[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022163131A1 - Film, film roll, and method for producing film - Google Patents

Film, film roll, and method for producing film Download PDF

Info

Publication number
WO2022163131A1
WO2022163131A1 PCT/JP2021/044613 JP2021044613W WO2022163131A1 WO 2022163131 A1 WO2022163131 A1 WO 2022163131A1 JP 2021044613 W JP2021044613 W JP 2021044613W WO 2022163131 A1 WO2022163131 A1 WO 2022163131A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
resin
film base
protrusions
roll
Prior art date
Application number
PCT/JP2021/044613
Other languages
French (fr)
Japanese (ja)
Inventor
里誌 森井
葉月 中江
崇 南條
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to CN202180092002.6A priority Critical patent/CN116806234A/en
Priority to JP2022578095A priority patent/JPWO2022163131A1/ja
Publication of WO2022163131A1 publication Critical patent/WO2022163131A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating

Definitions

  • the present invention relates to a film, a film roll, and a film manufacturing method.
  • Resin films mainly composed of cycloolefin resins and (meth)acrylic resins have good transparency and dimensional stability, so they are used as optical films such as polarizing plate protective films.
  • Optical films are usually stored or transported in a rolled state from the viewpoint of handling and production efficiency.
  • Knurling is formed at both ends of the film in the width direction in order to prevent quality failures caused by the film sticking to each other when it is stored or transported in a rolled state.
  • a method for forming the knurled portion there are a heat pressing method using an emboss roller, a laser irradiation method, and the like.
  • the protrusions formed by these methods are easily crushed or chipped. As a result, not only is it impossible to prevent the films from sticking together, but the chipped portion may become a foreign substance and damage the surface of the film.
  • Patent Documents 1 to 3 there is also known a method of forming knurled portions on both ends of the film in the width direction by a coating method (see Patent Documents 1 to 3, for example).
  • a film material having a coating film such as a layer and thick portions disposed at both ends in the width direction of the surface thereof is known (for example, Patent Document 3).
  • the base film or base (film base) is an acrylic resin film or cellulose triacetate film; It is a cured product of a resin composition containing a curable resin.
  • the projections made of a cured product of an ultraviolet curable resin composition are not easily crushed when the film is wound into a roll, but the projections are not only too hard, but also , and has residual shrinkage stress at the time of curing, so that the adhesiveness to the film base is low and it is easy to peel off. Therefore, the knurling function is likely to be impaired, and blocking and deterioration of the wound shape of the film roll may occur.
  • Blocking and deterioration of the wound shape of the film roll tend to cause, for example, an increase in the variation in the optical properties of the optical film; the variation in the optical properties tends to cause light leakage during the black display of the display device.
  • optical films used in high-resolution display devices such as 8K are required to have less variation in optical properties than ever before. Further suppression is desired.
  • the present invention has been made in view of the above circumstances, and provides a film and a film roll that can suppress blocking and deterioration of the winding shape during storage of a film such as an optical film, and can reduce variations in optical properties. for the purpose.
  • the film of the present invention is a film comprising a film base and protrusions disposed on both ends of the surface of the film base, wherein the film base and the protrusions contain the same type of thermoplastic resin,
  • the height of the projections is 0.5 to 3 ⁇ m, and the haze value of the region where the projections are not arranged on the film is Hz1, and the haze value of the region where the projections are arranged is Hz2.
  • the haze ratio Hz2/Hz1 is 1.1 to 4.5.
  • the film roll of the present invention includes the film of the present invention.
  • the method for producing a film of the present invention comprises: 1) a step of casting a first resin composition to obtain a strip-shaped film base; and applying an object to form a convex portion.
  • a film and a film roll that can suppress blocking and deterioration of the winding shape during storage of a film such as an optical film, and can reduce variations in optical properties.
  • FIG. 1A is a plan view of the film according to this embodiment
  • FIG. 1B is a cross-sectional view taken along line 1B-1B of FIG. 1A
  • 2A is a partially enlarged plan view of the dotted line portion 2A in FIG. 1A
  • FIG. 2B is a partially enlarged cross-sectional view of the convex portion in FIG. 1B
  • 3A is a plan view of a film according to a modification
  • FIG. 3B is a cross-sectional view taken along line 3B-3B of FIG. 3A
  • FIG. 4 is a partially enlarged plan view of a film according to a comparative example.
  • the present inventors have found that 1) by using the same type of thermoplastic resin contained in the film base and the protrusions, the adhesion of the protrusions (to the film base) is increased, and 2) the height of the protrusions is reduced. In addition, by setting the ratio (Hz2/Hz1) of the haze value Hz1 in the region where the convex portions are not arranged and the haze value Hz2 in the region where the convex portions are arranged in a predetermined range, the convex portions are crushed. The inventors have found that it is possible to reduce deformation when wound into a roll.
  • the height of the protrusions due to crushing can be reduced.
  • the haze ratio Hz2/Hz1 is set within a predetermined range, thereby not only reducing the amount of collapse of the projections, but also making it difficult for the projections to collapse. sell. Thereby, it is possible to suppress the roll deformation caused by the crushing of the convex portion.
  • the projections are formed by applying a resin composition to the film body (film base), unlike the case where they are formed by conventional embossing or laser irradiation, the obtained film base has a thin portion. It is difficult to form a brittle portion that is degraded by heat. Therefore, even if a winding pressure is applied to the convex portion, the thin portion or the thermally deteriorated fragile portion will not be the starting point for chipping, so that the generation of foreign matter can be suppressed. As a result, the surface of the film can be prevented from being scratched, and the deterioration of the optical properties of the obtained film can be further suppressed.
  • the film of the present invention may be a strip-shaped film or a sheet-shaped film (a strip-shaped film cut into a predetermined length). Also, the strip-shaped film may be wound into a roll to form a film roll. In the following embodiments, an example of a strip-shaped film will be described.
  • FIG. 1A is a plan view of a strip-shaped film according to the present embodiment
  • FIG. 1B is a cross-sectional view taken along line 1B-1B of FIG. 1A
  • 2A is a partially enlarged plan view of the dotted line portion 2A in FIG. 1A
  • FIG. 2B is a partially enlarged cross-sectional view of the convex portion in FIG. 1B.
  • hatching of the cross section is omitted for easy viewing.
  • the strip-shaped film 10 includes a film base 11 and projections 12 arranged (formed by coating) at both ends in the width direction on the surface.
  • the film base 11 can be a resin film, preferably a resin film that can be used as an optical film.
  • the resin film contains a first resin composition containing a thermoplastic resin.
  • thermoplastic resin The thermoplastic resin contained in the resin film is not particularly limited as long as it is suitable for optical films. including polycarbonate. Among them, cycloolefin resins, (meth)acrylic resins, and cellulose esters are preferable from the viewpoint of having good transparency, and from the viewpoint of further having low hygroscopicity (high dimensional stability), cycloolefin resins and (meth) ) Acrylic resin is more preferable.
  • Cycloolefin resin A cycloolefin-based resin is a polymer containing a structural unit derived from a norbornene-based monomer.
  • a norbornene-based monomer is represented by the following formula (1).
  • R 1 to R 4 in formula (1) each represent a hydrogen atom, a halogen atom, a hydrocarbon group, or a polar group.
  • halogen atoms include fluorine atoms and chlorine atoms.
  • the hydrocarbon group is a hydrocarbon group having 1 to 10 carbon atoms, preferably 1 to 4 carbon atoms, more preferably 1 or 2 carbon atoms.
  • hydrocarbon groups include alkyl groups such as methyl, ethyl, propyl and butyl groups.
  • the hydrocarbon group further has a divalent linking group such as a linking group containing an oxygen atom, a nitrogen atom, a sulfur atom or a silicon atom (e.g., a carbonyl group, an imino group, an ether bond, a silyl ether bond, a thioether bond, etc.).
  • polar groups include linking groups such as carboxy groups, hydroxy groups, alkoxy groups, alkoxycarbonyl groups, aryloxycarbonyl groups, amino groups, amido groups, and methylene groups (—(CH 2 ) n —, where n is 1 Groups in which these groups are bonded via the above integers) are included. Among them, an alkoxycarbonyl group and an aryloxycarbonyl group are preferable, and an alkoxycarbonyl group is more preferable.
  • At least one of R 1 to R 4 is preferably a polar group.
  • a cycloolefin resin containing a structural unit derived from a norbornene monomer having a polar group is easily dissolved in a solvent, for example, when forming a film by a solution casting method, and tends to increase the glass transition temperature of the resulting film.
  • a cycloolefin-based resin that does not contain a structural unit derived from a norbornene-based monomer having a polar group may be used.
  • both R 1 and R 2 may be hydrogen atoms.
  • p in formula (1) represents an integer from 0 to 2. From the viewpoint of enhancing the heat resistance of the optical film, p is preferably 1-2.
  • examples of norbornene-based monomers represented by formula (1) include the following.
  • Examples of norbornene-based monomers without polar groups include:
  • the content of structural units derived from norbornene-based monomers can be 50 to 100 mol% of the total structural units constituting the cycloolefin-based resin.
  • the cycloolefin-based resin may further contain a structural unit derived from another monomer copolymerizable with the structural unit derived from the norbornene-based monomer.
  • examples of other copolymerizable monomers include norbornene-based monomers having no polar group (when the norbornene-based monomer has a polar group), cyclobutene, cyclopentene, cycloheptene, and dicyclopentadiene. Cycloolefinic monomers having no norbornene skeleton such as are included.
  • the weight average molecular weight Mw of the cycloolefin resin is not particularly limited, but is preferably 20,000 to 300,000, more preferably 30,000 to 250,000, and even more preferably 40,000 to 200,000. .
  • Mw of the cycloolefin resin is within the above range, the mechanical properties of the film can be enhanced without impairing the moldability.
  • the Mw of the cycloolefin resin can be measured in terms of polystyrene by gel permeation chromatography (GPC). Specifically, it can be measured using Tosoh Corporation HLC8220GPC) and a column (Tosoh Corporation TSK-GEL G6000HXL-G5000HXL-G5000HXL-G4000HXL-G3000HXL series).
  • the glass transition temperature Tg of the cycloolefin resin is generally preferably 110°C or higher, more preferably 110 to 350°C, and more preferably 120 to 250°C.
  • Tg of the cycloolefin-based resin is 110°C or higher, sufficient heat resistance is likely to be obtained, and when it is 350°C or lower, thermal deterioration of the cycloolefin-based resin during molding can be suppressed.
  • Tg can be measured by a method based on JIS K 7121-2012 or ASTM D 3418-82 using DSC (Differential Scanning Colorimetry).
  • the (meth)acrylic resin is preferably a polymer containing structural units derived from methyl methacrylate.
  • the polymer may further comprise structural units derived from monomers copolymerizable with methyl methacrylate.
  • Examples of other monomers copolymerizable with methyl methacrylate include alkyl (meth)acrylates having 1 to 18 carbon atoms other than methyl methacrylate, such as 2-ethylhexyl methacrylate; saturated acids; unsaturated dicarboxylic acids such as maleic acid, fumaric acid and itaconic acid; styrenes such as styrene and ⁇ -methylstyrene; maleic anhydride; maleimides such as maleimide and N-phenylmaleimide; included.
  • alkyl (meth)acrylates having 1 to 18 carbon atoms other than methyl methacrylate such as 2-ethylhexyl methacrylate
  • saturated acids such as maleic acid, fumaric acid and itaconic acid
  • styrenes such as styrene and ⁇ -methylstyrene
  • maleic anhydride maleimides
  • maleimides such as maleimide and N-pheny
  • the content of structural units derived from methyl methacrylate is preferably 50% by mass or more, more preferably 70% by mass or more, based on all structural units constituting the polymer.
  • the Mw of the (meth)acrylic resin is preferably 400,000 to 3,000,000, more preferably 500,000 to 2,000,000. When the Mw of the (meth)acrylic resin is within the above range, the film can be imparted with sufficient mechanical strength.
  • the Mw of the (meth)acrylic resin can be measured by the same method as described above.
  • the Tg of the (meth)acrylic resin is preferably 90°C or higher, more preferably 100 to 150°C. When the Tg of the (meth)acrylic resin is within the above range, the heat resistance of the optical film can be easily improved.
  • the Tg of the (meth)acrylic resin can be measured by the same method as described above.
  • the content of the cycloolefin resin or (meth)acrylic resin is preferably 50% by mass or more, more preferably 70% by mass or more, relative to the optical film.
  • the optical film may further contain other components as needed.
  • examples of other ingredients include rubber particles, matting agents, antioxidants, and the like.
  • the rubber particles can impart flexibility to the film.
  • the rubber particles are graft copolymers containing rubbery polymers (crosslinked polymers).
  • rubber-like polymers include butadiene crosslinked polymers, (meth)acrylic crosslinked polymers, and organosiloxane crosslinked polymers.
  • a (meth)acrylic crosslinked polymer is preferable, and an acrylic crosslinked polymer (acrylic rubber-like polymer) is preferable from the viewpoint that the difference in refractive index from that of the methacrylic resin is small and the transparency of the optical film is less likely to be impaired. more preferred.
  • the matting agent forms unevenness on the surface of the optical film and can impart slipperiness.
  • the matting agent may be inorganic particles, resin particles, or the like.
  • inorganic particles include fine particles of silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, etc., preferably silicon dioxide particles.
  • the antioxidant is not particularly limited, for example, a hindered phenol-based antioxidant can be used.
  • the film base 11 Since the film base 11 is not embossed or laser-irradiated, it does not have a thin portion formed by being heated and pressed by an embossing roller or melted by laser irradiation. That is, the thickness of the film base 11 is constant. Although the thickness of the film base 11 is not particularly limited, it is preferably 5 to 40 ⁇ m, more preferably 10 to 40 ⁇ m, even more preferably 15 to 40 ⁇ m.
  • the length (winding length) of the film base 11 is not particularly limited, it is preferably 2000 to 15000 m, more preferably 3000 to 12000 m.
  • the width of the film base 11 is not particularly limited, it is preferably 950 to 3000 mm.
  • the film base 11 can have retardation Ro and Rt according to its application.
  • the in-plane retardation Ro measured at a measurement wavelength of 590 nm of the film base 11 at 23° C. and 55% RH preferably satisfies 40 nm ⁇ Ro ⁇ 60 nm, and the thickness direction retardation Rt is It is preferable to satisfy 115 nm ⁇ Rt ⁇ 145 nm.
  • Such a film base 11 is suitable as a retardation film combined with, for example, a VA liquid crystal cell.
  • it is suitable as a retardation film combined with an IPS mode liquid crystal cell.
  • Ro and Rt are defined by the following formulas, respectively.
  • Formula (1): Ro (nx-ny) x d
  • Formula (2): Rt ((nx + ny) / 2-nz) x d
  • nx represents the refractive index in the in-plane slow axis direction (the direction in which the refractive index is maximized) of the film base 11
  • ny represents the refractive index in the direction perpendicular to the in-plane slow axis of the film base 11
  • nz represents the refractive index in the thickness direction of the film base 11
  • d represents the thickness (nm) of the film base 11 .
  • the in-plane slow axis of the film base 11 can be confirmed by an automatic birefringence meter AxoScan (Axo Scan Mueller Matrix Polarimeter: manufactured by Axometrics).
  • Ro and Rt can be measured by the following methods. 1) The film base 11 is conditioned for 24 hours in an environment of 23° C. and 55% RH. The average refractive index of this film base 11 is measured with an Abbe refractometer, and the thickness d is measured with a commercially available micrometer. 2) The retardation Ro and Rt of the film base 11 after humidity control at a measurement wavelength of 550 nm were measured at 23°C and 55% using an automatic birefringence meter Axo Scan (Axo Scan Mueller Matrix Polarimeter: manufactured by Axometrics). Measured under RH environment.
  • Axo Scan Axo Scan Mueller Matrix Polarimeter: manufactured by Axometrics
  • the protrusions 12 are a resin composition applied to both ends of the surface of the film base 11 in the width direction. Specifically, the protrusions 12 are arranged discontinuously or continuously along the longitudinal direction of the film base 11 at both ends in the width direction of the surface of the film base 11 . In the present embodiment, the plurality of protrusions 12 are arranged discontinuously (island-like) (see FIG. 2A).
  • the convex portion 12 may be integrated with the film base portion 11 or may be a separate member.
  • the height t of the protrusions 12 is 0.5 to 3 ⁇ m (see FIG. 2B).
  • the height t of the protrusions 12 is 0.5 ⁇ m or more, sticking between the film bases 11 can be sufficiently suppressed when the film 10 is wound into a roll.
  • the height t of the projections 12 is 3 ⁇ m or less, when the film 10 is wound into a roll, the absolute amount of crushing of the projections 12 itself is small, making it difficult to deform the film roll.
  • the height t of the projections 12 is preferably 1.0 to 2.0 ⁇ m.
  • the height t of the projections 12 is the height from the surface of the film base 11 to the apex of the projections 12 .
  • the height t of the projections 12 is preferably 1 to 30%, more preferably 2 to 10%, of the thickness of the film base 11, for example.
  • the width w of the protrusions 12 is not particularly limited, but is preferably 500 to 2000 ⁇ m.
  • the support area can be increased, so that the protrusions 12 are less likely to be crushed.
  • the film of the present invention can be efficiently produced because the cooling process proceeds easily during melting and forming. From the same point of view, it is more preferable that the width w of the protrusion 12 is 700 to 1500 ⁇ m.
  • the width w of the protrusion 12 is the maximum width of the protrusion 12 in the cross section.
  • the height t and width w of the convex portion 12 can be measured using a laser microscope.
  • a laser microscope for example, a laser Microscope VK-X1000 manufactured by Keyence Corporation can be used.
  • the height t of the convex portion is measured for a range of 100 mm in the length direction (Y direction in FIG. 2A) and 15 mm in the width direction (X direction in FIG. 2A). and width w are measured, and their average value is defined as "the height t and the width w of the convex portion".
  • the haze ratio Hz2/Hz1 is 1.1 to 4.5.
  • the projections 12 can function as knurling parts, and the projections can be reduced. It can be made difficult to collapse.
  • Hz2/Hz1 is preferably 1.5 to 3.0.
  • the haze ratio Hz2/Hz1 of the film base 11 is the haze ratio of the film base 11 for the area a2 where the projections 12 are arranged and the area a1 where the projections 12 are not arranged ( ⁇ 11m of the measurement area, area 95mm2).
  • a haze meter (NDH2000, manufactured by Nippon Denshoku Industries Co., Ltd.) was used to measure 10 points at intervals of 10 mm in the longitudinal direction of the optical film under an environment of 23°C and 50% RH. can be calculated from the ratio of
  • the Hz2/Hz1 of the film base 11 can be adjusted by the height and width of the protrusions 12, the existence density, the composition of the protrusions 12, and the like. For example, the higher the height t of the projections 12, the greater the width of the projections 12, and the higher the density of the projections 12, the higher the Hz2/Hz1 of the film base 11. Further, when the height t of the projections 12 is small and the thermoplastic resin forming the projections 12 and the thermoplastic resin forming the film base 11 are of the same type, Hz2/Hz1 of the film base 11 tends to be small. .
  • the shape of the protrusions 12 in the cross section along the width direction of the film 10 and passing through the vertices of the protrusions 12 is not particularly limited, and may be quadrangular, triangular, or circular. segment).
  • An arch is a shape obtained by connecting both ends of a circular arc or an elliptical arc with straight lines, and examples thereof include semicircular and semielliptical shapes.
  • the shape of the protrusion 12 in the cross section is arcuate.
  • the center-to-center distance p of the plurality of projections 12 is not particularly limited, it can be, for example, 0.5 to 10 mm, preferably 1 to 5 mm (see FIG. 2A).
  • the center-to-center distance p of the plurality of protrusions 12 is 0.5 mm or more, it is easy to appropriately adjust the amount of air contained between the films when the film is wound into a roll. Since the presence density of the portions 12 can be appropriately increased, the protrusions 12 can be made less likely to collapse.
  • the center-to-center distance p is the minimum value among the distances between the centers (centers of gravity) of the plurality of adjacent projections 12 when the film 10 is viewed from above.
  • the existence density of the protrusions 12 depends on the width of the protrusions 12 and the like, but is preferably, for example, 2 to 160/cm 2 , more preferably 10 to 60/cm 2 .
  • the density of the protrusions 12 is within the above range, it is easy to adjust the haze ratio Hz2/Hz1 within the above range.
  • the convex portion 12 contains a second resin composition containing a thermoplastic resin.
  • the thermoplastic resin contained in the projections 12 is of the same type as the thermoplastic resin contained in the film base 11 .
  • the resin contained in the projections 12 is also preferably a cycloolefin resin. If the thermoplastic resin contained in the film base 11 and the thermoplastic resin contained in the projections 12 are of the same type, the adhesion between the projections 12 and the film base 11 can be enhanced.
  • thermoplastic resin refers to thermoplastic resins that have the same main component monomer (the component contained most), the type and content of the copolymer component monomer, the weight average molecular weight (Mw) of the resin, Physical properties such as glass transition temperature (Tg) may differ.
  • the content of the resin is not particularly limited, it is preferably 60% by mass or more, more preferably 70 to 100% by mass, based on the second resin composition that constitutes the projections 12.
  • the convex portion 12 may further contain the same components as the film base portion 11 (for example, fine particles, etc.) as necessary. However, when the film 10 is wound, the content of fine particles in the convex portion 12 is less than It is preferably less than the content of fine particles, and more preferably contains no fine particles.
  • Method for producing film comprises: 1) a step of casting a first resin composition on a support to obtain a strip-shaped film base 11; applying the second resin composition to the portion to form the convex portion.
  • belt-shaped film base 11 is obtained by casting a 1st resin composition.
  • the casting of the first resin composition may be performed by a melt casting method or a solution casting method. Above all, the casting of the first resin composition is preferably carried out by a solution casting method from the standpoint of being able to use a high-molecular-weight resin.
  • the film base 11 includes a step of obtaining a dope (first resin composition) (preparation of the dope), casting the obtained dope on a support, drying and peeling to obtain a film-like material. It can be obtained through a process (casting) and a process of drying and stretching the resulting film-like material (drying/stretching).
  • a resin is dissolved in a solvent to prepare a first resin composition.
  • the solvent used contains at least an organic solvent (good solvent) capable of dissolving the resin.
  • good solvents include chlorinated organic solvents such as dichloromethane; and non-chlorinated organic solvents such as methyl acetate, ethyl acetate, acetone, tetrahydrofuran. Among them, methylene chloride is preferred.
  • the solvent used may further contain a poor solvent.
  • poor solvents include straight or branched chain aliphatic alcohols having 1 to 4 carbon atoms. When the ratio of alcohol in the dope becomes high, the film-like material tends to gel and is easily peeled off from the metal support.
  • Linear or branched aliphatic alcohols having 1 to 4 carbon atoms include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol and tert-butanol. Among them, methanol and ethanol are preferable from the viewpoint of stability and drying property.
  • the obtained first resin composition is then cast on a support.
  • Casting of the first resin composition can be performed by discharging from a casting die.
  • the temperature of the first resin composition during casting is usually 15 to 30°C, preferably room temperature (23°C).
  • the amount of residual solvent in the first resin composition after peeling is, for example, preferably 25% by mass or more, more preferably 30 to 37% by mass, and even more preferably 30 to 35% by mass.
  • the amount of residual solvent at the time of peeling is 25% by mass or more, the solvent is easily volatilized at once from the film after peeling. Further, when the amount of residual solvent at the time of peeling is 37% by mass or less, excessive stretching of the film-like material due to peeling can be suppressed.
  • drying/stretching Then, the resulting film-like material is dried. Drying may be performed in one step or in multiple steps. Moreover, you may perform drying, extending
  • the stretching may be carried out depending on the desired optical properties, and is preferably stretched in at least one direction.
  • Biaxial stretching in the transport direction (MD direction) may also be performed.
  • the draw ratio can be, for example, 1.01 to 2 times from the viewpoint of use as a retardation film.
  • the draw ratio is defined as (stretching direction size of the film after stretching)/(stretching direction size of the film before stretching).
  • the in-plane slow axis direction of the film (the direction in which the refractive index is maximized in the plane) is usually the direction in which the draw ratio is maximized.
  • the drying temperature (stretching temperature) during stretching is preferably (Tg-65)°C to (Tg+60)°C, where Tg is the glass transition temperature of the resin, and (Tg-50)°C to (Tg+50)°C. is more preferable.
  • Tg is the glass transition temperature of the resin
  • Tg-50 is the glass transition temperature of the resin
  • Tg+50 is more preferable.
  • the amount of residual solvent in the filmy material at the start of stretching is preferably about the same as the amount of residual solvent in the filmy material at the time of peeling, for example, preferably 20 to 30% by mass, preferably 25 to 30% by mass. % is more preferred.
  • Stretching in the TD direction (width direction) of the film can be performed, for example, by fixing both ends of the film with clips or pins and widening the distance between the clips or pins in the direction of travel (tenter method).
  • the film-like material can be stretched in the MD direction, for example, by a method (roll method) in which a plurality of rolls are provided with different peripheral speeds and the difference in peripheral speeds of the rolls is utilized.
  • the film-like material obtained after stretching it is preferable to further dry (post-dry) the film-like material obtained after stretching.
  • the drying temperature is preferably (Tg-30) to (Tg+30)°C, more preferably (Tg-20) to Tg°C, where Tg is the glass transition temperature of the resin.
  • Tg is the glass transition temperature of the resin.
  • the casting of the second resin composition may be a melt casting method or a solution casting method.
  • a solution casting method for example, in the step 1) above, when the first resin composition is cast by a solution casting method, it is preferable to cast the second resin composition by a solution casting method in this step.
  • the convex portions 12 can be formed by applying a second resin composition (knurling solution) containing a resin and a solvent to both widthwise end portions of the film base portion 11 and then drying it.
  • a second resin composition pressurling solution
  • the resin contained in the second resin composition is of the same type as the resin contained in the dope.
  • the solvent contained in the second resin composition contains at least an organic solvent (good solvent) capable of dissolving the resin.
  • good solvents include chlorinated organic solvents such as methylene chloride; and non-chlorinated organic solvents such as methyl acetate, ethyl acetate, acetone, tetrahydrofuran, cyclopentanone and toluene.
  • chlorinated organic solvents such as methylene chloride
  • non-chlorinated organic solvents such as methyl acetate, ethyl acetate, acetone, tetrahydrofuran, cyclopentanone and toluene.
  • methylene chloride, cyclopentanone, and toluene are preferable from the viewpoint of easily dissolving the cycloolefin resin.
  • the solvent contained in the second resin composition may further contain a poor solvent.
  • the poor solvent the same poor solvent as contained in the dope can be used.
  • the resin concentration of the second resin composition is preferably lower than the resin concentration of the first resin composition, and preferably 50% by mass or less of the resin concentration of the first resin composition.
  • the resin concentration of the second resin composition is preferably more than 2 mass % and 10 mass % or less, more preferably 3 to 7 mass %.
  • Application of the second resin composition can be performed by any method, for example, application by a dispenser or ink jet method, or casting by a die (preferably a reduced pressure die).
  • the temperature of the second resin composition during casting is, for example, 10 to 30°C, preferably room temperature (23°C).
  • Drying of the second resin composition can be performed by any method, such as hot air drying or heat drying using electromagnetic waves (for example, heat drying using an infrared (IR) heater).
  • IR infrared
  • the drying temperature is not particularly limited, but preferably high. Specifically, the drying temperature is preferably 40 to (Tg-20) ° C., and 80 to (Tg-10) ° C., where Tg is the glass transition temperature of the resin contained in the second resin composition. is more preferable. Specifically, it is preferably 40 to 120°C, more preferably 80 to 100°C.
  • the strip-shaped film 10 thus obtained may be wound into a roll along the longitudinal direction.
  • the obtained film base 11 is wound in the longitudinal direction (direction orthogonal to the width direction) of the film 10 using a winder.
  • a film roll can be obtained by winding the strip-shaped film 10 around the winding core.
  • the winding method is not particularly limited, and may be a constant torque method, a constant tension method, a taper tension method, or the like.
  • the winding tension when winding the film base 11 is not particularly limited, but can be about 50 to 170N.
  • the resulting film 10 is used as an optical film for a display device such as a liquid crystal display device or an organic EL display device after removing the portion where the projections 12 are formed.
  • optical films include polarizing plate protective films (including retardation films, brightness enhancement films, etc.), transparent substrate films, and light diffusion films.
  • the film 10 is preferably used as a polarizing plate protective film.
  • FIG. 3A is a plan view of a film according to a modification
  • FIG. 3B is a cross-sectional view taken along line 3B-3B of FIG. 3A.
  • the convex portions 12 may be arranged continuously (in a strip shape) along the longitudinal direction of the film base portion 11 .
  • the convex portion 12 is arranged only on one surface of the film base portion 11 is shown, but it is not limited to this, and may be arranged on both surfaces.
  • an example (solution casting method) in which the convex portion 12 is formed by applying a knurling solution containing a resin and a solvent and then drying the solution is shown. It may also be formed by a method (melt casting method) in which the resin composition is applied and then solidified by cooling.
  • the roll body includes: 1) a step of casting a molten first resin composition and then cooling and solidifying to obtain a strip-shaped film base; After applying the molten second resin composition to both ends in the direction, it is cooled and solidified to form convex portions.
  • Cycloolefin-based resin G7810 manufactured by JSR Corporation
  • COP cycloolefin-based resin
  • Mw 140,000
  • Tg 170°C
  • R972V manufactured by Nippon Aerosil Co., Ltd.
  • the obtained dope was uniformly cast on a stainless steel belt support at a temperature of 31° C. and a width of 2300 mm using an endless belt casting apparatus.
  • the temperature of the stainless steel belt was adjusted to 28° C., and the conveying speed of the stainless belt was 30 m/min.
  • a solution for forming protrusions was applied to both ends in the width direction of the surface of the film, and then dried to form protrusions.
  • the solution for forming protrusions was applied using a SUPER HI JET dispenser manufactured by Musashi Engineering Co., Ltd. to form non-continuous protrusions each having a diameter of 1 mm and a height of 0.5 ⁇ m.
  • the projections are formed in three rows in the longitudinal direction of the film (the Y direction in FIG. 2A), and in the width direction of the film (the X direction in FIG.
  • the film on which the projections were formed was wound around a core by a winding length of 4000 m to obtain a film roll 1.
  • Film rolls 2 to 5 were obtained in the same manner as film roll 1, except that the height of the protrusions was changed as shown in Table 1 by adjusting the resin concentration of the protrusion-forming solution and the head descending speed of the dispenser. rice field.
  • UV curable composition containing the following components was prepared. Dipentaerythritol hexaacrylate (DPHA manufactured by Nippon Kayaku): 100 parts by mass Methyl ethyl ketone: 113 parts by mass Photopolymerization initiator (Irgacure 907, manufactured by Ciba Geiki): 3 parts by mass
  • a film roll 6 was obtained by forming projections in the same manner as in film roll 1, except that the UV-curable composition was applied and then cured by irradiation with ultraviolet rays to form projections.
  • a film roll 7 was obtained by knurling (embossing) with a width of 10 mm and a height of 2 ⁇ m on both ends of the surface of the film in the width direction (regions 1 to 2 mm from the edge of the film).
  • the knurling process was performed by applying pressure to a heated metal ring having an uneven pattern (a shape in which nine unevennesses were arranged in a row in the width direction).
  • the working pressure of the metal ring was 200 kPa, and the temperature was 230.degree.
  • the resulting film base had a thin portion.
  • Both ends of the surface of the film in the width direction were irradiated with a laser beam using a laser marker to form an uneven structure, and a film roll 8 was obtained.
  • the concave-convex structure was formed in a region of 1 to 2 mm from the edge of the film with the shape, size and spacing shown in FIG.
  • the resulting film base had a thin portion.
  • a laser light irradiation device a CO 2 laser light irradiation device (LP-430U manufactured by Panasonic Sunkus Co., Ltd., laser wavelength: 10.6 ⁇ m) was used. Moreover, the irradiation output of the laser beam was set to 90%.
  • a film roll 9 was obtained in the same manner as the film roll 2 except that the width of the protrusions and the haze ratio were changed as shown in Table 1.
  • Film roll 11 was obtained in the same manner as film roll 2 except that the thickness of the film base was changed as shown in Table 1.
  • Film base film base, Ro: 5 nm, Rt : ⁇ 5 nm.
  • the haze value Hz1 of the area a1 where the projections are not arranged and the haze value Hz2 of the area a2 where the projections are arranged ( ⁇ 11m of the measurement area, area 95mm 2 ) of the film are each measured using NDH2000 manufactured by Nippon Denshoku Industries Co., Ltd. and the ratio between them was calculated as the haze ratio Hz2/Hz1.
  • the wound film roll was double-wrapped with a polyethylene sheet, and both ends of the core were supported by a frame (so that the axial direction of the core was horizontal). It was stored for 5 days under conditions of %. After that, the polyethylene sheet was opened, and the tube of the illuminated fluorescent lamp was reflected and projected onto the surface of the film roll, and its distortion or fine disturbance was observed. And it evaluated based on the following references
  • The fluorescent lamp looks straight. ⁇ : There is only one place where the fluorescent lamp looks slightly bent, but there is no practical problem. ⁇ : There are only two places where the fluorescent lamp looks very slightly bent. Practically no problem x: Some parts of the fluorescent lamp are clearly bent and spots appear mottled, which is a problem.
  • the resulting laminate was uniaxially stretched 2.0 times at the free end in the longitudinal direction by in-air auxiliary stretching in an oven at 120°C, and then transported by rolls in a 4% boric acid aqueous solution at 30°C for 30 seconds. It was sequentially immersed in a staining solution (0.2% iodine, 1.0% potassium iodide aqueous solution) at 30° C. for 60 seconds. Next, while conveying the laminate by rolls, it was immersed in a crosslinking solution (aqueous solution containing 3% potassium iodide and 3% boric acid) at 30°C for 30 seconds to carry out a crosslinking treatment.
  • a staining solution (0.2% iodine, 1.0% potassium iodide aqueous solution
  • the free end was uniaxially stretched in the longitudinal direction so that the total draw ratio was 5.5 times.
  • the laminate was immersed in a cleaning solution (4% potassium iodide aqueous solution) at 30° C. to obtain a laminate containing an amorphous polyester film substrate and a PVA-based polarizer with a thickness of 5 ⁇ m.
  • the amorphous polyester film substrate is peeled off from the laminate, the active energy ray-curable adhesive composition is applied to the surface of the peeled PVA resin layer, the film is laminated, and then ultraviolet rays are irradiated. Allow the adhesive to cure.
  • a polarizing plate having a polarizer and the above films as polarizing plate protective films disposed on both sides of the polarizer was obtained.
  • the obtained polarizing plate was used in an 8K liquid crystal display panel, and the unevenness of light leakage during black display was visually evaluated. Specifically, an acrylic pressure-sensitive adhesive sheet having a thickness of 20 ⁇ m was adhered to the film on the side of the polarizing plate having the slow axis perpendicular to the absorption axis of the polarizer using a roll laminator. Together, a polarizing plate with an adhesive layer was obtained.
  • the obtained 8K liquid crystal display device was installed in a dark room, and the entire surface was displayed in black by external input from a personal computer. Further, the edges of the four sides were sealed with black tape so that only the black display portion was more reliably exposed when viewed from the front. In this state, the unevenness of light leakage was observed and evaluated based on the following criteria. ⁇ : Very little unevenness in light leakage ⁇ : Only slightly unevenness in light leakage ⁇ : Some unevenness in light leakage, but no practical problem ⁇ : Much unevenness in light leakage, not suitable for practical use ⁇ If it is more than that, it is considered as the allowable range.
  • Table 1 shows the production conditions and evaluation results of film rolls 1 to 12.
  • film rolls 1 to 3 and 9 to 11 did not generate any foreign matter, and there was no winding failure or projection dropout. As a result, it can be seen that light leakage during black display can also be suppressed.
  • film rolls 7 and 8 have a Hz2/Hz1 higher than 4.5, and foreign matter and winding deformation are likely to occur, so it can be seen that light leakage occurs during black display.
  • the protrusions are formed using plastic deformation at Tg or higher, so fine voids are likely to occur, the voids reduce the strength of the protrusions, and the protrusions are slightly crushed when formed into a roll. According to In addition, when the projections are crushed, minute foreign substances are generated and easily scratched. This is considered to cause light leakage unevenness in the display device.
  • the projections fall off, impairing the knurling function and causing light leakage during black display.
  • a film and a film roll that can suppress blocking and deterioration of the winding shape during storage of a film such as an optical film, and can reduce variations in optical properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Polarising Elements (AREA)

Abstract

The film of the present invention has a film base and protruding parts disposed on both ends of the surface of the film base. The film base and the protruding parts include the same type of thermoplastic resin, and the height of the protruding parts is 0.5-3 μm. The haze ratio Hz2/Hz1 is 1.1-4.5 when the haze value of the region where the protruding parts are not disposed is defined as Hz1, and the haze value of the regions where the protruding parts are disposed is defined as Hz2.

Description

フィルムおよびフィルムロール、フィルムの製造方法Film and film roll, method for manufacturing film
 本発明は、フィルムおよびフィルムロール、フィルムの製造方法に関する。 The present invention relates to a film, a film roll, and a film manufacturing method.
 シクロオレフィン系樹脂や(メタ)アクリル系樹脂などを主成分とする樹脂フィルムは、良好な透明性や寸法安定性を有することから、例えば偏光板保護フィルムなどの光学フィルムとして用いられている。光学フィルムは、取り扱い性や製造効率の観点から、通常、ロール状に巻き取られた状態で保管または輸送される。  Resin films mainly composed of cycloolefin resins and (meth)acrylic resins have good transparency and dimensional stability, so they are used as optical films such as polarizing plate protective films. Optical films are usually stored or transported in a rolled state from the viewpoint of handling and production efficiency.
 このようなロール状に巻き取られた状態で保管または輸送する際に、フィルム同士の貼り付きによる品質故障などを抑制するために、フィルムの幅方向両端部に、ナーリング部(凹凸構造)が形成されることがある。ナーリング部の形成方法としては、エンボスローラによる加熱押圧方法やレーザー照射方法などがある。 Knurling (uneven structure) is formed at both ends of the film in the width direction in order to prevent quality failures caused by the film sticking to each other when it is stored or transported in a rolled state. may be As a method for forming the knurled portion, there are a heat pressing method using an emboss roller, a laser irradiation method, and the like.
 しかしながら、これらの方法で形成される凸部は、潰れたり、欠けたりしやすい。そのため、フィルム同士の貼り付きを抑制できないだけでなく、欠けた部分が異物となってフィルムの表面に傷が付くことがあった。 However, the protrusions formed by these methods are easily crushed or chipped. As a result, not only is it impossible to prevent the films from sticking together, but the chipped portion may become a foreign substance and damage the surface of the film.
 これに対し、フィルムの幅方向両端部に、塗布法でナーリング部を形成する方法も知られている(例えば特許文献1~3参照)。例えば、基材フィルムと、ハードコート層などの光学機能層と、その表面の幅方向両端部に配置されたナーリング部とを有する光学積層体や(例えば特許文献2)、基材と、ハードコート層などの塗膜と、その表面の幅方向両端部に配置された厚肉部とを有するフィルム材(例えば特許文献3)が知られている。基材フィルムや基材(フィルム基部)は、アクリル樹脂フィルムやセルローストリアセテートフィルムであり;ナーリング部または厚肉部(凸部)は、ハードコート層などの光学機能層または塗膜と同様の、紫外線硬化性樹脂を含む樹脂組成物の硬化物である。 On the other hand, there is also known a method of forming knurled portions on both ends of the film in the width direction by a coating method (see Patent Documents 1 to 3, for example). For example, an optical laminate having a substrate film, an optical functional layer such as a hard coat layer, and knurling portions disposed at both ends of the surface in the width direction (for example, Patent Document 2), a substrate, and a hard coat BACKGROUND ART A film material having a coating film such as a layer and thick portions disposed at both ends in the width direction of the surface thereof is known (for example, Patent Document 3). The base film or base (film base) is an acrylic resin film or cellulose triacetate film; It is a cured product of a resin composition containing a curable resin.
特開2012-206312号公報JP 2012-206312 A 特開2017-109350号公報JP 2017-109350 A 特開2014-159137号公報JP 2014-159137 A
 特許文献2および3に示されるような、紫外線硬化性樹脂組成物の硬化物で構成された凸部は、フィルムをロール状に巻き取った際に潰れにくい一方、凸部が硬すぎるだけでなく、硬化時の残留収縮応力を有することなどから、フィルム基部との密着性が低く、剥がれやすい。そのため、ナーリング機能が損なわれやすく、ブロッキングやフィルムロールの巻き形状の低下を生じることがあった。 As shown in Patent Documents 2 and 3, the projections made of a cured product of an ultraviolet curable resin composition are not easily crushed when the film is wound into a roll, but the projections are not only too hard, but also , and has residual shrinkage stress at the time of curing, so that the adhesiveness to the film base is low and it is easy to peel off. Therefore, the knurling function is likely to be impaired, and blocking and deterioration of the wound shape of the film roll may occur.
 ブロッキングやフィルムロールの巻き形状の低下は、例えば光学フィルムにおいては光学特性のバラツキを増大させる原因となりやすく;光学特性のバラツキは、表示装置の黒表示の光漏れの原因となりやすい。特に、8Kなどの高解像度の表示装置などに使用される光学フィルムは、光学特性のバラツキがこれまで以上に少ないことが求められることから、上記のようなブロッキングやフィルムロールの巻き形状の低下を一層抑制できることが望まれている。 Blocking and deterioration of the wound shape of the film roll tend to cause, for example, an increase in the variation in the optical properties of the optical film; the variation in the optical properties tends to cause light leakage during the black display of the display device. In particular, optical films used in high-resolution display devices such as 8K are required to have less variation in optical properties than ever before. Further suppression is desired.
 本発明は、上記事情に鑑みてなされたものであり、例えば光学フィルムなどのフィルムの保管時におけるブロッキングや巻き形状の低下を抑制し、光学特性のバラツキを低減しうるフィルムおよびフィルムロールを提供することを目的とする。 The present invention has been made in view of the above circumstances, and provides a film and a film roll that can suppress blocking and deterioration of the winding shape during storage of a film such as an optical film, and can reduce variations in optical properties. for the purpose.
 上記課題は、以下の構成によって解決することができる。 The above problems can be solved by the following configuration.
 本発明のフィルムは、フィルム基部と、前記フィルム基部の表面の両端部に配置された凸部とを含むフィルムであって、前記フィルム基部および前記凸部は、同じ種類の熱可塑性樹脂を含み、前記凸部の高さは、0.5~3μmであり、前記フィルムの、前記凸部が配置されていない領域のヘイズ値をHz1、前記凸部が配置された領域のヘイズ値をHz2としたとき、ヘイズ比Hz2/Hz1が1.1~4.5である。 The film of the present invention is a film comprising a film base and protrusions disposed on both ends of the surface of the film base, wherein the film base and the protrusions contain the same type of thermoplastic resin, The height of the projections is 0.5 to 3 μm, and the haze value of the region where the projections are not arranged on the film is Hz1, and the haze value of the region where the projections are arranged is Hz2. At that time, the haze ratio Hz2/Hz1 is 1.1 to 4.5.
 本発明のフィルムロールは、本発明のフィルムを含む。 The film roll of the present invention includes the film of the present invention.
 本発明のフィルムの製造方法は、1)第1樹脂組成物を流延して、帯状のフィルム基部を得る工程と、2)前記帯状のフィルム基部の表面の幅方向両端部に第2樹脂組成物を付与して、凸部を形成する工程とを含む。 The method for producing a film of the present invention comprises: 1) a step of casting a first resin composition to obtain a strip-shaped film base; and applying an object to form a convex portion.
 本発明によれば、例えば光学フィルムなどのフィルムの保管時におけるブロッキングや巻き形状の低下を抑制し、光学特性のバラツキを低減しうるフィルムおよびフィルムロールを提供することができる。 According to the present invention, it is possible to provide a film and a film roll that can suppress blocking and deterioration of the winding shape during storage of a film such as an optical film, and can reduce variations in optical properties.
図1Aは、本実施の形態に係るフィルムの平面図であり、図1Bは、図1Aの1B-1B線断面図である。FIG. 1A is a plan view of the film according to this embodiment, and FIG. 1B is a cross-sectional view taken along line 1B-1B of FIG. 1A. 図2Aは、図1Aの点線部分2Aの部分拡大平面図であり、図2Bは、図1Bの凸部の部分拡大断面図である。2A is a partially enlarged plan view of the dotted line portion 2A in FIG. 1A, and FIG. 2B is a partially enlarged cross-sectional view of the convex portion in FIG. 1B. 図3Aは、変形例に係るフィルムの平面図であり、図3Bは、図3Aの3B-3B線断面図である。3A is a plan view of a film according to a modification, and FIG. 3B is a cross-sectional view taken along line 3B-3B of FIG. 3A. 図4は、比較例に係るフィルムの部分拡大平面図である。FIG. 4 is a partially enlarged plan view of a film according to a comparative example.
 本発明者らは、1)フィルム基部および凸部に含まれる熱可塑性樹脂を同じ種類にすることで、凸部の(フィルム基部に対する)密着性を高めつつ、2)凸部の高さを低くし、かつフィルムの、凸部が配置されていない領域のヘイズ値Hz1、凸部が配置された領域のヘイズ値Hz2の比率(Hz2/Hz1)を所定の範囲にすることで、凸部を潰れにくくし、ロール状に巻き取った際の変形を少なくしうることを見出した。 The present inventors have found that 1) by using the same type of thermoplastic resin contained in the film base and the protrusions, the adhesion of the protrusions (to the film base) is increased, and 2) the height of the protrusions is reduced. In addition, by setting the ratio (Hz2/Hz1) of the haze value Hz1 in the region where the convex portions are not arranged and the haze value Hz2 in the region where the convex portions are arranged in a predetermined range, the convex portions are crushed. The inventors have found that it is possible to reduce deformation when wound into a roll.
 この理由は明らかではないが、以下のように推測される。
 上記1)のように、熱可塑性樹脂を含む凸部は硬くなりすぎず、かつフィルム基部および凸部に含まれる熱可塑性樹脂が同じ種類であると、両者の親和性が高いため、強固に密着しやすい。
 また、上記2)のように、凸部高さを適度に低くすることで、例えば、フィルムを巻き取った状態で一定の径方向圧力(凸部が潰れる方向にかかる力)が作用する場合、(凸部の潰れ率が一定であれば)凸部高さが低いほど、凸部が潰れる絶対量は少なくなる。加えて、潰れによる凸部の高さバラツキも少なくしうる。さらに、凸部の高さや凸部の存在密度などの調整により、ヘイズ比Hz2/Hz1を所定の範囲にすることで、(凸部の潰れ量を少なくするだけでなく)凸部を潰れにくくしうる。それにより、凸部の潰れに起因するロール変形を抑制できる。
The reason for this is not clear, but is presumed as follows.
As in 1) above, if the convex portion containing the thermoplastic resin does not become too hard, and if the thermoplastic resin contained in the film base and the convex portion are of the same type, the affinity between the two is high, resulting in strong adhesion. It's easy to do.
In addition, as in 2) above, by appropriately reducing the height of the protrusions, for example, when a constant radial pressure (force applied in the direction in which the protrusions are crushed) is applied while the film is wound, (If the collapse rate of the convex portion is constant), the lower the height of the convex portion, the smaller the absolute amount of crushing of the convex portion. In addition, variations in the height of the protrusions due to crushing can be reduced. Furthermore, by adjusting the height of the projections, the density of the projections, etc., the haze ratio Hz2/Hz1 is set within a predetermined range, thereby not only reducing the amount of collapse of the projections, but also making it difficult for the projections to collapse. sell. Thereby, it is possible to suppress the roll deformation caused by the crushing of the convex portion.
 さらに、凸部は、フィルム本体(フィルム基部)に樹脂組成物を付与して形成されるため、従来のエンボス加工やレーザー照射で形成される場合とは異なり、得られるフィルム基部には、肉薄部や熱劣化した脆い部分も形成されにくい。そのため、凸部に巻き圧が加わっても、肉薄部や熱劣化した脆い部分などを起点として欠けることもないため、異物の発生も抑制しうる。それにより、フィルムの表面に傷が付くことも抑制でき、得られるフィルムの光学特性の低下を一層抑制しうる。 Furthermore, since the projections are formed by applying a resin composition to the film body (film base), unlike the case where they are formed by conventional embossing or laser irradiation, the obtained film base has a thin portion. It is difficult to form a brittle portion that is degraded by heat. Therefore, even if a winding pressure is applied to the convex portion, the thin portion or the thermally deteriorated fragile portion will not be the starting point for chipping, so that the generation of foreign matter can be suppressed. As a result, the surface of the film can be prevented from being scratched, and the deterioration of the optical properties of the obtained film can be further suppressed.
 本発明のフィルムは、帯状のフィルムであってもよいし、(帯状のフィルムを所定の長さに切り出した)枚葉状のフィルムであってもよい。また、帯状のフィルムは、ロール状に巻き取られてフィルムロールとされてもよい。以下の実施の形態では、帯状のフィルムの例で説明する。 The film of the present invention may be a strip-shaped film or a sheet-shaped film (a strip-shaped film cut into a predetermined length). Also, the strip-shaped film may be wound into a roll to form a film roll. In the following embodiments, an example of a strip-shaped film will be described.
 1.フィルム
 図1Aは、本実施の形態に係る帯状のフィルムの平面図であり、図1Bは、図1Aの1B-1B線断面図である。図2Aは、図1Aの点線部分2Aの部分拡大平面図であり、図2Bは、図1Bの凸部の部分拡大断面図である。なお、図1Bでは、見やすくするために、断面のハッチングは省略している。
1. Film FIG. 1A is a plan view of a strip-shaped film according to the present embodiment, and FIG. 1B is a cross-sectional view taken along line 1B-1B of FIG. 1A. 2A is a partially enlarged plan view of the dotted line portion 2A in FIG. 1A, and FIG. 2B is a partially enlarged cross-sectional view of the convex portion in FIG. 1B. In addition, in FIG. 1B, hatching of the cross section is omitted for easy viewing.
 図1AおよびBに示されるように、本実施の形態に係る帯状のフィルム10は、フィルム基部11と、その表面上の幅方向両端部に配置(塗布形成)された凸部12とを含む。 As shown in FIGS. 1A and B, the strip-shaped film 10 according to the present embodiment includes a film base 11 and projections 12 arranged (formed by coating) at both ends in the width direction on the surface.
 1-1.フィルム基部11
 フィルム基部11は、樹脂フィルム、好ましくは光学フィルムとして使用可能な樹脂フィルムでありうる。樹脂フィルムは、熱可塑性樹脂を含む第1樹脂組成物を含む。
1-1. film base 11
The film base 11 can be a resin film, preferably a resin film that can be used as an optical film. The resin film contains a first resin composition containing a thermoplastic resin.
 (熱可塑性樹脂)
 樹脂フィルムに含まれる熱可塑性樹脂は、光学フィルムに適したものであればよく、特に限定されないが、その例には、シクロオレフィン系樹脂、(メタ)アクリル系樹脂、ポリイミド、セルロースエステル、ポリエステル、ポリカーボネートなどが含まれる。中でも、良好な透明性を有する観点では、シクロオレフィン系樹脂、(メタ)アクリル系樹脂、セルロースエステルが好ましく、低い吸湿性(高い寸法安定性)をさらに有する観点では、シクロオレフィン系樹脂および(メタ)アクリル系樹脂がより好ましい。
(Thermoplastic resin)
The thermoplastic resin contained in the resin film is not particularly limited as long as it is suitable for optical films. including polycarbonate. Among them, cycloolefin resins, (meth)acrylic resins, and cellulose esters are preferable from the viewpoint of having good transparency, and from the viewpoint of further having low hygroscopicity (high dimensional stability), cycloolefin resins and (meth) ) Acrylic resin is more preferable.
 (シクロオレフィン系樹脂)
 シクロオレフィン系樹脂は、ノルボルネン系単量体に由来する構造単位を含む重合体である。ノルボルネン系単量体は、下記式(1)で表される。
Figure JPOXMLDOC01-appb-C000001
(Cycloolefin resin)
A cycloolefin-based resin is a polymer containing a structural unit derived from a norbornene-based monomer. A norbornene-based monomer is represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000001
 式(1)のR~Rは、それぞれ水素原子、ハロゲン原子、炭化水素基、または極性基を表す。 R 1 to R 4 in formula (1) each represent a hydrogen atom, a halogen atom, a hydrocarbon group, or a polar group.
 ハロゲン原子の例には、フッ素原子、塩素原子などが含まれる。 Examples of halogen atoms include fluorine atoms and chlorine atoms.
 炭化水素基は、炭素原子数が1~10、好ましくは1~4、より好ましくは1または2の炭化水素基である。炭化水素基の例には、メチル基、エチル基、プロピル基、ブチル基などのアルキル基が含まれる。炭化水素基は、酸素原子、窒素原子、硫黄原子またはケイ素原子を含む連結基(例えばカルボニル基、イミノ基、エーテル結合、シリルエーテル結合、チオエーテル結合など)の2価の連結基をさらに有していてもよい。 The hydrocarbon group is a hydrocarbon group having 1 to 10 carbon atoms, preferably 1 to 4 carbon atoms, more preferably 1 or 2 carbon atoms. Examples of hydrocarbon groups include alkyl groups such as methyl, ethyl, propyl and butyl groups. The hydrocarbon group further has a divalent linking group such as a linking group containing an oxygen atom, a nitrogen atom, a sulfur atom or a silicon atom (e.g., a carbonyl group, an imino group, an ether bond, a silyl ether bond, a thioether bond, etc.). may
 極性基の例には、カルボキシ基、ヒドロキシ基、アルコキシ基、アルコキシカルボニル基、アリロキシカルボニル基、アミノ基、アミド基、およびメチレン基などの連結基(-(CH-、nは1以上の整数)を介してこれらの基が結合した基が含まれる。中でも、アルコキシカルボニル基およびアリールオキシカルボニル基が好ましく、アルコキシカルボニル基がより好ましい。 Examples of polar groups include linking groups such as carboxy groups, hydroxy groups, alkoxy groups, alkoxycarbonyl groups, aryloxycarbonyl groups, amino groups, amido groups, and methylene groups (—(CH 2 ) n —, where n is 1 Groups in which these groups are bonded via the above integers) are included. Among them, an alkoxycarbonyl group and an aryloxycarbonyl group are preferable, and an alkoxycarbonyl group is more preferable.
 中でも、R~Rのうち少なくとも1つは、極性基であることが好ましい。極性基を有するノルボルネン系単量体に由来する構造単位を含むシクロオレフィン系樹脂は、例えば溶液流延法で製膜する際に、溶剤に溶解させやすく、得られるフィルムのガラス転移温度を高めやすい。一方、溶融製膜法では、極性基を有するノルボルネン系単量体に由来する構造単位を含まないシクロオレフィン系樹脂であってよい。 Among them, at least one of R 1 to R 4 is preferably a polar group. A cycloolefin resin containing a structural unit derived from a norbornene monomer having a polar group is easily dissolved in a solvent, for example, when forming a film by a solution casting method, and tends to increase the glass transition temperature of the resulting film. . On the other hand, in the melt film-forming method, a cycloolefin-based resin that does not contain a structural unit derived from a norbornene-based monomer having a polar group may be used.
 また、R~Rのうち、RおよびRの両方(またはRおよびRの両方)は、水素原子であってもよい。 Also, of R 1 to R 4 , both R 1 and R 2 (or both R 3 and R 4 ) may be hydrogen atoms.
 式(1)のpは、0~2の整数を示す。光学フィルムの耐熱性を高める観点では、pは、1~2であることが好ましい。 "p" in formula (1) represents an integer from 0 to 2. From the viewpoint of enhancing the heat resistance of the optical film, p is preferably 1-2.
 式(1)で表されるノルボルネン系単量体のうち、極性基を有するノルボルネン系単量体の例には、以下のものが含まれる。 Among the norbornene-based monomers represented by formula (1), examples of norbornene-based monomers having a polar group include the following.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 極性基を有しないノルボルネン系単量体の例には、以下のものが含まれる。
Figure JPOXMLDOC01-appb-C000003
Examples of norbornene-based monomers without polar groups include:
Figure JPOXMLDOC01-appb-C000003
 ノルボルネン系単量体に由来する構造単位の含有量は、シクロオレフィン系樹脂を構成する全構造単位に対して50~100モル%でありうる。 The content of structural units derived from norbornene-based monomers can be 50 to 100 mol% of the total structural units constituting the cycloolefin-based resin.
 シクロオレフィン系樹脂は、ノルボルネン系単量体に由来する構造単位と共重合可能な他の単量体に由来する構造単位をさらに含んでいてもよい。共重合可能な他の単量体の例には、(上記ノルボルネン系単量体が極性基を有する場合は)極性基を有しないノルボルネン系単量体や、シクロブテン、シクロペンテン、シクロヘプテン、ジシクロペンタジエンなどのノルボルネン骨格を有しないシクロオレフィン系単量体が含まれる。 The cycloolefin-based resin may further contain a structural unit derived from another monomer copolymerizable with the structural unit derived from the norbornene-based monomer. Examples of other copolymerizable monomers include norbornene-based monomers having no polar group (when the norbornene-based monomer has a polar group), cyclobutene, cyclopentene, cycloheptene, and dicyclopentadiene. Cycloolefinic monomers having no norbornene skeleton such as are included.
 シクロオレフィン系樹脂の重量平均分子量Mwは、特に制限されないが、2万~30万であることが好ましく、3万~25万であることがより好ましく、4万~20万であることがさらに好ましい。シクロオレフィン系樹脂のMwが上記範囲にあると、成形加工性を損なうことなく、フィルムの機械的特性を高めうる。 The weight average molecular weight Mw of the cycloolefin resin is not particularly limited, but is preferably 20,000 to 300,000, more preferably 30,000 to 250,000, and even more preferably 40,000 to 200,000. . When the Mw of the cycloolefin resin is within the above range, the mechanical properties of the film can be enhanced without impairing the moldability.
 シクロオレフィン系樹脂のMwは、ゲルパーミエーションクロマトグラフィー(GPC)によりポリスチレン換算にて測定することができる。具体的には、東ソー社製 HLC8220GPC)、カラム(東ソー社製 TSK-GEL G6000HXL-G5000HXL-G5000HXL-G4000HXL-G3000HXL 直列)を用いて測定することができる。 The Mw of the cycloolefin resin can be measured in terms of polystyrene by gel permeation chromatography (GPC). Specifically, it can be measured using Tosoh Corporation HLC8220GPC) and a column (Tosoh Corporation TSK-GEL G6000HXL-G5000HXL-G5000HXL-G4000HXL-G3000HXL series).
 シクロオレフィン系樹脂のガラス転移温度Tgは、通常、110℃以上であることが好ましく、110~350℃であることがより好ましく、120~250℃であることがより好ましい。シクロオレフィン系樹脂のTgが110℃以上であると、十分な耐熱性が得られやすく、350℃以下であると、成形加工時のシクロオレフィン系樹脂の熱劣化を抑制しうる。 The glass transition temperature Tg of the cycloolefin resin is generally preferably 110°C or higher, more preferably 110 to 350°C, and more preferably 120 to 250°C. When the Tg of the cycloolefin-based resin is 110°C or higher, sufficient heat resistance is likely to be obtained, and when it is 350°C or lower, thermal deterioration of the cycloolefin-based resin during molding can be suppressed.
 Tgは、DSC(Differential Scanning Colorimetry:示差走査熱量法)を用いて、JIS K 7121-2012またはASTM D 3418-82に準拠した方法で測定することができる。 Tg can be measured by a method based on JIS K 7121-2012 or ASTM D 3418-82 using DSC (Differential Scanning Colorimetry).
 ((メタ)アクリル系樹脂)
 (メタ)アクリル系樹脂は、メチルメタクリレートに由来する構造単位を含む重合体であることが好ましい。当該重合体は、メチルメタクリレートと共重合可能なモノマーに由来する構造単位をさらに含んでもよい。
((meth)acrylic resin)
The (meth)acrylic resin is preferably a polymer containing structural units derived from methyl methacrylate. The polymer may further comprise structural units derived from monomers copolymerizable with methyl methacrylate.
 メチルメタクリレートと共重合可能な他のモノマーの例には、2-エチルヘキシルメタクリレートなどのメチルメタクリレート以外の炭素原子数1~18のアルキル(メタ)アクリレート;(メタ)アクリル酸などのα,β-不飽和酸;マレイン酸、フマル酸、イタコン酸などの不飽和ジカルボン酸;スチレン、α-メチルスチレンなどのスチレン類;無水マレイン酸;マレイミド、N-フェニルマレイミドなどのマレイミド類;グルタル酸無水物などが含まれる。 Examples of other monomers copolymerizable with methyl methacrylate include alkyl (meth)acrylates having 1 to 18 carbon atoms other than methyl methacrylate, such as 2-ethylhexyl methacrylate; saturated acids; unsaturated dicarboxylic acids such as maleic acid, fumaric acid and itaconic acid; styrenes such as styrene and α-methylstyrene; maleic anhydride; maleimides such as maleimide and N-phenylmaleimide; included.
 メタクリル酸メチル由来の構造単位の含有量は、上記重合体を構成する全構造単位に対して50質量%以上であることが好ましく、70質量%以上であることがより好ましい。 The content of structural units derived from methyl methacrylate is preferably 50% by mass or more, more preferably 70% by mass or more, based on all structural units constituting the polymer.
 (メタ)アクリル系樹脂のMwは、40万~300万であることが好ましく、50万~200万であることがより好ましい。(メタ)アクリル系樹脂のMwが上記範囲であると、フィルムに十分な機械的強度を付与しうる。(メタ)アクリル系樹脂のMwは、前述と同様の方法で測定されうる。 The Mw of the (meth)acrylic resin is preferably 400,000 to 3,000,000, more preferably 500,000 to 2,000,000. When the Mw of the (meth)acrylic resin is within the above range, the film can be imparted with sufficient mechanical strength. The Mw of the (meth)acrylic resin can be measured by the same method as described above.
 (メタ)アクリル系樹脂のTgは、90℃以上であることが好ましく、100~150℃であることがより好ましい。(メタ)アクリル系樹脂のTgが上記範囲内であると、光学フィルムの耐熱性を高めやすい。(メタ)アクリル系樹脂のTgは、前述と同様の方法で測定されうる。 The Tg of the (meth)acrylic resin is preferably 90°C or higher, more preferably 100 to 150°C. When the Tg of the (meth)acrylic resin is within the above range, the heat resistance of the optical film can be easily improved. The Tg of the (meth)acrylic resin can be measured by the same method as described above.
 シクロオレフィン系樹脂または(メタ)アクリル系樹脂の含有量は、光学フィルムに対して50質量%以上であることが好ましく、70質量%以上であることがより好ましい。 The content of the cycloolefin resin or (meth)acrylic resin is preferably 50% by mass or more, more preferably 70% by mass or more, relative to the optical film.
 (他の成分)
 光学フィルムは、必要に応じて他の成分をさらに含んでもよい。他の成分の例には、ゴム粒子、マット剤、酸化防止剤などが含まれる。
(other ingredients)
The optical film may further contain other components as needed. Examples of other ingredients include rubber particles, matting agents, antioxidants, and the like.
 ゴム粒子は、フィルムに可撓性を付与しうる。ゴム粒子は、ゴム状重合体(架橋重合体)を含むグラフト共重合体である。ゴム状重合体の例には、ブタジエン系架橋重合体、(メタ)アクリル系架橋重合体、およびオルガノシロキサン系架橋重合体が含まれる。中でも、メタクリル系樹脂との屈折率差が小さく、光学フィルムの透明性が損なわれにくい観点では、(メタ)アクリル系架橋重合体が好ましく、アクリル系架橋重合体(アクリル系ゴム状重合体)がより好ましい。 The rubber particles can impart flexibility to the film. The rubber particles are graft copolymers containing rubbery polymers (crosslinked polymers). Examples of rubber-like polymers include butadiene crosslinked polymers, (meth)acrylic crosslinked polymers, and organosiloxane crosslinked polymers. Among them, a (meth)acrylic crosslinked polymer is preferable, and an acrylic crosslinked polymer (acrylic rubber-like polymer) is preferable from the viewpoint that the difference in refractive index from that of the methacrylic resin is small and the transparency of the optical film is less likely to be impaired. more preferred.
 マット剤は、光学フィルムの表面に凹凸を形成し、滑り性を付与しうる。マット剤としては、無機粒子や樹脂粒子などでありうる。無機粒子の例には、二酸化ケイ素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウムなどの微粒子が含まれ、好ましくは二酸化ケイ素粒子である。 The matting agent forms unevenness on the surface of the optical film and can impart slipperiness. The matting agent may be inorganic particles, resin particles, or the like. Examples of inorganic particles include fine particles of silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, etc., preferably silicon dioxide particles.
 酸化防止剤は、特に制限されないが、例えばヒンダードフェノール系酸化防止剤などを用いることができる。 Although the antioxidant is not particularly limited, for example, a hindered phenol-based antioxidant can be used.
 [物性]
 フィルム基部11は、エンボス加工やレーザー照射が施されていないため、エンボスローラで加熱押圧されたり、レーザー照射で溶融されたりして形成される肉薄部を有しない。すなわち、フィルム基部11の厚みは、一定である。フィルム基部11の厚みは、特に制限されないが、5~40μmであることが好ましく、10~40μmであることがより好ましく、15~40μmであることがさらに好ましい。
[Physical properties]
Since the film base 11 is not embossed or laser-irradiated, it does not have a thin portion formed by being heated and pressed by an embossing roller or melted by laser irradiation. That is, the thickness of the film base 11 is constant. Although the thickness of the film base 11 is not particularly limited, it is preferably 5 to 40 μm, more preferably 10 to 40 μm, even more preferably 15 to 40 μm.
 フィルム基部11の長さ(巻き長)は、特に制限されないが、2000~15000mであることが好ましく、3000~12000mであることがより好ましい。フィルム基部11の幅は、特に制限されないが、950~3000mmであることが好ましい。 Although the length (winding length) of the film base 11 is not particularly limited, it is preferably 2000 to 15000 m, more preferably 3000 to 12000 m. Although the width of the film base 11 is not particularly limited, it is preferably 950 to 3000 mm.
 (位相差RoおよびRt)
 フィルム基部11は、その用途に応じた位相差RoおよびRtを有しうる。例えば、フィルム基部11の測定波長590nm、23℃55%RHの環境下で測定される面内方向の位相差Roは、40nm≦Ro≦60nmを満たすことが好ましく、厚み方向の位相差Rtは、115nm≦Rt≦145nmを満たすことが好ましい。そのようなフィルム基部11は、例えばVA方式の液晶セルと組み合わされる位相差フィルムとして好適である。また、0nm≦Ro≦10nm、-20nm≦Rt≦20nmであると、IPS方式の液晶セルと組み合わされる位相差フィルムとして好適である。
(Phase difference Ro and Rt)
The film base 11 can have retardation Ro and Rt according to its application. For example, the in-plane retardation Ro measured at a measurement wavelength of 590 nm of the film base 11 at 23° C. and 55% RH preferably satisfies 40 nm≦Ro≦60 nm, and the thickness direction retardation Rt is It is preferable to satisfy 115 nm≦Rt≦145 nm. Such a film base 11 is suitable as a retardation film combined with, for example, a VA liquid crystal cell. Further, when 0 nm≦Ro≦10 nm and −20 nm≦Rt≦20 nm, it is suitable as a retardation film combined with an IPS mode liquid crystal cell.
 RoおよびRtは、それぞれ下記式で定義される。
 式(1):Ro=(nx-ny)×d
 式(2):Rt=((nx+ny)/2-nz)×d
(式中、
 nxは、フィルム基部11の面内遅相軸方向(屈折率が最大となる方向)の屈折率を表し、
 nyは、フィルム基部11の面内遅相軸に直交する方向の屈折率を表し、
 nzは、フィルム基部11の厚み方向の屈折率を表し、
 dは、フィルム基部11の厚み(nm)を表す。)
Ro and Rt are defined by the following formulas, respectively.
Formula (1): Ro = (nx-ny) x d
Formula (2): Rt = ((nx + ny) / 2-nz) x d
(In the formula,
nx represents the refractive index in the in-plane slow axis direction (the direction in which the refractive index is maximized) of the film base 11,
ny represents the refractive index in the direction perpendicular to the in-plane slow axis of the film base 11,
nz represents the refractive index in the thickness direction of the film base 11,
d represents the thickness (nm) of the film base 11 . )
 フィルム基部11の面内遅相軸は、自動複屈折率計アクソスキャン(Axo Scan Mueller Matrix Polarimeter:アクソメトリックス社製)により確認することができる。 The in-plane slow axis of the film base 11 can be confirmed by an automatic birefringence meter AxoScan (Axo Scan Mueller Matrix Polarimeter: manufactured by Axometrics).
 RoおよびRtは、以下の方法で測定することができる。
 1)フィルム基部11を23℃55%RHの環境下で24時間調湿する。このフィルム基部11の平均屈折率をアッベ屈折計で測定し、厚みdを市販のマイクロメーターを用いて測定する。
 2)調湿後のフィルム基部11の、測定波長550nmにおける位相差RoおよびRtを、それぞれ自動複屈折率計アクソスキャン(Axo Scan Mueller Matrix Polarimeter:アクソメトリックス社製)を用いて、23℃55%RHの環境下で測定する。
Ro and Rt can be measured by the following methods.
1) The film base 11 is conditioned for 24 hours in an environment of 23° C. and 55% RH. The average refractive index of this film base 11 is measured with an Abbe refractometer, and the thickness d is measured with a commercially available micrometer.
2) The retardation Ro and Rt of the film base 11 after humidity control at a measurement wavelength of 550 nm were measured at 23°C and 55% using an automatic birefringence meter Axo Scan (Axo Scan Mueller Matrix Polarimeter: manufactured by Axometrics). Measured under RH environment.
 1-2.凸部12
 凸部12は、フィルム基部11の表面の幅方向両端部に付与された樹脂組成物である。具体的には、凸部12は、フィルム基部11の表面の幅方向両端部に、フィルム基部11の長手方向に沿って、非連続的または連続的に配置されている。本実施の形態では、複数の凸部12が、非連続的(島状)に配置されている(図2A参照)。凸部12は、フィルム基部11と一体化していてもよいし、別体であってもよい。
1-2. Projection 12
The protrusions 12 are a resin composition applied to both ends of the surface of the film base 11 in the width direction. Specifically, the protrusions 12 are arranged discontinuously or continuously along the longitudinal direction of the film base 11 at both ends in the width direction of the surface of the film base 11 . In the present embodiment, the plurality of protrusions 12 are arranged discontinuously (island-like) (see FIG. 2A). The convex portion 12 may be integrated with the film base portion 11 or may be a separate member.
 フィルム10の幅方向に沿った、凸部12の頂点(最も高い点)を通る断面において、凸部12の高さtは、0.5~3μmである(図2B参照)。凸部12の高さtが0.5μm以上であると、フィルム10をロール状に巻き取った際に、フィルム基部11同士の貼り付きを十分に抑制しうる。凸部12の高さtが3μm以下であると、フィルム10をロール状に巻き取った際に、凸部12の潰れる絶対量自体が少なく、フィルムロールを変形しにくくしうる。同様の観点から、凸部12の高さtは、1.0~2.0μmであることが好ましい。なお、凸部12の高さtは、フィルム基部11の表面から凸部12の頂点までの高さである。 In a cross section along the width direction of the film 10 and passing through the vertex (highest point) of the protrusions 12, the height t of the protrusions 12 is 0.5 to 3 μm (see FIG. 2B). When the height t of the protrusions 12 is 0.5 μm or more, sticking between the film bases 11 can be sufficiently suppressed when the film 10 is wound into a roll. When the height t of the projections 12 is 3 μm or less, when the film 10 is wound into a roll, the absolute amount of crushing of the projections 12 itself is small, making it difficult to deform the film roll. From the same point of view, the height t of the projections 12 is preferably 1.0 to 2.0 μm. The height t of the projections 12 is the height from the surface of the film base 11 to the apex of the projections 12 .
 凸部12の高さtは、例えばフィルム基部11の厚みの1~30%であることが好ましく、2~10%であることがより好ましい。 The height t of the projections 12 is preferably 1 to 30%, more preferably 2 to 10%, of the thickness of the film base 11, for example.
 フィルム10の幅方向に沿った、凸部12の頂点を通る断面において、凸部12の幅wは、特に制限されないが、500~2000μmであることが好ましい。凸部12の幅wが500μm以上であると、支持面積を大きくしうるため、凸部12が潰れにくく、2000μm以下であると、凸部を溶液塗布にて形成する際には乾燥が進み易く、また、溶融形成するさいには冷却が進み易いため、本発明のフィルムを効率的に生産しやすい。同様の観点から、凸部12の幅wは、700~1500μmであることがより好ましい。凸部12の幅wは、上記断面における凸部12の最大幅である。 In a cross section along the width direction of the film 10 and passing through the vertices of the protrusions 12, the width w of the protrusions 12 is not particularly limited, but is preferably 500 to 2000 μm. When the width w of the protrusions 12 is 500 μm or more, the support area can be increased, so that the protrusions 12 are less likely to be crushed. In addition, the film of the present invention can be efficiently produced because the cooling process proceeds easily during melting and forming. From the same point of view, it is more preferable that the width w of the protrusion 12 is 700 to 1500 μm. The width w of the protrusion 12 is the maximum width of the protrusion 12 in the cross section.
 凸部12の高さtや幅wは、レーザー顕微鏡を用いて測定することができる。レーザー顕微鏡としては、例えばキーエンス社製laser Microscope VK-X1000を用いることができる。測定は、凸部12が配置された領域において、フィルム10の長さ方向(図2AのY方向)に100mm、幅方向(図2AのX方向)に15mmの範囲について、凸部の高さtおよび幅wを測定し、それらの平均値を「凸部の高さtおよび幅w」とする。 The height t and width w of the convex portion 12 can be measured using a laser microscope. As a laser microscope, for example, a laser Microscope VK-X1000 manufactured by Keyence Corporation can be used. In the area where the convex portion 12 is arranged, the height t of the convex portion is measured for a range of 100 mm in the length direction (Y direction in FIG. 2A) and 15 mm in the width direction (X direction in FIG. 2A). and width w are measured, and their average value is defined as "the height t and the width w of the convex portion".
 フィルム10の、凸部12が配置されていない領域a1のヘイズ値をHz1、凸部12が配置された領域a2のヘイズ値をHz2としたとき(図1A参照)、ヘイズ比Hz2/Hz1は、1.1~4.5である。(例えば凸部12の高さや凸部12の存在密度を一定以上とするなどして)Hz2/Hz1を1.1以上とすることで、凸部12をナーリング部として機能させつつ、凸部を潰れにくくしうる。また、(凸部12の高さを一定以下とするなどして)Hz2/Hz1が4.5以下とすることで、凸部の潰れる絶対量をさらに少なくしうる。同様の観点から、Hz2/Hz1は、1.5~3.0であることが好ましい。 When the haze value of the region a1 in which the convex portions 12 are not arranged is Hz1 and the haze value of the region a2 in which the convex portions 12 are arranged is Hz2 (see FIG. 1A), the haze ratio Hz2/Hz1 is 1.1 to 4.5. By setting Hz2/Hz1 to 1.1 or more (for example, by setting the height of the projections 12 and the existence density of the projections 12 to a certain level or more), the projections 12 can function as knurling parts, and the projections can be reduced. It can be made difficult to collapse. Further, by setting Hz2/Hz1 to 4.5 or less (for example, by setting the height of the convex portion 12 to a certain value or less), the absolute amount of crushing of the convex portion can be further reduced. From the same point of view, Hz2/Hz1 is preferably 1.5 to 3.0.
 フィルム基部11のヘイズ比Hz2/Hz1は、フィルム基部11のうち、凸部12が配置された領域a2と凸部12が配置されていない領域a1(測定領域のΦ11m、面積95mm2)について、それぞれヘイズ値を23℃・50%RHの環境下、ヘイズメーター(日本電色工業社製、NDH2000)により、光学フィルムの長手方向に10mmの間隔で10点の測定を行い、その平均値を求め、それらの比から算出することができる。 The haze ratio Hz2/Hz1 of the film base 11 is the haze ratio of the film base 11 for the area a2 where the projections 12 are arranged and the area a1 where the projections 12 are not arranged (Φ11m of the measurement area, area 95mm2). A haze meter (NDH2000, manufactured by Nippon Denshoku Industries Co., Ltd.) was used to measure 10 points at intervals of 10 mm in the longitudinal direction of the optical film under an environment of 23°C and 50% RH. can be calculated from the ratio of
 フィルム基部11のHz2/Hz1は、凸部12の高さや幅、存在密度、ならびに凸部12の組成などによって調整することができる。例えば、凸部12の高さtが高く、凸部12の幅が大きく、凸部12の存在密度が高いほど、フィルム基部11のHz2/Hz1は大きくなりやすい。また、凸部12の高さtが低く、凸部12を構成する熱可塑性樹脂とフィルム基部11を構成する熱可塑性樹脂とが同じ種類であると、フィルム基部11のHz2/Hz1は小さくなりやすい。 The Hz2/Hz1 of the film base 11 can be adjusted by the height and width of the protrusions 12, the existence density, the composition of the protrusions 12, and the like. For example, the higher the height t of the projections 12, the greater the width of the projections 12, and the higher the density of the projections 12, the higher the Hz2/Hz1 of the film base 11. Further, when the height t of the projections 12 is small and the thermoplastic resin forming the projections 12 and the thermoplastic resin forming the film base 11 are of the same type, Hz2/Hz1 of the film base 11 tends to be small. .
 フィルム10の幅方向に沿った、凸部12の頂点を通る断面において、凸部12の形状は、特に制限されず、四角形であってもよいし、三角形であってもよいし、弓形(circular segment)であってもよい。弓形とは、円弧または楕円弧の両端部を直線で結んだ形状であり、その例には、半円形、半楕円形などが含まれる。本実施の形態では、上記断面における凸部12の形状は、弓形である。 The shape of the protrusions 12 in the cross section along the width direction of the film 10 and passing through the vertices of the protrusions 12 is not particularly limited, and may be quadrangular, triangular, or circular. segment). An arch is a shape obtained by connecting both ends of a circular arc or an elliptical arc with straight lines, and examples thereof include semicircular and semielliptical shapes. In this embodiment, the shape of the protrusion 12 in the cross section is arcuate.
 複数の凸部12の中心間距離pは、特に制限されないが、例えば0.5~10mm、好ましくは1~5mmとしうる(図2A参照)。複数の凸部12の中心間距離pが0.5mm以上であると、ロール状に巻き取る際に、フィルム同士の間に含まれるエア量を適切に調整しやすく、10mm以下であると、凸部12の存在密度を適度に高められるため、凸部12が潰れにくくしうる。なお、中心間距離pとは、フィルム10を平面視したときの、隣り合う複数の凸部12の中心(重心)同士の距離のうち最小値をいう。 Although the center-to-center distance p of the plurality of projections 12 is not particularly limited, it can be, for example, 0.5 to 10 mm, preferably 1 to 5 mm (see FIG. 2A). When the center-to-center distance p of the plurality of protrusions 12 is 0.5 mm or more, it is easy to appropriately adjust the amount of air contained between the films when the film is wound into a roll. Since the presence density of the portions 12 can be appropriately increased, the protrusions 12 can be made less likely to collapse. Note that the center-to-center distance p is the minimum value among the distances between the centers (centers of gravity) of the plurality of adjacent projections 12 when the film 10 is viewed from above.
 凸部12の存在密度は、凸部12の幅などにもよるが、例えば2~160個/cmであることが好ましく、10~60個/cmであることがより好ましい。凸部12の密度が上記範囲内であると、ヘイズ比Hz2/Hz1を上記範囲に調整しやすい。 The existence density of the protrusions 12 depends on the width of the protrusions 12 and the like, but is preferably, for example, 2 to 160/cm 2 , more preferably 10 to 60/cm 2 . When the density of the protrusions 12 is within the above range, it is easy to adjust the haze ratio Hz2/Hz1 within the above range.
 凸部12は、熱可塑性樹脂を含む第2樹脂組成物を含む。 The convex portion 12 contains a second resin composition containing a thermoplastic resin.
 凸部12に含まれる熱可塑性樹脂は、フィルム基部11に含まれる熱可塑性樹脂と同じ種類である。例えば、フィルム基部11に含まれる熱可塑性樹脂がシクロオレフィン系樹脂である場合、凸部12に含まれる樹脂もシクロオレフィン系樹脂であることが好ましい。フィルム基部11に含まれる熱可塑性樹脂と、凸部12に含まれる熱可塑性樹脂とが同じ種類であると、凸部12とフィルム基部11との密着性を高めうる。 The thermoplastic resin contained in the projections 12 is of the same type as the thermoplastic resin contained in the film base 11 . For example, if the thermoplastic resin contained in the film base 11 is a cycloolefin resin, the resin contained in the projections 12 is also preferably a cycloolefin resin. If the thermoplastic resin contained in the film base 11 and the thermoplastic resin contained in the projections 12 are of the same type, the adhesion between the projections 12 and the film base 11 can be enhanced.
 「同じ種類の熱可塑性樹脂」とは、主成分モノマー(最も多く含まれる成分)が同じである熱可塑性樹脂をいい、共重合成分モノマーの種類や含有量、樹脂の重量平均分子量(Mw)やガラス転移温度(Tg)などの物性は異なってもよい。 "The same type of thermoplastic resin" refers to thermoplastic resins that have the same main component monomer (the component contained most), the type and content of the copolymer component monomer, the weight average molecular weight (Mw) of the resin, Physical properties such as glass transition temperature (Tg) may differ.
 樹脂の含有量は、特に制限されないが、凸部12を構成する第2樹脂組成物に対して60質量%以上であることが好ましく、70~100質量%であることがより好ましい。 Although the content of the resin is not particularly limited, it is preferably 60% by mass or more, more preferably 70 to 100% by mass, based on the second resin composition that constitutes the projections 12.
 凸部12は、必要に応じてフィルム基部11と同様の成分(例えば微粒子など)をさらに含んでもよい。ただし、フィルム10を巻き取った時に、凸部12とフィルム基部11の裏面との間で滑りにくくし、適度に密着させやすくする観点では、凸部12における微粒子の含有量は、フィルム基部11における微粒子の含有量よりも少ないことが好ましく、微粒子を含まないことがより好ましい。 The convex portion 12 may further contain the same components as the film base portion 11 (for example, fine particles, etc.) as necessary. However, when the film 10 is wound, the content of fine particles in the convex portion 12 is less than It is preferably less than the content of fine particles, and more preferably contains no fine particles.
 2.フィルムの製造方法
 本発明のフィルムは、1)第1樹脂組成物を支持体上に流延して、帯状のフィルム基部11を得る工程と、2)帯状のフィルム基部11の表面の幅方向両端部に、第2樹脂組成物を付与して、凸部を形成する工程とを経て得ることができる。
2. Method for producing film The film of the present invention comprises: 1) a step of casting a first resin composition on a support to obtain a strip-shaped film base 11; applying the second resin composition to the portion to form the convex portion.
 1)フィルム基部11を得る工程について
 第1樹脂組成物を流延して、帯状のフィルム基部11を得る。
1) About the process of obtaining the film base 11 The strip|belt-shaped film base 11 is obtained by casting a 1st resin composition.
 第1樹脂組成物の流延は、溶融流延法で行ってもよいし、溶液流延法で行ってもよい。中でも、高分子量の樹脂を使用できるなどの観点では、第1樹脂組成物の流延は、溶液流延法で行うことが好ましい。 The casting of the first resin composition may be performed by a melt casting method or a solution casting method. Above all, the casting of the first resin composition is preferably carried out by a solution casting method from the standpoint of being able to use a high-molecular-weight resin.
 すなわち、フィルム基部11は、ドープ(第1樹脂組成物)を得る工程(ドープの調製)と、得られたドープを支持体上に流延した後、乾燥および剥離して、膜状物を得る工程(流延)と、得られた膜状物を乾燥および延伸する工程(乾燥・延伸)とを経て得ることができる。 That is, the film base 11 includes a step of obtaining a dope (first resin composition) (preparation of the dope), casting the obtained dope on a support, drying and peeling to obtain a film-like material. It can be obtained through a process (casting) and a process of drying and stretching the resulting film-like material (drying/stretching).
 (ドープの調製)
 樹脂を溶媒に溶解させて、第1樹脂組成物を調製する。
(Preparation of dope)
A resin is dissolved in a solvent to prepare a first resin composition.
 用いられる溶媒は、少なくとも樹脂を溶解させうる有機溶媒(良溶媒)を含む。良溶媒の例には、ジクロロメタンなどの塩素系有機溶媒や;酢酸メチル、酢酸エチル、アセトン、テトラヒドロフランなどの非塩素系有機溶媒が含まれる。中でも、メチレンクロライドが好ましい。 The solvent used contains at least an organic solvent (good solvent) capable of dissolving the resin. Examples of good solvents include chlorinated organic solvents such as dichloromethane; and non-chlorinated organic solvents such as methyl acetate, ethyl acetate, acetone, tetrahydrofuran. Among them, methylene chloride is preferred.
 用いられる溶媒は、貧溶媒をさらに含んでいてもよい。貧溶媒の例には、炭素原子数1~4の直鎖または分岐鎖状の脂肪族アルコールが含まれる。ドープ中のアルコールの比率が高くなると、膜状物がゲル化しやすく、金属支持体からの剥離が容易になりやすい。炭素原子数1~4の直鎖または分岐鎖状の脂肪族アルコールとしては、メタノール、エタノール、n-プロパノール、iso-プロパノール、n-ブタノール、sec-ブタノール、tert-ブタノールを挙げることができる。中でも、安定性や乾燥性の観点から、メタノールおよびエタノールが好ましい。 The solvent used may further contain a poor solvent. Examples of poor solvents include straight or branched chain aliphatic alcohols having 1 to 4 carbon atoms. When the ratio of alcohol in the dope becomes high, the film-like material tends to gel and is easily peeled off from the metal support. Linear or branched aliphatic alcohols having 1 to 4 carbon atoms include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol and tert-butanol. Among them, methanol and ethanol are preferable from the viewpoint of stability and drying property.
 (流延)
 次いで、得られた第1樹脂組成物を、支持体上に流延する。第1樹脂組成物の流延は、流延ダイから吐出させて行うことができる。流延時の第1樹脂組成物の温度は、通常、15~30℃であり、好ましくは室温(23℃)である。
(Casting)
The obtained first resin composition is then cast on a support. Casting of the first resin composition can be performed by discharging from a casting die. The temperature of the first resin composition during casting is usually 15 to 30°C, preferably room temperature (23°C).
 次いで、支持体上に流延された第1樹脂組成物中の溶媒を適度に蒸発させた後(乾燥させた後)、支持体から剥離して、膜状物を得る。 Next, after the solvent in the first resin composition cast on the support is appropriately evaporated (after drying), it is peeled off from the support to obtain a film-like material.
 剥離時の第1樹脂組成物の残留溶媒量は、例えば25質量%以上であることが好ましく、30~37質量%であることがより好ましく、30~35質量%であることがさらに好ましい。剥離時の残留溶媒量が25質量%以上であると、剥離後の膜状物から溶媒を一気に揮発させやすい。また、剥離時の残留溶媒量が37質量%以下であると、剥離による膜状物が伸びすぎるのを抑制できる。 The amount of residual solvent in the first resin composition after peeling is, for example, preferably 25% by mass or more, more preferably 30 to 37% by mass, and even more preferably 30 to 35% by mass. When the amount of residual solvent at the time of peeling is 25% by mass or more, the solvent is easily volatilized at once from the film after peeling. Further, when the amount of residual solvent at the time of peeling is 37% by mass or less, excessive stretching of the film-like material due to peeling can be suppressed.
 剥離時の第1樹脂組成物の残留溶媒量は、下記式で定義される。以下においても同様である。
 残留溶媒量(質量%)=(第1樹脂組成物の加熱処理前質量-第1樹脂組成物の加熱処理後質量)/第1樹脂組成物の加熱処理後質量×100
 なお、残留溶媒量を測定する際の加熱処理とは、140℃15分の加熱処理をいう。
The residual solvent amount of the first resin composition at the time of peeling is defined by the following formula. The same applies to the following.
Residual solvent amount (mass%) = (mass of first resin composition before heat treatment - mass of first resin composition after heat treatment)/mass of first resin composition after heat treatment x 100
Note that the heat treatment for measuring the amount of residual solvent means heat treatment at 140° C. for 15 minutes.
 (乾燥・延伸)
 そして、得られた膜状物を乾燥させる。乾燥は、一段階で行ってもよいし、多段階で行ってもよい。また、乾燥は、必要に応じて延伸しながら行ってもよい。
(drying/stretching)
Then, the resulting film-like material is dried. Drying may be performed in one step or in multiple steps. Moreover, you may perform drying, extending|stretching as needed.
 延伸は、求められる光学特性に応じて行えばよく、少なくとも一方の方向に延伸することが好ましく、互いに直交する二方向に延伸(例えば、膜状物の幅方向(TD方向)と、それと直交する搬送方向(MD方向)の二軸延伸)してもよい。 The stretching may be carried out depending on the desired optical properties, and is preferably stretched in at least one direction. Biaxial stretching in the transport direction (MD direction) may also be performed.
 延伸倍率は、例えば位相差フィルムとして用いる観点では、1.01~2倍とすることができる。延伸倍率は、(延伸後のフィルムの延伸方向大きさ)/(延伸前のフィルムの延伸方向大きさ)として定義される。なお、二軸延伸を行う場合は、TD方向とMD方向のそれぞれについて、上記延伸倍率とすることが好ましい。なお、フィルムの面内遅相軸方向(面内において屈折率が最大となる方向)は、通常、延伸倍率が最大となる方向である。 The draw ratio can be, for example, 1.01 to 2 times from the viewpoint of use as a retardation film. The draw ratio is defined as (stretching direction size of the film after stretching)/(stretching direction size of the film before stretching). In addition, when biaxially stretching, it is preferable to set it as the said draw ratio about each of TD direction and MD direction. The in-plane slow axis direction of the film (the direction in which the refractive index is maximized in the plane) is usually the direction in which the draw ratio is maximized.
 延伸時の乾燥温度(延伸温度)は、樹脂のガラス転移温度をTgとしたとき、(Tg-65)℃~(Tg+60)℃であることが好ましく、(Tg-50)℃~(Tg+50)℃であることがより好ましい。延伸温度が一定以上であると、溶媒を適度に揮発させやすいため、延伸張力を適切な範囲に調整しやすく、一定以下であると、溶媒が揮発しすぎないため、延伸性が損なわれにくい。 The drying temperature (stretching temperature) during stretching is preferably (Tg-65)°C to (Tg+60)°C, where Tg is the glass transition temperature of the resin, and (Tg-50)°C to (Tg+50)°C. is more preferable. When the stretching temperature is above a certain level, the solvent tends to volatilize appropriately, so that the stretching tension can be easily adjusted to an appropriate range.
 延伸開始時の膜状物中の残留溶媒量は、剥離時の膜状物中の残留溶媒量と同程度であることが好ましく、例えば20~30質量%であることが好ましく、25~30質量%であることがより好ましい。 The amount of residual solvent in the filmy material at the start of stretching is preferably about the same as the amount of residual solvent in the filmy material at the time of peeling, for example, preferably 20 to 30% by mass, preferably 25 to 30% by mass. % is more preferred.
 膜状物のTD方向(幅方向)の延伸は、例えば膜状物の両端をクリップやピンで固定し、クリップやピンの間隔を進行方向に広げる方法(テンター法)で行うことができる。膜状物のMD方向の延伸は、例えば複数のロールに周速差をつけ、その間でロール周速差を利用する方法(ロール法)で行うことができる。 Stretching in the TD direction (width direction) of the film can be performed, for example, by fixing both ends of the film with clips or pins and widening the distance between the clips or pins in the direction of travel (tenter method). The film-like material can be stretched in the MD direction, for example, by a method (roll method) in which a plurality of rolls are provided with different peripheral speeds and the difference in peripheral speeds of the rolls is utilized.
 残留溶媒量をより低減させる観点では、延伸後に得られた膜状物をさらに乾燥(後乾燥)させることが好ましい。例えば、延伸後に得られた膜状物を、ロールなどで(一定の張力を付与した状態で)搬送しながらさらに乾燥させることが好ましい。 From the viewpoint of further reducing the amount of residual solvent, it is preferable to further dry (post-dry) the film-like material obtained after stretching. For example, it is preferable to further dry the film-like material obtained after the stretching while transporting it with rolls (with a certain tension applied).
 乾燥温度は、樹脂のガラス転移温度をTgとしたとき、(Tg-30)~(Tg+30)℃であることが好ましく、(Tg-20)~Tg℃であることがより好ましい。乾燥温度が一定以上であると、延伸後の膜状物から溶媒の揮発速度を高めやすいため、乾燥効率を高めやすく、一定以下であると、膜状物が伸びることによる変形などを抑制しやすい。 The drying temperature is preferably (Tg-30) to (Tg+30)°C, more preferably (Tg-20) to Tg°C, where Tg is the glass transition temperature of the resin. When the drying temperature is above a certain level, it is easy to increase the volatilization rate of the solvent from the stretched film, and thus the drying efficiency is likely to be increased. .
 2)凸部を形成する工程について
 次いで、得られたフィルム基部11の表面の幅方向両端部に、第2樹脂組成物を付与(流延)して、凸部を形成する。
2) Step of Forming Protrusions Next, a second resin composition is applied (cast) to both ends of the surface of the obtained film base 11 in the width direction to form protrusions.
 第2樹脂組成物の流延は、溶融流延法であってもよいし、溶液流延法であってもよい。例えば、上記1)の工程において、第1樹脂組成物の流延を溶液流延法で行う場合、本工程において、第2樹脂組成物の流延を溶液流延法で行うことが好ましい。 The casting of the second resin composition may be a melt casting method or a solution casting method. For example, in the step 1) above, when the first resin composition is cast by a solution casting method, it is preferable to cast the second resin composition by a solution casting method in this step.
 すなわち、凸部12は、樹脂と溶媒とを含む第2樹脂組成物(ナーリング溶液)を、フィルム基部11の幅方向両端部に付与した後、乾燥させて、形成することができる。 That is, the convex portions 12 can be formed by applying a second resin composition (knurling solution) containing a resin and a solvent to both widthwise end portions of the film base portion 11 and then drying it.
 (第2樹脂組成物)
 第2樹脂組成物に含まれる樹脂は、ドープに含まれる樹脂と同じ種類である。
(Second resin composition)
The resin contained in the second resin composition is of the same type as the resin contained in the dope.
 第2樹脂組成物に含まれる溶媒は、少なくとも樹脂を溶解させうる有機溶媒(良溶媒)を含む。良溶媒の例には、メチレンクロライドなどの塩素系有機溶媒や;酢酸メチル、酢酸エチル、アセトン、テトラヒドロフラン、シクロペンタノン、トルエンなどの非塩素系有機溶媒が含まれる。中でも、シクロオレフィン系樹脂を溶解させやすい観点では、メチレンクロライド、シクロペンタノン、トルエンが好ましい。 The solvent contained in the second resin composition contains at least an organic solvent (good solvent) capable of dissolving the resin. Examples of good solvents include chlorinated organic solvents such as methylene chloride; and non-chlorinated organic solvents such as methyl acetate, ethyl acetate, acetone, tetrahydrofuran, cyclopentanone and toluene. Among them, methylene chloride, cyclopentanone, and toluene are preferable from the viewpoint of easily dissolving the cycloolefin resin.
 第2樹脂組成物に含まれる溶媒は、貧溶媒をさらに含んでいてもよい。貧溶媒としては、ドープに含まれる貧溶媒と同様のものを使用することができる。 The solvent contained in the second resin composition may further contain a poor solvent. As the poor solvent, the same poor solvent as contained in the dope can be used.
 溶液流延法では、第2樹脂組成物の樹脂濃度は、第1樹脂組成物の樹脂濃度よりも低いことが好ましく、第1樹脂組成物の樹脂濃度の50質量%以下であることが好ましい。具体的には、第2樹脂組成物の樹脂濃度は、2質量%超10質量%以下であることが好ましく、3~7質量%であることがより好ましい。第2樹脂組成物の樹脂濃度を調整することで、凸部の高さを調整することができる。例えば、第2樹脂組成物の樹脂濃度を高くすることで、凸部の高を高くすることができる。 In the solution casting method, the resin concentration of the second resin composition is preferably lower than the resin concentration of the first resin composition, and preferably 50% by mass or less of the resin concentration of the first resin composition. Specifically, the resin concentration of the second resin composition is preferably more than 2 mass % and 10 mass % or less, more preferably 3 to 7 mass %. By adjusting the resin concentration of the second resin composition, the height of the convex portion can be adjusted. For example, by increasing the resin concentration of the second resin composition, the height of the protrusions can be increased.
 (付与)
 第2樹脂組成物の付与は、任意の方法で行うことができ、例えばディスペンサーやインクジェット法による塗布や、ダイ(好ましくは減圧ダイ)による流延などで行うことができる。
(assignment)
Application of the second resin composition can be performed by any method, for example, application by a dispenser or ink jet method, or casting by a die (preferably a reduced pressure die).
 流延時の第2樹脂組成物の温度は、例えば10~30℃であり、好ましくは室温(23℃)である。 The temperature of the second resin composition during casting is, for example, 10 to 30°C, preferably room temperature (23°C).
 (乾燥)
 第2樹脂組成物の乾燥は、任意の方法で行うことができ、例えば熱風乾燥や、電磁波による加熱乾燥(例えば赤外線(IR)ヒーターによる加熱乾燥)などで行うことができる。
(dry)
Drying of the second resin composition can be performed by any method, such as hot air drying or heat drying using electromagnetic waves (for example, heat drying using an infrared (IR) heater).
 乾燥温度は、特に制限されないが、高いことが好ましい。具体的には、乾燥温度は、第2樹脂組成物に含まれる樹脂のガラス転移温度をTgとしたとき、40~(Tg-20)℃で行うことが好ましく、80~(Tg-10)℃で行うことがより好ましい。具体的には、40~120℃であることが好ましく、80~100℃であることがより好ましい。 The drying temperature is not particularly limited, but preferably high. Specifically, the drying temperature is preferably 40 to (Tg-20) ° C., and 80 to (Tg-10) ° C., where Tg is the glass transition temperature of the resin contained in the second resin composition. is more preferable. Specifically, it is preferably 40 to 120°C, more preferably 80 to 100°C.
 得られた帯状のフィルム10は、長手方向に沿ってロール状に巻き取ってもよい。 The strip-shaped film 10 thus obtained may be wound into a roll along the longitudinal direction.
 3)巻き取り工程について
 得られたフィルム基部11を、巻き取り機を用いて、フィルム10の長手方向(幅方向に対して直交する方向)に巻き取る。それにより、帯状のフィルム10を、巻き芯の周りにロール状に巻き取ったフィルムロールを得ることができる。
3) Winding Step The obtained film base 11 is wound in the longitudinal direction (direction orthogonal to the width direction) of the film 10 using a winder. As a result, a film roll can be obtained by winding the strip-shaped film 10 around the winding core.
 巻き取り方法は、特に制限されず、定トルク法、定テンション法、テーパーテンション法などでありうる。 The winding method is not particularly limited, and may be a constant torque method, a constant tension method, a taper tension method, or the like.
 フィルム基部11を巻き取る際の巻き取り張力は、特に制限されないが、50~170N程度としうる。 The winding tension when winding the film base 11 is not particularly limited, but can be about 50 to 170N.
 得られるフィルム10は、使用時には、凸部12の形成部分が除去されて、液晶表示装置や有機EL表示装置などの表示装置の光学フィルムとして用いられる。光学フィルムの例には、偏光板保護フィルム(位相差フィルムや輝度向上フィルムなどを含む)、透明基材フィルム、光拡散フィルムが含まれる。中でも、フィルム10は、偏光板保護フィルムとして用いられることが好ましい。 The resulting film 10 is used as an optical film for a display device such as a liquid crystal display device or an organic EL display device after removing the portion where the projections 12 are formed. Examples of optical films include polarizing plate protective films (including retardation films, brightness enhancement films, etc.), transparent substrate films, and light diffusion films. Among them, the film 10 is preferably used as a polarizing plate protective film.
 [変形例]
 なお、上記実施の形態では、複数の島状の凸部12が、フィルム基部11の長手方向に沿って配置される例を示したが、これに限定されない。
[Modification]
In addition, in the above-described embodiment, an example in which a plurality of island-shaped convex portions 12 are arranged along the longitudinal direction of the film base portion 11 is shown, but the present invention is not limited to this.
 図3Aは、変形例に係るフィルムの平面図であり、図3Bは、図3Aの3B-3B線断面図である。図3AおよびBに示されるように、凸部12は、フィルム基部11の長手方向に沿って連続的に(帯状に)配置されてもよい。 3A is a plan view of a film according to a modification, and FIG. 3B is a cross-sectional view taken along line 3B-3B of FIG. 3A. As shown in FIGS. 3A and 3B, the convex portions 12 may be arranged continuously (in a strip shape) along the longitudinal direction of the film base portion 11 .
 また、上記実施の形態では、凸部12が、フィルム基部11の一方の面のみに配置される例を示したが、これに限定されず、両方の面に配置されてもよい。 Further, in the above-described embodiment, an example in which the convex portion 12 is arranged only on one surface of the film base portion 11 is shown, but it is not limited to this, and may be arranged on both surfaces.
 また、上記実施の形態では、凸部12を、樹脂と溶媒とを含むナーリング溶液を付与した後、乾燥させて形成する例(溶液流延法)を示したが、これに限定されず、溶融した樹脂組成物を付与した後、冷却固化させて形成する方法(溶融流延法)で形成してもよい。 Further, in the above-described embodiment, an example (solution casting method) in which the convex portion 12 is formed by applying a knurling solution containing a resin and a solvent and then drying the solution is shown. It may also be formed by a method (melt casting method) in which the resin composition is applied and then solidified by cooling.
 すなわち、溶融流延法では、ロール体は、1)溶融した第1樹脂組成物を流延した後、冷却固化して、帯状のフィルム基部を得る工程と、2)帯状のフィルム基部11の幅方向両端部に、溶融した第2樹脂組成物を付与した後、冷却固化して、凸部を形成する工程とを経て得ることができる。 That is, in the melt-casting method, the roll body includes: 1) a step of casting a molten first resin composition and then cooling and solidifying to obtain a strip-shaped film base; After applying the molten second resin composition to both ends in the direction, it is cooled and solidified to form convex portions.
 以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。 The present invention will be specifically described below with reference to examples, but the present invention is not limited to these.
 1.フィルムロールの作製
 <フィルムロール1の作製>
 (微粒子分散液の調製)
 下記成分を、ディゾルバーで50分間撹拌混合した後、マントンゴーリンで分散させた。さらに、二次粒子の粒径が所定の大きさとなるように、アトライターにて分散させた後、日本精線(株)製のファインメットNFで濾過し、微粒子分散液を調製した。
  R972V(日本アエロジル社製):4質量%
  ジクロロメタン:48質量%
  エタノール:48質量%
1. Production of film roll <Production of film roll 1>
(Preparation of fine particle dispersion)
After stirring and mixing the following components with a dissolver for 50 minutes, they were dispersed with a Manton Gaulin. Further, the secondary particles were dispersed with an attritor so that the particle size of the secondary particles had a predetermined size, and then filtered with Finemet NF manufactured by Nippon Seisen Co., Ltd. to prepare a fine particle dispersion.
R972V (manufactured by Nippon Aerosil Co., Ltd.): 4% by mass
Dichloromethane: 48% by mass
Ethanol: 48% by mass
 (ドープの調製)
 まず、加圧溶解タンクにジクロロメタンを400kg/minの流量とエタノールを20kg/minの流量で添加した。溶媒の添加開始から3分後に、加圧溶解タンクに、環状ポリオレフィン樹脂を撹拌しながら投入した。次いで、溶媒投入開始後5分後に、微粒子添加液を投入して、これを60℃に加熱し、撹拌しながら、完全に溶解した。加熱温度は室温から5℃/minで昇温し、30分間で溶解した後、3℃/minで降温した。これを安積濾紙(株)製の安積濾紙No.244(濾過精度0.005mm)を使用して濾過流量300L/m・h、濾圧1.0×10Paにて濾過し、以下の組成のドープを調製した。
  シクロオレフィン系樹脂G7810(JSR社製)(下記式で表されるノルボルネン系単量体に由来する構造単位を含むシクロオレフィン系樹脂(COP)、Mw:14万、Tg:170℃):100質量%
  R972V(日本アエロジル社製):0.30質量%
  ジクロロメタン:380質量%
  エタノール:20質量%
Figure JPOXMLDOC01-appb-C000004
(Preparation of dope)
First, dichloromethane was added to a pressurized dissolution tank at a flow rate of 400 kg/min and ethanol at a flow rate of 20 kg/min. Three minutes after starting the addition of the solvent, the cyclic polyolefin resin was charged into the pressurized dissolution tank while stirring. Then, 5 minutes after the start of the addition of the solvent, the fine particle addition liquid was added, heated to 60° C., and completely dissolved with stirring. The heating temperature was raised from room temperature at a rate of 5°C/min, and after dissolution in 30 minutes, the temperature was lowered at a rate of 3°C/min. Azumi Filter Paper No. 1 manufactured by Azumi Filter Paper Co., Ltd. 244 (filtration accuracy of 0.005 mm) at a filtration flow rate of 300 L/m 2 ·h and a filtration pressure of 1.0×10 6 Pa to prepare a dope having the following composition.
Cycloolefin-based resin G7810 (manufactured by JSR Corporation) (cycloolefin-based resin (COP) containing a structural unit derived from a norbornene-based monomer represented by the following formula, Mw: 140,000, Tg: 170°C): 100 mass %
R972V (manufactured by Nippon Aerosil Co., Ltd.): 0.30% by mass
Dichloromethane: 380% by mass
Ethanol: 20% by mass
Figure JPOXMLDOC01-appb-C000004
 (製膜)
 次いで、得られたドープを、無端ベルト流延装置を用いて温度31℃、2300mm幅でステンレスベルト支持体上に均一に流延した。ステンレスベルトの温度は、28℃に調整し、ステンレスベルトの搬送速度は、30m/minとした。ステンレスベルト支持体上で、流延(キャスト)したドープ中の残留溶媒量が30質量%になるまで溶媒を蒸発させた後、剥離張力110N/mでステンレスベルト支持体から剥離し、膜状物を得た。
 得られた膜状物を、搬送ロールの周速差を利用するロール法にて、搬送方向(MD方向)に120℃に加熱しながら1.3倍延伸し、次いでテンター法によりTD方向に130℃に加熱しながら1.65倍延伸した。得られた膜状物を、70℃にて完全に乾燥するまで加熱しながら搬送し、端部をスリットして、厚み35μm、幅2500mmのフィルム(フィルム基部、Ro:50nm、Rt:135nm)を得た。
(film formation)
Then, the obtained dope was uniformly cast on a stainless steel belt support at a temperature of 31° C. and a width of 2300 mm using an endless belt casting apparatus. The temperature of the stainless steel belt was adjusted to 28° C., and the conveying speed of the stainless belt was 30 m/min. After evaporating the solvent on the stainless steel belt support until the residual solvent amount in the cast dope reaches 30% by mass, it is peeled off from the stainless steel belt support with a peel tension of 110 N/m to obtain a film-like material. got
The obtained film-like material was stretched 1.3 times while being heated at 120° C. in the transport direction (MD direction) by a roll method using a peripheral speed difference between transport rolls, and then stretched by a tenter method by 130 in the TD direction. It was stretched 1.65 times while heating to °C. The resulting film-like material was conveyed while being heated at 70° C. until it was completely dried, and the edges were slit to obtain a film having a thickness of 35 μm and a width of 2500 mm (film base, Ro: 50 nm, Rt: 135 nm). Obtained.
 (凸部形成用溶液の調製)
 上記フィルムと同じ熱可塑性樹脂として、シクロオレフィン系樹脂G7810(JSR社製)の濃度が4質量%となるように溶剤に溶解させて、凸部形成用溶液を得た。溶剤は、ジクロロメタンとシクロペンタノンの混合溶剤を用い、その混合比はジクロロメタン/シクロペンタノン=70/30(質量比)とした。
(Preparation of solution for forming protrusions)
As the same thermoplastic resin as the film, cycloolefin resin G7810 (manufactured by JSR Corporation) was dissolved in a solvent to a concentration of 4% by mass to obtain a convexity forming solution. A mixed solvent of dichloromethane and cyclopentanone was used as the solvent, and the mixing ratio was set to dichloromethane/cyclopentanone=70/30 (mass ratio).
 (凸部の形成)
 上記フィルムの表面の幅方向両端部に、凸部形成用溶液を塗布した後、乾燥させて、凸部を形成した。凸部形成用溶液の塗布は、ディスペンサーとして武蔵エンジニアリング社製SUPER HI JETを用いて行い、直径1mm、高さ0.5μmの略丘状(島状)の凸部を非連続に形成した。具体的には、図2Aに示されるように、凸部は、フィルムの長手方向(図2AのY方向)において、3列ずつ形成し、かつフィルムの幅方向(図2AのX方向)において、フィルムの端縁から3mmの位置から幅方向中央部に向かって約5mmの位置までの領域に形成した。また、凸部同士の中心間距離pは、X方向およびY方向ともに2mmとした。また、凸部12の存在密度は、25個/cmとした。
(Formation of convex portion)
A solution for forming protrusions was applied to both ends in the width direction of the surface of the film, and then dried to form protrusions. The solution for forming protrusions was applied using a SUPER HI JET dispenser manufactured by Musashi Engineering Co., Ltd. to form non-continuous protrusions each having a diameter of 1 mm and a height of 0.5 μm. Specifically, as shown in FIG. 2A, the projections are formed in three rows in the longitudinal direction of the film (the Y direction in FIG. 2A), and in the width direction of the film (the X direction in FIG. 2A), It was formed in a region from a position of 3 mm from the edge of the film to a position of about 5 mm toward the central portion in the width direction. Moreover, the center-to-center distance p between the convex portions was set to 2 mm in both the X direction and the Y direction. Also, the existence density of the protrusions 12 was set to 25/cm 2 .
 そして、凸部が形成されたフィルムを、巻長4000m分コアに巻き取り、フィルムロール1を得た。 Then, the film on which the projections were formed was wound around a core by a winding length of 4000 m to obtain a film roll 1.
 <フィルムロール2~5の作製>
 凸部形成用溶液の樹脂濃度とディスペンサーのヘッド降下速度を調整して、凸部の高さを表1に示されるように変更した以外はフィルムロール1と同様にしてフィルムロール2~5を得た。
<Production of film rolls 2 to 5>
Film rolls 2 to 5 were obtained in the same manner as film roll 1, except that the height of the protrusions was changed as shown in Table 1 by adjusting the resin concentration of the protrusion-forming solution and the head descending speed of the dispenser. rice field.
 <フィルムロール6の作製>
 (紫外線硬化性組成物の調製)
 下記成分を含む紫外線硬化性組成物を準備した。
 ジペンタエリスリトールヘキサアクリレート(DPHA 日本化薬製):100質量部
 メチルエチルケトン:113質量部
 光重合開始剤(イルガキュア907、チバガイキー社製):3質量部
<Production of film roll 6>
(Preparation of UV-curable composition)
A UV curable composition containing the following components was prepared.
Dipentaerythritol hexaacrylate (DPHA manufactured by Nippon Kayaku): 100 parts by mass Methyl ethyl ketone: 113 parts by mass Photopolymerization initiator (Irgacure 907, manufactured by Ciba Geiki): 3 parts by mass
 (凸部の形成)
 上記紫外線硬化性組成物を用いて塗布した後、紫外線を照射して硬化させて凸部を形成した以外はフィルムロール1と同様にして凸部を形成し、フィルムロール6を得た。
(Formation of convex portion)
A film roll 6 was obtained by forming projections in the same manner as in film roll 1, except that the UV-curable composition was applied and then cured by irradiation with ultraviolet rays to form projections.
 <フィルムロール7の作製>
 (フィルム基部の作製)
 フィルムロール1と同様の方法で、フィルム基部となるフィルムを得た。
<Production of film roll 7>
(Preparation of film base)
A film serving as a film base was obtained in the same manner as the film roll 1.
 (ナーリング加工(エンボス加工))
 上記フィルムの表面の幅方向両端部(フィルムの端縁から1~2mmの領域)に、幅10mm、高さ2μmのナーリング加工(エンボス加工)を施して、フィルムロール7を得た。ナーリング加工は、加熱した凸凹のパターン(凹凸が幅方向に9個連なった形状)を有する金属リングを加圧して行った。金属リングの加工圧は200kPa、温度は230℃とした。得られたフィルム基部は、肉薄部を有していた。
(Knurling (embossing))
A film roll 7 was obtained by knurling (embossing) with a width of 10 mm and a height of 2 μm on both ends of the surface of the film in the width direction (regions 1 to 2 mm from the edge of the film). The knurling process was performed by applying pressure to a heated metal ring having an uneven pattern (a shape in which nine unevennesses were arranged in a row in the width direction). The working pressure of the metal ring was 200 kPa, and the temperature was 230.degree. The resulting film base had a thin portion.
 <フィルムロール8の作製>
 (フィルム基部の作製)
 フィルムロール1と同様の方法で、フィルム基部となるフィルムを得た。
<Production of film roll 8>
(Preparation of film base)
A film serving as a film base was obtained in the same manner as the film roll 1.
 (ナーリング加工(レーザー照射))
 上記フィルムの表面の幅方向両端部に、レーザーマーカーによりレーザー光を照射して凹凸構造を形成し、フィルムロール8を得た。凹凸構造は、フィルムの端縁から1~2mmの領域に、図4に示される形状、大きさおよび間隔にて形成した。得られたフィルム基部は、肉薄部を有していた。レーザー光の照射装置としては、COレーザー光照射装置(パナソニックサンクス社製LP-430U、レーザー波長10.6μm)を用いた。また、レーザー光の照射出力は、出力90%とした。
(Knurling processing (laser irradiation))
Both ends of the surface of the film in the width direction were irradiated with a laser beam using a laser marker to form an uneven structure, and a film roll 8 was obtained. The concave-convex structure was formed in a region of 1 to 2 mm from the edge of the film with the shape, size and spacing shown in FIG. The resulting film base had a thin portion. As a laser light irradiation device, a CO 2 laser light irradiation device (LP-430U manufactured by Panasonic Sunkus Co., Ltd., laser wavelength: 10.6 μm) was used. Moreover, the irradiation output of the laser beam was set to 90%.
 <フィルムロール9の作製>
 凸部の幅およびヘイズ比を表1に示されるように変更した以外はフィルムロール2と同様にして、フィルムロール9を得た。
<Production of film roll 9>
A film roll 9 was obtained in the same manner as the film roll 2 except that the width of the protrusions and the haze ratio were changed as shown in Table 1.
 <フィルムロール11の作製>
 フィルム基部の厚みを表1に示されるように変更した以外はフィルムロール2と同様にして、フィルムロール11を得た。
<Production of film roll 11>
Film roll 11 was obtained in the same manner as film roll 2 except that the thickness of the film base was changed as shown in Table 1.
 <フィルムロール10および12の作製>
 (フィルム基部の作製)
 シクロオレフィン系樹脂G7810(COP)を(メタ)アクリル系樹脂(Acr)(PMMA、Mw:80万)に変更した以外はフィルムロール1と同様にして、フィルム基部(フィルム基部、Ro:5nm、Rt:-5nm)を得た。
<Production of film rolls 10 and 12>
(Preparation of film base)
Film base (film base, Ro: 5 nm, Rt : −5 nm).
 (凸部形成用溶液の調製)
 凸部形成用溶液のシクロオレフィン系樹脂G7810を上記(メタ)アクリル系樹脂に変更するとともに、凸部の高さが表1に示される値となるように樹脂濃度を調整した以外はフィルムロール1と同様にして、凸部を形成した。
(Preparation of solution for forming protrusions)
Film roll 1 except that the cycloolefin resin G7810 in the convexity forming solution was changed to the above (meth)acrylic resin, and the resin concentration was adjusted so that the height of the convexities was the value shown in Table 1. A convex portion was formed in the same manner as above.
 <評価>
 また、得られたフィルムロール1~12の凸部の形状およびフィルムロールの変形などを、以下の方法で評価した。
<Evaluation>
In addition, the shape of the projections of the obtained film rolls 1 to 12, the deformation of the film roll, and the like were evaluated by the following methods.
 (1)凸部の高さt、ヘイズ比Hz2/Hz1
 フィルムの幅方向断面における、凸部の高さt(最大高さ)および幅w(最大幅)を、レーザー顕微鏡を用いて測定した。レーザー顕微鏡としては、キーエンス社製laser Microscope VK-X1000を用いた。具体的には、凸部が配置された領域において、フィルムの長さ方向に100mm、幅方向に15mmの範囲について、凸部の高さtおよび幅wを測定し、それらの平均値を「凸部の高さtおよび幅w」とした。
(1) Height of convex portion t, haze ratio Hz2/Hz1
The height t (maximum height) and width w (maximum width) of the protrusions in the cross section of the film in the width direction were measured using a laser microscope. A laser microscope VK-X1000 manufactured by Keyence Corporation was used as a laser microscope. Specifically, in the region where the convex portion is arranged, the height t and the width w of the convex portion are measured for a range of 100 mm in the length direction of the film and 15 mm in the width direction, and the average value of them is the “convex part height t and width w".
 フィルムの、凸部が配置されていない領域a1のヘイズ値Hz1、凸部が配置された領域a2のヘイズ値Hz2(測定領域のΦ11m、面積95mm)をそれぞれ日本電色工業社製NDH2000を用いて測定し、それらの比をヘイズ比Hz2/Hz1として算出した。 The haze value Hz1 of the area a1 where the projections are not arranged and the haze value Hz2 of the area a2 where the projections are arranged (Φ11m of the measurement area, area 95mm 2 ) of the film are each measured using NDH2000 manufactured by Nippon Denshoku Industries Co., Ltd. and the ratio between them was calculated as the haze ratio Hz2/Hz1.
 (2)巻き変形
 巻き取ったフィルムロールをポリエチレンシートで2重に包み、(巻き芯の軸方向が水平方向となるように)巻き芯の両端部を架台で支持した状態で、40℃、80%の条件下で5日間保存した。その後、ポリエチレンシートを開け、フィルムロール表面に対し、点灯している蛍光灯の管を反射させて映し、その歪みあるいは細かい乱れを観察した。そして、以下の基準に基づいて評価した。
 ◎:蛍光灯がまっすぐに見える
 〇:蛍光灯が極僅かに曲がって見える所が、1箇所だけあるが実用上問題ない
 △:蛍光灯が極僅かに曲がって見える所が、2箇所だけあるが実用上問題ない
 ×:蛍光灯が明らかに曲がっている箇所や、まだらに映っている箇所があり、問題である
 △以上であれば許容範囲とした。
(2) Winding Deformation The wound film roll was double-wrapped with a polyethylene sheet, and both ends of the core were supported by a frame (so that the axial direction of the core was horizontal). It was stored for 5 days under conditions of %. After that, the polyethylene sheet was opened, and the tube of the illuminated fluorescent lamp was reflected and projected onto the surface of the film roll, and its distortion or fine disturbance was observed. And it evaluated based on the following references|standards.
◎: The fluorescent lamp looks straight. 〇: There is only one place where the fluorescent lamp looks slightly bent, but there is no practical problem. △: There are only two places where the fluorescent lamp looks very slightly bent. Practically no problem x: Some parts of the fluorescent lamp are clearly bent and spots appear mottled, which is a problem.
 (3)層間接触(ブロッキング)
 巻き取ったフィルムロールをポリエチレンシートで2重に包み、(巻き芯の軸方向が水平方向となるように)巻き芯の両端部を架台で支持した状態で、40℃、80%の条件下で5日間保存した。その後、フィルムをロールから繰り出し、重なり合うフィルム同士のブロッキング(貼付き)状態を目視観察した。そして、以下の基準に基づいて評価した。
 ◎:ブロッキングなし
 ○:ブロッキングがあるが、極僅かで実用上問題ない
 △:ブロッキングが僅かにあるが、実用上問題ない
 ×:ブロッキングが、一目見てわかるほどはっきりと存在している
 △以上であれば許容範囲とした。
(3) Interlayer contact (blocking)
The wound film roll is double-wrapped with a polyethylene sheet, and both ends of the core are supported by a frame (so that the axial direction of the core is horizontal), and the temperature is 40°C and 80%. Stored for 5 days. After that, the film was unwound from the roll, and the state of blocking (sticking) between the overlapping films was visually observed. And it evaluated based on the following references|standards.
◎: No blocking ○: There is blocking, but it is very slight and there is no problem in practical use △: There is a little blocking, but there is no problem in practical use ×: Blocking is clearly present so that it can be seen at a glance △ If so, it was considered acceptable.
 (4)凸部の密着性
 巻き取ったフィルムロールに対し、振動試験にて5.8m/sの加速度を幅方向に30分間与えた。振動試験機は、IMV株式会社製TR1000を使用した。その後、ロールからフィルムを繰り出して、巻き芯の残り300~200mの間の100m分のフィルムについて、凸部がフィルム基部から剥離している箇所の有無を目視で確認した。そして、以下の基準に基づいて評価した。
 ◎:剥離なし
 〇:剥離箇所が1~2か所で問題ない
 △:剥離箇所が3~4か所で実用上問題ないレベル
 ×:剥離箇所が5か所以上で実用上問題となるレベル
 △以上であれば許容範囲とした。
(4) Adhesion of Convex Portions In a vibration test, an acceleration of 5.8 m/s 2 was applied in the width direction to the wound film roll for 30 minutes. As a vibration tester, TR1000 manufactured by IMV Corporation was used. After that, the film was unwound from the roll, and 100 m of the film between the remaining 300 and 200 m of the winding core was visually checked for the presence or absence of portions where the projections were peeled off from the film base. And it evaluated based on the following references|standards.
◎: No peeling ○: 1 to 2 peeling locations are no problem △: 3 to 4 peeling locations are no problem in practice ×: 5 or more peeling locations are practically problematic level △ If it is more than that, it is considered as the allowable range.
 (5)微小異物
 巻き取ったフィルムロールに対し、振動試験にて5.8m/sの加速度を幅方向に30分間与えた。振動試験機は、IMV株式会社製TR1000を使用した。その後、ロールからフィルムを繰り出してサンプリングし、ナーリングが形成されている近傍を光学顕微鏡にて観察した。以下の様に判定した。
 ◎:微細な破片がない
 ○:微細な破片が極僅かにあるが、実用上問題ない
 △:微細な破片が僅かにあるが、実用上問題ない
 ×:微細な破片が多く、問題である
 △以上であれば許容範囲とした。
(5) Minute Foreign Matter In a vibration test, an acceleration of 5.8 m/s 2 was applied in the width direction to the wound film roll for 30 minutes. As a vibration tester, TR1000 manufactured by IMV Corporation was used. After that, the film was unwound from the roll and sampled, and the vicinity of the knurling was observed with an optical microscope. It was judged as follows.
◎: There are no fine fragments ○: There are very few fine fragments, but there is no practical problem △: There are a few fine fragments, but there is no practical problem ×: There are many fine fragments, which is a problem △ If it is more than that, it is considered as the allowable range.
 (6)8K液晶表示装置の表示品質
 (偏光板の作製)
 厚み100μmの非晶質ポリエステルフィルムの片面にコロナ処理を施し、当該処理面に、ポリビニルアルコール(重合度4200、ケン化度99.2モル%)およびアセトアセチル変性ポリビニルアルコール(日本合成化学工業「ゴーセファイマーZ200」;重合度1200、アセトアセチル変性度4.6%、ケン化度99.0モル%以上)を9:1の質量比で含む水溶液を、25℃で塗布および乾燥させて、非晶質ポリエステルフィルム基材と、厚み11μmのPVA系樹脂層とを含む積層体を得た。
(6) Display quality of 8K liquid crystal display device (Fabrication of polarizing plate)
One side of an amorphous polyester film with a thickness of 100 μm was subjected to corona treatment, and the treated side was coated with polyvinyl alcohol (degree of polymerization: 4200, degree of saponification: 99.2 mol%) and acetoacetyl-modified polyvinyl alcohol (Nippon Synthetic Chemical Industry “Go Sepheimer Z200"; polymerization degree 1200, acetoacetyl modification degree 4.6%, saponification degree 99.0 mol% or more) at a mass ratio of 9:1 was applied and dried at 25 ° C. A laminate containing a crystalline polyester film substrate and a PVA-based resin layer having a thickness of 11 μm was obtained.
 得られた積層体を、120℃のオーブン内での空中補助延伸により長手方向に2.0倍に自由端一軸延伸した後、ロール搬送しながら、30℃の4%ホウ酸水溶液に30秒間、30℃の染色液(0.2%ヨウ素、1.0%ヨウ化カリウム水溶液)に60秒間、順次浸漬した。次いで、積層体をロール搬送しながら、30℃の架橋液(ヨウ化カリウムを3%、ホウ酸3%水溶液)に30秒間浸漬して架橋処理を行い、70℃のホウ酸4%、ヨウ化カリウム5%水溶液に浸漬しながら、総延伸倍率が5.5倍となるように長手方向に自由端一軸延伸した。その後、積層体を30℃の洗浄液(4%ヨウ化カリウム水溶液)に浸漬して、非晶質ポリエステルフィルム基材と、厚み5μmのPVA系偏光子とを含む積層体を得た。 The resulting laminate was uniaxially stretched 2.0 times at the free end in the longitudinal direction by in-air auxiliary stretching in an oven at 120°C, and then transported by rolls in a 4% boric acid aqueous solution at 30°C for 30 seconds. It was sequentially immersed in a staining solution (0.2% iodine, 1.0% potassium iodide aqueous solution) at 30° C. for 60 seconds. Next, while conveying the laminate by rolls, it was immersed in a crosslinking solution (aqueous solution containing 3% potassium iodide and 3% boric acid) at 30°C for 30 seconds to carry out a crosslinking treatment. While immersed in a 5% potassium aqueous solution, the free end was uniaxially stretched in the longitudinal direction so that the total draw ratio was 5.5 times. After that, the laminate was immersed in a cleaning solution (4% potassium iodide aqueous solution) at 30° C. to obtain a laminate containing an amorphous polyester film substrate and a PVA-based polarizer with a thickness of 5 μm.
 (活性エネルギー線硬化型接着剤組成物の調製)
 活性エネルギー線硬化型接着剤組成物として、以下の組成のものを準備した。
  N-ヒドロキシエチルアクリルアミド:30質量部
  アクリロイルモルホリン:65質量部
  トリプロピレングリコールジアクリレート:5質量部
  2,4-ジエチルチオキサンテン-9-オン(開始剤):1.4質量部
  2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン:1.4質量部
 上記硬化性接着剤組成物を、上記積層体の偏光子の表面に約1μmの厚みで塗布し、その上に、上記フィルムロールから巻き出したフィルムを貼り合わせ、積算光量1000mJ/cmの紫外線を照射して、接着剤を硬化させた。貼り合わせは、当該フィルムの遅相軸と偏光子の吸収軸が互いに直交するように行った。
(Preparation of active energy ray-curable adhesive composition)
An active energy ray-curable adhesive composition having the following composition was prepared.
N-hydroxyethyl acrylamide: 30 parts by mass acryloylmorpholine: 65 parts by mass tripropylene glycol diacrylate: 5 parts by mass 2,4-diethylthioxanthen-9-one (initiator): 1.4 parts by mass 2-methyl-1 -(4-Methylthiophenyl)-2-morpholinopropan-1-one: 1.4 parts by mass The curable adhesive composition is applied to the surface of the polarizer of the laminate to a thickness of about 1 μm, and the A film unwound from the film roll was laminated thereon, and the adhesive was cured by irradiating ultraviolet light with an accumulated light quantity of 1000 mJ/cm 2 . The lamination was performed so that the slow axis of the film and the absorption axis of the polarizer were orthogonal to each other.
 積層体から非晶質ポリエステルフィルム基材を剥離し、当該剥離したPVA樹脂層の表面に、上記活性エネルギー線硬化型接着剤組成物を塗布し、フィルムを貼り合わせた後、紫外線を照射して接着剤を硬化させた。それにより、偏光子と、その両面に配置された偏光板保護フィルムとしての上記フィルムとを有する偏光板を得た。 The amorphous polyester film substrate is peeled off from the laminate, the active energy ray-curable adhesive composition is applied to the surface of the peeled PVA resin layer, the film is laminated, and then ultraviolet rays are irradiated. Allow the adhesive to cure. As a result, a polarizing plate having a polarizer and the above films as polarizing plate protective films disposed on both sides of the polarizer was obtained.
 そして、得られた偏光板を、8Kの液晶表示パネルに使用し、黒表示時の光漏れのムラを目視にて評価した。具体的には、厚み20μmのアクリル系粘着シートを、ロールラミネータを用いて、上記偏光板の面のうち、偏光子の吸収軸に対して遅相軸を直交に貼り合わせた方のフィルムに貼り合わせて、粘着層付き偏光板を得た。 Then, the obtained polarizing plate was used in an 8K liquid crystal display panel, and the unevenness of light leakage during black display was visually evaluated. Specifically, an acrylic pressure-sensitive adhesive sheet having a thickness of 20 μm was adhered to the film on the side of the polarizing plate having the slow axis perpendicular to the absorption axis of the polarizer using a roll laminator. Together, a polarizing plate with an adhesive layer was obtained.
 (液晶表示装置の作製)
 (A)COPフィルムを含む偏光板を使用する場合
 シャープ製60インチ液晶表示装置8T-C60BW1(VA方式)の、液晶セルの両面に貼り合わされていた偏光板を剥がした。上記作製した粘着シート付き偏光板の粘着層を、液晶セルの両面にそれぞれ貼り付けた。なお、上記フィルムの遅相軸と偏光子の吸収軸の向きは、元々貼り合わされていた偏光板における向きと一致するように行った。
(Production of liquid crystal display device)
(A) Using a Polarizing Plate Containing a COP Film The polarizing plates attached to both sides of the liquid crystal cell of a 60-inch liquid crystal display device 8T-C60BW1 (VA system) manufactured by Sharp were peeled off. The pressure-sensitive adhesive layers of the polarizing plate with the pressure-sensitive adhesive sheet prepared above were attached to both sides of the liquid crystal cell. The directions of the slow axis of the film and the absorption axis of the polarizer were made to match the directions of the originally bonded polarizing plate.
 (B)Acrフィルムを含む偏光板を使用する場合
 シャープ製60インチ液晶表示装置8T-C60BW1をLGエレクトロニクス製65インチ液晶表示装置65NANO99JNA(IPS方式)に変更した以外は、上記と同様にして作製した。
(B) When using a polarizing plate containing an Acr film A 60-inch liquid crystal display device 8T-C60BW1 manufactured by Sharp was changed to a 65-inch liquid crystal display device 65NANO99JNA (IPS method) manufactured by LG Electronics, and was produced in the same manner as described above. .
 (黒表示時の光漏れ)
 得られた8Kの液晶表示装置を暗室に設置し、パソコンからの外部入力により、全面黒表示とした。さらに、四辺の縁部は黒テープで目張りし、正面から見た際により確実に黒表示部分のみが露出する状態とした。この状態で、光漏れのムラを観察し、以下の基準に基づいて評価した。
 ◎:光漏れのムラが極僅かにしかない
 〇:光漏れのムラが僅かにしかない
 △:光漏れのムラが少しあるが、実用上問題ない
 ×:光漏れのムラが多く、実用に耐えない
 △以上であれば許容範囲とした。
(Light leakage during black display)
The obtained 8K liquid crystal display device was installed in a dark room, and the entire surface was displayed in black by external input from a personal computer. Further, the edges of the four sides were sealed with black tape so that only the black display portion was more reliably exposed when viewed from the front. In this state, the unevenness of light leakage was observed and evaluated based on the following criteria.
◎: Very little unevenness in light leakage 〇: Only slightly unevenness in light leakage △: Some unevenness in light leakage, but no practical problem ×: Much unevenness in light leakage, not suitable for practical use △ If it is more than that, it is considered as the allowable range.
 フィルムロール1~12の作製条件および評価結果を、表1に示す。 Table 1 shows the production conditions and evaluation results of film rolls 1 to 12.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表1に示されるように、フィルムロール1~3および9~11(本発明)は、いずれも異物発生がなく、巻き故障や凸部の脱落もないことがわかる。それにより、黒表示時の光漏れも抑制できることがわかる。 As shown in Table 1, film rolls 1 to 3 and 9 to 11 (the present invention) did not generate any foreign matter, and there was no winding failure or projection dropout. As a result, it can be seen that light leakage during black display can also be suppressed.
 これに対し、凸部の高さが3μmよりも高いフィルムロール5および12では、凸部の潰れ率が高いため、巻き変形が生じやすいことがわかる。それにより、フィルムの光学特性にばらつきが生じ、黒表示時の光漏れが生じることがわかる。一方、凸部の高さが0.5μmよりも低いフィルムロール4では、フィルム同士の貼りつき(ブロッキング)が生じやすく、それにより、黒表示時の光漏れが生じることがわかる。また、凸部の高さを低くしても、ヘイズ比を高くすることで、層間密着を高度に抑制できることがわかる(フィルムロール9と2の対比)。 On the other hand, in the film rolls 5 and 12, in which the height of the protrusions is higher than 3 μm, the collapse rate of the protrusions is high, so it can be seen that winding deformation is likely to occur. It can be seen that this causes variations in the optical properties of the film, resulting in light leakage during black display. On the other hand, it can be seen that in the case of the film roll 4 in which the height of the protrusions is less than 0.5 μm, the films tend to stick together (blocking), which causes light leakage during black display. Further, it can be seen that even if the height of the convex portion is lowered, the interlayer adhesion can be suppressed to a high degree by increasing the haze ratio (comparison between film rolls 9 and 2).
 また、フィルムロール7および8は、Hz2/Hz1が4.5よりも高く、異物や巻き変形が生じやすいことから、黒表示時の光漏れが生じることがわかる。これは、Tg以上の塑性変形を利用して凸部が形成するため、微細な空隙が発生しやすく、当該空隙により凸部の強度が低下し、ロール体にした時に凸部が僅かに潰れることによると考えられる。そして、凸部が潰れる際に微小異物が発生して傷が付きやすいこと、凸部の潰れにより巻き変形も生じ、微細なシワが発生してフィルムの光学的均一性が損なわれることなどにより、表示装置における光漏れムラとなると考えられる。 In addition, film rolls 7 and 8 have a Hz2/Hz1 higher than 4.5, and foreign matter and winding deformation are likely to occur, so it can be seen that light leakage occurs during black display. This is because the protrusions are formed using plastic deformation at Tg or higher, so fine voids are likely to occur, the voids reduce the strength of the protrusions, and the protrusions are slightly crushed when formed into a roll. According to In addition, when the projections are crushed, minute foreign substances are generated and easily scratched. This is considered to cause light leakage unevenness in the display device.
 また、凸部を構成する樹脂を、フィルム基部を構成する紫外線硬化性樹脂としたフィルムロール6は、凸部が脱落してナーリング機能が損なわれ、黒表示時の光漏れが生じることがわかる。 In addition, it can be seen that in the film roll 6 in which the resin constituting the projections is an ultraviolet curable resin constituting the film base, the projections fall off, impairing the knurling function and causing light leakage during black display.
 本出願は、2021年1月27日出願の特願2021-011192に基づく優先権を主張する。当該出願明細書および図面に記載された内容は、すべて本願明細書に援用される。 This application claims priority based on Japanese Patent Application No. 2021-011192 filed on January 27, 2021. All contents described in the specification and drawings are incorporated herein by reference.
 本発明によれば、例えば光学フィルムなどのフィルムの保管時におけるブロッキングや巻き形状の低下を抑制し、光学特性のバラツキを低減しうるフィルムおよびフィルムロールを提供することができる。 According to the present invention, it is possible to provide a film and a film roll that can suppress blocking and deterioration of the winding shape during storage of a film such as an optical film, and can reduce variations in optical properties.
 10 帯状のフィルム(フィルムロール)
 11 フィルム基部
 12 凸部
10 strip-shaped film (film roll)
11 film base 12 projection

Claims (10)

  1.  フィルム基部と、前記フィルム基部の表面の両端部に配置された凸部とを含むフィルムであって、
     前記フィルム基部および前記凸部は、同じ種類の熱可塑性樹脂を含み、
     前記凸部の高さは、0.5~3μmであり、
     前記フィルムの、前記凸部が配置されていない領域のヘイズ値をHz1、前記凸部が配置された領域のヘイズ値をHz2としたとき、ヘイズ比Hz2/Hz1が1.1~4.5である、
     フィルム。
    A film comprising a film base and projections arranged on both ends of the surface of the film base,
    The film base and the protrusions contain the same type of thermoplastic resin,
    The height of the convex portion is 0.5 to 3 μm,
    The haze ratio Hz2/Hz1 is 1.1 to 4.5, where Hz1 is the haze value of the region where the convex portions are not arranged, and Hz2 is the haze value of the region where the convex portions are arranged. be,
    the film.
  2.  前記フィルム基部は、帯状であり、
     前記凸部は、前記フィルム基部の表面の幅方向両端部に配置されている、
     請求項1に記載のフィルム。
    The film base is strip-shaped,
    The convex portions are arranged at both ends in the width direction of the surface of the film base,
    The film of Claim 1.
  3.  前記フィルム基部は、肉薄部を有さない、
     請求項1または2に記載のフィルム。
    The film base does not have a thin portion,
    3. The film of claim 1 or 2.
  4.  前記凸部は、島状に複数配置されている、
     請求項1~3のいずれか一項に記載のフィルム。
    A plurality of the protrusions are arranged in an island shape,
    The film according to any one of claims 1-3.
  5.  前記フィルム基部と前記凸部は、一体である、
     請求項1~4のいずれか一項に記載のフィルム。
    The film base and the convex portion are integral,
    The film according to any one of claims 1-4.
  6.  前記フィルム基部の厚みは、10~40μmである、
     請求項1~5のいずれか一項に記載のフィルム。
    The thickness of the film base is 10 to 40 μm,
    The film according to any one of claims 1-5.
  7.  前記熱可塑性樹脂は、シクロオレフィン系樹脂または(メタ)アクリル系樹脂である、
     請求項1~6のいずれか一項に記載のフィルム。
    The thermoplastic resin is a cycloolefin resin or (meth)acrylic resin,
    The film according to any one of claims 1-6.
  8.  前記フィルム基部は、光学フィルムである、
     請求項1~7のいずれか一項に記載のフィルム。
    The film base is an optical film,
    The film according to any one of claims 1-7.
  9.  請求項1~8のいずれか一項に記載のフィルムを含む、
     フィルムロール。
    comprising a film according to any one of claims 1 to 8,
    film roll.
  10.  請求項1~9のいずれか一項に記載のフィルムの製造方法であって、
     1)第1樹脂組成物を流延して、帯状のフィルム基部を得る工程と、
     2)前記帯状のフィルム基部の表面の幅方向両端部に第2樹脂組成物を付与して、凸部を形成する工程と、
     を含む、
     フィルムの製造方法。
    A method for producing the film according to any one of claims 1 to 9,
    1) a step of casting the first resin composition to obtain a strip-shaped film base;
    2) a step of applying a second resin composition to both ends in the width direction of the surface of the strip-shaped film base to form protrusions;
    including,
    Film production method.
PCT/JP2021/044613 2021-01-27 2021-12-06 Film, film roll, and method for producing film WO2022163131A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180092002.6A CN116806234A (en) 2021-01-27 2021-12-06 Film, film roll, and film manufacturing method
JP2022578095A JPWO2022163131A1 (en) 2021-01-27 2021-12-06

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021011192 2021-01-27
JP2021-011192 2021-01-27

Publications (1)

Publication Number Publication Date
WO2022163131A1 true WO2022163131A1 (en) 2022-08-04

Family

ID=82653272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/044613 WO2022163131A1 (en) 2021-01-27 2021-12-06 Film, film roll, and method for producing film

Country Status (3)

Country Link
JP (1) JPWO2022163131A1 (en)
CN (1) CN116806234A (en)
WO (1) WO2022163131A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010052329A (en) * 2008-08-29 2010-03-11 Toray Ind Inc White color laminate polyester film for liquid crystal reflection sheet
JP2012206312A (en) * 2011-03-29 2012-10-25 Fujifilm Corp Method for forming knurling, device for forming knurling, method for forming film using solution and polymer film
JP2013124152A (en) * 2011-12-14 2013-06-24 Toray Ind Inc Film winding method, and film manufacturing method using this method
WO2014103988A1 (en) * 2012-12-27 2014-07-03 東レ株式会社 Film for molding
JP6442376B2 (en) * 2015-07-21 2018-12-19 富士フイルム株式会社 Polymer film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010052329A (en) * 2008-08-29 2010-03-11 Toray Ind Inc White color laminate polyester film for liquid crystal reflection sheet
JP2012206312A (en) * 2011-03-29 2012-10-25 Fujifilm Corp Method for forming knurling, device for forming knurling, method for forming film using solution and polymer film
JP2013124152A (en) * 2011-12-14 2013-06-24 Toray Ind Inc Film winding method, and film manufacturing method using this method
WO2014103988A1 (en) * 2012-12-27 2014-07-03 東レ株式会社 Film for molding
JP6442376B2 (en) * 2015-07-21 2018-12-19 富士フイルム株式会社 Polymer film

Also Published As

Publication number Publication date
CN116806234A (en) 2023-09-26
JPWO2022163131A1 (en) 2022-08-04

Similar Documents

Publication Publication Date Title
US20100055402A1 (en) Film, and process for producing the same
JP3840937B2 (en) Uniaxially oriented polyester film, and surface protective film and release film using the same
JP2018077522A (en) Polarizing plate, image display unit, and liquid crystal display
CN110945393B (en) Polarizer and Display Device
JP2017047978A (en) Wound body and method for manufacturing the same
JP2008268668A (en) Film oriented with uniaxial cylindrical symmetry in transverse direction and method for producing the same
JP2025038087A (en) Polarizing plate, polarizing plate with retardation layer, and image display device
US20120076955A1 (en) Optical film and its production method, polarizer and liquid crystal display device
WO2022163131A1 (en) Film, film roll, and method for producing film
JP7699943B2 (en) Polarizing plate with phase difference layer and image display device using the polarizing plate with phase difference layer
WO2023074388A1 (en) Retardation layer-equipped polarizing plate and image display device
WO2022224635A1 (en) Film, film roll, and method for producing film
US20170205549A1 (en) Uniaxially stretched multi-layer laminate film, and optical member comprising same
JP4442191B2 (en) Optical film and manufacturing method thereof
JP4214797B2 (en) Optical film and manufacturing method thereof
JP7654503B2 (en) Polarizing plate with phase difference layer and image display device using the same
WO2023276315A1 (en) Film manufacturing method and film
TW202118624A (en) Multilayer body, method for producing multilayer body and method for producing polarizing plate
JP7592662B2 (en) Polarizing plate with phase difference layer and image display device
JP7388443B2 (en) Laminate, method for manufacturing a laminate, method for manufacturing a polarizing plate
JP7447909B2 (en) Polarizing plate, polarizing plate manufacturing method, and liquid crystal display device
JP2017030209A (en) Wound body and manufacturing method thereof, and wound body storage and manufacturing method thereof
WO2022168834A1 (en) Optical film, polarization plate, and display device
WO2023248894A1 (en) Film roll and method for manufacturing film roll

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21923136

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022578095

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180092002.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21923136

Country of ref document: EP

Kind code of ref document: A1