[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022161352A1 - 电源装置及电子设备 - Google Patents

电源装置及电子设备 Download PDF

Info

Publication number
WO2022161352A1
WO2022161352A1 PCT/CN2022/073794 CN2022073794W WO2022161352A1 WO 2022161352 A1 WO2022161352 A1 WO 2022161352A1 CN 2022073794 W CN2022073794 W CN 2022073794W WO 2022161352 A1 WO2022161352 A1 WO 2022161352A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
capacitor
power conversion
sub
power supply
Prior art date
Application number
PCT/CN2022/073794
Other languages
English (en)
French (fr)
Inventor
李达寰
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2022161352A1 publication Critical patent/WO2022161352A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present application belongs to the field of electronic equipment, and in particular relates to a power supply device and electronic equipment.
  • the power supply device includes a power conversion module capable of converting the input voltage of the power supply device into a working voltage required by the load of the power supply device.
  • a power conversion module capable of converting the input voltage of the power supply device into a working voltage required by the load of the power supply device.
  • the purpose of the embodiments of the present application is to provide a power supply device and an electronic device, which can solve the problem of how to balance the wide input voltage and high power conversion efficiency of the power supply device.
  • an embodiment of the present application provides a power supply device, the power supply device includes a switch control module, a first switch and at least one second switch, a plurality of capacitors, and a plurality of power conversion modules having the same number as the plurality of capacitors, wherein : Multiple capacitors are connected in series; among multiple capacitors, the first capacitor is connected to the input voltage, two adjacent capacitors are grounded through a second switch, and the last capacitor is grounded through the first switch; multiple power conversion modules , each power conversion module is connected in parallel with a capacitor; the switch control module controls the number of power conversion modules in the working state through the first switch and at least one second switch according to the input voltage, and the number of power conversion modules in the working state It is positively related to the input voltage.
  • an embodiment of the present application provides an electronic device, including the power supply device described in the first aspect.
  • a power supply device includes a switch control module, a first switch and at least one second switch, a plurality of capacitors, and a plurality of power conversion modules with the same number as the plurality of capacitors, wherein: the plurality of capacitors are connected in series ; Among multiple capacitors, the first capacitor is connected to the input voltage, two adjacent capacitors are grounded through a second switch, and the last capacitor is grounded through the first switch; among multiple power conversion modules, each power conversion The module is connected in parallel with a capacitor; the switch control module controls the number of power conversion modules in the working state through the first switch and at least one second switch according to the input voltage, and the number of power conversion modules in the working state is positively correlated with the input voltage.
  • the power supply device can control different numbers of power conversion modules to work under different input voltages, and each power conversion module works within a smaller voltage range, so that the power supply device can use low A device with withstand voltage and high efficiency, taking into account the wide input voltage and high power conversion efficiency of the power supply device.
  • FIG. 1 is a schematic structural diagram of a first power supply device according to an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a second power supply device according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a third power supply device according to an embodiment of the present application.
  • 4a is a schematic diagram of voltages of a plurality of operating voltages received by an output interface in a power supply device according to an embodiment of the present application;
  • FIG. 4b is a voltage schematic diagram of the superimposed working voltage output by an output interface in a power supply device according to an embodiment of the present application.
  • 11-switch control module 121-first switch, 122-first sub-switch, 123-second sub-switch, 124-third sub-switch, 131-first capacitor, 132-second capacitor, 133-third capacitor, 134-fourth capacitor, 141-first power conversion module, 142-second power conversion module, 143-third power conversion module, 144-fourth power conversion module, 15-output interface, 16-filter module, 17- Rectifier module, 18-DC voltage transmission, 19-filter capacitor.
  • first, second and the like in the description and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It is to be understood that the data so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and distinguish between “first”, “second”, etc.
  • the objects are usually of one type, and the number of objects is not limited.
  • the first object may be one or more than one.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the associated objects are in an "or” relationship.
  • an embodiment of the present application provides a power supply device and an electronic device.
  • the power supply device includes a switch control module 11 , a first switch 121 and at least one second switch, a plurality of capacitors, and a plurality of power conversion modules having the same number as the plurality of capacitors.
  • the first switch 121 and the second switch may be switches with the same structure, or may be switches with different structures. When the number of at least one second switch is greater than one, the plurality of second switches may be switches with the same structure or switches with different structures.
  • the first switch 121 and the second switch may be triodes, metal oxide semiconductor field effect (MOS) transistors, relays, etc., or may be switch tubes composed of multiple devices.
  • the capacitor may be a filter electrolytic capacitor.
  • the number of the at least one second switch may be one, or two, or more than two.
  • the number of the plurality of capacitors may be the sum of the numbers of the first switch and the at least one second switch.
  • the number of the plurality of power conversion modules is the same as the number of the plurality of capacitors.
  • the number of at least one second switch is greater than two, the power supply device is similar in structure to the power supply device in FIG. 3 , and correspondingly increased on the basis of the structure of the power supply device in FIG. 3
  • the number of second switches, capacitors and power conversion modules are four, the number of the plurality of capacitors included in the power supply device is five, and the number of the plurality of power conversion modules is five.
  • a plurality of capacitors are connected in series.
  • the first capacitor is connected to the input voltage
  • two adjacent capacitors are connected to the ground through a second switch
  • the last capacitor is connected to the ground through the first switch.
  • the first capacitor and the last capacitor may be the first capacitor and the last capacitor determined by ordering a plurality of capacitors connected in series according to a preset direction.
  • each power conversion module is connected in parallel with a capacitor.
  • the plurality of power conversion modules are in one-to-one correspondence with the plurality of capacitors, and each power conversion module is connected in parallel with the corresponding capacitor.
  • the power supply device further includes: a rectification module 17 connected to the switch control module 11 for receiving the input voltage and outputting the rectified rectified voltage to the switch control module 11 .
  • the input end of the rectifier module 17 is connected to the output end of the filter module 16 , and the output end of the rectifier module 17 is connected to the input end of the switch control module 11 .
  • the input voltage connected to the first capacitor may be the rectified voltage passed through the rectification module 17 .
  • the input voltage connected to the first capacitor may be a rectified voltage collected at a high voltage direct current transmission (HVDC).
  • the rectified voltage is obtained by rectifying the input voltage through the rectifying module 17 .
  • HVDC transmission 18 is a high-power long-distance direct current transmission using the advantages of stable direct current with no inductive reactance, no capacitive reactance, and no synchronization problems.
  • the HVDC transmission 18 may be regarded as a preset voltage value collection point for collecting voltage values.
  • each of the power conversion modules is connected to the output interface 15 .
  • Each power conversion module collects the voltage difference across the capacitors connected in parallel, converts the voltage difference, and outputs the converted working voltage to the output interface 15 . If the collected absolute value of the voltage difference across the capacitors connected in parallel is greater than zero, the power conversion module is in a working state, converts the collected voltage difference into a working voltage, and outputs the working voltage to the output interface 15 .
  • the output interface 15 receives the working voltage provided by the power conversion module, and outputs the working voltage to supply power to the load of the power supply device; when the number of the power conversion modules in the working state is When there are more than one, the output interface 15 receives a plurality of working voltages respectively provided by a plurality of power conversion modules in a working state, and superimposes and outputs the multiple working voltages to supply power to the load of the power supply device.
  • FIG. 4a is a schematic diagram of voltages of multiple operating voltages received by an output interface in a power supply device provided by an embodiment of the application
  • FIG. 4b is a superimposed operation of the output interface output in a power supply device provided by an embodiment of the application Voltage schematic for voltage.
  • the first working voltage waveform 402 may represent the voltage waveform of the first working voltage output by the first power conversion module in the working state
  • the second voltage waveform 404 may represent the second working voltage in the working state.
  • the way of superimposing the two voltage waveforms can be as follows: comparing the voltage values corresponding to the two voltage waveforms at each time point, and taking the larger comparison result as the voltage value corresponding to the superimposed output waveform at the time point.
  • the output voltage waveform 406 is obtained after the first working voltage waveform 402 and the second working voltage waveform 404 are superimposed.
  • the output voltage waveform has smaller ripple compared with multiple working voltage waveforms, and is more stable when supplying power to the load.
  • the number of power conversion modules in the working state is two, and the voltage waveforms of the output working voltages are the first working voltages respectively.
  • 402 waveform and the second working voltage waveform 404 when the phase difference between the first working voltage waveform 402 and the second working voltage waveform 404 is ⁇ /2, the ripple of the output waveform 406 obtained by superposition is the smallest, as shown in Figure 4b .
  • the phase difference between the first working voltage waveform 402 and the second working voltage waveform 404 is ⁇ /2
  • the second working voltage waveform 404 is at a minimum value
  • the first working voltage waveform 402 is at a maximum value.
  • a plurality of power conversion modules in a working state are communicatively connected.
  • the communication connection can be as follows, as shown in FIG. 2 , the first power conversion module 141 in the working state initiates a communication handshake to the second power conversion module; when the second power conversion module 142 is in the working state, it responds to the handshake and passes The switching frequency is controlled so that the phase difference corresponding to the second power conversion module 142 and the first power conversion module 141 is ⁇ /2; when the second power conversion module 142 is in a non-working state, it cannot respond to the handshake, and the first power conversion module 141 continues to work.
  • each power conversion module can obtain the voltage waveform corresponding to the voltage difference collected by other power conversion modules, and then control the switch connected to the corresponding capacitor according to the voltage waveform corresponding to the voltage difference collected by other power conversion modules.
  • the switching frequency is so that the phase difference between the voltage waveforms corresponding to the plurality of power conversion modules in the working state is a preset value, such as ⁇ /2.
  • each power conversion module is connected to a filter capacitor; the filter capacitor is grounded.
  • the filter capacitor 19 is used to make the voltage waveform output by the output interface smoother, thereby improving the stability when supplying power to the load of the power supply device.
  • the voltage waveform output by the output interface in the embodiment of the present application may be the output waveform obtained by superimposing the working waveforms output by a plurality of power conversion modules in the working state. Therefore, the output waveform has the advantage of small ripple.
  • the capacitor 19 can also be selected as a capacitor device with a smaller capacitance value, which reduces hardware requirements for device selection and reduces power consumption.
  • the switch control module controls the number of the power conversion modules in the working state through the first switch and the at least one second switch according to the input voltage, and the number of the power conversion modules in the working state is positively correlated with the input voltage.
  • the input voltage may be an AC voltage.
  • the number of capacitors conducting in series increases as the voltage increases.
  • the switch control module 11 may also control the turn-on and turn-off of the first switch 121 and the at least one second switch according to the rectified voltage obtained by rectifying the input voltage, so as to control the number of capacitors that are connected in series, and the capacitors are connected in series.
  • the amount of conduction is positively related to the rectified voltage.
  • the rectified voltages are all non-negative.
  • FIG. 1 and FIG. 2 an embodiment of a power supply device including two capacitors and two power conversion modules is specifically described.
  • the at least one second switch includes a first sub-switch 122; the plurality of capacitors include a first capacitor 131 and a second capacitor 132; the plurality of power conversion modules include a first power conversion module 141 and a second power conversion module 142;
  • the first capacitor 131 and the second capacitor 132 are connected in series; the second capacitor 132 is connected to the input voltage; the first capacitor 131 and the second capacitor 132 are connected to ground through the first sub-switch 122 ; the first capacitor 131 is connected to the ground through the first switch 121 Ground;
  • the first power conversion module 141 is connected in parallel with the first capacitor 131 ; the second power conversion module 142 is connected in parallel with the second capacitor 132 .
  • the number of the at least one second switch is one, that is, the at least one second switch includes the first sub-switch 122
  • the power supply device includes the first switch 121 and the first sub-switch 122 .
  • a sub-switch 122 .
  • the number of the multiple capacitors is two, that is, the multiple capacitors include the first capacitor 131 and the second capacitor 132 .
  • the number of the plurality of power conversion modules is the same as the number of the plurality of capacitors, that is, the plurality of power conversion modules include a first power conversion module 141 and a second power conversion module 142 .
  • the second capacitor 132 is connected to the input voltage.
  • the second capacitor 132 and the first capacitor 131 are two adjacent capacitors.
  • the second capacitor 132 and the first capacitor 131 are grounded through the first sub-switch 122. It can be understood that one end of the second capacitor 132 is connected to the first sub-switch 122, and when the first sub-switch 122 is turned on, it is grounded, and the second sub-switch 122 is connected to the ground.
  • the end of the capacitor 132 connected to the first sub-switch is connected to the first capacitor 131 .
  • the first capacitor 131 is grounded through the first switch 121 .
  • the first power conversion module 141 is connected in parallel with the first capacitor 131 .
  • the first power conversion module 141 collects the voltage difference across the first capacitor 131 , converts the voltage difference, and outputs the first operating voltage to the output interface 15 .
  • the second power conversion module 142 is connected in parallel with the second capacitor 132 .
  • the second power conversion module 142 collects the voltage difference across the second capacitor 132 , converts the voltage difference, and outputs the first operating voltage to the output interface 15 .
  • the second capacitor 132 When the second capacitor 132 is grounded, the absolute value of the voltage difference between the two ends of the second capacitor 132 is greater than zero, and the second power conversion module 142 is in a working state at this time.
  • the second capacitor When the second capacitor is connected to the ground in series with the first capacitor, the absolute value of the voltage difference across the second capacitor 132 is greater than zero, and the absolute value of the voltage difference across the first capacitor 131 is greater than zero.
  • the first power conversion module 141 is connected to The second power conversion modules 142 are all in working state.
  • the switch control module 11 controls the first sub-switch 122 to be turned on and the first switch 121 to be turned off, so that the second capacitor 132 is grounded; when the rectified voltage is detected When the second operating voltage threshold is reached, the switch control module 11 controls the first switch 121 to turn on and controls the first sub-switch 122 to turn off, so that the first capacitor 131 and the second capacitor 132 are connected to ground in series; wherein, the second operating voltage threshold is greater than The first operating voltage threshold; after the rectified voltage reaches the second operating voltage threshold, the power supply device supplies power to the load in a state where the first switch 121 is turned on and the first sub-switch 122 is turned off.
  • the rectified voltage may be a voltage obtained by rectifying an AC voltage.
  • the voltage values of the rectified voltage are all non-negative values.
  • the rectified voltage rises from zero until the peak value of the voltage waveform, drops from the peak value to zero, rises from zero to the peak value again, and drops from the peak value to zero... Constantly repeating the voltage value The process of rising and falling.
  • Both the initial state of the first switch 121 and the first sub-switch 122 may be an off state. Then both the first capacitor 131 and the second capacitor 132 are not grounded, and the power supply device is in a non-working state.
  • the switch control module 11 receives the rectified voltage. When the voltage value of the rectified voltage is less than the first operating voltage threshold v1, the switch control module 11 is in a non-working state and does not perform any control on the first switch 121 or the first sub-switch 122.
  • the first working voltage threshold v1 may be a start-up voltage threshold at which the switch control module 11 starts to work.
  • the switch control module 11 When the switch control module 11 detects that the rectified voltage reaches the first operating voltage threshold v1, the switch control module 11 controls the first sub-switch 122 to turn on and controls the first switch 121 to turn off, so that the second capacitor 132 is grounded.
  • the second power conversion module 142 with the two capacitors 132 connected in parallel is in a working state, collects the voltage difference between the two ends of the second capacitor 132 and outputs the second working voltage to the output interface 15 .
  • the switch control module 11 When the switch control module 11 detects that the rectified voltage reaches the second operating voltage threshold v2, the switch control module 11 controls the first switch 121 to be turned on and the first sub-switch 122 to be turned off, so that the first capacitor 131 and the second capacitor 132 are connected in series ground. At this time, the first power conversion module 141 connected in parallel with the first capacitor 131 and the second power conversion module 142 connected in parallel with the second capacitor 132 are both in the working state, and the voltages across the first capacitor 131 and the second capacitor 132 are collected respectively. difference and output the first working voltage and the second working voltage to the output interface 15 . And the second operating voltage threshold v2 is greater than the first operating voltage threshold v1.
  • the switch control module 11 After the switch control module 11 detects that the rectified voltage reaches the second operating voltage threshold v2, the first switch 121 remains on and the first sub-switch 122 remains off, and the first capacitor 131 and the second capacitor 132 are kept connected to ground in series, that is, The power supply device supplies power to the load when both the first power conversion module 141 and the second power conversion module 142 are in working state.
  • the switch control module 11 only controls the first sub-switch 122 to be turned on and the voltage value reaches the first operating voltage threshold v1 for the first time.
  • the switch control module 11 no longer performs any switch control action.
  • the switch control module 11 no longer performs any switch control action.
  • the power supply device controls the turn-on and turn-off of the first switch 121 and the first sub-switch 122 to control the number of capacitors connected in series to be one, then the second power conversion module 142 connected in parallel with the second capacitor 132 In the working state, it outputs power to the output interface 15 .
  • a second power conversion module can be used to supply power to the load.
  • the first capacitor 131 and the second capacitor 132 in the power supply device are connected to ground in series. Therefore, when the input voltage is high, the power supply device controls the turn-on and turn-off of the first switch 121 and the first sub-switch 122, and the number of control capacitors connected in series is two, and the first capacitor 131 is connected in parallel.
  • the first power conversion module 141 is in a working state and outputs power to the output interface 15
  • the second power conversion module 142 connected in parallel with the second capacitor 132 is in a working state and outputs power to the output interface 15 .
  • the power supply device can effectively improve the power conversion efficiency of the power supply device by using the device with relatively small stress requirements.
  • FIG. 1 and FIG. 3 an embodiment of a power supply device including three capacitors will be described in detail.
  • the at least one second switch includes a second sub-switch 123 and a third sub-switch 124; the plurality of capacitors include a first capacitor 131, a third capacitor 133 and a fourth capacitor 134; and the plurality of power conversion modules include a first power supply
  • the third sub-switch 124 is grounded; between the first capacitor 131 and the third capacitor 133, the second sub-switch 123 is grounded; the first capacitor 131 is grounded through the first switch 121; the first power conversion module 141 is connected in parallel with the first capacitor 131 ; the third power conversion module 143 is connected in parallel with the third capacitor 133 ; the fourth power conversion module 144 is connected in parallel with the fourth capacitor 134 .
  • the number of the at least one second switch is two, that is, the at least one second switch includes a second sub-switch 123 and a third sub-switch 124 , and the power supply device It includes a first switch 121 , a second sub-switch 123 and a third sub-switch 124 .
  • the number of the plurality of capacitors is three, that is, the plurality of capacitors include a first capacitor 131 , a third capacitor 133 and a fourth capacitor 134 .
  • the number of the plurality of power conversion modules is the same as the number of the plurality of capacitors, that is, the plurality of power conversion modules include a first power conversion module 141 , a third power conversion module 143 and a fourth power conversion module 144 .
  • the second capacitor 132 is connected to the input voltage.
  • the second capacitor 132 and the first capacitor 131 are two adjacent capacitors.
  • the second capacitor 132 and the first capacitor 131 are grounded through the first sub-switch 122. It can be understood that one end of the second capacitor 132 is connected to the first sub-switch 122, and when the first sub-switch 122 is turned on, it is grounded, and the second sub-switch 122 is connected to the ground.
  • the end of the capacitor 132 connected to the first sub-switch is connected to the first capacitor 131 .
  • the first capacitor 131 is grounded through the first switch 121 .
  • the fourth capacitor 134 is connected to the input voltage.
  • the fourth capacitor 134 and the third capacitor 133 are two adjacent capacitors. Between the fourth capacitor 134 and the third capacitor 133, the third sub-switch 124 is grounded. It can be understood that one end of the fourth capacitor 134 is connected to the third sub-switch 124, and when the third sub-switch 124 is turned on, the third sub-switch 124 is grounded. One end of the four capacitors 134 connected to the third sub-switch 124 is connected to the third capacitor 133 .
  • the third capacitor 133 and the first capacitor 131 are two adjacent capacitors. Between the third capacitor 133 and the first capacitor 131, the second sub-switch 123 is grounded. It can be understood that one end of the third capacitor 133 is connected to the second sub-switch 123, and when the second sub-switch 123 is turned on, it is grounded. The end of the three capacitors 133 connected to the second sub-switch 123 is connected to the first capacitor 131 .
  • the first capacitor 131 is grounded through the first switch 121 .
  • the switch control module 11 controls the third sub-switch 124 to be turned on, and controls the second sub-switch 123 and the first switch 121 to be turned off, so that the fourth capacitor 134 Ground; when it is detected that the rectified voltage reaches the fourth operating voltage threshold, the switch control module 11 controls the second sub-switch 123 to be turned on, and controls the third sub-switch 124 and the first switch 121 to be disconnected, so that the fourth capacitor 134 and the first switch 121 are disconnected.
  • the three capacitors 133 are connected to ground in series; the fourth operating voltage threshold is greater than the third operating voltage threshold; when it is detected that the rectified voltage reaches the fifth operating voltage threshold, the switch control module 11 controls the first switch 121 to conduct, and controls the second sub-voltage
  • the switch 123 and the third sub-switch 124 are disconnected, so that the fourth capacitor 134, the third capacitor 133 and the first capacitor 131 are connected to ground in series; wherein, the fifth operating voltage threshold is greater than the fourth operating voltage threshold; when the rectified voltage reaches the fifth operating voltage After the voltage threshold, the power supply device supplies power to the load in a state in which the first switch 121 is turned on and the second sub-switch 123 and the third sub-switch 124 are turned off.
  • the rectified voltage may be a voltage obtained by rectifying an AC voltage.
  • the voltage values of the rectified voltage are all non-negative values, and the voltage value of the rectified voltage rises from zero to the peak value of the voltage waveform, drops from the peak value to zero, rises from zero to the peak value again, and drops from the peak value to zero... The process of rising and falling of the voltage value is repeated continuously.
  • the initial state of the first switch 121 , the second sub-switch 123 and the third sub-switch 124 may all be an off state.
  • the first capacitor 131 , the third capacitor 133 and the fourth capacitor 134 are not grounded, and the power supply device is in a non-working state.
  • the switch control module 11 receives the rectified voltage.
  • the switch control module 11 When the voltage value of the rectified voltage is less than the third operating voltage threshold v3, the switch control module 11 is in a non-working state and does not perform any operation on the first switch 121, the second sub-switch 123 or the third sub-switch 124. any control.
  • the third operating voltage threshold v3 may be a start-up voltage threshold at which the switch control module 11 starts to work.
  • the switch control module 11 When the switch control module 11 detects that the rectified voltage reaches the third operating voltage threshold v3, the switch control module 11 controls the third sub-switch 124 to be turned on, and controls the second sub-switch 123 and the first switch 121 to be turned off, so that the fourth capacitor 134 is grounded. At this time, the fourth power conversion module 144 connected in parallel with the fourth capacitor 134 is in a working state, collects the voltage difference across the fourth capacitor 134 and outputs the fourth working voltage to the output interface 15 .
  • the switch control module 11 When the switch control module 11 detects that the rectified voltage reaches the fourth operating voltage threshold v2, the switch control module 11 controls the second sub-switch 123 to be turned on, and controls the third sub-switch 124 and the first switch 121 to be turned off, so that the fourth capacitor 134 is connected to ground in series with the third capacitor 133 .
  • the fourth power conversion module 144 connected in parallel with the fourth capacitor 134 and the third power conversion module 143 connected in parallel with the third capacitor 133 are both in the working state, and the voltages across the fourth capacitor 134 and the third capacitor 133 are collected respectively. difference and output the fourth working voltage and the third working voltage to the output interface 15 .
  • the fourth operating voltage threshold v4 is greater than the third operating voltage threshold v3.
  • the switch control module 11 When the switch control module 11 detects that the rectified voltage reaches the fifth operating voltage threshold v5, the switch control module 11 controls the first switch 121 to be turned on, and controls the second sub-switch 123 and the third sub-switch 124 to be turned off, so that the fourth capacitor 134.
  • the third capacitor 133 and the first capacitor 131 are connected to ground in series.
  • the fourth power conversion module 144 connected in parallel with the fourth capacitor 134, the third power conversion module 143 connected in parallel with the third capacitor 133, and the first power conversion module 141 connected in parallel with the first capacitor 131 are all in the working state , respectively collecting the voltage difference across the fourth capacitor 134 , the third capacitor 133 and the first capacitor 131 and outputting the fourth working voltage, the third working voltage and the first working voltage to the output interface 15 .
  • the fifth operating voltage threshold v5 is greater than the fourth operating voltage threshold v4.
  • the switch control module 11 After the switch control module 11 detects that the rectified voltage reaches the fifth operating voltage threshold v5, the first switch 121 is kept on and the second sub-switch 123 and the third sub-switch 124 are kept off, then the fourth capacitor 134 and the third capacitor 133 is connected to ground in series with the first capacitor 131 , that is, the power supply device supplies power to the load when the first power conversion module 141 , the third power conversion module 143 and the fourth power conversion module 144 are all in working state.
  • the switch control module 11 only controls the third sub-switch 124 to be turned on when the voltage value reaches the third operating voltage threshold v3 for the first time.
  • the switch control action of controlling the second sub-switch 123 and the first switch 121 to be disconnected the switch control module 11 only controls the second sub-switch 123 to be turned on when the voltage value reaches the fourth operating voltage threshold v4 for the first time, and The switch control action of controlling the third sub-switch 124 and the first switch 121 to be disconnected; the switch control module 11 only controls the first switch 121 to turn on and controls the first switch 121 only when the voltage value reaches the fifth operating voltage threshold v5 for the first time.
  • the switch control module 11 When the voltage value reaches the third operating voltage threshold v3 for the second time, the third time...the Nth time, the switch control module 11 no longer performs any switch control action. Similarly, when the voltage value reaches the fourth working voltage threshold v4 or the fifth working voltage threshold v5 for the second, third, ... Nth times, the switch control module 11 no longer performs any switch control action.
  • the peak value of the input voltage is usually fixed, and the peak value of the rectified voltage obtained by rectifying the input voltage is also a fixed value. Therefore, by detecting that the rectified voltage value reaches a certain threshold, the voltage threshold interval corresponding to the rectified voltage can be determined.
  • the voltage threshold interval can be The highest voltage threshold interval that the rectified voltage can reach in the multiple voltage threshold value intervals, to determine the circuit connection mode matching the input voltage, and to control the on or off of each switch, so that the multiple power conversion modules included in the power supply device can It works in a lower voltage range, so the power supply device can use devices with small impedance, small volume, low loss and low withstand voltage, thereby taking into account the requirements of wide input voltage and high power conversion efficiency.
  • both the wide input voltage requirement and the high power conversion efficiency requirement of the power supply device can be taken into account.
  • the reasons are as follows: The aforementioned embodiments of the power supply device including two capacitors are similar, and will not be repeated here.
  • the embodiment of the present application further discloses an electronic device, and the disclosed electronic device includes the power supply device described above.
  • the electronic devices referred to in the embodiments of the present application may be devices such as smart phones, tablet computers, e-book readers, and wearable devices, and the embodiments of the present application do not limit the specific types of electronic devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本申请公开了一种电源装置及电子设备,属于电子技术领域。该电源装置包括开关控制模块、第一开关与至少一个第二开关、多个电容及数量相同的多个电源转换模块:多个电容串联连接;第一个电容接入输入电压,相邻两个电容之间通过一个第二开关接地,最后一个电容通过第一开关接地;各个电源转换模块与一个电容并联连接;开关控制模块根据输入电压,通过第一开关和至少一个第二开关控制处于工作状态的电源转换模块的数量,该数量与输入电压正相关。

Description

电源装置及电子设备
交叉引用
本发明要求在2021年1月28日提交中国专利局、申请号为202110121740.0、发明名称为“电源装置及电子设备”的中国专利申请的优先权,该申请的全部内容通过引用结合在本发明中。
技术领域
本申请属于电子设备领域,具体涉及一种电源装置及电子设备。
背景技术
电源装置包含电源转换模块,该电源转换模块能够将电源装置的输入电压转换为电源装置的负载所需求的工作电压。当电源装置的输入电压较低时和较高时,对电源装置的器件选取要求不同。为适应更大的输入电压的数值范围,需要采用耐压值高的器件,导致电源装置的电能转换效率低下。
在实现本申请过程中,发明人发现现有技术中至少存在如下问题:如何兼顾电源装置的宽输入电压和高电能转换效率。
发明内容
本申请实施例的目的是提供一种电源装置及电子设备,能够解决如何兼顾电源装置的宽输入电压和高电能转换效率的问题。
为了解决上述技术问题,本申请是这样实现的:
第一方面,本申请实施例提供了一种电源装置,电源装置包括开关控制模块、第一开关与至少一个第二开关、多个电容以及与多个电容数量相同的多个电源转换模块,其中:多个电容串联连接;多个电容中,第一个电容接入输入电压,相邻的两个电容之间通过一个第二开关接地,最后一个电容通过第一开关接地;多个电源转换模块中,每个电源转换模块与一个电容并联 连接;开关控制模块根据输入电压,通过第一开关和至少一个第二开关控制处于工作状态的电源转换模块的数量,处于工作状态的电源转换模块的数量与输入电压正相关。
第二方面,本申请实施例提供了一种电子设备,包括如第一方面所述的电源装置。
在本申请实施例中,一种电源装置包括开关控制模块、第一开关与至少一个第二开关、多个电容以及与多个电容数量相同的多个电源转换模块,其中:多个电容串联连接;多个电容中,第一个电容接入输入电压,相邻的两个电容之间通过一个第二开关接地,最后一个电容通过第一开关接地;多个电源转换模块中,每个电源转换模块与一个电容并联连接;开关控制模块根据输入电压,通过第一开关和至少一个第二开关控制处于工作状态的电源转换模块的数量,处于工作状态的电源转换模块的数量与输入电压正相关。通过本申请实施例的技术方案,能够使电源装置在不同的输入电压下控制不同数量的电源转换模块工作,且各个电源转换模块均在一个较小的电压范围内工作,使得电源装置能够采用低耐压值且高效率的器件,同时兼顾电源装置的宽输入电压和高电能转换效率。
附图说明
图1为本申请一实施例提供的第一种电源装置的结构示意图;
图2为本申请一实施例提供的第二种电源装置的结构示意图;
图3为本申请一实施例提供的第三种电源装置的结构示意图;
图4a为本申请一实施例提供的一种电源装置中输出接口接收的多个工作电压的电压示意图;
图4b为本申请一实施例提供的一种电源装置中输出接口输出的叠加后的工作电压的电压示意图。
附图标记:
11-开关控制模块、121-第一开关、122-第一子开关、123-第二子开关、124第三子开关、131-第一电容、132-第二电容、133-第三电容、134-第四电容、141-第一电源转换模块、142-第二电源转换模块、143-第三电源转换模块、144-第四电源转换模块、15-输出接口、16-滤波模块、17-整流模块、18-直流电压输电、19-滤波电容。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”等所区分的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”,一般表示前后关联对象是一种“或”的关系。
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的电源装置进行详细地说明。
参照图1-图4b,本申请实施例提供了一种电源装置及电子设备。电源装置包括开关控制模块11、第一开关121与至少一个第二开关、多个电容以及与多个电容数量相同的多个电源转换模块。
第一开关121与第二开关可以为结构相同的开关,也可以为结构不同的开关。当至少一个第二开关的数量大于一个时,多个第二开关可以为结构相同的开关,也可以为结构不同的开关。第一开关121与第二开关可以为三极管、金属氧化物半导体场效应(MOS)晶体管、继电器等,也可以为由多个器 件组成的开关管。电容可以为滤波电解电容。
至少一个第二开关的数量可以为一个,也可以为两个,还可以大于两个。多个电容的数量可以为第一开关与至少一个第二开关的数量之和。多个电源转换模块的数量与多个电容的数量相同。
在一种可选的电源装置的实施例中,至少一个第二开关的数量大于两个,该电源装置与图3的电源装置的结构类似,且在图3的电源装置的结构基础上对应增加第二开关、电容以及电源转换模块的数量。例如,电源装置包含的至少一个第二开关的数量为四个,且电源装置包含的多个电容的数量为五个,多个电源转换模块的数量为五个。通过增加第二开关、电容以及电源转换模块的数量来扩展如图3所示的电源装置的实施例,能够使电源装置适用于更宽的输入电压范围。
多个电容串联连接。
多个电容中,第一个电容接入输入电压,相邻的两个电容之间通过一个第二开关接地,最后一个电容通过第一开关接地。
其中,第一个电容和最后一个电容可以为通过将串联连接的多个电容按照预设方向排序确定的第一个电容与最后一个电容。
多个电源转换模块中,每个电源转换模块与一个电容并联连接。多个电源转换模块与多个电容一一对应,每个电源转换模块与对应的电容并联连接。
可选地,电源装置还包括:整流模块17,与开关控制模块11连接,用于接收输入电压并将整流后的整流电压输出至开关控制模块11。
参照图2以及图3所示的实施例,整流模块17的输入端与滤波模块16的输出端连接,整流模块17的输出端与开关控制模块11的输入端连接。前述第一个电容接入的输入电压在本实施例中可以为经过整流模块17的整流电压。
参照图2以及图3所示,第一个电容接入的输入电压可以为高压直流输电(HVDC)处采集到的整流电压。该整流电压为输入电压经过整流模块17整流得到的。高压直流输电18,是利用稳定的直流电具有无感抗,容抗也不起 作用,无同步问题等优点而采用的大功率远距离直流输电。本申请实施例中,高压直流输电18可视为一个用于采集电压值的预先设置的电压值采集点。
可选地,所述多个电源转换模块中,每个所述电源转换模块,与输出接口15连接。
每个电源转换模块采集并联连接的电容两端的电压差,对电压差进行转换,输出转换后的工作电压到输出接口15。若采集到的并联连接的电容两端的电压差的绝对值大于零,则该电源转换模块处于工作状态,执行将采集到的电压差转换为工作电压的动作并将工作电压输出到输出接口15。
当处于工作状态的电源转换模块的数量为一个时,输出接口15接收到该电源转换模块提供的工作电压,输出该工作电压为电源装置的负载供电;当处于工作状态的电源转换模块的数量为多个时,输出接口15接收到多个处于工作状态的电源转换模块分别提供的多个工作电压,将多个工作电压叠加并输出,为电源装置的负载供电。
图4a为本申请一实施例提供的一种电源装置中输出接口接收的多个工作电压的电压示意图;图4b为本申请一实施例提供的一种电源装置中输出接口输出的叠加后的工作电压的电压示意图。
参照图4a所示的电压示意图,第一工作电压波形402可以表示处于工作状态的第一个电源转换模块输出的第一工作电压的电压波形,第二电压波形404可以表示处于工作状态的第二个电源转换模块输出的第二工作电压的电压波形。两个电压波形叠加的方式,可以为,比较两个电压波形在各个时间点对应的电压值大小,取比较结果为更大的一方作为叠加后的输出波形在该时间点对应的电压值大小。参照图4b所示,第一工作电压波形402与第二工作电压波形404叠加后得到输出电压波形406。
大于两个电压波形叠加的方式与两个电压波形叠加的方式类似,此处不再赘述。
当处于工作状态的电源转换模块的数量为多个时,输出电压波形与多个工作电压波形相比,波纹更小,为负载供电时更稳定。
需要注意的是,在一种可选的电源装置的实施例中,参照图4a所示,处于工作状态的电源转换模块的数量为两个,输出的工作电压的电压波形分别为第一工作电压402波形和第二工作电压波形404,当第一工作电压波形402与第二工作电压波形404之间的相位差为π/2时,叠加得到的输出波形406的波纹最小,如图4b所示。
参照图4a所示,当第一工作电压波形402与第二工作电压波形404之间的相位差为π/2时,在第一工作电压波形402处于最大值的时间点,第二工作电压波形404处于最小值;在第二工作电压波形404处于最小值的时间点,第一工作电压波形402处于最大值。
在一种可选的电源装置的实施例中,多个处于工作状态的电源转换模块通信连接。
通信连接的方式可以为,参照图2所示,处于工作状态的第一电源转换模块141向第二电源转换模块发起通信握手;当第二电源转换模块142处于工作状态时,回应握手,并通过控制开关频率的方式使得第二电源转换模块142与第一电源转换模块141对应的相位差为π/2;当第二电源转换模块142处于非工作状态时,不能回应握手,第一电源转换模块141继续工作。
通过通信连接的方式,各电源转换模块能够通过获取其他电源转换模块采集到的电压差对应的电压波形,再根据其他电源转换模块采集到的电压差对应的电压波形,控制与对应电容连接的开关的开关频率,使得多个处于工作状态的电源转换模块对应的电压波形之间的相位差为预设数值,例如π/2。通过上述技术手段,能够使输出接口15叠加得到的输出波形波纹较小,提高为负载供电的稳定性。
可选地,多个电源转换模块中,每个电源转换模块,与滤波电容连接;滤波电容接地。
参照图2以及图3的实施例,滤波电容19用于使输出接口输出的电压波形更平滑,进而在为电源装置负载供电时提高稳定性。
本申请实施例中的输出接口输出的电压波形可以为多个处于工作状态的 电源转换模块输出的工作波形叠加后得到的输出波形,故该输出波形具有小波纹的优势,在此基础上,滤波电容19也可以选取电容值较小的电容器件,降低了器件选取的硬件要求,且减少了电能的损耗。
开关控制模块根据输入电压,通过第一开关和至少一个第二开关控制处于工作状态的电源转换模块的数量,处于工作状态的电源转换模块的数量与输入电压正相关。
输入电压可以为交流电压,在输入电压从零开始上升到该交流电压的峰值的过程中,电容串联导通的数量随着电压升高而增多。
在一些实施例中,开关控制模块11还可以根据输入电压经过整流得到的整流电压控制第一开关121和至少一个第二开关的导通与断开,以控制电容串联导通的数量,电容串联导通的数量与整流电压正相关。整流电压均为非负值。
下文中分别介绍两种具体的实施方式:
参照图1和图2,具体说明一种包含两个电容、两个电源转换模块的电源装置的实施例。
可选地,至少一个第二开关包括第一子开关122;多个电容包括第一电容131和第二电容132;多个电源转换模块包括第一电源转换模块141和第二电源转换模块142;第一电容131与第二电容132串联连接;第二电容132接入输入电压;第一电容131与第二电容132之间,通过第一子开关122接地;第一电容131通过第一开关121接地;第一电源转换模块141与第一电容131并联连接;第二电源转换模块142与第二电容132并联连接。
在如图1以及图2所示的一个或多个实施例中,至少一个第二开关的数量为一个,即至少一个第二开关包括第一子开关122,电源装置包含第一开关121与第一子开关122。多个电容的数量为两个,即多个电容包括第一电容131以及第二电容132。多个电源转换模块的数量与多个电容的数量相同,即多个电源转换模块包括第一电源转换模块141和第二电源转换模块142。
第二电容132接入输入电压。第二电容132与第一电容131为相邻的两个电容。第二电容132与第一电容131之间通过第一子开关122接地,可以理解为,第二电容132的一端连接第一子开关122,且第一子开关122导通时接地,且第二电容132的该连接第一子开关的一端与第一电容131连接。第一电容131通过第一开关121接地。
第一电源转换模块141与第一电容131并联连接,第一电源转换模块141采集第一电容131两端的电压差,转换该电压差并输出第一工作电压到输出接口15。第二电源转换模块142与第二电容132并联连接,第二电源转换模块142采集第二电容132两端的电压差,转换该电压差并输出第一工作电压到输出接口15。
在第二电容132接地时,第二电容132两端的电压差的绝对值大于零,此时第二电源转换模块142处于工作状态。当第二电容与第一电容串联接地时,第二电容132两端的电压差的绝对值大于零,且第一电容131两端的电压差的绝对值大于零,此时第一电源转换模块141与第二电源转换模块142均处于工作状态。
可选地,在检测到整流电压达到第一工作电压阈值时,开关控制模块11控制第一子开关122导通且控制第一开关121断开,使得第二电容132接地;在检测到整流电压达到第二工作电压阈值时,开关控制模块11控制第一开关121导通且控制第一子开关122断开,使得第一电容131与第二电容132串联接地;其中,第二工作电压阈值大于第一工作电压阈值;在整流电压达到第二工作电压阈值后,电源装置在保持第一开关121导通且第一子开关122断开的状态下为负载供电。
整流电压可以为对交流电压进行整流后得到的电压。整流电压的电压值均为非负值,整流电压从零开始上升,直到该电压波形的峰值,从该峰值下降到零,再次从零上升到峰值,从峰值下降到零……不断重复电压值上升下降的过程。
第一开关121和第一子开关122的初始状态均可以为断开状态。则第一 电容131和第二电容132均未接地,电源装置处于非工作状态。
开关控制模块11接收整流电压,在整流电压的电压值小于第一工作电压阈值v1时,开关控制模块11处于非工作状态,不对第一开关121或第一子开关122进行任何控制。此处,第一工作电压阈值v1可以为开关控制模块11启动工作的启动电压阈值。
在开关控制模块11检测到整流电压达到第一工作电压阈值v1时,开关控制模块11控制第一子开关122导通且控制第一开关121断开,使得第二电容132接地,此时与第二电容132并联连接的第二电源转换模块142处于工作状态,采集第二电容132两端的电压差并输出第二工作电压到输出接口15。
在开关控制模块11检测到整流电压达到第二工作电压阈值v2时,开关控制模块11控制第一开关121导通且控制第一子开关122断开,使得第一电容131与第二电容132串联接地。此时与第一电容131并联连接的第一电源转换模块141以及与第二电容132并联连接的第二电源转换模块142均处于工作状态,分别采集第一电容131与第二电容132两端的电压差并输出第一工作电压和第二工作电压到输出接口15。且第二工作电压阈值v2大于第一工作电压阈值v1。
在开关控制模块11检测到整流电压达到第二工作电压阈值v2之后,第一开关121保持导通且第一子开关122保持断开,则第一电容131与第二电容132保持串联接地,即电源装置在第一电源转换模块141与第二电源转换模块142均处于工作状态的情况下为负载供电。
需要注意的是,尽管整流电压的电压值不断重复电压值上升下降的过程,开关控制模块11仅在电压值第一次到达第一工作电压阈值v1时,执行控制第一子开关122导通且控制第一开关121断开的开关控制动作,以及在电压值第一次达到第二工作电压阈值v2时,执行控制第一开关121导通且控制第一子开关122断开的开关控制动作。当电压值第二次、第三次……第N次到达第一工作电压阈值v1时,开关控制模块11不再执行任何开关控制动作。同理,当电压值第二次、第三次……第N次到达第二工作电压阈值v2时, 开关控制模块11不再执行任何开关控制动作。
通过在不同的输入电压下控制第一开关121以及第一子开关122的导通或断开,能够兼顾电源装置的宽输入电压需求和高电能转换效率的需求,理由如下:
在输入电压较低的情况下,例如,整流电压的电压值大于等于第一工作电压阈值v1且小于第二工作电压阈值v2时,电源装置中仅有第二电容132接地,因此,在输入电压较低时,电源装置通过控制第一开关121和第一子开关122的导通与断开,控制电容串联导通的数量为一个,则与第二电容132并联连接的第二电源转换模块142处于工作状态,向输出接口15输出电能。此时采用一个第二电源转换模块即可为负载供电。
在输入电压较高的情况下,例如,整流电压的电压值大于等于第二工作电压阈值v2时,电源装置中第一电容131与第二电容132串联接地。因此,在输入电压较高时,电源装置通过控制第一开关121和第一子开关122的导通与断开,控制电容串联导通的数量为两个,则与第一电容131并联连接的第一电源转换模块141处于工作状态,向输出接口15输出电能,与第二电容132并联连接的第二电源转换模块142处于工作状态,向输出接口15输出电能。即两个电源转换模块同时向输出接口供电,且两个电源转换模块均工作在一个较小的电压范围内,故电源转换模块内部的器件应力要求比较小,具有阻抗小、体积小、损耗小以及耐压低等明显的优势,因此电源装置采用该应力要求比较小的器件能够有效提高电源装置的电能转换效率较高。
接下来,参照图1和图3,具体说明一种包含三个电容的电源装置的实施例。
可选地,至少一个第二开关包括第二子开关123和第三子开关124;多个电容包括第一电容131、第三电容133和第四电容134;多个电源转换模块包括第一电源转换模块141、第三电源转换模块143以及第四电源转换模块144;第一电容131、第三电容133以及第四电容134串联连接;第四电容134接入输入电压;第三电容133与第四电容134之间,通过第三子开关124接 地;第一电容131与第三电容133之间,通过第二子开关123接地;第一电容131通过第一开关121接地;第一电源转换模块141与第一电容131并联连接;第三电源转换模块143与第三电容133并联连接;第四电源转换模块144与第四电容134并联连接。
在如图1以及图3所示的一个或多个实施例中,至少一个第二开关的数量为两个,即至少一个第二开关包括第二子开关123和第三子开关124,电源装置包含第一开关121、第二子开关123和第三子开关124。多个电容的数量为三个,即多个电容包括第一电容131、第三电容133以及第四电容134。多个电源转换模块的数量与多个电容的数量相同,即多个电源转换模块包括第一电源转换模块141、第三电源转换模块143以及第四电源转换模块144。
第二电容132接入输入电压。第二电容132与第一电容131为相邻的两个电容。第二电容132与第一电容131之间通过第一子开关122接地,可以理解为,第二电容132的一端连接第一子开关122,且第一子开关122导通时接地,且第二电容132的该连接第一子开关的一端与第一电容131连接。第一电容131通过第一开关121接地。
第四电容134接入输入电压。第四电容134与第三电容133为相邻的两个电容。第四电容134与第三电容133之间,通过第三子开关124接地,可以理解为,第四电容134的一端与第三子开关124连接,且第三子开关124导通时接地,第四电容134的该连接第三子开关124的一端与第三电容133连接。
第三电容133与第一电容131为相邻的两个电容。第三电容133与第一电容131之间,通过第二子开关123接地,可以理解为,第三电容133的一端与第二子开关123连接,且第二子开关123导通时接地,第三电容133的该连接第二子开关123的一端与第一电容131连接。
第一电容131通过第一开关121接地。
可选地,在检测到整流电压达到第三工作电压阈值时,开关控制模块11控制第三子开关124导通,且控制第二子开关123和第一开关121断开,使 得第四电容134接地;在检测到整流电压达到第四工作电压阈值时,开关控制模块11控制第二子开关123导通,且控制第三子开关124和第一开关121断开,使得第四电容134与第三电容133串联接地;其中,第四工作电压阈值大于第三工作电压阈值;在检测到整流电压达到第五工作电压阈值时,开关控制模块11控制第一开关121导通,且控制第二子开关123和第三子开关124断开,使得第四电容134、第三电容133与第一电容131串联接地;其中,第五工作电压阈值大于第四工作电压阈值;在整流电压达到第五工作电压阈值后,电源装置在保持第一开关121导通且第二子开关123和第三子开关124断开的状态下为负载供电。
整流电压可以为对交流电压进行整流后得到的电压。整流电压的电压值均为非负值,且整流电压的电压值从零开始上升,直到该电压波形的峰值,从该峰值下降到零,再次从零上升到峰值,从峰值下降到零……不断重复电压值上升下降的过程。
第一开关121、第二子开关123以及第三子开关124的初始状态均可以为断开状态。则初始状态下,第一电容131、第三电容133以及第四电容134均未接地,电源装置处于非工作状态。
开关控制模块11接收整流电压,在整流电压的电压值小于第三工作电压阈值v3时,开关控制模块11处于非工作状态,不对第一开关121、第二子开关123或第三子开关124进行任何控制。此处,第三工作电压阈值v3可以为开关控制模块11启动工作的启动电压阈值。
在开关控制模块11检测到整流电压达到第三工作电压阈值v3时,开关控制模块11控制第三子开关124导通,且控制第二子开关123和第一开关121断开,使得第四电容134接地。此时与第四电容134并联连接的第四电源转换模块144处于工作状态,采集第四电容134两端的电压差并输出第四工作电压到输出接口15。
在开关控制模块11检测到整流电压达到第四工作电压阈值v2时,开关控制模块11控制第二子开关123导通,且控制第三子开关124和第一开关 121断开,使得第四电容134与第三电容133串联接地。此时与第四电容134并联连接的第四电源转换模块144以及与第三电容133并联连接的第三电源转换模块143均处于工作状态,分别采集第四电容134与第三电容133两端的电压差并输出第四工作电压和第三工作电压到输出接口15。且第四工作电压阈值v4大于第三工作电压阈值v3。
在开关控制模块11检测到整流电压达到第五工作电压阈值v5时,开关控制模块11控制第一开关121导通,且控制第二子开关123和第三子开关124断开,使得第四电容134、第三电容133与第一电容131串联接地。此时与第四电容134并联连接的第四电源转换模块144、与第三电容133并联连接的第三电源转换模块143以及与第一电容131并联连接的第一电源转换模块141均处于工作状态,分别采集第四电容134、第三电容133以及第一电容131两端的电压差并输出第四工作电压、第三工作电压以及第一工作电压到输出接口15。且第五工作电压阈值v5大于第四工作电压阈值v4。
在开关控制模块11检测到整流电压达到第五工作电压阈值v5之后,第一开关121保持导通且第二子开关123和第三子开关124保持断开,则第四电容134、第三电容133与第一电容131保持串联接地,即电源装置在第一电源转换模块141、第三电源转换模块143以及第四电源转换模块144均处于工作状态的情况下为负载供电。
需要注意的是,尽管整流电压的电压值不断重复电压值上升下降的过程,开关控制模块11仅在电压值第一次到达第三工作电压阈值v3时,执行控制第三子开关124导通,且控制第二子开关123和第一开关121断开的开关控制动作;开关控制模块11仅在电压值第一次达到第四工作电压阈值v4时,执行控制第二子开关123导通,且控制第三子开关124和第一开关121断开的开关控制动作;开关控制模块11仅在电压值第一次达到第五工作电压阈值v5时,执行控制第一开关121导通,且控制第二子开关123和第三子开关124断开的开关控制动作。当电压值第二次、第三次……第N次到达第三工作电压阈值v3时,开关控制模块11不再执行任何开关控制动作。同理,当电压 值第二次、第三次……第N次到达第四工作电压阈值v4或第五工作电压阈值v5时,开关控制模块11不再执行任何开关控制动作。
输入电压的峰值通常是固定的,则对输入电压整流得到的整流电压的峰值也是固定值,故通过检测整流电压值到达特定阈值,能够确定整流电压对应的电压阈值区间,该电压阈值区间可以为多个电压阈值区间中该整流电压能够到达的最高的电压阈值区间,以确定与输入电压匹配的电路连接方式,控制各个开关的导通或断开,使得电源装置包含的多个电源转换模块能够在较低的电压范围内工作,故电源装置可以采用阻抗小、体积小、损耗小以及耐压低的器件,进而兼顾宽输入电压的需求与高电能转换效率的需求。
通过在不同的输入电压下控制第一开关121、第二子开关123以及第三子开关124的导通或断开,能够兼顾电源装置的宽输入电压需求和高电能转换效率的需求,理由与前述的包含两个电容的电源装置的实施例类似,此处不再赘述。
基于本申请实施例公开的电源装置,本申请实施例还公开一种电子设备,所公开的电子设备包括上文所述的电源装置。本申请实施例所指的电子设备可以是智能手机、平板电脑、电子书阅读器、可穿戴装置等设备,本申请实施例不限制电子设备的具体种类。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (10)

  1. 一种电源装置,所述电源装置包括开关控制模块、第一开关与至少一个第二开关、多个电容以及与所述多个电容数量相同的多个电源转换模块,其中:
    所述多个电容串联连接;
    所述多个电容中,第一个电容接入输入电压,相邻的两个电容之间通过一个所述第二开关接地,最后一个电容通过所述第一开关接地;
    所述多个电源转换模块中,每个所述电源转换模块与一个所述电容并联连接;
    所述开关控制模块根据所述输入电压,通过所述第一开关和所述至少一个第二开关控制处于工作状态的电源转换模块的数量,所述处于工作状态的电源转换模块的数量与所述输入电压正相关。
  2. 根据权利要求1所述的电源装置,其中,所述多个电源转换模块中,每个所述电源转换模块,与输出接口连接。
  3. 根据权利要求1所述的电源装置,其中,所述电源装置还包括:
    整流模块,与所述开关控制模块连接,用于接收所述输入电压并将整流后的整流电压输出至所述开关控制模块。
  4. 根据权利要求3所述的电源装置,其中,所述至少一个第二开关包括第一子开关;所述多个电容包括第一电容和第二电容;所述多个电源转换模块包括第一电源转换模块和第二电源转换模块;
    所述第一电容与所述第二电容串联连接;
    所述第二电容接入所述输入电压;
    所述第一电容与所述第二电容之间,通过所述第一子开关接地;
    所述第一电容通过所述第一开关接地;
    所述第一电源转换模块与所述第一电容并联连接;
    所述第二电源转换模块与所述第二电容并联连接。
  5. 根据权利要求3所述的电源装置,其中,所述至少一个第二开关包括 第二子开关和第三子开关;所述多个电容包括第一电容、第三电容和第四电容;所述多个电源转换模块包括第一电源转换模块、第三电源转换模块和第四电源转换模块;
    所述第一电容、所述第三电容以及所述第四电容串联连接;
    所述第四电容接入所述输入电压;
    所述第三电容与所述第四电容之间,通过所述第三子开关接地;
    所述第一电容与所述第三电容之间,通过所述第二子开关接地;
    所述第一电容通过所述第一开关接地;
    所述第一电源转换模块与所述第一电容并联连接;
    所述第三电源转换模块与所述第三电容并联连接;
    所述第四电源转换模块与所述第四电容并联连接。
  6. 根据权利要求4所述的电源装置,其中,在检测到所述整流电压达到第一工作电压阈值时,所述开关控制模块控制所述第一子开关导通且控制所述第一开关断开,使得所述第二电容接地;
    在检测到所述整流电压达到第二工作电压阈值时,所述开关控制模块控制所述第一开关导通且控制所述第一子开关断开,使得所述第一电容与所述第二电容串联接地;其中,所述第二工作电压阈值大于所述第一工作电压阈值;
    在所述整流电压达到所述第二工作电压阈值后,所述电源装置在保持所述第一开关导通且所述第一子开关断开的状态下为负载供电。
  7. 根据权利要求5所述的电源装置,其中,在检测到所述整流电压达到第三工作电压阈值时,所述开关控制模块控制所述第三子开关导通,且控制所述第二子开关和所述第一开关断开,使得所述第四电容接地;
    在检测到所述整流电压达到第四工作电压阈值时,所述开关控制模块控制所述第二子开关导通,且控制所述第三子开关和所述第一开关断开,使得所述第四电容与所述第三电容串联接地;其中,所述第四工作电压阈值大于所述第三工作电压阈值;
    在检测到所述整流电压达到第五工作电压阈值时,所述开关控制模块控制所述第一开关导通,且控制所述第二子开关和所述第三子开关断开,使得所述第四电容、所述第三电容与所述第一电容串联接地;其中,所述第五工作电压阈值大于所述第四工作电压阈值;
    在所述整流电压达到所述第五工作电压阈值后,所述电源装置在保持所述第一开关导通且所述第二子开关和所述第三子开关断开的状态下为负载供电。
  8. 根据权利要求4所述的电源装置,其中,所述第一电源转换模块和所述第二电源转换模块通信连接。
  9. 根据权利要求1所述的电源装置,其中,所述多个电源转换模块中,每个所述电源转换模块,与滤波电容连接;
    所述滤波电容接地。
  10. 一种电子设备,包括如权利要求1至9任一项所述的电源装置。
PCT/CN2022/073794 2021-01-28 2022-01-25 电源装置及电子设备 WO2022161352A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110121740.0 2021-01-28
CN202110121740.0A CN112910220B (zh) 2021-01-28 2021-01-28 电源装置及电子设备

Publications (1)

Publication Number Publication Date
WO2022161352A1 true WO2022161352A1 (zh) 2022-08-04

Family

ID=76120007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/073794 WO2022161352A1 (zh) 2021-01-28 2022-01-25 电源装置及电子设备

Country Status (2)

Country Link
CN (1) CN112910220B (zh)
WO (1) WO2022161352A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112910220B (zh) * 2021-01-28 2023-07-25 维沃移动通信有限公司 电源装置及电子设备
CN113992014A (zh) * 2021-10-29 2022-01-28 广东电网有限责任公司广州供电局 一种isop型直流变压器的优化控制方法、装置及存储介质
CN113972721B (zh) * 2021-10-29 2024-07-02 维沃移动通信有限公司 无线充电电路、方法、装置、电子设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100124087A1 (en) * 2008-11-15 2010-05-20 Sma Solar Technology Ag Power converter start-up circuit
JP2016073099A (ja) * 2014-09-30 2016-05-09 株式会社デンソー 電力変換システム
US20170294831A1 (en) * 2016-04-11 2017-10-12 Futurewei Technologies, Inc. Method and Apparatus for Filtering a Rectified Voltage
WO2017220019A1 (zh) * 2016-06-23 2017-12-28 中兴通讯股份有限公司 开关电源、电子设备及开关电源控制方法
CN109428467A (zh) * 2018-09-21 2019-03-05 广州金升阳科技有限公司 一种超高压超宽范围电源系统及其控制方法
CN112910220A (zh) * 2021-01-28 2021-06-04 维沃移动通信有限公司 电源装置及电子设备

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5581454A (en) * 1994-11-22 1996-12-03 Collins; Hansel High power switched capacitor voltage conversion and regulation apparatus
JP5143483B2 (ja) * 2007-07-03 2013-02-13 ルネサスエレクトロニクス株式会社 昇圧回路、およびその昇圧回路を備える集積回路
JP4995005B2 (ja) * 2007-08-24 2012-08-08 株式会社日本自動車部品総合研究所 車両用dcdcコンバータ装置
EP2493060A1 (en) * 2011-02-22 2012-08-29 ST-Ericsson SA Low ripple step-up/step-down converter
US9673310B2 (en) * 2013-06-28 2017-06-06 David Schie Direct drive LED driver and offline charge pump and method therefor
CN103926478B (zh) * 2014-04-30 2017-02-01 国家电网公司 一种万能核相装置及其核相方法
CN104883111B (zh) * 2015-06-25 2017-09-22 珠海格力电器股份有限公司 电机控制方法、装置和电机系统
CN106208679A (zh) * 2016-07-15 2016-12-07 武汉华星光电技术有限公司 一种电压转换电路及液晶显示驱动芯片
JP6406724B2 (ja) * 2017-03-02 2018-10-17 オムロン株式会社 電源制御装置、電力変換システム及び電源制御方法
EP3675345A1 (en) * 2018-12-31 2020-07-01 Solaredge Technologies Ltd. Balanced capacitor power converter
US11147151B2 (en) * 2019-05-07 2021-10-12 Shimadzu Corporation Rotary anode type X-ray tube apparatus comprising rotary anode driving device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100124087A1 (en) * 2008-11-15 2010-05-20 Sma Solar Technology Ag Power converter start-up circuit
JP2016073099A (ja) * 2014-09-30 2016-05-09 株式会社デンソー 電力変換システム
US20170294831A1 (en) * 2016-04-11 2017-10-12 Futurewei Technologies, Inc. Method and Apparatus for Filtering a Rectified Voltage
WO2017220019A1 (zh) * 2016-06-23 2017-12-28 中兴通讯股份有限公司 开关电源、电子设备及开关电源控制方法
CN109428467A (zh) * 2018-09-21 2019-03-05 广州金升阳科技有限公司 一种超高压超宽范围电源系统及其控制方法
CN112910220A (zh) * 2021-01-28 2021-06-04 维沃移动通信有限公司 电源装置及电子设备

Also Published As

Publication number Publication date
CN112910220B (zh) 2023-07-25
CN112910220A (zh) 2021-06-04

Similar Documents

Publication Publication Date Title
WO2022161352A1 (zh) 电源装置及电子设备
EP1391982A2 (en) Dc-dc converter
CN108173299A (zh) 无线受电装置及使用其的无线电力传送装置以及整流器
CN101241389A (zh) 计算机及其供电方法
Moon et al. Design and implementation of a 1.3 kW, 7-level flying capacitor multilevel AC-DC converter with power factor correction
CN112072766A (zh) 充电设备
CN201290070Y (zh) 一种特高压直流发生器
CN104660044B (zh) 一种开关电路、控制开关电路的方法及装置
JP2022122847A (ja) コンバータ及び電力アダプタ
WO2022161354A1 (zh) 充电装置及电子设备
US11336094B2 (en) Inverter, power generating system, and method for suppressing harmonic distortion of alternating current system
US12021455B2 (en) Power supply device and charging control method
US10622814B2 (en) Power conversion apparatus
CN202750021U (zh) 一种将交流电转换成直流电的转换器
CN105245109B (zh) 箝位式双子模块的取能电源装置和取能控制方法
CN217931786U (zh) 一种相位补偿采样电路
CN116961389A (zh) 开关电源谐波改善电路、方法及装置
CN112994167A (zh) 充电装置、电子设备、充电控制方法和充电控制装置
CN115833630A (zh) 填谷电路及其控制方法
CN207625438U (zh) 交直流通用通信电源转换模块
CN115296438A (zh) 无线充电控制方法及无线充电设备
CN103475239A (zh) 一种供电电路
CN204835962U (zh) 一种倍压整流电路
US11218092B2 (en) Power supply device of reduced complexity accepting power through wye and delta configurations
CN110311580A (zh) Dcdc环流控制装置、控制方法、电子设备及介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22745227

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22745227

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19.01.2024)

122 Ep: pct application non-entry in european phase

Ref document number: 22745227

Country of ref document: EP

Kind code of ref document: A1