WO2022166226A1 - 一种相变冷却式永磁直驱鼓风机 - Google Patents
一种相变冷却式永磁直驱鼓风机 Download PDFInfo
- Publication number
- WO2022166226A1 WO2022166226A1 PCT/CN2021/121500 CN2021121500W WO2022166226A1 WO 2022166226 A1 WO2022166226 A1 WO 2022166226A1 CN 2021121500 W CN2021121500 W CN 2021121500W WO 2022166226 A1 WO2022166226 A1 WO 2022166226A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pipe
- cooling
- phase
- liquid
- straight pipe
- Prior art date
Links
- 238000001816 cooling Methods 0.000 title claims abstract description 118
- 239000007788 liquid Substances 0.000 claims abstract description 113
- 238000005338 heat storage Methods 0.000 claims abstract description 45
- 230000007246 mechanism Effects 0.000 claims abstract description 41
- 239000012782 phase change material Substances 0.000 claims abstract description 32
- 238000004804 winding Methods 0.000 claims abstract description 5
- 230000008859 change Effects 0.000 claims description 43
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 5
- 238000009434 installation Methods 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 4
- BDKLKNJTMLIAFE-UHFFFAOYSA-N 2-(3-fluorophenyl)-1,3-oxazole-4-carbaldehyde Chemical compound FC1=CC=CC(C=2OC=C(C=O)N=2)=C1 BDKLKNJTMLIAFE-UHFFFAOYSA-N 0.000 claims description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- 239000011888 foil Substances 0.000 claims description 3
- 229920003063 hydroxymethyl cellulose Polymers 0.000 claims description 3
- 229940031574 hydroxymethyl cellulose Drugs 0.000 claims description 3
- 238000012544 monitoring process Methods 0.000 claims description 3
- 229910052708 sodium Inorganic materials 0.000 claims description 3
- 239000011734 sodium Substances 0.000 claims description 3
- 235000017281 sodium acetate Nutrition 0.000 claims description 3
- 229940087562 sodium acetate trihydrate Drugs 0.000 claims description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 abstract description 7
- 229910052802 copper Inorganic materials 0.000 abstract description 7
- 239000010949 copper Substances 0.000 abstract description 7
- 238000005265 energy consumption Methods 0.000 abstract description 6
- 230000000694 effects Effects 0.000 abstract description 4
- 230000008878 coupling Effects 0.000 description 7
- 238000010168 coupling process Methods 0.000 description 7
- 238000005859 coupling reaction Methods 0.000 description 7
- 230000017525 heat dissipation Effects 0.000 description 7
- 238000013461 design Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 239000000110 cooling liquid Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- BGPVFRJUHWVFKM-UHFFFAOYSA-N N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] Chemical compound N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] BGPVFRJUHWVFKM-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 238000004146 energy storage Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000011232 storage material Substances 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- -1 7-7b Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000005339 levitation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D25/00—Pumping installations or systems
- F04D25/02—Units comprising pumps and their driving means
- F04D25/08—Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
- F04D25/082—Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation the unit having provision for cooling the motor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/26—Rotors specially for elastic fluids
- F04D29/263—Rotors specially for elastic fluids mounting fan or blower rotors on shafts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/58—Cooling; Heating; Diminishing heat transfer
- F04D29/5806—Cooling the drive system
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K5/00—Casings; Enclosures; Supports
- H02K5/04—Casings or enclosures characterised by the shape, form or construction thereof
- H02K5/20—Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K9/00—Arrangements for cooling or ventilating
- H02K9/19—Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
- H02K9/20—Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil wherein the cooling medium vaporises within the machine casing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/14—Thermal energy storage
Definitions
- the invention relates to the technical field of blowers, in particular to a phase-change cooling type permanent magnet direct-drive blower.
- the main structure of the permanent magnet direct drive blower is that the blower impeller is directly installed on the extension end of the motor shaft, the rotor is vertically suspended on the active magnetic bearing controller, no transmission and coupling are required, and it is directly driven by a high-speed motor.
- An external condenser is used to protect the fan system.
- Phase change heat storage is a high-tech energy storage technology based on phase change energy storage materials. It is mainly divided into thermochemical heat storage, sensible heat storage and phase change heat storage. Uncontrollable, the sensible heat storage density is small, in contrast, the phase change heat storage is safe and stable, and the heat storage density is high.
- the phase change heat storage material can change its shape with the change of temperature and provide latent heat. The process of the phase change material from solid to liquid or from liquid to solid is called the phase change process. At this time, the phase change material will absorb or release a large amount of latent heat. .
- Chinese patent CN107387460A discloses a magnetic levitation centrifugal blower cooling system, a radiator for blower is designed, the heat is taken away by the radiator, the radiator is installed outside the motor, the internal cooling of the motor and the blower is not realized, and the cooling efficiency is low , and there are shortcomings such as large design space and the need to provide additional power.
- Chinese patent CN106687694A discloses a cooling structure for a direct-drive twin-turbine blower, which designs a plurality of holes along the outer diameter of the motor casing to cool the stator, and a plurality of holes for cooling the bearing seat and the rotor. Cold takes away heat, but the design of the channel structure is complex, and the processing technology is difficult.
- the cooling principles of the blower mainly include air cooling and water cooling.
- the cooling methods mainly include built-in cooling channels and external radiators.
- the water cooling method has better heat dissipation effect, but will bring adverse effects such as leakage and vibration; It is stable, but the heat dissipation effect is poor, and additional power is needed to continuously work to take away the heat.
- the structure of the built-in heat dissipation channel is more complicated, the processing technology is redundant, and the heat dissipation efficiency of the external condenser and fan is low. Take away, adding extra energy consumption. Therefore, it is the problem to be solved by the present invention to provide a blower that can realize high-efficiency and low-energy-consumption cooling without making major improvements to the structure of the motor and the blower.
- the present invention provides a phase-change cooling permanent magnet direct-drive blower, which can achieve high efficiency and low energy consumption under the premise of avoiding major improvements to the structure of the motor and the blower. Cooling blower.
- a phase-change cooling type permanent magnet direct-drive blower comprising a motor casing, windings, a stator core, a permanent magnet, a rotor core, a motor shaft, a volute, an impeller and a volute base, It is characterized in that it also includes a cooling system and a pair of phase-change cooling mechanisms arranged between the motor shaft and the motor housing;
- the phase change cooling mechanism includes a fixed plate, a liquid inlet pipe group, fins, a temperature sensor, a liquid outlet pipe group and a heat storage straight pipe, and the fixed plate is a pair arranged in parallel and located at the liquid inlet pipe group and the liquid outlet pipe group.
- the liquid inlet pipe group includes the liquid inlet straight pipe and the liquid inlet bundle pipe
- the liquid outlet pipe group includes the liquid outlet straight pipe, the liquid outlet bundle pipe and the liquid outlet short straight pipe.
- the inlet and outlet bundle pipes are round. Ring-shaped, there are several heat storage straight pipes between the liquid inlet and outlet bundle pipes.
- the tube penetrates through the fixed plate; the fins are arranged along the heat storage straight tube, and a temperature sensor is arranged on at least one heat storage straight tube for monitoring the temperature of the phase change material;
- the cooling system includes a cooling flow channel and an inlet flow valve, an outlet flow valve, an on-off valve, a liquid storage tank, a flow pump and a cooling mechanism arranged on the cooling flow channel, and the first end of the cooling flow channel is connected with the liquid inlet straight pipe, The second end of the cooling channel is connected with the liquid outlet straight pipe.
- liquid inlet pipe is arranged along the radial direction of the liquid inlet bundle pipe, and a plurality of liquid inlet short straight pipes located on the same circumference are arranged on the liquid inlet bundle pipe, and the liquid inlet short straight pipe is fixedly connected with the corresponding end of the heat storage straight pipe. .
- liquid outlet pipe is arranged along the radial direction of the liquid outlet bundle pipe, and the liquid outlet bundle pipe is provided with several short liquid outlet straight pipes located on the same circumference, and the short liquid outlet straight pipe is fixedly connected with the corresponding end of the heat storage straight pipe. .
- a casing flow channel is arranged in the motor casing, and the casing flow channel connects the liquid inlet pipes of the two-phase change cooling mechanism together.
- the impeller is fixed on the motor shaft through the impeller pull rod, and a volute airtight ring is arranged between the volute and the motor shaft.
- the phase change material adopts the mixing ratio of sodium acetate trihydrate and sodium hydroxymethyl cellulose, the phase change point of the mixed material is 42 to 50 degrees, the density is 1.6 g/cm 3 , and the latent heat is 280 to 320 kJ/kg.
- the fins are made of aluminum foil and have a thickness of 1 mm.
- the fins are provided with straight through-holes for the heat storage straight pipes to pass through, and the straight through-holes are flanged. It is evenly distributed between the support plate and the fixed plate along the length of the heat storage straight pipe.
- the temperature sensor is installed in the sensor installation hole by means of a buckle.
- a support plate is arranged between the two fixing plates, the heat storage straight pipe runs through the support plate, and annular straight pipe support bosses are fixed on both end surfaces of the support plate.
- phase change cooling mechanism is arranged inside the motor, which improves the heat absorption efficiency of the phase change material. During the process of converting the heat absorption of the motor into latent heat by the phase change material, the temperature remains unchanged at the phase change point, which can effectively control the temperature of the motor. Ensure that the motor works stably.
- phase change material is used to naturally store and dissipate the heat generated by the motor.
- the size of the straight pipe and the weight of the phase change material can be designed according to the power of the motor.
- the phase change cooling mechanism can fully load the heat released by the blower in normal operation for 6 hours It is converted into latent heat of phase change material, which greatly reduces the cooling energy consumption of the blower.
- FIG. 1 is a schematic diagram of the overall structure of the present invention.
- phase change cooling mechanism of the present invention is a three-dimensional view of a phase change cooling mechanism of the present invention
- phase change cooling mechanism of the present invention is a front view of the phase change cooling mechanism of the present invention.
- Fig. 4 is A-A sectional view in Fig. 3;
- Fig. 5 is the straight pipe sectional view of the phase change cooling mechanism of the present invention.
- FIG. 6 is a schematic diagram of the fin structure of the phase change cooling mechanism of the present invention.
- Fig. 7 is the axial schematic diagram of the support plate of the phase change cooling mechanism of the present invention.
- FIG. 8 is a cross-sectional view of the support plate of the phase change cooling mechanism of the present invention.
- FIG. 9 is a schematic diagram of the structure of the sensor installation hole of the phase change cooling mechanism of the present invention.
- the present invention mainly includes an end plate 1, a motor housing 2, a winding 3, a stator core 4, a permanent magnet 5, a rotor core 6, a phase change cooling mechanism 7, a motor shaft 8, Screw 9, volute 10, impeller cover 11, impeller 12, volute airtight ring 13, impeller locking nut 14, impeller pull rod 15, bearing 16, volute base 17, volute coupling seat 18, fixing frame 19 and cooling System 20, the present invention will be described in detail below with reference to the accompanying drawings.
- the motor housing 2 is the main body of the present invention.
- the motor housing has a circular structure.
- a liquid inlet hole 2-1 is provided on the side wall of the first end of the motor housing.
- the side wall of the second end of the casing is provided with a liquid outlet hole 2-3
- the inner wall of the motor casing is provided with a casing flow channel 2-2
- the first end and the second end of the casing flow channel are provided. Both are provided with a phase-change cooling structure, and the casing flow channel 2-2 connects the two phase-change cooling mechanisms together.
- a connector 2-4 is also fixed on the side wall of the motor housing.
- the end plate 1 is arranged on the end face of the first end of the motor housing by means of screws 9, so as to realize the sealing of the first end of the motor housing.
- the cooling system 20 includes an inlet flow valve 20-1, an outlet flow valve 20-2, an on-off valve 20-3, a liquid storage tank 20-4, a flow pump 20-5, a cooling mechanism 20-6 and a cooling channel 20-7,
- the first end of the cooling channel 20-7 is connected to the liquid inlet hole 2-1, and the second end of the cooling channel 20-7 is connected to the liquid outlet hole 2-3.
- the inlet flow valve 20-1, the outlet flow valve 20-2, the on-off valve 20-3, the liquid storage tank 20-4, the flow pump 20-5, and the cooling mechanism 20-6 are all arranged on the cooling channel 20-7, and the cooling
- the flow channel 20-7 is also connected with the connecting head 2-4, and an on-off valve 20-3 is provided between the cooling flow channel 20-7 and the connecting head 2-4.
- the liquid in the liquid storage tank 20-4 passes through the inlet flow valve 20-1 and enters the liquid inlet hole, then enters the phase change cooling mechanism at the first end, and flows into the phase change cooling mechanism at the second end through the casing flow channel; After the liquid flows in the phase change cooling mechanism for a period of time, it flows back into the cooling channel through the liquid outlet hole and the connecting head; and then flows back to the storage liquid through the outlet flow valve 20-2, the cooling mechanism 20-6 and the flow pump 20-5 in turn.
- Inside Box 20-4 Inside Box 20-4.
- the motor shaft 8 is mounted in the motor housing 2 through the bearing 16, and the motor shaft traverses the entire motor housing.
- the motor shaft 8 is provided with a rotor iron core 6 and a permanent magnet 5 arranged inside and outside, and the two are interposed between the two phase-change cooling mechanisms.
- the impeller cover 11 is fixed on the volute 10 by the screw 9, the volute 10 is fixed on the volute coupling seat 18 by the screw 9, the volute coupling seat 18 is fixed on the volute base 17 by the screw 9, the volute base 17 is fixed by the screw 9 is fixed on the second end of the motor housing 2 .
- the impeller 12 is fixed on the motor shaft 8 through the impeller locking nut 14 and the impeller pull rod 15 , and a volute airtight ring 13 is provided between the volute 10 and the motor casing 2 , and the volute airtight ring 13 is fixed on the volute by screws 9 .
- the air tightness inside the motor is ensured by the volute airtight ring 13.
- the phase change cooling mechanism 7 is installed in the cavity between the motor housing 2 and the motor shaft 8, and one is provided on both sides of the rotor iron core and the stator iron core.
- the phase change cooling mechanism 7 passes through the fixing frame 19 and the screw 9. It is fixed on the inner wall of the motor housing 2 .
- the phase change cooling mechanism 7 includes a pair of fixed plates 7-1, a liquid inlet tube group 7-2, fins 7-3, a support plate 7-4, a temperature sensor 7-5, an outlet
- the liquid pipe group 7-6 and the heat storage straight pipe 7-7 as shown in Figure 4,
- the fixing plate 7-1 is a circular structure, and there are several mounting bracket fixing holes 7-1a on the fixing plate, and several straight
- the pipe mounting holes 7-1b and the mounting frame fixing holes 7-1a are evenly arranged on the same circumference, and the straight pipe mounting holes 7-1b are arranged on the inner side of the circumference where the mounting frame fixing holes 7-1a are located, and the straight pipe is installed.
- the holes 7-1b are arranged on circumferences of different diameters, and the straight pipe mounting holes 7-1b on each circumference are evenly distributed.
- the liquid inlet pipe group 7-2 includes a liquid inlet straight pipe 7-2a, a liquid inlet bundle pipe 7-2b and a liquid inlet short straight pipe 7-2c.
- 7-2a is fixed and communicated with the outer wall of the liquid inlet manifold 7-2b along the radial direction of the liquid inlet manifold 7-2b, and the liquid inlet short straight pipe 7-2c is arranged in a direction parallel to the axial direction of the liquid inlet manifold 7-2b , and the liquid inlet short straight pipe 7-2c is evenly arranged on the liquid inlet manifold pipe 7-2b.
- the support plate 7-4 has a circular structure, and circular straight pipe support bosses 7-4b are fixed on both ends of the support plate 7-4. 4 is provided with straight pipe support holes 7-4a located on a plurality of circumferences, and a plurality of straight pipe support holes 7-4a on each circumference are evenly arranged along the circumferential direction.
- the function of the support plate 7-4 is to install and support the heat storage straight pipe.
- the liquid outlet pipe group 7-6 includes a liquid outlet straight pipe 7-6a, a liquid outlet bundle pipe 7-6b and a liquid outlet short straight pipe 7-6c, and the liquid outlet pipe group 7-6 and the liquid inlet pipe
- the structure of the group 7-2 is the same, the liquid outlet straight pipe 7-6a, the liquid outlet bundle pipe 7-6b and the liquid short straight pipe 7-6c on the liquid outlet pipe group 7-6 are on the liquid inlet pipe group 7-2.
- the shape, structure and assembly method of the corresponding structure are the same.
- the heat storage straight pipe 7-7 is arranged between the liquid inlet pipe group 7-2 and the liquid outlet pipe group 7-6, and the first end of the heat storage straight pipe is connected to the liquid inlet short straight pipe on the liquid inlet pipe group 7-2.
- 7-2c is welded and fixedly connected, and the second end of the heat storage straight pipe is welded and fixedly connected with the liquid outlet short straight pipe 7-6c on the liquid outlet pipe group 7-6.
- the heat storage straight pipe not only passes through the straight pipe support hole 7-4a, but also passes through the straight pipe installation hole 7-1b. As shown in FIG.
- the heat storage straight pipe 7-7 includes a phase change material 7-7a, an inner copper pipe 7-7b, a bracket 7-7c and an outer copper pipe 7-7d which are sequentially arranged from the inside to the outside.
- the straight pipes 7-7 are installed on the support plate 7-4 in sequence, and auxiliary fixing is performed through the straight pipe support holes (7-4a) and the straight pipe support bosses (7-4b).
- the phase change material adopts the mixing ratio of sodium acetate trihydrate and sodium hydroxymethyl cellulose.
- the phase change point of the mixed material is 42 to 50 degrees, the density is 1.6g/cm3, and the latent heat is 280 to 320kJ/kg.
- the fins 7-3 are annular structures, and the fins 7-3 are provided with straight pipe through holes 7-3a, and the fins are evenly distributed between the support plate and the fixed plate along the length direction of the straight pipe.
- the heat storage straight pipe 7-7 passes through the straight pipe through hole 7-3a, the fixing plate 7-1 is arranged on both ends of the heat storage straight pipe 7-7, and the entire phase change cooling mechanism 7 is installed on the motor casing through the fixing frame 19 Inside of body 2.
- a sensor mounting hole 7-8 is provided on the side wall of the thermal storage straight pipe, and a temperature sensor 7-5 is mounted in the sensor mounting hole for monitoring the temperature of the phase change material in the thermal storage straight pipe.
- the fins are made of aluminum foil with a thickness of 1mm.
- the straight through holes on the fins are flanged, and the flanging thickness is 1mm.
- the existence of the fins 7-3 greatly increases the thermal contact surface, and the heat is conducted to the phase through the fins 7-3, the inner copper tube 7-7b, and the outer copper tube 7-7d.
- the change material 7-7a As the heat accumulated inside the motor casing 2 gradually increases, the temperature inside the motor casing rises, and when the temperature reaches the phase change point of the phase change material, the phase change material 7 in the heat storage straight pipe 7-7 -7a starts the endothermic phase transition, and the temperature keeps the phase transition temperature point unchanged until the phase change material 7-7a completes the storage of all latent heat.
- the phase change material 7-7a has large latent heat, low phase change point and high heat storage efficiency, which can ensure the stability of the internal temperature of the motor for a long time. According to the experimental calculation results, the phase change cooling mechanism 7 can meet the normal operation of the permanent magnet direct drive blower with full load. The latent heat storage of heat generated for 6h; when the motor stops working, the heat inside the motor casing 2 will not continue to increase, and the temperature will decrease accordingly. When the temperature drops below the phase change temperature point, the phase change material 7-7a starts Release latent heat and release heat storage space for the next endothermic cooling.
- the phase-change cooling type permanent magnet direct-drive blower cooling system 20 is set to work in three modes, the first is the natural working mode I, the second is the conventional cooling mode II, and the third is the emergency cooling mode III.
- the cooling system 20 The temperature of the phase change material is detected by a temperature sensor 7-5 installed on the heat storage straight pipe 7-7. When the latent heat of the phase change material 7-7a is not fully used, the cooling system 20 adopts the natural working mode I, the inlet flow valve 20-1, the outlet flow valve 20-2 and the switch valve 20-3 are closed, and the flow pump 20-5 stops working. Realize natural heat storage and heat release, which can save a lot of energy.
- the cooling system 20 starts the conventional cooling mode II, the inlet flow valve 20-1, the outlet flow valve 20 -2.
- the on-off valve 20-3 is opened, the flow pump 20-5 works at low frequency, the cooling mechanism 20-5 is closed, and the phase change material is rapidly cooled by cooling liquid to take away the heat.
- the cooling system 20 starts the emergency cooling mode III, the inlet flow valve 20-1, the outlet flow valve 20-2 and the switch valve 20-3 are opened, the cooling mechanism 20-5 works, and the flow pump works at high frequency , the cooling mechanism quickly refrigerates the cooling liquid, and the cooling liquid rapidly cools the phase change material to take away the heat to meet the emergency heat dissipation needs of the motor.
- phase change cooling mechanism is arranged inside the motor, which improves the heat absorption efficiency of the phase change material. During the process of converting the heat absorption of the motor into latent heat by the phase change material, the temperature remains unchanged at the phase change point, which can effectively control the temperature of the motor. Ensure that the motor works stably.
- phase change material is used to naturally store and dissipate the heat generated by the motor.
- the size of the straight pipe and the weight of the phase change material can be designed according to the power of the motor.
- the phase change cooling mechanism can fully load the heat released by the blower in normal operation for 6 hours It is converted into latent heat of phase change material, which greatly reduces the cooling energy consumption of the blower.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Motor Or Generator Cooling System (AREA)
Abstract
一种相变冷却式永磁直驱鼓风机,涉及鼓风机技术领域,提供一种能实现高效率、低能耗冷却的鼓风机。它包括电机壳体、绕组、定子铁芯、永磁体、转子铁芯、电机轴、蜗壳、叶轮和蜗壳底座,还包括冷却系统和设置在电机轴与电机壳体之间的一对相变冷却机构;所述相变冷却机构包括固定板、进液管组、翅片、温度传感器、出液管组和蓄热直管,固定板为平行设置的一对并位于进液管组和出液管组之间,在进、出液管组之间设有若干蓄热直管,蓄热直管包括由内而外依次的相变材料、内铜管、支架和外铜管;冷却系统包括冷却流道以及设置在冷却流道上的进口流量阀、出口流量阀、开关阀、储液箱、流量泵和冷却机构。本发明可以实现对鼓风机起到很好的冷却效果。
Description
本发明涉及鼓风机技术领域,具体地说是一种相变冷却式永磁直驱鼓风机。
永磁直驱鼓风机主要结构是将鼓风机叶轮直接安装在电动机轴延伸端上,转子被垂直悬浮于主动式磁性轴承控制器上,不需要变速器及联轴器,由高速电动机直接驱动,通常冷却系统采用外置冷凝器的方式,保护风机系统。
相变蓄热是一种以相变储能材料为基础的高新储能技术,主要分为热化学储热、显热储热和相变储热,其中热化学储热不安全且蓄热过程不可控,显热储热密度小,相比之下,相变储热安全稳定、储热密度高。相变蓄热材料能随温度变化而改变形态并提供潜热,相变材料由固态变为液态或由液态变为固态的过程称为相变过程,这时相变材料将吸收或释放大量的潜热。
中国专利CN107387460A公开了一种磁悬浮离心式鼓风机冷却系统,设计了一种鼓风机用散热器,利用散热器将热量带走,散热器安装于电机外部,未实现电机、鼓风机内部冷却,冷却效率较低,并且存在设计占用空间较大、需要提供额外动力等不足点。中国专利CN106687694A公开了一种直驱型双涡轮鼓风机冷却结构,设计了沿电机壳外径对定子进行冷却的多个孔道,以及用于对轴承座及转子进行冷却的多个孔道,利用风冷将热量带走,但设计孔道结构复杂,加工工艺难度较高。
目前鼓风机冷却原理主要有风冷和水冷两种,冷却方式主要有内置散热 孔道、外置散热器两种,水冷方式散热效果较好,但会带来泄露、振动等不利影响;风冷方式较稳定,但散热效果较差,需要额外动力持续工作将热量带走,内置散热孔道结构较为复杂、加工工艺冗余,外置冷凝器、风扇散热效率较低,同样都需要额外动力持续工作将热量带走,增加了额外耗能。因此,在避免对电机、鼓风机结构进行较大改进的前提下,提供一种能实现高效率、低能耗冷却的鼓风机是本发明所要解决的问题。
发明内容
针对现有技术存在的上述不足,本发明提供了一种相变冷却式永磁直驱鼓风机,在避免对电机、鼓风机结构进行较大改进的前提下,提供一种能实现高效率、低能耗冷却的鼓风机。
本发明采用如下技术方案:一种相变冷却式永磁直驱鼓风机,包括电机壳体、绕组、定子铁芯、永磁体、转子铁芯、电机轴、蜗壳、叶轮和蜗壳底座,其特征是,还包括冷却系统和设置在电机轴与电机壳体之间的一对相变冷却机构;
所述相变冷却机构包括固定板、进液管组、翅片、温度传感器、出液管组和蓄热直管,所述固定板为平行设置的一对并位于进液管组和出液管组之间,进液管组包括进液直管和进液集束管,出液管组包括出液直管和出液集束管和出液短直管,进、出液集束管均为圆环形,在进、出液集束管之间设有若干蓄热直管,所述蓄热直管包括由内而外依次的相变材料、内铜管、支架和外铜管,蓄热直管贯穿固定板;所述翅片沿蓄热直管设置,在至少一根蓄热直管上设有温度传感器用于监测相变材料的温度;
所述冷却系统包括冷却流道以及设置在冷却流道上的进口流量阀、出口流量阀、开关阀、储液箱、流量泵和冷却机构,冷却流道的第一端与进液直管连接,冷却流道的第二端与出液直管连接。
进一步地,进液管沿进液集束管径向设置,在进液集束管上设有若干位 于同一圆周上的进液短直管,进液短直管与蓄热直管的对应端固定连接。
进一步地,出液管沿出液集束管径向设置,在出液集束管上设有若干位于同一圆周上的出液短直管,出液短直管与蓄热直管的对应端固定连接。
进一步地,在电机壳体内设有壳体流道,壳体流道将两相变冷却机构的进液管连接在一起。
进一步地,所述叶轮通过叶轮拉杆固定在电机轴上,所述蜗壳与电机轴间设有蜗壳气密环。
进一步地,所述相变材料采用三水醋酸钠与羟甲基纤维素钠混合配比,混合材料相变点为42至50度,密度为1.6g/cm3,潜热为280至320kJ/kg。
进一步地,所述翅片采用铝箔材质,厚度1mm,翅片上设有便于蓄热直管穿过的直管通孔,且直管通孔进行翻边处理,翻边厚度1mm,所述翅片沿蓄热直管长度方向在支撑板与固定板之间均匀分布。
进一步地,所述温度传感器采用卡扣安装于传感器安装孔内。
进一步地,在两固定板之间设有支撑板,蓄热直管贯穿支撑板,在支撑板的两端面上均固定有圆环形的直管支撑凸台。
本发明提供的一种相变冷却式永磁直驱鼓风机,有益效果在于:
(1)永磁电机与鼓风机同轴设计,缩小了整机尺寸,省去了联轴器与减速器,大幅提高了传动效率。
(2)将相变冷却机构设置于电机内部,提高了相变材料吸热效率,相变材料将电机热吸收转化成潜热过程中,温度保持在相变点不变,可有效控制电机温度,保证电机稳定工作。
(3)采用相变材料对电机产热进行自然蓄热、散热,可根据电机功率设计直管尺寸、相变材料重量,该相变冷却机构可将该型鼓风机满载正常运行6h所释放的热量转化成相变材料潜热,大幅降低鼓风机冷却耗能。
(4)冷却系统设置三种工作模式,自然工作模式Ⅰ、常规冷却模式Ⅱ、 紧急冷却模式Ⅲ,满足了不同工况条件下的散热需求。
图1为本发明的总体结构示意图;
图2为本发明的相变冷却机构三维图;
图3为本发明的相变冷却机构的正视图;
图4为图3中的A-A剖视图;
图5为本发明的相变冷却机构的直管剖视图;
图6为本发明的相变冷却机构翅片结构示意图;
图7为本发明的相变冷却机构支撑板的轴向示意图;
图8为本发明的相变冷却机构支撑板的剖视图;
图9为本发明的相变冷却机构传感器安装孔结构示意图;
图中:1端板,2电机壳体,2-1进液孔,2-2壳体流道,2-3出液孔,2-4连接头,3绕组,4定子铁芯,5永磁体,6转子铁芯,7相变冷却机构,7-1固定板,7-1a安装架固定孔,7-1b直管安装孔,7-2进液管组,7-2a进液直管,7-2b进液集束管,7-2c进液短直管,7-3翅片,7-3a直管通孔,7-4支撑板,7-4a直管支撑孔,7-4b直管支撑凸台,7-5温度传感器,7-6出液管组,7-6a出液直管,7-6b出液集束管,7-6c出液短直管,7-7蓄热直管,7-7a相变材料,7-7b、铜管,7-7c支架,7-8传感器安装孔,8电机轴,9螺钉,10蜗壳,11叶轮盖,12叶轮,13蜗壳气密环,14叶轮锁紧螺母,15叶轮拉杆,16轴承,17、蜗壳底座,18蜗壳联接座,19固定架,20冷却系统,20-1进口流量阀,20-2出口流量阀,20-3开关阀,20-4储液箱,20-5流量泵,20-6冷却机构,20-7冷却流道。
如图1至图9所示,本发明主要包括端板1、电机壳体2、绕组3、定子 铁芯4、永磁体5、转子铁芯6、相变冷却机构7、电机轴8、螺钉9、蜗壳10、叶轮盖11、叶轮12、蜗壳气密环13、叶轮锁紧螺母14、叶轮拉杆15、轴承16、蜗壳底座17、蜗壳联接座18、固定架19和冷却系统20,下面结合附图对本发明进行详细描述。
如图1所示,电机壳体2为本发明的主体,电机壳体为圆形结构,在电机壳体的第一端的侧壁上设有进液孔2-1,在电机壳体的第二端的侧壁上设有出液孔2-3,在电机壳体的内壁上设有壳体流道2-2,在壳体流道的第一端和第二端均设有相变冷却结构,壳体流道2-2将两个相变冷却机构连接在一起。在电机壳体的侧壁上还固定有连接头2-4。
端板1通过螺钉9设置在电机壳体的第一端的端面上,用于实现对电机壳体第一端的封闭。
冷却系统20包括进口流量阀20-1、出口流量阀20-2、开关阀20-3、储液箱20-4、流量泵20-5、冷却机构20-6和冷却流道20-7,冷却流道20-7的第一端与进液孔2-1连接,冷却流道20-7的第二端与出液孔2-3连接。进口流量阀20-1、出口流量阀20-2、开关阀20-3、储液箱20-4、流量泵20-5、冷却机构20-6均设置在冷却流道20-7上,冷却流道20-7还与连接头2-4连接,并在冷却流道20-7与连接头2-4之间设有开关阀20-3。
储液箱20-4内的液体,经过进口流量阀20-1后进液孔,然后进入第一端的相变冷却机构内,并经壳体流道流动至第二端的相变冷却机构内;液体在相变冷却机构内流动一段时间后,经出液孔、连接头回流至冷却流道内;然后依次经过出口流量阀20-2、冷却机构20-6、流量泵20-5回流至储液箱20-4内。
电机轴8通过轴承16安装在电机壳体2内,且电机轴横穿整个电机壳体。电机轴8上设有内外设置的转子铁芯6和永磁体5,且两者介于两个相变冷却机构之间。叶轮盖11通过螺钉9固定在蜗壳10上,蜗壳10通过螺钉9固定 在蜗壳联接座18上,蜗壳联接座18通过螺钉9固定在蜗壳底座17上,蜗壳底座17通过螺钉9固定在电机壳体2的第二端。
叶轮12通过叶轮锁紧螺母14、叶轮拉杆15固定在电机轴8上,蜗壳10与电机壳体2间设有蜗壳气密环13,蜗壳气密环13通过螺钉9固定在蜗壳联接座18上,通过蜗壳气密环13保证电机内部的气密性。
相变冷却机构7安装于电机壳体2、电机轴8之间的空腔内,在转子铁芯和定子铁芯的两侧分别设置一个,相变冷却机构7通过固定架19、螺钉9固定于电机壳体2内壁上。
如图2至图8所示,相变冷却机构7包括一对固定板7-1、进液管组7-2、翅片7-3、支撑板7-4、温度传感器7-5、出液管组7-6和蓄热直管7-7,如图4所示,固定板7-1为圆环形结构,在固定板上设有若干安装架固定孔7-1a,以及若干直管安装孔7-1b,安装架固定孔7-1a为在同一圆周上均匀设置的若个,直管安装孔7-1b设置在安装架固定孔7-1a所在圆周的内侧,且直管安装孔7-1b设置在不同直径的圆周上,每一圆周上的直管安装孔7-1b均匀分布。进液管组7-2包括进液直管7-2a、进液集束管7-2b和进液短直管7-2c,进液集束管7-2b整体呈圆环形,进液直管7-2a沿进液集束管7-2b径向与进液集束管7-2b的外壁固定且连通,进液短直管7-2c沿与进液集束管7-2b轴向平行的方向设置,且进液短直管7-2c在进液集束管7-2b上均匀设置。
如图7、8所示,支撑板7-4为圆环形结构,在支撑板7-4的两端面上均固定有圆环形的直管支撑凸台7-4b,在支撑板7-4上设有位于多个圆周上的直管支撑孔7-4a,每一圆周上的若干直管支撑孔7-4a沿周向均匀设置。支撑板7-4的作用是用于安装、支撑蓄热直管。
如图3所示,出液管组7-6包括出液直管7-6a、出液集束管7-6b和出液短直管7-6c,出液管组7-6与进液管组7-2的结构相同,出液管组7-6上的出液直管7-6a、出液集束管7-6b和出液短直管7-6c与进液管组7-2上对应 结构的形状、结构及装配方式均相同。
蓄热直管7-7设置在进液管组7-2和出液管组7-6之间,蓄热直管的第一端与进液管组7-2上的进液短直管7-2c焊接固定连接,蓄热直管的第二端与出液管组7-6上的出液短直管7-6c焊接固定连接。蓄热直管除了穿过直管支撑孔7-4a外,还穿在直管安装孔7-1b内。如图5所示,蓄热直管7-7包括由内而外依次设置的相变材料7-7a、内铜管7-7b、支架7-7c和外铜管7-7d。直管7-7依次安装在支撑板7-4上,通过直管支撑孔(7-4a)、直管支撑凸台(7-4b)进行辅助固定。相变材料采用三水醋酸钠与羟甲基纤维素钠混合配比,混合材料相变点为42至50度,密度为1.6g/cm3,潜热为280至320kJ/kg。
翅片7-3为圆环形结构,翅片7-3上设有直管通孔7-3a,翅片沿直管长度方向在支撑板与固定板之间均匀分布。蓄热直管7-7穿过直管通孔7-3a,固定板7-1设置在蓄热直管7-7的两端,整个相变冷却机构7通过固定架19安装于电机壳体2内侧。如图9所示,在蓄热直管侧壁上设有传感器安装孔7-8,在传感器安装孔内安装有温度传感器7-5,用于监测蓄热直管内相变材料的温度。翅片采用铝箔材质,厚度1mm,翅片上的直管通孔进行翻边处理,翻边厚度1mm。
当电机正常运行时,会产生大量的热,翅片7-3的存在大幅增加了热接触面,热量通过翅片7-3、内铜管7-7b、外铜管7-7d传导给相变材料7-7a,随着电机壳体2内部积热逐渐增加,电机壳体内部温度上升,当温度达到相变材料相变点时,蓄热直管7-7内相变材料7-7a开始吸热相变,并且温度保持相变温度点不变,直至相变材料7-7a完成所有潜热热量的储存。相变材料7-7a潜热大,相变点低,蓄热效率高,能保证电机内部温度的长时间内稳定,根据实验计算结果,该相变冷却机构7可满足永磁直驱鼓风机满载正常运行6h产生热量的潜热蓄热;当电机停止工作时,电机壳体2内部热量不再继续增加,温度随之降低,当温度降低至相变温度点之下时,相变材料7-7a开始 释放潜热,为下次吸热冷却释放蓄热空间。
该相变冷却式永磁直驱鼓风机冷却系统20设置三种模式工作状态,第一种为自然工作模式Ⅰ,第二种为常规冷却模式Ⅱ,第三种为紧急冷却模式Ⅲ,冷却系统20通过安装在蓄热直管7-7上的温度传感器7-5检测相变材料温度。相变材料7-7a潜热未使用完全时,冷却系统20采用自然工作模式Ⅰ,进口流量阀20-1、出口流量阀20-2、开关阀20-3关闭,流量泵20-5停止工作,实现自然蓄热、放热,可节省大量能源。当相变材料7-7a潜热使用完全,并且电机仍需继续运行时,相变材料7-7a温度会继续上升,冷却系统20启动常规冷却模式Ⅱ,进口流量阀20-1、出口流量阀20-2、开关阀20-3打开,流量泵20-5低频工作,冷却机构20-5关闭,采用冷却液对相变材料进行快速冷却,将热量带走。当电机出现紧急过热情况时,冷却系统20启动紧急冷却模式Ⅲ,进口流量阀20-1、出口流量阀20-2、开关阀20-3打开,冷却机构20-5工作,流量泵高频工作,冷却机构对冷却液进行快速制冷,冷却液对相变材料进行快速冷却,将热量带走,满足电机紧急散热需求。
本发明的有益效果在于:
(1)永磁电机与鼓风机同轴设计,缩小了整机尺寸,省去了联轴器与减速器,大幅提高了传动效率。
(2)将相变冷却机构设置于电机内部,提高了相变材料吸热效率,相变材料将电机热吸收转化成潜热过程中,温度保持在相变点不变,可有效控制电机温度,保证电机稳定工作。
(3)采用相变材料对电机产热进行自然蓄热、散热,可根据电机功率设计直管尺寸、相变材料重量,该相变冷却机构可将该型鼓风机满载正常运行6h所释放的热量转化成相变材料潜热,大幅降低鼓风机冷却耗能。
(4)冷却系统设置三种工作模式,自然工作模式Ⅰ、常规冷却模式Ⅱ、紧急冷却模式Ⅲ,满足了不同工况条件下的散热需求。
上述实施例仅仅是对发明的优选实施方式进行的描述,并非对发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域相关技术人员对本发明的各种变形和改进,均应扩入本发明权利要求书所确定的保护范围内。
Claims (9)
- 一种相变冷却式永磁直驱鼓风机,包括电机壳体、绕组、定子铁芯、永磁体、转子铁芯、电机轴、蜗壳、叶轮和蜗壳底座,其特征是,还包括冷却系统和设置在电机轴与电机壳体之间的一对相变冷却机构;所述相变冷却机构包括固定板、进液管组、翅片、温度传感器、出液管组和蓄热直管,所述固定板为平行设置的一对并位于进液管组和出液管组之间,进液管组包括进液直管和进液集束管,出液管组包括出液直管和出液集束管和出液短直管,进、出液集束管均为圆环形,在进、出液集束管之间设有若干蓄热直管,所述蓄热直管包括由内而外依次的相变材料、内铜管、支架和外铜管,蓄热直管贯穿固定板;所述翅片沿蓄热直管设置,在至少一根蓄热直管上设有温度传感器用于监测相变材料的温度;所述冷却系统包括冷却流道以及设置在冷却流道上的进口流量阀、出口流量阀、开关阀、储液箱、流量泵和冷却机构,冷却流道的第一端与进液直管连接,冷却流道的第二端与出液直管连接。
- 根据权利1要求所述的一种相变冷却式永磁直驱鼓风机,其特征是,进液管沿进液集束管径向设置,在进液集束管上设有若干位于同一圆周上的进液短直管,进液短直管与蓄热直管的对应端固定连接。
- 根据权利1要求所述的一种相变冷却式永磁直驱鼓风机,其特征是,出液管沿出液集束管径向设置,在出液集束管上设有若干位于同一圆周上的出液短直管,出液短直管与蓄热直管的对应端固定连接。
- 根据权利1要求所述的一种相变冷却式永磁直驱鼓风机,其特征是,在电机壳体内设有壳体流道,壳体流道将两相变冷却机构的进液管连接在一起。
- 根据权利1要求所述的一种相变冷却式永磁直驱鼓风机,其特征是,所述叶轮通过叶轮拉杆固定在电机轴上,所述蜗壳与电机轴间设有蜗壳气密环。
- 根据权利1要求所述的一种相变冷却式永磁直驱鼓风机,其特征是,所述相变材料采用三水醋酸钠与羟甲基纤维素钠混合配比,混合材料相变点为42至50度,密度为1.6g/cm3,潜热为280至320kJ/kg。
- 根据权利1要求所述的一种相变冷却式永磁直驱鼓风机,其特征是,所述翅片采用铝箔材质,厚度1mm,翅片上设有便于蓄热直管穿过的直管通孔,且直管通孔进行翻边处理,翻边厚度1mm,所述翅片沿蓄热直管长度方向在支撑板与固定板之间均匀分布。
- 根据权利1要求所述的一种相变冷却式永磁直驱鼓风机,其特征是,所述温度传感器采用卡扣安装于传感器安装孔内。
- 根据权利1要求所述的一种相变冷却式永磁直驱鼓风机,其特征是,在两固定板之间设有支撑板,蓄热直管贯穿支撑板,在支撑板的两端面上均固定有圆环形的直管支撑凸台。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110140199.8 | 2021-02-02 | ||
CN202110140199.8A CN112901533B (zh) | 2021-02-02 | 2021-02-02 | 一种相变冷却式永磁直驱鼓风机 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022166226A1 true WO2022166226A1 (zh) | 2022-08-11 |
Family
ID=76121174
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/121500 WO2022166226A1 (zh) | 2021-02-02 | 2021-09-29 | 一种相变冷却式永磁直驱鼓风机 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112901533B (zh) |
WO (1) | WO2022166226A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116526752A (zh) * | 2023-07-05 | 2023-08-01 | 深圳市卡妙思电子科技有限公司 | 一种基于磁悬浮技术的电机结构 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112901533B (zh) * | 2021-02-02 | 2022-11-22 | 山东省章丘鼓风机股份有限公司 | 一种相变冷却式永磁直驱鼓风机 |
CN117967583A (zh) * | 2024-01-26 | 2024-05-03 | 江西沃德尔科技有限公司 | 一种智能电子泵及其使用方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10336965A (ja) * | 1997-05-27 | 1998-12-18 | Hitachi Ltd | 冷却ジャケット構造 |
RU2706016C1 (ru) * | 2019-04-29 | 2019-11-13 | Владимир Андреевич Коровин | Статор электрической машины с жидкостным охлаждением |
CN209706601U (zh) * | 2019-01-25 | 2019-11-29 | 中石化上海工程有限公司 | 一种氧化偶联制乙烯急冷结构 |
CN110971084A (zh) * | 2019-12-10 | 2020-04-07 | 江苏南通申通机械有限公司 | 一种水冷型相变冷却电机 |
CN211429030U (zh) * | 2020-03-19 | 2020-09-04 | 天津飞旋科技有限公司 | 一种基于相变热管的电机端部绕组冷却结构 |
CN111869059A (zh) * | 2018-03-27 | 2020-10-30 | 米巴电动汽车有限公司 | 定子 |
CN112901533A (zh) * | 2021-02-02 | 2021-06-04 | 山东省章丘鼓风机股份有限公司 | 一种相变冷却式永磁直驱鼓风机 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19606146A1 (de) * | 1996-02-20 | 1997-08-21 | Vorwerk Co Interholding | Schnellaufender Elektromotor |
CN101600320B (zh) * | 2008-06-04 | 2012-06-13 | 富准精密工业(深圳)有限公司 | 散热装置 |
DE102010012392A1 (de) * | 2010-03-22 | 2011-09-22 | Ebm-Papst Mulfingen Gmbh & Co. Kg | Ventilator |
CN205081632U (zh) * | 2015-11-05 | 2016-03-09 | 中国船舶重工集团公司第七0四研究所 | 电机冷却系统 |
CN207835200U (zh) * | 2018-02-07 | 2018-09-07 | 中山大洋电机股份有限公司 | 一种电机转子及其应用的电机 |
CN109888436A (zh) * | 2019-04-12 | 2019-06-14 | 中国电子科技集团公司第三十八研究所 | 结合相变材料的集成冷板电池热控系统 |
CN211314659U (zh) * | 2019-10-18 | 2020-08-21 | 石家庄金士顿轴承科技有限公司 | 一种空气悬浮离心鼓风机的风冷结构 |
-
2021
- 2021-02-02 CN CN202110140199.8A patent/CN112901533B/zh active Active
- 2021-09-29 WO PCT/CN2021/121500 patent/WO2022166226A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10336965A (ja) * | 1997-05-27 | 1998-12-18 | Hitachi Ltd | 冷却ジャケット構造 |
CN111869059A (zh) * | 2018-03-27 | 2020-10-30 | 米巴电动汽车有限公司 | 定子 |
CN209706601U (zh) * | 2019-01-25 | 2019-11-29 | 中石化上海工程有限公司 | 一种氧化偶联制乙烯急冷结构 |
RU2706016C1 (ru) * | 2019-04-29 | 2019-11-13 | Владимир Андреевич Коровин | Статор электрической машины с жидкостным охлаждением |
CN110971084A (zh) * | 2019-12-10 | 2020-04-07 | 江苏南通申通机械有限公司 | 一种水冷型相变冷却电机 |
CN211429030U (zh) * | 2020-03-19 | 2020-09-04 | 天津飞旋科技有限公司 | 一种基于相变热管的电机端部绕组冷却结构 |
CN112901533A (zh) * | 2021-02-02 | 2021-06-04 | 山东省章丘鼓风机股份有限公司 | 一种相变冷却式永磁直驱鼓风机 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116526752A (zh) * | 2023-07-05 | 2023-08-01 | 深圳市卡妙思电子科技有限公司 | 一种基于磁悬浮技术的电机结构 |
CN116526752B (zh) * | 2023-07-05 | 2023-12-22 | 深圳市卡妙思电子科技有限公司 | 一种基于磁悬浮技术的电机结构 |
Also Published As
Publication number | Publication date |
---|---|
CN112901533A (zh) | 2021-06-04 |
CN112901533B (zh) | 2022-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022166226A1 (zh) | 一种相变冷却式永磁直驱鼓风机 | |
WO2021227262A1 (zh) | 一种具有水冷循环结构的永磁直驱渣浆泵 | |
US12049872B2 (en) | Cooling device, motor, and wind turbine set | |
CN103199652B (zh) | 气液交织冷却高功率密度电机 | |
CN111969736A (zh) | 一种高效水冷水利发电机结构 | |
CN112803677A (zh) | 一种具有内部蒸发冷却系统的电机 | |
CN204878076U (zh) | 一种离心鼓风机冷却系统 | |
CN110071594B (zh) | 一种高速电机自循环冷却结构及冷却方法 | |
CN217883068U (zh) | 一种飞轮储能装置的散热结构及飞轮储能装置 | |
CN114094765B (zh) | 一种电动机水冷降温结构 | |
CN207363960U (zh) | 高温磁力传动泵 | |
CN218243262U (zh) | 高效散热的永磁直驱电机 | |
WO2020220834A1 (zh) | 冷却系统、电机及风力发电机组 | |
CN110566456B (zh) | 一种无油螺杆风机 | |
CN214850869U (zh) | 一种具有内部蒸发冷却系统的电机 | |
AU2021105512A4 (en) | Circulating Cooling System for Mining Flameproof Permanent Magnet Motorized Pulley Stator | |
CN210380472U (zh) | 一种具有内部循环风路的水冷机壳 | |
WO2020220835A1 (zh) | 冷却系统、电机及风力发电机组 | |
WO2022252436A1 (zh) | 一种复合材料永磁同步电机 | |
CN113489219A (zh) | 电机冷却结构、电机、压缩机 | |
CN102427284B (zh) | 风力发电机 | |
CN212250608U (zh) | 一种具有散热结构的外转子轴流风机叶轮装置 | |
CN219875224U (zh) | 发电机 | |
CN116979760B (zh) | 一种带有冷却系统的五轴摆头及冷却方法 | |
CN215419880U (zh) | 电机冷却结构、电机、压缩机 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21924223 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21924223 Country of ref document: EP Kind code of ref document: A1 |