WO2022168724A1 - Laser machining method, machining program creation method, and laser machine tool - Google Patents
Laser machining method, machining program creation method, and laser machine tool Download PDFInfo
- Publication number
- WO2022168724A1 WO2022168724A1 PCT/JP2022/003038 JP2022003038W WO2022168724A1 WO 2022168724 A1 WO2022168724 A1 WO 2022168724A1 JP 2022003038 W JP2022003038 W JP 2022003038W WO 2022168724 A1 WO2022168724 A1 WO 2022168724A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- processing
- machining
- sheet metal
- parts
- slit
- Prior art date
Links
- 238000003754 machining Methods 0.000 title claims abstract description 165
- 238000000034 method Methods 0.000 title claims description 37
- 239000002184 metal Substances 0.000 claims abstract description 189
- 229910052751 metal Inorganic materials 0.000 claims abstract description 189
- 238000005520 cutting process Methods 0.000 claims abstract description 33
- 238000012545 processing Methods 0.000 claims description 242
- 230000001186 cumulative effect Effects 0.000 claims description 15
- 238000013459 approach Methods 0.000 claims description 13
- 230000001678 irradiating effect Effects 0.000 claims description 13
- 238000003672 processing method Methods 0.000 claims description 12
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 238000010586 diagram Methods 0.000 description 42
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 8
- 238000011960 computer-aided design Methods 0.000 description 6
- 230000006866 deterioration Effects 0.000 description 5
- 239000000835 fiber Substances 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/36—Removing material
- B23K26/38—Removing material by boring or cutting
Definitions
- the present disclosure relates to a laser processing method, a processing program creation method, and a laser processing machine.
- a laser processing machine may irradiate a sheet metal with a laser beam emitted from a laser oscillator to cut the sheet metal to produce multiple parts with a predetermined shape.
- high-power fiber laser oscillators have been widely used as laser oscillators.
- a laser processing machine equipped with a fiber laser oscillator as a laser oscillator has a high cutting speed for cutting sheet metal, and can produce parts in a short time.
- the sheet metal may warp greatly. Typically, sheet metal warps downward toward the periphery, with the vertex near the center of the plane of the sheet metal. If the sheet metal is greatly warped, the dimensional accuracy of the parts may be lowered, and a problem may occur such that the component such as the processing head or the nozzle changer collides with the sheet metal along which it is bent. Therefore, even if a laser oscillator such as a fiber laser oscillator that emits a high-power laser beam is used to process the sheet metal, it is required to reduce the amount of warpage of the sheet metal.
- a laser oscillator such as a fiber laser oscillator that emits a high-power laser beam
- one or more parts among a plurality of parts nested in sheet metal are cut as a first processing unit by irradiation with a laser beam, and A crosspiece between one or more parts included in the first processing unit and an unprocessed part among the plurality of parts nested in the sheet metal is removed by a predetermined distance from the end of the sheet metal.
- the sheet metal is cut by irradiation with a laser beam in an uncut state to form a slit in the crosspiece, and one or more of the unprocessed parts are used as a second processing unit by irradiation with a laser beam.
- a laser processing method for cutting is provided.
- a first aspect of one or more embodiments is that following machining of the first work unit, one or more parts included in the first work unit and a plurality of parts nested in sheet metal. Since the slit is formed in the crosspiece between the unprocessed parts, the warp amount of the sheet metal can be reduced. Since the warp amount of the sheet metal is reduced, it is possible to reduce the deterioration of the dimensional accuracy of the parts manufactured by cutting the sheet metal and the problem of the component colliding with the sheet metal.
- n is a natural number of 2 or more, and the plurality of parts nested in the sheet metal are divided into one or more parts in order of machining of the plurality of parts. between adjacent processing units of the n processing units, the sheet metal is not cut by a predetermined distance from the end of the sheet metal, and is connected to another slit processing path.
- a second aspect of one or more embodiments creates a processing program for cutting a slit processing path associated with each processing unit following processing of each processing unit, so that the laser processing machine can process sheet metal. It is possible to reduce the warp amount of the sheet metal at the time. Since the warp amount of the sheet metal is reduced, it is possible to reduce the deterioration of the dimensional accuracy of the parts manufactured by cutting the sheet metal and the problem of the component colliding with the sheet metal.
- a processing machine body for cutting sheet metal and an NC device for controlling the processing machine body based on a processing program the NC device cutting the sheet metal Based on a machining program created in advance to manufacture more parts
- n is a natural number of 2 or more
- the plurality of parts are processed in the order of machining of the plurality of parts based on a preset cumulative machining time.
- a slit machining path that is not connected to other slit machining paths and corresponds to each machining unit in (n ⁇ 1) machining units excluding the last machining unit among the n machining units (n ⁇ 1) slit machining paths to be attached are set, and following the machining of each machining unit in the (n ⁇ 1) machining units, the slit machining paths associated with the respective machining units are machined.
- a laser processing machine is provided that controls the
- a third aspect of one or more embodiments is that the NC unit controls the processing machine main body based on a new processing program, so that the amount of sheet metal warpage when the processing machine main body processes the sheet metal can be reduced. can. Since the warp amount of the sheet metal is reduced, it is possible to reduce the deterioration of the dimensional accuracy of the parts manufactured by cutting the sheet metal and the problem of the component colliding with the sheet metal.
- the laser processing method, the processing program creation method, and the laser processing machine of one or more embodiments it is possible to reduce the warp amount of the sheet metal, and reduce the dimensional accuracy of the parts produced by cutting the sheet metal. Also, it is possible to reduce the problem of the component colliding with the sheet metal.
- FIG. 1 shows a laser processing machine that executes a laser processing method of one or more embodiments, a laser processing system that executes a processing program creation method of one or more embodiments, and a laser of one or more embodiments.
- FIG. 2 is a diagram partially showing an example of a machining program created by the CAM device 20 in FIG.
- FIG. 3A is a partial flow chart illustrating the processing performed in one or more embodiments of the machining programming method.
- FIG. 3B is a partial flowchart following FIG. 3A.
- FIG. 4 is a diagram showing a nesting image in which 14 circular parts P0 are produced from the sheet metal W. As shown in FIG. FIG. FIG.
- FIG. 5 is a partial side view conceptually showing the processing head 321 provided in the processing machine main body 32.
- FIG. 6 is a plan view showing a state in which the laser processing machine 30 cuts the sheet metal W to produce 14 parts P0, cuts the joints of the parts P0, and removes the parts P0.
- FIG. 9 is a diagram showing a state in which the positions of the joints specified by the NC device 31 are indicated by marks Jt in the nesting image 101 shown in FIG.
- FIG. 10 is a diagram showing a nesting image 102 in which joints in the nesting image 101 are connected.
- FIG. 11 is a diagram showing a nesting image 103 in which the approach Ap and the end point Ep in the nesting image 102 are deleted.
- FIG. 12 is a diagram showing the nesting image 103 shown in FIG. 11 with an enlarged closed line segment indicated by a dashed line.
- FIG. 13 is a diagram showing a nesting image 104 including closed-shaped line segments created based on the enlarged closed-shaped line segment.
- FIG. 14 is a diagram showing a nesting image 105 in which a slit processing path Ps passing through crosspieces is added to the nesting image 104 shown in FIG.
- FIG. 15 is a diagram showing a nesting image 106 of only the slit machining paths Ps0 passing through the boundaries of different machining units among the slit machining paths Ps shown in FIG.
- FIG. 16 is a diagram showing a nesting image 107 showing a state in which a slit machining path Ps0 adjacent to each machining unit is associated with each machining unit.
- FIG. 17 is a diagram showing a nesting image 108 showing a state in which the end portions on the starting end side and the terminal end side of each of the slitting paths Ps1 to Ps3 are deleted by a predetermined distance.
- FIG. 18 is a diagram showing a nesting image 109 in which the 14 parts P0 and the slit machining paths Ps1' to Ps3' are set by the NC device 31 in order of machining.
- FIG. 19 is a diagram showing a nesting image 110 according to a new machining program reconstructed by the NC device 31 based on the machining order shown in FIG.
- FIG. 20 is a diagram showing an example in which 14 parts P0 are divided into 5 processing units.
- FIG. 21 is a nesting image showing a state in which a slit machining path Ps0 adjacent to each machining unit is associated with each machining unit when 14 parts P0 are divided into five machining units as shown in FIG.
- FIG. 107 is a diagram showing 107;
- FIG. 22 is a diagram showing a nesting image 108 showing a state in which the end portions on the start end side and end end side of each of the slit processing paths Ps1 to Ps4 are deleted by a predetermined distance.
- FIG. 23 is a diagram showing a nesting image 109 in which the 14 parts P0 and the slit machining paths Ps1' to Ps4' are set by the NC device 31 in order of machining.
- FIG. 24 is a diagram showing a nesting image 110 according to a new machining program reconfigured by the NC device 31 based on the machining order shown in FIG.
- FIG. 1 shows a laser processing machine that executes a laser processing method of one or more embodiments, a laser processing system that executes a processing program creation method of one or more embodiments, and a laser of one or more embodiments. It is a block diagram showing a processing machine. First, with reference to FIG. 1, an overall configuration example of a laser processing system will be described.
- a CAD (Computer Aided Design) device 10 creates graphic data for one or more parts.
- the CAD equipment 10 creates image data in which one or more parts are nested in a sheet metal, and supplies the image data to a CAM (Computer Aided Manufacturing) equipment 20 .
- the CAD equipment 10 is composed of computer equipment that executes a CAD program.
- the CAM device 20 creates a machining program for cutting one or more parts from the sheet metal based on the input image data.
- the CAM equipment 20 is composed of computer equipment that executes a CAM program.
- a display unit 21 and an operation unit 22 are connected to the CAM device 20 .
- the operation unit 22 may be a touch panel integrated with the display unit 21 .
- the CAD device 10 and the CAM device 20 may be composed of one computer device, and the computer device may function as the CAD/CAM device.
- the laser processing machine 30 includes a processing machine body 32 that irradiates a sheet metal with a laser beam to cut the sheet metal, an NC (Numerical Control) device 31 that controls the processing machine body 32, and a display unit 33 connected to the NC device 31. and an operation unit 34 .
- the processing machine body 32 includes a fiber laser oscillator.
- the operation unit 34 may be a touch panel integrated with the display unit 33 .
- the NC device 31 controls the machine body 32 based on the machining program created by the CAM device 20 . As will be described later, the NC device 31 may reconfigure a machining program created in advance by the CAM device 20 and control the processing machine main body 32 based on the reconfigured new machining program.
- a machining program created by the CAM device 20 may be stored in a database (not shown), and the NC unit 31 may read the machining program from the database.
- FIG. 2 is a diagram partially showing an example of a machining program created by the CAM device 20 in FIG.
- the machining program is composed of machine control code such as G code.
- the machining program includes a code group for machining the part P01 and a code group for machining the part P02.
- the machining program is separated by comments for each part.
- Each part may be represented by a subprogram in the machining program.
- a laser processing method, a processing program creation method, and a laser processing machine will be specifically described below.
- the NC device 31 executes the machining program creation method of one or more embodiments.
- the NC device 31 reconstructs the machining program created by the CAM device 20 to create a new reconstructed machining program.
- the NC device 31 is a machining program creation device that creates a machining program capable of reducing the amount of sheet metal warpage.
- a laser processing machine of one or more embodiments is a laser processing machine 30 in which an NC device 31 controls a processing machine body 32 to process sheet metal based on a new processing program.
- the laser processing method of one or more embodiments is performed on laser processing machine 30 .
- the CAM device 20 may execute the machining program creation method of one or more embodiments.
- the CAM device 20 may be a machining program creation device that creates a machining program capable of reducing the amount of sheet metal warpage.
- the NC device 31 controls the processing machine main body 32 so as to process the sheet metal based on the processing program created by the CAM device 20 so as to reduce the warp amount of the sheet metal. It may be the laser processing machine 30 .
- FIG. 3A is a partial flowchart illustrating the processing performed in the machining program creation method of one or more embodiments.
- FIG. 3B is a partial flowchart following FIG. 3A. The processing performed by the machining program creation method of one or more embodiments will be described with reference to FIGS. 4-24.
- 3A and 3B show processing performed by the NC unit 31 executing a computer program.
- FIG. 3A the NC device 31 creates a nesting image based on the processing program and displays the nesting image on the display unit 33 in step S1.
- FIG. 4 is a diagram showing an example of a nesting image displayed on the display section 33 by the NC device 31 in FIG.
- the nesting image is drawn line segments showing a state in which a plurality of parts are nested in the sheet metal W (shown in FIGS. 5 and 6).
- a nesting image 101 shown in FIG. 4 is an image in which parts to be cut are arranged on a sheet metal image Wi showing the outline of the sheet metal W. As shown in FIG.
- FIG. 4 is a diagram showing a nesting image in which 14 circular parts P0 are produced from the sheet metal W. Since each part P0 has a joint, which will be described later, it is represented by a non-closed line segment.
- #1, #2, . . . indicate the processing order.
- the order of processing indicated by #1 to #14 shown in FIG. 4 is an example.
- the parts made from sheet metal W do not all have the same shape or size.
- the shape and size of the parts to be manufactured are arbitrary, and the number of each part of a plurality of parts having different shapes or sizes is also arbitrary.
- FIG. 5 is a partial side view conceptually showing the processing head 321 provided in the processing machine main body 32.
- FIG. A nozzle 322 is attached to the lower end of the processing head 321 .
- the processing head 321 cuts the sheet metal W by emitting a laser beam indicated by a dashed line from an opening formed at the tip of the nozzle 322 .
- the laser processing machine 30 irradiates the sheet metal W with a laser beam from the processing head 321 to cut the approach Ap of each part P0. Subsequently, the laser processing machine 30 cuts the sheet metal W to the end point Ep along the outline of each part P0 to produce each part P0. A joint is formed between the end of the approach Ap on the side of the part P0 and the end point Ep separated from the approach Ap.
- FIG. 6 is a plan view showing a state in which the laser processing machine 30 cuts the sheet metal W to produce 14 parts P0, cuts the joints of each part P0, and removes each part P0.
- the sheet metal W is formed with 14 openings HP0 corresponding to the 14 parts P0. In this way, the offcuts of the sheet metal W from which a plurality of parts have been removed are called a skeleton.
- step S2 the NC unit 31 divides a plurality of parts into a plurality of processing units based on the processing order and cumulative processing time when manufacturing a plurality of parts from the sheet metal W.
- Equation (1) the energy Em required for metal processing can be expressed by Equation (1).
- Em Elp + Ecr (1)
- the input heat energy Elp of the laser beam is the product of the absorption rate A of the laser beam to the metal material, the contribution ⁇ of the laser beam to processing (cutting) at that time, and the laser output P (W (J/s)). It can be represented by the formula (2).
- Elp A ⁇ P (2)
- Equation (3) V is the removed volume of the metal material at the cutting front (mm 3 ), ⁇ is the material density (g/mm 3 ), M is the atomic weight (g/mol), ⁇ E is the heat of reaction due to oxidation (J/ s) and t is the time (s).
- Q ⁇ (V ⁇ )/M ⁇ ( ⁇ E/t) (3)
- the energy Ecr due to the oxidation reaction is the product of the ratio C of the molten metal during processing, the contribution ⁇ to the processing (cutting) of the laser beam at that time, and the amount of heat generated per unit time Q. ).
- Ecr C ⁇ Q (4)
- FIG. 7 shows warping of the sheet metal W according to the thickness of the sheet metal W, the processing speed when the sheet metal W is cut by irradiating the sheet metal W with a laser beam, and the laser output of the laser beam emitted by the laser oscillator.
- FIG. 7 is a table showing the time until the occurrence of The time until warpage occurs shown in FIG. 7 is a theoretically calculated value, and varies depending on various conditions. Various conditions include, for example, the material of the sheet metal W, or whether or not the sheet metal W is processed while being cooled with cooling water.
- the NC unit 31 can obtain an approximate time until warping occurs according to the sheet metal W and the conditions for cutting the sheet metal W by calculation based on formula (5).
- the NC unit 31 holds the time until the warpage occurs according to the sheet metal W and the conditions for cutting the sheet metal W.
- the NC unit 31 processes 14 parts P0 as one processing unit, which is a group of parts P0 in which the cumulative processing time of a plurality of parts P0 is within the time until the sheet metal W warps. P0 is divided into a plurality of processing units.
- FIG. 8 is a diagram showing an example in which 14 parts P0 are divided into 4 processing units. As shown in FIG. 8, it is assumed that the NC unit 31 divides 14 parts P0 into four processing units U1 to U4.
- a processing unit U1 is composed of three parts P0 of processing orders #1 to #3.
- the machining unit U2 consists of four parts P0 of machining order #4 to #7.
- the machining unit U3 consists of three parts P0 of machining order #8 to #10.
- the machining unit U4 consists of four parts P0 of machining order #11 to #14.
- the plurality of parts P0 are divided into a plurality of processing units based on the length of the cutting path calculated from the warpage time. good too. It is also possible for the operator to operate the operation unit 34 to change the part P0 divided into a plurality of processing units based on the cumulative processing time.
- the operator checks the warping state of the cutting of the first sheet metal W, and cuts the second and subsequent sheet metals W so that the warp is reduced. You may change a processing unit.
- the operator may set the processing unit by operating the operation unit 34 while viewing the nesting image displayed on the display unit 33, or select one processing unit from a plurality of processing unit options. You may For each processing unit, it is preferable to set the number of one or more parts P0 included in the processing unit to the number that the processing is completed within the time until the sheet metal W warps.
- the reference value for determining one machining unit may be the cumulative machining time or the path length, or the operator may manually It may be a set value set in .
- the set value may be the number of parts P0.
- the number of parts P0 may be a constant value, or may be a variable value according to the progress of the cutting process.
- step S3 the NC device 31 analyzes the machining program and identifies the positions of the joints.
- the position of the joint can be specified between the approach Ap and the end point Ep.
- a more specific method of specifying the joint position is described in Patent Document 2, so the description of the specifying method is omitted.
- FIG. 9 is a diagram showing a state in which the positions of the joints specified by the NC device 31 are indicated by marks Jt in the nesting image 101 shown in FIG. 9 to 18 are conceptual diagrams showing internal processing executed by the NC device 31 rather than images displayed on the display unit 33 by the NC device 31.
- FIG. 9 is a diagram showing a state in which the positions of the joints specified by the NC device 31 are indicated by marks Jt in the nesting image 101 shown in FIG. 9 to 18 are conceptual diagrams showing internal processing executed by the NC device 31 rather than images displayed on the display unit 33 by the NC device 31.
- the NC device 31 connects the joints in step S4, and deletes the approach Ap and the end point Ep in step S5.
- FIG. 10 is a diagram showing a nesting image 102 in which joints in the nesting image 101 are connected.
- FIG. 11 is a diagram showing a nesting image 103 in which the approach Ap and the end point Ep in the nesting image 102 are deleted. As shown in FIG. 11, when each joint is connected and the approach Ap and the end point Ep are deleted, the part P0 is represented by a closed line segment surrounded by circular outlines.
- a relief of a predetermined length parallel to the approach Ap may be set in the normal direction of the circular part P0 from the end point Ep (see FIG. 7B of Patent Document 2). If relief is set for part P0, NC unit 31 deletes approach Ap and relief in step S4.
- the NC device 31 selects any closed line segment in step S6.
- the NC unit 31 selects any closed line segment from unselected closed line segments excluding selected closed line segments. .
- the NC device 31 determines whether or not the selected closed shape is an undetermined closed shape.
- the NC unit 31 determines whether the selected closed-shaped line segment exists inside other closed-shaped line segments in step S8. determine whether or not If the selected closed-shaped line segment exists inside other closed-shaped line segments (YES), the NC unit 31 discards the selected closed-shaped line segment in step S9, and continues the process. Return to S6. If the selected closed-shaped line segment does not exist inside other closed-shaped line segments (NO), the NC unit 31 leaves the selected closed-shaped line segment in step S10 and continues the process. Return to S6.
- steps S8 to S10 when there is a closed line segment indicating a hole inside the closed line segment of each part, the closed line segment indicating the hole is discarded. Also, when the closed-shaped line segment of the part exists inside the closed-shaped line segment of another part, the closed-shaped line segment of the part existing inside is discarded.
- the NC device 31 may generate a skeleton image similar to the skeleton shown in FIG.
- the nesting image 103 includes closed-shaped line segments surrounded by outlines of the part P0 in the sheet metal image Wi.
- step S11 the NC device 31 expands the closed line segment (or the opening of the skeleton image) by the set width.
- FIG. 12 is a diagram showing the nesting image 103 shown in FIG. 11 with an enlarged closed line segment indicated by a dashed line. In FIG. 12, the nesting image 103 is added with an enlarged circular line segment EL0.
- step S12 the NC unit 31 creates a new closed line segment based on the enlarged line segment.
- FIG. 13 is a diagram showing a nesting image 104 including closed-shaped line segments (or openings in skeleton images) created based on the enlarged closed-shaped line segments.
- an enlarged closed line segment ELP0 is formed.
- the line segment ELP0 of the closed shape corresponds to a line segment of a shape obtained by widening the outline of the part P0. It is assumed that the closed-shape line segments of the enlarged part do not touch adjacent closed-shape line segments of the enlarged part.
- FIG. 14 is a diagram showing a nesting image 105 in which a slit processing path Ps passing through crosspieces is added to the nesting image 104 shown in FIG.
- the slit processing path Ps is arranged at the center of the crosspiece in the width direction, that is, at a position equidistant from two adjacent line segments ELP0.
- the reason why the NC unit 31 sets the slit processing path Ps after enlarging the line segment of the closed shape of the part P0 to the line segment EL0 is as follows. If the outline of the part P0 and the slitting path Ps are close to each other, the sheet metal W may not be cut along the slitting path Ps. By setting the slit processing path Ps on the crosspiece between the enlarged closed-shape line segments ELP0, the laser processing machine 30 can almost certainly cut the sheet metal W along the slit processing path Ps.
- step S14 the NC unit 31 deletes the slit machining paths Ps existing in one machining unit from among the slit machining paths Ps shown in FIG. leave.
- FIG. 15 is a diagram showing a nesting image 106 of only the slit machining paths Ps0 passing through the boundaries of different machining units among the slit machining paths Ps shown in FIG.
- FIG. 16 is a diagram showing a nesting image 107 showing a state in which a slit machining path Ps0 adjacent to each machining unit is associated with each machining unit.
- the NC device 31 associates a slit machining path Ps1 as indicated by a solid line with a machining unit U1 made up of parts P0 (line segment ELP0) of machining orders #1 to #3.
- the NC unit 31 associates a slit machining path Ps2 as indicated by a dashed line with a machining unit U2 made up of parts P0 (line segment ELP0) of machining orders #4 to #7.
- the NC unit 31 associates the slit machining path Ps3 as indicated by the dashed line with the machining unit U3 consisting of parts P0 (line segment ELP0) of machining orders #8 to #10.
- the lines are displayed separately.
- the NC device 31 associates the slit machining path Ps0 existing between two machining units with the machining unit earlier in the machining order. Therefore, the slit processing paths Ps1 to Ps3 are associated with the processing units U1 to U3, respectively.
- the NC device 31 deletes the ends of the respective slit processing paths Ps1 to Ps3 on the starting and terminal sides by a predetermined distance.
- the predetermined distance is 10 mm as an example.
- FIG. 17 is a diagram showing a nesting image 108 showing a state in which the end portions on the starting end side and the terminal end side of each of the slitting paths Ps1 to Ps3 are deleted by a predetermined distance.
- the slit processing paths Ps1 to Ps3 are formed by slitting paths Ps1' to Ps3' by removing the ends of the starting end side and the terminal end side by a predetermined distance.
- n is a natural number of 2 or more, and that multiple parts are divided into n processing units in order of processing.
- Each work unit contains one or more parts.
- the slit machining paths are associated with (n-1) machining units of the n machining units excluding the last machining unit. That is, there are (n-1) slitting paths.
- the final (n ⁇ 1) slit machining paths in the nesting image 108 are slit machining paths that do not cut the sheet metal W by a predetermined distance from the edge of the sheet metal W and are not connected to other slit machining paths. be.
- the laser processing machine 30 may be provided with a plurality of clamps for integrally fixing the support table and the sheet metal W to the support table that supports the sheet metal W.
- the slit processing paths Ps1′ to Ps3′ which do not cut the sheet metal W by a predetermined distance from the end of the sheet metal W, are because the sheet metal W is held by clamps to suppress the displacement of the sheet metal W, and the displacement of the sheet metal W is reduced. This is to prevent deterioration of accuracy. For example, when the portion of the processing unit separated by slitting is gripped by a clamp, it is possible to cut the sheet metal W up to the end without leaving an uncut portion at the end of the sheet metal W.
- the NC device 31 sets the processing order of the 14 parts P0 (line segments ELP0) and the slit processing paths Ps1' to Ps3'.
- the NC unit 31 sets the order of machining so that the machining of each of the slit machining paths Ps1' to Ps3' is executed immediately after each of the machining units U1 to U3.
- FIG. 18 is a diagram showing a nesting image 109 in which the 14 parts P0 (line segments ELP0) and the slit machining paths Ps1' to Ps3' are set in the order of machining, which are set by the NC device 31.
- FIG. 18 is a diagram showing a nesting image 109 in which the 14 parts P0 (line segments ELP0) and the slit machining paths Ps1' to Ps3' are set in the order of machining, which are set by the NC device 31.
- the NC device 31 sets the slit machining path Ps1' next to the part P0 (line segment ELP0) in the machining order #1 to #3 in the machining order #4. As a result, the NC unit 31 shifts the part P0 (line segment ELP0), which was initially in the processing order #4 to #7, to the processing order #5 to #8, and then shifts the slit processing path Ps2' to the processing order #9. set.
- the NC unit 31 shifts the part P0 (line segment ELP0), which was originally in the processing order #8 to #10, to the processing order #10 to #12, and then sets the slit processing path Ps3' to the processing order #13. do. Finally, the NC device 31 shifts the part P0, which was originally in the machining order #11 to #14, to the machining order #14 to #17.
- the operator operates the operation unit 34 to set the slit processing path Ps1'. to Ps3' may be changed.
- the operator changes the position of the slit machining path at least two machining units are changed.
- a change (change) in the machining unit due to a change in the position of the slit machining path also corresponds to a set value manually set by the operator for the machining unit. Note that if the position of the slit machining path is changed, it is necessary to reset the order of machining.
- FIG. 19 is a diagram showing a nesting image 110 according to a new machining program reconstructed by the NC device 31 based on the machining order shown in FIG.
- the laser processing machine 30 processes the sheet metal W as follows.
- the laser processing machine 30 cuts one or more parts out of the plurality of parts nested in the sheet metal W by irradiating a laser beam as a first processing unit.
- the laser processing machine 30 cuts a crosspiece between one or more parts included in the first processing unit and an unprocessed part among a plurality of parts nested in the sheet metal W to the edge of the sheet metal W.
- a slit is formed in the cross piece by cutting the sheet metal W by irradiating a laser beam in a state where the sheet metal W is not cut by a predetermined distance from the part.
- the laser processing machine 30 cuts one or more parts out of the unprocessed parts by irradiating a laser beam as a second processing unit.
- the number of parts included in each machining unit of the first and second machining units is such that the cumulative machining time of one or more parts included in each machining unit is within the preset cumulative machining time. It is better to set The preset cumulative machining time is preferably set within the time required for the sheet metal W to warp.
- the laser processing machine 30 cuts the sheet metal W so as to produce three parts P0 in processing order #1 to #3. Then, an accumulated processing time close to the time required for the sheet metal W to warp has elapsed.
- the laser processing machine 30 forms a slit in the sheet metal W by cutting the slit processing path Ps1' of processing order #4. This reduces or prevents the sheet metal W from warping. By leaving the ends of the metal sheet W uncut so as not to completely cut the regions of the three parts P0 in the order of processing #1 to #3, problems such as misalignment of the metal sheet W can be prevented.
- the laser processing machine 30 cuts the sheet metal W so as to produce four parts P0 of processing order #5 to #8. Then, an accumulated processing time close to the time required for the sheet metal W to warp has elapsed.
- the laser processing machine 30 forms a slit in the sheet metal W by cutting the slit processing path Ps2' of processing order #9. As a result, warping of the metal sheet W is reduced or prevented, and problems such as misalignment of the metal sheet W are prevented.
- the laser processing machine 30 cuts the sheet metal W so as to produce three parts P0 of processing order #10 to #12. Then, an accumulated processing time close to the time required for the sheet metal W to warp has elapsed.
- the laser processing machine 30 forms a slit in the sheet metal W by cutting the slit processing path Ps3' of the processing order #13. As a result, warping of the metal sheet W is reduced or prevented, and problems such as misalignment of the metal sheet W are prevented. Finally, the laser processing machine 30 cuts the sheet metal W so as to produce four parts P0 of processing orders #14 to #17.
- the amount of warpage of the sheet metal W can be reduced. Since the warp amount of the sheet metal W is reduced, it is possible to reduce the deterioration of the dimensional accuracy of the parts manufactured by cutting the sheet metal W and the problem of the component colliding with the sheet metal.
- FIG. 20 is a diagram showing an example of dividing 14 parts P0 into 5 processing units.
- a processing unit U1 is composed of three parts P0 of processing orders #1 to #3.
- the processing unit U2 consists of three parts P0 of processing orders #4 to #6.
- the processing unit U3 consists of two parts P0 of processing orders #7 and #8.
- a processing unit U4 consists of two parts P0 of processing orders #9 and #10.
- the machining unit U5 consists of four parts P0 of machining order #11 to #14.
- FIG. 21 is a nesting image showing a state in which a slit machining path Ps0 adjacent to each machining unit is associated with each machining unit when 14 parts P0 are divided into five machining units as shown in FIG. 107 is a diagram showing 107.
- FIG. 21 is a nesting image showing a state in which a slit machining path Ps0 adjacent to each machining unit is associated with each machining unit when 14 parts P0 are divided into five machining units as shown in FIG. 107 is a diagram showing 107.
- the NC unit 31 associates a slit machining path Ps1 as indicated by a solid line with a machining unit U1 made up of parts P0 (line segments ELP0) in machining orders #1 to #3.
- the NC unit 31 associates a slit machining path Ps2 as indicated by a dashed line with a machining unit U2 made up of parts P0 (line segments ELP0) of machining orders #4 to #6.
- the NC unit 31 associates the slit machining path Ps3 as indicated by the dotted line with the machining unit U3 made up of parts P0 (line segment ELP0) of machining orders #7 and #8.
- the NC unit 31 associates a slit machining path Ps4 as indicated by a dashed line with a machining unit U4 made up of parts P0 (line segment ELP0) of machining orders #9 and #10.
- the slit machining paths Ps1 to Ps4 form a closed path surrounding parts P0 of machining orders #7 and #8.
- FIG. 22 is a diagram showing a nesting image 108 showing a state in which the end portions on the starting end side and the terminal end side of each of the slit processing paths Ps1 to Ps4 are deleted by a predetermined distance.
- the slit processing paths Ps1 to Ps4 are formed into slit processing paths Ps1' to Ps4' by removing the ends of the starting end side and the terminal end side by a predetermined distance. Both ends of the slitting path Ps3 are removed by a predetermined distance to form a slitting path Ps3' separated from the slitting paths Ps1' and Ps2'.
- FIG. 23 is a diagram showing a nesting image 109 in which the 14 parts P0 (line segment ELP0) and the slit machining paths Ps1' to Ps4' are set by the NC device 31 in order of machining.
- the processing order of the 14 parts P0 (line segment ELP0) and the slit processing paths Ps1' to Ps4' is as shown in FIG.
- FIG. 24 is a diagram showing a nesting image 110 according to a new machining program reconfigured by the NC device 31 based on the machining order shown in FIG.
- the laser processing machine 30 cuts the sheet metal W so as to produce three parts P0 in the processing order #1 to #3, and then cuts the slit processing path Ps1′ in the processing order #4 to form slits in the sheet metal W. do.
- the laser processing machine 30 cuts the sheet metal W so as to produce three parts P0 in the processing order #5 to #7, and then cuts the slit processing path Ps2′ in the processing order #8 to form slits in the sheet metal W. do.
- the laser processing machine 30 cuts the sheet metal W so as to produce two parts P0 in the processing order #9 and #10, and then cuts the slit processing path Ps3′ in the processing order #11 to cut the sheet metal W. Form a slit.
- the laser processing machine 30 cuts the sheet metal W so as to produce two parts P0 in the processing order #12 and #13, and then cuts the slit processing path Ps4' in the processing order #14 to form a slit in the sheet metal W. do.
- the laser processing machine 30 cuts the sheet metal W so as to produce four parts P0 of processing order #15 to #18.
- the NC device 31 reconstructs the machining program created by the CAM device 20 to create a new reconstructed machining program.
- the NC device 31 controls the processing machine main body 32 to process the sheet metal W based on the new processing program.
- the CAM device 20 may create a machining program that presets the slit machining paths Ps1' to Ps3' or Ps1' to Ps4'.
- the NC device 31 controls the processing machine main body 32 to process the sheet metal W based on the processing program created by the CAM device 20 .
- the CAM device 20 creates a nesting image and sets the processing order of a plurality of parts. After setting the processing order of the plurality of parts, the CAM device 20 processes a group of parts P0 within the time until warpage occurs in the sheet metal W based on conditions such as the cumulative processing time of the plurality of parts P0. As a unit, multiple parts are divided into multiple processing units. Subsequent processing is the same as in FIGS. 3A and 3B, and a new machining program is created in step S18.
- the present invention is not limited to one or more embodiments described above, and can be modified in various ways without departing from the gist of the present invention.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Laser Beam Processing (AREA)
Abstract
A laser machine tool that cuts at least one part among a plurality of parts nested on a sheet metal, cutting same as a first machining unit and by laser beam irradiation. The laser machine tool uses a laser beam to cut a crosspiece to a prescribed distance from the end of the sheet metal, without cutting the sheet metal, and forms a slit in the crosspiece, said crosspiece being between at least one part included in the first machining unit and an unmachined part among the plurality of parts nested on the sheet metal. A laser machine tool that cuts at least one part among the unmachined parts, by laser beam irradiation, as a second machining unit.
Description
本開示は、レーザ加工方法、加工プログラム作成方法、及びレーザ加工機に関する。
The present disclosure relates to a laser processing method, a processing program creation method, and a laser processing machine.
レーザ加工機は、レーザ発振器より射出されたレーザビームを板金に照射して板金を切断し、所定の形状を有する複数のパーツを作製することがある。近年、レーザ発振器として、高出力のファイバレーザ発振器が広く用いられている。
A laser processing machine may irradiate a sheet metal with a laser beam emitted from a laser oscillator to cut the sheet metal to produce multiple parts with a predetermined shape. In recent years, high-power fiber laser oscillators have been widely used as laser oscillators.
ファイバレーザ発振器より射出されたレーザビームのように高出力のレーザビームを板金に照射して切断すると、低出力のレーザビームを板金に照射して切断する場合と比較して、板金への入熱量は各段に多くなる。従って、レーザ発振器としてファイバレーザ発振器を備えるレーザ加工機は、板金を切断する切断速度が速く、短時間でパーツを作製することが可能である。
When sheet metal is cut by irradiating it with a high-power laser beam, such as a laser beam emitted from a fiber laser oscillator, the amount of heat input to the sheet metal increases compared to cutting by irradiating the sheet metal with a low-power laser beam. increases with each step. Therefore, a laser processing machine equipped with a fiber laser oscillator as a laser oscillator has a high cutting speed for cutting sheet metal, and can produce parts in a short time.
ところが、レーザ加工機が、1枚の板金から小さいパーツまたは穴が多いパーツを多数作製するよう板金を加工すると、板金が大きく反ることがある。典型的には、板金は、板金の面内の中央付近を頂点として、周辺に向かうほど下方に反る。板金が大きく反ると、パーツの寸法精度が低下したり、加工ヘッドまたはノズルチェンジャ等の構成部品が沿った板金に衝突したりする不具合が発生することがある。そこで、ファイバレーザ発振器等の高出力のレーザビームを射出するレーザ発振器を用いて板金を加工しても、板金の反り量を低減させることが求められる。
However, when a laser processing machine processes sheet metal so that many small parts or parts with many holes are produced from one sheet metal, the sheet metal may warp greatly. Typically, sheet metal warps downward toward the periphery, with the vertex near the center of the plane of the sheet metal. If the sheet metal is greatly warped, the dimensional accuracy of the parts may be lowered, and a problem may occur such that the component such as the processing head or the nozzle changer collides with the sheet metal along which it is bent. Therefore, even if a laser oscillator such as a fiber laser oscillator that emits a high-power laser beam is used to process the sheet metal, it is required to reduce the amount of warpage of the sheet metal.
1またはそれ以上の実施形態の第1の態様によれば、板金にネスティングされている複数のパーツのうちの1またはそれ以上のパーツを第1の加工単位としてレーザビームの照射により切断し、前記第1の加工単位に含まれる1またはそれ以上のパーツと、前記板金にネスティングされている複数のパーツのうちの未加工のパーツとの間の桟を、前記板金の端部から所定の距離だけ前記板金を切断しない状態でレーザビームの照射により切断して、前記桟にスリットを形成し、前記未加工のパーツのうちの1またはそれ以上のパーツを第2の加工単位としてレーザビームの照射により切断するレーザ加工方法が提供される。
According to a first aspect of one or more embodiments, one or more parts among a plurality of parts nested in sheet metal are cut as a first processing unit by irradiation with a laser beam, and A crosspiece between one or more parts included in the first processing unit and an unprocessed part among the plurality of parts nested in the sheet metal is removed by a predetermined distance from the end of the sheet metal. The sheet metal is cut by irradiation with a laser beam in an uncut state to form a slit in the crosspiece, and one or more of the unprocessed parts are used as a second processing unit by irradiation with a laser beam. A laser processing method for cutting is provided.
1またはそれ以上の実施形態の第1の態様は、第1の加工単位の加工に続けて、第1の加工単位に含まれる1またはそれ以上のパーツと、板金にネスティングされている複数のパーツのうちの未加工のパーツとの間の桟にスリットを形成するので、板金の反り量を低減させることができる。板金の反り量が低減するので、板金を切断して作製するパーツの寸法精度の低下、及び構成部品が板金に衝突する不具合を低減させることができる。
A first aspect of one or more embodiments is that following machining of the first work unit, one or more parts included in the first work unit and a plurality of parts nested in sheet metal. Since the slit is formed in the crosspiece between the unprocessed parts, the warp amount of the sheet metal can be reduced. Since the warp amount of the sheet metal is reduced, it is possible to reduce the deterioration of the dimensional accuracy of the parts manufactured by cutting the sheet metal and the problem of the component colliding with the sheet metal.
1またはそれ以上の実施形態の第2の態様によれば、nを2以上の自然数とし、板金にネスティングされている複数のパーツを、前記複数のパーツの加工順に、1またはそれ以上のパーツを含むn個の加工単位に分割し、前記n個の加工単位の隣接する加工単位の間に、前記板金の端部から所定の距離だけ前記板金を切断せず、他のスリット加工経路と連結していないスリット加工経路であって、前記n個の加工単位のうちの最後に加工される加工単位を除く(n-1)個の加工単位における各加工単位に対応付けられる(n-1)個のスリット加工経路を設定し、前記(n-1)個の加工単位における各加工単位の加工に続けて、前記各加工単位に対応付けられるスリット加工経路を加工するよう、前記複数のパーツと前記(n-1)個のスリット加工経路との加工順を設定し、設定された加工順で前記板金を切断する加工プログラムを作成する加工プログラム作成方法が提供される。
According to a second aspect of the one or more embodiments, n is a natural number of 2 or more, and the plurality of parts nested in the sheet metal are divided into one or more parts in order of machining of the plurality of parts. between adjacent processing units of the n processing units, the sheet metal is not cut by a predetermined distance from the end of the sheet metal, and is connected to another slit processing path. (n-1) pieces associated with each processing unit in (n-1) processing units excluding the processing unit to be processed last of the n processing units, which are not slit processing paths , and following the processing of each processing unit in the (n-1) processing units, the plurality of parts and the There is provided a machining program creating method for setting a machining order with (n−1) slit machining paths and creating a machining program for cutting the sheet metal in the set machining order.
1またはそれ以上の実施形態の第2の態様は、各加工単位の加工に続けて各加工単位に対応付けられるスリット加工経路を切断する加工プログラムを作成するので、レーザ加工機が板金の加工するときの板金の反り量を低減させることができる。板金の反り量が低減するので、板金を切断して作製するパーツの寸法精度の低下、及び構成部品が板金に衝突する不具合を低減させることができる。
A second aspect of one or more embodiments creates a processing program for cutting a slit processing path associated with each processing unit following processing of each processing unit, so that the laser processing machine can process sheet metal. It is possible to reduce the warp amount of the sheet metal at the time. Since the warp amount of the sheet metal is reduced, it is possible to reduce the deterioration of the dimensional accuracy of the parts manufactured by cutting the sheet metal and the problem of the component colliding with the sheet metal.
1またはそれ以上の実施形態の第3の態様によれば、板金を切断する加工機本体と、加工プログラムに基づいて前記加工機本体を制御するNC装置とを備え、前記NC装置は、前記板金より複数のパーツを作製するために予め作成された加工プログラムに基づいて、nを2以上の自然数とし、前記複数のパーツを、前記複数のパーツの加工順に、予め設定された累積加工時間に基づいて1またはそれ以上のパーツを含むn個の加工単位に分割し、前記n個の加工単位の隣接する加工単位の間に、前記板金の端部から所定の距離だけ前記板金を切断せず、他のスリット加工経路と連結していないスリット加工経路であって、前記n個の加工単位のうちの最後に加工される加工単位を除く(n-1)個の加工単位における各加工単位に対応付けられる(n-1)個のスリット加工経路を設定し、前記(n-1)個の加工単位における各加工単位の加工に続けて、前記各加工単位に対応付けられるスリット加工経路を加工するよう、前記複数のパーツと前記(n-1)個のスリット加工経路との加工順を設定し、前記予め作成された加工プログラムを、設定された前記複数のパーツと前記(n-1)個のスリット加工経路との加工順で前記板金を切断するよう再構成して、再構成された新たな加工プログラムを作成し、前記新たな加工プログラムに基づいて前記板金を切断するよう前記加工機本体を制御するレーザ加工機が提供される。
According to a third aspect of one or more embodiments, a processing machine body for cutting sheet metal and an NC device for controlling the processing machine body based on a processing program, the NC device cutting the sheet metal Based on a machining program created in advance to manufacture more parts, n is a natural number of 2 or more, and the plurality of parts are processed in the order of machining of the plurality of parts based on a preset cumulative machining time. dividing the sheet metal into n working units containing one or more parts, and not cutting the sheet metal a predetermined distance from the edge of the sheet metal between adjacent working units of the n working units; A slit machining path that is not connected to other slit machining paths and corresponds to each machining unit in (n−1) machining units excluding the last machining unit among the n machining units (n−1) slit machining paths to be attached are set, and following the machining of each machining unit in the (n−1) machining units, the slit machining paths associated with the respective machining units are machined. setting the machining order of the plurality of parts and the (n−1) number of slit machining paths, and executing the previously created machining program for the plurality of parts and the (n−1) number of slit machining paths. reconfigure to cut the sheet metal in the order of slit machining path and processing, create a reconfigured new processing program, and cut the sheet metal based on the new processing program, the processing machine body A laser processing machine is provided that controls the
1またはそれ以上の実施形態の第3の態様は、NC装置が新たな加工プログラム基づいて加工機本体を制御するので、加工機本体が板金の加工するときの板金の反り量を低減させることができる。板金の反り量が低減するので、板金を切断して作製するパーツの寸法精度の低下、及び構成部品が板金に衝突する不具合を低減させることができる。
A third aspect of one or more embodiments is that the NC unit controls the processing machine main body based on a new processing program, so that the amount of sheet metal warpage when the processing machine main body processes the sheet metal can be reduced. can. Since the warp amount of the sheet metal is reduced, it is possible to reduce the deterioration of the dimensional accuracy of the parts manufactured by cutting the sheet metal and the problem of the component colliding with the sheet metal.
1またはそれ以上の実施形態のレーザ加工方法、加工プログラム作成方法、及びレーザ加工機によれば、板金の反り量を低減させることができ、板金を切断して作製するパーツの寸法精度の低下、及び構成部品が板金に衝突する不具合を低減させることができる。
According to the laser processing method, the processing program creation method, and the laser processing machine of one or more embodiments, it is possible to reduce the warp amount of the sheet metal, and reduce the dimensional accuracy of the parts produced by cutting the sheet metal. Also, it is possible to reduce the problem of the component colliding with the sheet metal.
以下、1またはそれ以上の実施形態のレーザ加工方法、加工プログラム作成方法、及びレーザ加工機について、添付図面を参照して説明する。
A laser processing method, a processing program creation method, and a laser processing machine according to one or more embodiments will be described below with reference to the accompanying drawings.
図1は、1またはそれ以上の実施形態のレーザ加工方法を実行するレーザ加工機、1またはそれ以上の実施形態の加工プログラム作成方法を実行するレーザ加工システム、1またはそれ以上の実施形態のレーザ加工機を示すブロック図である。まず、図1を用いて、レーザ加工システムの全体的な構成例を説明する。
FIG. 1 shows a laser processing machine that executes a laser processing method of one or more embodiments, a laser processing system that executes a processing program creation method of one or more embodiments, and a laser of one or more embodiments. It is a block diagram showing a processing machine. First, with reference to FIG. 1, an overall configuration example of a laser processing system will be described.
図1において、CAD(Computer Aided Design)機器10は1または複数のパーツの図形データを作成する。CAD機器10は、板金に1または複数のパーツをネスティングした画像データを作成して、CAM(Computer Aided Manufacturing)機器20に供給する。CAD機器10は、CADプログラムを実行するコンピュータ機器で構成される。CAM機器20は、入力された画像データに基づいて、板金より1または複数のパーツを切断するための加工プログラムを作成する。CAM機器20は、CAMプログラムを実行するコンピュータ機器で構成される。CAM機器20には、表示部21及び操作部22が接続されている。操作部22は、表示部21と一体化されたタッチパネルであってもよい。CAD機器10とCAM機器20とが1つのコンピュータ機器で構成され、コンピュータ機器がCAD/CAM機器として機能してもよい。
In FIG. 1, a CAD (Computer Aided Design) device 10 creates graphic data for one or more parts. The CAD equipment 10 creates image data in which one or more parts are nested in a sheet metal, and supplies the image data to a CAM (Computer Aided Manufacturing) equipment 20 . The CAD equipment 10 is composed of computer equipment that executes a CAD program. The CAM device 20 creates a machining program for cutting one or more parts from the sheet metal based on the input image data. The CAM equipment 20 is composed of computer equipment that executes a CAM program. A display unit 21 and an operation unit 22 are connected to the CAM device 20 . The operation unit 22 may be a touch panel integrated with the display unit 21 . The CAD device 10 and the CAM device 20 may be composed of one computer device, and the computer device may function as the CAD/CAM device.
レーザ加工機30は、板金にレーザビームを照射して板金を切断する加工機本体32と、加工機本体32を制御するNC(Numerical Control)装置31と、NC装置31に接続された表示部33及び操作部34を有する。加工機本体32はファイバレーザ発振器を含む。操作部34は、表示部33と一体化されたタッチパネルであってもよい。NC装置31は、CAM機器20によって作成された加工プログラムに基づいて加工機本体32を制御する。後述するように、NC装置31は、CAM機器20によって予め作成された加工プログラムを再構成して、再構成された新たな加工プログラムに基づいて加工機本体32を制御することがある。
The laser processing machine 30 includes a processing machine body 32 that irradiates a sheet metal with a laser beam to cut the sheet metal, an NC (Numerical Control) device 31 that controls the processing machine body 32, and a display unit 33 connected to the NC device 31. and an operation unit 34 . The processing machine body 32 includes a fiber laser oscillator. The operation unit 34 may be a touch panel integrated with the display unit 33 . The NC device 31 controls the machine body 32 based on the machining program created by the CAM device 20 . As will be described later, the NC device 31 may reconfigure a machining program created in advance by the CAM device 20 and control the processing machine main body 32 based on the reconfigured new machining program.
CAM機器20によって作成された加工プログラムが図示していないデータベースに記憶され、NC装置31がデータベースより加工プログラムを読み出してもよい。
A machining program created by the CAM device 20 may be stored in a database (not shown), and the NC unit 31 may read the machining program from the database.
図2は、図1におけるCAM機器20が作成する加工プログラムの一例を部分的に示す図である。加工プログラムはGコード等の機械制御コードによって構成されている。図2に示すように、加工プログラムは、パーツP01を加工するためのコード群と、パーツP02を加工するためのコード群とを含む。加工プログラムは、パーツごとにコメントで区切られている。加工プログラムには、各パーツがサブプログラムで表現されていてもよい。
FIG. 2 is a diagram partially showing an example of a machining program created by the CAM device 20 in FIG. The machining program is composed of machine control code such as G code. As shown in FIG. 2, the machining program includes a code group for machining the part P01 and a code group for machining the part P02. The machining program is separated by comments for each part. Each part may be represented by a subprogram in the machining program.
以下、1またはそれ以上の実施形態のレーザ加工方法、加工プログラム作成方法、及びレーザ加工機を具体的に説明する。NC装置31は1またはそれ以上の実施形態の加工プログラム作成方法を実行する。NC装置31は、CAM機器20によって作成された加工プログラムを再構成して、再構成された新たな加工プログラムを作成する。NC装置31は、板金の反り量を低減させることができる加工プログラムを作成する加工プログラム作成装置である。1またはそれ以上の実施形態のレーザ加工機は、NC装置31が新たな加工プログラムに基づいて板金を加工するよう加工機本体32を制御するレーザ加工機30である。1またはそれ以上の実施形態のレーザ加工方法は、レーザ加工機30で実行される。
A laser processing method, a processing program creation method, and a laser processing machine according to one or more embodiments will be specifically described below. The NC device 31 executes the machining program creation method of one or more embodiments. The NC device 31 reconstructs the machining program created by the CAM device 20 to create a new reconstructed machining program. The NC device 31 is a machining program creation device that creates a machining program capable of reducing the amount of sheet metal warpage. A laser processing machine of one or more embodiments is a laser processing machine 30 in which an NC device 31 controls a processing machine body 32 to process sheet metal based on a new processing program. The laser processing method of one or more embodiments is performed on laser processing machine 30 .
CAM機器20が1またはそれ以上の実施形態の加工プログラム作成方法を実行してもよい。CAM機器20は、板金の反り量を低減させることができる加工プログラムを作成する加工プログラム作成装置であってもよい。1またはそれ以上の実施形態のレーザ加工機は、NC装置31が、CAM機器20が板金の反り量を低減させるように作成した加工プログラムに基づいて板金を加工するよう加工機本体32を制御するレーザ加工機30であってもよい。
The CAM device 20 may execute the machining program creation method of one or more embodiments. The CAM device 20 may be a machining program creation device that creates a machining program capable of reducing the amount of sheet metal warpage. In one or more embodiments of the laser processing machine, the NC device 31 controls the processing machine main body 32 so as to process the sheet metal based on the processing program created by the CAM device 20 so as to reduce the warp amount of the sheet metal. It may be the laser processing machine 30 .
図3Aは、1またはそれ以上の実施形態の加工プログラム作成方法で実行される処理を示す部分的なフローチャートである。図3Bは、図3Aに続く部分的なフローチャートである。図4~図24を参照しながら、1またはそれ以上の実施形態の加工プログラム作成方法が実行する処理を説明する。図3A及び図3Bは、NC装置31がコンピュータプログラムを実行することによってなされる処理である。
FIG. 3A is a partial flowchart illustrating the processing performed in the machining program creation method of one or more embodiments. FIG. 3B is a partial flowchart following FIG. 3A. The processing performed by the machining program creation method of one or more embodiments will be described with reference to FIGS. 4-24. 3A and 3B show processing performed by the NC unit 31 executing a computer program.
図3Aにおいて、NC装置31は、ステップS1にて、加工プログラムに基づいてネスティング画像を作成して、ネスティング画像を表示部33に表示する。図4は、図1におけるNC装置31が表示部33に表示するネスティング画像の一例を示す図である。ネスティング画像は、板金W(図5及び図6に図示)に複数のパーツがネスティングされた状態を示す描画線分である。図4に示すネスティング画像101は、板金Wの外形線を示す板金画像Wiに切断すべきパーツを配置した画像である。
In FIG. 3A, the NC device 31 creates a nesting image based on the processing program and displays the nesting image on the display unit 33 in step S1. FIG. 4 is a diagram showing an example of a nesting image displayed on the display section 33 by the NC device 31 in FIG. The nesting image is drawn line segments showing a state in which a plurality of parts are nested in the sheet metal W (shown in FIGS. 5 and 6). A nesting image 101 shown in FIG. 4 is an image in which parts to be cut are arranged on a sheet metal image Wi showing the outline of the sheet metal W. As shown in FIG.
図4は、板金Wより円形のパーツP0を14個作製するネスティング画像を示す図である。各パーツP0には後述するジョイントが存在することから、非閉形状の線分で表されている。図4以降の図面において、#1、#2…は加工順を示す。図4に示す#1~#14で示す加工順は一例である。板金Wより作製するパーツは全て同じ形状、または同じ大きさでなくてもよい。作製するパーツの形状と大きさは任意であり、形状または大きさが異なる複数のパーツの各パーツの個数も任意である。
FIG. 4 is a diagram showing a nesting image in which 14 circular parts P0 are produced from the sheet metal W. Since each part P0 has a joint, which will be described later, it is represented by a non-closed line segment. In the drawings after FIG. 4, #1, #2, . . . indicate the processing order. The order of processing indicated by #1 to #14 shown in FIG. 4 is an example. The parts made from sheet metal W do not all have the same shape or size. The shape and size of the parts to be manufactured are arbitrary, and the number of each part of a plurality of parts having different shapes or sizes is also arbitrary.
図5は、加工機本体32が備える加工ヘッド321を概念的に示す部分側面図である。加工ヘッド321の下端部にはノズル322が装着されている。加工ヘッド321は、一点鎖線で示すレーザビームをノズル322の先端に形成された開口より射出して、板金Wを切断する。
FIG. 5 is a partial side view conceptually showing the processing head 321 provided in the processing machine main body 32. FIG. A nozzle 322 is attached to the lower end of the processing head 321 . The processing head 321 cuts the sheet metal W by emitting a laser beam indicated by a dashed line from an opening formed at the tip of the nozzle 322 .
レーザ加工機30は、加工ヘッド321よりレーザビームを板金Wに照射して各パーツP0のアプローチApを切断する。続けて、レーザ加工機30は、各パーツP0の外形線に沿って終点Epまで板金Wを切断することによって各パーツP0を作製する。アプローチApのパーツP0側の端部と、アプローチApと離隔している終点Epとの間がジョイントとなる。
The laser processing machine 30 irradiates the sheet metal W with a laser beam from the processing head 321 to cut the approach Ap of each part P0. Subsequently, the laser processing machine 30 cuts the sheet metal W to the end point Ep along the outline of each part P0 to produce each part P0. A joint is formed between the end of the approach Ap on the side of the part P0 and the end point Ep separated from the approach Ap.
図6は、レーザ加工機30が14個のパーツP0を作製するよう板金Wを切断し、各パーツP0のジョイントを切断して各パーツP0を取り外した状態を示す平面図である。板金Wには、14個のパーツP0に対応する14個の開口HP0が形成される。このように、板金Wから複数のパーツが取り外された後の板金Wの端材はスケルトンと称される。
FIG. 6 is a plan view showing a state in which the laser processing machine 30 cuts the sheet metal W to produce 14 parts P0, cuts the joints of each part P0, and removes each part P0. The sheet metal W is formed with 14 openings HP0 corresponding to the 14 parts P0. In this way, the offcuts of the sheet metal W from which a plurality of parts have been removed are called a skeleton.
図3Aに戻り、NC装置31は、ステップS2にて、板金Wより複数のパーツを作製するときの加工順と累積加工時間とに基づいて、複数のパーツを複数の加工単位に分割する。
Returning to FIG. 3A, in step S2, the NC unit 31 divides a plurality of parts into a plurality of processing units based on the processing order and cumulative processing time when manufacturing a plurality of parts from the sheet metal W.
Elpをレーザビームによる入熱エネルギ、Ecrを酸化反応によるエネルギとすると、金属加工に必要なエネルギEmは式(1)で表すことができる。
Em=Elp+Ecr …(1)
レーザビームによる入熱エネルギElpは、金属材料へのレーザビームの吸収率Aと、そのときのレーザビームの加工(切断)への寄与度η、レーザ出力P(W(J/s))の積である式(2)で表すことができる。
Elp=A×η×P …(2) Assuming that Elp is the heat input energy from the laser beam and Ecr is the energy from the oxidation reaction, the energy Em required for metal processing can be expressed by Equation (1).
Em = Elp + Ecr (1)
The input heat energy Elp of the laser beam is the product of the absorption rate A of the laser beam to the metal material, the contribution η of the laser beam to processing (cutting) at that time, and the laser output P (W (J/s)). It can be represented by the formula (2).
Elp=A×η×P (2)
Em=Elp+Ecr …(1)
レーザビームによる入熱エネルギElpは、金属材料へのレーザビームの吸収率Aと、そのときのレーザビームの加工(切断)への寄与度η、レーザ出力P(W(J/s))の積である式(2)で表すことができる。
Elp=A×η×P …(2) Assuming that Elp is the heat input energy from the laser beam and Ecr is the energy from the oxidation reaction, the energy Em required for metal processing can be expressed by Equation (1).
Em = Elp + Ecr (1)
The input heat energy Elp of the laser beam is the product of the absorption rate A of the laser beam to the metal material, the contribution η of the laser beam to processing (cutting) at that time, and the laser output P (W (J/s)). It can be represented by the formula (2).
Elp=A×η×P (2)
板金Wとして鉄系の金属材料を加工するときには、アシストガスとして酸素が用いられるのが一般的である。アシストガスとして酸素が用いられると、板金Wの加工時に酸化による反応エネルギが付加される。そのときの単位時間当たりの発熱量Q(J/s)は式(3)で表すことができる。式(3)において、Vはカッティングフロントにおける金属材料の除去体積(mm3)、ρは材料密度(g/mm3)、Mは原子量(g/mol)、ΔEは酸化による反応熱(J/s)、tは時間(s)である。
Q={(V×ρ)/M}×(ΔE/t) …(3) When processing a ferrous metal material as the sheet metal W, oxygen is generally used as an assist gas. When oxygen is used as the assist gas, reaction energy due to oxidation is added when the sheet metal W is processed. The calorific value Q (J/s) per unit time at that time can be expressed by Equation (3). In equation (3), V is the removed volume of the metal material at the cutting front (mm 3 ), ρ is the material density (g/mm 3 ), M is the atomic weight (g/mol), ΔE is the heat of reaction due to oxidation (J/ s) and t is the time (s).
Q={(V×ρ)/M}×(ΔE/t) (3)
Q={(V×ρ)/M}×(ΔE/t) …(3) When processing a ferrous metal material as the sheet metal W, oxygen is generally used as an assist gas. When oxygen is used as the assist gas, reaction energy due to oxidation is added when the sheet metal W is processed. The calorific value Q (J/s) per unit time at that time can be expressed by Equation (3). In equation (3), V is the removed volume of the metal material at the cutting front (mm 3 ), ρ is the material density (g/mm 3 ), M is the atomic weight (g/mol), ΔE is the heat of reaction due to oxidation (J/ s) and t is the time (s).
Q={(V×ρ)/M}×(ΔE/t) (3)
加工中に発生する酸化鉄の大半がFeOである。反応熱ΔEは酸化鉄FeOが生成されるときのエネルギ量と等しいとすると、257kJ/molとなる。
Most of the iron oxide generated during processing is FeO. Assuming that the reaction heat ΔE is equal to the energy amount when iron oxide FeO is produced, it is 257 kJ/mol.
これらを踏まえ、酸化反応によるエネルギEcrは、加工中の溶融金属の割合C、そのときのレーザビームの加工(切断)への寄与度ε、単位時間当たりの発熱量Qの積である式(4)で表すことができる。
Ecr=C×ε×Q …(4) Based on these, the energy Ecr due to the oxidation reaction is the product of the ratio C of the molten metal during processing, the contribution ε to the processing (cutting) of the laser beam at that time, and the amount of heat generated per unit time Q. ).
Ecr=C×ε×Q (4)
Ecr=C×ε×Q …(4) Based on these, the energy Ecr due to the oxidation reaction is the product of the ratio C of the molten metal during processing, the contribution ε to the processing (cutting) of the laser beam at that time, and the amount of heat generated per unit time Q. ).
Ecr=C×ε×Q (4)
板金Wの反りが大きく発生する板金Wに加わるエネルギを1000kJと想定し、以上の式に基づき、板金Wに加わるエネルギが1000kJに達する時間T(分)(即ち、板金Wに反りが発生するまでの時間)は、式(5)で表すことができる。
T=(1000000/Em)/60 …(5) Assuming that the energy applied to the sheet metal W at which the sheet metal W warps greatly is 1000 kJ, based on the above formula, the time T (minutes) required for the energy applied to the sheet metal W to reach 1000 kJ (that is, until the sheet metal W warps time) can be expressed by Equation (5).
T=(1000000/Em)/60 (5)
T=(1000000/Em)/60 …(5) Assuming that the energy applied to the sheet metal W at which the sheet metal W warps greatly is 1000 kJ, based on the above formula, the time T (minutes) required for the energy applied to the sheet metal W to reach 1000 kJ (that is, until the sheet metal W warps time) can be expressed by Equation (5).
T=(1000000/Em)/60 (5)
式(5)に基づき、板厚6.0mm~25.0mmの板金Wにおける反りが発生するまでの時間は、図7に示すとおりとなる。図7は、板金Wの板厚と、板金Wにレーザビームを照射して板金Wを切断するときの加工速度と、レーザ発振器が射出するレーザビームのレーザ出力とに応じた、板金Wに反りが発生するまでの時間を示す表である。図7に示す反りが発生するまでの時間は、理論的な計算値であり、各種の条件で変動する。各種の条件とは、例えば、板金Wの材質、または板金Wを冷却水で冷却しながら加工するか否か等である。
Based on the formula (5), the time until warping occurs in the sheet metal W with a thickness of 6.0 mm to 25.0 mm is as shown in FIG. FIG. 7 shows warping of the sheet metal W according to the thickness of the sheet metal W, the processing speed when the sheet metal W is cut by irradiating the sheet metal W with a laser beam, and the laser output of the laser beam emitted by the laser oscillator. is a table showing the time until the occurrence of The time until warpage occurs shown in FIG. 7 is a theoretically calculated value, and varies depending on various conditions. Various conditions include, for example, the material of the sheet metal W, or whether or not the sheet metal W is processed while being cooled with cooling water.
しかしながら、本発明者による検証によって、理論的な計算値と、板金Wを図6に示すように加工したときの実際に反りが発生するまでの時間とは大きくは乖離していないことが確認されている。
However, verification by the inventors of the present invention has confirmed that the theoretically calculated value does not deviate greatly from the actual warping time when the sheet metal W is processed as shown in FIG. ing.
NC装置31は、式(5)に基づく計算によって、板金Wと板金Wを切断するときの条件とに応じて、反りが発生するまでのおおよその時間を求めることができる。NC装置31は、板金Wと板金Wを切断するときの条件とに応じた反りが発生するまでの時間を保持する。
The NC unit 31 can obtain an approximate time until warping occurs according to the sheet metal W and the conditions for cutting the sheet metal W by calculation based on formula (5). The NC unit 31 holds the time until the warpage occurs according to the sheet metal W and the conditions for cutting the sheet metal W.
NC装置31は、14個のパーツP0を、複数のパーツP0の累積加工時間が板金Wに反りが発生するまでの時間以内となる1群のパーツP0を1つの加工単位として、14個のパーツP0を、複数の加工単位に分割する。図8は、14個のパーツP0を4つの加工単位に分割した例を示す図である。図8に示すように、NC装置31は、14個のパーツP0を加工単位U1~U4の4つの加工単位に分割したとする。加工単位U1は、加工順#1~#3の3つのパーツP0よりなる。加工単位U2は、加工順#4~#7の4つのパーツP0よりなる。加工単位U3は、加工順#8~#10の3つのパーツP0よりなる。加工単位U4は、加工順#11~#14の4つのパーツP0よりなる。
The NC unit 31 processes 14 parts P0 as one processing unit, which is a group of parts P0 in which the cumulative processing time of a plurality of parts P0 is within the time until the sheet metal W warps. P0 is divided into a plurality of processing units. FIG. 8 is a diagram showing an example in which 14 parts P0 are divided into 4 processing units. As shown in FIG. 8, it is assumed that the NC unit 31 divides 14 parts P0 into four processing units U1 to U4. A processing unit U1 is composed of three parts P0 of processing orders # 1 to #3. The machining unit U2 consists of four parts P0 of machining order # 4 to #7. The machining unit U3 consists of three parts P0 of machining order # 8 to #10. The machining unit U4 consists of four parts P0 of machining order # 11 to #14.
累積加工時間に基づいて複数のパーツP0を複数の加工単位に分割する代わりに、反りが発生する時間から計算した切断経路の長さに基づいて複数のパーツP0を複数の加工単位に分割してもよい。オペレータが操作部34を操作して、累積加工時間に基づいて複数の加工単位に分割したパーツP0を変更するとも可能である。同じ板金Wを複数枚加工する場合、オペレータが1枚目の板金Wの切断加工の反りの状態を確認し、より反りが少なくなるように、2枚目以降の板金Wの切断加工の際に加工単位を変更してもよい。
Instead of dividing the plurality of parts P0 into a plurality of processing units based on the cumulative processing time, the plurality of parts P0 are divided into a plurality of processing units based on the length of the cutting path calculated from the warpage time. good too. It is also possible for the operator to operate the operation unit 34 to change the part P0 divided into a plurality of processing units based on the cumulative processing time. When processing a plurality of sheets of the same sheet metal W, the operator checks the warping state of the cutting of the first sheet metal W, and cuts the second and subsequent sheet metals W so that the warp is reduced. You may change a processing unit.
オペレータが、表示部33に表示されているネスティング画像を見ながら操作部34を操作することによって加工単位を設定してもよいし、複数の加工単位の選択肢の中からいずれかの加工単位を選択してもよい。各加工単位は、加工単位に含まれる1またはそれ以上のパーツP0の個数が、板金Wに反りが発生するまでの時間以内に加工が完了する個数に設定するのがよい。
The operator may set the processing unit by operating the operation unit 34 while viewing the nesting image displayed on the display unit 33, or select one processing unit from a plurality of processing unit options. You may For each processing unit, it is preferable to set the number of one or more parts P0 included in the processing unit to the number that the processing is completed within the time until the sheet metal W warps.
このように、NC装置31が複数のパーツP0を複数の加工単位に分割するときに1つの加工単位を決めるための参照値は累積加工時間または経路長さであってもよいし、オペレータが手動で設定した設定値であってもよい。設定値はパーツP0の個数であってもよい。パーツP0の個数は一定値であってもよいし、切断加工の進行の程度に応じた変動値であってもよい。
Thus, when the NC unit 31 divides a plurality of parts P0 into a plurality of machining units, the reference value for determining one machining unit may be the cumulative machining time or the path length, or the operator may manually It may be a set value set in . The set value may be the number of parts P0. The number of parts P0 may be a constant value, or may be a variable value according to the progress of the cutting process.
図3Aに戻り、NC装置31は、ステップS3にて、加工プログラムを解析してジョイントの位置を特定する。上記のように、アプローチApと終点Epの間をジョイントの位置と特定することができる。ジョイントの位置のさらに具体的な特定方法は特許文献2に記載されているので、特定方法の説明を省略する。図9は、図4に示すネスティング画像101にNC装置31が特定したジョイントの位置をマークJtで示した状態を示す図である。図9~図18は、NC装置31が表示部33に表示する画像ではなく、NC装置31が実行する内部処理を示す概念図である。
Returning to FIG. 3A, in step S3, the NC device 31 analyzes the machining program and identifies the positions of the joints. As described above, the position of the joint can be specified between the approach Ap and the end point Ep. A more specific method of specifying the joint position is described in Patent Document 2, so the description of the specifying method is omitted. FIG. 9 is a diagram showing a state in which the positions of the joints specified by the NC device 31 are indicated by marks Jt in the nesting image 101 shown in FIG. 9 to 18 are conceptual diagrams showing internal processing executed by the NC device 31 rather than images displayed on the display unit 33 by the NC device 31. FIG.
NC装置31は、ステップS4にて、ジョイントを連結し、ステップS5にて、アプローチApと終点Epを削除する。図10は、ネスティング画像101におけるジョイントを連結した状態のネスティング画像102を示す図である。図11は、ネスティング画像102におけるアプローチApと終点Epを削除した状態のネスティング画像103を示す図である。図11に示すように、各ジョイントを連結し、アプローチApと終点Epを削除すると、パーツP0は円形の外形線で囲まれた閉形状の線分で表される。
The NC device 31 connects the joints in step S4, and deletes the approach Ap and the end point Ep in step S5. FIG. 10 is a diagram showing a nesting image 102 in which joints in the nesting image 101 are connected. FIG. 11 is a diagram showing a nesting image 103 in which the approach Ap and the end point Ep in the nesting image 102 are deleted. As shown in FIG. 11, when each joint is connected and the approach Ap and the end point Ep are deleted, the part P0 is represented by a closed line segment surrounded by circular outlines.
ところで、図4において、終点Epから円形のパーツP0の法線方向に向かう、アプローチApと平行の所定の長さの逃げが設定されることがある(特許文献2の図7B参照)。パーツP0に逃げが設定されている場合には、NC装置31はステップS4にてアプローチApと逃げを削除する。
By the way, in FIG. 4, a relief of a predetermined length parallel to the approach Ap may be set in the normal direction of the circular part P0 from the end point Ep (see FIG. 7B of Patent Document 2). If relief is set for part P0, NC unit 31 deletes approach Ap and relief in step S4.
NC装置31は、ステップS6にて、いずれかの閉形状の線分を選択する。なお、NC装置31は、ステップS6の処理を2回目以降繰り返すときには、選択済みの閉形状の線分を除く未選択の閉形状の線分の中からいずれかの閉形状の線分を選択する。NC装置31は、ステップS7にて、選択した閉形状が未判定の閉形状であるか否かを判定する。
The NC device 31 selects any closed line segment in step S6. When repeating the process of step S6 for the second time or later, the NC unit 31 selects any closed line segment from unselected closed line segments excluding selected closed line segments. . In step S7, the NC device 31 determines whether or not the selected closed shape is an undetermined closed shape.
ステップS7にて閉形状の線分が未判定であれば(YES)、NC装置31は、ステップS8にて、選択した閉形状の線分が他の閉形状の線分の内側に存在するか否かを判定する。選択した閉形状の線分が他の閉形状の線分の内側に存在すれば(YES)、NC装置31は、ステップS9にて、選択した閉形状の線分を破棄して、処理をステップS6に戻す。選択した閉形状の線分が他の閉形状の線分の内側に存在しなければ(NO)、NC装置31は、ステップS10にて、選択した閉形状の線分を残して、処理をステップS6に戻す。
If the closed-shaped line segment has not been determined in step S7 (YES), the NC unit 31 determines whether the selected closed-shaped line segment exists inside other closed-shaped line segments in step S8. determine whether or not If the selected closed-shaped line segment exists inside other closed-shaped line segments (YES), the NC unit 31 discards the selected closed-shaped line segment in step S9, and continues the process. Return to S6. If the selected closed-shaped line segment does not exist inside other closed-shaped line segments (NO), the NC unit 31 leaves the selected closed-shaped line segment in step S10 and continues the process. Return to S6.
ステップS8~S10の処理によって、各パーツの閉形状の線分の内側に穴を示す閉形状の線分が存在するときには、穴を示す閉形状の線分が破棄される。また、他のパーツの閉形状の線分の内側にパーツの閉形状の線分が存在するときには、内側に存在するパーツの閉形状の線分が破棄される。
By the processing of steps S8 to S10, when there is a closed line segment indicating a hole inside the closed line segment of each part, the closed line segment indicating the hole is discarded. Also, when the closed-shaped line segment of the part exists inside the closed-shaped line segment of another part, the closed-shaped line segment of the part existing inside is discarded.
パーツP0は、内側に穴を示す閉形状の線分もパーツの閉形状の線分も存在しないので、ステップS8~S10の処理を繰り返しても、図11に示すネスティング画像103のままである。ステップS8~S10の処理の後、NC装置31は、ネスティング画像103に基づいて、パーツP0の部分を開口にした、図6に示すスケルトンと同様のスケルトン画像を生成してもよい。
Since the part P0 does not have a closed-shaped line segment indicating a hole inside or a closed-shaped line segment of the part, even if the processing of steps S8 to S10 is repeated, the nesting image 103 shown in FIG. 11 remains. After the processing of steps S8 to S10, the NC device 31 may generate a skeleton image similar to the skeleton shown in FIG.
全ての閉形状の線分の選択が完了すると、ステップS7にて選択した閉形状が未判定の閉形状ではない(NO)と判定され、NC装置31は、処理を図3BのステップS11に移行させる。ネスティング画像103は、板金画像Wi内にパーツP0の各外形線で囲まれた閉形状の線分を含む。
When all closed shape line segments have been selected, it is determined that the closed shape selected in step S7 is not an undetermined closed shape (NO), and the NC unit 31 shifts the process to step S11 in FIG. 3B. Let The nesting image 103 includes closed-shaped line segments surrounded by outlines of the part P0 in the sheet metal image Wi.
図3Bにおいて、NC装置31は、ステップS11にて、閉形状の線分(またはスケルトン画像の開口)を、設定された幅だけ拡大する。図12は、図11に示すネスティング画像103に一点鎖線で示す拡大された閉形状の線分を付加した状態を示す図である。図12において、ネスティング画像103には拡大された円形の線分EL0が付加されている。NC装置31は、ステップS12にて、拡大された線分に基づいて新たに閉形状の線分を作成する。
In FIG. 3B, in step S11, the NC device 31 expands the closed line segment (or the opening of the skeleton image) by the set width. FIG. 12 is a diagram showing the nesting image 103 shown in FIG. 11 with an enlarged closed line segment indicated by a dashed line. In FIG. 12, the nesting image 103 is added with an enlarged circular line segment EL0. In step S12, the NC unit 31 creates a new closed line segment based on the enlarged line segment.
図13は、拡大された閉形状の線分に基づいて作成された閉形状の線分(またはスケルトン画像の開口)を含むネスティング画像104を示す図である。図13において、拡大された閉形状の線分ELP0が形成されている。閉形状の線分ELP0はパーツP0の外形線を広げた形状の線分に相当する。拡大されたパーツの閉形状の線分は、隣接する拡大されたパーツの閉形状の線分とは接触しないとする。
FIG. 13 is a diagram showing a nesting image 104 including closed-shaped line segments (or openings in skeleton images) created based on the enlarged closed-shaped line segments. In FIG. 13, an enlarged closed line segment ELP0 is formed. The line segment ELP0 of the closed shape corresponds to a line segment of a shape obtained by widening the outline of the part P0. It is assumed that the closed-shape line segments of the enlarged part do not touch adjacent closed-shape line segments of the enlarged part.
NC装置31は、ステップS13にて、最終的に残った全ての桟を通るスリット加工経路を作成する。図14は、図13に示すネスティング画像104に桟を通るスリット加工経路Psを付加した状態のネスティング画像105を示す図である。スリット加工経路Psは、桟の幅方向の中央、即ち、隣接する2つの線分ELP0から等距離となる位置に配置されている。
At step S13, the NC device 31 creates a slit machining path that passes through all the remaining crosspieces. FIG. 14 is a diagram showing a nesting image 105 in which a slit processing path Ps passing through crosspieces is added to the nesting image 104 shown in FIG. The slit processing path Ps is arranged at the center of the crosspiece in the width direction, that is, at a position equidistant from two adjacent line segments ELP0.
NC装置31がパーツP0の閉形状の線分を線分EL0に拡大した上でスリット加工経路Psを設定するのは次の理由による。パーツP0の外形線とスリット加工経路Psとが近接していると、板金Wをスリット加工経路Psで切断することができないことがある。拡大された閉形状の線分ELP0間の桟にスリット加工経路Psを設定すれば、レーザ加工機30は板金Wをスリット加工経路Psでほぼ確実に切断することができる。
The reason why the NC unit 31 sets the slit processing path Ps after enlarging the line segment of the closed shape of the part P0 to the line segment EL0 is as follows. If the outline of the part P0 and the slitting path Ps are close to each other, the sheet metal W may not be cut along the slitting path Ps. By setting the slit processing path Ps on the crosspiece between the enlarged closed-shape line segments ELP0, the laser processing machine 30 can almost certainly cut the sheet metal W along the slit processing path Ps.
NC装置31は、ステップS14にて、図14に示すスリット加工経路Psのうち、1つの加工単位内に存在するスリット加工経路Psを削除し、異なる加工単位の境界を通るスリット加工経路Psのみを残す。図15は、図14に示すスリット加工経路Psのうち、異なる加工単位の境界を通るスリット加工経路Ps0のみとしたネスティング画像106を示す図である。
In step S14, the NC unit 31 deletes the slit machining paths Ps existing in one machining unit from among the slit machining paths Ps shown in FIG. leave. FIG. 15 is a diagram showing a nesting image 106 of only the slit machining paths Ps0 passing through the boundaries of different machining units among the slit machining paths Ps shown in FIG.
NC装置31は、ステップS15にて、各加工単位に隣接するスリット加工経路Ps0を各加工単位と対応付ける。図16は、各加工単位に隣接するスリット加工経路Ps0を各加工単位と対応付けた状態を示すネスティング画像107を示す図である。
At step S15, the NC device 31 associates the slit machining path Ps0 adjacent to each machining unit with each machining unit. FIG. 16 is a diagram showing a nesting image 107 showing a state in which a slit machining path Ps0 adjacent to each machining unit is associated with each machining unit.
図16に示すように、NC装置31は、加工順#1~#3のパーツP0(線分ELP0)よりなる加工単位U1に、実線で示すようにスリット加工経路Ps1を対応付ける。NC装置31は、加工順#4~#7のパーツP0(線分ELP0)よりなる加工単位U2に、一点鎖線で示すようにスリット加工経路Ps2を対応付ける。NC装置31は、加工順#8~#10のパーツP0(線分ELP0)よりなる加工単位U3に、破線で示すようにスリット加工経路Ps3を対応付ける。図16においては、スリット加工経路Ps1~Ps3の区別を容易にするため、互いの線種を分けて表示している。
As shown in FIG. 16, the NC device 31 associates a slit machining path Ps1 as indicated by a solid line with a machining unit U1 made up of parts P0 (line segment ELP0) of machining orders # 1 to #3. The NC unit 31 associates a slit machining path Ps2 as indicated by a dashed line with a machining unit U2 made up of parts P0 (line segment ELP0) of machining orders # 4 to #7. The NC unit 31 associates the slit machining path Ps3 as indicated by the dashed line with the machining unit U3 consisting of parts P0 (line segment ELP0) of machining orders # 8 to #10. In FIG. 16, in order to easily distinguish between the slitting paths Ps1 to Ps3, the lines are displayed separately.
なお、図15において、NC装置31は、2つの加工単位の間に存在するスリット加工経路Ps0は、加工順の早い方の加工単位に対応付ける。よって、加工単位U1~U3にそれぞれスリット加工経路Ps1~Ps3が対応付けられる。
In FIG. 15, the NC device 31 associates the slit machining path Ps0 existing between two machining units with the machining unit earlier in the machining order. Therefore, the slit processing paths Ps1 to Ps3 are associated with the processing units U1 to U3, respectively.
NC装置31は、ステップS16にて、各スリット加工経路Ps1~Ps3の始端側と終端側の端部を所定の距離だけ削除する。所定の距離は一例として10mmである。図17は、各スリット加工経路Ps1~Ps3の始端側と終端側の端部を所定の距離だけ削除した状態を示すネスティング画像108を示す図である。図17に示すように、スリット加工経路Ps1~Ps3は、始端側と終端側の端部が所定の距離だけ削除されてスリット加工経路Ps1’~Ps3’とされる。
At step S16, the NC device 31 deletes the ends of the respective slit processing paths Ps1 to Ps3 on the starting and terminal sides by a predetermined distance. The predetermined distance is 10 mm as an example. FIG. 17 is a diagram showing a nesting image 108 showing a state in which the end portions on the starting end side and the terminal end side of each of the slitting paths Ps1 to Ps3 are deleted by a predetermined distance. As shown in FIG. 17, the slit processing paths Ps1 to Ps3 are formed by slitting paths Ps1' to Ps3' by removing the ends of the starting end side and the terminal end side by a predetermined distance.
nを2以上の自然数とし、複数のパーツが加工順にn個の加工単位に分割されているとする。各加工単位は1またはそれ以上のパーツを含む。このとき、n個の加工単位のうちの最後に加工される加工単位を除く(n-1)個の加工単位にスリット加工経路が対応付けられることになる。即ち、スリット加工経路は(n-1)個となる。ネスティング画像108における最終的な(n-1)個のスリット加工経路は、板金Wの端部から所定の距離だけ板金Wを切断せず、他のスリット加工経路と連結していないスリット加工経路である。
Assume that n is a natural number of 2 or more, and that multiple parts are divided into n processing units in order of processing. Each work unit contains one or more parts. At this time, the slit machining paths are associated with (n-1) machining units of the n machining units excluding the last machining unit. That is, there are (n-1) slitting paths. The final (n−1) slit machining paths in the nesting image 108 are slit machining paths that do not cut the sheet metal W by a predetermined distance from the edge of the sheet metal W and are not connected to other slit machining paths. be.
レーザ加工機30には、板金Wを支持する支持テーブルに支持テーブルと板金Wとを一体的に固定する複数のクランプが設けられていることがある。板金Wの端部から所定の距離だけ板金Wを切断しないスリット加工経路Ps1’~Ps3’とするのは、クランプによって板金Wを把持して板金Wのずれが抑え、板金Wがずれることによる寸法精度の悪化を防ぐためである。例えば、スリット加工によって分離される加工単位の部分がクランプによって把持されている場合は、板金Wの端部の非切断の部分を残さず、端部まで板金Wを切断することも可能である。
The laser processing machine 30 may be provided with a plurality of clamps for integrally fixing the support table and the sheet metal W to the support table that supports the sheet metal W. The slit processing paths Ps1′ to Ps3′, which do not cut the sheet metal W by a predetermined distance from the end of the sheet metal W, are because the sheet metal W is held by clamps to suppress the displacement of the sheet metal W, and the displacement of the sheet metal W is reduced. This is to prevent deterioration of accuracy. For example, when the portion of the processing unit separated by slitting is gripped by a clamp, it is possible to cut the sheet metal W up to the end without leaving an uncut portion at the end of the sheet metal W.
NC装置31は、ステップS17にて、14個のパーツP0(線分ELP0)とスリット加工経路Ps1’~Ps3’の加工順を設定する。NC装置31は、各加工単位U1~U3の直後に各スリット加工経路Ps1’~Ps3’の加工が実行されるように加工順を設定する。図18は、NC装置31が設定した、14個のパーツP0(線分ELP0)とスリット加工経路Ps1’~Ps3’に加工順を設定したネスティング画像109を示す図である。NC装置31は、加工順#1~#3のパーツP0(線分ELP0)の次にスリット加工経路Ps1’を加工順#4に設定する。その結果、NC装置31は、当初加工順#4~#7であったパーツP0(線分ELP0)を加工順#5~#8に繰り下げ、次にスリット加工経路Ps2’を加工順#9に設定する。
At step S17, the NC device 31 sets the processing order of the 14 parts P0 (line segments ELP0) and the slit processing paths Ps1' to Ps3'. The NC unit 31 sets the order of machining so that the machining of each of the slit machining paths Ps1' to Ps3' is executed immediately after each of the machining units U1 to U3. FIG. 18 is a diagram showing a nesting image 109 in which the 14 parts P0 (line segments ELP0) and the slit machining paths Ps1' to Ps3' are set in the order of machining, which are set by the NC device 31. FIG. The NC device 31 sets the slit machining path Ps1' next to the part P0 (line segment ELP0) in the machining order # 1 to #3 in the machining order # 4. As a result, the NC unit 31 shifts the part P0 (line segment ELP0), which was initially in the processing order # 4 to #7, to the processing order # 5 to #8, and then shifts the slit processing path Ps2' to the processing order # 9. set.
また、NC装置31は、当初加工順#8~#10であったパーツP0(線分ELP0)を加工順#10~#12に繰り下げ、次にスリット加工経路Ps3’を加工順#13に設定する。最後に、NC装置31は、当初加工順#11~#14であったパーツP0を加工順#14~#17に繰り下げる。
In addition, the NC unit 31 shifts the part P0 (line segment ELP0), which was originally in the processing order # 8 to #10, to the processing order # 10 to #12, and then sets the slit processing path Ps3' to the processing order # 13. do. Finally, the NC device 31 shifts the part P0, which was originally in the machining order # 11 to #14, to the machining order # 14 to #17.
NC装置31がステップS17にて14個のパーツP0(線分ELP0)とスリット加工経路Ps1’~Ps3’の加工順を設定した後に、オペレータが操作部34を操作して、スリット加工経路Ps1’~Ps3’のうちの少なくとも1つのスリット加工経路の位置を変更してもよい。オペレータがスリット加工経路の位置を変更すると、少なくとも2つの加工単位が変更される。スリット加工経路の位置の変更による加工単位の変更(変更)も、オペレータが加工単位を手動で設定した設定値に相当する。なお、スリット加工経路の位置を変更すると、加工順を設定し直す必要がある。
After the NC device 31 sets the processing order of the 14 parts P0 (line segments ELP0) and the slit processing paths Ps1' to Ps3' in step S17, the operator operates the operation unit 34 to set the slit processing path Ps1'. to Ps3' may be changed. When the operator changes the position of the slit machining path, at least two machining units are changed. A change (change) in the machining unit due to a change in the position of the slit machining path also corresponds to a set value manually set by the operator for the machining unit. Note that if the position of the slit machining path is changed, it is necessary to reset the order of machining.
NC装置31は、ステップS18にて、加工プログラムを再構成して、再構成された新たな加工プログラムを作成して処理を終了させる。図19は、NC装置31が図18に示す加工順に基づいて再構成した新たな加工プログラムによるネスティング画像110を示す図である。
At step S18, the NC device 31 reconstructs the machining program, creates a new reconstructed machining program, and terminates the process. FIG. 19 is a diagram showing a nesting image 110 according to a new machining program reconstructed by the NC device 31 based on the machining order shown in FIG.
NC装置31が新たに作成した加工プログラムに基づいて板金Wを加工するようレーザ加工機30(加工機本体32)を制御すると、レーザ加工機30は次のように板金Wを加工する。レーザ加工機30は、板金Wにネスティングされている複数のパーツのうちの1またはそれ以上のパーツを第1の加工単位としてレーザビームの照射により切断する。レーザ加工機30は、第1の加工単位に含まれる1またはそれ以上のパーツと、板金Wにネスティングされている複数のパーツのうちの未加工のパーツとの間の桟を、板金Wの端部から所定の距離だけ板金Wを切断しない状態でレーザビームの照射により切断して、その桟にスリットを形成する。レーザ加工機30は、未加工のパーツのうちの1またはそれ以上のパーツを第2の加工単位としてレーザビームの照射により切断する。
When the NC device 31 controls the laser processing machine 30 (processing machine main body 32) to process the sheet metal W based on the newly created processing program, the laser processing machine 30 processes the sheet metal W as follows. The laser processing machine 30 cuts one or more parts out of the plurality of parts nested in the sheet metal W by irradiating a laser beam as a first processing unit. The laser processing machine 30 cuts a crosspiece between one or more parts included in the first processing unit and an unprocessed part among a plurality of parts nested in the sheet metal W to the edge of the sheet metal W. A slit is formed in the cross piece by cutting the sheet metal W by irradiating a laser beam in a state where the sheet metal W is not cut by a predetermined distance from the part. The laser processing machine 30 cuts one or more parts out of the unprocessed parts by irradiating a laser beam as a second processing unit.
このとき、第1及び第2の加工単位の各加工単位に含まれるパーツの個数を、各加工単位に含まれる1またはそれ以上のパーツの累積加工時間が予め設定された累積加工時間以内となるように設定するのがよい。予め設定された累積加工時間は、板金Wに反りが発生するまでの時間以内に設定するのがよい。
At this time, the number of parts included in each machining unit of the first and second machining units is such that the cumulative machining time of one or more parts included in each machining unit is within the preset cumulative machining time. It is better to set The preset cumulative machining time is preferably set within the time required for the sheet metal W to warp.
より具体的に説明すると、まず、レーザ加工機30は、加工順#1~#3の3つのパーツP0を作製するよう板金Wを切断する。すると、板金Wに反りが発生するまでの時間に近い累積加工時間が経過している。レーザ加工機30は、加工順#4のスリット加工経路Ps1’を切断して、板金Wにスリットを形成する。これにより、板金Wの反りが軽減または防止される。板金Wの端部を切り残して加工順#1~#3の3つのパーツP0の領域を完全に切断しないようにすることによって、板金Wの位置ずれ等の不具合が防止される。
More specifically, first, the laser processing machine 30 cuts the sheet metal W so as to produce three parts P0 in processing order # 1 to #3. Then, an accumulated processing time close to the time required for the sheet metal W to warp has elapsed. The laser processing machine 30 forms a slit in the sheet metal W by cutting the slit processing path Ps1' of processing order # 4. This reduces or prevents the sheet metal W from warping. By leaving the ends of the metal sheet W uncut so as not to completely cut the regions of the three parts P0 in the order of processing # 1 to #3, problems such as misalignment of the metal sheet W can be prevented.
次に、レーザ加工機30は、加工順#5~#8の4つのパーツP0を作製するよう板金Wを切断する。すると、板金Wに反りが発生するまでの時間に近い累積加工時間が経過している。レーザ加工機30は、加工順#9のスリット加工経路Ps2’を切断して、板金Wにスリットを形成する。これにより、板金Wの反りが軽減または防止され、板金Wの位置ずれ等の不具合が防止される。
Next, the laser processing machine 30 cuts the sheet metal W so as to produce four parts P0 of processing order # 5 to #8. Then, an accumulated processing time close to the time required for the sheet metal W to warp has elapsed. The laser processing machine 30 forms a slit in the sheet metal W by cutting the slit processing path Ps2' of processing order # 9. As a result, warping of the metal sheet W is reduced or prevented, and problems such as misalignment of the metal sheet W are prevented.
続けて、レーザ加工機30は、加工順#10~#12の3つのパーツP0を作製するよう板金Wを切断する。すると、板金Wに反りが発生するまでの時間に近い累積加工時間が経過している。レーザ加工機30は、加工順#13のスリット加工経路Ps3’を切断して、板金Wにスリットを形成する。これにより、板金Wの反りが軽減または防止され、板金Wの位置ずれ等の不具合が防止される。最後に、レーザ加工機30は、加工順#14~#17の4つのパーツP0を作製するよう板金Wを切断する。
Subsequently, the laser processing machine 30 cuts the sheet metal W so as to produce three parts P0 of processing order # 10 to #12. Then, an accumulated processing time close to the time required for the sheet metal W to warp has elapsed. The laser processing machine 30 forms a slit in the sheet metal W by cutting the slit processing path Ps3' of the processing order # 13. As a result, warping of the metal sheet W is reduced or prevented, and problems such as misalignment of the metal sheet W are prevented. Finally, the laser processing machine 30 cuts the sheet metal W so as to produce four parts P0 of processing orders # 14 to #17.
以上のようにして、1またはそれ以上の実施形態のレーザ加工方法、加工プログラム作成方法、及びレーザ加工機によれば、板金Wの反り量を低減させることができる。板金Wの反り量が低減するので、板金Wを切断して作製するパーツの寸法精度の低下、及び構成部品が板金に衝突する不具合を低減させることができる。
As described above, according to the laser processing method, the processing program creation method, and the laser processing machine of one or more embodiments, the amount of warpage of the sheet metal W can be reduced. Since the warp amount of the sheet metal W is reduced, it is possible to reduce the deterioration of the dimensional accuracy of the parts manufactured by cutting the sheet metal W and the problem of the component colliding with the sheet metal.
図20は、14個のパーツP0を5つの加工単位に分割した例を示す図である。図20において、加工単位U1は、加工順#1~#3の3つのパーツP0よりなる。加工単位U2は、加工順#4~#6の3つのパーツP0よりなる。加工単位U3は、加工順#7及び#8の2つのパーツP0よりなる。加工単位U4は、加工順#9及び#10の2つのパーツP0よりなる。加工単位U5は、加工順#11~#14の4つのパーツP0よりなる。
FIG. 20 is a diagram showing an example of dividing 14 parts P0 into 5 processing units. In FIG. 20, a processing unit U1 is composed of three parts P0 of processing orders # 1 to #3. The processing unit U2 consists of three parts P0 of processing orders # 4 to #6. The processing unit U3 consists of two parts P0 of processing orders # 7 and #8. A processing unit U4 consists of two parts P0 of processing orders # 9 and #10. The machining unit U5 consists of four parts P0 of machining order # 11 to #14.
NC装置31は、ステップS15にて、各加工単位に隣接するスリット加工経路Ps0を各加工単位と対応付ける。図21は、図20に示すように14個のパーツP0が5つの加工単位に分割された場合における、各加工単位に隣接するスリット加工経路Ps0を各加工単位と対応付けた状態を示すネスティング画像107を示す図である。
At step S15, the NC device 31 associates the slit machining path Ps0 adjacent to each machining unit with each machining unit. FIG. 21 is a nesting image showing a state in which a slit machining path Ps0 adjacent to each machining unit is associated with each machining unit when 14 parts P0 are divided into five machining units as shown in FIG. 107 is a diagram showing 107. FIG.
図21に示すように、NC装置31は、加工順#1~#3のパーツP0(線分ELP0)よりなる加工単位U1に、実線で示すようにスリット加工経路Ps1を対応付ける。NC装置31は、加工順#4~#6のパーツP0(線分ELP0)よりなる加工単位U2に、一点鎖線で示すようにスリット加工経路Ps2を対応付ける。NC装置31は、加工順#7及び#8のパーツP0(線分ELP0)よりなる加工単位U3に、点線で示すようにスリット加工経路Ps3を対応付ける。NC装置31は、加工順#9及び#10のパーツP0(線分ELP0)よりなる加工単位U4に、破線で示すようにスリット加工経路Ps4を対応付ける。
As shown in FIG. 21, the NC unit 31 associates a slit machining path Ps1 as indicated by a solid line with a machining unit U1 made up of parts P0 (line segments ELP0) in machining orders # 1 to #3. The NC unit 31 associates a slit machining path Ps2 as indicated by a dashed line with a machining unit U2 made up of parts P0 (line segments ELP0) of machining orders # 4 to #6. The NC unit 31 associates the slit machining path Ps3 as indicated by the dotted line with the machining unit U3 made up of parts P0 (line segment ELP0) of machining orders # 7 and #8. The NC unit 31 associates a slit machining path Ps4 as indicated by a dashed line with a machining unit U4 made up of parts P0 (line segment ELP0) of machining orders # 9 and #10.
図21に示す例では、スリット加工経路Ps1~Ps4によって、加工順#7及び#8のパーツP0を囲む閉経路が形成されている。
In the example shown in FIG. 21, the slit machining paths Ps1 to Ps4 form a closed path surrounding parts P0 of machining orders # 7 and #8.
図22は、各スリット加工経路Ps1~Ps4の始端側と終端側の端部を所定の距離だけ削除した状態を示すネスティング画像108を示す図である。図22に示すように、スリット加工経路Ps1~Ps4は、始端側と終端側の端部が所定の距離だけ削除されてスリット加工経路Ps1’~Ps4’とされる。スリット加工経路Ps3は両端部が所定の距離だけ削除されて、スリット加工経路Ps1’及びPs2’から離れたスリット加工経路Ps3’とされている。
FIG. 22 is a diagram showing a nesting image 108 showing a state in which the end portions on the starting end side and the terminal end side of each of the slit processing paths Ps1 to Ps4 are deleted by a predetermined distance. As shown in FIG. 22, the slit processing paths Ps1 to Ps4 are formed into slit processing paths Ps1' to Ps4' by removing the ends of the starting end side and the terminal end side by a predetermined distance. Both ends of the slitting path Ps3 are removed by a predetermined distance to form a slitting path Ps3' separated from the slitting paths Ps1' and Ps2'.
図23は、NC装置31が設定した、14個のパーツP0(線分ELP0)とスリット加工経路Ps1’~Ps4’に加工順を設定したネスティング画像109を示す図である。14個のパーツP0(線分ELP0)とスリット加工経路Ps1’~Ps4’に加工順は、図23に示すとおりとなる。図24は、NC装置31が図23に示す加工順に基づいて再構成した新たな加工プログラムによるネスティング画像110を示す図である。
FIG. 23 is a diagram showing a nesting image 109 in which the 14 parts P0 (line segment ELP0) and the slit machining paths Ps1' to Ps4' are set by the NC device 31 in order of machining. The processing order of the 14 parts P0 (line segment ELP0) and the slit processing paths Ps1' to Ps4' is as shown in FIG. FIG. 24 is a diagram showing a nesting image 110 according to a new machining program reconfigured by the NC device 31 based on the machining order shown in FIG.
レーザ加工機30は、加工順#1~#3の3つのパーツP0を作製するよう板金Wを切断した後、加工順#4のスリット加工経路Ps1’を切断して、板金Wにスリットを形成する。レーザ加工機30は、加工順#5~#7の3つのパーツP0を作製するよう板金Wを切断した後、加工順#8のスリット加工経路Ps2’を切断して、板金Wにスリットを形成する。
The laser processing machine 30 cuts the sheet metal W so as to produce three parts P0 in the processing order # 1 to #3, and then cuts the slit processing path Ps1′ in the processing order # 4 to form slits in the sheet metal W. do. The laser processing machine 30 cuts the sheet metal W so as to produce three parts P0 in the processing order # 5 to #7, and then cuts the slit processing path Ps2′ in the processing order # 8 to form slits in the sheet metal W. do.
続けて、レーザ加工機30は、加工順#9及び#10の2つのパーツP0を作製するよう板金Wを切断した後、加工順#11のスリット加工経路Ps3’を切断して、板金Wにスリットを形成する。レーザ加工機30は、加工順#12及び#13の2つのパーツP0を作製するよう板金Wを切断した後、加工順#14のスリット加工経路Ps4’を切断して、板金Wにスリットを形成する。最後に、レーザ加工機30は、加工順#15~#18の4つのパーツP0を作製するよう板金Wを切断する。
Subsequently, the laser processing machine 30 cuts the sheet metal W so as to produce two parts P0 in the processing order # 9 and #10, and then cuts the slit processing path Ps3′ in the processing order # 11 to cut the sheet metal W. Form a slit. The laser processing machine 30 cuts the sheet metal W so as to produce two parts P0 in the processing order # 12 and #13, and then cuts the slit processing path Ps4' in the processing order # 14 to form a slit in the sheet metal W. do. Finally, the laser processing machine 30 cuts the sheet metal W so as to produce four parts P0 of processing order # 15 to #18.
以上の1またはそれ以上の実施形態においては、NC装置31が、CAM機器20によって作成された加工プログラムを再構成して、再構成された新たな加工プログラムを作成している。NC装置31は、新たな加工プログラムに基づいて板金Wを加工するよう加工機本体32を制御する。
In one or more of the above embodiments, the NC device 31 reconstructs the machining program created by the CAM device 20 to create a new reconstructed machining program. The NC device 31 controls the processing machine main body 32 to process the sheet metal W based on the new processing program.
CAM機器20が、スリット加工経路Ps1’~Ps3’またはPs1’~Ps4’を予め設定した加工プログラムを作成してもよい。この場合、NC装置31は、CAM機器20が作成した加工プログラムに基づいて板金Wを加工するよう加工機本体32を制御する。具体的には、CAM機器20はネスティング画像を作成すると共に複数のパーツの加工順を設定する。複数のパーツの加工順を設定したら、CAM機器20は、複数のパーツP0の累積加工時間等の条件に基づき板金Wに反りが発生するまでの時間以内となる1群のパーツP0を1つの加工単位として、複数のパーツを複数の加工単位に分割する。以降の処理は、図3A及び図3Bと同様であり、ステップS18では、新規に加工プログラムが作成される。
The CAM device 20 may create a machining program that presets the slit machining paths Ps1' to Ps3' or Ps1' to Ps4'. In this case, the NC device 31 controls the processing machine main body 32 to process the sheet metal W based on the processing program created by the CAM device 20 . Specifically, the CAM device 20 creates a nesting image and sets the processing order of a plurality of parts. After setting the processing order of the plurality of parts, the CAM device 20 processes a group of parts P0 within the time until warpage occurs in the sheet metal W based on conditions such as the cumulative processing time of the plurality of parts P0. As a unit, multiple parts are divided into multiple processing units. Subsequent processing is the same as in FIGS. 3A and 3B, and a new machining program is created in step S18.
本発明は以上説明した1またはそれ以上の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々変更可能である。
The present invention is not limited to one or more embodiments described above, and can be modified in various ways without departing from the gist of the present invention.
本願は、2021年2月3日に日本国特許庁に出願された特願2021-015655号に基づく優先権を主張するものであり、その全ての開示内容は引用によりここに援用される。
This application claims priority based on Japanese Patent Application No. 2021-015655 filed with the Japan Patent Office on February 3, 2021, the entire disclosure of which is incorporated herein by reference.
Claims (8)
- 板金にネスティングされている複数のパーツのうちの1またはそれ以上のパーツを第1の加工単位としてレーザビームの照射により切断し、
前記第1の加工単位に含まれる1またはそれ以上のパーツと、前記板金にネスティングされている複数のパーツのうちの未加工のパーツとの間の桟を、前記板金の端部から所定の距離だけ前記板金を切断しない状態でレーザビームの照射により切断して、前記桟にスリットを形成し、
前記未加工のパーツのうちの1またはそれ以上のパーツを第2の加工単位としてレーザビームの照射により切断する
レーザ加工方法。 Cutting one or more parts among the plurality of parts nested in the sheet metal as a first processing unit by irradiating a laser beam;
A crosspiece between one or more parts included in the first processing unit and an unprocessed part among a plurality of parts nested in the sheet metal is moved a predetermined distance from an end of the sheet metal. cutting the sheet metal by irradiating a laser beam in a state where the sheet metal is not cut, forming a slit in the crosspiece;
A laser processing method, wherein one or more parts among the unprocessed parts are cut by irradiating a laser beam as a second processing unit. - 前記第1及び第2の加工単位の各加工単位に含まれるパーツの個数を、前記各加工単位に含まれる1またはそれ以上のパーツの累積加工時間が予め設定された累積加工時間以内となるように設定する請求項1に記載のレーザ加工方法。 The number of parts included in each machining unit of the first and second machining units is adjusted so that the cumulative machining time of one or more parts included in each machining unit is within a preset cumulative machining time. 2. The laser processing method according to claim 1, wherein .
- 前記板金の板厚と、前記板金にレーザビームを照射して前記板金を切断するときの加工速度と、レーザ発振器が射出するレーザビームのレーザ出力とに応じた、前記板金に反りが発生するまでの時間が予め求められており、
前記予め設定された累積加工時間を前記板金に反りが発生するまでの時間以内に設定する
請求項2に記載のレーザ加工方法。 Until warping occurs in the sheet metal according to the thickness of the sheet metal, the processing speed at which the sheet metal is cut by irradiating the sheet metal with a laser beam, and the laser output of the laser beam emitted from the laser oscillator. is pre-determined,
3. The laser processing method according to claim 2, wherein the preset cumulative processing time is set within the time until the sheet metal warps. - nを2以上の自然数とし、板金にネスティングされている複数のパーツを、前記複数のパーツの加工順に、1またはそれ以上のパーツを含むn個の加工単位に分割し、
前記n個の加工単位の隣接する加工単位の間に、前記板金の端部から所定の距離だけ前記板金を切断せず、他のスリット加工経路と連結していないスリット加工経路であって、
前記n個の加工単位のうちの最後に加工される加工単位を除く(n-1)個の加工単位における各加工単位に対応付けられる(n-1)個のスリット加工経路を設定し、
前記(n-1)個の加工単位における各加工単位の加工に続けて、前記各加工単位に対応付けられるスリット加工経路を加工するよう、前記複数のパーツと前記(n-1)個のスリット加工経路との加工順を設定し、
設定された加工順で前記板金を切断する加工プログラムを作成する
加工プログラム作成方法。 n is a natural number of 2 or more, and a plurality of parts nested in the sheet metal are divided into n processing units containing one or more parts in the order of processing of the plurality of parts,
A slit processing path that does not cut the sheet metal by a predetermined distance from the edge of the sheet metal between adjacent processing units of the n processing units and is not connected to other slit processing paths,
setting (n-1) slit machining paths associated with each machining unit in (n-1) machining units excluding the last machining unit among the n machining units,
Following the processing of each processing unit in the (n-1) processing units, the plurality of parts and the (n-1) slits are processed so that the slit processing paths associated with the respective processing units are processed. Set the machining route and machining order,
A machining program creation method for creating a machining program for cutting the sheet metal in a set machining order. - 前記板金の板厚と、前記板金にレーザビームを照射して前記板金を切断するときの加工速度と、レーザ発振器が射出するレーザビームのレーザ出力とに応じた、前記板金に反りが発生するまでの時間が予め求められており、
前記加工単位に含まれる1またはそれ以上のパーツの個数を、前記板金に反りが発生するまでの時間以内に加工が完了する個数に設定する
請求項4に記載の加工プログラム作成方法。 Until warping occurs in the sheet metal according to the thickness of the sheet metal, the processing speed at which the sheet metal is cut by irradiating the sheet metal with a laser beam, and the laser output of the laser beam emitted from the laser oscillator. is pre-determined,
5. The machining program creation method according to claim 4, wherein the number of one or more parts included in the machining unit is set to the number of parts to be machined within the time until the sheet metal warps. - 前記複数のパーツの各パーツは、アプローチと、ジョイントを形成するための前記アプローチとは離隔した終点または逃げとを有する非閉形状の線分で表されており、
前記各パーツにおける前記ジョイントを連結し、かつ前記アプローチと前記終点または前記逃げを削除して、前記各パーツの外形線に相当する閉形状の線分を作成し、
前記各パーツの閉形状の線分の内側に穴を示す閉形状の線分が存在するときには前記穴を示す閉形状の線分を破棄し、他のパーツの閉形状の線分の内側にパーツの閉形状の線分が存在するときには内側に存在するパーツの閉形状の線分を破棄し、
残ったパーツの閉形状の線分を設定された幅だけ拡大し、
拡大されたパーツの閉形状の線分間の桟を通る前記(n-1)個のスリット加工経路を設定する
請求項4または5に記載の加工プログラム作成方法。 each part of the plurality of parts is represented by a non-closed line segment having an approach and an end point or relief spaced from the approach for forming a joint;
Connecting the joints in each part and deleting the approach and the end point or the relief to create a closed line segment corresponding to the outline of each part,
When there is a closed-shape line segment indicating a hole inside the closed-shape line segment of each part, the closed-shape line segment indicating the hole is discarded, and the part is placed inside the closed-shape line segment of the other parts. When there is a closed-shaped line segment of , discard the closed-shaped line segment of the part that exists inside
Expand the closed line segments of the remaining parts by the set width,
6. The machining program creation method according to claim 4 or 5, wherein the (n-1) slit machining paths are set through crosspieces between closed-shape line segments of the enlarged part. - 板金を切断する加工機本体と、
加工プログラムに基づいて前記加工機本体を制御するNC装置と、
を備え、
前記NC装置は、
前記板金より複数のパーツを作製するために予め作成された加工プログラムに基づいて、nを2以上の自然数とし、前記複数のパーツを、前記複数のパーツの加工順に、予め設定された累積加工時間に基づいて1またはそれ以上のパーツを含むn個の加工単位に分割し、
前記n個の加工単位の隣接する加工単位の間に、前記板金の端部から所定の距離だけ前記板金を切断せず、他のスリット加工経路と連結していないスリット加工経路であって、前記n個の加工単位のうちの最後に加工される加工単位を除く(n-1)個の加工単位における各加工単位に対応付けられる(n-1)個のスリット加工経路を設定し、
前記(n-1)個の加工単位における各加工単位の加工に続けて、前記各加工単位に対応付けられるスリット加工経路を加工するよう、前記複数のパーツと前記(n-1)個のスリット加工経路との加工順を設定し、
前記予め作成された加工プログラムを、設定された前記複数のパーツと前記(n-1)個のスリット加工経路との加工順で前記板金を切断するよう再構成して、再構成された新たな加工プログラムを作成し、
前記新たな加工プログラムに基づいて前記板金を切断するよう前記加工機本体を制御する
レーザ加工機。 a processing machine body for cutting sheet metal;
an NC device that controls the processing machine main body based on a processing program;
with
The NC device is
Based on a processing program created in advance for manufacturing a plurality of parts from the sheet metal, n is a natural number of 2 or more, and the plurality of parts are processed in the order of processing of the plurality of parts for a preset cumulative processing time. into n machining units containing one or more parts based on
A slit processing path that does not cut the sheet metal by a predetermined distance from an end of the sheet metal between adjacent processing units of the n processing units and is not connected to other slit processing paths, setting (n-1) slit machining paths associated with each machining unit in (n-1) machining units excluding the last machining unit out of the n machining units,
Following the processing of each processing unit in the (n-1) processing units, the plurality of parts and the (n-1) slits are processed so that the slit processing paths associated with the respective processing units are processed. Set the machining path and machining order,
The previously created machining program is reconfigured to cut the sheet metal in the set machining order of the plurality of parts and the (n−1) slit machining paths, and a reconfigured new Create a machining program,
A laser processing machine that controls the processing machine main body to cut the sheet metal based on the new processing program. - 前記板金の板厚と、前記板金にレーザビームを照射して前記板金を切断するときの加工速度と、レーザ発振器が射出するレーザビームのレーザ出力とに応じた、前記板金に反りが発生するまでの時間が予め求められており、
前記NC装置は、前記累積加工時間を前記板金に反りが発生するまでの時間以内に設定する
請求項7に記載のレーザ加工機。 Until warping occurs in the sheet metal according to the thickness of the sheet metal, the processing speed at which the sheet metal is cut by irradiating the sheet metal with a laser beam, and the laser output of the laser beam emitted from the laser oscillator. is pre-determined,
The laser processing machine according to claim 7, wherein the NC device sets the cumulative processing time within the time required for the sheet metal to warp.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021015655A JP7550070B2 (en) | 2021-02-03 | 2021-02-03 | Laser processing method, processing program creation method, and laser processing machine |
JP2021-015655 | 2021-02-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022168724A1 true WO2022168724A1 (en) | 2022-08-11 |
Family
ID=82741539
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/003038 WO2022168724A1 (en) | 2021-02-03 | 2022-01-27 | Laser machining method, machining program creation method, and laser machine tool |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7550070B2 (en) |
WO (1) | WO2022168724A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02255287A (en) * | 1989-03-28 | 1990-10-16 | Amada Co Ltd | Device for working sheet material |
JPH08137533A (en) * | 1994-11-14 | 1996-05-31 | Kurashiki Laser Kk | Nc nesting working method |
JP3139074U (en) * | 2007-11-14 | 2008-01-31 | 白澤啓志 | Tag decoration plate |
JP2015157303A (en) * | 2014-02-25 | 2015-09-03 | 株式会社アマダホールディングス | Laser processing method and laser processing device |
-
2021
- 2021-02-03 JP JP2021015655A patent/JP7550070B2/en active Active
-
2022
- 2022-01-27 WO PCT/JP2022/003038 patent/WO2022168724A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02255287A (en) * | 1989-03-28 | 1990-10-16 | Amada Co Ltd | Device for working sheet material |
JPH08137533A (en) * | 1994-11-14 | 1996-05-31 | Kurashiki Laser Kk | Nc nesting working method |
JP3139074U (en) * | 2007-11-14 | 2008-01-31 | 白澤啓志 | Tag decoration plate |
JP2015157303A (en) * | 2014-02-25 | 2015-09-03 | 株式会社アマダホールディングス | Laser processing method and laser processing device |
Also Published As
Publication number | Publication date |
---|---|
JP7550070B2 (en) | 2024-09-12 |
JP2022118872A (en) | 2022-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES2315606T3 (en) | METHOD AND SYSTEM TO ELIMINATE EXTERNAL AGGREGATION IN NC CUTTING OF NESTED PARTS. | |
CN113646124B (en) | Method for beam machining plate-shaped or tubular workpieces | |
JP3746019B2 (en) | Laser processing machine | |
WO2015019668A1 (en) | Nc program generating device, nc program generating method, and nc program generating program | |
EP3778104B1 (en) | Laser processing machine, laser processing method, and processing program generation device | |
WO2015080179A1 (en) | Laser cutting method and device, and automatic programming device | |
WO2022168724A1 (en) | Laser machining method, machining program creation method, and laser machine tool | |
JP5356106B2 (en) | Numerical control data generator | |
JP2012096262A (en) | Laser-beam machining method | |
JP6055620B2 (en) | Automatic programming apparatus and method and machining system | |
WO2022168717A1 (en) | Laser processing method, processing program creation method, and laser processor | |
EP3858536B1 (en) | Laser machining method and laser machining device | |
US10710198B2 (en) | Laser processing device and laser processing method | |
JP4427927B2 (en) | Automatic plate cutting apparatus and automatic plate cutting method | |
JP6314054B2 (en) | Automatic programming device in laser processing system | |
EP4252956A1 (en) | Laser machining method, laser machining device, and machining program creation device | |
JP6145336B2 (en) | Automatic programming apparatus and method | |
US20220143749A1 (en) | Laser machining apparatus, laser machining method, and processing program creation device | |
JP6145438B2 (en) | Automatic programming apparatus and method | |
JPH1029080A (en) | Automatic programming device of laser beam machine | |
JP2005084778A (en) | Device for preparing working program | |
JP2005219177A (en) | Generation method of router machining trajectory | |
JP2018134678A (en) | Processing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22749598 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22749598 Country of ref document: EP Kind code of ref document: A1 |