[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022170545A1 - 一种无线链路的重建方法和装置 - Google Patents

一种无线链路的重建方法和装置 Download PDF

Info

Publication number
WO2022170545A1
WO2022170545A1 PCT/CN2021/076449 CN2021076449W WO2022170545A1 WO 2022170545 A1 WO2022170545 A1 WO 2022170545A1 CN 2021076449 W CN2021076449 W CN 2021076449W WO 2022170545 A1 WO2022170545 A1 WO 2022170545A1
Authority
WO
WIPO (PCT)
Prior art keywords
rrc connection
message
base station
random access
establishment
Prior art date
Application number
PCT/CN2021/076449
Other languages
English (en)
French (fr)
Inventor
成后发
李雨龙
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202180004632.3A priority Critical patent/CN115211220B/zh
Priority to PCT/CN2021/076449 priority patent/WO2022170545A1/zh
Publication of WO2022170545A1 publication Critical patent/WO2022170545A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the embodiments of the present application relate to the field of wireless communication technologies, and in particular, to a method and apparatus for reestablishing a wireless link.
  • the network environment of mobile wireless communication still has unfavorable factors such as complex and changeable, and poor anti-interference.
  • the reconstruction of the wireless link takes a long time, which is not conducive to the quick recovery of the service.
  • the terminal needs to initiate three random access applications to the base station to obtain uplink resources, and then send radio resource control (RRC) to the base station in turn.
  • RRC radio resource control
  • RLC radio link control
  • the terminal receives the RRC connection reconfiguration message sent by the base station, obtains uplink resources through the scheduling request configuration carried in the RRC connection reconfiguration message, and sends an RRC connection reconfiguration complete message to the base station. So far, the reconstruction of the wireless link is completed.
  • Contention-based random access is suitable for low-intensity uplink resource requests.
  • the terminal needs to continuously initiate multiple random access applications in order to rebuild the wireless link, resulting in a long time to rebuild the wireless link, detrimental to the user's communication experience, and at the same time increasing the load on the network side and the power consumption of the terminal.
  • Embodiments of the present application provide a method and apparatus for reestablishing a wireless link, so as to speed up the recovery of the wireless link, thereby ensuring user service quality and communication experience.
  • an embodiment of the present application provides a method for reestablishing a radio link.
  • the method can be performed by a terminal or a chip used for the terminal.
  • the method includes: sending a radio resource control RRC connection reestablishment request message to a base station, where the RRC The connection re-establishment request message is used to request to re-establish the RRC connection; receive the RRC connection re-establishment message from the base station, the RRC connection re-establishment message is used to respond to the RRC connection re-establishment request message; receive the RRC connection re-configuration message from the base station , wherein the RRC connection reconfiguration message carries the resource indication information of the scheduling request; according to the resource indication information, a scheduling request is sent to the base station, and a scheduling indication message from the base station is received, and the scheduling indication message is used for Granting uplink resources; using the granted uplink resources to send a radio link control RLC response message, an RRC connection
  • the terminal efficiently utilizes the resource indication information of the scheduling request carried in the RRC connection reconfiguration message, and obtains the uplink resource grant by sending the scheduling request to the base station. Therefore, the terminal can send the RLC response message, the RRC connection reestablishment complete message and the RRC connection reconfiguration complete message on the uplink resource.
  • adopting the above solution is beneficial to the rapid reconstruction of the wireless link, reduces the load on the network side, and is beneficial to improving the service experience of the user.
  • the uplink transmission of the RLC response message and the RRC connection reestablishment complete message is carried out by means of random access, which is time-consuming and inefficient. Therefore, reducing the number of random accesses is a very effective method.
  • the embodiments of the present application provide the following different methods for reducing the number of random accesses, including but not limited to:
  • configure the duration of suspending sending random access preambles to the base station so that it can be adjusted can include any of the following: one transmission time interval TTI, two TTIs, or three TTIs. a TTI, or another TTI.
  • the duration can be called waiting time T.
  • the resource information indicated by the scheduling request in the RRC connection reconfiguration message can take effect in time by setting the waiting time T reasonably, so as to obtain uplink resources for sending RLC response messages, RRC Connection re-establishment complete message and RRC connection reconfiguration complete message.
  • the subsequent process of the random access preamble is terminated in advance.
  • the resource information indicated by the scheduling request in the RRC connection reconfiguration message can take effect in time, and the RLC response message, the RRC connection reestablishment complete message and the RRC connection reconfiguration complete message can be efficiently sent.
  • an embodiment of the present application provides a wireless communication device, including a processing unit and a transceiving unit, wherein the processing unit is configured to control the transceiving unit, so as to implement the method of the first aspect above or any possible method thereof. Implementation.
  • an embodiment of the present application provides a wireless communication device, and the device may be a terminal or a chip used for the terminal.
  • the apparatus has the function of implementing the method of the first aspect or any possible implementation method thereof. This function can be implemented by hardware or by executing corresponding software by hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • an embodiment of the present application provides a wireless communication device, including a processor and a memory; the memory is used to store computer-executed instructions, and when the communication device is running, the processor executes the computer-executed instructions stored in the memory, to implement the method of the first aspect above or any possible implementation method thereof.
  • an embodiment of the present application provides a wireless communication device, including a processing circuit and an interface circuit, where the interface circuit is configured to be coupled with a memory outside the wireless communication device, and provide the processing circuit with access to the memory.
  • a communication interface; the processing circuit is configured to execute program instructions in the memory to implement the method of the first aspect or any possible implementation method thereof.
  • an embodiment of the present application provides a wireless communication apparatus, which is used to perform a unit or means of each step of the method of the first aspect or any possible implementation method thereof.
  • embodiments of the present application further provide a computer-readable storage medium, where instructions are stored on the computer-readable storage medium, and when the instructions are executed on a computer, the method of the first aspect or the method thereof is implemented. any possible implementation.
  • the embodiments of the present application further provide a computer program product including instructions, which, when running on a computer, implements the method of the first aspect or any possible implementation method thereof.
  • the wireless communication device may be a wireless communication device, or may be a part of a device in the wireless communication device, such as an integrated circuit product such as a system chip or a communication chip.
  • the wireless communication device may be a computer device that supports wireless communication functionality.
  • the wireless communication device may be a terminal such as a smartphone.
  • a system-on-chip may also be referred to as a system on chip (system on chip, SoC), or simply referred to as a SoC chip.
  • the communication chip may include a baseband processing chip and a radio frequency processing chip.
  • Baseband processing chips are also sometimes referred to as modems or baseband chips.
  • RF processing chips are also sometimes referred to as RF transceivers or RF chips.
  • some or all of the communication chips may be integrated inside the SoC chip.
  • the baseband processing chip is integrated in the SoC chip, and the radio frequency processing chip is not integrated with the SoC chip.
  • FIG. 1 is a schematic structural diagram of a wireless communication system according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a control plane radio protocol architecture according to an embodiment of the present application
  • 3 is a schematic diagram of the operation of protocol entities of each layer of the data link layer under a control plane protocol provided by an embodiment of the present application;
  • FIG. 4 is a schematic diagram of mapping between different channels of a wireless communication system provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a contention-based random access process according to an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of an RRC state transition provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a communication flow of a method for re-establishing a wireless link in the prior art
  • FIG. 8 is a schematic diagram of a communication flow of a method for reestablishing a wireless link according to an embodiment of the present application
  • FIG. 9 is a schematic communication flow diagram of another wireless link re-establishment method provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a communication flow of another wireless link re-establishment method provided by an embodiment of the present application.
  • FIG. 11 is a schematic block diagram of a wireless communication apparatus according to an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a wireless communication device according to an embodiment of the present application.
  • devices can be divided into devices that provide wireless network services and devices that use wireless network services.
  • the devices that provide wireless network services refer to those devices that make up a wireless communication network, which can be referred to as network equipment or network elements for short.
  • Network equipment is usually owned by operators (such as China Mobile and Vodafone) or infrastructure providers (such as tower companies), and these manufacturers are responsible for operation or maintenance.
  • Network devices can be further classified into radio access network (RAN) devices and core network (core network, CN) devices.
  • RAN radio access network
  • core network core network
  • a typical RAN device includes a base station (BS).
  • the base station may also sometimes be referred to as a wireless access point (access point, AP), or a transmission reception point (transmission reception point, TRP).
  • the base station may be a generic node B (generation Node B, gNB) in a 5G new radio (new radio, NR) system, or an evolutional Node B (evolutional Node B, eNB) in a 4G long term evolution (long term evolution, LTE) system. ).
  • Devices using wireless network services are usually located at the edge of the network and may be referred to as a terminal for short.
  • the terminal can establish a connection with the network device, and provide the user with specific wireless communication services based on the service of the network device.
  • user equipment user equipment
  • subscriber unit subscriber unit
  • SU subscriber unit
  • terminals tend to move with users and are sometimes referred to as mobile stations (mobile stations, MSs).
  • some network devices such as relay nodes (relay nodes, RNs) or wireless routers, can sometimes be regarded as terminals because they have UE identity or belong to users.
  • the terminal may be a mobile phone, a tablet computer, a laptop computer, a wearable device (such as a smart watch, smart bracelet, smart helmet, smart glasses), and other Devices with wireless access capabilities, such as smart cars, various Internet of things (IOT) devices, including various smart home devices (such as smart meters and smart home appliances) and smart city devices (such as security or monitoring equipment, intelligent road transport facilities), etc.
  • IOT Internet of things
  • smart home devices such as smart meters and smart home appliances
  • smart city devices such as security or monitoring equipment, intelligent road transport facilities
  • the present application will take the base station and the terminal as examples to describe the technical solutions of the embodiments of the present application in detail.
  • FIG. 1 is a schematic structural diagram of a wireless communication system according to an embodiment of the present application.
  • a wireless communication system includes a terminal and a base station.
  • the transmission link from the terminal to the base station is denoted as an uplink (uplink, UL)
  • the transmission link from the base station to the terminal is denoted as a downlink (downlink, DL).
  • uplink uplink
  • downlink downlink
  • data transmission in the uplink may be abbreviated as uplink data transmission or uplink transmission
  • data transmission in the downlink may be abbreviated as downlink data transmission or downlink transmission.
  • the base station can provide communication coverage for a specific geographical area through an integrated or external antenna device.
  • One or more terminals located within the communication coverage of the base station can access the base station.
  • a base station can manage one or more cells. Each cell has an identification, which is also called a cell identity (cell ID). From the perspective of radio resources, a cell is a combination of downlink radio resources and paired uplink radio resources (optional).
  • the wireless communication system may comply with the wireless communication standard of 3GPP, and may also comply with other wireless communication standards, such as the 802 series (such as 802.11, 802.15, or 802.20) of the Institute of Electrical and Electronics Engineers (IEEE). wireless communication standard. Although only one base station and one terminal are shown in FIG. 1 , the wireless communication system may also include other numbers of terminals and base stations. In addition, the wireless communication system may further include other network devices, such as core network devices.
  • the terminal and the base station should know the predefined configuration of the wireless communication system, including the radio access technology (RAT) supported by the system, and the radio resources specified by the system, such as radio frequency bands and carriers.
  • RAT radio access technology
  • a carrier is a frequency range that conforms to system regulations. This frequency range can be determined by the center frequency of the carrier (referred to as the carrier frequency) and the bandwidth of the carrier.
  • the pre-defined configurations of these systems can be used as part of the standard protocols of the wireless communication system, or determined by the interaction between the terminal and the base station.
  • the content of the standard protocol of the wireless communication system may be pre-stored in the memory of the terminal and the base station, and/or embodied as hardware circuits or software codes of the terminal and the base station.
  • the terminal and the base station support one or more of the same RATs, such as 5G NR, 4G LTE, or RATs of future evolution systems.
  • the terminal and the base station use the same air interface parameters, coding scheme, modulation scheme, etc., and communicate with each other based on radio resources specified by the system.
  • the air interface parameter is a parameter used to describe air interface characteristics. In English, air interface parameters are sometimes called numerology.
  • the air interface parameters may include subcarrier spacing (SC), and may also include cyclic prefix (cyclic prefix, CP).
  • SC subcarrier spacing
  • CP cyclic prefix
  • the wireless communication system can support a variety of different air interface parameters, which can be used as part of a standard protocol.
  • FIG. 2 is a schematic diagram of a control plane radio protocol architecture according to an embodiment of the present application.
  • the radio protocol architecture may correspond to the radio protocol architecture of 3GPP.
  • the NR radio protocol stack is divided into two planes: the user plane and the control plane.
  • the User Plane (UP) protocol stack is the protocol cluster adopted for user data transmission
  • the Control Plane (CP) protocol stack is the protocol cluster adopted for the system control signaling transmission.
  • the user plane protocol is mainly responsible for functions related to user data transmission
  • the control plane protocol is mainly responsible for functions such as connection establishment, mobility management and security management.
  • the wireless protocol architecture corresponds to the control plane protocol, from the bottom layer protocol to the high layer protocol, forming a protocol stack, which is divided into three layers, namely the first layer (layer 1) and the second layer (layer 2) and the third layer (layer 3).
  • Each layer of protocol entities in the wireless protocol architecture is set up inside the terminal and the base station, and the entities of each layer protocol exchange (including receiving from and sending to it) service data units (SDUs) with the upper layers, and exchange with the lower layers.
  • Protocol data unit protocol data unit
  • Layer 1 is also called the physical layer, including the physical (physical, PHY) layer protocol, and the control plane protocol stack uses it as the underlying protocol.
  • the PHY protocol can be used to perform encoding/decoding, modulation/demodulation, multi-antenna mapping, mapping of signals to time-frequency resources, and other typical physical layer functions.
  • the PHY protocol provides transport channel services to the upper layer (ie layer 2) protocol, and is responsible for handling the mapping of transport channels to physical channels.
  • Layer 2 refers to the data link layer, which in turn includes: media access control (MAC) protocol, radio link control (radio link control, RLC) protocol, packet data convergence protocol (packet data convergence protocol, PDCP).
  • MAC media access control
  • RLC radio link control
  • PDCP packet data convergence protocol
  • the MAC protocol can be used to perform logical channel multiplexing, hybrid automatic repeat request (HARQ), scheduling and scheduling related functions.
  • HARQ hybrid automatic repeat request
  • the MAC protocol provides logical channel services to higher-layer protocols (such as the RLC protocol), and is responsible for the mapping of logical channels to transport channels.
  • the RLC protocol may be used to perform segmentation and retransmission processing of RLC data.
  • the RLC protocol can provide the service of the RLC channel to the upper layer protocol (such as the PDCP protocol).
  • each RLC channel (and each radio bearer) may correspond to one RLC entity.
  • An RLC entity can be configured in three modes: transparent mode (TM), unacknowledged mode (UM) and acknowledged mode (AM).
  • TM mode transparent transmission function of data is provided, that is, it is only responsible for sending the transmitted content to the destination address without making any changes to the data content.
  • the protocol provides all RLC functions except retransmission and re-segmentation, which is an unreliable transmission service.
  • AM mode provides all RLC functions, ensuring reliable transmission service through error detection and retransmission.
  • the RLC layer at the receiving end needs to send an acknowledgement message (acknowlegement, ACK) or a negative acknowledgement message (negative acknowlegement, NACK) to confirm the success of information reception.
  • the above message is carried by the status PDU of the RLC layer entity. .
  • the PDCP protocol can be used to perform functions such as Internet Protocol (Internet Protocol, IP) packet header compression, encryption and integrity protection.
  • the PDPC protocol can also be used for functions such as sequence numbering and in-order delivery of PDCP data.
  • the PDCP protocol can provide a radio bearer (RB) service to an upper layer protocol (ie, layer 3).
  • RB radio bearer
  • SRB signaling radio bearer
  • DRB data radio bearer
  • Layer 3 the network layer, includes the radio resource control (RRC) protocol and the non-access stratum (NAS) protocol in the control plane protocols.
  • RRC radio resource control
  • NAS non-access stratum
  • the NAS protocol can be used to perform functions such as authentication, mobility management, and security control.
  • the RRC protocol can be used to perform functions such as system message broadcasting, paging message sending, RRC connection management, cell selection and reselection, measurement configuration and reporting, etc. This function is realized through the transmission of control plane signaling. It is encapsulated at the data link layer as a control plane message containing the corresponding control plane signaling.
  • the control signaling messages of the RRC layer are transmitted using SRBs, and a variety of SRBs are defined in NR, mainly including SRB0, SRB1, SRB2 and SRB3.
  • SRB0 is a radio bearer established by default without integrity protection and encryption processing.
  • the SRB1 is used to send an RRC message to indicate the state and change of the RRC connection, such as air interface node configuration, link switching, etc., and is used to send a NAS message before the SRB2 is established.
  • SRB2 is configured after AS security is activated, and is used to send RRC messages including recorded measurement information and NAS messages, which can offload the signaling load of SRB1.
  • SRB3 is used to carry specific RRC signaling.
  • FIG. 3 is a schematic diagram of operations of protocol entities at each layer of a data link layer under a control plane protocol provided by an embodiment of the present application.
  • the control signaling is a PDCP SDU relative to the PDCP layer.
  • the PDCP SDU is encrypted, etc., and is handed down to the associated RLC entity as a PDCP PDU.
  • This PDCP PDU is an RLC SDU relative to the RLC layer, and the RLC entity performs operations such as segmenting it, and finally outputs one or more RLC PDUs.
  • the above one or more RLC PDUs are one or more MAC SDUs relative to the MAC layer.
  • MAC SDUs are multiplexed into one or more MAC PDUs according to the transmission restrictions indicated by the uplink resources, waiting for a transmission opportunity to the base station.
  • an information header is also added to indicate the relevant parameter information of each layer.
  • FIG. 4 is a schematic diagram of mapping between different channels of a wireless communication system according to an embodiment of the present application.
  • the channels of the wireless communication system may include logical channels, transport channels, and physical channels.
  • the logical channel is the channel between the RLC layer and the MAC layer
  • the transmission channel is the channel between the MAC layer and the PHY layer
  • Wu Lixinda is the channel through which the PHY layer actually transmits information.
  • Logical channels are mapped to corresponding transport channels, which in turn are mapped to corresponding physical channels.
  • Logical channels are defined by the type of information carried by the channel, and are usually divided into control channels and data channels.
  • the control channel carries the control and configuration information required for the operation of the wireless communication system, corresponding to the control plane protocol stack, and the data channel corresponds to the data plane protocol stack and carries user data.
  • the logical channels may include a broadcast control channel (BCCH), a paging control channel (PCCH), a common control channel (CCCH), and a dedicated control channel (DCCH). ), and a dedicated traffic channel (DTCH).
  • BCCH broadcast control channel
  • PCCH paging control channel
  • CCCH common control channel
  • DCCH dedicated control channel
  • DTCH dedicated traffic channel
  • SRB0 uses CCCH for transmission
  • SRB1, SRB2 and SRB3 use DCCH.
  • Transport channels define the manner and characteristics of data transmission over the air interface. Data in a transport channel can be multiplexed into a transport block (TB) and sent within a transmission time interval (TTI).
  • the transport channels may include a broadcast channel (BCH), a paging channel (PCH), a downlink shared channel (DL-SCH), and an uplink shared channel (UL-SCH).
  • BCH broadcast channel
  • PCH paging channel
  • DL-SCH downlink shared channel
  • UL-SCH uplink shared channel
  • RACH random access channel
  • SCH shared channel
  • the physical channel corresponds to a set of time-frequency resources used to carry control channels, and these time-frequency resources may refer to the time-frequency resource grid shown in FIG. 4 .
  • Physical channels may include physical downlink shared channel (PDSCH), physical broadcast channel (PBCH), physical downlink control channel (PDCCH), physical uplink shared channel (physical uplink shared channel) , PUSCH), physical uplink control channel (physical uplink control channel, PUCCH).
  • PDSCH physical downlink shared channel
  • PBCH physical broadcast channel
  • PDCCH and PUCCH do not have corresponding control channels, and are respectively used to carry downlink control information (downlink control information, DCI) and uplink control information (uplink control information, UCI).
  • DCI or UCI provides configuration information required for downlink data transmission and uplink data transmission.
  • UCI has a variety of predefined formats, and these predefined formats will contain some given information elements (information elements, IE).
  • the information element can be understood as a given field of UCI, the value range of this field and the meaning of each value can be predefined by the system.
  • one type is recorded as a scheduling request (SR), which is used to request access from the base station and upload data.
  • SR scheduling request
  • the precondition that the UCI can carry the SR is that the base station has configured the SR configuration PUCCH for the terminal side, and the SR configuration is periodic and dedicated to the terminal.
  • the process of scheduling request is as follows: the terminal receives the SR configuration transmitted by the base station; the terminal sends an SR on the PUCCH to inform the base station that there is data to be uploaded; the terminal receives a scheduling instruction message, which is transmitted downlink through the PDCCH, which Contains the specific authorization information of the uplink resource PUSCH of the base station, which is used to indicate the resource location, transmission format, multi-antenna configuration, and power control of uplink data transmission; the terminal performs uplink transmission of the to-be-sent message; the terminal receives hybrid automatic retransmission A HARQ feedback confirmation message is requested, and the HARQ feedback confirmation message is used to confirm the successful transmission of the to-be-sent message. It can be seen from the above process that since the SR is configured exclusively for the terminal, the speed at which the terminal accesses the base station is accelerated, so that the uplink authorized resources can be quickly obtained and the uplink transmission is very efficient.
  • Random access is another process in which a terminal requests access from a base station, receives a response from the base station, and allocates an access channel.
  • the uplink transmission of data is generally performed after random access is successful.
  • Random access is generally divided into a contention-based random access procedure and a non-contention-based random access procedure. The biggest difference is that the allocation of the access preamble in the former is generated by the terminal, so there are more competition and process of conflict resolution.
  • random access is a contention-based random access procedure.
  • FIG. 5 is a schematic diagram of a contention-based random access process according to an embodiment of the present application.
  • the dotted boxes in the figure are different actions that the terminal can take, and the dotted lines represent the steps that may occur but are not necessary for a complete random access process, as follows:
  • Step 501 The terminal sends a random access preamble, where the random access preamble is used to obtain uplink resource grants.
  • the base station may receive random access preambles sent by multiple terminals at the same time, but does not respond to all the received random access preambles. Therefore, the terminal starts a backoff window (backoff), and monitors the feedback of the base station within the backoff window (that is, the random access response, the random access response corresponds to the aforementioned random access preamble), and performs the following operations:
  • Step 502a the base station has no feedback or the random access response sent is incorrect, and the terminal attempts to send a new random access preamble to the base station again until the number of attempts expires or a correct random access response is received.
  • Step 502b the terminal receives a correct random access response from the base station, where the random access response carries the configuration requirement information of the uplink resources and the size information of the uplink TB.
  • Step 503 The terminal transmits one TB upstream, which is denoted as Msg 3; the size of the TB conforms to the size information of the upstream TB in the random access response.
  • Msg 3 Due to network instability, the transmission of Msg 3 may fail, so the terminal takes the following actions according to the feedback from the base station (that is, the contention resolution message, which should correspond to the aforementioned Msg 3):
  • Step 504a the base station has no feedback or the contention resolution message sent is incorrect, and the terminal retransmits Msg 3 based on the configuration, up to the maximum number of retransmissions; if the contention resolution message has not been received, the random access process is re-initiated.
  • Step 504b the terminal receives a correct contention resolution message from the base station, where the contention resolution message is used to indicate that the Msg 3 is successfully sent and the random access procedure ends.
  • the Msg 3 refers to an RRC connection re-establishment request, an RRC connection re-establishment complete message and an RLC response message; since the size of the Msg 3 is specified by the base station, its content is what the terminal needs to upload The complete content or partial content of the information; if the Msg 3 carries partial content, the terminal will initiate a new random access process again after this random access process ends, until the information to be transmitted is sent.
  • the delay of random access is uncertain, and if the size of the information content to be uploaded exceeds the limit in the random access response, the terminal needs to start the second random access process. Therefore, the uplink transmission achieved by random access has the characteristics of time delay, uncertainty and inefficiency.
  • FIG. 6 is a schematic flowchart of an RRC state transition provided by an embodiment of the present application.
  • the terminal and the base station can enter different NR RRC protocol states, the states include: idle state (RRC_IDLE), connected state (RRC_CONNECTED) and inactive state (RRC_INACTIVE), the reasons may include mobility change or service trigger, etc.
  • the terminal when the terminal is in the NR RRC_IDLE state, it monitors the broadcast message of the gNB where it is located.
  • the terminal When the scene changes, such as registration or service triggering, the terminal establishes a link with the base station, and transfers from the NR RRC_IDLE state to the NR RRC_CONNECTED state. After the connection is released, it can be transferred back to the NR RRC_IDLE state.
  • the terminal is in the NR RRC_CONNECTED state, the connection is suspended and enters the NR RRC_INACTIVE state because there is no service temporarily. After the service is triggered, the connection resumes and enters the NR RRC_CONNECTED state.
  • the terminal When the terminal is in the NR RRC_INACTIVE state, the connection is released into the NR RRC_IDLE state.
  • the terminal when the terminal starts service communication, it will enter the RRC_CONNECTED state.
  • This requires establishing an RRC communication connection, and ensuring the integrity and confidentiality of communication by configuring access stratum (AS) security.
  • the AS security includes the integrity protection of the RRC SRB, and the encryption of the SRB and the DRB carrying the data, and its implementation method has a security context (security context).
  • the security context is the temporary state information established by the network for the terminal, including key information and data bearer information. The purpose is to reduce the resource consumption of mutual authentication between the terminal and the network when switching between different states, and to facilitate the terminal to quickly enter the connection state. Secure communication. If AS security is not activated, the original RRC connection and related configurations are deleted, and a new RRC connection is established.
  • establishing an RRC connection includes establishing SRB1, activating AS security, and establishing SRB2 and DRB.
  • the RRC connection between the terminal and the base station is not stable. Due to the instability of the environment, such as: link handover failure, high probability of bit errors in the downlink channel, difficulty in sending the uplink channel, inconsistent parameter configuration and security information understanding between the terminal and the network side, etc., the wireless link will fail.
  • the specific failure reasons are: 1) wireless link reconfiguration failure, including synchronization failure and configuration error; 2) cell handover failure; 3) other reasons.
  • the terminal will search and select a cell with a better signal to initiate connection recovery, and try to restore the wireless link again, so that user data or voice services are not interrupted.
  • the communication process is the re-establishment of the radio link, and the user service is restored by re-establishing the RRC connection.
  • the process includes: restoring and updating the RB configuration and re-activating and updating the AS security.
  • FIG. 7 which is a schematic flowchart of a method for reestablishing a wireless link in the prior art
  • the dashed box represents the random access process
  • the message content of Msg 3 is the message on the arrow in the dashed box.
  • the link re-establishment process includes the following steps:
  • Step 701 The terminal initiates a random access procedure for uplink transmission of an RRC connection reestablishment request (Re-establishment Request) message.
  • the terminal restores the original RRC configuration and security context from the stored security context, and restores the SRB1 on the terminal side. Afterwards, an RRC connection reestablishment request message is sent to the base station, which is carried by SRB0.
  • the RRC connection reestablishment request message carries radio link failure reason information and terminal identity information.
  • the radio link failure reason information is used for the base station side to generate a corresponding RRC connection re-establishment message
  • the terminal identity information is used for the base station side to perform security context retrieval.
  • the base station restores the original RRC configuration and AS security, and rebuilds the SRB1 resources on the base station side, thereby providing integrity and encryption protection for subsequent uplink and downlink messages. Subsequently, the base station downlinks transmits the RRC connection reconfiguration message to the terminal, restores the DRB and SRB2 resources on the base station side, and sends the RRC connection reconfiguration message, in the order described above.
  • Step 702 The terminal receives an RRC connection re-establishment (Re-establishment) message, and the information carried in the RRC connection re-establishment message is used to instruct to update the AS security key; wherein, the AS security key includes the encryption and decryption encryption of the PDCP layer. key.
  • the RRC connection reestablishment message is AM data of the RLC layer
  • the data link layer on the terminal side needs to feed back an RLC acknowledgement message (ACK), otherwise the base station will retransmit the RRC connection reestablishment message.
  • ACK RLC acknowledgement message
  • Step 703 The terminal starts a complete random access procedure for sending an RLC response message, where the RLC response message is used to indicate the successful reception of the RRC connection reestablishment message.
  • Step 704 The terminal starts a complete random access process for sending an RRC connection reestablishment complete (Re-establishment Complete) message, where the RRC connection reestablishment complete message is used to confirm the successful completion of the RRC connection reestablishment;
  • the RRC connection re-establishment complete message is transmitted on SRB1, integrity and encryption protection is performed at the PDCP layer, and it is mapped to the AM RLC entity at the RLC layer for segmentation processing, and finally is enclosed in the TB after multiplexing at the MAC layer.
  • Upstream transmission is performed by the physical layer.
  • Step 705 the terminal receives an RRC connection reconfiguration (Reconfiguration) message, where the RRC connection reconfiguration message carries a configuration used to modify the RRC connection, restore the DRB and SRB2 resources on the terminal side, and the SR configuration;
  • RRC connection reconfiguration (Reconfiguration) message
  • the PDCP layer may decrypt the RRC connection reconfiguration message according to the updated decryption key.
  • Step 706 The terminal sends a scheduling request to the base station according to the uplink resource information indicated by the SR configuration.
  • Step 707 The terminal receives a scheduling indication message from the base station, where the scheduling indication message is used to authorize uplink resources.
  • Step 708 The terminal sends an RRC connection reconfiguration complete (Reconfiguration Complete) message on the authorized uplink resource, where the RRC connection reconfiguration complete message is used to confirm the successful completion of the RRC connection reconfiguration.
  • RRC connection reconfiguration complete Reconfiguration Complete
  • the base station transmits the RRC connection re-establishment message (step 702 ) and the RRC connection re-configuration message (step 705 ) successively to the terminal.
  • the RRC connection re-establishment signaling is sent on SRB1, and the RRC connection reconfiguration signaling can be sent on SRB1 or SRB3.
  • the RRC connection re-establishment signaling and the RRC connection re-configuration signaling can be generated in a relatively short period of time, in the order described above, and delivered to the lower layer.
  • the above two signalings need to be protected by integrity and encryption, so they will be encrypted at the PDCP layer and encapsulated as RLC SDUs by the AM RLC entity at the RLC layer, and then used as one or segmented as multiple RLC PDU(s) are mapped to the next layer.
  • the MAC layer After the MAC layer receives the above MAC SDUs, it can be multiplexed into the same MAC PDU, waiting to be transmitted by the PHY layer. Therefore, the RRC connection re-establishment message and the RRC connection reconfiguration message may be sent in one TB, or may be sent in adjacent or non-adjacent TBs, and the specific situation is related to the configuration of the base station. Both cases will be discussed in subsequent examples.
  • the terminal initiates a total of three random access processes, which are respectively used for sending RRC Re-establishment Request, RLC ACK and RRC Re-establishment Complete messages.
  • it belongs to contention access, which increases the delay of the re-establishment of the wireless link of the terminal, which is not conducive to the rapid recovery of data services. At the same time, this will also increase the load on the network side and increase the power consumption of the terminal.
  • the RRC connection reconfiguration message received by the terminal carries the SR configuration.
  • the SR configuration is periodic and dedicated to the terminal. Therefore, acquiring uplink resource authorization through SR does not require contention for access, and is a fast and efficient uplink resource request method. Therefore, unnecessary random access procedures are reduced, and the uplink transmission messages (here refers to the RLC response message, the RRC connection re-establishment complete message and the RRC connection reconfiguration complete message) are combined and sent through the uplink resources obtained by the scheduling instruction message, which can speed up the transmission. Re-establishment of wireless links, restoration of the network.
  • the reducing unnecessary random access procedures includes but is not limited to not initiating random access procedures and interrupting the initiated random access procedures.
  • the base station downlink transmits the RRC connection re-establishment message and the RRC connection re-configuration message, which may be in one TB, or in adjacent or non-adjacent TBs, and the cases are shown in Figure 8 and Figure 9 respectively. discuss.
  • FIG. 8 which is a schematic flowchart of a terminal reestablishing a wireless link according to an embodiment of the present application
  • the base station downlinks an RRC connection reestablishment message and an RRC connection reconfiguration message to the terminal in the same transport block (TB).
  • the dashed box represents the random access procedure, wherein the message content of Msg 3 is the message on the arrow in the dashed box.
  • Step 801 The terminal starts a complete random access procedure for transmitting an RRC connection reestablishment request message to the base station.
  • Step 802 The terminal receives the TB sent by the base station, where the TB includes an RRC connection re-establishment message and an RRC connection reconfiguration message, wherein the RRC connection reconfiguration message carries SR configuration information.
  • Step 803 The terminal sends a scheduling request to the base station according to the uplink resource information indicated by the SR configuration.
  • Step 804 The terminal receives a scheduling indication message from the base station, where the scheduling indication message is used to authorize uplink resources.
  • Step 805 The terminal sends an RLC response message, an RRC connection reestablishment complete message and an RRC connection reconfiguration complete message on the authorized uplink resources; wherein the RLC response message is used to indicate the successful reception of the RRC connection reestablishment message, and the RRC connection The reestablishment complete message is used to confirm the successful completion of the RRC connection reconfiguration, and the RRC connection reconfiguration complete message is used to confirm the successful completion of the RRC connection reconfiguration.
  • the data link layer of the terminal processes the TB, and delivers the two messages upward, in the same sequence as described above. Since the RRC connection re-establishment message is an AM message, the terminal should send an RLC response message to confirm the successful reception of the RRC connection re-establishment message. However, the terminal delays sending the RLC response message.
  • the implementation method includes controlling at the data link layer, and the controlled behavior includes delaying generating or sending the RLC response message.
  • the messages demultiplexed by the terminal should also follow the sequence: the RRC connection re-establishment message comes first, and the RRC connection reconfiguration message comes after. Therefore, the RRC layer will first obtain the RRC connection re-establishment signaling. After processing this signaling, the terminal delays sending the RRC connection reestablishment complete message.
  • the implementation methods include, but are not limited to, the RRC layer delays submitting the RRC connection reestablishment complete control signaling, and the data link layer delays sending the RRC connection reestablishment complete message;
  • the deferred delivery behavior includes deferred generation of the RRC connection re-establishment completion signaling.
  • the subsequent RRC connection reconfiguration message is decrypted by the PDCP layer and then delivered to the RRC layer to update the SR configuration of the terminal, so that the terminal can efficiently apply for uplink resource authorization from the base station.
  • the RRC layer respectively generates and delivers the RRC connection re-establishment completion signaling and the RRC connection reconfiguration completion signaling to the lower layer, and the sequence is as described above.
  • the RLC layer also generates an RLC Reply message, which is waiting for transmission along with the aforementioned two signalings.
  • the MAC layer specifies the total size of the RLC PDU to the RLC layer according to the new authorized uplink resources.
  • the RLC layer performs segmentation processing on the two signalings to be sent according to the total size of the RLC PDU, that is, one signaling can correspond to multiple RLC PDUs.
  • These RLC PDUs are respectively added with information headers, and multiplexed into one or more TBs for uploading to the base station. Wherein, in the case of multi-TB transmission, the terminal does not need to acquire a new uplink resource grant during this period.
  • the terminal controls the generation of the RLC response message and the RRC re-establishment complete message, so that the terminal uses an uplink resource grant together with the sending of the RRC re-configuration complete message, which reduces the total number of uplink grant applications to the base station, especially The number of times that the terminal must obtain authorization through the random access procedure when sending the RLC response message and the RRC reestablishment complete message is subtracted, which reduces time-consuming and efficiently restores the wireless link connection.
  • the embodiment of the present application sends the three messages to be uploaded through the same uplink resource grant, wherein the uplink resource grant is further obtained through the SR configuration carried in the existing RRC reconfiguration message. Therefore, the embodiment of the present application simplifies the wireless link reconstruction process, greatly saves the time-consuming of link reconstruction, and reduces the occupation of uplink resources and the network side of the base station.
  • the embodiment shown in FIG. 9 is a case where the RRC connection reestablishment message and the RRC connection reconfiguration message are sent in different TBs.
  • the base station downlink transmits the RRC connection reestablishment message and the RRC connection reconfiguration message in different TBs.
  • the TB including the RRC connection reconfiguration message is called the first TB
  • the TB including the RRC connection reconfiguration message is called the second TB. Due to the instability of the wireless transmission environment and the situation that the base station initiates retransmission, the sequence of TBs received by the terminal may be wrong, that is, the second TB may arrive at the terminal before the first TB. It should be understood that the steps in the flowchart represent only one instance.
  • the dashed box represents the random access procedure, wherein the message content of Msg 3 is the message on the arrow in the dashed box. Specific steps are as follows:
  • Step 901 The terminal starts a complete random access procedure for sending an RRC connection reestablishment request message.
  • Step 902 the terminal receives the RRC connection re-establishment message.
  • Step 903 The terminal receives an RRC connection reconfiguration message, wherein the RRC connection reconfiguration message carries SR configuration information.
  • Step 904 The terminal sends a scheduling request to the base station according to the uplink resource information indicated by the SR configuration.
  • Step 905 The terminal receives a scheduling indication message from the base station, where the scheduling indication message is used to authorize uplink resources.
  • Step 906 The terminal sends an RLC response message, an RRC connection reestablishment complete message and an RRC connection reconfiguration complete message on the authorized uplink resource.
  • the data link layer demultiplexes the RLC SDU containing the RRC connection reconfiguration signaling.
  • the PDCP layer delivers on demand, it can be distinguished
  • the signaling arrives prior to the RRC connection re-establishment signaling.
  • the PDCP layer buffers the RRC connection reconfiguration signaling and waits for the RRC connection reestablishment signaling.
  • the RRC connection reconfiguration signaling carries the indication information of the AS key update, the decryption key of the PDCP layer is not updated, and the RRC connection reconfiguration signaling cannot be decrypted and handed over. Therefore, on the terminal side, the sequence of control signaling submitted by the data link layer to the network layer must be, first, the RRC connection re-establishment signaling, and then the RRC connection reconfiguration signaling.
  • the terminal delays sending the RLC ACK and the RRC connection reestablishment complete message, and therefore does not initiate the random access procedure to apply for uplink resource authorization.
  • the terminal waits for the uplink resource grant carried in the RRC reconfiguration message for integrated transmission of the following messages: RLC response message, RRC connection reestablishment complete message and RRC connection reconfiguration complete message.
  • the arrival time of the second TB is unknown.
  • the waiting time T can be set to prevent the base station from not receiving The RLC ACK is repeated and the RRC connection re-establishment message is repeatedly downloaded, resulting in a waste of network resources.
  • the waiting time T is used to indicate the time for the terminal to delay initiating the random access procedure, that is, the time for suspending sending the random access preamble to the base station, and T may be a fixed parameter or an adjustable parameter.
  • T is a fixed parameter, it is pre-stored on the terminal side, and the specific value can be set according to factors such as user services.
  • the RRC layer informs the data link layer downward to indicate that the layer is receiving
  • the RLC response message is generated or transmitted with a maximum delay of T time, and the delay data link layer initiates a random access procedure to the base station.
  • the RRC layer also submits the RRC connection re-establishment completion signaling to the data link layer with a maximum delay of T time.
  • T is an adjustable parameter
  • its calculation method is based on various factors, including but not limited to terminal requirements, business requirements, priorities, and the like.
  • the terminal If the terminal does not receive the RRC reconfiguration message within T time, it initiates a random access procedure to the base station to apply for uplink resource authorization, and is used to send an RLC response message and an RRC connection reestablishment complete message.
  • the terminal can delay the sending of the RLC response message and the RRC connection reestablishment complete message, wait for the SR configuration in the RRC connection reconfiguration message, and then apply for uplink scheduling and obtain uplink authorization resources.
  • the purpose of reducing the number of initiations of the random access procedure is achieved.
  • the RLC response message, the RRC reestablishment complete message and the RRC reconfiguration complete message are efficiently combined and sent, thereby reducing the reestablishment delay of the radio link.
  • FIG. 10 is another schematic flowchart of reestablishing a wireless link provided by an embodiment of the present application.
  • the dashed box represents the random access process, and the message content of Msg 3 is the message on the arrow in the dashed box.
  • the process includes the following steps:
  • Step 1001 The terminal starts a complete random access procedure for sending an RRC connection reestablishment request message.
  • Step 1002 the terminal receives the RRC connection reestablishment message.
  • Step 1003 the terminal sends a random access preamble.
  • Step 1004 The terminal receives an RRC connection reconfiguration message, wherein the RRC connection reconfiguration message carries SR configuration information.
  • Step 1005 The terminal sends a scheduling request to the base station according to the uplink resource information indicated by the SR configuration.
  • Step 1006 The terminal receives a scheduling indication message from the base station, where the scheduling indication message is used to authorize uplink resources.
  • Step 1007 the terminal sends an RLC response message, an RRC connection reestablishment complete message and an RRC connection reconfiguration complete message on the authorized uplink resource.
  • step 1003 the terminal intends to apply to the base station for uplink resource authorization through a complete random access process to send an RLC response message.
  • step 1003 the terminal sends the random access preamble, which is the first step to start a complete random access process, and the base station should send a random access response after receiving it, which carries the uplink resource authorization to instruct the terminal to configure the uplink resource. information. Since this response behavior is only a response from the base station side to the received random access preamble, it is not informed of the corresponding upload content. Therefore, the base station may have sent an RRC connection reconfiguration message to the terminal before sending the random access response.
  • the terminal first receives the RRC connection reconfiguration message and then receives the random access response, and the RRC layer updates the SR configuration carried in the RRC connection reconfiguration message to the lower layer. Accordingly, the terminal interrupts the random access procedure and sends a scheduling request to the base station using the SR configuration.
  • the RRC layer first transmits down the RRC connection re-establishment completion signaling, and then transmits the RRC connection reconfiguration completion signaling.
  • the data link layer finally sends the following messages using the uplink resources granted in the scheduling indication message: RLC response message, RRC connection reestablishment complete message and RRC connection reconfiguration complete message.
  • the terminal sends the RLC response message using the uplink resources of the random access application, and starts the random access procedure again, and the authorized uplink resources are used to send the RRC connection re-establishment completed. message, and finally use the uplink grant in the scheduling indication message to send the RRC connection reconfiguration complete message.
  • step 1003 is not a necessary step, but is only one of possible situations.
  • the terminal After receiving the RRC connection reconfiguration message, the terminal immediately interrupts the random access process, including but not limited to suspending the generation of the random access preamble, stopping the sending of the random access preamble, discarding the random access response, etc. The behavior occurs at the data link layer and the physical layer. Subsequently, the terminal validates the uplink resource grant in the scheduling instruction message, and sends an RLC response message, an RRC connection reestablishment complete message, and an RRC connection reconfiguration complete message.
  • the terminal does not guarantee the integrity of the random access process, so that it can be interrupted, thereby efficiently integrating and sending the above three messages. Since the single TB uplink resource authorization obtained through random access is determined by the base station, the content size it can carry is not as good as the uplink resource authorization obtained by the scheduling request, which allows multiple TB uploads and is efficient, so the latter is more suitable for the RRC reconstruction process.
  • the coordinated sending of the above three messages The terminal responds to the RRC connection reconfiguration message in a timely manner, interrupts the ongoing random access process, and takes effect of the SR configuration in the RRC connection reconfiguration message, which makes the transmission of the above three messages more efficient and reduces the delay of wireless link reconstruction.
  • the communication apparatus 1100 includes a processing unit 1110 and a transceiver unit 1120 .
  • the wireless communication device is used to implement each step of the corresponding terminal in the foregoing embodiments:
  • the processing unit 1110 is used to control the transceiver unit 1120 .
  • the transceiver unit 1120 is configured to send an RRC connection re-establishment request message, where the RRC connection re-establishment request message is used to request to re-establish an RRC connection; and receive an RRC connection re-establishment message from the base station, where the RRC connection re-establishment message is used to respond to the RRC connection Reestablishment request message; receive an RRC connection reconfiguration message from the base station, wherein the RRC connection reconfiguration message carries the resource indication information of the scheduling request; receive scheduling indication information from the base station, the scheduling indication information Used to authorize uplink resources; send RLC response message, RRC connection reestablishment complete message and RRC connection reconfiguration complete message.
  • the RLC response message is used to confirm the reception of the RRC connection re-establishment message
  • the RRC connection re-establishment complete message is used to confirm the completion of the RRC connection re-establishment
  • the RRC connection re-configuration complete message is used to confirm the RRC connection re-configuration of completion.
  • the processing unit 1110 is further configured to suspend the sending of the random access preamble by the transceiver unit 1120 after receiving the RRC connection reestablishment message. Wherein, the RRC connection reconfiguration message has been received during the suspension of sending the random access preamble to the base station.
  • the processing unit 1110 is configured to configure the time period for which the transceiver unit 1120 suspends sending the random access preamble.
  • the duration configured by the processing unit 1110 to suspend sending the random access preamble includes any one of the following: one transmission time interval TTI, two TTIs, or three TTIs.
  • the transceiver unit 1120 is further configured to send a random access preamble after receiving the RRC connection reestablishment message. Wherein, before receiving the response message of the random access preamble, the RRC connection reconfiguration message has been received.
  • the processing unit 1110 is further configured to terminate the subsequent process of the random access preamble in advance after the transceiver unit 1120 receives the RRC connection reconfiguration message.
  • the transceiver unit 1120 may also be divided into a receiving unit and a transmitting unit, each of which has the functions of receiving and transmitting, which is not limited here.
  • the above-mentioned communication device may further include a storage unit, which is used to store data or instructions (also referred to as codes or programs), and each of the above-mentioned units may interact or be coupled with the storage unit to implement corresponding methods or functions.
  • the coupling in the embodiments of the present application refers to indirect coupling or communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the division of units in the communication device is only a division of logical functions, and in actual implementation, all or part of them may be integrated into one physical entity, or may be physically separated.
  • the units in the communication device can all be implemented in the form of software calling through the processing element; also all can be implemented in the form of hardware; some units can also be implemented in the form of software calling through the processing element, and some units can be implemented in the form of hardware.
  • each unit may be a separately established processing element, or may be integrated in a certain chip of the communication device to realize, in addition, it may also be stored in the memory in the form of a program, which can be called and executed by a certain processing element of the communication device. function of the unit.
  • each step of the above method or each of the above units may be implemented by an integrated logic circuit of hardware in the processor element or implemented in the form of software being invoked by the processing element.
  • a unit in any of the above communication devices may be one or more integrated circuits configured to implement the above method, such as: one or more application specific integrated circuits (ASICs), or, an or multiple microprocessors (digital singnal processors, DSP), or, one or more field programmable gate arrays (FPGA), or a combination of at least two of these integrated circuit forms.
  • ASICs application specific integrated circuits
  • DSP digital singnal processors
  • FPGA field programmable gate arrays
  • a unit in the communication device can be implemented in the form of a processing element scheduler
  • the processing element can be a general-purpose processor, such as a central processing unit (CPU) or other processors that can invoke programs.
  • CPU central processing unit
  • these units can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • the wireless communication device may be a wireless communication device or a network device, or a chip or a circuit, such as a chip or a circuit that may be provided in the wireless communication device.
  • a circuit for example, a chip or a circuit that can be set in a network device, is used to implement the methods in the above method embodiments.
  • the communication apparatus 1200 includes: a processor 1210 and a transceiver 1230 , and optionally, the communication apparatus 1200 further includes a memory 1220 , which is indicated by a dotted box in the figure as optional.
  • the transceiver 1230 is used to enable communication with other devices.
  • the communication apparatus 1200 may further include a bus system, wherein the processor 1210, the memory 1220, and the transceiver 1230 may be connected through the bus system.
  • the above-mentioned processor 1210 may be a chip.
  • the processor 1302 may be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), a system on chip (SoC), or a system on chip (SoC). It can be a central processing unit (CPU), a network processor (NP), a digital signal processing circuit (DSP), or a microcontroller (microcontroller). unit, MCU), it can also be a programmable logic device (PLD) or other integrated chips.
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • SoC system on chip
  • SoC system on chip
  • SoC system on chip
  • MCU microcontroller
  • MCU programmable logic device
  • PLD programmable logic device
  • each step of the above-mentioned method may be completed by an integrated logic circuit of hardware in the processor 1210 or an instruction in the form of software.
  • the steps of the methods disclosed in combination with the embodiments of the present application may be directly embodied as being executed by a hardware processor, or executed by a combination of hardware and software modules in the processor 1210 .
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory 1220, and the processor 1210 reads the information in the memory 1220, and completes the steps of the above method in combination with its hardware.
  • the function/implementation process of the transceiver unit 1120 in FIG. 11 can be implemented by the processor 1210 in the communication apparatus 1200 shown in FIG. 12 calling the computer-executable instructions stored in the memory 1220 .
  • the function/implementation process of the transceiving unit 1120 in FIG. 11 may be implemented by the transceiver 1230 in the communication apparatus 1200 shown in FIG. 12 .
  • processor 1210 in this embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above method embodiments may be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the aforementioned processors may be general purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components .
  • DSPs digital signal processors
  • ASICs application specific integrated circuits
  • FPGAs field programmable gate arrays
  • the methods, steps, and logic block diagrams disclosed in the embodiments of this application can be implemented or executed.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory 1220 may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically programmable Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM), which acts as an external cache.
  • RAM random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous DRAM
  • SDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous link dynamic random access memory
  • direct rambus RAM direct rambus RAM
  • the communication apparatus may include a processor 1210 , a transceiver 1230 and a memory 1220 .
  • the memory 1220 is used for storing instructions
  • the processor 1210 is used for executing the instructions stored in the memory 1220, which can implement the execution by the wireless communication device in any one or any of the corresponding methods shown in FIG. 8 to FIG. 9 above. A step of. .
  • At least one item (single, species) of a, b, or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c can be single or multiple.
  • “Plurality" means two or more, and other quantifiers are similar.
  • the size of the sequence numbers of the above-mentioned processes does not mean the sequence of execution, and the execution sequence of each process should be determined by its functions and internal logic, and should not be dealt with in the embodiments of the present application. implementation constitutes any limitation.
  • the technical solutions provided in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented in software, it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, a terminal device, a network device, an artificial intelligence device, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server, or data center Transmission to another website site, computer, server, or data center is by wire (eg, coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that a computer can access, or a data storage device such as a server, a data center, or the like that includes an integration of one or more available media.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVDs), or semiconductor media (eg, solid state disks (SSDs)), and the like.
  • various embodiments may refer to each other.
  • methods and/or terms between method embodiments may refer to each other.
  • functions and/or terms between device embodiments may refer to each other.
  • device embodiments may refer to each other.
  • Functional and/or terminology between embodiments and method embodiments may refer to each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种无线链路的重建方法及装置。方法包括:终端设备向基站发送无线资源控制RRC连接重建请求消息;接收来自基站的RRC连接重建消息,RRC连接重建消息用于响应所述RRC连接重建请求消息;接收来自基站的RRC连接重配置消息,RRC连接重配置消息中携带了调度请求的资源指示信息;根据资源指示信息向基站发送调度请求,并接收调度指示消息,调度指示消息用于授权上行资源;采用所述授权上行资源向基站发送无线链路控制RLC应答消息、RRC连接重建完成消息和RRC连接重配置完成消息;其中,RLC应答消息用于确认RRC连接重建消息的接收,RRC连接重建完成消息用于确认RRC连接重建的完成,RRC连接重配置完成消息用于确认RRC连接重配置的完成。

Description

一种无线链路的重建方法和装置 技术领域
本申请实施例涉及无线通信技术领域,尤其涉及一种无线链路的重建方法和装置。
背景技术
如今移动无线通信的网络环境依旧具有复杂多变、抗干扰性差等不利因素。现有技术中,无线链路的重建耗时长,不利于业务的快速回复。
以第5代(5th generation,5G)移动通信技术网络为例,终端需向基站发起3次随机接入申请,用于获取上行资源,从而依次向基站发送无线资源控制(radio resource control,RRC)连接重建请求,RRC连接完成消息以及无线链路控制(radio link control,RLC)应答消息。之后,终端接收基站发送的RRC连接重配置消息,通过所述RRC连接重配置消息携带的调度请求配置获取上行资源,向基站发送RRC连接重配置完成消息。至此,无线链路的重建完成。
基于竞争的随机接入适用于低密集度的上行资源的请求情况。而在现有技术中,终端为重建无线链路需连续发起多次随机接入申请,导致无线链路的重建耗时长,有损用户的通信体验,同时加重网络侧负载以及终端的功耗。
随着无线通信业务与应用环境的多元化发展,网络环境会变得更具有挑战性,因此有必要研究如何降低无线链路的恢复时延,提升用户的通信体验。
发明内容
本申请实施例提供一种无线链路的重建方法和装置,用以加快无线链路恢复的速度,从而保证用户业务质量与通信体验。
第一方面,本申请实施例提供一种无线链路的重建方法,该方法可由终端或用于终端的芯片来执行,该方法包括:向基站发送无线资源控制RRC连接重建请求消息,所述RRC连接重建请求消息用于请求重建RRC连接;接收来自所述基站的RRC连接重建消息,所述RRC连接重建消息用于响应所述RRC连接重建请求消息;接收来自所述基站的RRC连接重配置消息,其中,所述RRC连接重配置消息中携带了调度请求的资源指示信息;根据所述资源指示信息向基站发送调度请求,并接收来自所述基站的调度指示消息,所述调度指示消息用于授权上行资源;采用所述授权上行资源向所述基站发送无线链路控制RLC应答消息、RRC连接重建完成消息和RRC连接重配置完成消息;其中,所述RLC应答消息用于确认所述RRC连接重建消息的接收,所述RRC连接重建完成消息用于确认RRC连接重建的完成,所述RRC连接重配置完成消息用于确认RRC连接重配置的完成。
基于上述的方案,终端高效地利用了RRC连接重配置消息携带的调度请求的资源指示信息,通过向基站发送调度请求来获取上行资源授权。因此,终端可以在该上行资源上发送RLC应答消息、RRC连接重建完成消息和RRC连接重配置完成消息。相较于现有技术,采用上述方案有利于无线链路的快速重建,减轻网络侧的负载,有利于提升用户的业务体验。
现有技术中,RLC应答消息与RRC连接重建完成消息是通过随机接入的方式进行上行传输,耗时长且低效,因此减少随机接入的次数是非常有效的方法。本申请实施例提供以下不同的减少随机接入的次数的方法,包括但不限于:
作为第一种可能的实现方法,在接收到所述RRC连接重建消息之后,暂停向所述基站发送随机接入前导;其中,在暂停向所述基站发送随机接入前导的期间,所述RRC连接重配置消息已被接收。
比如配置暂停向所述基站发送随机接入前导的时长,使其可调整,也可使前述暂停发送随机接入前导的时长包括以下任意一种:一个传输时间间隔TTI,两个TTI,或三个TTI,或者其他的TTI。该时长可被称为等待时间T,如此,可以通过合理设置等待时间T,及时生效所述RRC连接重配置消息中的调度请求指示的资源信息,从而获取上行资源用于发送RLC应答消息、RRC连接重建完成消息和RRC连接重配置完成消息。
作为第二种可能实现的方法,在接收到所述RRC连接重建消息之后,向所述基站发送随机接入前导;其中,在接收到所述随机接入前导的响应消息之前,所述RRC连接重配置消息已被接收。
基于上述方案,在接收到所述RRC连接重配置消息之后,提前终止所述随机接入前导的后续流程。如此可以通过中断随机接入流程,及时生效所述RRC连接重配置消息中的调度请求指示的资源信息,高效发送RLC应答消息、RRC连接重建完成消息和RRC连接重配置完成消息。
第二方面,本申请实施例提供一种无线通信装置,包括处理单元和收发单元,其中,所述处理单元用于控制所述收发单元,以实现上述第一方面的方法或其任一可能的实现方法。
第三方面,本申请实施例提供一种无线通信装置,该装置可以是终端,还可以是用于终端的芯片。该装置具有实现上述第一方面的方法或其任一可能的实现方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第四方面,本申请实施例提供一种无线通信装置,包括处理器和存储器;该存储器用于存储计算机执行指令,当该通信装置运行时,该处理器执行该存储器存储的该计算机执行指令,以实现上述第一方面的方法或其任一可能的实现方法。
第五方面,本申请实施例提供一种无线通信装置,包括处理电路和接口电路,所述接口电路用于与所述无线通信装置外部的存储器耦合,并为所述处理电路访问所述存储器提供通信接口;所述处理电路用于执行所述存储器中的程序指令,以实现上述第一方面的方法或其任一可能的实现方法。
第六方面,本申请实施例提供一种无线通信装置,用于执行上述第一方面的方法或其任一可能的实现方法的各个步骤的单元或手段。
第七方面,本申请实施例中还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有指令,当所述指令在计算机上运行时,以实现第一方面的方法或其任一可能的实现方法。
第八方面,本申请实施例中还提供一种包含指令的计算机程序产品,当其在计算机上运行时,以实现第一方面的方法或其任一可能的实现方法。
应理解,本申请实施例提供的方案中,无线通信装置可以是无线通信设备,也可以是无线通信设备中的部分器件,如系统芯片或通信芯片等集成电路产品。无线通信设备可以是支持无线通信功能的计算机设备。
具体地,无线通信设备可以是诸如智能手机这样的终端。系统芯片也可称为片上系统(system on chip,SoC),或简称为SoC芯片。通信芯片可包括基带处理芯片和射频处理芯片。基带处理芯片有时也被称为调制解调器(modem)或基带芯片。射频处理芯片有时也被称为 射频收发机(transceiver)或射频芯片。在物理实现中,通信芯片中的部分芯片或者全部芯片可集成在SoC芯片内部。例如,基带处理芯片集成在SoC芯片中,射频处理芯片不与SoC芯片集成。
附图说明
图1为本申请实施例提供的一种无线通信系统的结构示意图;
图2为本申请实施例提供的一种控制面无线协议架构的示意图;
图3为本申请实施例提供的一种控制面协议下数据链路层各层协议实体的操作示意图;
图4为本申请实施例提供的一种无线通信系统的不同信道间的映射示意图;
图5为本申请实施例提供的一种基于竞争的随机接入流程示意图;
图6为本申请实施例提供的一种RRC状态转换流程示意图;
图7为现有技术中的无线链路重建方法的通信流程示意图;
图8为本申请实施例提供的一种无线链路重建方法的通信流程示意图;
图9为本申请实施例提供的另一种无线链路重建方法的通信流程示意图;
图10为本申请实施例提供的又一种无线链路重建方法的通信流程示意图;
图11为本申请实施例提供的一种无线通信装置的示意性框图;
图12为本申请实施例提供的一种无线通信装置的结构示意图。
应理解,上述结构示意图中,各框图的尺寸和形态仅供参考,不应构成对本申请实施例的排他性的解读。结构示意图所呈现的各框图间的相对位置和包含关系,仅为示意性地表示各框图间的结构关联,而非限制本申请实施例的物理连接方式。
具体实施方式
下面结合附图并举实施例,对本申请提供的技术方案作进一步说明。应理解,本申请实施例中提供的系统结构和业务场景主要是为了解释本申请的技术方案的一些可能的实施方式,不应被解读为对本申请的技术方案的唯一性限定。本领域普通技术人员可以知晓,随着系统的演进,以及更新的业务场景的出现,本申请提供的技术方案对于相同或类似的技术问题仍然可以适用。
应理解,本申请实施例提供的技术方案,包括无线链路的重建方法及其相关装置。这些技术方案解决问题的原理相同或相似,在以下具体实施例的介绍中,某些重复之处可能不再赘述,但应视为这些具体实施例之间已有相互引用,可以相互结合。
无线通信系统中,设备可分为提供无线网络服务的设备和使用无线网络服务的设备。提供无线网络服务的设备是指那些组成无线通信网络的设备,可简称为网络设备(network equipment),或网络单元(network element)。网络设备通常归属于运营商(如中国移动和Vodafone)或基础设施提供商(如铁塔公司),并由这些厂商负责运营或维护。网络设备还可进一步分为无线接入网(radio access network,RAN)设备以及核心网(core network,CN)设备。典型的RAN设备包括基站(base station,BS)。
应理解,基站有时也可以被称为无线接入点(access point,AP),或发送接收点(transmission reception point,TRP)。具体地,基站可以是5G新无线电(new radio,NR) 系统中的通用节点B(generation Node B,gNB),4G长期演进(long term evolution,LTE)系统的演进节点B(evolutional Node B,eNB)。
使用无线网络服务的设备通常位于网络的边缘,可简称为终端(terminal)。终端能够与网络设备建立连接,并基于网络设备的服务为用户提供具体的无线通信业务。应理解,由于终端与用户的关系更加紧密,有时也被称为用户设备(user equipment,UE),或订户单元(subscriber unit,SU)。此外,相对于通常在固定地点放置的基站,终端往往随着用户一起移动,有时也被称为移动台(mobile station,MS)。此外,有些网络设备,例如中继节点(relay node,RN)或者无线路由器等,由于具备UE身份,或者归属于用户,有时也可被认为是终端。
具体地,终端可以是移动电话(mobile phone),平板电脑(tablet computer),膝上型电脑(laptop computer),可穿戴设备(比如智能手表,智能手环,智能头盔,智能眼镜),以及其他具备无线接入能力的设备,如智能汽车,各种物联网(internet of thing,IOT)设备,包括各种智能家居设备(比如智能电表和智能家电)以及智能城市设备(比如安防或监控设备,智能道路交通设施)等。
为了便于表述,本申请中将以基站和终端为例,详细说明本申请实施例的技术方案。
图1为本申请实施例提供的一种无线通信系统的结构示意图。如图1所示,无线通信系统包括终端和基站。按照传输方向的不同,从终端到基站的传输链路记为上行链路(uplink,UL),从基站到终端的传输链路记为下行链路(downlink,DL)。相类似地,上行链路中的数据传输可简记为上行数据传输或上行传输,下行链路中的数据传输可简记为下行数据传输或下行传输。
该无线通信系统中,基站可通过集成或外接的天线设备,为特定地理区域提供通信覆盖。位于基站的通信覆盖范围内的一个或多个终端,均可以接入基站。一个基站可以管理一个或多个小区(cell)。每个小区具有一个身份证明(identification),该身份证明也被称为小区标识(cell identity,cell ID)。从无线资源的角度看,一个小区是下行无线资源,以及与其配对的上行无线资源(非必需)的组合。
应理解,该无线通信系统可以遵从3GPP的无线通信标准,也可以遵从其他无线通信标准,例如电气电子工程师学会(Institute of Electrical and Electronics Engineers,IEEE)的802系列(如802.11,802.15,或者802.20)的无线通信标准。图1中虽然仅示出了一个基站和一个终端,该无线通信系统也可包括其他数目的终端和基站。此外,该无线通信系统还可包括其他的网络设备,比如核心网设备。
终端和基站应知晓该无线通信系统预定义的配置,包括系统支持的无线电接入技术(radio access technology,RAT),以及系统规定的无线资源,比如无线电频段及载波。载波是符合系统规定的一段频率范围。这段频率范围可由载波的中心频率(记为载频)和载波的带宽共同确定。这些系统预定义的配置可作为无线通信系统的标准协议的一部分,或者通过终端和基站间的交互确定。无线通信系统的标准协议的内容,可能会预先存储在终端和基站的存储器中,和/或,体现为终端和基站的硬件电路或软件代码。
该无线通信系统中,终端和基站支持一种或多种相同的RAT,例如5G NR,4G LTE,或未来演进系统的RAT。具体地,终端和基站采用相同的空口参数、编码方案和调制方案等,并基于系统规定的无线资源相互通信。其中,空口参数是用于描述空口特征的参数。在英文中,空口参数有时也被称为numerology。空口参数可包括子载波间隔(subcarrier spacing,SC), 也可包括循环前缀(cyclic prefix,CP)。该无线通信系统可支持多种不同空口参数,这些空口参数可作为标准协议的一部分。
终端和基站之间的传输可遵循相关标准组织定义的无线协议。图2为本申请实施例提供的一种控制面无线协议架构的示意图。该无线协议架构可对应3GPP的无线协议架构。NR无线协议栈分为两个平面:用户面和控制面。用户面(User Plane,UP)协议栈即用户数据传输采用的协议簇,控制面(Control Plane,CP)协议栈即系统的控制信令传输采用的协议簇。其中,用户面协议主要负责与用户数据传输相关的功能,控制面协议主要负责连接建立,移动性管理和安全性管理等功能。
如图2所示,该无线协议架构对应于控制面协议,从底层协议到高层协议,构成协议栈,共分为三层,分别为第一层(layer 1),第二层(layer 2)和第三层(layer 3)。终端和基站内部分别设置了该无线协议架构中各层协议的实体,每层协议的实体与高层交换(包括从其接收以及向其发送)业务数据单元(service data unit,SDU),与低层交换协议数据单元(protocol data unit,PDU)。
其中,Layer 1也称物理层,包含物理(physical,PHY)层协议,控制面协议栈以其为底层协议。PHY协议可用于执行编码/解码,调制/解调,多天线映射,信号到时频资源的映射,以及其他典型的物理层功能。PHY协议向高层(即layer 2)协议提供传输信道的服务,并负责处理传输信道到物理信道的映射。
Layer 2指数据链路层,依次包括:媒体接入控制(media access control,MAC)协议,无线链路控制(radio link control,RLC)协议,分组数据汇聚协议(packet data convergence protocol,PDCP)。
MAC协议可用于执行逻辑信道复用,混合自动重传请求(hybrid automatic repeat request,HARQ),调度及调度相关功能。MAC协议向高层协议(如RLC协议)提供逻辑信道的服务,并负责逻辑信道到传输信道的映射。
RLC协议可用于执行RLC数据的分组(segementation)和重传处理。RLC协议可向上层协议(如PDCP协议)提供RLC信道的服务。终端中,每个RLC信道(以及每个无线承载)可对应一个RLC实体。一个RLC实体可以配置成三种模式,分别是:透明模式(transparent mode,TM),非确认模式(unacknowledged mode,UM)和确认模式(acknowledged mode,AM)。根据被配置的数据传输模式,RLC实体可被分为TM RLC实体,UM RLC实体和AM RLC实体。TM模式下只提供数据的透传功能,即只负责将传输的内容发送至目的地址,而不对数据内容做任何改变。UM模式下,协议提供除重传和重分段外的所有RLC功能,是一种不可靠的传输服务。AM模式提供了所有的RLC功能,通过出错监测和重传确保可靠的传输服务。对于AM模式的数据,接收端的RLC层需发送应答消息(acknowlegement,ACK)或否定应答消息(negative acknowlegement,NACK),用以确认信息接收的成功与否,上述消息由RLC层实体的状态PDU携带。
PDCP协议可用于执行互联网协议(internet protocol,IP)包头压缩,加密和完整性保护等功能。此外,PDPC协议还可用于PDCP数据的序列编号(sequence numbering)以及按序递交(in-order delivery)等功能。PDCP协议可向上层协议(即layer 3)提供无线承载(radio bearer,RB)的服务。终端中,每个RB可对应一个PDCP实体。其中,RB又分为信令无线承载(signalling radio bearer,SRB)和数据无线承载(data radio bearer,DRB),前者承载控制面信令数据,后者承载用户面数据。
Layer 3,即网络层,在控制面协议中包括:无线资源控制(radio resource control,RRC)协议和非接入层(non-access stratum,NAS)协议。
NAS协议可用于执行如鉴权(authentiacation),移动性管理(mobility management),安全控制(security control)等功能。
RRC协议可用于执行系统消息广播,寻呼消息发送,RRC连接管理,小区选择和重选,测量配置和上报等功能,通过控制面信令的传输实现此功能。其在数据链路层被封装为控制面消息,所述控制面消息包含相应的控制面信令。RRC层的控制信令消息使用SRB来传输,在NR中共定义了多种SRB,主要有SRB0,SRB1,SRB2和SRB3。SRB0是默认建立的无线承载,没有完整性保护和加密处理。SRB1用于发送RRC消息,用于指示RRC连接的状态和变化,如空口节点配置、链路切换等,并在SRB2建立之前,用于发送NAS消息。SRB2在AS安全性被激活之后配置,用于发送包含记录的测量信息在内的RRC消息,以及NAS消息,可以分流SRB1的信令负荷。SRB3用于承载特定RRC信令。
图3为本申请实施例提供的一种控制面协议下,数据链路层各层协议实体的操作示意图。当RRC层向下传递控制信令,此控制信令相对PDCP层为一个PDCP SDU。通过相应RB的PDCP实体,该PDCP SDU被加密等,作为PDCP PDU向下递交到关联的RLC实体。此PDCP PDU相对RLC层为一个RLC SDU,RLC实体对其进行分段等操作,最终输出一个或多个RLC PDU。上述一个或多个RLC PDU相对MAC层为一个或多个MAC SDU。根据上行资源指示的传输限制,这些MAC SDU被复用进一个或多个MAC PDU,等待向基站的传输机会。其中,各层在对各自SDU作处理时,还会加上信息头,用于指示各层相关参数信息。
图4为本申请实施例提供的一种无线通信系统的不同信道间的映射示意图。如图4所示,无线通信系统的信道可包括逻辑信道,传输信道,以及物理信道。逻辑信道是RLC层和MAC层之间的信道,传输信道是MAC层和PHY层之间的信道,吴立新到是PHY层实际传输信息的信道。逻辑信道被映射到对应的传输信道,传输信道又被映射到对应的物理信道。
逻辑信道是由信道所承载的信息的类型来定义的,通常分为控制信道和数据信道。其中,控制信道承载的是无线通信系统工作所需的控制和配置信息,对应控制面协议栈,数据信道对应于数据面协议栈、承载的是用户数据。具体地,逻辑信道可包括广播控制信道(broadcast control channel,BCCH),寻呼控制信道(paging control channel,PCCH),公共控制信道(common control channel,CCCH),专用控制信道(dedicated control channel,DCCH),以及专用数据信道(dedicated traffic channel,DTCH)。其中,SRB0使用CCCH进行传输,SRB1、SRB2和SRB3使用DCCH。
传输信道定义了在空中接口上数据传输的方式和特性。传输信道中的数据可被复用成一个传输块(transport block,TB),并在一个发送时间间隔(transmission time interval,TTI)内被发送。传输信道可包括广播信道(broadcast channel,BCH),寻呼信道(paging channel,PCH),下行共享信道(downlink shared channel,DL-SCH),以及上行共享信道(uplink shared channel,UL-SCH)。此外,随机接入信道(random access channel,RACH)也被定义为传输信道,虽然它并不携带传输块。其中,SRB大部分通过共享信道(shared channel,SCH)进行传输。
物理信道对应于一组用于承载控制信道的时频资源,这些时频资源可以参考图4所示的时频资源网格。物理信道可包括物理下行共享信道(physical downlink shared channel,PDSCH),物理广播信道(physical broadcast channel,PBCH),物理下行控制信道(physical  downlink control channel,PDCCH),物理上行共享信道(physical uplink shared channel,PUSCH),物理上行控制信道(physical uplink control channel,PUCCH)。其中,PDCCH和PUCCH没有对应的控制信道,分别用于承载下行控制信息(downlink control information,DCI)和上行控制信息(uplink control information,UCI)。DCI或UCI提供的是下行数据传输和上行数据传输所需的配置信息。
以UCI为例,UCI有多种预定义的格式,这些预定义的格式会包含一些给定的信息元素(information element,IE)。信息元素可理解为UCI的给定字段,该字段的取值范围以及每种取值的含义均可由系统预先定义。UCI携带的信息中,有一类记为调度请求(scheduling request,SR),用于向基站请求接入、并上传数据。UCI可携带SR的前提条件是,基站已为终端侧配置有SR配置PUCCH,该SR配置是周期性的,且为该终端专用。因此,调度请求的流程如下:终端接收基站传输的SR配置;终端在PUCCH上发送SR,用以告知基站有数据待上传;终端接收调度指示消息,所述调度指示消息通过PDCCH进行下行传输,其包含所述基站的上行资源PUSCH的具体授权信息,用于指示上行数据传输的资源位置,传输格式,多天线配置,以及功率控制等;终端将待发消息进行上行传输;终端接收混合自动重传请求HARQ反馈确认消息,所述HARQ反馈确认消息用以确认所述待发消息的成功发送。从上述流程可知,由于SR配置为终端专属,加快了终端接入基站的速度,从而快速获取上行授权资源,使上行传输非常高效。
随机接入是另一种终端向基站请求接入、收到基站响应并分配接入信道的过程,数据的上行传输一般在随机接入成功之后进行。随机接入一般分为基于竞争的随机接入流程和基于非竞争的随机接入流程,其最大差别在于,前者的接入前导的分配是由终端产生的,因此相较后者多了竞争和冲突解决的过程。在无线链路的重建过程中,随机接入都是基于竞争的随机接入流程。
图5为本申请实施例提供的一种基于竞争的随机接入流程示意图。图中虚框为终端可以采取的不同操作,虚线代表可能发生、但并非一个完整的随机接入流程必要的步骤,具体如下:
步骤501、终端发送随机接入前导,所述随机接入前导用于获取上行资源授权。
由于随机接入是基于竞争接入的,基站在同一时间内可以接收到多个终端发送的随机接入前导,其并不对所有接收到的随机接入前导进行响应。因此,终端启动退避窗口(backoff),并监视在此退避窗口内基站的回馈(即随机接入响应,所述随机接入响应对应于前述随机接入前导),进行下述操作:
步骤502a、基站无回馈或发送的随机接入响应有误,终端再次向基站进行新的随机接入前导的发送尝试,直至尝试次数届满,或接收到正确的随机接入响应。
步骤502b、终端接收来自所述基站的正确的随机接入响应,所述随机接入响应携带有上行资源的配置要求信息和上行TB的大小信息。
步骤503、终端上行传输一个TB,记为Msg 3;所述TB大小符合所述随机接入响应中上行TB的大小信息。
由于网络存在不稳定性,Msg 3的传输可能失败,因此终端根据基站回馈(即竞争解决消息,所述竞争解决消息应对应于前述Msg 3),采取下述操作:
步骤504a、基站无回馈或发送的竞争解决消息有误,终端基于配置的方式进行Msg 3的重传,直至最大重传次数;若还未接收到竞争解决消息,则重新发起随机接入流程。
步骤504b、终端接收来自所述基站的正确的竞争解决消息,所述竞争解决消息用于指示Msg 3的发送成功,以及随机接入流程的结束。
其中,在本申请实施例中,所述Msg 3指代的有RRC连接重建请求,RRC连接重建完成消息以及RLC应答消息;由于所述Msg 3的大小由基站指定,其内容为终端需要上传的信息的完整内容或部分内容;若所述Msg 3携带的是部分内容,则终端在此次随机接入流程结束后,再次发起新的随机接入流程,直至需要传输的信息发送完毕。
由此可知,随机接入的时延具有不确定性,且如果需要上传的信息内容大小超过随机接入响应中的限制,终端需启动第二次随机接入流程。因此,通过随机接入所达成的上行传输具有时延长、不确定性以及低效的特点。
图6为本申请实施例提供的一种RRC状态转换流程示意图。如图6所示,终端和基站可进入不同的NR RRC协议状态,状态包括:空闲态(RRC_IDLE),连接态(RRC_CONNECTED)和非激活态(RRC_INACTIVE),原因可包括移动性改变或者业务触发等
以UE为例,当终端处于NR RRC_IDLE态时,监听所在gNB的广播消息。当场景变化,如注册或业务触发等,终端与基站建立链路,从NR RRC_IDLE态转入NR RRC_CONNECTED态,该连接释放后可转回NR RRC_IDLE态。当终端处于NR RRC_CONNECTED态时,由于暂时没有业务等场景,连接挂起进入NR RRC_INACTIVE状态,业务触发后连接恢复进入NR RRC_CONNECTED状态。当终端处于NR RRC_INACTIVE状态,连接释放进入NR RRC_IDLE状态。
由上述描述可知,当终端开始业务通信时,将进入RRC_CONNECTED态。这需要建立RRC的通信连接,并通过配置接入层(access stratum,AS)安全性保障通信的完整与保密。AS安全性包括对RRC SRB的完整性保护,以及SRB与承载数据的DRB的加密,其实现方法有安全上下文(security context)。安全上下文是网络为终端建立的临时状态信息,其中包括密钥信息和数据承载信息,目的是减少终端在不同状态之间切换时与网络进行相互认证的资源消耗,方便终端快速进入连接状态,并安全通信。AS安全性若未被激活,则原RRC连接与相关配置被删除,并建立新的RRC连接。
综上所述,建立RRC连接包括建立SRB1,AS安全性的激活以及建立SRB2和DRB。
当终端处于RRC_CONNECTED态时,其与基站间的RRC连接并不是稳定的。由于环境的不稳定性,诸如:发生链路切换失败、链路下行信道高概率误码、链路上行信道发送困难、终端与网络侧参数配置和安全信息理解不一致等,无线链路会失效。具体的失效原因有:1).无线链路重配失败,包括同步失败和配置出错;2).小区切换失败;3).其他原因。
此时,终端会搜索选择信号更优的小区发起连接恢复,尝试重新恢复无线链路,使得用户数据或者语音业务不中断。该通信过程即无线链路的重建,通过重建RRC连接从而恢复用户业务,其过程包括:恢复及更新RB配置以及重新激活及更新AS安全性。
如图7所示,为现有技术中无线链路重建方法的流程示意图,虚线框代表随机接入流程,其中Msg 3的消息内容即该虚线框中箭头上的消息。链路重建流程包括以下步骤:
步骤701、终端发起随机接入流程,用于上行传输RRC连接重建请求(Re-establishment Request)消息。
终端从存储的安全上下文中恢复原RRC配置和安全上下文,恢复终端侧的SRB1。之后向基站发送RRC连接重建请求消息,由SRB0承载。所述RRC连接重建请求消息携带无线 链路失效原因信息和终端身份信息。其中,无线链路失效原因信息用于基站侧生成相应的RRC连接重建消息,终端身份信息被用于基站侧进行安全上下文检索。
基站据此恢复原RRC配置与AS安全性,并重建基站侧SRB1资源,从而对后续的上下行消息提供完整性与加密性保护。随后,基站向终端下行传输RRC连接重建消息,恢复基站侧DRB和SRB2资源,发送RRC连接重配置消息,先后顺序如所述。
步骤702、终端接收RRC连接重建(Re-establishment)消息,所述RRC连接重建消息携带的信息用以指示更新AS安全性密钥;其中,所述AS安全性密钥包括PDCP层的加解密密钥。
由于所述RRC连接重建消息为RLC层的AM数据,需要终端侧的数据链路层反馈RLC应答消息(ACK),否则基站将重发RRC连接重建消息。
步骤703、终端启动一次完整的随机接入流程,用于发送RLC应答消息,所述RLC应答消息用以指示RRC连接重建消息的成功接收。
步骤704、终端启动一次完整的随机接入流程,用于发送RRC连接重建完成(Re-establishment Complete)消息,所述RRC连接重建完成消息用以确认RRC连接重建的成功完成;
其中,所述RRC连接重建完成消息在SRB1上进行传输,在PDCP层进行完整性和加密保护,在RLC层映射给AM RLC实体进行分段处理,最后在MAC层复用后被封入TB中交由物理层进行上行传输。
步骤705、终端接收RRC连接重配置(Reconfiguration)消息,所述RRC连接重配置消息携带用以修改RRC连接配置、恢复终端侧DRB和SRB2资源,以及SR配置;
其中,PDCP层根据前述更新后的解密密钥,可以对所述RRC连接重配置消息进行解密。
步骤706、终端根据所述SR配置指示的上行资源信息向基站发送调度请求。
步骤707、终端接收来自所述基站的调度指示消息,所述调度指示消息用于授权上行资源。
步骤708、终端在授权的上行资源上发送RRC连接重配置完成(Reconfiguration Complete)消息,所述RRC连接重配置完成消息用于确认RRC连接重新配置的成功完成。
至此,终端重建RRC无线链路的流程完成。此流程中,基站在接收RRC连接重建请求消息后,先后向终端传输RRC连接重建消息(步骤702)与RRC连接重配置消息(步骤705)。RRC连接重建信令在SRB1上进行发送,RRC连接重配置信令可以在SRB1或SRB3上进行发送。参照不同基站的配置与算法,RRC连接重建信令和RRC连接重配置信令可以被在较短时间内生成,先后顺序如所述,并向下层递送。根据RB的类型,上述两种信令都需要进行完整性和加密保护,因此会在PDCP层进行加密,并在RLC层由AM RLC实体封装为RLC SDU,之后作为一个或分段后作为多个RLC PDU(s)映射到下一层。MAC层收到上述MAC SDUs后,可以被复用入同一个MAC PDU,等待被PHY层传输。因此,RRC连接重建消息和RRC连接重配置消息可在一个TB中发送,也可以在相邻或不相邻的TB中发送,具体情形和基站配置相关。该两种情况都将在后续实施例中进行讨论。
根据上述流程可知,在所述的现有技术中,终端先后共发起3次随机接入流程,分别用于RRC Re-establishment Request,RLC ACK和RRC Re-establishment Complete消息的发送。而根据前述的随机接入流程介绍,其属于竞争接入,会增加终端无线链路的重建时延,不利于数据业务的快速恢复。同时,这也会加重网络侧负载,增加终端的功耗。
为解决上述问题,本申请实施例的总体思路如下:
在步骤705中,终端接收的RRC连接重配置消息,其携带的SR配置。此SR配置是周期性的、且为该终端专用,因此通过SR来获取上行资源授权是不需要进行竞争接入的,是迅速且高效的上行资源请求方式。因此减少不必要的随机接入流程,将上行传输的消息(在此指RLC应答消息、RRC连接重建完成消息和RRC连接重配置完成消息)通过调度指示消息获取的上行资源来合并发送,可以加速无线链路的重建、恢复网络。所述减少不必要的随机接入流程包括但不限于不发起随机接入流程和中断已发起的随机接入流程。
下面结合具体示例,对本申请实施例进行说明。其中,如前述,基站下行传输RRC连接重建消息和RRC连接重配置消息,其可在一个TB中,也可在相邻或不相邻的TB中,其情况分别在图8和图9中进行讨论。
如图8所示,为本申请实施例提供的一种终端重建无线链路的流程示意图,基站将RRC连接重建消息和RRC连接重配置消息在同一个传输块(TB)中下行发送给终端。虚线框代表随机接入流程,其中Msg 3的消息内容即该虚线框中箭头上的消息。此流程示意图包括以下步骤:
步骤801、终端启动一次完整的随机接入流程,用于向基站传输RRC连接重建请求消息。
步骤802、终端接收基站发送的TB,所述TB包括RRC连接重建消息和RRC连接重配置消息,其中所述RRC连接重配置消息携带SR配置信息。
步骤803、终端根据所述SR配置指示的上行资源信息向基站发送调度请求。
步骤804、终端接收来自所述基站的调度指示消息,所述调度指示消息用于授权上行资源。
步骤805、终端在授权的上行资源上发送RLC应答消息、RRC连接重建完成消息和RRC连接重配置完成消息;其中,所述RLC应答消息用以指示RRC连接重建消息的成功接收,所述RRC连接重建完成消息用以确认RRC连接重建的成功完成,所述RRC连接重配置完成消息用于确认RRC连接重新配置的成功完成。
当RRC连接重建消息和RRC连接重配置消息在同一个TB中时,终端的数据链路层将此TB进行处理,向上递送所述两个消息,顺序如所述。由于RRC连接重建消息为AM消息,终端应发送RLC应答消息,用以确认RRC连接重建消息的成功接收。但终端延后发送此RLC应答消息,实现方式包括在数据链路层进行控制,所控制的行为包括延后生成或发送所述RLC应答消息。
此外,由于基站生成信令有先后顺序,终端解复用出的消息应也遵循先后顺序:RRC连接重建消息在前,RRC连接重配置消息在后。因此,RRC层会先得到RRC连接重建信令。处理完此信令后,终端延后发送RRC连接重建完成消息,实现方式包括但不限于RRC层延后递交RRC连接重建完成的控制信令,数据链路层延后发送RRC连接重建完成消息;所述延后递交行为包括延后生成RRC连接重建完成信令。
随后的RRC连接重配置消息经由PDCP层解密后递交到RRC层,用于更新终端的SR配置,使终端可以借此向基站高效申请上行资源授权。同时,RRC层分别生成并向下层递送RRC连接重建完成信令和RRC连接重配置完成信令,先后顺序如所述。RLC层也生成RLC应答消息,其与前述两条信令一起等待传输。MAC层根据被授权的新的上行资源,向RLC层指定RLC PDU的总大小。RLC层根据此RLC PDU总大小对待发的两条信令进行分段处理,也即,一条信令可以对应复数个RLC PDU。这些RLC PDU被分别加上信息头,并复用入一 个或多个TB上传至基站。其中,多TB的传输情况下,终端不需要在此期间获取新的上行资源授权。
从上述流程可知,终端通过控制所述RLC应答消息与RRC重建完成消息的生成,使其与RRC重配置完成消息的发送共同使用一个上行资源授权,减少了向基站申请上行授权的总次数,尤其减去了终端发送RLC应答消息与RRC重建完成消息时、必须分别通过随机接入流程获取授权的次数,降低耗时,高效恢复无线链路连接。相较于现有技术,本申请实施例将需要上传的三个消息通过同一个上行资源授权发送,其中所述上行资源授权是通过现有的RRC重配置消息携带的SR配置进一步获取的。因此,本申请实施例简化了无线链路的重建流程,极大程度地节省了链路重建的耗时,减少对上行资源以及基站网络侧的占用。
图9所示的实施例为RRC连接重建消息和RRC连接重配置消息在不同的TB内发送的情况。基于前述原因,基站下行传输RRC连接重建消息与RRC连接重配置消息可以在不同TB内。在此,称包含有RRC连接重建消息的TB为第一TB,包含有RRC连接重配置消息的TB为第二TB。由于无线传输的环境具有不稳定性,以及基站发起重传的情况下,终端接收的TB顺序会发生错误,即第二TB可能会先于第一TB到达终端。应理解流程图中的步骤仅代表其中一种情况。虚线框代表随机接入流程,其中Msg 3的消息内容即该虚线框中箭头上的消息。具体步骤如下:
步骤901、终端启动一次完整的随机接入流程,用于发送RRC连接重建请求消息。
步骤902、终端接收RRC连接重建消息。
步骤903、终端接收RRC连接重配置消息,其中所述RRC连接重配置消息携带SR配置信息。
步骤904、终端根据所述SR配置指示的上行资源信息向基站发送调度请求。
步骤905、终端接收来自所述基站的调度指示消息,所述调度指示消息用于授权上行资源。
步骤906、终端在授权的上行资源上发送RLC应答消息、RRC连接重建完成消息和RRC连接重配置完成消息。
当第二TB早于第一TB被终端接收时,数据链路层解复用得到包含有RRC连接重配置信令的RLC SDU,但由于PDCP层向上递交的特性为按需递交,因此可以辨别所述信令先于RRC连接重建信令抵达。PDCP层缓存RRC连接重配置信令,等待RRC连接重建信令。此外,由于RRC连接重建信令携带AS密钥更新的指示信息,因此PDCP层的解密密钥未更新,也无法将此RRC连接重配置信令解密上交。因此,在终端侧,数据链路层递交给网络层的控制信令顺序一定为,先RRC连接重建信令,后RRC连接重配置信令。
如前述实施例,终端接收RRC连接重建消息后,终端延后发送RLC ACK和RRC连接重建完成消息,因此不启动随机接入流程申请上行资源授权。如前述实施例,终端等待RRC重配置消息携带的上行资源授权,用于下述消息的整合发送:RLC应答消息、RRC连接重建完成消息和RRC连接重配置完成消息。其中,对于终端侧而言,在第一TB后,第二TB的到达时间未知,考虑到无线网络的不稳定性,如网络拥堵或数据丢失,可通过设置等待时间T避免基站因未收到RLC ACK而重复下传RRC连接重建消息,造成网络资源的浪费。所述等待时间T用于指示终端延迟发起随机接入流程的时间,也即暂停向基站发送随机接入前导的时间,T可以是固定参数或可调参数。
若T为固定参数,其预先存储在终端侧,具体数值可以根据用户业务等因素设定,在RRC 连接重建流程开始时,由RRC层向下告知数据链路层,用于指示该层在收到RRC重建消息后,最大延迟T时间生成或传输RLC响应消息,延迟数据链路层因此向基站发起随机接入流程。同时,RRC层也最大延迟T时间向数据链路层递交RRC连接重建完成信令。
若T为可调参数,其计算方式基于多种因素,包括且不限于终端需求、业务需求、优先级等。
若终端在T时间内未收到RRC重配置消息,则向基站发起随机接入流程,用于申请上行资源授权,用于发送RLC应答消息和RRC连接重建完成消息。
因此,通过合理设置等待时间T,可以使终端通过延后RLC应答消息与RRC连接重建完成消息的发送、等待RRC连接重配置消息中SR配置并以此进行上行调度申请、获取上行授权资源,从而达到减少随机接入流程的发起次数的目的。通过前述申请得到的上行资源,高效地合并发送RLC应答消息、RRC重建完成消息和RRC重配置完成消息,从而减少无线链路的重建时延。
图10为本申请实施例提供的又一种重建无线链路的流程示意图,虚线框代表随机接入流程,其中Msg 3的消息内容即该虚线框中箭头上的消息。流程包括以下步骤:
步骤1001、终端启动一次完整的随机接入流程,用于发送RRC连接重建请求消息。
步骤1002、终端接收RRC连接重建消息。
步骤1003、终端发送随机接入前导。
步骤1004、终端接收RRC连接重配置消息,其中所述RRC连接重配置消息携带SR配置信息。
步骤1005、终端根据所述SR配置指示的上行资源信息向基站发送调度请求。
步骤1006、终端接收来自所述基站的调度指示消息,所述调度指示消息用于授权上行资源。
步骤1007、终端在授权的上行资源上发送RLC应答消息、RRC连接重建完成消息和RRC连接重配置完成消息。
由上述流程可知,步骤1002后,终端意图通过一次完整的随机接入流程,向基站申请上行资源授权,用以发送RLC应答消息。步骤1003中终端发送随机接入前导,是启动一次完整的随机接入流程的第一步,而基站接收后应发送随机接入响应,其携带有上行资源授权,用以指示终端配置上行资源的信息。由于此响应行为只是基站侧对收到的随机接入前导的响应,其没有被告知相应的上传内容。因此基站在发送所述随机接入响应前,可能已向终端发送RRC连接重配置消息。
该情况下,即终端先接收RRC连接重配置消息、后接收随机接入响应,RRC层向下层更新所述RRC连接重配置消息携带的SR配置。据此,终端中断随机接入流程,使用SR配置向基站发送调度请求。与此同时,RRC层先向下传输RRC连接重建完成信令,后传输RRC连接重配置完成信令。数据链路层最终使用调度指示消息中授权的上行资源发送以下消息:RLC应答消息、RRC连接重建完成消息和RRC连接重配置完成消息。
若随机接入响应早于RRC连接重配置消息到达终端,终端使用此次随机接入申请的上行资源发送RLC应答消息,并再次启动随机接入流程,授权的上行资源用于发送RRC连接重建完成消息,最后使用调度指示消息中的上行授权发送RRC连接重配置完成消息。
此外,由于终端接收到RRC连接重配置消息时间未知,也即在接收此消息的同时,终端可能已经发送随机接入前导,也可能启动了随机接入流程、但还未发送随机接入前导,应理 解步骤1003并非必备步骤,只是可能发生的情形之一。终端在接收RRC连接重配置消息后,立即中断随机接入流程,包括但不限于中止随机接入前导的生成、停止随机接入前导的发送、丢弃随机接入响应等,所述中断随机接入的行为发生在数据链路层和物理层。随后,终端生效调度指示消息中的上行资源授权,发送RLC应答消息、RRC连接重建完成消息和RRC连接重配置完成消息。
由上述流程可知,终端不保证随机接入流程的完整性,使其可以被打断,从而高效地整合发送前述三条消息。由于通过随机接入获取的是单TB上行资源授权,其可携带的内容大小由基站决定,不如调度请求获取的上行资源的授权,其允许多TB上传,高效,因此后者更适合RRC重建流程中前述三条消息的统筹发送。终端通过及时响应RRC连接重配置消息、打断正在进行中的随机接入流程,生效RRC连接重配置消息中的SR配置,使前述三条消息的发送更高效,减少无线链路重建的时延。
下面介绍本申请实施例提供的一种无线通信装置。
参考图11,为本申请实施例提供的一种无线通信装置的示意性框图,该通信装置1100包括处理单元1110和收发单元1120。该无线通信装置用于实现上述各实施例中对应终端的各个步骤:
处理单元1110用于控制收发单元1120。收发单元1120,用于发送RRC连接重建请求消息,所述RRC连接重建请求消息用于请求重建RRC连接;接收所述基站的RRC连接重建消息,所述RRC连接重建消息用于响应所述RRC连接重建请求消息;接收来自所述基站的RRC连接重配置消息,其中,所述RRC连接重配置消息中携带了调度请求的资源指示信息;接收来自所述基站的调度指示信息,所述调度指示信息用于授权上行资源;发送RLC应答消息、RRC连接重建完成消息和RRC连接重配置完成消息。其中,所述RLC应答消息用于确认所述RRC连接重建消息的接收,所述RRC连接重建完成消息用于确认RRC连接重建的完成,所述RRC连接重配置完成消息用于确认RRC连接重配置的完成。
在一种可能的实现方法中,处理单元1110,还用于在接收到所述RRC连接重建消息之后,暂停所述收发单元1120发送随机接入前导。其中,在暂停向所述基站发送随机接入前导的期间,所述RRC连接重配置消息已被接收。
在一种可能的实现方法中,处理单元1110,用于配置所述收发单元1120暂停发送随机接入前导的时长。
在一种可能的实现方法中,所述处理单元1110配置的暂停发送随机接入前导的时长包括以下任意一种:一个传输时间间隔TTI,两个TTI,或三个TTI。
在一种可能的实现方法中,收发单元1120,还用于在接收到所述RRC连接重建消息之后,发送随机接入前导。其中,在接收到所述随机接入前导的响应消息之前,所述RRC连接重配置消息已被接收。
在一种可能的实现方法中,处理单元1110,还用于在收发单元1120接收到所述RRC连接重配置消息之后,提前终止所述随机接入前导的后续流程。
在以上各实现方式中,收发单元1120也可以分为一个接收单元和一个发送单元,各自具备接收和发送的功能,这里不作限定。
可选地,上述通信装置还可以包括存储单元,该存储单元用于存储数据或者指令(也可以称为代码或者程序),上述各个单元可以和存储单元交互或者耦合,以实现对应的方法或者功能。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性, 机械或其它的形式,用于装置、单元或模块之间的信息交互。
本申请实施例中,通信装置中单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且通信装置中的单元可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分单元以软件通过处理元件调用的形式实现,部分单元以硬件的形式实现。例如,各个单元可以为单独设立的处理元件,也可以集成在通信装置的某一个芯片中实现,此外,也可以以程序的形式存储于存储器中,由通信装置的某一个处理元件调用并执行该单元的功能。此外这些单元全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件又可以称为处理器,可以是一种具有信号的处理能力的集成电路。在实现过程中,上述方法的各步骤或以上各个单元可以通过处理器元件中的硬件的集成逻辑电路实现或者以软件通过处理元件调用的形式实现。
在一个例子中,以上任一通信装置中的单元可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(application specific integrated circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA),或这些集成电路形式中至少两种的组合。再如,当通信装置中的单元可以通过处理元件调度程序的形式实现时,该处理元件可以是通用处理器,例如中央处理器(central processing unit,CPU)或其它可以调用程序的处理器。再如,这些单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
参考图12,为本申请实施例提供的一种无线通信装置的结构示意图,该无线通信装置可以为无线通信装置或网络设备,也可以为芯片或电路,比如可设置于无线通信装置的芯片或电路,再比如可设置于网络设备内的芯片或电路,用于实现以上方法实施例中的方法。如图12所示,该通信装置1200包括:处理器1210和收发器1230,可选地,该通信装置1200还包括存储器1220,在图中以虚线框表示此存储器1220非必备。收发器1230用于实现与其他设备进行通信。
进一步的,该通信装置1200还可以进一步包括总线系统,其中,处理器1210、存储器1220、收发器1230可以通过总线系统相连。
应理解,上述处理器1210可以是一个芯片。例如,该处理器1302可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
实现过程中,上述方法的各步骤可以通过处理器1210中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器1210中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1220,处理器1210读取存储器1220中的信息,结合其硬件完成上述方法的步骤。
具体的,图11中的收发单元1120的功能/实现过程可以通过图12所示的通信装置1200中的处理器1210调用存储器1220中存储的计算机可执行指令来实现。或者,图11中的收发单元1120的功能/实现过程可以通过图12中所示的通信装置1200中的收发器1230来实现。
应注意,本申请实施例中的处理器1210可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
在本申请实施例中,存储器1220可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
该通信装置1200对应上述方法中的无线通信装置的情况下,该通信装置可以包括处理器1210、收发器1230和存储器1220。该存储器1220用于存储指令,该处理器1210用于执行该存储器1220存储的指令,可以实现如上图8至图9中所示的任一项或任多项对应的方法中无线通信装置所执行的步骤。。
本领域普通技术人员可以理解:本申请实施例中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围,也表示先后顺序。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。“至少一个”是指一个或者多个。至少两个是指两个或者多个。“至少一个”、“任意一个”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个、种),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。“多个”是指两个或两个以上,其它量词与之类似。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本申请实施例提供的技术方案可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部 或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、终端设备、网络设备、人工智能设备或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包括一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
在本申请实施例中,各实施例之间可以相互引用,例如方法实施例之间的方法和/或术语可以相互引用,例如装置实施例之间的功能和/或术语可以相互引用,例如装置实施例和方法实施例之间的功能和/或术语可以相互引用。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (16)

  1. 一种无线链路重建的方法,其特征在于,包括:
    向基站发送无线资源控制RRC连接重建请求消息,所述RRC连接重建请求消息用于请求重建RRC连接;
    接收来自所述基站的RRC连接重建消息,所述RRC连接重建消息用于响应所述RRC连接重建请求消息;
    接收来自所述基站的RRC连接重配置消息,其中,所述RRC连接重配置消息中携带了调度请求的资源指示信息;
    根据所述资源指示信息向所述基站发送调度请求,并接收来自所述基站的调度指示消息,所述调度指示消息用于授权上行资源;
    采用所述授权上行资源向所述基站发送无线链路控制RLC应答消息、RRC连接重建完成消息和RRC连接重配置完成消息;
    其中,所述RLC应答消息用于确认所述RRC连接重建消息的接收,所述RRC连接重建完成消息用于确认RRC连接重建的完成,所述RRC连接重配置完成消息用于确认RRC连接重配置的完成。
  2. 如权利要求1所述的方法,其特征在于,还包括:
    在接收到所述RRC连接重建消息之后,暂停向所述基站发送随机接入前导;
    其中,在暂停向所述基站发送随机接入前导的期间,所述RRC连接重配置消息已被接收。
  3. 如权利要求2所述的方法,其特征在于:
    暂停向所述基站发送随机接入前导的时长为可配置的时长。
  4. 如权利要求3所述的方法,其特征在于:
    所述暂停向所述基站发送随机接入前导的时长包括以下任意一种:
    一个传输时间间隔TTI,两个TTI,或三个TTI。
  5. 如权利要求1所述的方法,其特征在于,还包括:
    在接收到所述RRC连接重建消息之后,向所述基站发送随机接入前导;
    其中,在接收到所述随机接入前导的响应消息之前,所述RRC连接重配置消息已被接收。
  6. 如权利要求5所述的方法,其特征在于,还包括:
    在接收到所述RRC连接重配置消息之后,提前终止所述随机接入前导的后续流程。
  7. 一种无线通信装置,其特征在于,包括:
    处理单元和收发单元;
    其中,所述处理单元用于控制所述收发单元,所述收发单元用于:
    向基站发送无线资源控制RRC连接重建请求消息,所述RRC连接重建请求消息用于请求重建RRC连接;
    接收来自所述基站的RRC连接重建消息,所述RRC连接重建消息用于响应所述RRC连接重建请求消息;
    接收来自所述基站的RRC连接重配置消息,其中,所述RRC连接重配置消息中携带了调度请求的资源指示信息;
    根据所述资源指示信息向所述基站发送调度请求,并接收来自所述基站的调度指示消息,所述调度指示消息用于授权上行资源;
    采用所述授权上行资源向所述基站发送无线链路控制RLC应答消息、RRC连接重建完成消息和RRC连接重配置完成消息;
    其中,所述RLC应答消息用于确认所述RRC连接重建消息的接收,所述RRC连接重建完成消息用于确认RRC连接重建的完成,所述RRC连接重配置完成消息用于确认RRC连接重配置的完成。
  8. 如权利要求7所述的装置,其特征在于:
    所述收发单元还用于:在接收到所述RRC连接重建消息之后,暂停向所述基站发送随机接入前导;
    其中,在暂停向所述基站发送随机接入前导的期间,所述RRC连接重配置消息已被接收。
  9. 如权利要求8所述的装置,其特征在于:
    暂停向所述基站发送随机接入前导的时长为可配置的时长。
  10. 如权利要求9所述的装置,其特征在于:
    所述暂停向所述基站发送随机接入前导的时长包括以下任意一种:
    一个传输时间间隔TTI,两个TTI,或三个TTI。
  11. 如权利要求7所述的装置,其特征在于:
    所述收发单元还用于:在接收到所述RRC连接重建消息之后,向所述基站发送随机接入前导;
    其中,在接收到所述随机接入前导的响应消息之前,所述RRC连接重配置消息已被接收。
  12. 如权利要求11所述的装置,其特征在于:
    所述处理单元还用于:在接收到所述RRC连接重配置消息之后,提前终止所述随机接入前导的后续流程。
  13. 一种无线通信装置,其特征在于,包括:
    处理器和存储器,其中,所述存储器用于存储程序指令,所述处理器用于执行所述存储器中的程序指令,以实现如权利要求1至6中的任一所述方法。
  14. 一种无线通信装置,其特征在于,包括:
    处理电路和接口电路;其中,
    所述接口电路用于与所述无线通信装置外部的存储器耦合,并为所述处理电路访问所述存储器提供通信接口;
    所述处理电路用于执行所述存储器中的程序指令,以实现如权利要求1至6中的任一所述方法。
  15. 一种计算机可读存储介质,其特征在于:
    所述计算机可读存储介质中存储了程序代码,所述程序代码被处理器执行时,实现权利要求1至6中任一项所述的方法。
  16. 一种计算机程序产品,其特征在于:
    所述计算机程序产品包含的程序代码被处理器执行时,实现权利要求1至6中任一项所述的方法。
PCT/CN2021/076449 2021-02-10 2021-02-10 一种无线链路的重建方法和装置 WO2022170545A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180004632.3A CN115211220B (zh) 2021-02-10 2021-02-10 一种无线链路的重建方法和装置
PCT/CN2021/076449 WO2022170545A1 (zh) 2021-02-10 2021-02-10 一种无线链路的重建方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/076449 WO2022170545A1 (zh) 2021-02-10 2021-02-10 一种无线链路的重建方法和装置

Publications (1)

Publication Number Publication Date
WO2022170545A1 true WO2022170545A1 (zh) 2022-08-18

Family

ID=82837410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/076449 WO2022170545A1 (zh) 2021-02-10 2021-02-10 一种无线链路的重建方法和装置

Country Status (2)

Country Link
CN (1) CN115211220B (zh)
WO (1) WO2022170545A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109246802A (zh) * 2017-05-05 2019-01-18 中兴通讯股份有限公司 无线资源控制连接释放方法及装置、基站和用户设备
US20190037625A1 (en) * 2017-07-27 2019-01-31 Fg Innovation Ip Company Limited Methods and related devices for secondary node addition
WO2019214503A1 (zh) * 2018-05-10 2019-11-14 维沃移动通信有限公司 Rrc连接重建的承载配置方法、终端及网络设备
CN111641975A (zh) * 2020-05-12 2020-09-08 Oppo广东移动通信有限公司 无线连接重建方法及装置、终端、存储介质

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103108351B (zh) * 2011-11-14 2015-07-08 华为技术有限公司 一种无线链路失败统计方法和相关装置及通信系统
CN108243505B (zh) * 2016-12-26 2021-09-28 中国移动通信集团广东有限公司 一种资源调度方法及装置
CN111526599B (zh) * 2019-02-01 2022-05-31 华为技术有限公司 一种无线资源控制rrc消息发送方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109246802A (zh) * 2017-05-05 2019-01-18 中兴通讯股份有限公司 无线资源控制连接释放方法及装置、基站和用户设备
US20190037625A1 (en) * 2017-07-27 2019-01-31 Fg Innovation Ip Company Limited Methods and related devices for secondary node addition
WO2019214503A1 (zh) * 2018-05-10 2019-11-14 维沃移动通信有限公司 Rrc连接重建的承载配置方法、终端及网络设备
CN111641975A (zh) * 2020-05-12 2020-09-08 Oppo广东移动通信有限公司 无线连接重建方法及装置、终端、存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "Correction for RRC Reconfiguration Complete Indicator for the first reconfiguration after RRC re-establishment", 3GPP DRAFT; R3-203779, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG3, no. Electronic Meeting; 20200601 - 20200611, 22 May 2020 (2020-05-22), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051889475 *

Also Published As

Publication number Publication date
CN115211220B (zh) 2024-06-25
CN115211220A (zh) 2022-10-18

Similar Documents

Publication Publication Date Title
US11516085B2 (en) Communication method and apparatus for bandwidth part switching in wireless communication system
ES2899137T3 (es) Procedimiento y aparato para comunicación inalámbrica en un sistema de comunicación inalámbrica
CN114514777B (zh) 用于在无线通信系统中执行切换的方法和装置
US11678242B2 (en) Method and apparatus for handover without interruption of transmission and reception of data in next-generation mobile communication system
US12058648B2 (en) Communication method and device
CN107360562B (zh) 处理无线资源控制状态改变的装置及方法
US20180092118A1 (en) Method and device for transmitting or receiving scheduling request in mobile communication system
CN112088575A (zh) 用于在拒绝时处置周期性无线电接入网络通知区域(rna)更新配置的方法
KR20180090658A (ko) 이동통신 시스템에서 다중 연결을 사용한 핸드오버 시 보안 키를 처리하는 방법 및 장치
KR102698769B1 (ko) 단말 배터리 절감 및 시그날링 오버 헤드 경감 방법 및 장치
CN115243337B (zh) 数据传输方法及装置
US12096482B2 (en) Method and apparatus for transmitting and receiving data in wireless communication system
CN110381554B (zh) 通信方法、装置、系统和计算机存储介质
CN112399489B (zh) 小区切换方法以及用户设备
KR20200067048A (ko) 무선 통신 시스템에서 랜덤엑세스 수행 시 데이터의 유실을 방지하는 방법 및 장치
KR20200032518A (ko) 차세대 이동 통신 시스템에서 rrc 비활성화 모드 단말의 선택된 plmn을 보고하는 방법 및 장치
CN110636572A (zh) 通信方法及装置
US20240064493A1 (en) Packet data convergence protocol (pdcp) enhancement for multicast and broadcast services
EP4190019B1 (en) Api-controlled pdcp out-of-order control and delivery for downlink traffic
CN109963340B (zh) 用于降低信令开销和数据延迟的方法、设备及计算机可读介质
WO2022170545A1 (zh) 一种无线链路的重建方法和装置
US20240064831A1 (en) Radio link control (rlc) enhancements for multicast and broadcast services
JP2023526459A (ja) バッファ状態報告の強化
WO2020151650A1 (zh) 无线链路控制层的重置方法和用户设备
WO2023093868A1 (zh) 一种通信方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21925210

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21925210

Country of ref document: EP

Kind code of ref document: A1