[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022163208A1 - Phase difference detection device, lens device, and imaging apparatus - Google Patents

Phase difference detection device, lens device, and imaging apparatus Download PDF

Info

Publication number
WO2022163208A1
WO2022163208A1 PCT/JP2021/046884 JP2021046884W WO2022163208A1 WO 2022163208 A1 WO2022163208 A1 WO 2022163208A1 JP 2021046884 W JP2021046884 W JP 2021046884W WO 2022163208 A1 WO2022163208 A1 WO 2022163208A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase difference
light
imaging
difference detection
optical path
Prior art date
Application number
PCT/JP2021/046884
Other languages
French (fr)
Japanese (ja)
Inventor
泰孝 島田
洋一 岩崎
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2022578145A priority Critical patent/JPWO2022163208A1/ja
Publication of WO2022163208A1 publication Critical patent/WO2022163208A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/34Systems for automatic generation of focusing signals using different areas in a pupil plane
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • G03B13/34Power focusing
    • G03B13/36Autofocus systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules

Definitions

  • the present invention relates to a phase difference detection device, a lens device, and an imaging device.
  • Patent Document 1 discloses a first imaging device that outputs a pair of image signals shifted in one direction for one subject optical image, and a second imaging device that captures the subject optical image through an imaging optical system including a focus lens.
  • an optical element that causes part of the subject light incident on the imaging optical system to enter the imaging element, and causes the rest of the subject light excluding the part to enter the first imaging element; and the first imaging.
  • a focus control unit that performs focus control of the focus lens based on the phase difference between the pair of image signals output from an element.
  • An embodiment according to the technology of the present disclosure provides a phase difference detection device, a lens device, and an imaging device that can suppress deterioration in ranging accuracy in a state of being largely out of focus.
  • a phase difference detection device includes a branching section that branches an optical path of subject light that has passed through an imaging optical system into a first optical path proceeding to a first imaging element and a second optical path other than the first optical path; a second imaging device having a phase difference detection pixel for pupil-dividing and receiving the subject light traveling along the optical path; and a light blocking portion extending in a direction intersecting the axis.
  • a lens device of the present invention includes the phase difference detection device and the imaging optical system.
  • An imaging device of the present invention includes the phase difference detection device and the first imaging element.
  • Another imaging device of the present invention is obtained by the phase difference detection device in which the imaging optical system includes a focus lens, a first imaging element that receives light traveling along the first optical path, and the phase difference detection device and a control unit that controls driving of the focus lens based on the phase difference information.
  • a phase difference detection device it is possible to provide a phase difference detection device, a lens device, and an imaging device that can suppress deterioration in distance measurement accuracy when the focus is greatly out of focus.
  • FIG. 1 is a schematic diagram showing a schematic configuration of an imaging device 100 according to an embodiment of the present invention
  • FIG. 3 is a diagram showing an example of a phase difference detection optical system 20 of the lens device 1
  • FIG. It is a figure which shows an example of the light-shielding part 25 seen from the direction of the optical axis K2.
  • 9 is a graph showing an example of angular sensitivity characteristics of phase difference detection pixels in the second imaging element 27.
  • FIG. FIG. 10 is a diagram showing an example of a ray angle range and a luminous flux 202 in the case of F1.4
  • FIG. 10 is a diagram showing an example of a ray angle range and a luminous flux 202 in the case of F2;
  • FIG. 10 is a diagram showing an example of a ray angle range and a luminous flux 202 in the case of F2.8; It is a figure which shows an example of the ray angle range and the luminous flux 202 in the case of F4. It is a figure which shows an example of the ray angle range and the luminous flux 202 in the case of F8.
  • FIG. 4 is a diagram showing an example of a light shielding portion 25 having a variable light shielding width;
  • FIG. 1 is a schematic diagram showing an example of an imaging device 100 having a lens device 1 to which the phase difference detection device of the present invention is applied.
  • This image pickup apparatus 100 is suitable for commercial use such as broadcasting or movies.
  • the imaging device 100 shown in FIG. 1 includes a lens device 1 and an imaging device main body 3 to which the lens device 1 is attached.
  • FIG. 2 is a diagram showing an example of the phase difference detection optical system 20 of the lens device 1.
  • the lens device 1 may be a lens device fixed to the imaging device main body 3 or an interchangeable lens device detachable from the imaging device main body 3 .
  • the lens device 1 includes an imaging optical system 10 including a plurality of lenses and a diaphragm 14.
  • the plurality of lenses includes a focus lens 11, a zoom lens 12 for changing the focal length, a master lens group 15, and a blur correction lens 17 in the example of FIG.
  • the focus lens 11, the zoom lens 12, the diaphragm 14, the master lens group 15, and the blur correction lens 17 are arranged in this order from the object side.
  • FIG. 1 is for illustration purposes only, and the imaging optical system 10 does not consist only of the illustrated lenses, but may include a plurality of lenses (not illustrated).
  • the focus lens 11 is supported so as to be movable parallel to the optical axis K1 of the imaging optical system 10 .
  • the blur correction lens 17 is movably supported within a plane perpendicular to the optical axis K1 of the imaging optical system 10 .
  • the optical axis K1 of the imaging optical system 10 is a virtual ray representing a light beam passing through the imaging optical system 10, and includes, for example, the focus lens 11, the zoom lens 12, the master lens group 15, and the blur correction. is the axis of rotational symmetry of the lens 17 for use.
  • the lens device 1 further includes a beam splitter 16 including a reflecting surface 16a, a phase difference detection optical system 20, a second imaging element 27, a control section 28, and a driving mechanism 29.
  • the drive mechanism 29 controls the focus position by driving the focus lens 11 under the control of the control unit 28 and moving the focus lens 11 parallel to the optical axis K1.
  • the drive mechanism 29 is configured by a motor such as a stepping motor, for example.
  • the beam splitter 16 is arranged between the master lens group 15 and the blur correction lens 17 on the optical axis K1.
  • the beam splitter 16 splits the optical path of the subject light that has passed through the imaging optical system 10 into a first optical path leading to the first imaging element 31 and a second optical path other than the first optical path (an optical path leading to the mirror 22). It is an example of a branch part.
  • the beam splitter 16 transmits part of the subject light (for example, 80% of the subject light) that has entered the imaging optical system 10 and passed through the diaphragm 14 and the master lens group 15 as it is. (For example, 20% of the subject light) is reflected by the reflecting surface 16a in a direction intersecting the optical axis K1.
  • the position of the beam splitter 16 is not limited to that shown in FIG. It should be placed in front.
  • a half mirror may also be used as the beam splitter 16 .
  • a half mirror is obtained, for example, by forming a metal thin film on glass.
  • the phase difference detection optical system 20 is an optical system that guides subject light reflected by the beam splitter 16 to the second imaging device 27 .
  • the phase difference detection optical system 20 includes a condensing lens 21 , a mirror 22 , a condensing lens 23 , a diaphragm 24 , a light blocking section 25 and a condensing lens 26 .
  • the condenser lens 21 is arranged on the optical path of the light reflected by the reflecting surface 16 a of the beam splitter 16 and allows the light to pass through and enter the mirror 22 .
  • the mirror 22 is arranged on the optical path of the subject light that has passed through the condensing lens 21 , and reflects this light to enter the condensing lens 23 .
  • the condenser lens 23 is arranged on the optical path of the subject light reflected by the mirror 22 , and allows the light to pass through and enter the diaphragm 24 .
  • the diaphragm 24 is arranged on the optical path of the subject light that has passed through the condenser lens 23 , adjusts the light amount of this light, and causes the adjusted light amount to enter the condenser lens 26 .
  • the diaphragm 24 is used when subject light incident on the second image sensor 27 is narrowed further than the diaphragm of the diaphragm 14 .
  • the aperture of the diaphragm 14 is large, such as F1.4, and the object light that has passed through the diaphragm 14 is incident on the second imaging element 27 as it is, the phase difference cannot be calculated.
  • a control is performed to further narrow down the subject light that is emitted by the diaphragm 24 .
  • the light blocking section 25 is provided at the same position as the diaphragm 24 and blocks part of the subject light passing through the diaphragm 24 .
  • the configuration of the light shielding portion 25 will be described later.
  • the condenser lens 26 is arranged on the optical path of the subject light that has passed through the diaphragm 24 , and allows the light to pass through and enter the second image sensor 27 .
  • the phase difference detection optical system 20 is configured so that subject light reflected by the beam splitter 16 is imaged twice. For example, the first imaging of the subject light is performed at a position between the condenser lens 21 and the mirror 22 , and the second imaging of the subject light is performed at the second imaging device 27 .
  • the beam splitter 16 is not provided at the position of the diaphragm 14, for example, a position is created in the phase difference detection optical system 20 through which all the light beams pass, and the diaphragm 24 is provided at that position to efficiently adjust the amount of light. be able to.
  • the light from the subject once forms an image at the first image forming position, spreads again, passes through different positions at the positions of the diaphragm 24 and the light shielding portion 25, and reaches the second image sensor 27 again.
  • a second image is formed at the position of .
  • the mirror 22 of the phase difference detection optical system 20 may be removed and the light reflected by the beam splitter 16 may be directly incident on the condenser lens 23 .
  • the second imaging element 27 is an image-plane phase-difference imaging element having phase-difference detection pixels that receive the subject light incident from the condenser lens 26, that is, the subject light traveling along the second optical path, with pupil division.
  • the second imaging element 27 outputs a pair of image signals shifted in one direction with respect to one subject optical image formed by the imaging optical system 10 .
  • the second imaging element 27 receives one of a pair of luminous fluxes that have passed through two different portions aligned in one direction in the pupil region of the imaging optical system 10, and detects a signal corresponding to the amount of received light. and pixels for receiving the other of the pair of light beams and detecting a signal corresponding to the amount of light received are arranged two-dimensionally over the entire light receiving surface.
  • FIG. 2 shows how light passing through the opposite side of the light shielding portion 25 is incident on the second imaging element 27 from different directions. Phase difference information can be obtained by providing a light shielding film in the pixels of the second imaging element 27 and receiving only one of the lights from different directions.
  • the control unit 28 calculates phase difference information based on a pair of image signals output from the second imaging element 27, and calculates a defocus amount (out-of-focus amount) based on the calculated phase difference information. Then, the control unit 28 performs focus adjustment of the imaging optical system 10 by controlling driving of the focus lens 11 by the driving mechanism 29 based on the calculated defocus amount.
  • the control unit 28 is composed of a processor and ROM (Read Only Memory) memory such as RAM (Random Access Memory) and flash memory. When using flash memory, the stored program can be rewritten as needed.
  • the control unit 28 implements each function by executing a program including a phase difference detection program stored in an internal ROM.
  • the imaging device main body 3 includes a first imaging device 31 such as a CMOS (Complementary Metal Oxide Semiconductor) type image sensor or a CCD (Charge Coupled Device) type image sensor arranged on the optical axis K1 of the lens device 1, and a first imaging device. and an image processing unit 32 for processing an image signal obtained by capturing an optical image of a subject by the element 31 to generate captured image data.
  • CMOS Complementary Metal Oxide Semiconductor
  • CCD Charge Coupled Device
  • the condensing lens 23 is omitted in order to simply show the luminous flux of the subject light.
  • a luminous flux 201 simply represents a luminous flux of subject light that is reflected by the reflecting surface 16 a of the beam splitter 16 and enters the mirror 22 .
  • a luminous flux 202 simply represents a luminous flux of subject light that is reflected by the mirror 22 and enters the second imaging element 27 .
  • An optical axis K2 is the optical axis of the light flux 202 (a representative virtual light ray).
  • the optical axis K2 is the axis of rotational symmetry of the condenser lens 23 and the condenser lens 26 .
  • the light that has formed a real image further travels along the second optical path, and spreads further as shown in FIG.
  • This spread light is further condensed by an optical system including a condensing lens 26 and the like, and formed again as a real image on the second imaging element 27 (second imaging position P2). Since the light that forms an image on the second imaging element 27 comes from different directions, each pixel of the second imaging element 27 is pupil-divided by a light shielding film so that only light from a specific direction can be detected. can do.
  • the direction of the optical axis K2 (horizontal direction in FIG. 2) is the Z direction
  • the direction of pupil division in the second image sensor 27 (vertical direction in FIG. 2) is the Y direction
  • the direction intersecting the Z and Y directions ( 2) is the X direction.
  • intersecting the Z and Y directions ( 2) is the X direction.
  • the light shielding part 25 is a member that includes the optical axis K2 of the second optical path and extends in the X direction. Including the optical axis K2 means including (passing through) at least one point of the optical axis K2.
  • FIG. 2 does not show that the light flux 202 is blocked by the aperture 24 and the light shielding section 25, in reality, the light flux 202 is narrowed by the aperture 24 and separated in the Y direction by the light shielding section 25 for the second imaging. It is incident on element 27 .
  • FIG. 3 is a diagram showing an example of the light blocking portion 25 viewed from the direction of the optical axis K2.
  • a straight line 301 is a straight line that intersects the Y direction (direction of pupil division) and the optical axis K2.
  • the light shielding portion 25 has a symmetrical shape with respect to the straight line 301 when viewed from the direction of the optical axis K2. Thereby, the light flux 202 can be evenly separated in the Y direction. Note that the shape of the portion of the light blocking portion 25 that does not block the light flux 202 does not have to be symmetrical with respect to the straight line 301 .
  • the fact that the straight line 301 of the light shielding portion 25 intersects the Y direction and the optical axis K2 includes the fact that the straight line 301 of the light shielding portion 25 is perpendicular to the Y direction and the optical axis K2.
  • the straight line 301 of the light shielding portion 25 is most preferably perpendicular to the Y direction and the optical axis K2, but it is not limited to crossing at exactly 90°.
  • FIG. 4 is a graph showing an example of angular sensitivity characteristics of phase difference detection pixels in the second imaging element 27.
  • An angular sensitivity characteristic 41 indicated by a dashed-dotted line indicates the characteristic of the sensitivity of receiving light with respect to the incident angle of one of a pair of light beams pupil-divided in the Y direction in the phase difference detection pixel of the second imaging element 27.
  • the phase difference detection pixels in the second image sensor 27 perform pupil division by means of a light shielding film formed in the pixels.
  • An angular sensitivity characteristic 42 indicated by a chain double-dashed line represents the sensitivity characteristic of light reception with respect to the incident angle of the other of a pair of light beams pupil-divided in the Y direction in the phase difference detection pixel of the second imaging element 27. showing.
  • the angular sensitivity characteristic 40 indicates, as a reference, the characteristic of the light receiving sensitivity of the first imaging device 31 with respect to the incident angle of light rays.
  • the control unit 28 controls the phase difference pixel having the angular sensitivity characteristic 41 and the angular sensitivity characteristic 42
  • the defocus amount can be derived by performing a correlation operation on the signals of the phase difference pixels having .
  • FIG. 5 is a diagram showing an example of the ray angle range and the luminous flux 202 in the case of F1.4.
  • a light beam angle range 51 is an angle range of the light flux 202 incident on the second imaging element 27 assuming that the light shielding portion 25 is not provided.
  • the light beam angle range 51 is as shown in FIG. 5, for example.
  • the F value of the optical system through which the light flux 202 incident on the second imaging element 27 passes is, for example, the F value of the aperture 14 of the imaging optical system 10 and the F value of the aperture 24 of the phase difference detection optical system 20. It is the maximum F value among them.
  • a shaded range 52 indicated by oblique lines is an angular range of rays of the light flux 202 incident on the second imaging element 27 that are blocked by the provision of the light shielding section 25 .
  • the light blocking portion 25 extends in the X direction and has a symmetrical shape centered on a straight line 301 that intersects the Y direction (direction of pupil division) and the optical axis K2. It becomes part of the center of the angular range 51 .
  • the central ray of the ray angle range 51 in which the degree of overlap of the angular sensitivity characteristics 41 and 42 is large can be blocked. Therefore, even when the image is largely out of focus, the blurring of each of the pair of images obtained by the second imaging element 27 can be reduced, thereby suppressing a decrease in distance measurement accuracy.
  • FIG. 6 is a diagram showing an example of the ray angle range and the luminous flux 202 in the case of F2.
  • F2 when the F value of the optical system through which the light beam 202 incident on the second image pickup device 27 passes is F2, the light beam 202 is larger than when the F value is F1.4 (FIG. 5).
  • the diameter becomes smaller and the ray angle range 51 becomes narrower.
  • the control unit 28 narrows the light shielding range 52 by performing control to narrow the width of the light shielding unit 25 in the Y direction compared to the case where the F value is F1.4.
  • FIG. 7 is a diagram showing an example of the ray angle range and the luminous flux 202 in the case of F2.8.
  • the control unit 28 narrows the light shielding range 52 by performing control to narrow the width of the light shielding unit 25 in the Y direction compared to when the F value is F2.
  • FIG. 8 is a diagram showing an example of the ray angle range and the luminous flux 202 in the case of F4.
  • F4 when the F value of the optical system through which the light beam 202 incident on the second image pickup device 27 passes is F4, the light beam 202 is larger than when the F value is F2.8 (FIG. 7).
  • the diameter becomes smaller and the ray angle range 51 becomes narrower.
  • the control unit 28 narrows the light shielding range 52 by controlling the width of the light shielding unit 25 in the Y direction to be narrower than when the F value is F2.8.
  • FIG. 9 is a diagram showing an example of the ray angle range and the luminous flux 202 in the case of F8.
  • F8 the F value of the optical system through which the light beam 202 incident on the second imaging element 27 passes
  • the diameter of the light beam 202 is As a result, the ray angle range 51 also becomes narrower.
  • the control unit 28 narrows the light shielding range 52 by controlling the width of the light shielding unit 25 in the Y direction to be narrower than when the F value is F4.
  • the control unit 28 sets the width of the light shielding unit 25 in the Y direction to 0, that is, the light shielding unit 25 The light flux 202 may not be blocked.
  • the control unit 28 blocks light in accordance with the opening amounts (F values) of the diaphragms 14, 24 included in the optical system through which the subject light incident on the second image sensor 27 passes.
  • the light shielding width of the portion 25 may be adjusted. Specifically, the control unit 28 adjusts the light shielding width of the light shielding unit 25 to be narrower as the opening amounts of the diaphragms 14 and 24 are smaller (as the F value is larger).
  • the light shielding range 52 can be narrowed by following the light beam angle range 51, which becomes narrower as the opening amounts of the diaphragms 14 and 24 become smaller. Therefore, it is possible to prevent difficulty in calculating the phase difference due to insufficient amount of subject light in the second imaging element 27 .
  • the opening amounts of the diaphragms 14 and 24 are small, the blurring of the pair of images obtained by the second image pickup device 27 is small, so that narrowing the light shielding width of the light shielding portion 25 has little effect on distance measurement accuracy. .
  • FIG. 10 is a diagram showing an example of the light shielding portion 25 having a variable light shielding width.
  • the light shielding part 25 is rotatable around a rotation axis 60 parallel to the Z direction.
  • the light shielding section 25 has a plurality of light shielding plates 61-65.
  • the light shielding plates 61 to 65 are arranged in the circumferential direction of a circle centered on the rotation axis 60 and extend in the radial direction of the circle centered on the rotation axis 60 .
  • the light shielding plates 61 to 65 have different widths (lengths in the circumferential direction of circles centered on the rotation axis 60). Specifically, the width of the light shielding plate 61 is the widest, and the width of the light shielding plate 62, the light shielding plate 63, the light shielding plate 64, and the light shielding plate 65 is narrowed in this order.
  • the light shielding part 25 has an annular outer peripheral part 66 centered on the rotation shaft 60 , and the light shielding plates 61 to 65 are fixed inside the outer peripheral part 66 .
  • the light shielding portion 25 is arranged such that the optical axis K2 passes between the rotating shaft 60 and the outer peripheral portion 66. As shown in FIG.
  • the rotation of the light shielding part 25 is performed, for example, by the control part 28 controlling a driving mechanism (for example, a motor such as a stepping motor) (not shown).
  • the control unit 28 controls the rotation angle of the light shielding unit 25 according to the F-number of the optical system through which the light flux 202 incident on the second imaging element 27 has passed.
  • the control unit 28 controls the rotation angle of the light shielding unit 25 so that the center of the light shielding plate 61 coincides with the optical axis K2, as shown in FIG. do.
  • the control section 28 controls the rotation angle of the light shielding section 25 so that the center of the light shielding plate 62 coincides with the optical axis K2.
  • the control unit 28 controls the rotation angle of the light shielding unit 25 so that the center of the light shielding plate 63 coincides with the optical axis K2. Further, when the F number is F4 (see FIG. 8), the control unit 28 controls the rotation angle of the light shielding unit 25 so that the center of the light shielding plate 64 coincides with the optical axis K2. Further, when the F value is F8 (see FIG. 9), the control unit 28 controls the rotation angle of the light shielding unit 25 so that the center of the light shielding plate 65 coincides with the optical axis K2.
  • the control unit 28 rotates the light blocking plate 25 so that none of the light blocking plates 61 to 65 block the light flux 202 centering on the optical axis K2. You can control the angle.
  • the width of the portion of the light shielding portion 25 that shields the light flux 202 can be controlled by rotating the light shielding portion 25 .
  • the light-shielding portion 25 with a variable light-shielding width is not limited to the example shown in FIG. 10, and may be configured by, for example, a non-transmissive region of a liquid crystal panel whose transmissive region can be changed by an applied voltage.
  • the diaphragm 24 can be configured by a liquid crystal panel, and in this case, the diaphragm 24 and the light blocking section 25 may be configured by one liquid crystal panel.
  • the imaging apparatus 100 uses the beam splitter 16 (branching beam splitter 16) that splits the optical path of the subject light that has passed through the imaging optical system 10 into a first optical path proceeding to the first imaging element 31 and a second optical path other than the first optical path. part), a second imaging element 27 having phase difference detection pixels for pupil-dividing and receiving subject light traveling on the second optical path, an optical axis K2 of the second optical path, intersecting the Y direction of the pupil division, and and a light blocking portion 25 extending in the X direction intersecting the optical axis K2 of the second optical path.
  • the beam splitter 16 splitting beam splitter 16
  • the portion extending in the X direction through the optical axis K2 is blocked, and blurring of the image in a state of being largely out of focus can be reduced. Therefore, even when the focus is greatly out of focus, it is possible to correctly calculate the phase difference based on the pair of image signals output from the second imaging element 27, thereby suppressing a decrease in distance measurement accuracy.
  • the imaging apparatus 100 also includes a condenser lens 21 that forms an image of the subject light at a position between the beam splitter 16 (branching portion) and the second imaging element 27, and causes the second imaging element 27 to form an image of the subject light again.
  • a condenser lens 21 that forms an image of the subject light at a position between the beam splitter 16 (branching portion) and the second imaging element 27, and causes the second imaging element 27 to form an image of the subject light again.
  • 23 and 26 optical system
  • the light shielding unit 25 is positioned between the imaging position of the subject light between the beam splitter 16 (branching unit) and the second imaging element 27 and the second imaging element 27. is provided. That is, the light shielding portion 25 is provided at the same position as the position suitable for providing the diaphragm 24 in the second optical path.
  • the degree of freedom in designing the imaging optical system 10 can be improved.
  • the control unit 28 adjusts the light shielding width of the light shielding unit 25 according to the opening amount (F value) of the apertures (apertures 14 and 24) included in the optical system through which the subject light incident on the second imaging element 27 passes. do. Specifically, the control unit 28 adjusts the light shielding width of the light shielding unit 25 so that the smaller the opening amount of the diaphragm (the larger the F number), the narrower the light shielding width. As a result, it is possible to prevent difficulty in distance measurement due to insufficient amount of subject light in the second image sensor 27 .
  • the control unit 28 may adjust the light shielding width of the light shielding unit 25 based on the focal length of the imaging optical system 10 depending on the type of lens. Specifically, in the case of a lens in which the open f-number changes with the zoom magnification, the control unit 28 adjusts the light shielding width of the light shielding unit 25 based on the drive information of the zoom lens 12 as the focal length of the imaging optical system 10 increases. adjust so that it is narrower. As a result, it is possible to prevent difficulty in distance measurement due to insufficient amount of subject light in the second image sensor 27 .
  • control unit 28 may adjust the light shielding width of the light shielding unit 25 based on both the opening amount of the diaphragm and the focal length of the imaging optical system 10 .
  • the memory provided in the imaging device 100 stores correspondence information indicating the light shielding width of the light shielding unit 25 for each combination of the opening amount of the diaphragm and the focal length of the imaging optical system 10, and the control unit 28 The light blocking width of the light blocking portion 25 is adjusted using this correspondence information.
  • phase difference detection device of the present invention can also be applied to the imaging device main body 3 .
  • the phase difference detection device of the present invention can also be applied to the imaging device main body 3 .
  • a configuration in which the beam splitter 16, the phase difference detection optical system 20, and the second imaging device 27 are provided in the imaging device main body 3 may be employed.
  • the beam splitter 16 is provided closer to the subject than the first imaging element 31 is.
  • control unit 28 is provided in the imaging device main body 3
  • the control unit 28 receives information on the focal length of the lens device 1 attached to the imaging device main body 3 from the lens device 1.
  • the light shielding width of the light shielding section 25 may be adjusted based on the focal length of the imaging optical system 10 after obtaining the focal length.
  • a phase difference detection device comprising:
  • the phase difference detection device includes an optical system that forms an image of the subject light at a position between the branching portion and the second imaging element, and forms an image of the subject light again with the second imaging element;
  • the light shielding part is between the position and the second imaging element, Phase difference detector.
  • the phase difference detection device adjusts the amount of light of the subject light incident on the second imaging element and is located at a position where the stop provided at the position overlaps with the optical axis of the second optical path. Phase difference detector.
  • phase difference detection device (4) The phase difference detection device according to any one of (1) to (3),
  • the width of the light shielding portion in the direction of the pupil division is adjustable, Phase difference detector.
  • phase difference detection device The width is adjusted based on the opening amount of a diaphragm that adjusts the amount of light of the subject light incident on the second imaging element. Phase difference detector.
  • phase difference detection device according to The width is adjusted to be narrower as the opening amount is smaller. Phase difference detector.
  • the phase difference detection device according to any one of (4) to (6),
  • the imaging optical system has a variable focal length, The width is adjusted based on the focal length of the imaging optical system, Phase difference detector.
  • phase difference detection device according to, The width is adjusted to be narrower as the focal length is longer. Phase difference detector.
  • the phase difference detection device according to any one of (1) to (8),
  • the light-shielding portion of the light-shielding portion has a symmetrical shape centered on a straight line that includes the optical axis and intersects the direction of the pupil division and the optical axis. Phase difference detector.
  • a lens device comprising:
  • a phase difference detection device according to any one of (1) to (9); the first imaging device;
  • An imaging device comprising:
  • the phase difference detection device according to any one of (1) to (9), wherein the imaging optical system includes a focus lens; a first imaging element that receives light traveling along the first optical path; a control unit that controls driving of the focus lens based on the phase difference information obtained by the phase difference detection device;
  • An imaging device comprising:
  • phase difference detection device of the present invention By applying the phase difference detection device of the present invention to an imaging device for broadcasting, it is possible to suppress a decrease in distance measurement accuracy when the focus is greatly out of focus.
  • Imaging device 3 imaging device body 10 imaging optical system 11 focus lens 12 zoom lens 14, 24 diaphragm 15 master lens group 16 beam splitter 16a reflecting surface 17 blur correction lens 20 phase difference detection optical system 21, 23, 26 condenser lens 22 mirror 25 light shielding unit 27 second image sensor 28 control unit 29 drive mechanism 31 first image sensor 32 image processing unit 40 to 42 angle sensitivity characteristics 51 light beam angle range 52 light shielding range 60 rotating shaft 61 to 65 light shielding plate 66 outer peripheral portion 100 Imaging device 201, 202 Light beam 301 Straight line K1, K2 Optical axis P1 First imaging position P2 Second imaging position

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Focusing (AREA)

Abstract

The present invention provides a phase difference detection device, a lens device, and an imaging apparatus with which it is possible to suppress a decrease in distance measurement accuracy in a largely out-of-focus state. An imaging apparatus (100) comprises: a beam splitter (16) (branching part) that branches the optical path of subject light which has passed through an imaging optical system (10) into a first optical path leading to a first imaging element (31) and a second optical path other than the first optical path; a second imaging element (27) that has a phase difference detection pixel for pupil-dividing and receiving the subject light traveling through the second optical path; and a light-blocking part (25) that includes an optical axis K2 of the second optical path and extends in an X direction crossing a Y direction of the pupil division and crossing the optical axis K2 of the second optical path.

Description

位相差検出装置、レンズ装置、及び撮像装置PHASE DIFFERENCE DETECTION DEVICE, LENS DEVICE, AND IMAGING DEVICE
 本発明は、位相差検出装置、レンズ装置、及び撮像装置に関する。 The present invention relates to a phase difference detection device, a lens device, and an imaging device.
 特許文献1には、1つの被写体光像に対し、一方向にずれた一対の画像信号を出力する第一の撮像素子と、フォーカスレンズを含む撮像光学系を通して被写体光像を撮像する第二の撮像素子に、上記撮像光学系に入射する被写体光の一部を入射させ、上記被写体光の上記一部を除いた残りを上記第一の撮像素子に入射させる光学素子と、上記第一の撮像素子から出力される上記一対の画像信号の位相差に基づいて上記フォーカスレンズの合焦制御を行う合焦制御部と、を備える合焦制御装置が記載されている。 Patent Document 1 discloses a first imaging device that outputs a pair of image signals shifted in one direction for one subject optical image, and a second imaging device that captures the subject optical image through an imaging optical system including a focus lens. an optical element that causes part of the subject light incident on the imaging optical system to enter the imaging element, and causes the rest of the subject light excluding the part to enter the first imaging element; and the first imaging. a focus control unit that performs focus control of the focus lens based on the phase difference between the pair of image signals output from an element.
国際公開第2016/038917号WO2016/038917
 本開示の技術に係る1つの実施形態は、フォーカスが大きく外れた状態での測距精度の低下を抑制することのできる位相差検出装置、レンズ装置、及び撮像装置を提供する。 An embodiment according to the technology of the present disclosure provides a phase difference detection device, a lens device, and an imaging device that can suppress deterioration in ranging accuracy in a state of being largely out of focus.
 本発明の位相差検出装置は、撮像光学系を通過した被写体光の光路を、第1撮像素子に進む第1光路と上記第1光路以外の第2光路に分岐する分岐部と、上記第2光路を進む上記被写体光を瞳分割して受光する位相差検出画素を有する第2撮像素子と、上記第2光路の光軸を含み、上記瞳分割の方向に交差しかつ上記第2光路の光軸と交差する方向に延びる遮光部と、を備えるものである。 A phase difference detection device according to the present invention includes a branching section that branches an optical path of subject light that has passed through an imaging optical system into a first optical path proceeding to a first imaging element and a second optical path other than the first optical path; a second imaging device having a phase difference detection pixel for pupil-dividing and receiving the subject light traveling along the optical path; and a light blocking portion extending in a direction intersecting the axis.
 本発明のレンズ装置は、上記位相差検出装置と、上記撮像光学系と、を備えるものである。 A lens device of the present invention includes the phase difference detection device and the imaging optical system.
 本発明の撮像装置は、上記位相差検出装置と、上記第1撮像素子と、を備えるものである。 An imaging device of the present invention includes the phase difference detection device and the first imaging element.
 本発明の別の撮像装置は、上記撮像光学系がフォーカスレンズを備える上記位相差検出装置と、上記第1光路を進む光を受光する第1撮像素子と、上記位相差検出装置によって得られた位相差情報に基づいて上記フォーカスレンズを駆動する制御を行う制御部と、を備えるものである。 Another imaging device of the present invention is obtained by the phase difference detection device in which the imaging optical system includes a focus lens, a first imaging element that receives light traveling along the first optical path, and the phase difference detection device and a control unit that controls driving of the focus lens based on the phase difference information.
 本発明によれば、フォーカスが大きく外れた状態での測距精度の低下を抑制することのできる位相差検出装置、レンズ装置、及び撮像装置を提供することができる。 According to the present invention, it is possible to provide a phase difference detection device, a lens device, and an imaging device that can suppress deterioration in distance measurement accuracy when the focus is greatly out of focus.
本発明の一実施形態に係る撮像装置100の概略構成を示す模式図である。1 is a schematic diagram showing a schematic configuration of an imaging device 100 according to an embodiment of the present invention; FIG. レンズ装置1の位相差検出光学系20の一例を示す図である。3 is a diagram showing an example of a phase difference detection optical system 20 of the lens device 1; FIG. 光軸K2の方向から見た遮光部25の一例を示す図である。It is a figure which shows an example of the light-shielding part 25 seen from the direction of the optical axis K2. 第2撮像素子27における位相差検出画素の角度感度特性の一例を示すグラフである。9 is a graph showing an example of angular sensitivity characteristics of phase difference detection pixels in the second imaging element 27. FIG. F1.4の場合の光線角度範囲及び光束202の一例を示す図である。FIG. 10 is a diagram showing an example of a ray angle range and a luminous flux 202 in the case of F1.4; F2の場合の光線角度範囲及び光束202の一例を示す図である。FIG. 10 is a diagram showing an example of a ray angle range and a luminous flux 202 in the case of F2; F2.8の場合の光線角度範囲及び光束202の一例を示す図である。FIG. 10 is a diagram showing an example of a ray angle range and a luminous flux 202 in the case of F2.8; F4の場合の光線角度範囲及び光束202の一例を示す図である。It is a figure which shows an example of the ray angle range and the luminous flux 202 in the case of F4. F8の場合の光線角度範囲及び光束202の一例を示す図である。It is a figure which shows an example of the ray angle range and the luminous flux 202 in the case of F8. 遮光幅が可変な遮光部25の一例を示す図である。FIG. 4 is a diagram showing an example of a light shielding portion 25 having a variable light shielding width;
 以下、本発明の実施形態について図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
<本発明の位相差検出装置を適用したレンズ装置1を備える撮像装置100>
 図1は、本発明の位相差検出装置を適用したレンズ装置1を備える撮像装置100の一例を示す模式図である。この撮像装置100は、放送用又は映画用等の業務用の撮像装置に好適である。
<Imaging device 100 including the lens device 1 to which the phase difference detection device of the present invention is applied>
FIG. 1 is a schematic diagram showing an example of an imaging device 100 having a lens device 1 to which the phase difference detection device of the present invention is applied. This image pickup apparatus 100 is suitable for commercial use such as broadcasting or movies.
 図1に示す撮像装置100は、レンズ装置1と、レンズ装置1が装着される撮像装置本体3とを備える。図2は、レンズ装置1の位相差検出光学系20の一例を示す図である。レンズ装置1は、撮像装置本体3に対して固定されたレンズ装置であってもよいし、撮像装置本体3に対して着脱可能な交換式のレンズ装置であってもよい。 The imaging device 100 shown in FIG. 1 includes a lens device 1 and an imaging device main body 3 to which the lens device 1 is attached. FIG. 2 is a diagram showing an example of the phase difference detection optical system 20 of the lens device 1. As shown in FIG. The lens device 1 may be a lens device fixed to the imaging device main body 3 or an interchangeable lens device detachable from the imaging device main body 3 .
 レンズ装置1は、複数のレンズと絞り14とを含む撮像光学系10を備える。この複数のレンズは、図1の例では、フォーカスレンズ11と、焦点距離を変更するためのズームレンズ12と、マスターレンズ群15と、ブレ補正用レンズ17と、を含む。フォーカスレンズ11と、ズームレンズ12と、絞り14と、マスターレンズ群15と、ブレ補正用レンズ17は、この順番で被写体側から順に並べて配置されている。なお、図1はあくまで説明のためのものであり、撮像光学系10は、レンズ構成が図示されたレンズのみからなるわけではく、図示されない複数のレンズを含むものであってもよい。 The lens device 1 includes an imaging optical system 10 including a plurality of lenses and a diaphragm 14. The plurality of lenses includes a focus lens 11, a zoom lens 12 for changing the focal length, a master lens group 15, and a blur correction lens 17 in the example of FIG. The focus lens 11, the zoom lens 12, the diaphragm 14, the master lens group 15, and the blur correction lens 17 are arranged in this order from the object side. It should be noted that FIG. 1 is for illustration purposes only, and the imaging optical system 10 does not consist only of the illustrated lenses, but may include a plurality of lenses (not illustrated).
 フォーカスレンズ11は、撮像光学系10の光軸K1と平行に移動可能に支持されている。ブレ補正用レンズ17は、撮像光学系10の光軸K1に対して垂直な面内で移動可能に支持されている。なお、撮像光学系10の光軸K1とは、撮像光学系10を通過する光束の代表となる仮想的な光線であり、例えば、フォーカスレンズ11、ズームレンズ12、マスターレンズ群15、及びブレ補正用レンズ17の回転対称軸である。 The focus lens 11 is supported so as to be movable parallel to the optical axis K1 of the imaging optical system 10 . The blur correction lens 17 is movably supported within a plane perpendicular to the optical axis K1 of the imaging optical system 10 . Note that the optical axis K1 of the imaging optical system 10 is a virtual ray representing a light beam passing through the imaging optical system 10, and includes, for example, the focus lens 11, the zoom lens 12, the master lens group 15, and the blur correction. is the axis of rotational symmetry of the lens 17 for use.
 レンズ装置1は、さらに、反射面16aを含むビームスプリッタ16と、位相差検出光学系20と、第2撮像素子27と、制御部28と、駆動機構29と、を備える。駆動機構29は、制御部28からの制御により、フォーカスレンズ11を駆動して、フォーカスレンズ11を光軸K1と平行に移動させることでフォーカス位置を制御する。駆動機構29は、例えばステッピングモータ等のモータによって構成される。 The lens device 1 further includes a beam splitter 16 including a reflecting surface 16a, a phase difference detection optical system 20, a second imaging element 27, a control section 28, and a driving mechanism 29. The drive mechanism 29 controls the focus position by driving the focus lens 11 under the control of the control unit 28 and moving the focus lens 11 parallel to the optical axis K1. The drive mechanism 29 is configured by a motor such as a stepping motor, for example.
 ビームスプリッタ16は、光軸K1上でマスターレンズ群15とブレ補正用レンズ17との間に配置されている。ビームスプリッタ16は、撮像光学系10を通過した被写体光の光路を、第1撮像素子31に進む第1光路と、第1光路以外の第2光路(ミラー22に向かう光路)と、に分岐する分岐部の一例である。 The beam splitter 16 is arranged between the master lens group 15 and the blur correction lens 17 on the optical axis K1. The beam splitter 16 splits the optical path of the subject light that has passed through the imaging optical system 10 into a first optical path leading to the first imaging element 31 and a second optical path other than the first optical path (an optical path leading to the mirror 22). It is an example of a branch part.
 ビームスプリッタ16は、撮像光学系10に入射し絞り14及びマスターレンズ群15を通過した被写体光の一部(例えば被写体光の80%)をそのまま透過させ、この被写体光の一部を除いた残り(例えば被写体光の20%)を光軸K1に対して交差する方向に反射面16aにて反射させる。 The beam splitter 16 transmits part of the subject light (for example, 80% of the subject light) that has entered the imaging optical system 10 and passed through the diaphragm 14 and the master lens group 15 as it is. (For example, 20% of the subject light) is reflected by the reflecting surface 16a in a direction intersecting the optical axis K1.
 ビームスプリッタ16の位置は、図1に示したものに限らず、光軸K1上で撮像光学系10の最も被写体側にあるレンズ(例えばフォーカスレンズ11)よりも後ろかつブレ補正用レンズ17よりも前に配置されていればよい。また、ビームスプリッタ16としてハーフミラーが用いられてもよい。ハーフミラーは例えばガラス上に金属の薄膜を形成することで得られる。 The position of the beam splitter 16 is not limited to that shown in FIG. It should be placed in front. A half mirror may also be used as the beam splitter 16 . A half mirror is obtained, for example, by forming a metal thin film on glass.
 位相差検出光学系20は、ビームスプリッタ16によって反射した被写体光を第2撮像素子27に導く光学系である。具体的には、位相差検出光学系20は、集光レンズ21と、ミラー22と、集光レンズ23と、絞り24と、遮光部25と、集光レンズ26と、を備える。 The phase difference detection optical system 20 is an optical system that guides subject light reflected by the beam splitter 16 to the second imaging device 27 . Specifically, the phase difference detection optical system 20 includes a condensing lens 21 , a mirror 22 , a condensing lens 23 , a diaphragm 24 , a light blocking section 25 and a condensing lens 26 .
 集光レンズ21は、ビームスプリッタ16の反射面16aで反射された光の光路上に配置されており、この光を通過させてミラー22に入射させる。ミラー22は、集光レンズ21を通過した被写体光の光路上に配置されており、この光を反射させて集光レンズ23に入射させる。集光レンズ23は、ミラー22で反射した被写体光の光路上に配置されており、この光を通過させて絞り24に入射させる。 The condenser lens 21 is arranged on the optical path of the light reflected by the reflecting surface 16 a of the beam splitter 16 and allows the light to pass through and enter the mirror 22 . The mirror 22 is arranged on the optical path of the subject light that has passed through the condensing lens 21 , and reflects this light to enter the condensing lens 23 . The condenser lens 23 is arranged on the optical path of the subject light reflected by the mirror 22 , and allows the light to pass through and enter the diaphragm 24 .
 絞り24は、集光レンズ23を通過した被写体光の光路上に配置されており、この光の光量を調節し、光量を調節した光を集光レンズ26に入射させる。絞り24は、第2撮像素子27へ入射する被写体光を、絞り14における絞りよりさらに絞る場合に用いられる。例えば、絞り14の開口量がF1.4など大きい場合、絞り14を通過した被写体光をそのまま第2撮像素子27に入射させると位相差の算出が困難な場合に、第2撮像素子27に入射する被写体光を絞り24でさらに絞る制御が行われる。 The diaphragm 24 is arranged on the optical path of the subject light that has passed through the condenser lens 23 , adjusts the light amount of this light, and causes the adjusted light amount to enter the condenser lens 26 . The diaphragm 24 is used when subject light incident on the second image sensor 27 is narrowed further than the diaphragm of the diaphragm 14 . For example, if the aperture of the diaphragm 14 is large, such as F1.4, and the object light that has passed through the diaphragm 14 is incident on the second imaging element 27 as it is, the phase difference cannot be calculated. A control is performed to further narrow down the subject light that is emitted by the diaphragm 24 .
 遮光部25は、絞り24と同じ位置に設けられており、絞り24を通過する被写体光の一部を遮る。遮光部25の構成については後述する。集光レンズ26は、絞り24を通過した被写体光の光路上に配置されており、この光を通過させて第2撮像素子27に入射させる。 The light blocking section 25 is provided at the same position as the diaphragm 24 and blocks part of the subject light passing through the diaphragm 24 . The configuration of the light shielding portion 25 will be described later. The condenser lens 26 is arranged on the optical path of the subject light that has passed through the diaphragm 24 , and allows the light to pass through and enter the second image sensor 27 .
 位相差検出光学系20は、ビームスプリッタ16によって反射した被写体光が2回結像するように構成されている。例えば、被写体光の1回目の結像は集光レンズ21とミラー22との間の位置においてなされ、被写体光の2回目の結像は第2撮像素子27においてなされる。これにより、例えばビームスプリッタ16を絞り14の位置に設けなくても、位相差検出光学系20において全ての光線が通る位置を作り、その位置に絞り24を設けることで効率よく光量の調節を行うことができる。 The phase difference detection optical system 20 is configured so that subject light reflected by the beam splitter 16 is imaged twice. For example, the first imaging of the subject light is performed at a position between the condenser lens 21 and the mirror 22 , and the second imaging of the subject light is performed at the second imaging device 27 . As a result, even if the beam splitter 16 is not provided at the position of the diaphragm 14, for example, a position is created in the phase difference detection optical system 20 through which all the light beams pass, and the diaphragm 24 is provided at that position to efficiently adjust the amount of light. be able to.
 図2において、被写体からの光は、一旦は1回目の結像位置で結像した後、再び広がり、絞り24および遮光部25の位置では、それぞれ異なる位置を通過し、再度第2撮像素子27の位置で2回目の結像を成す。 In FIG. 2, the light from the subject once forms an image at the first image forming position, spreads again, passes through different positions at the positions of the diaphragm 24 and the light shielding portion 25, and reaches the second image sensor 27 again. A second image is formed at the position of .
 なお、位相差検出光学系20のミラー22を削除し、ビームスプリッタ16で反射された光を集光レンズ23に直接入射させる構成であってもよい。 Note that the mirror 22 of the phase difference detection optical system 20 may be removed and the light reflected by the beam splitter 16 may be directly incident on the condenser lens 23 .
 第2撮像素子27は、集光レンズ26から入射した被写体光、すなわち第2光路を進む被写体光を瞳分割して受光する位相差検出画素を有する像面位相差撮像素子である。第2撮像素子27は、撮像光学系10によって結像される1つの被写体光像に対し、一方向にずれた一対の画像信号を出力する。 The second imaging element 27 is an image-plane phase-difference imaging element having phase-difference detection pixels that receive the subject light incident from the condenser lens 26, that is, the subject light traveling along the second optical path, with pupil division. The second imaging element 27 outputs a pair of image signals shifted in one direction with respect to one subject optical image formed by the imaging optical system 10 .
 例えば、第2撮像素子27は、撮像光学系10の瞳領域の一方向に並ぶ異なる2つの部分を通過した一対の光束のうちの一方の光束を受光し受光量に応じた信号を検出する画素と、この一対の光束のうちの他方の光束を受光し受光量に応じた信号を検出する画素とのペアが、受光面の全体に二次元状に配列されたものである。図2において、第2撮像素子27には、異なる方向から来た光が入射する。図2では遮光部25からみて反対側を通過した光がそれぞれ異なる方向から第2撮像素子27に入射する様子が示されている。第2撮像素子27の画素の中に遮光膜を設け、異なる方向からの光の一方のみを受光することによって、位相差情報を得る事ができる。 For example, the second imaging element 27 receives one of a pair of luminous fluxes that have passed through two different portions aligned in one direction in the pupil region of the imaging optical system 10, and detects a signal corresponding to the amount of received light. and pixels for receiving the other of the pair of light beams and detecting a signal corresponding to the amount of light received are arranged two-dimensionally over the entire light receiving surface. In FIG. 2, light coming from different directions is incident on the second imaging element 27 . FIG. 2 shows how light passing through the opposite side of the light shielding portion 25 is incident on the second imaging element 27 from different directions. Phase difference information can be obtained by providing a light shielding film in the pixels of the second imaging element 27 and receiving only one of the lights from different directions.
 制御部28は、第2撮像素子27から出力される一対の画像信号に基づいて位相差情報を算出し、算出した位相差情報に基づいてデフォーカス量(フォーカス外れ量)を算出する。そして、制御部28は、算出したデフォーカス量に基づいて、駆動機構29によるフォーカスレンズ11の駆動を制御することにより、撮像光学系10の焦点調節を行う。 The control unit 28 calculates phase difference information based on a pair of image signals output from the second imaging element 27, and calculates a defocus amount (out-of-focus amount) based on the calculated phase difference information. Then, the control unit 28 performs focus adjustment of the imaging optical system 10 by controlling driving of the focus lens 11 by the driving mechanism 29 based on the calculated defocus amount.
 制御部28は、プロセッサと、RAM(Random Access Memory)及びフラッシュメモリ(Flash Memory)等のROM(Read Only Memory)メモリとにより構成される。フラッシュメモリを用いる場合は、記憶されているプログラムを必要に応じて書き換えることができる。制御部28は、内蔵するROMに格納された位相差検出プログラムを含むプログラムを実行することで各機能を実現する。 The control unit 28 is composed of a processor and ROM (Read Only Memory) memory such as RAM (Random Access Memory) and flash memory. When using flash memory, the stored program can be rewritten as needed. The control unit 28 implements each function by executing a program including a phase difference detection program stored in an internal ROM.
 撮像装置本体3は、レンズ装置1の光軸K1上に配置されたCMOS(Complementary Metal Oxide Semiconductor)型イメージセンサ又はCCD(Charge Coupled Device)型イメージセンサ等の第1撮像素子31と、第1撮像素子31により被写体光像を撮像して得られる画像信号を処理して撮像画像データを生成する画像処理部32と、を備える。 The imaging device main body 3 includes a first imaging device 31 such as a CMOS (Complementary Metal Oxide Semiconductor) type image sensor or a CCD (Charge Coupled Device) type image sensor arranged on the optical axis K1 of the lens device 1, and a first imaging device. and an image processing unit 32 for processing an image signal obtained by capturing an optical image of a subject by the element 31 to generate captured image data.
 図2においては、被写体光の光束を簡易的に示すために、集光レンズ23の図示を省略している。図2において、光束201は、ビームスプリッタ16の反射面16aで反射してミラー22へ入射する被写体光の光束を簡易的に示したものである。光束202は、ミラー22によって反射して第2撮像素子27へ入射する被写体光の光束を簡易的に示したものである。光軸K2は、光束202の光軸(代表となる仮想的な光線)である。例えば、光軸K2は、集光レンズ23や集光レンズ26の回転対称軸である。 In FIG. 2, the condensing lens 23 is omitted in order to simply show the luminous flux of the subject light. In FIG. 2, a luminous flux 201 simply represents a luminous flux of subject light that is reflected by the reflecting surface 16 a of the beam splitter 16 and enters the mirror 22 . A luminous flux 202 simply represents a luminous flux of subject light that is reflected by the mirror 22 and enters the second imaging element 27 . An optical axis K2 is the optical axis of the light flux 202 (a representative virtual light ray). For example, the optical axis K2 is the axis of rotational symmetry of the condenser lens 23 and the condenser lens 26 .
 第1光路から分岐して第2光路に進んだ光は、第2光路上のある位置(第1結像位置P1)で一旦実像を結像する。実像を結んだ光はさらに第2光路上を進むが、図2に示すように、さらに広がって進む。この広がった光をさらに集光レンズ26などを含む光学系で集光し、第2撮像素子27上(第2結像位置P2)に再び実像として結像する。第2撮像素子27上に結像する光は、異なる方向からくるので、第2撮像素子27のそれぞれの画素を遮光膜によって瞳分割することで、特定の方向からの光のみを検出できるようにすることができる。 The light branched from the first optical path and proceeding to the second optical path once forms a real image at a certain position (first imaging position P1) on the second optical path. The light that has formed a real image further travels along the second optical path, and spreads further as shown in FIG. This spread light is further condensed by an optical system including a condensing lens 26 and the like, and formed again as a real image on the second imaging element 27 (second imaging position P2). Since the light that forms an image on the second imaging element 27 comes from different directions, each pixel of the second imaging element 27 is pupil-divided by a light shielding film so that only light from a specific direction can be detected. can do.
 光軸K2の方向(図2の横方向)をZ方向とし、第2撮像素子27における瞳分割の方向(図2の縦方向)をY方向とし、Z方向及びY方向と交差する方向(図2の奥行方向)をX方向とする。なお、ここでいう交差とは、直交を含むものである。 The direction of the optical axis K2 (horizontal direction in FIG. 2) is the Z direction, the direction of pupil division in the second image sensor 27 (vertical direction in FIG. 2) is the Y direction, and the direction intersecting the Z and Y directions ( 2) is the X direction. It should be noted that the term "intersection" as used herein includes orthogonality.
 遮光部25は、第2光路の光軸K2を含み、X方向に延びる部材である。なお、光軸K2を含むとは、光軸K2の少なくとも一点を含む(通る)ことである。図2においては絞り24及び遮光部25による光束202の遮光を図示していないが、実際には、光束202は、絞り24により絞られるとともに、遮光部25によりY方向に分離して第2撮像素子27へ入射する。 The light shielding part 25 is a member that includes the optical axis K2 of the second optical path and extends in the X direction. Including the optical axis K2 means including (passing through) at least one point of the optical axis K2. Although FIG. 2 does not show that the light flux 202 is blocked by the aperture 24 and the light shielding section 25, in reality, the light flux 202 is narrowed by the aperture 24 and separated in the Y direction by the light shielding section 25 for the second imaging. It is incident on element 27 .
<光軸K2の方向から見た遮光部25>
 図3は、光軸K2の方向から見た遮光部25の一例を示す図である。図3において、直線301は、Y方向(瞳分割の方向)及び光軸K2と交差する直線である。遮光部25は、光軸K2の方向から見て、直線301を中心に対照な形状である。これにより、光束202をY方向に均等に分離することができる。なお、遮光部25のうち、光束202を遮らない部分の形状に関しては、直線301を中心に対照な形状でなくてもよい。なお、遮光部25の直線301が、Y方向及び光軸K2と交差するということは、遮光部25の直線301が、Y方向及び光軸K2と直交するということを含むものである。遮光部25の直線301が、Y方向及び光軸K2と直交することが最も好ましいが、厳密に90°で交わることに限定されるものではない。
<Light blocking portion 25 viewed from the direction of optical axis K2>
FIG. 3 is a diagram showing an example of the light blocking portion 25 viewed from the direction of the optical axis K2. In FIG. 3, a straight line 301 is a straight line that intersects the Y direction (direction of pupil division) and the optical axis K2. The light shielding portion 25 has a symmetrical shape with respect to the straight line 301 when viewed from the direction of the optical axis K2. Thereby, the light flux 202 can be evenly separated in the Y direction. Note that the shape of the portion of the light blocking portion 25 that does not block the light flux 202 does not have to be symmetrical with respect to the straight line 301 . The fact that the straight line 301 of the light shielding portion 25 intersects the Y direction and the optical axis K2 includes the fact that the straight line 301 of the light shielding portion 25 is perpendicular to the Y direction and the optical axis K2. The straight line 301 of the light shielding portion 25 is most preferably perpendicular to the Y direction and the optical axis K2, but it is not limited to crossing at exactly 90°.
<第2撮像素子27における位相差検出画素の角度感度特性>
 図4は、第2撮像素子27における位相差検出画素の角度感度特性の一例を示すグラフである。一点鎖線で示す角度感度特性41は、第2撮像素子27の位相差検出画素における、Y方向に瞳分割された一対の光線のうちの一方の光線が入射する角度に対する受光の感度の特性を示している。前に説明したように、第2撮像素子27における位相差検出画素は、画素の中に形成した遮光膜によって瞳分割を行う。
<Angular Sensitivity Characteristics of Phase Difference Detection Pixels in Second Image Sensor 27>
FIG. 4 is a graph showing an example of angular sensitivity characteristics of phase difference detection pixels in the second imaging element 27. As shown in FIG. An angular sensitivity characteristic 41 indicated by a dashed-dotted line indicates the characteristic of the sensitivity of receiving light with respect to the incident angle of one of a pair of light beams pupil-divided in the Y direction in the phase difference detection pixel of the second imaging element 27. ing. As described above, the phase difference detection pixels in the second image sensor 27 perform pupil division by means of a light shielding film formed in the pixels.
 二点鎖線で示す角度感度特性42は、第2撮像素子27の位相差検出画素における、Y方向に瞳分割された一対の光線のうちの他方の光線が入射する角度に対する受光の感度の特性を示している。角度感度特性40は、第1撮像素子31における、光線が入射する角度に対する受光の感度の特性を参考として示している。 An angular sensitivity characteristic 42 indicated by a chain double-dashed line represents the sensitivity characteristic of light reception with respect to the incident angle of the other of a pair of light beams pupil-divided in the Y direction in the phase difference detection pixel of the second imaging element 27. showing. The angular sensitivity characteristic 40 indicates, as a reference, the characteristic of the light receiving sensitivity of the first imaging device 31 with respect to the incident angle of light rays.
 角度感度特性41,42に示すように、Y方向に瞳分割された一対の光線は、角度感度特性のピークがずれている。第2撮像素子27の位相差検出画素内の遮光膜によりこのような角度感度特性41,42を実現することで、制御部28において、角度感度特性41を持つ位相差画素と、角度感度特性42を持つ位相差画素の信号を相関演算することによりデフォーカス量を導出することができる。 As shown in the angular sensitivity characteristics 41 and 42, the peaks of the angular sensitivity characteristics of the pair of light beams pupil-divided in the Y direction are shifted. By realizing such angular sensitivity characteristics 41 and 42 with the light shielding film in the phase difference detection pixel of the second imaging element 27, the control unit 28 controls the phase difference pixel having the angular sensitivity characteristic 41 and the angular sensitivity characteristic 42 The defocus amount can be derived by performing a correlation operation on the signals of the phase difference pixels having .
 ここで、フォーカスが大きく外れた状態においては、相関演算の結果から信頼度の高いデフォーカス量を算出することが困難になる。図4において、フォーカスが大きく外れた状態では、角度感度特性41で入射角度がマイナス側のピークが、入射角度0°付近の感度に比べて相対的に低下し、角度感度特性42も同様になり、そのような場合は、相関演算の結果が信頼度の低いものになり、従来の構成では測距精度が低下していた。これに対して、撮像装置100においては、第2撮像素子27へ入射する被写体光の一部を遮光部25によって遮ることにより、このような測距精度の低下を抑制する。 Here, when the focus is greatly out of focus, it becomes difficult to calculate a defocus amount with high reliability from the result of the correlation calculation. In FIG. 4, when the focus is greatly out of focus, the peak of the incident angle on the minus side in the angular sensitivity characteristic 41 is relatively lower than the sensitivity near the incident angle of 0°, and the angular sensitivity characteristic 42 is the same. In such a case, the result of the correlation calculation becomes unreliable, and the conventional configuration reduces the accuracy of distance measurement. On the other hand, in the image pickup apparatus 100 , by blocking part of the subject light incident on the second image pickup element 27 with the light shielding section 25 , such a decrease in distance measurement accuracy is suppressed.
<各F値における光線角度範囲及び光束202>
 図5は、F1.4の場合の光線角度範囲及び光束202の一例を示す図である。光線角度範囲51は、遮光部25を設けないと仮定した場合における、第2撮像素子27へ入射する光束202の角度範囲である。第2撮像素子27へ入射する光束202が通過した光学系のF値がF1.4である場合、光線角度範囲51は例えば図5のようになる。
<Light ray angle range and luminous flux 202 at each F value>
FIG. 5 is a diagram showing an example of the ray angle range and the luminous flux 202 in the case of F1.4. A light beam angle range 51 is an angle range of the light flux 202 incident on the second imaging element 27 assuming that the light shielding portion 25 is not provided. When the F-number of the optical system through which the light beam 202 incident on the second imaging element 27 passes is F1.4, the light beam angle range 51 is as shown in FIG. 5, for example.
 第2撮像素子27へ入射する光束202が通過した光学系のF値とは、例えば、撮像光学系10の絞り14のF値と、位相差検出光学系20の絞り24のF値と、のうち最大のF値である。 The F value of the optical system through which the light flux 202 incident on the second imaging element 27 passes is, for example, the F value of the aperture 14 of the imaging optical system 10 and the F value of the aperture 24 of the phase difference detection optical system 20. It is the maximum F value among them.
 斜線で示す遮光範囲52は、第2撮像素子27へ入射する光束202のうち、遮光部25を設けたことにより遮光される光線の角度範囲である。図3に示したように、遮光部25は、X方向に延び、Y方向(瞳分割の方向)及び光軸K2と交差する直線301を中心に対照な形状であるため、遮光範囲52は光線角度範囲51の中央の一部分となる。 A shaded range 52 indicated by oblique lines is an angular range of rays of the light flux 202 incident on the second imaging element 27 that are blocked by the provision of the light shielding section 25 . As shown in FIG. 3, the light blocking portion 25 extends in the X direction and has a symmetrical shape centered on a straight line 301 that intersects the Y direction (direction of pupil division) and the optical axis K2. It becomes part of the center of the angular range 51 .
 これにより、角度感度特性41,42の重複度合いが大きい光線角度範囲51の中央の光線を遮光することができる。このため、フォーカスが大きく外れた状態においても、第2撮像素子27により得られる一対の像のそれぞれのボケを小さくし、測距精度の低下を抑制することができる。 As a result, the central ray of the ray angle range 51 in which the degree of overlap of the angular sensitivity characteristics 41 and 42 is large can be blocked. Therefore, even when the image is largely out of focus, the blurring of each of the pair of images obtained by the second imaging element 27 can be reduced, thereby suppressing a decrease in distance measurement accuracy.
 図5においては第2撮像素子27へ入射する光束202が通過した光学系のF値がF1.4の場合について説明したが、以下の図6~図9に示すように、制御部28は、このF値に基づいて遮光部25の遮光幅(Y方向の幅)を調節する制御を行ってもよい。遮光幅を調節可能な遮光部25の構成については後述する(図10等参照)。 In FIG. 5, the case where the F value of the optical system through which the light beam 202 incident on the second imaging element 27 passes is F1.4 has been described, but as shown in FIGS. Control may be performed to adjust the light shielding width (the width in the Y direction) of the light shielding portion 25 based on this F value. The configuration of the light shielding portion 25 capable of adjusting the light shielding width will be described later (see FIG. 10 and the like).
 図6は、F2の場合の光線角度範囲及び光束202の一例を示す図である。図6に示すように、第2撮像素子27へ入射する光束202が通過した光学系のF値がF2である場合、F値がF1.4の場合(図5)と比べて、光束202の径は小さくなり、光線角度範囲51も狭くなる。これに対して、制御部28は、F値がF1.4の場合と比べて、遮光部25のY方向の幅を狭くする制御を行うことにより、遮光範囲52を狭くする。 FIG. 6 is a diagram showing an example of the ray angle range and the luminous flux 202 in the case of F2. As shown in FIG. 6, when the F value of the optical system through which the light beam 202 incident on the second image pickup device 27 passes is F2, the light beam 202 is larger than when the F value is F1.4 (FIG. 5). The diameter becomes smaller and the ray angle range 51 becomes narrower. On the other hand, the control unit 28 narrows the light shielding range 52 by performing control to narrow the width of the light shielding unit 25 in the Y direction compared to the case where the F value is F1.4.
 図7は、F2.8の場合の光線角度範囲及び光束202の一例を示す図である。図7に示すように、第2撮像素子27へ入射する光束202が通過した光学系のF値がF2.8である場合、F値がF2の場合(図6)と比べて、光束202の径は小さくなり、光線角度範囲51も狭くなる。これに対して、制御部28は、F値がF2の場合と比べて、遮光部25のY方向の幅を狭くする制御を行うことにより、遮光範囲52を狭くする。 FIG. 7 is a diagram showing an example of the ray angle range and the luminous flux 202 in the case of F2.8. As shown in FIG. 7, when the F-number of the optical system through which the light flux 202 incident on the second image sensor 27 passes is F2.8, the light flux 202 is larger than when the F-number is F2 (FIG. 6). The diameter becomes smaller and the ray angle range 51 becomes narrower. In response to this, the control unit 28 narrows the light shielding range 52 by performing control to narrow the width of the light shielding unit 25 in the Y direction compared to when the F value is F2.
 図8は、F4の場合の光線角度範囲及び光束202の一例を示す図である。図8に示すように、第2撮像素子27へ入射する光束202が通過した光学系のF値がF4である場合、F値がF2.8の場合(図7)と比べて、光束202の径は小さくなり、光線角度範囲51も狭くなる。これに対して、制御部28は、F値がF2.8の場合と比べて、遮光部25のY方向の幅を狭くする制御を行うことにより、遮光範囲52を狭くする。 FIG. 8 is a diagram showing an example of the ray angle range and the luminous flux 202 in the case of F4. As shown in FIG. 8, when the F value of the optical system through which the light beam 202 incident on the second image pickup device 27 passes is F4, the light beam 202 is larger than when the F value is F2.8 (FIG. 7). The diameter becomes smaller and the ray angle range 51 becomes narrower. On the other hand, the control unit 28 narrows the light shielding range 52 by controlling the width of the light shielding unit 25 in the Y direction to be narrower than when the F value is F2.8.
 図9は、F8の場合の光線角度範囲及び光束202の一例を示す図である。図9に示すように、第2撮像素子27へ入射する光束202が通過した光学系のF値がF8である場合、F値がF4の場合(図8)と比べて、光束202の径は小さくなり、光線角度範囲51も狭くなる。これに対して、制御部28は、F値がF4の場合と比べて、遮光部25のY方向の幅を狭くする制御を行うことにより、遮光範囲52を狭くする。 FIG. 9 is a diagram showing an example of the ray angle range and the luminous flux 202 in the case of F8. As shown in FIG. 9, when the F value of the optical system through which the light beam 202 incident on the second imaging element 27 passes is F8, the diameter of the light beam 202 is As a result, the ray angle range 51 also becomes narrower. On the other hand, the control unit 28 narrows the light shielding range 52 by controlling the width of the light shielding unit 25 in the Y direction to be narrower than when the F value is F4.
 第2撮像素子27へ入射する光束202が通過した光学系のF値が大きい場合(例えばF11の場合)、制御部28は、遮光部25のY方向の幅を0に、すなわち遮光部25によって光束202を遮光しないようにしてもよい。 When the F-number of the optical system through which the light flux 202 incident on the second imaging element 27 passes is large (for example, F11), the control unit 28 sets the width of the light shielding unit 25 in the Y direction to 0, that is, the light shielding unit 25 The light flux 202 may not be blocked.
 図5~図9に示したように、制御部28は、第2撮像素子27へ入射する被写体光が通過する光学系に含まれる絞り14,24の開口量(F値)に応じて、遮光部25の遮光幅を調節してもよい。具体的には、制御部28は、絞り14,24の開口量が小さいほど(F値が大きいほど)、遮光部25の遮光幅が狭くなるように調節する。 As shown in FIGS. 5 to 9, the control unit 28 blocks light in accordance with the opening amounts (F values) of the diaphragms 14, 24 included in the optical system through which the subject light incident on the second image sensor 27 passes. The light shielding width of the portion 25 may be adjusted. Specifically, the control unit 28 adjusts the light shielding width of the light shielding unit 25 to be narrower as the opening amounts of the diaphragms 14 and 24 are smaller (as the F value is larger).
 これにより、絞り14,24の開口量が小さくなるほど狭くなる光線角度範囲51に追従して遮光範囲52を狭くすることができる。このため、第2撮像素子27における被写体光の光量が不足して位相差の算出が困難になることを抑制することができる。なお、絞り14,24の開口量が小さい場合は、第2撮像素子27により得られる一対の像のボケが小さいため、遮光部25の遮光幅を狭くすることによる測距精度への影響は小さい。 As a result, the light shielding range 52 can be narrowed by following the light beam angle range 51, which becomes narrower as the opening amounts of the diaphragms 14 and 24 become smaller. Therefore, it is possible to prevent difficulty in calculating the phase difference due to insufficient amount of subject light in the second imaging element 27 . When the opening amounts of the diaphragms 14 and 24 are small, the blurring of the pair of images obtained by the second image pickup device 27 is small, so that narrowing the light shielding width of the light shielding portion 25 has little effect on distance measurement accuracy. .
<遮光幅が可変な遮光部25>
 図10は、遮光幅が可変な遮光部25の一例を示す図である。例えば、遮光部25は、Z方向と平行な回転軸60を中心として回転可能である。また、遮光部25は、複数の遮光板61~65を有する。遮光板61~65は、回転軸60を中心とする円の周方向に配列され、回転軸60を中心とする円の径方向に延びている。
<Light shielding part 25 with variable light shielding width>
FIG. 10 is a diagram showing an example of the light shielding portion 25 having a variable light shielding width. For example, the light shielding part 25 is rotatable around a rotation axis 60 parallel to the Z direction. Further, the light shielding section 25 has a plurality of light shielding plates 61-65. The light shielding plates 61 to 65 are arranged in the circumferential direction of a circle centered on the rotation axis 60 and extend in the radial direction of the circle centered on the rotation axis 60 .
 また、遮光板61~65は、互いに幅(回転軸60を中心とする円の周方向の長さ)が異なる。具体的には、遮光板61の幅が最も広く、遮光板62、遮光板63、遮光板64、遮光板65の順に幅が狭くなっている。 In addition, the light shielding plates 61 to 65 have different widths (lengths in the circumferential direction of circles centered on the rotation axis 60). Specifically, the width of the light shielding plate 61 is the widest, and the width of the light shielding plate 62, the light shielding plate 63, the light shielding plate 64, and the light shielding plate 65 is narrowed in this order.
 また、遮光部25は、回転軸60を中心とする環状の外周部66を有し、遮光板61~65は外周部66の内側に固定されている。遮光部25は、回転軸60と外周部66との間を光軸K2が通るように配置される。 Also, the light shielding part 25 has an annular outer peripheral part 66 centered on the rotation shaft 60 , and the light shielding plates 61 to 65 are fixed inside the outer peripheral part 66 . The light shielding portion 25 is arranged such that the optical axis K2 passes between the rotating shaft 60 and the outer peripheral portion 66. As shown in FIG.
 遮光部25の回転は、例えば、不図示の駆動機構(例えばステッピングモータ等のモータ)を制御部28が制御することによって行われる。制御部28は、第2撮像素子27へ入射する光束202が通過した光学系のF値に応じて遮光部25の回転角度を制御する。 The rotation of the light shielding part 25 is performed, for example, by the control part 28 controlling a driving mechanism (for example, a motor such as a stepping motor) (not shown). The control unit 28 controls the rotation angle of the light shielding unit 25 according to the F-number of the optical system through which the light flux 202 incident on the second imaging element 27 has passed.
 例えば、F値がF1.4の場合(図5参照)、制御部28は、図10に示すように、遮光板61の中心が光軸K2と一致するように遮光部25の回転角度を制御する。また、F値がF2の場合(図6参照)、制御部28は、遮光板62の中心が光軸K2と一致するように遮光部25の回転角度を制御する。 For example, when the F value is F1.4 (see FIG. 5), the control unit 28 controls the rotation angle of the light shielding unit 25 so that the center of the light shielding plate 61 coincides with the optical axis K2, as shown in FIG. do. Further, when the F value is F2 (see FIG. 6), the control section 28 controls the rotation angle of the light shielding section 25 so that the center of the light shielding plate 62 coincides with the optical axis K2.
 また、F値がF2.8の場合(図7参照)、制御部28は、遮光板63の中心が光軸K2と一致するように遮光部25の回転角度を制御する。また、F値がF4の場合(図8参照)、制御部28は、遮光板64の中心が光軸K2と一致するように遮光部25の回転角度を制御する。また、F値がF8の場合(図9参照)、制御部28は、遮光板65の中心が光軸K2と一致するように遮光部25の回転角度を制御する。 Further, when the F number is F2.8 (see FIG. 7), the control unit 28 controls the rotation angle of the light shielding unit 25 so that the center of the light shielding plate 63 coincides with the optical axis K2. Further, when the F number is F4 (see FIG. 8), the control unit 28 controls the rotation angle of the light shielding unit 25 so that the center of the light shielding plate 64 coincides with the optical axis K2. Further, when the F value is F8 (see FIG. 9), the control unit 28 controls the rotation angle of the light shielding unit 25 so that the center of the light shielding plate 65 coincides with the optical axis K2.
 また、F値がF8より大きい場合(例えばF11の場合)、制御部28は、光軸K2を中心とする光束202が遮光板61~65のいずれにも遮光されないように、遮光部25の回転角度を制御してもよい。 When the F-number is larger than F8 (for example, F11), the control unit 28 rotates the light blocking plate 25 so that none of the light blocking plates 61 to 65 block the light flux 202 centering on the optical axis K2. You can control the angle.
 図10に示した構成により、遮光部25のうち光束202を遮光する部分の幅を、遮光部25の回転によって制御することができる。ただし、遮光幅が可変な遮光部25は、図10に示した例に限らず、例えば印加電圧によって透過領域を変更可能な液晶パネルの不透過領域により構成してもよい。また、絞り24を液晶パネルにより構成することも可能であり、この場合、絞り24及び遮光部25を1つの液晶パネルにより構成してもよい。 With the configuration shown in FIG. 10, the width of the portion of the light shielding portion 25 that shields the light flux 202 can be controlled by rotating the light shielding portion 25 . However, the light-shielding portion 25 with a variable light-shielding width is not limited to the example shown in FIG. 10, and may be configured by, for example, a non-transmissive region of a liquid crystal panel whose transmissive region can be changed by an applied voltage. Further, the diaphragm 24 can be configured by a liquid crystal panel, and in this case, the diaphragm 24 and the light blocking section 25 may be configured by one liquid crystal panel.
 このように、撮像装置100は、撮像光学系10を通過した被写体光の光路を、第1撮像素子31に進む第1光路と、第1光路以外の第2光路に分岐するビームスプリッタ16(分岐部)と、第2光路を進む被写体光を瞳分割して受光する位相差検出画素を有する第2撮像素子27と、第2光路の光軸K2を含み、瞳分割のY方向に交差しかつ第2光路の光軸K2と交差するX方向に延びる遮光部25と、を備える。 In this manner, the imaging apparatus 100 uses the beam splitter 16 (branching beam splitter 16) that splits the optical path of the subject light that has passed through the imaging optical system 10 into a first optical path proceeding to the first imaging element 31 and a second optical path other than the first optical path. part), a second imaging element 27 having phase difference detection pixels for pupil-dividing and receiving subject light traveling on the second optical path, an optical axis K2 of the second optical path, intersecting the Y direction of the pupil division, and and a light blocking portion 25 extending in the X direction intersecting the optical axis K2 of the second optical path.
 これにより、第2撮像素子27へ入射する被写体光のうち、光軸K2を通りX方向に延びる部分が遮光され、フォーカスが大きく外れた状態における像のボケを小さくすることができる。したがって、フォーカスが大きく外れた状態においても、第2撮像素子27から出力される一対の画像信号に基づいて位相差を正しく算出し、測距精度の低下を抑制することができる。 As a result, of the subject light incident on the second imaging element 27, the portion extending in the X direction through the optical axis K2 is blocked, and blurring of the image in a state of being largely out of focus can be reduced. Therefore, even when the focus is greatly out of focus, it is possible to correctly calculate the phase difference based on the pair of image signals output from the second imaging element 27, thereby suppressing a decrease in distance measurement accuracy.
 また、撮像装置100は、ビームスプリッタ16(分岐部)と第2撮像素子27との間の位置で被写体光を結像させ、第2撮像素子27で被写体光を再度結像させる集光レンズ21,23,26(光学系)を含み、遮光部25は、ビームスプリッタ16(分岐部)と第2撮像素子27の間における被写体光の結像位置と、第2撮像素子27と、の間に設けられている。すなわち、遮光部25は、第2光路における、絞り24を設けるのに適した位置と同じ位置に設けられる。 The imaging apparatus 100 also includes a condenser lens 21 that forms an image of the subject light at a position between the beam splitter 16 (branching portion) and the second imaging element 27, and causes the second imaging element 27 to form an image of the subject light again. , 23 and 26 (optical system), and the light shielding unit 25 is positioned between the imaging position of the subject light between the beam splitter 16 (branching unit) and the second imaging element 27 and the second imaging element 27. is provided. That is, the light shielding portion 25 is provided at the same position as the position suitable for providing the diaphragm 24 in the second optical path.
 これにより、例えばビームスプリッタ16を絞り14の位置に設けなくても、位相差検出光学系20において全ての光線が通る位置を作り、その位置に遮光部25を設けることができる。このため、撮像光学系10の設計の自由度を向上させることができる。 Thereby, for example, even if the beam splitter 16 is not provided at the position of the diaphragm 14, a position through which all rays pass can be created in the phase difference detection optical system 20, and the light blocking section 25 can be provided at that position. Therefore, the degree of freedom in designing the imaging optical system 10 can be improved.
 また、遮光部25の遮光幅を調節可能とすることにより、第2撮像素子27へ入射する被写体光の径に応じて、その被写体光の一部を遮光することができる。例えば、制御部28は、第2撮像素子27へ入射する被写体光が通過する光学系に含まれる絞り(絞り14,24)の開口量(F値)に応じて遮光部25の遮光幅を調節する。具体的には、制御部28は、絞りの開口量が小さいほど(F値が大きいほど)、遮光部25の遮光幅が狭くなるように調節する。これにより、第2撮像素子27における被写体光の光量が不足して測距が困難になることを抑制することができる。 Also, by making the light shielding width of the light shielding section 25 adjustable, it is possible to shield part of the subject light according to the diameter of the subject light incident on the second imaging element 27 . For example, the control unit 28 adjusts the light shielding width of the light shielding unit 25 according to the opening amount (F value) of the apertures (apertures 14 and 24) included in the optical system through which the subject light incident on the second imaging element 27 passes. do. Specifically, the control unit 28 adjusts the light shielding width of the light shielding unit 25 so that the smaller the opening amount of the diaphragm (the larger the F number), the narrower the light shielding width. As a result, it is possible to prevent difficulty in distance measurement due to insufficient amount of subject light in the second image sensor 27 .
<変形例1>
 制御部28は、レンズの種類によっては、撮像光学系10の焦点距離に基づいて遮光部25の遮光幅を調節してもよい。具体的には、開放f値がズーム倍率で変わるレンズの場合は、制御部28は、ズームレンズ12の駆動情報に基づいて、撮像光学系10の焦点距離が長いほど、遮光部25の遮光幅が狭くなるように調節する。これにより、第2撮像素子27における被写体光の光量が不足して測距が困難になることを抑制することができる。
<Modification 1>
The control unit 28 may adjust the light shielding width of the light shielding unit 25 based on the focal length of the imaging optical system 10 depending on the type of lens. Specifically, in the case of a lens in which the open f-number changes with the zoom magnification, the control unit 28 adjusts the light shielding width of the light shielding unit 25 based on the drive information of the zoom lens 12 as the focal length of the imaging optical system 10 increases. adjust so that it is narrower. As a result, it is possible to prevent difficulty in distance measurement due to insufficient amount of subject light in the second image sensor 27 .
 また、制御部28は、絞りの開口量と、撮像光学系10の焦点距離と、の両方に基づいて遮光部25の遮光幅を調節してもよい。例えば、撮像装置100が備えるメモリには、絞りの開口量と、撮像光学系10の焦点距離と、の組み合わせごとに遮光部25の遮光幅を示す対応情報が記憶されており、制御部28はこの対応情報を用いて遮光部25の遮光幅を調節する。 Also, the control unit 28 may adjust the light shielding width of the light shielding unit 25 based on both the opening amount of the diaphragm and the focal length of the imaging optical system 10 . For example, the memory provided in the imaging device 100 stores correspondence information indicating the light shielding width of the light shielding unit 25 for each combination of the opening amount of the diaphragm and the focal length of the imaging optical system 10, and the control unit 28 The light blocking width of the light blocking portion 25 is adjusted using this correspondence information.
<変形例2>
 本発明の位相差検出装置をレンズ装置1に適用する構成について説明したが、本発明の位相差検出装置を撮像装置本体3に適用することもできる。例えば、図1に示した構成において、ビームスプリッタ16、位相差検出光学系20、及び第2撮像素子27を撮像装置本体3に設けた構成としてもよい。この場合、ビームスプリッタ16は第1撮像素子31よりも被写体側に設けられる。
<Modification 2>
Although the configuration in which the phase difference detection device of the present invention is applied to the lens device 1 has been described, the phase difference detection device of the present invention can also be applied to the imaging device main body 3 . For example, in the configuration shown in FIG. 1, a configuration in which the beam splitter 16, the phase difference detection optical system 20, and the second imaging device 27 are provided in the imaging device main body 3 may be employed. In this case, the beam splitter 16 is provided closer to the subject than the first imaging element 31 is.
 さらに、制御部28を撮像装置本体3に設けた構成としてもよい。また、制御部28を撮像装置本体3に設け、レンズ装置1が交換式である場合に、制御部28は、撮像装置本体3に取り付けられたレンズ装置1の焦点距離の情報をレンズ装置1から取得して、撮像光学系10の焦点距離に基づいて遮光部25の遮光幅を調節してもよい。 Furthermore, a configuration in which the control unit 28 is provided in the imaging device main body 3 may be employed. Further, when the control unit 28 is provided in the imaging device main body 3 and the lens device 1 is an interchangeable type, the control unit 28 receives information on the focal length of the lens device 1 attached to the imaging device main body 3 from the lens device 1. The light shielding width of the light shielding section 25 may be adjusted based on the focal length of the imaging optical system 10 after obtaining the focal length.
 以上説明してきたように、本明細書には以下の事項が開示されている。 As explained above, the following matters are disclosed in this specification.
(1)
 撮像光学系を通過した被写体光の光路を、第1撮像素子に進む第1光路と上記第1光路以外の第2光路に分岐する分岐部と、
 上記第2光路を進む上記被写体光を瞳分割して受光する位相差検出画素を有する第2撮像素子と、
 上記第2光路の光軸を含み、上記瞳分割の方向に交差しかつ上記第2光路の光軸と交差する方向に延びる遮光部と、
 を備える位相差検出装置。
(1)
a branching unit that branches an optical path of subject light that has passed through the imaging optical system into a first optical path proceeding to a first imaging element and a second optical path other than the first optical path;
a second imaging element having a phase difference detection pixel for pupil-dividing and receiving the subject light traveling along the second optical path;
a light shielding portion that includes the optical axis of the second optical path and extends in a direction that intersects the direction of pupil division and intersects the optical axis of the second optical path;
A phase difference detection device comprising:
(2)
 (1)記載の位相差検出装置であって、
 上記第2光路は、上記分岐部と上記第2撮像素子との間の位置で上記被写体光を結像させ、上記第2撮像素子で上記被写体光を再度結像させる光学系を含み、
 上記遮光部は、上記位置と上記第2撮像素子との間にある、
 位相差検出装置。
(2)
(1) The phase difference detection device according to
the second optical path includes an optical system that forms an image of the subject light at a position between the branching portion and the second imaging element, and forms an image of the subject light again with the second imaging element;
The light shielding part is between the position and the second imaging element,
Phase difference detector.
(3)
 (2)記載の位相差検出装置であって、
 上記遮光部は、上記第2撮像素子へ入射する上記被写体光の光量を調節し上記位置に設けられた絞りと上記第2光路の光軸において重なる位置にある、
 位相差検出装置。
(3)
(2) The phase difference detection device according to,
The light shielding unit adjusts the amount of light of the subject light incident on the second imaging element and is located at a position where the stop provided at the position overlaps with the optical axis of the second optical path.
Phase difference detector.
(4)
 (1)から(3)のいずれか1つに記載の位相差検出装置であって、
 上記遮光部の上記瞳分割の方向の幅を調節可能である、
 位相差検出装置。
(4)
The phase difference detection device according to any one of (1) to (3),
The width of the light shielding portion in the direction of the pupil division is adjustable,
Phase difference detector.
(5)
 (4)記載の位相差検出装置であって、
 上記幅は、上記第2撮像素子へ入射する上記被写体光の光量を調節する絞りの開口量に基づいて調節される、
 位相差検出装置。
(5)
(4) The phase difference detection device according to,
The width is adjusted based on the opening amount of a diaphragm that adjusts the amount of light of the subject light incident on the second imaging element.
Phase difference detector.
(6)
 (5)記載の位相差検出装置であって、
 上記幅は、上記開口量が小さいほど狭くなるよう調節される、
 位相差検出装置。
(6)
(5) The phase difference detection device according to
The width is adjusted to be narrower as the opening amount is smaller.
Phase difference detector.
(7)
 (4)から(6)のいずれか1つに記載の位相差検出装置であって、
 上記撮像光学系は焦点距離可変であり、
 上記幅は、上記撮像光学系の焦点距離に基づいて調節される、
 位相差検出装置。
(7)
The phase difference detection device according to any one of (4) to (6),
The imaging optical system has a variable focal length,
The width is adjusted based on the focal length of the imaging optical system,
Phase difference detector.
(8)
 (7)記載の位相差検出装置であって、
 上記幅は、上記焦点距離が長いほど狭くなるよう調節される、
 位相差検出装置。
(8)
(7) The phase difference detection device according to,
The width is adjusted to be narrower as the focal length is longer.
Phase difference detector.
(9)
 (1)から(8)のいずれか1つに記載の位相差検出装置であって、
 上記遮光部の遮光部分は、上記光軸を含み上記瞳分割の方向及び上記光軸と交差する直線を中心に対照な形状である、
 位相差検出装置。
(9)
The phase difference detection device according to any one of (1) to (8),
The light-shielding portion of the light-shielding portion has a symmetrical shape centered on a straight line that includes the optical axis and intersects the direction of the pupil division and the optical axis.
Phase difference detector.
(10)
 (1)から(9)のいずれか1つに記載の位相差検出装置と、
 上記撮像光学系と、
 を備えるレンズ装置。
(10)
a phase difference detection device according to any one of (1) to (9);
the imaging optical system;
A lens device comprising:
(11)
 (1)から(9)のいずれか1つに記載の位相差検出装置と、
 上記第1撮像素子と、
 を備える撮像装置。
(11)
a phase difference detection device according to any one of (1) to (9);
the first imaging device;
An imaging device comprising:
(12)
 (1)から(9)のいずれか1つに記載の、上記撮像光学系がフォーカスレンズを備える位相差検出装置と、
 上記第1光路を進む光を受光する第1撮像素子と、
 上記位相差検出装置によって得られた位相差情報に基づいて上記フォーカスレンズを駆動する制御を行う制御部と、
 を備える撮像装置。
(12)
The phase difference detection device according to any one of (1) to (9), wherein the imaging optical system includes a focus lens;
a first imaging element that receives light traveling along the first optical path;
a control unit that controls driving of the focus lens based on the phase difference information obtained by the phase difference detection device;
An imaging device comprising:
 以上、図面を参照しながら各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。 Various embodiments have been described above with reference to the drawings, but it goes without saying that the present invention is not limited to such examples. It is obvious that a person skilled in the art can conceive of various modifications or modifications within the scope described in the claims, and these also belong to the technical scope of the present invention. Understood. Moreover, each component in the above embodiments may be combined arbitrarily without departing from the gist of the invention.
 なお、本出願は、2021年1月29日出願の日本特許出願(特願2021-014008)に基づくものであり、その内容は本出願の中に参照として援用される。 This application is based on a Japanese patent application (Japanese Patent Application No. 2021-014008) filed on January 29, 2021, the contents of which are incorporated herein by reference.
 本発明の位相差検出装置は、放送用の撮像装置に適用することで、フォーカスが大きく外れた状態での測距精度の低下を抑制することができる。 By applying the phase difference detection device of the present invention to an imaging device for broadcasting, it is possible to suppress a decrease in distance measurement accuracy when the focus is greatly out of focus.
 1 レンズ装置
 3 撮像装置本体
 10 撮像光学系
 11 フォーカスレンズ
 12 ズームレンズ
 14,24 絞り
 15 マスターレンズ群
 16 ビームスプリッタ
 16a 反射面
 17 ブレ補正用レンズ
 20 位相差検出光学系
 21,23,26 集光レンズ
 22 ミラー
 25 遮光部
 27 第2撮像素子
 28 制御部
 29 駆動機構
 31 第1撮像素子
 32 画像処理部
 40~42 角度感度特性
 51 光線角度範囲
 52 遮光範囲
 60 回転軸
 61~65 遮光板
 66 外周部
 100 撮像装置
 201,202 光束
 301 直線
 K1,K2 光軸
 P1 第1結像位置
 P2 第2結像位置
 
1 lens device 3 imaging device body 10 imaging optical system 11 focus lens 12 zoom lens 14, 24 diaphragm 15 master lens group 16 beam splitter 16a reflecting surface 17 blur correction lens 20 phase difference detection optical system 21, 23, 26 condenser lens 22 mirror 25 light shielding unit 27 second image sensor 28 control unit 29 drive mechanism 31 first image sensor 32 image processing unit 40 to 42 angle sensitivity characteristics 51 light beam angle range 52 light shielding range 60 rotating shaft 61 to 65 light shielding plate 66 outer peripheral portion 100 Imaging device 201, 202 Light beam 301 Straight line K1, K2 Optical axis P1 First imaging position P2 Second imaging position

Claims (12)

  1.  撮像光学系を通過した被写体光の光路を、第1撮像素子に進む第1光路と前記第1光路以外の第2光路に分岐する分岐部と、
     前記第2光路を進む前記被写体光を瞳分割して受光する位相差検出画素を有する第2撮像素子と、
     前記第2光路の光軸を含み、前記瞳分割の方向に交差しかつ前記第2光路の光軸と交差する方向に延びる遮光部と、
     を備える位相差検出装置。
    a branching unit that branches an optical path of subject light that has passed through the imaging optical system into a first optical path proceeding to a first imaging element and a second optical path other than the first optical path;
    a second imaging device having a phase difference detection pixel that receives the subject light that travels along the second optical path by dividing the pupil and receiving the light;
    a light shielding portion that includes the optical axis of the second optical path and extends in a direction that intersects the direction of pupil division and intersects the optical axis of the second optical path;
    A phase difference detection device comprising:
  2.  請求項1記載の位相差検出装置であって、
     前記第2光路は、前記分岐部と前記第2撮像素子との間の位置で前記被写体光を結像させ、前記第2撮像素子で前記被写体光を再度結像させる光学系を含み、
     前記遮光部は、前記位置と前記第2撮像素子との間にある、
     位相差検出装置。
    The phase difference detection device according to claim 1,
    the second optical path includes an optical system that forms an image of the subject light at a position between the branching portion and the second imaging element, and forms an image of the subject light again with the second imaging element;
    The light shielding part is between the position and the second imaging element,
    Phase difference detector.
  3.  請求項2記載の位相差検出装置であって、
     前記遮光部は、前記第2撮像素子へ入射する前記被写体光の光量を調節し前記位置に設けられた絞りと前記第2光路の光軸において重なる位置にある、
     位相差検出装置。
    The phase difference detection device according to claim 2,
    The light shielding unit adjusts the amount of light of the subject light incident on the second imaging element and is located at a position overlapping an aperture provided at the position on the optical axis of the second optical path,
    Phase difference detector.
  4.  請求項1から3のいずれか1項記載の位相差検出装置であって、
     前記遮光部の前記瞳分割の方向の幅を調節可能である、
     位相差検出装置。
    The phase difference detection device according to any one of claims 1 to 3,
    The width of the light shielding part in the direction of pupil division is adjustable.
    Phase difference detector.
  5.  請求項4記載の位相差検出装置であって、
     前記幅は、前記第2撮像素子へ入射する前記被写体光の光量を調節する絞りの開口量に基づいて調節される、
     位相差検出装置。
    The phase difference detection device according to claim 4,
    The width is adjusted based on the opening amount of a diaphragm that adjusts the amount of light of the subject light incident on the second imaging element,
    Phase difference detector.
  6.  請求項5記載の位相差検出装置であって、
     前記幅は、前記開口量が小さいほど狭くなるよう調節される、
     位相差検出装置。
    The phase difference detection device according to claim 5,
    The width is adjusted to be narrower as the opening amount is smaller.
    Phase difference detector.
  7.  請求項4から6のいずれか1項記載の位相差検出装置であって、
     前記撮像光学系は焦点距離可変であり、
     前記幅は、前記撮像光学系の焦点距離に基づいて調節される、
     位相差検出装置。
    The phase difference detection device according to any one of claims 4 to 6,
    The imaging optical system has a variable focal length,
    the width is adjusted based on the focal length of the imaging optical system;
    Phase difference detector.
  8.  請求項7記載の位相差検出装置であって、
     前記幅は、前記焦点距離が長いほど狭くなるよう調節される、
     位相差検出装置。
    The phase difference detection device according to claim 7,
    The width is adjusted to be narrower as the focal length is longer.
    Phase difference detector.
  9.  請求項1から8のいずれか1項記載の位相差検出装置であって、
     前記遮光部の遮光部分は、前記光軸を含み前記瞳分割の方向及び前記光軸と交差する直線を中心に対照な形状である、
     位相差検出装置。
    The phase difference detection device according to any one of claims 1 to 8,
    The light-shielding portion of the light-shielding portion has a symmetrical shape centered on a straight line that includes the optical axis and intersects the direction of the pupil division and the optical axis.
    Phase difference detector.
  10.  請求項1から9のいずれか1項記載の位相差検出装置と、
     前記撮像光学系と、
     を備えるレンズ装置。
    A phase difference detection device according to any one of claims 1 to 9;
    the imaging optical system;
    A lens device comprising:
  11.  請求項1から9のいずれか1項記載の位相差検出装置と、
     前記第1撮像素子と、
     を備える撮像装置。
    A phase difference detection device according to any one of claims 1 to 9;
    the first imaging element;
    An imaging device comprising:
  12.  請求項1から9のいずれか1項記載の、前記撮像光学系がフォーカスレンズを備える位相差検出装置と、
     前記第1光路を進む光を受光する第1撮像素子と、
     前記位相差検出装置によって得られた位相差情報に基づいて前記フォーカスレンズを駆動する制御を行う制御部と、
     を備える撮像装置。
     
    A phase difference detection device according to any one of claims 1 to 9, wherein the imaging optical system includes a focus lens;
    a first imaging element that receives light traveling along the first optical path;
    a control unit that controls driving of the focus lens based on the phase difference information obtained by the phase difference detection device;
    An imaging device comprising:
PCT/JP2021/046884 2021-01-29 2021-12-17 Phase difference detection device, lens device, and imaging apparatus WO2022163208A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022578145A JPWO2022163208A1 (en) 2021-01-29 2021-12-17

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021014008 2021-01-29
JP2021-014008 2021-01-29

Publications (1)

Publication Number Publication Date
WO2022163208A1 true WO2022163208A1 (en) 2022-08-04

Family

ID=82654427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/046884 WO2022163208A1 (en) 2021-01-29 2021-12-17 Phase difference detection device, lens device, and imaging apparatus

Country Status (2)

Country Link
JP (1) JPWO2022163208A1 (en)
WO (1) WO2022163208A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59155808A (en) * 1983-02-24 1984-09-05 Olympus Optical Co Ltd Automatic focus detecting device
JP2002303785A (en) * 2001-04-06 2002-10-18 Canon Inc Focus detecting device and image pickup device
WO2012026292A1 (en) * 2010-08-24 2012-03-01 富士フイルム株式会社 Solid-state imaging device
WO2016158040A1 (en) * 2015-03-30 2016-10-06 富士フイルム株式会社 Focus control device, lens device, imaging device, focus control method, focus control program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59155808A (en) * 1983-02-24 1984-09-05 Olympus Optical Co Ltd Automatic focus detecting device
JP2002303785A (en) * 2001-04-06 2002-10-18 Canon Inc Focus detecting device and image pickup device
WO2012026292A1 (en) * 2010-08-24 2012-03-01 富士フイルム株式会社 Solid-state imaging device
WO2016158040A1 (en) * 2015-03-30 2016-10-06 富士フイルム株式会社 Focus control device, lens device, imaging device, focus control method, focus control program

Also Published As

Publication number Publication date
JPWO2022163208A1 (en) 2022-08-04

Similar Documents

Publication Publication Date Title
JP5169499B2 (en) Imaging device and imaging apparatus
JP4946059B2 (en) Imaging device
US8773645B2 (en) Distance measuring device and imaging device
JP2007121896A (en) Focus detector and optical system
JP2009168995A (en) Range-finding device and imaging apparatus
JP4054422B2 (en) Camera and interchangeable lens device
JPH01216306A (en) Focus detecting device having image pickup means
US11297271B2 (en) Image sensor and image capture apparatus
JPWO2017085802A1 (en) Image projection device
WO2022163208A1 (en) Phase difference detection device, lens device, and imaging apparatus
JP2008070629A (en) Light detection device, camera, focus detection device, and optical characteristic measuring device
JP4773767B2 (en) FOCUS DETECTION DEVICE, OPTICAL DEVICE, AND FOCUS DETECTION METHOD
JPS6246175Y2 (en)
JP2015034859A (en) Automatic focus adjustment lens device and photographing device
JP2007148338A (en) Optical apparatus
JP2004333712A (en) Terrestrial telescope with digital camera
JP2017219791A (en) Control device, imaging device, control method, program, and storage medium
JP2002006205A (en) Automatic focusing camera
JP2012175144A (en) Imaging device, imaging apparatus, and manufacturing method of the imaging device
JP3736266B2 (en) Focus detection device
JP5167604B2 (en) Imaging device
JP2007010951A (en) Focus detecting device and imaging apparatus
JP4106725B2 (en) Focus detection device and camera with focus detection device
JP2004246156A (en) Focus detecting device
JPWO2022163208A5 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21923211

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022578145

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21923211

Country of ref document: EP

Kind code of ref document: A1