 3 (B) is slightly lower than that of the light emitting portion 7 of the green laser diode 3 (G). is slightly higher, the light emitted from each laser diode 3 is input to the waveguide 10 from the input port 9 of the optical multiplexer 8, and then optically multiplexed by the waveguide 10, Since the output port 11 outputs combined light that can be used as a light source for an image projection device, the emission centers of the red (R), blue (B), and green (G) laser diodes 3 are all coincides with the center of the input port 9 of .
本発明の合成光生成装置は、小型化を実現すると共に、生産効率が高く、製造コストを低減するものであり、眼鏡型端末や携帯型プロジェクタ等の画像投影装置の光源として用いることができる。
The synthetic light generating device of the present invention achieves miniaturization, high production efficiency, and reduced manufacturing costs, and can be used as a light source for image projection devices such as glasses-type terminals and portable projectors.
1 合成光生成装置
2 シリコン基板
3 レーザダイオード(R:赤色、G:緑色、B:青色)
4 台座
5 電極接続材
6 金属線
7 発光部
8 光合波器
9 入力ポート
10 光導波路
11 出力ポート
12 アンダークラッド層
13 コア層
14 オーバークラッド層 1 syntheticlight generation device 2 silicon substrate 3 laser diode (R: red, G: green, B: blue)
4Pedestal 5 Electrode connecting member 6 Metal wire 7 Light emitting unit 8 Optical multiplexer 9 Input port 10 Optical waveguide 11 Output port 12 Under clad layer 13 Core layer 14 Over clad layer
2 シリコン基板
3 レーザダイオード(R:赤色、G:緑色、B:青色)
4 台座
5 電極接続材
6 金属線
7 発光部
8 光合波器
9 入力ポート
10 光導波路
11 出力ポート
12 アンダークラッド層
13 コア層
14 オーバークラッド層 1 synthetic
4
Claims (2)
- 基板と、該基板上に配設され、複数個の入力ポートおよび少なくとも1個の出力ポートを有する光合波器と、該基板上に配設された複数個の光源とを含み、該複数個の光源のそれぞれはレーザダイオードから構成され、かつ該光合波器の複数個の入力ポートのそれぞれに対向して配置されており、該レーザダイオードには電極が付設されている合成光生成装置であって、
該基板上には、該複数個のレーザダイオードの配置位置に対応して、それぞれ少なくとも1個の台座片からなる台座が配設されており、該複数個のレーザダイオードのそれぞれは、その下面を該台座の上面に当接せしめて、該台座上に載置されており、
該台座は、これに載置された該複数個のレーザダイオードのそれぞれの発光中心を、それぞれのレーザダイオードに対向して配置された光合波器の入力ポートの中心に合致する高さに設定されていることを特徴とする合成光生成装置。 a substrate, an optical multiplexer disposed on the substrate and having a plurality of input ports and at least one output port, and a plurality of light sources disposed on the substrate; Each of the light sources is composed of a laser diode and arranged to face each of a plurality of input ports of the optical multiplexer, and the laser diode is attached with an electrode in the combined light generating device, ,
Pedestals each made up of at least one pedestal piece are arranged on the substrate corresponding to the arrangement positions of the plurality of laser diodes, and each of the plurality of laser diodes has its lower surface is placed on the pedestal in contact with the upper surface of the pedestal,
The pedestal is set at a height such that the center of light emission of each of the plurality of laser diodes mounted thereon coincides with the center of the input port of the optical multiplexer arranged facing each laser diode. A synthetic light generating device characterized by: - 基板と、該基板上に配設され、複数個の入力ポートおよび少なくとも1個の出力ポートを有する光合波器と、該基板上に配設された複数個の光源を含み、該複数個の光源のそれぞれはレーザダイオードから構成され、かつ該光合波器の複数個の入力ポートのそれぞれに対向して配置されており、該レーザダイオードには電極が付設されている合成光生成装置の製造方法において、
(1)該基板がアンダークラッド層としての機能を有するものであるか、または該基板上に、アンダークラッド層を積層するアンダークラッド層準備工程、
(2)該アンダークラッド層準備工程の後に、該アンダークラッド層上に該光合波器の光導波路となるコア層を形成するコア層形成工程、
(3)該コア層形成工程の後に、光導波路の形状に応じたパターンを有するフォトマスクを用いて、フォトリソグラフィー法により、コア層に光導波路をパターニング形成する光導波路形成工程、
(4)該光導波路形成工程の後に、該光導波路及び該アンダークラッド層を覆うオーバークラッド層を積層するオーバークラッド層積層工程、
(5)該オーバークラッド層積層工程の後に、該オーバークラッド層および該アンダークラッド層をエッチング加工によって、該複数個のレーザダイオードを載置するためそれぞれ少なくとも1個の台座片からなる台座を形成する台座形成工程、ここで、該台座は、該複数個のレーザダイオードの配設位置に対応して配置されるように形成されると共に、該台座のそれぞれは、これに載置された該複数個のレーザダイオードのそれぞれの発光中心を、該光合波器の該複数個の入力ポートのそれぞれの中心に合致する高さに設定されており、
(6)該台座形成工程の後に、該レーザダイオードに付設された電極に電流を供給するために、該台座部分に電極接続材を設けると共に、金属線を形成する電気回路形成工程、
(7)該電気回路形成工程の後に、該台座の上面に該レーザダイオードの下面を当接せしめて、該レーザダイオードを該基板上に配設するレーザダイオード配設工程、
を含むことを特徴とする合成光生成装置の製造方法。 A substrate, an optical multiplexer disposed on the substrate and having a plurality of input ports and at least one output port, and a plurality of light sources disposed on the substrate, the plurality of light sources is composed of a laser diode, and is arranged to face each of a plurality of input ports of the optical multiplexer, and the laser diode is provided with an electrode. ,
(1) The substrate has a function as an undercladding layer, or an undercladding layer preparation step of laminating an undercladding layer on the substrate;
(2) a core layer forming step of forming a core layer to be an optical waveguide of the optical multiplexer on the undercladding layer after the undercladding layer preparing step;
(3) After the core layer forming step, an optical waveguide forming step of patterning an optical waveguide in the core layer by photolithography using a photomask having a pattern corresponding to the shape of the optical waveguide;
(4) an overcladding layer laminating step of laminating an overcladding layer covering the optical waveguide and the undercladding layer after the optical waveguide forming step;
(5) after the step of laminating the over-cladding layer, etching the over-cladding layer and the under-cladding layer to form a pedestal consisting of at least one pedestal piece for mounting the plurality of laser diodes; a pedestal forming step, wherein the pedestal is formed so as to be arranged corresponding to the arrangement positions of the plurality of laser diodes, and The emission center of each of the laser diodes is set to a height that matches the center of each of the plurality of input ports of the optical multiplexer,
(6) After the pedestal forming step, an electric circuit forming step of providing an electrode connecting material on the pedestal portion and forming a metal wire in order to supply current to the electrode attached to the laser diode;
(7) a laser diode disposing step of disposing the laser diode on the substrate by bringing the lower surface of the laser diode into contact with the upper surface of the pedestal after the electric circuit forming step;
A method for manufacturing a synthetic light generation device, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/005045 WO2022172374A1 (en) | 2021-02-10 | 2021-02-10 | Composite light gernation device and manufacturing method therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/005045 WO2022172374A1 (en) | 2021-02-10 | 2021-02-10 | Composite light gernation device and manufacturing method therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022172374A1 true WO2022172374A1 (en) | 2022-08-18 |
Family
ID=82838456
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/005045 WO2022172374A1 (en) | 2021-02-10 | 2021-02-10 | Composite light gernation device and manufacturing method therefor |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2022172374A1 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020126479A1 (en) * | 2001-03-08 | 2002-09-12 | Ball Semiconductor, Inc. | High power incoherent light source with laser array |
JP2006119659A (en) * | 2005-12-05 | 2006-05-11 | Hitachi Ltd | Polymer optical waveguide and method of manufacturing the same |
JP2013097072A (en) * | 2011-10-28 | 2013-05-20 | Citizen Holdings Co Ltd | Laser source and method for manufacturing laser source |
JP2017130543A (en) * | 2016-01-20 | 2017-07-27 | 三菱電機株式会社 | Optical transmitter and method of manufacturing the same |
WO2018030486A1 (en) * | 2016-08-10 | 2018-02-15 | 京セラ株式会社 | Package for mounting electrical element, array package and electrical device |
JP2018124394A (en) * | 2017-01-31 | 2018-08-09 | 国立大学法人福井大学 | Light beam projection device |
WO2020196489A1 (en) * | 2019-03-28 | 2020-10-01 | Tdk株式会社 | Integrated optical device |
-
2021
- 2021-02-10 WO PCT/JP2021/005045 patent/WO2022172374A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020126479A1 (en) * | 2001-03-08 | 2002-09-12 | Ball Semiconductor, Inc. | High power incoherent light source with laser array |
JP2006119659A (en) * | 2005-12-05 | 2006-05-11 | Hitachi Ltd | Polymer optical waveguide and method of manufacturing the same |
JP2013097072A (en) * | 2011-10-28 | 2013-05-20 | Citizen Holdings Co Ltd | Laser source and method for manufacturing laser source |
JP2017130543A (en) * | 2016-01-20 | 2017-07-27 | 三菱電機株式会社 | Optical transmitter and method of manufacturing the same |
WO2018030486A1 (en) * | 2016-08-10 | 2018-02-15 | 京セラ株式会社 | Package for mounting electrical element, array package and electrical device |
JP2018124394A (en) * | 2017-01-31 | 2018-08-09 | 国立大学法人福井大学 | Light beam projection device |
WO2020196489A1 (en) * | 2019-03-28 | 2020-10-01 | Tdk株式会社 | Integrated optical device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2517321B1 (en) | System for combining laser arrays for digital outputs | |
US8979338B2 (en) | System for combining laser array outputs into a single beam carrying digital data | |
US20190265408A1 (en) | Photonic integrated circuit packages and methods of manufacturing the same | |
US20220390689A1 (en) | Optical waveguide package and light-emitting device | |
CN113093350B (en) | Monitor photodiode submount for vertical mounting and alignment of monitor photodiodes | |
TWI483023B (en) | Socket and optical transmission module | |
US11886005B2 (en) | Optical multiplexing circuit and light source | |
US9720190B2 (en) | Optical module and method for manufacturing optical module | |
JP2021086976A (en) | Synthetic light generation device and manufacturing method thereof | |
JP5980193B2 (en) | Optical module and optical module manufacturing method. | |
WO2022172374A1 (en) | Composite light gernation device and manufacturing method therefor | |
US20230358978A1 (en) | Optical waveguide package, light emitter, and projection system | |
CA2931482A1 (en) | System for combining laser array outputs into a single beam carrying digital data | |
JP5966201B2 (en) | Optical transmission module | |
US20070133635A1 (en) | Dual light source and laser projection display apparatus using same | |
JP2022160196A (en) | Synthetic light generation device | |
JP2023083548A (en) | Optical element device and method for manufacturing the same | |
JP7193426B2 (en) | Optical waveguide module and light source module | |
US11740405B2 (en) | Optical multiplexing circuit and light source | |
WO2024080380A1 (en) | Combined beam generation device | |
US11886004B2 (en) | Planer lightwave circuit | |
US12072642B2 (en) | Integrated light source module | |
WO2022250092A1 (en) | Light source module | |
JP2024114001A (en) | Laser Module | |
EP4206766A1 (en) | Optical waveguide package, light-emitting device, and projection system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21925627 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21925627 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |