[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022153984A1 - Learning data generation method, model generation method, and learning data generation device - Google Patents

Learning data generation method, model generation method, and learning data generation device Download PDF

Info

Publication number
WO2022153984A1
WO2022153984A1 PCT/JP2022/000607 JP2022000607W WO2022153984A1 WO 2022153984 A1 WO2022153984 A1 WO 2022153984A1 JP 2022000607 W JP2022000607 W JP 2022000607W WO 2022153984 A1 WO2022153984 A1 WO 2022153984A1
Authority
WO
WIPO (PCT)
Prior art keywords
model
data
learning
learning data
data generation
Prior art date
Application number
PCT/JP2022/000607
Other languages
French (fr)
Japanese (ja)
Inventor
拓也 柴山
和良 長谷川
政人 峯岸
亮 坂本
Original Assignee
株式会社Preferred Networks
三井物産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Preferred Networks, 三井物産株式会社 filed Critical 株式会社Preferred Networks
Publication of WO2022153984A1 publication Critical patent/WO2022153984A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. for interpretation or for event detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning

Definitions

  • the embodiment of the present invention relates to a learning data generation method, a model generation method, and a learning data generation device.
  • DNN Deep Neural Network
  • the problem that the invention tries to solve is to generate learning data about the structure.
  • the training data generation method is a training data generation method executed by using at least one processor, and generates a structural model based on a plurality of structural features, and a structural model.
  • the wave propagation simulation for the simulated data showing the observed values related to the structure is generated, and the generated model of the structure is associated with the simulated data to generate the learning data.
  • FIG. 1 is a block diagram showing an example of a hardware configuration of a learning system having a learning data generation device according to an embodiment.
  • FIG. 2 is a diagram showing an example of a functional block in a processor according to an embodiment.
  • FIG. 3 is a diagram showing an example of a generation area before generation of the underground structure model according to the embodiment.
  • FIG. 4 is a diagram showing an example of a generation area in which a plurality of strata are deposited according to the embodiment.
  • FIG. 5 is a diagram showing an example of a generation region in which a plurality of strata are folded according to the embodiment.
  • FIG. 6 is a diagram showing an example of a generation region in which faults are generated for a plurality of strata according to the embodiment.
  • FIG. 1 is a block diagram showing an example of a hardware configuration of a learning system having a learning data generation device according to an embodiment.
  • FIG. 2 is a diagram showing an example of a functional block in a processor according to an embodiment.
  • FIG. 7 is a diagram showing an example of a generated region in which the stratum shallower than the inconsistent surface is stripped according to the embodiment.
  • FIG. 8 is a diagram showing an example of a generation area in which a plurality of strata are re-deposited in the exfoliation area according to the embodiment.
  • FIG. 9 is a diagram showing an example of a generation region in which a plurality of strata are folded and then a plurality of faults are generated according to the embodiment.
  • FIG. 10 is a diagram showing an example of a generation region in which folds and faults are generated for a plurality of strata according to the embodiment.
  • FIG. 11 is a diagram showing an example of a formation region intrusive with rock salt according to the embodiment.
  • FIG. 12 is a diagram showing an example of an image (shot image) of common shot gather data according to the embodiment.
  • FIG. 13 is a flowchart showing an example of the procedure of the learning data generation processing according to the embodiment.
  • FIG. 14 is a diagram showing an example of a P-wave velocity (Vp) model generated by a parameter generation system according to an embodiment.
  • FIG. 15 is a diagram showing an example of a functional block in a processor mounted on a learning device according to an embodiment.
  • FIG. 16 is a diagram showing an example of estimation of P wave velocity (Vp) in the Marmousi2 geological structure model according to the embodiment.
  • FIG. 17 is a diagram showing an example of estimation of P wave velocity (Vp) in the 1994 Amoco static correction test data set according to the embodiment.
  • FIG. 18 shows an outline of the generation of training data, the generation of an underground structure estimation model using the training data, and the underground structure estimation process using the generated underground structure estimation model, according to the application example of the embodiment. It is a figure which shows an example.
  • FIG. 19 is a flowchart showing an example of a procedure of generating learning data, generating an underground structure estimation model using the learning data, and performing model generation estimation processing according to an application example of the embodiment.
  • the training data generation method is executed using, for example, at least one processor.
  • FIG. 1 is a block diagram showing an example of a hardware configuration of a learning system 1 having a learning data generation device 3 according to the present embodiment.
  • the learning system 1 includes a learning data generation device 3, a learning device 7 connected to the learning data generation device 3 via a communication network 5, and a learning data generation device 3 via a communication network 5.
  • An external device 9A connected to the device 9A and an external device 9B connected via the device interface 39 are provided.
  • the learning system 1 generates a plurality of learning data by the learning data generation device 3.
  • the learning system 1 trains a deep neural network to be trained using a plurality of generated training data to generate a trained model.
  • the trained model is, for example, a model that outputs sound waves, electromagnetic waves, radiation, etc. to the observation target and estimates the structure of the observation target based on the reflected wave propagating inside the observation target.
  • the structure is, for example, the internal structure of the observation target.
  • Observation targets are underground, artificial structures such as pillars and bridges, clouds, and living organisms.
  • the trained model can be applied, for example, to non-destructive inspection, ultrasonic diagnosis of structures, echo inspection, submarine sonar, remote sensing, and the like.
  • the observation target will be described as being an underground structure.
  • the trained model is a model that outputs the underground structure to be observed by inputting seismic waves (elastic waves), electromagnetic waves, or radiation.
  • the trained model is used for seismic exploration.
  • an electromagnetic wave electromagnetic field
  • the trained model is used for electromagnetic exploration.
  • the trained model will be described as being used for seismic exploration.
  • the learning data generation device 3 has a computer 30 and an external device 9B connected to the computer 30 via the device interface 39. Further, the learning device 7 may be connected to the computer 30 via the device interface 39.
  • the computer 30 includes a processor 31, a main storage device (memory) 33, an auxiliary storage device (memory) 35, a network interface 37, and a device interface 39.
  • the learning data generation device 3 may be realized as a computer 30 in which the processor 31, the main storage device 33, the auxiliary storage device 35, the network interface 37, and the device interface 39 are connected via the bus 41.
  • the computer 30 may be mounted on the learning device 7.
  • the computer 30 shown in FIG. 1 includes one component for each component, but may include a plurality of the same components. Further, although one computer 30 is shown in FIG. 1, software is installed on a plurality of computers, and each of the plurality of computers executes the same or different part of the software. May be good. In this case, it may be a form of distributed computing in which each computer communicates via a network interface 37 or the like to execute processing. That is, even if the learning data generation device 3 in the present embodiment is configured as a system that realizes various functions described later by executing instructions stored in one or a plurality of storage devices by one or a plurality of computers. good.
  • the information transmitted from the terminal is processed by one or a plurality of computers provided on the cloud, and the processing result is transmitted to a terminal such as a display device (display unit) corresponding to the external device 9B. It may have such a configuration.
  • the display device is realized by, for example, various displays.
  • Various operations of the learning data generation device 3 in the present embodiment may be executed in parallel processing by using one or a plurality of processors or by using a plurality of computers via a network. Further, various operations may be distributed to a plurality of arithmetic cores in the processor and executed in parallel processing. In addition, some or all of the processes, means, etc. of the present disclosure may be executed by at least one of a processor and a storage device provided on the cloud capable of communicating with the computer 30 via the network. As described above, various types described later in this embodiment may be in the form of parallel computing by one or a plurality of computers.
  • the processor 31 is an electronic circuit (processing circuit, processing circuit, processing cycle, CPU (Central Processing Unit), GPU (Graphics Processing Unit), FPGA (Field Program)) including a control device and a computing device of the computer 30. (Application Special Integrated Circuit), etc.) may be used. Further, the processor 31 may be a semiconductor device or the like including a dedicated processing circuit. The processor 31 is not limited to an electronic circuit using an electronic logic element, and may be realized by an optical circuit using an optical logic element. Further, the processor 31 may include an arithmetic function based on quantum computing.
  • the processor 31 can perform arithmetic processing based on data and software (programs) input from each device or the like of the internal configuration of the computer 30 and output the arithmetic result or control signal to each device or the like.
  • the processor 31 may control each component constituting the computer 30 by executing an OS (Operating System) of the computer 30, an application, or the like.
  • OS Operating System
  • the learning data generation device 3 in this embodiment may be realized by one or a plurality of processors 31.
  • the processor 71 may refer to one or more electronic circuits arranged on one chip, or may refer to one or more electronic circuits arranged on two or more chips or two or more devices. You may point. When a plurality of electronic circuits are used, each electronic circuit may communicate by wire or wirelessly.
  • the main storage device 33 is a storage device that stores instructions executed by the processor 31, various data, and the like, and the information stored in the main storage device 33 is read out by the processor 31.
  • the auxiliary storage device 35 is a storage device other than the main storage device 33. Note that these storage devices mean any electronic component capable of storing electronic information, and may be a semiconductor memory.
  • the semiconductor memory may be either a volatile memory or a non-volatile memory.
  • the storage device for storing various data used in the learning data generation device 3 in the present embodiment may be realized by the main storage device 33 or the auxiliary storage device 35, or is realized by the built-in memory built in the processor 31. You may.
  • the storage unit in this embodiment may be realized by the main storage device 33 or the auxiliary storage device 35.
  • a plurality of processors may be connected (combined) to one storage device (memory), or a single processor 31 may be connected.
  • a plurality of storage devices (memory) may be connected (combined) to one processor.
  • the learning data generation device 3 in the present embodiment is composed of at least one storage device (memory) and a plurality of processors connected (combined) to the at least one storage device (memory), among the plurality of processors
  • At least one processor may include a configuration in which it is connected (combined) to at least one storage device (memory). Further, this configuration may be realized by a storage device (memory) included in a plurality of computers and a processor 31. Further, a configuration in which the storage device (memory) is integrated with the processor 31 (for example, a cache memory including an L1 cache and an L2 cache) may be included.
  • the network interface 37 is an interface for connecting to the communication network 5 wirelessly or by wire. As the network interface 37, an appropriate interface such as one conforming to an existing communication standard may be used. The network interface 37 may exchange information with the learning device 7 and the external device 9A connected via the communication network 5.
  • the communication network 5 may be any one of WAN (Wide Area Network), LAN (Local Area Network), PAN (Personal Area Network), or a combination thereof, and may be a combination of the computer 30 and the external device 9A. Any information can be exchanged between them.
  • WAN Wide Area Network
  • LAN Local Area Network
  • PAN Personal Area Network
  • Any information can be exchanged between them.
  • An example of WAN is the Internet
  • LAN is IEEE802.11, Ethernet (registered trademark), etc.
  • PAN is Bluetooth (registered trademark), NFC (Near Field Communication), etc.
  • the device interface 39 is an interface such as an output device such as a display device, an input device (input unit), and a USB (Universal Serial Bus) that is directly connected to the external device 9B.
  • the output device may have a speaker or the like that outputs voice or the like.
  • the external device 9A is a device connected to the computer 30 via a network.
  • the external device 9B is a device that is directly connected to the computer 30.
  • the external device 9A or the external device 9B may be an input device as an example.
  • the input device is, for example, a device such as a camera, a microphone, a motion capture, various sensors, a keyboard, a mouse, or a touch panel, and gives the acquired information to the computer 30.
  • the external device 9A or the external device 9B may be a personal computer, a tablet terminal, a device having an input unit such as a smartphone, a memory, and a processor.
  • the external device 9A or the external device 9B may be an output device (output unit) as an example.
  • the output device may be, for example, a display device (display unit) such as an LCD (Liquid Crystal Display), a CRT (Cathode Ray Tube), a PDP (Plasma Display Panel), or an organic EL (Electro Luminescence) panel. It may be a speaker or the like that outputs voice or the like.
  • the external device 9A or the external device 9B may be a personal computer, a tablet terminal, a device having an output unit such as a smartphone, a memory, and a processor.
  • the external device 9A or the external device 9B may be a storage device (memory).
  • the external device 9A may be a network storage or the like, and the external device 9B may be a storage such as an HDD.
  • the external device 9A or the external device 9B may be a device having a part of the functions of the components of the learning data generation device 3 in the present embodiment. That is, the computer 30 may transmit or receive a part or all of the processing result of the external device 9A or the external device 9B.
  • FIG. 2 is a diagram showing an example of a functional block in the processor 31.
  • the processor 31 has a setting unit 311, a determination unit 313, a model generation unit 315, a simulated data generation unit 317, and a learning data generation unit 319 as functions realized by the processor 31.
  • the functions realized by the setting unit 311, the determination unit 313, the model generation unit 315, the simulated data generation unit 317, and the learning data generation unit 319 are, as programs, for example, a main storage device 33 or an auxiliary storage device. It is stored in 35 or the like.
  • the processor 31 reads and executes a program stored in the main storage device 33, the auxiliary storage device 35, or the like, thereby causing the setting unit 311, the determination unit 313, the model generation unit 315, the simulated data generation unit 317, and the like.
  • the function related to the learning data generation unit 319 is realized.
  • the setting unit 311 sets a range of feature value values (hereinafter referred to as a feature range) for each of a plurality of feature quantities related to the underground structure.
  • features are geological parameters.
  • Geological structural elements described using geological parameters include sedimentation, folds, faults, ablation, redeposition, re-folding, re-faults, rock salt intrusion, lateral bending of formations, and inconsistent surfaces.
  • Geological parameters include, for example, the thickness of the deposited formation, the amplitude and wavelength (or number of vibrations of the formation per unit length) with respect to the curvature of the formation, the angle of the fault with respect to the horizontal, the length of the fault, and the fault. Bending (degree of bending in the lateral direction (horizontal direction) of the fault), amplification depending on the depth of fault displacement, P wave velocity, ratio of P wave velocity to S wave velocity, distribution position of rock salt dome, rock salt dome P-wave velocity, amount of stratum scraping, depth of unconformity surface, depth dependence of rock velocity, etc.
  • the setting unit 311 can set things that do not occur at the same time in geology. For example, the setting unit 311 sets a normal fault or a reverse fault in the feature amount related to the fault.
  • the setting unit 311 sets a plurality of feature ranges for a plurality of feature quantities by default settings stored in the main storage device 33 or the auxiliary storage device 35.
  • the default setting is, for example, a combination of multiple feature ranges covering all geological patterns.
  • the default setting is not limited to one, and a plurality of default settings may be set according to a plurality of regions.
  • the default setting is set in advance according to the geological information according to the area including the area to be investigated of the underground structure (hereinafter referred to as the investigation area).
  • Geological information is various data acquired in the past in the area, for example, logging data in wells excavated in the area, observation data on the underground structure in the area, and the said.
  • the setting unit 311 sets an area (hereinafter, referred to as a generation area) in which a model of the underground structure (hereinafter, referred to as an underground structure model) is generated by the model generation unit 315.
  • the generation region is, for example, a region schematically showing the length and depth in the horizontal direction.
  • the setting unit 311 displays the feature range set by the default setting on the display device. Specifically, the display device displays a plurality of the ranges corresponding to the plurality of feature quantities and two indicators for changing the upper limit value and the lower limit value in each of the plurality of the ranges. At this time, the setting unit 311 may appropriately change the feature range according to the instruction of the user via the input device. In addition, the setting unit 311 may display a radio button that allows the user to determine a normal fault or a reverse fault. At this time, the setting unit 311 sets the normal fault or the reverse fault according to the user's instruction via the radio button.
  • the setting unit 311 sets the feature range set by the default setting and, for example, a model of the underground structure generated by the model generation section 315 using the representative value of the feature range (hereinafter, referred to as a confirmation model). , May be displayed on the display device.
  • the display device displays a plurality of the ranges corresponding to the plurality of feature quantities, two indicators in each of the plurality of ranges, and a confirmation model.
  • the setting unit 311 changes the confirmation model into a display device with a predetermined hue that changes from blue to yellow along the depth direction according to the magnitude of the P wave velocity of the stratum in the confirmation model. Display it.
  • the setting unit 311 displays the confirmation model generated using the representative value changed according to the adjustment together with the changed feature range. Display on the device.
  • the determination unit 313 determines the model generation parameters, which are the information necessary for generating the underground structure model, based on the feature range and the random numbers for the plurality of feature quantities.
  • the determination unit 313 determines a value in the feature range as a model generation parameter, for example, with respect to a plurality of feature quantities, based on the feature range and a random number.
  • the determination unit 313 is a model of the underground structure generated by using the model generation parameters in the feature range (hereinafter, referred to as an underground structure model).
  • the determination unit 313 uses the underground model ID as a seed for random numbers to generate random numbers.
  • the determination unit 313 determines the model generation parameters within the set feature range based on the set feature range and the generated random numbers for the plurality of feature quantities. Specifically, the determination unit 313 sets a probability distribution within the feature range, and uses random numbers for the set probability distribution to determine model generation parameters within the feature range.
  • the probability distribution is, for example, a uniform distribution, but is not limited to this, and other probability distributions such as a Poisson distribution may be used.
  • the probability distribution may be set by, for example, the setting unit 311.
  • the model generation unit 315 generates a structural model based on a plurality of structural features. Specifically, the model generation unit 315 generates an underground structure model using the model generation parameters determined by the determination unit 313. In addition, the model generation unit 315 generates a model for confirming the underground structure using representative values in the range specified by the two indicators.
  • 3 to 11 are diagrams showing an example of the process of generating the underground structure model generated by the model generation unit 315. Although the generation area 10 in FIGS. 3 to 11 indicates an area in which a two-dimensional underground structure model is generated, the model generation unit 315 may generate a three-dimensional underground structure model. The model generation unit 315 may generate a plurality of structural models using different feature quantities.
  • FIG. 3 is a diagram showing an example of the generation area 10 before the generation of the underground structure model.
  • the model generation unit 315 generates a generation region 10 filled with zeros as a feature amount.
  • Legend 11 shown in FIG. 3 shows the P wave velocity.
  • the upper end of the generation area 10 shown in FIG. 3 indicates the ground surface.
  • the model generation unit 315 deposits a plurality of strata in the generation region 10 using the determined model generation parameters. For example, the model generation unit 315 uses the thickness of each of the plurality of strata, the P wave velocity of each of the plurality of strata, and the like to deposit a plurality of strata in the generation region 10, and the model generation unit 315 deposits a plurality of strata in the generation region 10. To place.
  • FIG. 4 is a diagram showing an example of a generation area 10 in which a plurality of strata are deposited. As shown in FIG. 4, a plurality of strata having different P-wave velocities are deposited in the generation region 10.
  • the model generation unit 315 folds a plurality of strata using the determined model generation parameters in the generation region 10 in which the plurality of strata are deposited. For example, the model generation unit 315 bends a plurality of strata in the generation region 10 by using the wavelength of the fold and the amplitude of the fold.
  • FIG. 5 is a diagram showing an example of a generation region 10 in which a plurality of strata are folded. As shown in FIG. 5, the amplitude of the fold can also be changed depending on the depth. For example, the amplitude of a fold increases in proportion to its shallowness. In addition, the fold corresponds to pulling up a plurality of strata upward in the vertical direction, as shown in FIG. Therefore, the deepest part of the generation area 10 is filled with the stratum before the fold.
  • the model generation unit 315 generates a fault for a plurality of strata using the determined model generation parameters in the generation region 10 having a plurality of folded strata. For example, the model generation unit 315 forms a fault in a plurality of strata by using the position of the fault, the angle of the fault, the amount of displacement of the fault, the degree of bending of the fault, and the like.
  • FIG. 6 is a diagram showing an example of a generation region 10 in which faults are generated for a plurality of strata. Usually, there are many cases where normal faults or reverse faults are consistently present in one area. Therefore, as shown in FIG. 6, the model generation unit 315 generates one of the normal fault and the reverse fault according to the setting by the user or the default setting.
  • the model generation unit 315 executes a stripping process using the determined model generation parameters in the generation area 10 having a plurality of strata on which a fault is formed. For example, the model generation unit 315 removes all the strata shallower than the depth of the scraped lower surface from the generation region 10. Specifically, the model generation unit 315 fills the region of all strata shallower than the depth of the lower surface of the scraping (hereinafter referred to as the scraping region) with 0.
  • FIG. 7 is a diagram showing an example of a generation region 10 in which stripping is performed on all strata shallower than the depth of the lower surface of scraping. At this time, as shown in FIG. 7, the model generation unit 315 may form an inconsistent surface in the region 13 directly above the lower surface of the scraping.
  • the model generation unit 315 arranges a plurality of strata with respect to the exfoliation region 15 in the generation region 10 by using the thickness of each of the plurality of strata, the P wave velocity of each of the plurality of strata, and the like.
  • FIG. 8 is a diagram showing an example of a generation region 10 in which a plurality of strata are re-deposited in the scraping region 15. As shown in FIG. 8, a plurality of strata having different P-wave velocities are deposited in the exfoliation region 15.
  • FIG. 9 is a diagram showing an example of a generation region 10 in which a plurality of strata are folded. The fold corresponds to pulling up a plurality of formations vertically upwards, as shown in FIG. Therefore, as shown in FIG. 9, the deepest part in the generation region 10 is filled with the stratum before the fold as in FIG.
  • the model generation unit 315 forms a fault in the generation region 10 having a plurality of folded strata, using the position of the fault, the angle of the fault, the displacement amount of the fault, the degree of bending of the fault, and the like.
  • FIG. 10 is a diagram showing an example of a generation region 10 in which faults are generated for a plurality of strata.
  • the model generation unit 315 penetrates the rock salt in the generation region 10 using the determined model generation parameters.
  • the model generation unit 315 is arranged so that the rock salt penetrates into the generation region 10 by using the distribution position of the salt dome and the P wave velocity of the salt dome.
  • FIG. 11 is a diagram showing an example of a production region 10 in which rock salt 17 is intruded.
  • geological events deposition, fold, fault, exfoliation, redeposition, fault reactivity (refold, refault), rock salt intrusion) performed by the model generator 315 is in the time series of their occurrence. Along. Therefore, the order of the geological events can be changed as appropriate. Geological events are not limited to sedimentation, folds, faults, ablation, redeposition, fault reactivity (re-folding, re-fault), and rock salt intrusion, and other events may be further performed.
  • the model generation unit 315 cuts out a predetermined range from the generation area 10 in which the rock salt 17 has penetrated.
  • the predetermined range is, for example, in the generation region 10 shown in FIG. 11, the depth is 0 to 5 km and the length in the horizontal direction is 0 to 25 km.
  • the predetermined range may be appropriately set / changed by the setting unit 311 under the instruction of the user via the input device.
  • the model generation unit 315 generates an underground structure model by cutting out from the generation area 10.
  • the model generation unit 315 generates a plurality of underground structure models according to the generation of random numbers. Since the random number seed corresponds to the underground model ID, the model generation unit 315 can regenerate the underground structure model according to the selection of the underground model ID.
  • the simulated data generation unit 317 generates simulated data that simulates the observed values related to the structure by wave propagation simulation for the model of the structure.
  • the wave propagation simulation is, for example, a simulation related to seismic waves (hereinafter referred to as seismic wave simulation).
  • the simulated data generation unit 317 executes a seismic wave propagation simulation on the underground structure model generated by the model generation unit 315.
  • the seismic wave propagation simulation for example, a known technique generally performed as a wave propagation simulation relating to elastic waves or acoustic waves can be appropriately used.
  • the seismic wave propagation simulation is realized, for example, by applying the initial conditions and the boundary conditions to the partial differential equations constituting the equation of motion (wave equation) of the elastic body and solving them sequentially.
  • the simulated data generation unit 317 inputs, for example, an underground structure model to an earthquake simulator and executes an earthquake wave propagation simulation. As a result, the simulated data generation unit 317 generates simulated data that simulates the observed values related to the underground structure of the underground structure model.
  • the simulated data includes, for example, shot data (shot data of the underground structure) in which seismic waves generated by an artificial earthquake (shot) are virtually propagated to an underground structure model and received by a seismograph.
  • the simulated data generation unit 317 may generate simulated data by executing a wave propagation simulation on a plurality of structural models.
  • FIG. 12 is a diagram showing an example of an image (shot image) 19 of common shot gather data.
  • the vertical axis of the shot image 19 shown in FIG. 12 corresponds to the time from the execution time of the shot, and the horizontal axis of the shot image 19 indicates the horizontal position in the underground structure model used to generate the shot image 19. ing.
  • the learning data generation unit 319 generates training data by associating the generated model of the structure with the simulated data. Specifically, the learning data generation unit 319 inputs a plurality of underground structure models generated according to random numbers and a plurality of simulated data generated according to the plurality of underground structure models in the seismic wave propagation simulation. Correspond according to the relationship of output. The learning data generation unit 319 generates a plurality of learning data by the associated plurality of underground structure models and a plurality of simulated data. The learning data generation unit 319 stores a plurality of learning data in the main storage device (memory) 33 or the auxiliary storage device (memory) 35. The learning data generation unit 319 may store a plurality of learning data in the external device A as the network storage. The learning data generation unit 319 may generate learning data by associating a plurality of structural models with simulated data for the same.
  • the components of the learning data generator 3 have been described above.
  • the procedure of the process of generating the learning data by the learning data generation device 3 (hereinafter, referred to as the learning data generation process) will be described.
  • the procedure of the training data generation process corresponds to the training data generation method.
  • the training data generation method generates a structural model based on a plurality of features related to the structure, and generates simulated data that simulates the observed values related to the structure by wave propagation simulation for the structural model, and the generated structure is generated.
  • the training data is generated by associating the model of the above with the simulated data.
  • the structure is an underground structure
  • the plurality of features include geological information.
  • Geological information can be, for example, how to bend the formation laterally, how to insert inconsistent surfaces, the size of the structure (width, depth) for modeling underground structures, the insertion of slow layers into the surface, or , Includes any one of the layer thickness distributions.
  • the training data generation method determines a plurality of feature quantities based on a range of feature quantity values and a random number.
  • the structure is an underground structure, and the range of feature value values is set based on geological information in the target area.
  • the geological information has at least one of logging data in the target area, observation data on the underground structure in the target area, and spatial distribution of feature quantities inferred in the target area.
  • the structure is an underground structure
  • the learning data generation method is, as shown in FIGS. 3 to 11, at least deposition, fold, fault, scraping, redeposition, and fold based on a plurality of feature quantities.
  • a structural model is generated by stepwise execution of events related to any one of, re-fault, or rock salt intrusion.
  • the training data generation method generates a model of the structure by executing events in the order of sedimentation, fold, and fault, for example.
  • the learning data generation method may generate a structural model by executing events in the order of fault, scraping, redeposition, refolding, and re-fault.
  • a structural model is generated by executing events in the order of re-fault and rock salt intrusion.
  • FIG. 13 is a flowchart showing an example of the procedure of the learning data generation process.
  • the setting unit 311 sets a feature range for each of a plurality of feature quantities related to the underground structure.
  • the upper and lower limits of the feature range are set by default settings.
  • the feature range may be set based on, for example, geological information, according to the user's instruction via the input device.
  • the function executed by the setting unit 311 may be set in another input device such as the external device 9A.
  • the determination unit 313 determines the underground model ID.
  • the determination unit 313 uses the number of the underground model ID as a seed for the random number to generate a random number.
  • the determination unit 313 determines the model generation parameters in the feature range based on the feature range and the random number for the plurality of feature quantities.
  • the determined model generation parameters are stored in the main storage device (memory) 33 or the auxiliary storage device (memory) 35.
  • the model generation unit 315 generates an underground structure model using the model generation parameters. Specifically, the model generation unit 315 generates a plurality of underground structure models in response to a plurality of random numbers. The model generation unit 315 stores a plurality of underground structure models in the main storage device (memory) 33 or the auxiliary storage device (memory) 35.
  • the simulated data generation unit 317 executes a seismic wave propagation simulation on the underground structure model and generates simulated data corresponding to the underground structure model.
  • the simulated data generation unit 317 stores the simulated data generated according to the underground structure model in the main storage device (memory) 33 or the auxiliary storage device (memory) 35.
  • the learning data generation unit 319 generates a plurality of learning data by associating a plurality of underground structure models generated according to random numbers with a plurality of simulated data generated according to the plurality of underground structure models.
  • the learning data generation unit 319 stores a plurality of learning data in the main storage device (memory) 33, the auxiliary storage device (memory) 35, or the external device A as network storage.
  • one learning data generation device 3 generates, for example, 500,000 or more learning data for one underground model ID, and stores the generated learning data.
  • FIG. 14 is a diagram showing an example of a velocity model as an example of an underground structure model. That is, FIG. 14 shows an example of a P-wave velocity (Vp) model generated by the parameter generation system. Seismic wave propagation in the generated underground structure model is simulated to create shot gathers (simulated data) corresponding to the velocity model.
  • Vp P-wave velocity
  • This system incorporates multiple probability distributions to extract a large number of samples in geological parameters and generates large-scale training data including a wide variety of underground structures.
  • the determination unit 313 uses a uniform distribution having upper and lower limits of geological parameters.
  • the range of geological parameters is set by the setting unit 311 by geological insights such as, for example, a rough estimate of the velocity structure.
  • the underground insight of the target can be obtained by using geological surveys such as analysis results by the conventional inverse problem method and logging data in the vicinity.
  • High quality training data is generated by making reasonable assumptions about these geological parameters.
  • the learning data generation process by the learning data generation device 3 has been described above.
  • the learning device 7 will be described. Since the hardware configuration of the learning device 7 is the same as that in the frame of the dotted line 3 in FIG. 1, the description thereof will be omitted.
  • the learning device 7 learns a deep neural network using a plurality of learning data.
  • the deep neural network is an example of a model (hereinafter referred to as an estimation model) that estimates information about a structure.
  • the learning device 7 uses the learning data generated by the above-mentioned learning data generation method to generate an estimation model that estimates information about the structure. That is, the model generation method for generating the estimation model using the training data generated by the training data generation method described above is executed by using at least one processor in the learning device 7.
  • FIG. 15 is a diagram showing an example of a functional block in the processor 81 mounted on the learning device 7.
  • the processor 81 has a preprocessing unit 811, a model setting unit 813, and a learning unit 815 as functions realized by the processor 81.
  • the functions realized by the preprocessing unit 811, the model setting unit 813, and the learning unit 815 are stored as programs in, for example, a main storage device or an auxiliary storage device mounted on the learning device 7.
  • the processor 81 reads and executes a program stored in the main storage device or the auxiliary storage device mounted on the learning device 7, and thereby functions related to the preprocessing unit 811, the model setting unit 813, and the learning unit 815. To realize.
  • the preprocessing unit 811 increases the number of simulated data corresponding to one underground structure model according to noise addition, various settings at the time of data acquisition in seismic survey, and the like.
  • the noise added to the simulated data set includes, for example, noise caused by a sensor that cannot receive vibration among a plurality of vibration receiving sensors in seismic survey, noise caused by a vehicle passing through a road in the survey area, noise caused by a test drilling well installed in the survey area, and the like.
  • the various settings include, for example, the positional relationship of the vibration receiving sensor with respect to the earthquake simulation vehicle, the method of generating shots by the earthquake simulation vehicle, and the like.
  • the preprocessing unit 811 inflates the number of simulated data for one underground structure model in the plurality of training data (Augmentation). That is, due to the padding of the simulated data by the pretreatment unit 811, a plurality of simulated data correspond to one underground structure model (correct answer data).
  • the preprocessing unit 811 stores a plurality of learning data increased by padding in the main storage device or the auxiliary storage device in the learning device 7.
  • the model setting unit 813 sets a pre-learning model to be trained using a plurality of training data sets among a plurality of training data.
  • the pre-learning model is, for example, a deep neural network.
  • the model setting unit 813 divides the plurality of training data into a plurality of training data sets and a plurality of verification data sets used for verification of the trained model.
  • the model setting unit 813 extracts a plurality of model setting data sets used for setting the pre-training model and a plurality of model verification data sets used for verifying the set model from the plurality of training data sets. do.
  • the plurality of data sets after extracting the model setting data set and the model verification data set from the plurality of training data sets will be referred to as the extracted data sets.
  • the model setting unit 813 sets the pre-learning model using the plurality of model setting data sets and the plurality of model verification data sets. For example, the model setting unit 813 applies a neural architecture search (Neural Architecture Search: NAS) using a hyperparameter automatic optimization framework to a plurality of model setting data sets and a plurality of model verification data sets. .. As a result, the model setting unit 813 sets the structure of the pre-learning model and the hyperparameters in the pre-learning model as the pre-learning model.
  • NAS for example, Optuna (registered trademark) is used.
  • the NAS is not limited to Optuna (registered trademark), and other architectures may be used.
  • the model setting unit 813 may set the model of the deep neural network suitable for exploration and the hyperparameters of the deep neural network according to the instruction of the user via the input device.
  • NAS automatically designs a neural network suitable for a given task.
  • the NAS will use multiple model setup datasets and multiple model validation datasets to continuously sample, train, and evaluate candidate architectures. Find the optimal architecture in the search space.
  • This architecture is defined by model hyperparameters, including the number of layers and channels.
  • the model setting unit 813 adopts Optuna (registered trademark), which is a hyperparameter automatic optimization framework.
  • Optuna® is a hyperparameter automatic optimization framework.
  • the user-friendly interface of Optuna® enables simple and automatic hyperparameter optimization via parallel processing, reducing calculation time.
  • the model setting unit 813 defines the search space of the neural architecture as an encoder-decoder model based on ResNet.
  • ResNet is a deep learning model used in both seismic inverse problems and computer vision.
  • encoder-decoder models that associate inputs and outputs with a common potential feature space.
  • a convolutional neural network typically captures spatial local features.
  • the encoder and the decoder are connected by a common latent feature space. Therefore, the encoder-decoder model can learn spatially global features having no structure by breaking the structure of the input simulated data (shot image). Learning spatially global features is useful for the seismic inverse problem.
  • the learning unit 815 learns the pre-learning model set by the model setting unit 813 using the extracted data set. For example, the learning unit 815 inputs each of the plurality of simulated data in the extracted data set into the pre-learning model.
  • the learning unit 815 uses, for example, a stochastic gradient descent method by back propagation to reduce the difference between the output from the pre-learning model and the underground structure model corresponding to the simulated data input to the pre-learning model. Adjust the weight of the pre-training model.
  • the learning unit 815 verifies the weight-adjusted pre-learning model with the verification data set. As a result, the learning unit 815 generates a trained model (estimated model).
  • the learning unit 815 stores the generated learned model in the main storage device or the auxiliary storage device in the learning device 7.
  • the example of generating a trained model by the learning device 7 has been described above.
  • an example of the process related to the estimation of the underground structure by the trained model hereinafter referred to as the underground structure estimation process.
  • shot data related to the underground structure to be estimated has been acquired in advance.
  • data cleansing such as noise reduction and outlier removal may be appropriately performed on the raw data or shot data.
  • the estimator stores the trained model in the main or auxiliary storage device in the estimator.
  • the estimation device may store a plurality of trained models generated according to the region. At this time, the estimation device selects the trained model according to the instruction of the user via the input device.
  • the estimation device estimates the underground structure to be estimated by inputting shot data into the trained model. As a result, the estimation device estimates the underground structure corresponding to the input shot data.
  • the estimated underground structure data may be post-processed as appropriate.
  • the estimation device stores the data of the estimated underground structure in the main storage device or the auxiliary storage device in the estimation device. At this time, the estimation device may display the data of the estimated underground structure on the display unit (display) provided in the estimation device.
  • the various processes in the embodiment apply to the inverse problem of estimating the velocity structure of each layer in the underground cross section from a two-dimensional (2D) shot gather image.
  • the experiment comprises four steps: training data generation, training data division, NAS, and evaluation of the optimal neural architecture.
  • a 300,000 pairs of training data data sets having a speed model corresponding to the underground structure model and shot gathers (simulated data) corresponding to the speed model were created.
  • the generation parameters (geological parameters) that control the geological properties of the velocity model were determined based on the geological insights of the Marmousi2 geological structural model (Martin, G.S., Willey, R.,. and Marfurt, K.J. [2006] Marmousi2: An elastic upgrade for Marmousi. The Reading Edge, 25 (2): 156-166.).
  • the summary information about the geological property was used to set the feature range, but the dataset itself (benchmark dataset) used to benchmark the trained model is not used. Seismic wave propagation was simulated by a supercomputer.
  • Training data division was applied to prevent data leakage during NAS processing.
  • the 300,000 training data were divided into a large training data set of 240,000 samples and a large validation data set of 60,000 samples. These large datasets were used to train optimal neural architectures.
  • 10,000 data were sampled from a large training dataset and this subset was divided into a small model setup dataset of 8,000 samples and a small model validation dataset of 2,000 samples. These small datasets were used to find the optimal neural architecture. By partitioning this dataset, non-regular access (data leakage) during the NAS step to a large number of validation datasets can be avoided.
  • the model setting unit 813 optimizes the encoder / decoder model based on ResNet by tuning hyperparameters such as the number of layers and the number of channels. Finally, we obtained an optimal neural architecture (pre-learning model) with more than 100 hidden layers, much deeper than those used in previous studies.
  • FIG. 16 is a diagram showing an example of estimation of P wave velocity (Vp) in the Marmousi2 geological structure model. That is, FIG. 16 shows a model based on the conventional ResNet50 (He, K., Zhang, X., Ren, S., and Sun, J. [2016] Deep redearing for image recognition Recognition Co., Ltd.
  • FIG. 16 shows the grand truth.
  • FIG. 16 shows the estimation by the trained model generated by the embodiment.
  • FIG. 16 shows the estimation using the encoder-decoder model based on ResNet50.
  • D in FIG. 16 shows a one-dimensional (1D) profile at a position of 2 km corresponding to the red line in (a) to (c).
  • E in FIG. 16 shows a 1D profile at 11 km corresponding to the blue line.
  • the result of the inverse problem corresponds to the result of the inverse problem of the Marmousi2 geological structure model. Due to the quality and quantity of the training dataset in this embodiment, the result (c) of the inverse problem with the conventional baseline ResNet50 based model roughly regenerated the velocity model (a). On the other hand, the result (b) of the inverse problem by the trained model generated by the present embodiment shows a result that is easier to understand than the result (c) of the conventional inverse problem. For example, the result (b) of the inverse problem by the trained model generated by this embodiment is more accurate than the result (c) of the conventional inverse problem in the rock salt layer (depth of (d) in FIG. 16). The velocity of 4 km) was predicted, and a more detailed structure was obtained in the complicated area around the fault ((e) in FIG. 16).
  • FIG. 17 shows the results of modeling for the 1994 Amoco static correction test dataset.
  • (A) in FIG. 17 shows the grand truth.
  • FIG. 17 (b) shows the estimation by the trained model generated by the embodiment.
  • the trained model generated by this embodiment estimated high resolution and good output even though the training data did not contain information related to the 1994 Amoco static correction test dataset.
  • a range of the value of the feature amount is set for each of the plurality of feature amounts related to the underground structure, and a plurality of features are set. Based on the range and random numbers, the value of the feature amount in the range is determined, the model of the underground structure is generated using the determined value, and the seismic wave propagation simulation for the model of the underground structure is performed. , Generate simulated data that simulates the observed values related to the underground structure, and generate a plurality of simulated data that are generated according to the random number, and a plurality of simulated data that are generated according to a plurality of models of the underground structure.
  • the range is set based on the geological information in the area including the area to be investigated of the underground structure.
  • the geological information in the learning data generation device 3 includes at least one of logging data in the area, observation data on the underground structure in the area, and spatial distribution of the feature quantity inferred in the area.
  • the feature quantity indicates the depth of the stripped surface in the model of the underground structure, the degree of bending of the fault in the model of the underground structure, and the inconsistency of the stratum, and the flow of the salt dome layer. It has an inconsistent surface formed by.
  • a normal fault or a reverse fault is set in the feature amount.
  • geological parameters using random numbers are used in the range of geological parameters set based on geological knowledge and insight. It is possible to generate a large number of diverse underground structure models by using the set geological parameters by geologically following the formation process of the underground structure. That is, according to the present learning data generation device 3, a large amount of realistic underground structure models can be generated by using random numbers with reference to the natural history of the underground structure, and a large amount of learning data can be generated. Since the large amount of training data generated by the training data generation device 3 has a large amount of underground structure models that are qualitatively high, that is, realistic, as teacher data, it is possible to improve the generalization performance of the trained model. can.
  • the learning data generation device 3 as an example, a plurality of said ranges corresponding to a plurality of feature quantities and two indicators for changing an upper limit value and a lower limit value in each of the plurality of said ranges are displayed. , A model for confirming the underground structure is generated using the representative values of the ranges specified by the two indicators, and the plurality of the ranges corresponding to the plurality of features and the two instructions in each of the plurality of the ranges are indicated. Display the vessel and the confirmation model.
  • the learning data generation device 3 when the user inputs the range to reflect the geological knowledge and the like in the range of the geological parameters, the user can change and adjust the range of the underground structure model. Changes can be easily grasped. As a result, the user's operability regarding the generation of the underground structure model can be improved, and the quality of the training data can be further improved. As a result, the generalization performance of the trained model can be improved.
  • simulated data is used, for example, by a hostile generation network (GAN), which uses observation data acquired by observing a structure, simulated data, and a loss function weighted according to the size of the data value in the simulated data.
  • GAN hostile generation network
  • learn the improver so that the improvement data that is closer to the reality of the observed data is improved based on the simulated data, input the simulated data to the learned improver, generate the improvement data, and use the structural model.
  • the purpose is to generate training data by associating it with improvement data.
  • the estimation model related to the structure hereinafter referred to as the underground structure estimation model
  • the underground structure estimation model is learned by using the training data having the improvement data, and the underground structure estimation process using the underground structure estimation model is also performed. explain.
  • the learning data generation unit 319 is provided in the processor 81 mounted on the learning device 7.
  • the processor in the estimation device relates to the learning data generation unit 319, the learning unit 815, and the observation data by inputting the observation data into the trained model. It is provided with an estimation unit that estimates the structure.
  • FIG. 18 is a diagram showing an outline of the generation of training data, the training of the underground structure estimation model TUSEM using the training data, and the underground structure estimation processing using the trained underground structure estimation model TUSEM. ..
  • the Sim shown in FIG. 18 corresponds to the learning data generation process in the embodiment. That is, Sim shown in FIG. 18 shows an outline of a process of generating a plurality of underground structure models and generating a plurality of simulated data SDs corresponding to the underground structure model USM by wave propagation simulation WPS. Since the processing contents in Sim shown in FIG. 18 are the same as those in the embodiment, the description thereof will be omitted. Further, Real in FIG. 18 shows the collected observation data (for example, shot data) OD used for carrying out the underground structure estimation process. The description of the acquisition of the observation data OD will be omitted because it conforms to the existing method.
  • the collected observation data for example, shot data
  • S2R in FIG. 18 is a process of learning the improver RF by the hostile generation network based on the simulated data SD and the observation data OD, and the simulated data SD using the learned improver TRF. It shows the process of converting to RD.
  • the hostile generation network in FIG. 18 has a refiner RF and a discriminator DCN to be trained. Further, in the learning process of the improver RF by the hostile generation network, the output from the improver RF during learning corresponds to the noise addition data NAD in which realistic noise or the like is added to the simulated data SD.
  • INV in FIG. 18 inputs the observation data OD into the learning process of the model LOM to be learned by the improved data RD and the underground structure model USM and the learned underground structure estimation model TUSEM, and outputs the estimated underground structure UGS. It shows the process of underground structure estimation processing.
  • the learning data generation unit 319 executes the wave propagation simulation WPS on the underground structure model USM.
  • the learning data generation unit 319 corresponds to the simulation result of the wave propagation simulation WPS and generates the simulated data SD corresponding to the underground structure model USM.
  • the learning data generation unit 319 generates a plurality of simulated data SDs corresponding to the plurality of underground structure model USMs by executing the above processing on the plurality of underground structure model USMs.
  • the learning data generation unit 319 adds randomly generated noise to each of the plurality of simulated data SDs.
  • the learning data generation unit 319 generates a plurality of simulated data to which random noise is added (hereinafter, referred to as noise-added simulated data).
  • the addition of noise is carried out, for example, by the arrow NA shown in FIG.
  • the addition of random noise may be appropriately omitted in order to shorten the processing time in this application example.
  • the learning data generation unit 319 associates the plurality of underground structure model USMs with the plurality of noise-added simulated data by input / output to the wave propagation simulation WPS, and stores them in the memory. Further, the learning data generation unit 319 reads the observation data OD acquired by the existing acquisition device and the network before learning from the memory.
  • the total number of observed data ODs may be smaller than, for example, the total number of noise-added simulated data, but it is desirable that the total number is a predetermined number or more in order to improve the generalization performance of learning for the improver RF. ..
  • the learning data generation unit 319 applies the observation data and the noise addition simulated data (simulated data when noise addition is not executed) to the network, and alternately learns the improver RF and the discriminator DCN.
  • the loss function used for learning the improver RF depends on the strength of the signal value in the simulated data SD, for example, in proportion to the magnitude of the signal value in the simulated data SD. Weighted to maintain that signal value.
  • the loss function peculiar to this application example will be described. Since existing techniques can be applied to other configurations and processes in the network, the description thereof will be omitted.
  • the improver loss function Loss L1 is, for example, the following equation (1).
  • Loss L1 mean (abs (I sim ) * abs (I sim -I taint )) ... (1)
  • the right side in the equation (1) shows that the absolute value abs of the difference between the image I sim and the image I point is multiplied by the absolute value of the image I sim for each pixel to calculate the mean value mean over the pixels of all the images. ing. Multiplying abs (I sim -I sim ) by abs (I sim ) is an absolute value image abs (I sim -I sim- ) before calculation of the mean value in a normal L1 loss mean (abs (I sim -I sim)).
  • I point is multiplied by the strength of the signal value in the simulated data SD as the weights abs (I sim ) .
  • the learning data generation unit 319 repeatedly learns the improver RF so that the improver loss function Loss L1 shown in the equation (1) becomes smaller.
  • the improver RF is learned to maintain the signal value in proportion to the magnitude of the signal value in the simulated data SD.
  • the weight in the improver loss function Loss L1 is not limited to the above abs (I sim ).
  • the weight in the improver loss function Loss L1 may be any function as long as it is a function of abs (I sim ) in a broad sense of monotonic increase (broad sense monotonic increase function).
  • the weights in the improver loss function Loss L1 are non-linear weights (abs (I sim )) ⁇ 2, square (abs (I sim )), or min (a, abs (I)) provided with an upper limit a. It may be sim ) or the like.
  • the learning data generation unit 319 is an improver RF (hereinafter, learned improver RF) learned by learning a network using a plurality of observation data and a plurality of noise addition simulated data (a plurality of simulated data when noise addition is not executed).
  • TRF is stored in the memory. Since the trained improver TRF is an improver that reflects the observation data, the area where the observation data was acquired, the collection conditions for collecting the observation data (for example, the observation equipment for collecting the observation data, the collection of the observation data by the operator). It reflects various characteristics at the time, characteristics of the research company regarding the collection of observation data, etc.), and is specialized in observation data, that is, it is automatically customized and learned about observation data.
  • the learning data generation unit 319 generates noise addition simulated data by adding randomly generated noise to the simulated data.
  • the learning data generation unit 319 reads the learned improver TRF from the memory, inputs noise-added simulated data or simulated data, and generates improvement data.
  • the noise addition simulation data input to the trained improver TRF may be the noise addition simulation data used for learning the improver RF.
  • the learning data generation unit 319 associates the structural model with the improvement data and generates learning data. Specifically, the learning data generation unit 319 associates the underground structure model USM with the improvement data RD to generate learning data.
  • the learning data generation unit 319 generates a plurality of learning data by repeating the processes from the generation of the noise-added simulated data to the generation of the improved data RD for the plurality of simulated data, for example.
  • the learning data generation unit 319 stores the generated plurality of learning data in the memory.
  • the learning unit 815 learns the underground structure estimation model TUSEM by learning the model LOM to be learned using each of the plurality of learning data. Since a known method can be appropriately used for training the model LOM using a plurality of training data, the description thereof will be omitted.
  • the learning of the underground structure estimation model TUSEM noise-added simulated data in which the simulated data SD, which is the simulation result, is given a sense of reality by the observation data OD is used. Therefore, in the underground structure estimation model TUSEM, a network (learned model) capable of inversion of the underground structure estimation with respect to the observation data OD which is the actual data is learned.
  • the estimation unit estimates the underground structure UGS by inputting the observation data OD into the underground structure estimation model TUSEM.
  • the estimated underground structure is stored in memory.
  • the estimated underground structure may be displayed on the display.
  • the observation data shall be shot data related to the underground structure acquired in the area related to the estimation of the underground structure.
  • FIG. 19 shows a series of processes of generation of training data, generation of an underground structure estimation model using the training data, and underground structure estimation processing using the generated underground structure estimation model (hereinafter, model generation estimation processing). It is a flowchart which shows an example of the procedure of).
  • the learning data generation unit 319 acquires a plurality of shot data ODs. For example, the learning data generation unit 319 acquires the shot data OD from the acquisition device, the server device in which the shot data OD is stored, or the storage medium in which the shot data OD is stored. The learning data generation unit 319 stores the acquired shot data OD in the memory.
  • Step S192 The learning data generation unit 319 reads a plurality of simulated data SDs from the memory.
  • the learning data generation unit 319 adds random noise to each of the plurality of simulated data SDs, and generates noise-added simulated data.
  • the learning data generation unit 319 stores the generated noise-added simulated data in the memory. This step may be omitted in order to shorten the processing time in the model generation estimation process.
  • Step S193 The learning data generation unit 319 learns the improver RF together with the classifier DCN using the noise addition simulated data and the plurality of shot data, and generates the trained improver TRF. Specifically, the learning data generation unit 319 inputs the shot data to the trained improver RF. The learning data generation unit 319 outputs the noise addition data NAD from the learned improver RF. The learning data generation unit 319 calculates the improver loss function Loss L1 based on the image corresponding to the noise-added simulated data and the image corresponding to the noise-added data NAD with respect to the simulated data SD.
  • the learning data generation unit 319 learns the improver RF by, for example, an error backpropagation method so as to reduce the improver loss function Loss L1 .
  • the learning data generation unit 319 learns the classifier DCN.
  • the learning data generation unit 319 learns the improver RF and the discriminator DCN by repeating these processes according to each of the plurality of noise-added simulated data and each of the plurality of shot data.
  • the learning data generation unit 319 generates the learned improver TRF.
  • the learning between the improver RF and the discriminator DCN may be realized by the learning unit 815 in the learning device.
  • the learning data generation unit 319 inputs each of the plurality of noise-added simulated data to the trained improver TRF, and generates a plurality of improvement data. Specifically, the learning data generation unit 319 generates a plurality of noise-added simulated data by adding randomly generated noise to each of the plurality of simulated data.
  • the learning data generation unit 319 associates a plurality of underground structure models with a plurality of improvement data to generate a plurality of learning data.
  • the learning data generation unit 193 stores a plurality of learning data in the memory.
  • Step S196 The learning unit 815 generates an underground structure estimation model TUSEM using a plurality of learning data. That is, the learning unit 815 generates the underground structure estimation model TUSEM by learning the model LOM to be learned over a plurality of learning data. The learning unit 815 stores the underground structure estimation model TUSEM in the memory.
  • Step S197 The estimation unit inputs each of a plurality of shot data into the underground structure estimation model TUSEM and estimates the underground structure UGS.
  • the estimation unit stores the estimated underground structure in the memory.
  • the estimation unit may display the estimated underground structure UGS on the display.
  • the learning data generation device 3 is hostile using the observation data OD acquired by observing the structure, the simulated data SD, and the loss function Loss L1 weighted according to the magnitude of the data values in the simulated data SD.
  • the improver RF is learned so that the simulated data SD is generated based on the simulated data SD, and the simulated data SD is converted into the learned improver TRF.
  • the improver RF is learned by using the improver loss function Loss L1 proportional to the magnitude of the signal value in the simulated data SD.
  • the trained improver TRF can be generated so as to maintain the signal value in the simulated data SD.
  • the learning data generator 3 since the improver RF is learned using the observation data OD, fluctuation factors such as noise due to the collection conditions of the observation data OD are also learned in the learning process of the improver RF. be able to. Therefore, according to the present learning data generation device 3, it is possible to generate the improved data RD in which the simulated data SD is close to the reality of the observation data OD. In other words, the learning data generation device 3 generates more realistic learning data by generating improved data in which reality is added to the simulated data SD which is the simulation result of the underground structure model USM. be able to.
  • the learning data generation device 3 may learn the improver RF by using the noise addition simulated data based on the simulated data SD, the observation data OD, and the improver loss function Loss L1 .
  • the improver RF and the discriminator DCN can be effectively trained with respect to the random noise in the observation data OD.
  • the improvement device RF can be learned so that more realistic improvement data can be generated.
  • the present learning data generation device 3 it is possible to generate more realistic improvement data, so that the quality of the learning data can be further improved.
  • This learning device learns the model LOM to be learned by the learning unit 815 using the learning data having the improvement data using the learned improver TRF.
  • the underground structure estimation model TUSEM is generated by learning the model LOM to be learned by using the highly realistic improvement data and the underground structure model USM as the correct answer data. .. From the above, according to this learning device, it is possible to learn the underground structure estimation model TUSEM capable of outputting a more reliable underground structure UGS with respect to the observation data OD.
  • the underground structure UGS is estimated by inputting the observation data OD used for learning the improver RF into the underground structure estimation model TUSEM. From the above, according to this estimation device, a highly realistic underground structure UGS can be estimated by using the underground structure estimation model TUSEM generated by using highly realistic learning data.
  • the learning data generation device 3 According to the present embodiment, it is possible to generate learning data related to the structure.
  • the training data generation method is a training data generation method executed by using at least one processor, and is based on a plurality of structural features. , Generate a model of the structure, generate simulated data that simulates the observed values related to the structure by wave propagation simulation for the model of the structure, and associate the generated model of the structure with the simulated data. Generate training data. Since the processing procedure corresponding to the learning data generation method corresponds to the procedure of the learning data generation processing, the description thereof will be omitted. Further, since the effect of the learning data generation method is the same as that of the embodiment, the description thereof will be omitted.
  • the model generation method When the technical features of the present embodiment are realized by the model generation method, the model generation method generates an estimation model that estimates information about the structure by using the training data generated by the above training data generation method. Since the processing procedure related to the model generation method corresponds to the processing procedure in the learning unit 815 and the like, the description thereof will be omitted. Further, since the effect of the model generation method is the same as that of the embodiment, the description thereof will be omitted.
  • each device in the above-described embodiment may be configured by hardware, or may be configured by information processing of software (program) executed by a CPU, GPU, or the like.
  • software that realizes at least a part of the functions of each device in the above-described embodiment is a flexible disk, a CD-ROM (Computer Disc-Read Only Memory), a USB memory, or the like.
  • the information processing of the software may be executed by storing the software in a non-temporary storage medium (non-temporary computer-readable medium) and causing the computer 30 to read the information. Further, the software may be downloaded via the communication network 5. Further, information processing may be executed by hardware by implementing the software in a circuit such as an ASIC or FPGA.
  • the type of storage medium that stores the software is not limited.
  • the storage medium is not limited to a removable one such as a magnetic disk or an optical disk, and may be a fixed storage medium such as a hard disk or a memory. Further, the storage medium may be provided inside the computer or may be provided outside the computer.
  • the expression (including similar expressions) of "at least one (one) of a, b and c" or "at least one (one) of a, b or c" is used. When used, it includes any of a, b, c, ab, ac, bc, or abc. Further, a plurality of instances may be included for any of the elements, such as aa, abb, aabbbcc, and the like. Furthermore, it also includes adding elements other than the listed elements (a, b and c), such as having d, such as abcd.
  • connection / combination when the terms "connected” and “coupled” are used, direct connection / combination and indirect connection / combination are used. , Electrical connection / combination, communication connection / combination, functional connection / combination, physical connection / combination, etc. Intended as a term.
  • the term should be interpreted as appropriate according to the context in which the term is used, but any connection / combination form that is not intentionally or naturally excluded is not included in the term. It should be interpreted in a limited way.
  • the physical structure of the element A can perform the operation B. Including that the element A has a structure and the permanent or temporary setting (setting / configuration) of the element A is set (configured / set) to actually execute the operation B. good.
  • the element A is a general-purpose processor
  • the processor has a hardware configuration capable of executing the operation B, and the operation B is set by setting a permanent or temporary program (instruction). It suffices if it is configured to actually execute.
  • the element A is a dedicated processor, a dedicated arithmetic circuit, or the like, the circuit structure of the processor actually executes the operation B regardless of whether or not the control instruction and data are actually attached. It suffices if it is constructed.
  • finding the global optimal value finding the approximate value of the global optimal value, finding the local optimal value, and local optimal It should be interpreted as appropriate according to the context in which the term was used, including finding an approximation of the value. It also includes probabilistically or heuristically finding approximate values of these optimal values.
  • the respective hardware when a plurality of hardware performs a predetermined process, the respective hardware may cooperate to perform the predetermined process, or some hardware may perform the predetermined process. You may do all of the above. Further, some hardware may perform a part of a predetermined process, and another hardware may perform the rest of the predetermined process.
  • the hardware that performs the first process and the hardware that performs the second process when expressions such as "one or more hardware performs the first process and the one or more hardware performs the second process" are used. , The hardware that performs the first process and the hardware that performs the second process may be the same or different. That is, the hardware that performs the first process and the hardware that performs the second process may be included in the one or more hardware.
  • the hardware may include an electronic circuit or a device including the electronic circuit.
  • each storage device (memory) among the plurality of storage devices (memory) stores only a part of the data. It may be stored or the entire data may be stored.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Theoretical Computer Science (AREA)
  • Geophysics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Software Systems (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Mathematical Physics (AREA)
  • Evolutionary Computation (AREA)
  • Computing Systems (AREA)
  • Medical Informatics (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

A learning data generation method according to one embodiment of the present invention is implemented by using at least one processor, and involves: generating a model of a structure on the basis of multiple feature quantities pertaining to the structure; generating, through a wave propagation simulation of the model of the structure, simulated data in which measured values pertaining to the structure are expressed in a simulated manner; and generating learning data by associating the generated model of the structure and the simulated data.

Description

学習データ生成方法、モデル生成方法および学習データ生成装置Training data generation method, model generation method and training data generation device
 本発明の実施形態は、学習データ生成方法、モデル生成方法および学習データ生成装置に関する。 The embodiment of the present invention relates to a learning data generation method, a model generation method, and a learning data generation device.
 地震波形などの観測データから地下における物性値の空間分布を推論することは、地震波形のインバージョン(震探逆問題:seismic inversion)に相当する。震探逆問題を解く際、専門知識を必要とする地震波伝播シミュレーションが、インバージョン過程で多数回必要とされる。近年では、地震記録データから直接的に地下の速度などの物理的プロパティを推定する深層学習法の実施が、研究者らによって開始された。例えば、地震探査により取得された観測データを学習済みのディープニューラルネットワーク(Deep Neural Network:DNN)に入力することで、観測データから地下における物性値の空間分布を推論する。このアプローチにより震探逆問題の所要時間が削減される。 Inferring the spatial distribution of physical property values underground from observation data such as earthquake waveforms corresponds to seismic waveform inversion (seismic inverse problem). Seismic wave propagation simulations, which require specialized knowledge to solve the seismic inverse problem, are required many times during the inversion process. In recent years, researchers have begun to implement deep learning methods that estimate physical properties such as underground velocity directly from seismic record data. For example, by inputting the observation data acquired by the seismic survey into the trained deep neural network (Deep Neural Network: DNN), the spatial distribution of the physical property values in the underground is inferred from the observation data. This approach reduces the time required for the seismic inverse problem.
 しかしながら、例えば、地震波形を用いた地下探査としてDNNなどのモデルを使用する場合、現実の地下構造を把握できない等の理由により、モデル学習に用いるデータを大量に揃えることが難しいという問題がある。 However, for example, when a model such as DNN is used for underground exploration using seismic waveforms, there is a problem that it is difficult to prepare a large amount of data used for model learning because the actual underground structure cannot be grasped.
 発明が解決しようとする課題は、構造に関する学習データを生成することにある。 The problem that the invention tries to solve is to generate learning data about the structure.
 実施形態に係る学習データ生成方法は、少なくとも1つのプロセッサを用いて実行される学習データ生成方法であって、構造に関する複数の特徴量に基づいて、構造のモデルを生成することと、構造のモデルに対する波動伝播シミュレーションにより、前記構造に関する観測値を模擬的に示す模擬データを生成することと、生成された前記構造のモデルと前記模擬データとを対応付けて学習データを生成する。 The training data generation method according to the embodiment is a training data generation method executed by using at least one processor, and generates a structural model based on a plurality of structural features, and a structural model. By the wave propagation simulation for, the simulated data showing the observed values related to the structure is generated, and the generated model of the structure is associated with the simulated data to generate the learning data.
図1は、実施形態に係る学習データ生成装置を有する学習システムのハードウェア構成の一例を示すブロック図である。FIG. 1 is a block diagram showing an example of a hardware configuration of a learning system having a learning data generation device according to an embodiment. 図2は、実施形態に係り、プロセッサにおける機能ブロックの一例を示す図である。FIG. 2 is a diagram showing an example of a functional block in a processor according to an embodiment. 図3は、実施形態に係り、地下構造モデルの生成前の生成領域の一例を示す図である。FIG. 3 is a diagram showing an example of a generation area before generation of the underground structure model according to the embodiment. 図4は、実施形態に係り、複数の地層が堆積された生成領域の一例を示す図である。FIG. 4 is a diagram showing an example of a generation area in which a plurality of strata are deposited according to the embodiment. 図5は、実施形態に係り、複数の地層が褶曲された生成領域の一例を示す図である。FIG. 5 is a diagram showing an example of a generation region in which a plurality of strata are folded according to the embodiment. 図6は、実施形態に係り、複数の地層に対して断層が生成された生成領域の一例を示す図である。FIG. 6 is a diagram showing an example of a generation region in which faults are generated for a plurality of strata according to the embodiment. 図7は、実施形態に係り、不整合面より浅い地層に対して削剥が行われた生成領域の一例を示す図である。FIG. 7 is a diagram showing an example of a generated region in which the stratum shallower than the inconsistent surface is stripped according to the embodiment. 図8は、実施形態に係り、削剥領域に複数の地層が再度堆積された生成領域の一例を示す図である。FIG. 8 is a diagram showing an example of a generation area in which a plurality of strata are re-deposited in the exfoliation area according to the embodiment. 図9は、実施形態に係り、複数の地層が褶曲され、その後、複数の断層が生成された生成領域の一例を示す図である。FIG. 9 is a diagram showing an example of a generation region in which a plurality of strata are folded and then a plurality of faults are generated according to the embodiment. 図10は、実施形態に係り、複数の地層に対して褶曲と断層が生成された生成領域の一例を示す図である。FIG. 10 is a diagram showing an example of a generation region in which folds and faults are generated for a plurality of strata according to the embodiment. 図11は、実施形態に係り、岩塩が貫入された生成領域の一例を示す図である。FIG. 11 is a diagram showing an example of a formation region intrusive with rock salt according to the embodiment. 図12は、実施形態に係り、コモン・ショット・ギャザーデータの画像(ショット画像)の一例を示す図である。FIG. 12 is a diagram showing an example of an image (shot image) of common shot gather data according to the embodiment. 図13は、実施形態に係り、学習データ生成処理の手順の一例を示すフローチャートである。FIG. 13 is a flowchart showing an example of the procedure of the learning data generation processing according to the embodiment. 図14は、実施形態に係り、媒介変数生成システムによって生成されたP波速度(Vp)モデルの例を示す図である。FIG. 14 is a diagram showing an example of a P-wave velocity (Vp) model generated by a parameter generation system according to an embodiment. 図15は、実施形態に係り、学習装置に搭載されたプロセッサにおける機能ブロックの一例を示す図である。FIG. 15 is a diagram showing an example of a functional block in a processor mounted on a learning device according to an embodiment. 図16は、実施形態に係り、Marmousi2地質構造モデルにおけるP波速度(Vp)の推定の一例を示す図である。FIG. 16 is a diagram showing an example of estimation of P wave velocity (Vp) in the Marmousi2 geological structure model according to the embodiment. 図17は、実施形態に係り、1994Amoco静補正テストデータセットにおけるP波速度(Vp)の推定の一例を示す図である。FIG. 17 is a diagram showing an example of estimation of P wave velocity (Vp) in the 1994 Amoco static correction test data set according to the embodiment. 図18は、実施形態の応用例に係り、学習データの生成と、当該学習データを用いた地下構造推定モデルの生成と、生成された地下構造推定モデルを用いた地下構造推定処理との概要の一例を示す図である。FIG. 18 shows an outline of the generation of training data, the generation of an underground structure estimation model using the training data, and the underground structure estimation process using the generated underground structure estimation model, according to the application example of the embodiment. It is a figure which shows an example. 図19は、実施形態の応用例に係り、学習データの生成と、当該学習データを用いた地下構造推定モデルの生成と、モデル生成推定処理の手順の一例を示すフローチャートである。FIG. 19 is a flowchart showing an example of a procedure of generating learning data, generating an underground structure estimation model using the learning data, and performing model generation estimation processing according to an application example of the embodiment.
 以下、図面を参照しながら、学習データ生成方法、モデル生成方法および学習データ生成装置に関する実施形態について詳細に説明する。学習データ生成方法は、例えば、少なくとも1つのプロセッサを用いて実行される。 Hereinafter, embodiments relating to the learning data generation method, the model generation method, and the training data generation device will be described in detail with reference to the drawings. The training data generation method is executed using, for example, at least one processor.
 (実施形態)
 図1は、本実施形態に係る学習データ生成装置3を有する学習システム1のハードウェア構成の一例を示すブロック図である。図1に示すように、学習システム1は、学習データ生成装置3と、通信ネットワーク5を介して学習データ生成装置3に接続された学習装置7と、通信ネットワーク5を介して学習データ生成装置3に接続された外部装置9Aと、デバイスインタフェース39を介して接続された外部装置9Bと、を備えている。学習システム1は、学習データ生成装置3により複数の学習データを生成する。学習システム1は、生成された複数の学習データを用いて、学習対象のディープニューラルネットワークを学習して、学習済みモデルを生成する。
(Embodiment)
FIG. 1 is a block diagram showing an example of a hardware configuration of a learning system 1 having a learning data generation device 3 according to the present embodiment. As shown in FIG. 1, the learning system 1 includes a learning data generation device 3, a learning device 7 connected to the learning data generation device 3 via a communication network 5, and a learning data generation device 3 via a communication network 5. An external device 9A connected to the device 9A and an external device 9B connected via the device interface 39 are provided. The learning system 1 generates a plurality of learning data by the learning data generation device 3. The learning system 1 trains a deep neural network to be trained using a plurality of generated training data to generate a trained model.
 学習済みモデルは、例えば、観測対象に対して音波、電磁波、放射線などを出力し、観測対象の内部を伝搬した反射波に基づいて当該観測対象の構造を推定するモデルである。当該構造は、例えば、観測対象の内部構造である。観測対象は、地下、柱や橋などの人工構造物、雲、生体などの物体である。学習済みモデルは、例えば、非破壊検査、構造物に対する音波診断、エコー検査、潜水艦ソナー、リモートセンシングなどに適用可能である。以下、説明を具体的にするために、観測対象は、地下構造であるものとして説明する。このとき、学習済みモデルは、地震波(弾性波)、電磁気、または放射線を入力として、観測対象の地下構造を出力するモデルとなる。例えば、入力として地震波が用いられる場合、学習済みモデルは、地震探査に用いられる。また、例えば、入力として電磁波(電磁場)が用いられる場合、学習済みモデルは、電磁探査に用いられる。より具体的にするために、学習済みモデルは、地震探査に用いられるものとして説明する。このとき、複数の学習データは、観測対象である地下に対して放射された地震波により観測対象の内部を伝搬した反射波に対応する。 The trained model is, for example, a model that outputs sound waves, electromagnetic waves, radiation, etc. to the observation target and estimates the structure of the observation target based on the reflected wave propagating inside the observation target. The structure is, for example, the internal structure of the observation target. Observation targets are underground, artificial structures such as pillars and bridges, clouds, and living organisms. The trained model can be applied, for example, to non-destructive inspection, ultrasonic diagnosis of structures, echo inspection, submarine sonar, remote sensing, and the like. Hereinafter, in order to make the explanation concrete, the observation target will be described as being an underground structure. At this time, the trained model is a model that outputs the underground structure to be observed by inputting seismic waves (elastic waves), electromagnetic waves, or radiation. For example, if seismic waves are used as input, the trained model is used for seismic exploration. Further, for example, when an electromagnetic wave (electromagnetic field) is used as an input, the trained model is used for electromagnetic exploration. To be more specific, the trained model will be described as being used for seismic exploration. At this time, the plurality of training data correspond to the reflected waves propagated inside the observation target by the seismic waves radiated to the underground of the observation target.
 学習データ生成装置3は、コンピュータ30と、デバイスインタフェース39を介してコンピュータ30に接続された外部装置9Bと、を有する。また、学習装置7は、デバイスインタフェース39を介してコンピュータ30に接続されてもよい。コンピュータ30は、一例として、プロセッサ31と、主記憶装置(メモリ)33と、補助記憶装置(メモリ)35と、ネットワークインタフェース37と、デバイスインタフェース39と、を備える。学習データ生成装置3は、プロセッサ31と、主記憶装置33と、補助記憶装置35と、ネットワークインタフェース37と、デバイスインタフェース39とがバス41を介して接続されたコンピュータ30として実現されてもよい。なお、コンピュータ30は、学習装置7に搭載されてもよい。 The learning data generation device 3 has a computer 30 and an external device 9B connected to the computer 30 via the device interface 39. Further, the learning device 7 may be connected to the computer 30 via the device interface 39. As an example, the computer 30 includes a processor 31, a main storage device (memory) 33, an auxiliary storage device (memory) 35, a network interface 37, and a device interface 39. The learning data generation device 3 may be realized as a computer 30 in which the processor 31, the main storage device 33, the auxiliary storage device 35, the network interface 37, and the device interface 39 are connected via the bus 41. The computer 30 may be mounted on the learning device 7.
 図1に示すコンピュータ30は、各構成要素を一つ備えているが、同じ構成要素を複数備えていてもよい。また、図1では、1台のコンピュータ30が示されているが、ソフトウェアが複数台のコンピュータにインストールされて、当該複数台のコンピュータそれぞれがソフトウェアの同一の又は異なる一部の処理を実行してもよい。この場合、コンピュータそれぞれがネットワークインタフェース37等を介して通信して処理を実行する分散コンピューティングの形態であってもよい。つまり、本実施形態における学習データ生成装置3は、1又は複数の記憶装置に記憶された命令を1台又は複数台のコンピュータが実行することで後述の各種機能を実現するシステムとして構成されてもよい。また、端末から送信された情報は、クラウド上に設けられた1台又は複数台のコンピュータで処理され、この処理結果は、外部装置9Bに相当する表示装置(表示部)などの端末に送信するような構成であってもよい。表示装置は、例えば、各種ディスプレイにより実現される。 The computer 30 shown in FIG. 1 includes one component for each component, but may include a plurality of the same components. Further, although one computer 30 is shown in FIG. 1, software is installed on a plurality of computers, and each of the plurality of computers executes the same or different part of the software. May be good. In this case, it may be a form of distributed computing in which each computer communicates via a network interface 37 or the like to execute processing. That is, even if the learning data generation device 3 in the present embodiment is configured as a system that realizes various functions described later by executing instructions stored in one or a plurality of storage devices by one or a plurality of computers. good. Further, the information transmitted from the terminal is processed by one or a plurality of computers provided on the cloud, and the processing result is transmitted to a terminal such as a display device (display unit) corresponding to the external device 9B. It may have such a configuration. The display device is realized by, for example, various displays.
 本実施形態における学習データ生成装置3の各種演算は、1又は複数のプロセッサを用いて、又は、ネットワークを介した複数台のコンピュータを用いて、並列処理で実行されてもよい。また、各種演算が、プロセッサ内に複数ある演算コアに振り分けられて、並列処理で実行されてもよい。また、本開示の処理、手段等の一部又は全部は、ネットワークを介してコンピュータ30と通信可能なクラウド上に設けられたプロセッサ及び記憶装置の少なくとも一方により実行されてもよい。このように、本実施形態における後述の各種は、1台又は複数台のコンピュータによる並列コンピューティングの形態であってもよい。 Various operations of the learning data generation device 3 in the present embodiment may be executed in parallel processing by using one or a plurality of processors or by using a plurality of computers via a network. Further, various operations may be distributed to a plurality of arithmetic cores in the processor and executed in parallel processing. In addition, some or all of the processes, means, etc. of the present disclosure may be executed by at least one of a processor and a storage device provided on the cloud capable of communicating with the computer 30 via the network. As described above, various types described later in this embodiment may be in the form of parallel computing by one or a plurality of computers.
 プロセッサ31は、コンピュータ30の制御装置及び演算装置を含む電子回路(処理回路、Processing circuit、Processing circuitry、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、FPGA(Field Programmable Gate Array)、又はASIC(Application Specific Integrated Circuit)等)であってもよい。また、プロセッサ31は、専用の処理回路を含む半導体装置等であってもよい。プロセッサ31は、電子論理素子を用いた電子回路に限定されるものではなく、光論理素子を用いた光回路により実現されてもよい。また、プロセッサ31は、量子コンピューティングに基づく演算機能を含むものであってもよい。 The processor 31 is an electronic circuit (processing circuit, processing circuit, processing cycle, CPU (Central Processing Unit), GPU (Graphics Processing Unit), FPGA (Field Program)) including a control device and a computing device of the computer 30. (Application Special Integrated Circuit), etc.) may be used. Further, the processor 31 may be a semiconductor device or the like including a dedicated processing circuit. The processor 31 is not limited to an electronic circuit using an electronic logic element, and may be realized by an optical circuit using an optical logic element. Further, the processor 31 may include an arithmetic function based on quantum computing.
 プロセッサ31は、コンピュータ30の内部構成の各装置等から入力されたデータやソフトウェア(プログラム)に基づいて演算処理を行い、演算結果や制御信号を各装置等に出力することができる。プロセッサ31は、コンピュータ30のOS(Operating System)や、アプリケーション等を実行することにより、コンピュータ30を構成する各構成要素を制御してもよい。 The processor 31 can perform arithmetic processing based on data and software (programs) input from each device or the like of the internal configuration of the computer 30 and output the arithmetic result or control signal to each device or the like. The processor 31 may control each component constituting the computer 30 by executing an OS (Operating System) of the computer 30, an application, or the like.
 本実施形態における学習データ生成装置3は、1又は複数のプロセッサ31により実現されてもよい。ここで、プロセッサ71は、1チップ上に配置された1又は複数の電子回路を指してもよいし、2つ以上のチップあるいは2つ以上のデバイス上に配置された1又は複数の電子回路を指してもよい。複数の電子回路を用いる場合、各電子回路は有線又は無線により通信してもよい。 The learning data generation device 3 in this embodiment may be realized by one or a plurality of processors 31. Here, the processor 71 may refer to one or more electronic circuits arranged on one chip, or may refer to one or more electronic circuits arranged on two or more chips or two or more devices. You may point. When a plurality of electronic circuits are used, each electronic circuit may communicate by wire or wirelessly.
 主記憶装置33は、プロセッサ31が実行する命令及び各種データ等を記憶する記憶装置であり、主記憶装置33に記憶された情報がプロセッサ31により読み出される。補助記憶装置35は、主記憶装置33以外の記憶装置である。なお、これらの記憶装置は、電子情報を格納可能な任意の電子部品を意味するものとし、半導体のメモリでもよい。半導体のメモリは、揮発性メモリ、不揮発性メモリのいずれでもよい。本実施形態における学習データ生成装置3において用いられる各種データを保存するための記憶装置は、主記憶装置33又は補助記憶装置35により実現されてもよく、プロセッサ31に内蔵される内蔵メモリにより実現されてもよい。例えば、本実施形態における記憶部は、主記憶装置33又は補助記憶装置35により実現されてもよい。 The main storage device 33 is a storage device that stores instructions executed by the processor 31, various data, and the like, and the information stored in the main storage device 33 is read out by the processor 31. The auxiliary storage device 35 is a storage device other than the main storage device 33. Note that these storage devices mean any electronic component capable of storing electronic information, and may be a semiconductor memory. The semiconductor memory may be either a volatile memory or a non-volatile memory. The storage device for storing various data used in the learning data generation device 3 in the present embodiment may be realized by the main storage device 33 or the auxiliary storage device 35, or is realized by the built-in memory built in the processor 31. You may. For example, the storage unit in this embodiment may be realized by the main storage device 33 or the auxiliary storage device 35.
 記憶装置(メモリ)1つに対して、複数のプロセッサが接続(結合)されてもよいし、単数のプロセッサ31が接続されてもよい。プロセッサ1つに対して、複数の記憶装置(メモリ)が接続(結合)されてもよい。本実施形態における学習データ生成装置3が、少なくとも1つの記憶装置(メモリ)とこの少なくとも1つの記憶装置(メモリ)に接続(結合)される複数のプロセッサで構成される場合、複数のプロセッサのうち少なくとも1つのプロセッサが、少なくとも1つの記憶装置(メモリ)に接続(結合)される構成を含んでもよい。また、複数台のコンピュータに含まれる記憶装置(メモリ)とプロセッサ31とによって、この構成が実現されてもよい。さらに、記憶装置(メモリ)がプロセッサ31と一体になっている構成(例えば、L1キャッシュ、L2キャッシュを含むキャッシュメモリ)を含んでもよい。 A plurality of processors may be connected (combined) to one storage device (memory), or a single processor 31 may be connected. A plurality of storage devices (memory) may be connected (combined) to one processor. When the learning data generation device 3 in the present embodiment is composed of at least one storage device (memory) and a plurality of processors connected (combined) to the at least one storage device (memory), among the plurality of processors At least one processor may include a configuration in which it is connected (combined) to at least one storage device (memory). Further, this configuration may be realized by a storage device (memory) included in a plurality of computers and a processor 31. Further, a configuration in which the storage device (memory) is integrated with the processor 31 (for example, a cache memory including an L1 cache and an L2 cache) may be included.
 ネットワークインタフェース37は、無線又は有線により、通信ネットワーク5に接続するためのインタフェースである。ネットワークインタフェース37は、既存の通信規格に適合したもの等、適切なインタフェースを用いればよい。ネットワークインタフェース37により、通信ネットワーク5を介して接続された学習装置7および外部装置9Aと情報のやり取りが行われてもよい。なお、通信ネットワーク5は、WAN(Wide Area Network)、LAN(Local Area Network)、PAN(Personal Area Network)等の何れか、又は、それらの組み合わせであってよく、コンピュータ30と外部装置9Aとの間で情報のやり取りが行われるものであればよい。WANの一例としてインターネット等があり、LANの一例としてIEEE802.11やイーサネット(登録商標)等があり、PANの一例としてBluetooth(登録商標)やNFC(Near Field Communication)等がある。 The network interface 37 is an interface for connecting to the communication network 5 wirelessly or by wire. As the network interface 37, an appropriate interface such as one conforming to an existing communication standard may be used. The network interface 37 may exchange information with the learning device 7 and the external device 9A connected via the communication network 5. The communication network 5 may be any one of WAN (Wide Area Network), LAN (Local Area Network), PAN (Personal Area Network), or a combination thereof, and may be a combination of the computer 30 and the external device 9A. Any information can be exchanged between them. An example of WAN is the Internet, an example of LAN is IEEE802.11, Ethernet (registered trademark), etc., and an example of PAN is Bluetooth (registered trademark), NFC (Near Field Communication), etc.
 デバイスインタフェース39は、表示装置等の出力装置、入力装置(入力部)、および外部装置9Bと直接接続するUSB(Universal Serial Bus)等のインタフェースである。なお、出力装置は、音声等を出力するスピーカなどを有していてもよい。 The device interface 39 is an interface such as an output device such as a display device, an input device (input unit), and a USB (Universal Serial Bus) that is directly connected to the external device 9B. The output device may have a speaker or the like that outputs voice or the like.
 外部装置9Aはコンピュータ30とネットワークを介して接続されている装置である。外部装置9Bはコンピュータ30と直接接続されている装置である。 The external device 9A is a device connected to the computer 30 via a network. The external device 9B is a device that is directly connected to the computer 30.
 外部装置9A又は外部装置9Bは、一例として、入力装置であってもよい。入力装置は、例えば、カメラ、マイクロフォン、モーションキャプチャ、各種センサ、キーボード、マウス、又はタッチパネル等のデバイスであり、取得した情報をコンピュータ30に与える。また、外部装置9A又は外部装置9Bは、パーソナルコンピュータ、タブレット端末、又はスマートフォン等の入力部とメモリとプロセッサを備えるデバイス等であってもよい。 The external device 9A or the external device 9B may be an input device as an example. The input device is, for example, a device such as a camera, a microphone, a motion capture, various sensors, a keyboard, a mouse, or a touch panel, and gives the acquired information to the computer 30. Further, the external device 9A or the external device 9B may be a personal computer, a tablet terminal, a device having an input unit such as a smartphone, a memory, and a processor.
 また、外部装置9A又は外部装置9Bは、一例として、出力装置(出力部)でもよい。出力装置は、例えば、LCD(Liquid Crystal Display)、CRT(Cathode Ray Tube)、PDP(Plasma Display Panel)、又は有機EL(Electro Luminescence)パネル等の表示装置(表示部)であってもよいし、音声等を出力するスピーカ等であってもよい。また、外部装置9A又は外部装置9Bは、パーソナルコンピュータ、タブレット端末、又はスマートフォン等の出力部とメモリとプロセッサを備えるデバイス等であってもよい。 Further, the external device 9A or the external device 9B may be an output device (output unit) as an example. The output device may be, for example, a display device (display unit) such as an LCD (Liquid Crystal Display), a CRT (Cathode Ray Tube), a PDP (Plasma Display Panel), or an organic EL (Electro Luminescence) panel. It may be a speaker or the like that outputs voice or the like. Further, the external device 9A or the external device 9B may be a personal computer, a tablet terminal, a device having an output unit such as a smartphone, a memory, and a processor.
 また、外部装置9A又は外部装置9Bは、記憶装置(メモリ)であってもよい。例えば、外部装置9Aはネットワークストレージ等であってもよく、外部装置9BはHDD等のストレージであってもよい。 Further, the external device 9A or the external device 9B may be a storage device (memory). For example, the external device 9A may be a network storage or the like, and the external device 9B may be a storage such as an HDD.
 また、外部装置9A又は外部装置9Bは、本実施形態における学習データ生成装置3の構成要素の一部の機能を有する装置でもよい。つまり、コンピュータ30は、外部装置9A又は外部装置9Bの処理結果の一部又は全部を、送信又は受信してもよい。 Further, the external device 9A or the external device 9B may be a device having a part of the functions of the components of the learning data generation device 3 in the present embodiment. That is, the computer 30 may transmit or receive a part or all of the processing result of the external device 9A or the external device 9B.
 図2は、プロセッサ31における機能ブロックの一例を示す図である。プロセッサ31は、当該プロセッサ31により実現される機能として、設定部311と、決定部313と、モデル生成部315と、模擬データ生成部317と、学習データ生成部319とを有する。設定部311と、決定部313と、モデル生成部315と、模擬データ生成部317と、学習データ生成部319とにより実現される機能は、それぞれプログラムとして、例えば、主記憶装置33または補助記憶装置35などに格納される。プロセッサ31は、主記憶装置33または補助記憶装置35などに格納されたプログラムを読み出し、実行することで、設定部311と、決定部313と、モデル生成部315と、模擬データ生成部317と、学習データ生成部319とに関する機能を実現する。 FIG. 2 is a diagram showing an example of a functional block in the processor 31. The processor 31 has a setting unit 311, a determination unit 313, a model generation unit 315, a simulated data generation unit 317, and a learning data generation unit 319 as functions realized by the processor 31. The functions realized by the setting unit 311, the determination unit 313, the model generation unit 315, the simulated data generation unit 317, and the learning data generation unit 319 are, as programs, for example, a main storage device 33 or an auxiliary storage device. It is stored in 35 or the like. The processor 31 reads and executes a program stored in the main storage device 33, the auxiliary storage device 35, or the like, thereby causing the setting unit 311, the determination unit 313, the model generation unit 315, the simulated data generation unit 317, and the like. The function related to the learning data generation unit 319 is realized.
 設定部311は、地下構造に関する複数の特徴量各々に対して、特徴量の値の範囲(以下、特徴範囲と呼ぶ)を設定する。例えば、特徴量は、地質学的なパラメータである。地質学的なパラメータを用いて記述される地質構造要素としては、堆積、褶曲、断層、削剥、再堆積、再褶曲、再断層、岩塩貫入、地層の横方向への曲げ方、不整合面の入れ方、地下構造のモデル化に関する構造のサイズ(横幅、深さ)、表層への低速層の挿入、又は、層の厚みの分布などがある。地質学的なパラメータは、例えば、堆積された地層の厚み、当該地層の褶曲に関する振幅および波長(または単位長さ当たりの地層の振動の回数)、水平に対する断層の角度、断層の長さ、断層の曲がり具合(断層の横方向(水平方向)への曲がりの程度)、断層変位の深度に依存した増幅、P波速度、S波速度に対するP波速度の比、岩塩ドームの分布位置、岩塩ドームのP波速度、地層の削剥量、不整合面の深度、岩石速度の深度依存性などである。また、設定部311は、地質学上同時に起こらないものを設定することができる。例えば、設定部311は、断層に関する特徴量において、正断層または逆断層を設定する。 The setting unit 311 sets a range of feature value values (hereinafter referred to as a feature range) for each of a plurality of feature quantities related to the underground structure. For example, features are geological parameters. Geological structural elements described using geological parameters include sedimentation, folds, faults, ablation, redeposition, re-folding, re-faults, rock salt intrusion, lateral bending of formations, and inconsistent surfaces. There are how to insert, the size of the structure (width, depth) related to the modeling of the underground structure, the insertion of the low-speed layer into the surface layer, or the distribution of the thickness of the layer. Geological parameters include, for example, the thickness of the deposited formation, the amplitude and wavelength (or number of vibrations of the formation per unit length) with respect to the curvature of the formation, the angle of the fault with respect to the horizontal, the length of the fault, and the fault. Bending (degree of bending in the lateral direction (horizontal direction) of the fault), amplification depending on the depth of fault displacement, P wave velocity, ratio of P wave velocity to S wave velocity, distribution position of rock salt dome, rock salt dome P-wave velocity, amount of stratum scraping, depth of unconformity surface, depth dependence of rock velocity, etc. In addition, the setting unit 311 can set things that do not occur at the same time in geology. For example, the setting unit 311 sets a normal fault or a reverse fault in the feature amount related to the fault.
 具体的には、設定部311は、主記憶装置33または補助記憶装置35に記憶されたデフォルト設定により、複数の特徴量に対する複数の特徴範囲を設定する。デフォルト設定は、例えば、あらゆる地層のパターンを網羅する複数の特徴範囲の組み合わせである。なお、デフォルト設定は、一つに限定されず、複数の地域に応じて複数設定されていてもよい。このとき、デフォルト設定は、地下構造の調査の対象となる領域(以下、調査領域と呼ぶ)を含む地域に応じた地質学的な情報に応じて予め設定される。地質学的な情報とは、当該地域において過去に取得された各種データであって、例えば、当該地域において掘削された坑井での検層データと、当該地域において地下構造に関する観測データと、当該地域において推論された特徴量の空間分布とのうち少なくとも一つである。また、設定部311は、デフォルト設定として、モデル生成部315により地下構造のモデル(以下、地下構造モデルと呼ぶ)が生成される領域(以下、生成領域と呼ぶ)を設定する。生成領域は、例えば、水平方向の長さと深さとを模式的に示した領域である。 Specifically, the setting unit 311 sets a plurality of feature ranges for a plurality of feature quantities by default settings stored in the main storage device 33 or the auxiliary storage device 35. The default setting is, for example, a combination of multiple feature ranges covering all geological patterns. The default setting is not limited to one, and a plurality of default settings may be set according to a plurality of regions. At this time, the default setting is set in advance according to the geological information according to the area including the area to be investigated of the underground structure (hereinafter referred to as the investigation area). Geological information is various data acquired in the past in the area, for example, logging data in wells excavated in the area, observation data on the underground structure in the area, and the said. It is at least one of the spatial distributions of features inferred in the region. Further, as a default setting, the setting unit 311 sets an area (hereinafter, referred to as a generation area) in which a model of the underground structure (hereinafter, referred to as an underground structure model) is generated by the model generation unit 315. The generation region is, for example, a region schematically showing the length and depth in the horizontal direction.
 設定部311は、デフォルト設定により設定された特徴範囲を、表示装置に表示させる。具体的には、表示装置は、複数の特徴量に対応する複数の前記範囲と複数の前記範囲各々における上限値と下限値とを変更させる2つの指示器とを表示する。このとき、設定部311は、入力装置を介したユーザの指示により、特徴範囲を適宜変更してもよい。加えて、設定部311は、正断層または逆断層をユーザに決定させるラジオボタンを表示してもよい。このとき、設定部311は、ラジオボタンを介したユーザの指示により、正断層または逆断層を設定する。 The setting unit 311 displays the feature range set by the default setting on the display device. Specifically, the display device displays a plurality of the ranges corresponding to the plurality of feature quantities and two indicators for changing the upper limit value and the lower limit value in each of the plurality of the ranges. At this time, the setting unit 311 may appropriately change the feature range according to the instruction of the user via the input device. In addition, the setting unit 311 may display a radio button that allows the user to determine a normal fault or a reverse fault. At this time, the setting unit 311 sets the normal fault or the reverse fault according to the user's instruction via the radio button.
 また、設定部311は、デフォルト設定により設定された特徴範囲と、例えば当該特徴範囲の代表値を用いてモデル生成部315により生成された地下構造のモデル(以下、確認用モデルと呼ぶ)とを、表示装置に表示させてもよい。具体的には、表示装置は、複数の特徴量に対応する複数の前記範囲と、複数の前記範囲各々における2つの指示器と、確認用モデルとを表示する。設定部311は、例えば、確認用モデルにおける地層のP波速度の大きさに応じて、深さ方向に沿って青色から黄色へ変化する所定の色相で変化させて、確認用モデルを表示装置に表示させる。ユーザによる2つの指示器の移動により特徴範囲が調整されると、設定部311は、当該調整に応じて変化した代表値を用いて生成された確認用モデルを、変更された特徴範囲とともに、表示装置に表示させる。 Further, the setting unit 311 sets the feature range set by the default setting and, for example, a model of the underground structure generated by the model generation section 315 using the representative value of the feature range (hereinafter, referred to as a confirmation model). , May be displayed on the display device. Specifically, the display device displays a plurality of the ranges corresponding to the plurality of feature quantities, two indicators in each of the plurality of ranges, and a confirmation model. For example, the setting unit 311 changes the confirmation model into a display device with a predetermined hue that changes from blue to yellow along the depth direction according to the magnitude of the P wave velocity of the stratum in the confirmation model. Display it. When the feature range is adjusted by the movement of the two indicators by the user, the setting unit 311 displays the confirmation model generated using the representative value changed according to the adjustment together with the changed feature range. Display on the device.
 決定部313は、複数の特徴量に関して、特徴範囲と乱数とに基づいて、地下構造モデルの生成に必要な情報であるモデル生成パラメータを決定する。決定部313は、モデル生成パラメータとして、例えば、複数の特徴量に関して、特徴範囲と乱数とに基づいて、特徴範囲における値を決定する。具体的には、設定部311により特徴範囲の設定が確定されると、決定部313は、特徴範囲内のモデル生成パラメータを用いて生成される地下構造のモデル(以下、地下構造モデルと呼ぶ)に関する識別子(以下、地下モデルID)を決定する。決定部313は、地下モデルIDを乱数のシードとして用いて乱数を発生する。決定部313は、複数の特徴量に関して、設定された特徴範囲と発生された乱数とに基づいて、設定された特徴範囲内におけるモデル生成パラメータを決定する。具体的には、決定部313は、特徴範囲内において確率分布を設定し、設定された確率分布に対して乱数を用いることで、特徴範囲内におけるモデル生成パラメータを決定する。確率分布は、例えば、一様分布であるが、これに限定されず、ポアソン分布などの他の確率分布が用いられてもよい。確率分布の設定は、例えば、設定部311により設定されてもよい。 The determination unit 313 determines the model generation parameters, which are the information necessary for generating the underground structure model, based on the feature range and the random numbers for the plurality of feature quantities. The determination unit 313 determines a value in the feature range as a model generation parameter, for example, with respect to a plurality of feature quantities, based on the feature range and a random number. Specifically, when the setting of the feature range is determined by the setting unit 311, the determination unit 313 is a model of the underground structure generated by using the model generation parameters in the feature range (hereinafter, referred to as an underground structure model). Determine the identifier (hereinafter, underground model ID) for. The determination unit 313 uses the underground model ID as a seed for random numbers to generate random numbers. The determination unit 313 determines the model generation parameters within the set feature range based on the set feature range and the generated random numbers for the plurality of feature quantities. Specifically, the determination unit 313 sets a probability distribution within the feature range, and uses random numbers for the set probability distribution to determine model generation parameters within the feature range. The probability distribution is, for example, a uniform distribution, but is not limited to this, and other probability distributions such as a Poisson distribution may be used. The probability distribution may be set by, for example, the setting unit 311.
 モデル生成部315は、構造に関する複数の特徴量に基づいて、構造のモデルを生成する。具体的には、モデル生成部315は、決定部313により決定されたモデル生成パラメータを用いて地下構造モデルを生成する。また、モデル生成部315は、2つの指示器により指定された範囲の代表値を用いて、地下構造の確認用モデルを生成する。図3乃至図11は、モデル生成部315により生成される地下構造モデルの生成の過程の一例を示す図である。図3乃至図11における生成領域10は、2次元的な地下構造モデルが生成される領域を示しているが、モデル生成部315は、3次元的な地下構造モデルを生成してもよい。なお、モデル生成部315は、異なる特徴量を用いて、複数の構造モデルを生成してもよい。 The model generation unit 315 generates a structural model based on a plurality of structural features. Specifically, the model generation unit 315 generates an underground structure model using the model generation parameters determined by the determination unit 313. In addition, the model generation unit 315 generates a model for confirming the underground structure using representative values in the range specified by the two indicators. 3 to 11 are diagrams showing an example of the process of generating the underground structure model generated by the model generation unit 315. Although the generation area 10 in FIGS. 3 to 11 indicates an area in which a two-dimensional underground structure model is generated, the model generation unit 315 may generate a three-dimensional underground structure model. The model generation unit 315 may generate a plurality of structural models using different feature quantities.
 図3は、地下構造モデルの生成前の生成領域10の一例を示す図である。図3に示すように、モデル生成部315は、特徴量としてゼロで埋められた生成領域10を生成する。図3に示す凡例11は、P波速度を示している。図3に示す生成領域10の上端は、地表面を示している。 FIG. 3 is a diagram showing an example of the generation area 10 before the generation of the underground structure model. As shown in FIG. 3, the model generation unit 315 generates a generation region 10 filled with zeros as a feature amount. Legend 11 shown in FIG. 3 shows the P wave velocity. The upper end of the generation area 10 shown in FIG. 3 indicates the ground surface.
 (堆積)
 モデル生成部315は、生成領域10において、決定されたモデル生成パラメータを用いて、複数の地層を堆積する。例えば、モデル生成部315は、複数の地層各々の厚みと、複数の地層各々のP波速度などとを用いて、生成領域10に複数の地層を堆積させるように、生成領域10に複数の地層を配置する。図4は、複数の地層が堆積された生成領域10の一例を示す図である。図4に示すように、P波速度が異なる複数の地層が、生成領域10において堆積されている。
(Deposition)
The model generation unit 315 deposits a plurality of strata in the generation region 10 using the determined model generation parameters. For example, the model generation unit 315 uses the thickness of each of the plurality of strata, the P wave velocity of each of the plurality of strata, and the like to deposit a plurality of strata in the generation region 10, and the model generation unit 315 deposits a plurality of strata in the generation region 10. To place. FIG. 4 is a diagram showing an example of a generation area 10 in which a plurality of strata are deposited. As shown in FIG. 4, a plurality of strata having different P-wave velocities are deposited in the generation region 10.
 (褶曲)
 モデル生成部315は、複数の地層が堆積された生成領域10において、決定されたモデル生成パラメータを用いて、複数の地層を褶曲させる。例えば、モデル生成部315は、褶曲の波長と褶曲の振幅などとを用いて、生成領域10における複数の地層を褶曲する。図5は、複数の地層が褶曲された生成領域10の一例を示す図である。図5に示すように、褶曲の振幅は、深度に依存して変化させることもできる。例えば、褶曲の振幅は、浅さに比例して大きくなる。また、褶曲は、図5に示すように、複数の地層を鉛直方向上向きに引き上げることに対応する。このため、生成領域10における最深部では、褶曲前における地層で埋められる。
(Fold)
The model generation unit 315 folds a plurality of strata using the determined model generation parameters in the generation region 10 in which the plurality of strata are deposited. For example, the model generation unit 315 bends a plurality of strata in the generation region 10 by using the wavelength of the fold and the amplitude of the fold. FIG. 5 is a diagram showing an example of a generation region 10 in which a plurality of strata are folded. As shown in FIG. 5, the amplitude of the fold can also be changed depending on the depth. For example, the amplitude of a fold increases in proportion to its shallowness. In addition, the fold corresponds to pulling up a plurality of strata upward in the vertical direction, as shown in FIG. Therefore, the deepest part of the generation area 10 is filled with the stratum before the fold.
 (断層)
 モデル生成部315は、褶曲された複数の地層を有する生成領域10において、決定されたモデル生成パラメータを用いて、複数の地層に対して断層を生成する。例えば、モデル生成部315は、断層の位置と断層の角度と断層のずれ量と断層の曲がり具合などとを用いて、複数の地層において断層を形成する。図6は、複数の地層に対して断層が生成された生成領域10の一例を示す図である。通常は1地域において正断層あるいは逆断層が一貫して存在する場合が多い。このため、ユーザによる設定またはデフォルト設定により、モデル生成部315は、図6に示すように、正断層と逆断層とのうちいずれか一方の断層を生成する。
(Fault)
The model generation unit 315 generates a fault for a plurality of strata using the determined model generation parameters in the generation region 10 having a plurality of folded strata. For example, the model generation unit 315 forms a fault in a plurality of strata by using the position of the fault, the angle of the fault, the amount of displacement of the fault, the degree of bending of the fault, and the like. FIG. 6 is a diagram showing an example of a generation region 10 in which faults are generated for a plurality of strata. Usually, there are many cases where normal faults or reverse faults are consistently present in one area. Therefore, as shown in FIG. 6, the model generation unit 315 generates one of the normal fault and the reverse fault according to the setting by the user or the default setting.
 (削剥)
 モデル生成部315は、断層が形成された複数の地層を有する生成領域10において、決定されたモデル生成パラメータを用いて、削剥の処理を実行する。例えば、モデル生成部315は、削剥下面の深度より浅い全ての地層を生成領域10から取り除く。具体的には、モデル生成部315は、削剥下面の深度より浅い全ての地層の領域(以下、削剥領域と呼ぶ)を、0で埋める。図7は、削剥下面の深度より浅い全ての地層に対して削剥が行われた生成領域10の一例を示す図である。このとき、モデル生成部315は、図7に示すように、削剥下面の直上の領域13に、不整合面を形成してもよい。
(Abrasion)
The model generation unit 315 executes a stripping process using the determined model generation parameters in the generation area 10 having a plurality of strata on which a fault is formed. For example, the model generation unit 315 removes all the strata shallower than the depth of the scraped lower surface from the generation region 10. Specifically, the model generation unit 315 fills the region of all strata shallower than the depth of the lower surface of the scraping (hereinafter referred to as the scraping region) with 0. FIG. 7 is a diagram showing an example of a generation region 10 in which stripping is performed on all strata shallower than the depth of the lower surface of scraping. At this time, as shown in FIG. 7, the model generation unit 315 may form an inconsistent surface in the region 13 directly above the lower surface of the scraping.
 (再堆積)
 モデル生成部315は、生成領域10における削剥領域15に対して、複数の地層各々の厚みと、複数の地層各々のP波速度などとを用いて、複数の地層を配置する。図8は、削剥領域15に複数の地層が再度堆積された生成領域10の一例を示す図である。図8に示すように、P波速度が異なる複数の地層が、削剥領域15において堆積されている。
(Re-deposition)
The model generation unit 315 arranges a plurality of strata with respect to the exfoliation region 15 in the generation region 10 by using the thickness of each of the plurality of strata, the P wave velocity of each of the plurality of strata, and the like. FIG. 8 is a diagram showing an example of a generation region 10 in which a plurality of strata are re-deposited in the scraping region 15. As shown in FIG. 8, a plurality of strata having different P-wave velocities are deposited in the exfoliation region 15.
 (再褶曲)
 モデル生成部315は、削剥領域15に複数の地層が堆積された生成領域10において、褶曲の波長と褶曲の振幅などとを用いて、複数の地層を褶曲する。図9は、複数の地層が褶曲された生成領域10の一例を示す図である。褶曲は、図9に示すように、複数の地層を鉛直方向上向きに引き上げることに対応する。このため、図9に示すように、生成領域10における最深部では、図5と同様に褶曲前における地層で埋められる。
(Re-folding)
The model generation unit 315 bends a plurality of strata in the generation region 10 in which a plurality of strata are deposited in the scraping region 15 by using the wavelength of the fold and the amplitude of the fold. FIG. 9 is a diagram showing an example of a generation region 10 in which a plurality of strata are folded. The fold corresponds to pulling up a plurality of formations vertically upwards, as shown in FIG. Therefore, as shown in FIG. 9, the deepest part in the generation region 10 is filled with the stratum before the fold as in FIG.
 (再断層)
 モデル生成部315は、褶曲された複数の地層を有する生成領域10において、断層の位置と断層の角度と断層の変位量と断層の曲がり具合などとを用いて、断層を形成する。図10は、複数の地層に対して断層が生成された生成領域10の一例を示す図である。
(Re-fault)
The model generation unit 315 forms a fault in the generation region 10 having a plurality of folded strata, using the position of the fault, the angle of the fault, the displacement amount of the fault, the degree of bending of the fault, and the like. FIG. 10 is a diagram showing an example of a generation region 10 in which faults are generated for a plurality of strata.
 (岩塩貫入)
 モデル生成部315は、生成領域10において、決定されたモデル生成パラメータを用いて、岩塩を貫入する。例えば、モデル生成部315は、岩塩ドームの分布位置と岩塩ドームのP波速度などとを用いて、生成領域10に岩塩を貫入させて配置する。図11は、岩塩17が貫入された生成領域10の一例を示す図である。
(Intrusive rock salt)
The model generation unit 315 penetrates the rock salt in the generation region 10 using the determined model generation parameters. For example, the model generation unit 315 is arranged so that the rock salt penetrates into the generation region 10 by using the distribution position of the salt dome and the P wave velocity of the salt dome. FIG. 11 is a diagram showing an example of a production region 10 in which rock salt 17 is intruded.
 モデル生成部315により実行される上記地質学的なイベント(堆積、褶曲、断層、削剥、再堆積、断層の再活動(再褶曲、再断層)、岩塩貫入)の手順は、その発生時系列に沿っている。このため、上記地質学的イベントの順序は、適宜変更可能である。また、地質学的イベントは、堆積、褶曲、断層、削剥、再堆積、断層の再活動(再褶曲、再断層)、岩塩貫入に限定されず、他のイベントがさらに実行されてもよい。 The procedure of the above geological events (deposition, fold, fault, exfoliation, redeposition, fault reactivity (refold, refault), rock salt intrusion) performed by the model generator 315 is in the time series of their occurrence. Along. Therefore, the order of the geological events can be changed as appropriate. Geological events are not limited to sedimentation, folds, faults, ablation, redeposition, fault reactivity (re-folding, re-fault), and rock salt intrusion, and other events may be further performed.
 モデル生成部315は、岩塩17が貫入された生成領域10から所定の範囲を切り出す。所定の範囲とは、例えば図11に示す生成領域10において、深さ0~5km、水平方向の長さが0~25kmである。なお、所定の範囲は、入力装置を介したユーザの指示のもとで、設定部311により適宜、設定・変更されてもよい。モデル生成部315は、生成領域10からの切り出し処理により、地下構造モデルを生成する。モデル生成部315は、乱数の生成に応じて、複数の地下構造モデルを生成する。なお、乱数シードは地下モデルIDに対応しているため、モデル生成部315は、地下モデルIDの選択に応じて、地下構造モデルを再生成することができる。 The model generation unit 315 cuts out a predetermined range from the generation area 10 in which the rock salt 17 has penetrated. The predetermined range is, for example, in the generation region 10 shown in FIG. 11, the depth is 0 to 5 km and the length in the horizontal direction is 0 to 25 km. The predetermined range may be appropriately set / changed by the setting unit 311 under the instruction of the user via the input device. The model generation unit 315 generates an underground structure model by cutting out from the generation area 10. The model generation unit 315 generates a plurality of underground structure models according to the generation of random numbers. Since the random number seed corresponds to the underground model ID, the model generation unit 315 can regenerate the underground structure model according to the selection of the underground model ID.
 模擬データ生成部317は、構造のモデルに対する波動伝播シミュレーションにより、当該構造に関する観測値を模擬的に示す模擬データを生成する。波動伝播シミュレーションは、例えば、地震波動に関するシミュレーション(以下、地震波動シミュレーションと呼ぶ)である。具体的には、模擬データ生成部317は、モデル生成部315により生成された地下構造モデルに対して地震波動伝播シミュレーションを実行する。地震波動伝播シミュレーションは、例えば、弾性波(elastic wave)、あるいは音波(acoustic wave)に関する波動伝搬シミュレーションとして一般的に行われている公知の技術が適宜利用可能である。地震波動伝播シミュレーションは、例えば、初期条件および境界条件を、弾性体の運動方程式(波動方程式)を構成する偏微分方程式に適用して逐次的に解くことで実現される。当該編微分方程式に関する数値計算解法としては、例えば、有限差分法(FDM:Finite Difference Method)、または有限要素法(FEM:Finite Element Method)などを用いることができる。模擬データ生成部317は、例えば、地下構造モデルを地震シミュレータに入力し、地震波動伝播シミュレーションを実行する。これにより、模擬データ生成部317は、地下構造モデルの地下構造に関する観測値を模擬的に示す模擬データを生成する。模擬データは、例えば、地下構造モデルに対して仮想的に人工地震(ショット)により発生した地震波が伝播し地震計で受振されたショットデータ(地下構造のショットデータ)を含む。なお、模擬データ生成部317は、複数の構造モデルに対して波動伝播シミュレーションを実行することにより模擬データを生成してもよい。 The simulated data generation unit 317 generates simulated data that simulates the observed values related to the structure by wave propagation simulation for the model of the structure. The wave propagation simulation is, for example, a simulation related to seismic waves (hereinafter referred to as seismic wave simulation). Specifically, the simulated data generation unit 317 executes a seismic wave propagation simulation on the underground structure model generated by the model generation unit 315. As the seismic wave propagation simulation, for example, a known technique generally performed as a wave propagation simulation relating to elastic waves or acoustic waves can be appropriately used. The seismic wave propagation simulation is realized, for example, by applying the initial conditions and the boundary conditions to the partial differential equations constituting the equation of motion (wave equation) of the elastic body and solving them sequentially. As a numerical calculation solution method for the differential equation, for example, a finite difference method (FDM: Fine Finite Difference Method) or a finite element method (FEM: Fine Element Method) can be used. The simulated data generation unit 317 inputs, for example, an underground structure model to an earthquake simulator and executes an earthquake wave propagation simulation. As a result, the simulated data generation unit 317 generates simulated data that simulates the observed values related to the underground structure of the underground structure model. The simulated data includes, for example, shot data (shot data of the underground structure) in which seismic waves generated by an artificial earthquake (shot) are virtually propagated to an underground structure model and received by a seismograph. The simulated data generation unit 317 may generate simulated data by executing a wave propagation simulation on a plurality of structural models.
 図12は、コモン・ショット・ギャザーデータの画像(ショット画像)19の一例を示す図である。図12に示すショット画像19の縦軸は、ショットの実行時点からの時間に対応し、ショット画像19の横軸は、ショット画像19の生成に用いられた地下構造モデルにおける水平方向の位置を示している。 FIG. 12 is a diagram showing an example of an image (shot image) 19 of common shot gather data. The vertical axis of the shot image 19 shown in FIG. 12 corresponds to the time from the execution time of the shot, and the horizontal axis of the shot image 19 indicates the horizontal position in the underground structure model used to generate the shot image 19. ing.
 学習データ生成部319は、生成された当該構造のモデルと模擬データとを対応付けて、学習データを生成する。具体的には、学習データ生成部319は、乱数に応じて生成された複数の地下構造モデルと、複数の地下構造モデルに応じて生成された複数の模擬データとを、地震波動伝播シミュレーションにおける入出力の関係により対応付ける。学習データ生成部319は、対応付けられた複数の地下構造モデルと複数の模擬データとにより、複数の学習データを生成する。学習データ生成部319は、複数の学習データを、主記憶装置(メモリ)33または補助記憶装置(メモリ)35に記憶させる。なお、学習データ生成部319は、ネットワークストレージとしての外部装置Aに、複数の学習データを記憶させてもよい。なお、学習データ生成部319は、複数の構造モデルとそれに対する模擬データとを対応付けて、学習データを生成してもよい。 The learning data generation unit 319 generates training data by associating the generated model of the structure with the simulated data. Specifically, the learning data generation unit 319 inputs a plurality of underground structure models generated according to random numbers and a plurality of simulated data generated according to the plurality of underground structure models in the seismic wave propagation simulation. Correspond according to the relationship of output. The learning data generation unit 319 generates a plurality of learning data by the associated plurality of underground structure models and a plurality of simulated data. The learning data generation unit 319 stores a plurality of learning data in the main storage device (memory) 33 or the auxiliary storage device (memory) 35. The learning data generation unit 319 may store a plurality of learning data in the external device A as the network storage. The learning data generation unit 319 may generate learning data by associating a plurality of structural models with simulated data for the same.
 以上、学習データ生成装置3における各構成要素について説明した。以下、学習データ生成装置3による学習データの生成の処理(以下、学習データ生成処理と呼ぶ)の手順について説明する。学習データ生成処理の手順は、学習データ生成方法に対応する。学習データ生成方法は、構造に関する複数の特徴量に基づいて構造のモデルを生成し、構造のモデルに対する波動伝播シミュレーションにより、構造に関する観測値を模擬的に示す模擬データを生成し、生成された構造のモデルと模擬データとを対応付けて、学習データを生成する。例えば、構造は地下構造であって、複数の特徴量は、地質学的な情報を含む。地質学的な情報は、例えば、地層の横方向への曲げ方、不整合面の入れ方、地下構造のモデル化に関する構造のサイズ(横幅、深さ)、表層への低速層の挿入、又は、層の厚みの分布の何れか1つを含む。学習データ生成方法は、特徴量の値の範囲と乱数とに基づいて、複数の特徴量を決定する。具体的には、構造は地下構造であって、特徴量の値の範囲は、対象地域における地質学的な情報に基づいて、設定される。地質学的な情報は、対象地域における検層データと、対象地域における地下構造に関する観測データと、対象地域において推論された特徴量の空間分布とのうち少なくとも一つを有する。 The components of the learning data generator 3 have been described above. Hereinafter, the procedure of the process of generating the learning data by the learning data generation device 3 (hereinafter, referred to as the learning data generation process) will be described. The procedure of the training data generation process corresponds to the training data generation method. The training data generation method generates a structural model based on a plurality of features related to the structure, and generates simulated data that simulates the observed values related to the structure by wave propagation simulation for the structural model, and the generated structure is generated. The training data is generated by associating the model of the above with the simulated data. For example, the structure is an underground structure, and the plurality of features include geological information. Geological information can be, for example, how to bend the formation laterally, how to insert inconsistent surfaces, the size of the structure (width, depth) for modeling underground structures, the insertion of slow layers into the surface, or , Includes any one of the layer thickness distributions. The training data generation method determines a plurality of feature quantities based on a range of feature quantity values and a random number. Specifically, the structure is an underground structure, and the range of feature value values is set based on geological information in the target area. The geological information has at least one of logging data in the target area, observation data on the underground structure in the target area, and spatial distribution of feature quantities inferred in the target area.
 例えば、構造は、地下構造であって、学習データ生成方法は、図3乃至図11に示すように、複数の特徴量に基づいて、少なくとも、堆積、褶曲、断層、削剥、再堆積、再褶曲、再断層、又は、岩塩貫入の何れか1つに関するイベントを段階的に実行することで構造のモデルを生成する。学習データ生成方法は、例えば、堆積、褶曲、断層の順番でイベントを実行することで構造のモデルを生成する。なお、学習データ生成方法は、断層、削剥、再堆積、再褶曲、再断層の順番でイベントを実行することで構造のモデルを生成してもよい。また、再断層、岩塩貫入の順番でイベントを実行することで構造のモデルを生成する。図13は、学習データ生成処理の手順の一例を示すフローチャートである。 For example, the structure is an underground structure, and the learning data generation method is, as shown in FIGS. 3 to 11, at least deposition, fold, fault, scraping, redeposition, and fold based on a plurality of feature quantities. A structural model is generated by stepwise execution of events related to any one of, re-fault, or rock salt intrusion. The training data generation method generates a model of the structure by executing events in the order of sedimentation, fold, and fault, for example. The learning data generation method may generate a structural model by executing events in the order of fault, scraping, redeposition, refolding, and re-fault. In addition, a structural model is generated by executing events in the order of re-fault and rock salt intrusion. FIG. 13 is a flowchart showing an example of the procedure of the learning data generation process.
  (学習データ生成処理)
 (ステップS101)
 設定部311は、地下構造に関する複数の特徴量各々に対して、特徴範囲を設定する。特徴範囲の上限値と下限値とは、デフォルト設定により設定される。なお、特徴範囲は、入力装置を介したユーザの指示により、例えば、地質学的な情報に基づいて設定されてもよい。なお、設定部311に実行される上記機能は、外部装置9Aなどの他の入力装置において設定されてもよい。
(Learning data generation process)
(Step S101)
The setting unit 311 sets a feature range for each of a plurality of feature quantities related to the underground structure. The upper and lower limits of the feature range are set by default settings. The feature range may be set based on, for example, geological information, according to the user's instruction via the input device. The function executed by the setting unit 311 may be set in another input device such as the external device 9A.
 (ステップS102)
 決定部313は、地下モデルIDを決定する。決定部313は、地下モデルIDの番号を乱数のシードとして用いて、乱数を発生する。決定部313は、複数の特徴量に関して、特徴範囲と乱数とに基づいて、特徴範囲内におけるモデル生成パラメータを決定する。決定されたモデル生成パラメータは、主記憶装置(メモリ)33または補助記憶装置(メモリ)35に記憶される。
(Step S102)
The determination unit 313 determines the underground model ID. The determination unit 313 uses the number of the underground model ID as a seed for the random number to generate a random number. The determination unit 313 determines the model generation parameters in the feature range based on the feature range and the random number for the plurality of feature quantities. The determined model generation parameters are stored in the main storage device (memory) 33 or the auxiliary storage device (memory) 35.
 (ステップ103)
 モデル生成部315は、モデル生成パラメータを用いて地下構造モデルを生成する。具体的には、モデル生成部315は、複数の乱数に応じて、複数の地下構造モデルを生成する。モデル生成部315は、複数の地下構造モデルを、主記憶装置(メモリ)33または補助記憶装置(メモリ)35に記憶させる。
(Step 103)
The model generation unit 315 generates an underground structure model using the model generation parameters. Specifically, the model generation unit 315 generates a plurality of underground structure models in response to a plurality of random numbers. The model generation unit 315 stores a plurality of underground structure models in the main storage device (memory) 33 or the auxiliary storage device (memory) 35.
 (ステップS104)
 模擬データ生成部317は、地下構造モデルに対して地震波動伝播シミュレーションを実行し、当該地下構造モデルに対応する模擬データを生成する。模擬データ生成部317は、地下構造モデルに応じて生成した模擬データを、主記憶装置(メモリ)33または補助記憶装置(メモリ)35に記憶させる。
(Step S104)
The simulated data generation unit 317 executes a seismic wave propagation simulation on the underground structure model and generates simulated data corresponding to the underground structure model. The simulated data generation unit 317 stores the simulated data generated according to the underground structure model in the main storage device (memory) 33 or the auxiliary storage device (memory) 35.
 (ステップS105)
 学習データ生成部319は、乱数に応じて生成された複数の地下構造モデルと、複数の地下構造モデルに応じて生成された複数の模擬データとを対応付けて、複数の学習データを生成する。学習データ生成部319は、複数の学習データを、主記憶装置(メモリ)33、補助記憶装置(メモリ)35、またはネットワークストレージとしての外部装置Aに記憶させる。以上の処理により、一つの学習データ生成装置3は、一つの地下モデルIDに対して、例えば、50万以上の学習データを生成し、生成された学習データを記憶する。
(Step S105)
The learning data generation unit 319 generates a plurality of learning data by associating a plurality of underground structure models generated according to random numbers with a plurality of simulated data generated according to the plurality of underground structure models. The learning data generation unit 319 stores a plurality of learning data in the main storage device (memory) 33, the auxiliary storage device (memory) 35, or the external device A as network storage. By the above processing, one learning data generation device 3 generates, for example, 500,000 or more learning data for one underground model ID, and stores the generated learning data.
 以下、学習データ生成装置3の一例として、媒介変数的速度モデル生成システムについて説明する。 Hereinafter, a parametric velocity model generation system will be described as an example of the learning data generation device 3.
(媒介変数的速度モデル生成システム)
 大規模な訓練データセットを得るために、媒介変数的速度モデル生成システムを提案する。このシステムは、地下構造モデルの生成に際して地質学的な情報(知識)を利用しているにすぎないためにデータリーケージを防ぎ、生成性能の適切な評価を可能にするように設計される。第一に、当該システムは地下構造モデル、すなわち、現実的かつ高解像度の速度分布を生成する。地下構造モデルにおける速度構造は、成層、褶曲、断層、貫入、削剥を含む地質学的イベントに対応する合成処理を介して生成される。各処理は、層厚、P波速度、断層の傾斜角などの地質学的なパラメータを使ってモデル化される。図14は、地下構造モデルの一例としての速度モデルの例を示す図である。すなわち、図14は、媒介変数生成システムによって生成されたP波速度(Vp)モデルの例を示してしている。速度モデルに対応するショットギャザー(模擬データ)を作るために、生成された地下構造モデルでの地震波動伝播がシミュレートされる。
(Parameter velocity model generation system)
We propose a parametric velocity model generation system to obtain a large training data set. This system is designed to prevent data leakage and allow proper evaluation of generation performance because it only uses geological information (knowledge) in the generation of underground structural models. First, the system produces an underground structural model, a realistic and high resolution velocity distribution. Velocity structures in underground structure models are generated through synthetic processes that correspond to geological events including stratification, folds, faults, intrusions, and ablation. Each process is modeled using geological parameters such as thickness, P-wave velocity, and fault tilt angle. FIG. 14 is a diagram showing an example of a velocity model as an example of an underground structure model. That is, FIG. 14 shows an example of a P-wave velocity (Vp) model generated by the parameter generation system. Seismic wave propagation in the generated underground structure model is simulated to create shot gathers (simulated data) corresponding to the velocity model.
 本システムは、地質学的なパラメータにおいて多数のサンプルを抽出するために複数の確率分布を組み込み、地下構造の広範囲な多様性を含む大規模な学習データを生成する。決定部313は、地質学的なパラメータの上限値と下限値とを有する一様分布を使用している。地質学的なパラメータの範囲は、設定部311により、例えば、速度構造の大まかな推定などの地質学的な識見により設定される。具体的なケースでは、ターゲットの地下の識見は、従来的な逆問題法による解析結果や近隣の検層データなどの地質調査を用いて得られる。高品質な学習データは、これらの地質学的なパラメータに関する合理的仮定を置くことで生成される。 This system incorporates multiple probability distributions to extract a large number of samples in geological parameters and generates large-scale training data including a wide variety of underground structures. The determination unit 313 uses a uniform distribution having upper and lower limits of geological parameters. The range of geological parameters is set by the setting unit 311 by geological insights such as, for example, a rough estimate of the velocity structure. In a specific case, the underground insight of the target can be obtained by using geological surveys such as analysis results by the conventional inverse problem method and logging data in the vicinity. High quality training data is generated by making reasonable assumptions about these geological parameters.
 以上、学習データ生成装置3による学習データ生成処理について説明した。以下、学習装置7について説明する。学習装置7のハードウェア構成は、図1における点線3の枠内と同様なため、説明は省略する。学習装置7は、複数の学習データを用いて、ディープニューラルネットワークを学習する。当該ディープニューラルネットワークは、構造に関する情報を推定するモデル(以下、推定モデルと呼ぶ)の一例である。学習装置7は、上述の学習データ生成方法を用いて生成された学習データを用いて、構造に関する情報を推定する推定モデルを生成する。すなわち、上述の学習データ生成方法を用いて生成された学習データを用いて、当該推定モデルを生成するモデル生成方法は、学習装置7における少なくとも1つのプロセッサを用いて実行される。 The learning data generation process by the learning data generation device 3 has been described above. Hereinafter, the learning device 7 will be described. Since the hardware configuration of the learning device 7 is the same as that in the frame of the dotted line 3 in FIG. 1, the description thereof will be omitted. The learning device 7 learns a deep neural network using a plurality of learning data. The deep neural network is an example of a model (hereinafter referred to as an estimation model) that estimates information about a structure. The learning device 7 uses the learning data generated by the above-mentioned learning data generation method to generate an estimation model that estimates information about the structure. That is, the model generation method for generating the estimation model using the training data generated by the training data generation method described above is executed by using at least one processor in the learning device 7.
 図15は、学習装置7に搭載されたプロセッサ81における機能ブロックの一例を示す図である。プロセッサ81は、当該プロセッサ81により実現される機能として、前処理部811と、モデル設定部813と、学習部815とを有する。前処理部811と、モデル設定部813と、学習部815とにより実現される機能は、それぞれプログラムとして、例えば、学習装置7に搭載された主記憶装置または補助記憶装置などに格納される。プロセッサ81は、学習装置7に搭載された主記憶装置または補助記憶装置などに格納されたプログラムを読み出し、実行することで、前処理部811と、モデル設定部813と、学習部815とに関する機能を実現する。 FIG. 15 is a diagram showing an example of a functional block in the processor 81 mounted on the learning device 7. The processor 81 has a preprocessing unit 811, a model setting unit 813, and a learning unit 815 as functions realized by the processor 81. The functions realized by the preprocessing unit 811, the model setting unit 813, and the learning unit 815 are stored as programs in, for example, a main storage device or an auxiliary storage device mounted on the learning device 7. The processor 81 reads and executes a program stored in the main storage device or the auxiliary storage device mounted on the learning device 7, and thereby functions related to the preprocessing unit 811, the model setting unit 813, and the learning unit 815. To realize.
 前処理部811は、ノイズの付与、地震探査におけるデータ取得時の各種セッティングなどに応じて、一つの地下構造モデルに対応する模擬データの数を増やす。模擬データセッに付与されるノイズは、例えば、地震探査における複数の受振センサのうち受振不能なセンサによるノイズ、調査領域における道路通過する車両に起因するノイズ、調査領域において設置された試掘井によるノイズなどである。各種セッティングとは、例えば、起震車に対する受振センサの位置関係、起震車によるショットの生成方法などである。以上により、前処理部811は、複数の学習データにおいて、一つの地下構造モデルに対する模擬データの数を水増しする(Augmentation)。すなわち、前処理部811による模擬データの水増しにより、一つの地下構造モデル(正解データ)に対して、複数の模擬データが対応することとなる。前処理部811は、水増しにより増えた複数の学習データを、学習装置7における主記憶装置または補助記憶装置に記憶させる。 The preprocessing unit 811 increases the number of simulated data corresponding to one underground structure model according to noise addition, various settings at the time of data acquisition in seismic survey, and the like. The noise added to the simulated data set includes, for example, noise caused by a sensor that cannot receive vibration among a plurality of vibration receiving sensors in seismic survey, noise caused by a vehicle passing through a road in the survey area, noise caused by a test drilling well installed in the survey area, and the like. Is. The various settings include, for example, the positional relationship of the vibration receiving sensor with respect to the earthquake simulation vehicle, the method of generating shots by the earthquake simulation vehicle, and the like. As described above, the preprocessing unit 811 inflates the number of simulated data for one underground structure model in the plurality of training data (Augmentation). That is, due to the padding of the simulated data by the pretreatment unit 811, a plurality of simulated data correspond to one underground structure model (correct answer data). The preprocessing unit 811 stores a plurality of learning data increased by padding in the main storage device or the auxiliary storage device in the learning device 7.
 モデル設定部813は、複数の学習データのうち、複数の訓練用データセットを用いて学習される学習前モデルを設定する。学習前モデルは、例えば、ディープニューラルネットワークである。まず、モデル設定部813は、複数の学習データを、複数の訓練用データセットと、学習済みモデルの検証に用いられる複数の検証データセットとに分割する。次いで、モデル設定部813は、複数の訓練用データセットから、学習前モデルの設定に用いられる複数のモデル設定データセットと、設定されたモデルの検証に用いられる複数のモデル検証データセットとを抽出する。以下、複数の訓練用データセットからモデル設定データセットとモデル検証データセットとを抽出後の複数のデータセットを、抽出後データセットと呼ぶ。 The model setting unit 813 sets a pre-learning model to be trained using a plurality of training data sets among a plurality of training data. The pre-learning model is, for example, a deep neural network. First, the model setting unit 813 divides the plurality of training data into a plurality of training data sets and a plurality of verification data sets used for verification of the trained model. Next, the model setting unit 813 extracts a plurality of model setting data sets used for setting the pre-training model and a plurality of model verification data sets used for verifying the set model from the plurality of training data sets. do. Hereinafter, the plurality of data sets after extracting the model setting data set and the model verification data set from the plurality of training data sets will be referred to as the extracted data sets.
 モデル設定部813は、複数のモデル設定データセットと、複数のモデル検証データセットとを用いて、学習前モデルを設定する。例えば、モデル設定部813は、複数のモデル設定データセットと、複数のモデル検証データセットとに対して、ハイパーパラメータ自動最適化フレームワークを用いたニューラルアーキテクチャ探索(Neural Architecture Search:NAS)を適用する。これにより、モデル設定部813は、学習前モデルとして、学習前モデルの構造および学習前モデルにおけるハイパーパラメータを設定する。NASとしては、例えば、Optuna(登録商標)が用いられる。なお、NASとしては、Optuna(登録商標)に限定されず、他のアーキテクチャが用いられてもよい。また、モデル設定部813は、入力装置を介したユーザの指示により、探鉱に適したディープニューラルネットワークのモデルおよび当該のディープニューラルネットワークのハイパーパラメータを、設定してもよい。 The model setting unit 813 sets the pre-learning model using the plurality of model setting data sets and the plurality of model verification data sets. For example, the model setting unit 813 applies a neural architecture search (Neural Architecture Search: NAS) using a hyperparameter automatic optimization framework to a plurality of model setting data sets and a plurality of model verification data sets. .. As a result, the model setting unit 813 sets the structure of the pre-learning model and the hyperparameters in the pre-learning model as the pre-learning model. As NAS, for example, Optuna (registered trademark) is used. The NAS is not limited to Optuna (registered trademark), and other architectures may be used. Further, the model setting unit 813 may set the model of the deep neural network suitable for exploration and the hyperparameters of the deep neural network according to the instruction of the user via the input device.
 例えば、NASは、所与のタスクに適するニューラルネットワークを自動的に設計する。ニューラルアーキテクチャの探索空間が定義されると、NASは、複数のモデル設定データセットと、複数のモデル検証データセットとを用いて、候補アーキテクチャを連続して標本抽出、訓練、および評価して、当該探索空間内で最適なアーキテクチャをみつける。このアーキテクチャは、層およびチャネル数を含むモデルハイパーパラメータによって定義される。モデル設定部813は、ハイパーパラメータ自動最適化フレームワークであるOptuna(登録商標)を採用する。Optuna(登録商標)のユーザフレンドリーなインタフェースにより、並行処理を介した簡易かつ自動的なハイパーパラメータ最適化が可能となり、計算時間が削減される。 For example, NAS automatically designs a neural network suitable for a given task. Once the search space for the neural architecture is defined, the NAS will use multiple model setup datasets and multiple model validation datasets to continuously sample, train, and evaluate candidate architectures. Find the optimal architecture in the search space. This architecture is defined by model hyperparameters, including the number of layers and channels. The model setting unit 813 adopts Optuna (registered trademark), which is a hyperparameter automatic optimization framework. The user-friendly interface of Optuna® enables simple and automatic hyperparameter optimization via parallel processing, reducing calculation time.
 具体的には、モデル設定部813は、ニューラルアーキテクチャの探索空間をResNetに基づくエンコーダデコーダモデルとして定義する。ResNetは、震探逆問題およびコンピュータビジョンの両方で使用される深層学習モデルである。入力および出力を共通する潜在的特徴空間に関連付けるエンコーダデコーダモデルが特に着目される。典型的には畳み込みニューラルネットワークが空間的ローカル特徴を捉える。エンコーダデコーダモデルでは、エンコーダとデコーダとが、共通の潜在的特徴空間(common latent feature space)で接続される。このため、エンコーダデコーダモデルは、入力となる模擬データ(ショット画像)の構造を崩すことで、構造を持たない空間的にグローバルな特徴を学習することができる。空間的にグローバルな特徴の学習は、震探逆問題に有用である。 Specifically, the model setting unit 813 defines the search space of the neural architecture as an encoder-decoder model based on ResNet. ResNet is a deep learning model used in both seismic inverse problems and computer vision. Of particular interest are encoder-decoder models that associate inputs and outputs with a common potential feature space. A convolutional neural network typically captures spatial local features. In the encoder-decoder model, the encoder and the decoder are connected by a common latent feature space. Therefore, the encoder-decoder model can learn spatially global features having no structure by breaking the structure of the input simulated data (shot image). Learning spatially global features is useful for the seismic inverse problem.
 学習部815は、抽出後データセットを用いて、モデル設定部813により設定された学習前モデルを学習する。例えば、学習部815は、抽出後データセットにおける複数の模擬データ各々を、学習前モデルに入力する。学習部815は、学習前モデルからの出力と、学習前モデルに入力された模擬データに対応する地下構造モデルとの差分を低減するように、例えば、逆伝搬による確率的勾配降下法などにより、学習前モデルの重みを調整する。また、学習部815は、重みが調整された学習前モデルを、検証データセットにより検証する。これらにより、学習部815は、学習済みモデル(推定モデル)を生成する。学習部815は、生成された学習済みモデルを、学習装置7における主記憶装置または補助記憶装置に記憶させる。 The learning unit 815 learns the pre-learning model set by the model setting unit 813 using the extracted data set. For example, the learning unit 815 inputs each of the plurality of simulated data in the extracted data set into the pre-learning model. The learning unit 815 uses, for example, a stochastic gradient descent method by back propagation to reduce the difference between the output from the pre-learning model and the underground structure model corresponding to the simulated data input to the pre-learning model. Adjust the weight of the pre-training model. In addition, the learning unit 815 verifies the weight-adjusted pre-learning model with the verification data set. As a result, the learning unit 815 generates a trained model (estimated model). The learning unit 815 stores the generated learned model in the main storage device or the auxiliary storage device in the learning device 7.
 以上、学習装置7による学習済みモデルの生成の一例について説明した。以下、学習済みモデルによる地下構造の推定に関する処理(以下、地下構造推定処理と呼ぶ)の一例について説明する。 The example of generating a trained model by the learning device 7 has been described above. Hereinafter, an example of the process related to the estimation of the underground structure by the trained model (hereinafter referred to as the underground structure estimation process) will be described.
 地下構造推定処理の実施に先立って、推定対象である地下構造に関するショットデータが予め取得されているものとする。また、地下構造推定処理の実施に先立って、生データまたはショットデータに対して、ノイズ除去や外れ値の除去などのデータクレンジングなどを、適宜実行してもよい。 Prior to the implementation of the underground structure estimation process, it is assumed that shot data related to the underground structure to be estimated has been acquired in advance. Further, prior to the execution of the underground structure estimation process, data cleansing such as noise reduction and outlier removal may be appropriately performed on the raw data or shot data.
 推定装置のハードウェア構成は、図1における点線3の枠内と同様なため、説明は省略する。推定装置は、学習済みモデルを、推定装置における主記憶装置または補助記憶装置に記憶する。なお、推定装置は、地域に応じて生成された複数の学習済みモデルを記憶してもよい。このとき、推定装置は、入力装置を介したユーザの指示に応じて学習済みモデルを選択する。推定装置は、ショットデータを学習済みモデルに入力することにより、推定対象の地下構造を推定する。これにより、推定装置は、入力されたショットデータに対応する地下構造を推定する。なお、推定された地下構造のデータは、適宜後処理が実行されてもよい。推定装置は、推定された地下構造のデータを、推定装置における主記憶装置または補助記憶装置に記憶する。このとき、推定装置は、推定装置に設けられた表示部(ディスプレイ)に、推定された地下構造のデータを表示してもよい。 Since the hardware configuration of the estimation device is the same as that in the frame of the dotted line 3 in FIG. 1, the description thereof will be omitted. The estimator stores the trained model in the main or auxiliary storage device in the estimator. The estimation device may store a plurality of trained models generated according to the region. At this time, the estimation device selects the trained model according to the instruction of the user via the input device. The estimation device estimates the underground structure to be estimated by inputting shot data into the trained model. As a result, the estimation device estimates the underground structure corresponding to the input shot data. The estimated underground structure data may be post-processed as appropriate. The estimation device stores the data of the estimated underground structure in the main storage device or the auxiliary storage device in the estimation device. At this time, the estimation device may display the data of the estimated underground structure on the display unit (display) provided in the estimation device.
 以上、推定装置による地下構造のデータの推定について説明した。以下、本実施形態に関する各種処理を用いた実験結果の一例について説明する。 The estimation of underground structure data by the estimation device has been explained above. Hereinafter, an example of the experimental results using various treatments related to this embodiment will be described.
 (実験結果の一例)
 実施形態における各種処理は、2次元(2D)ショットギャザー画像から地下断面における各地層の速度構造を推定する逆問題に適用する。実験は、学習データ生成、学習データの分割、NAS、最適ニューラルアーキテクチャの評価、の4つのステップを備える。
(Example of experimental results)
The various processes in the embodiment apply to the inverse problem of estimating the velocity structure of each layer in the underground cross section from a two-dimensional (2D) shot gather image. The experiment comprises four steps: training data generation, training data division, NAS, and evaluation of the optimal neural architecture.
 学習データ生成処理は、地下構造モデルに相当する速度モデルと、当該速度モデルに対応するショットギャザー(模擬データ)とを有する300,000対の学習データデータセットを作成した。当該速度モデルにおける地質学的なプロパティを制御する生成パラメータ(地質学的パラメータ)は、Marmousi2地質構造モデルの地質学的識見に基づいて決定された(Martin, G. S., Wiley, R., and Marfurt, K. J. [2006] Marmousi2: An elastic upgrade for Marmousi. The Leading Edge, 25(2): 156‐166.)。当該地質学的なプロパティについての要約情報が、特徴範囲の設定として使用されたが、学習済みモデルに対するベンチマークに用いるデータセット(ベンチマークデータセット)そのものは使用されない。地震波動伝播は、スーパーコンピュータによってシミュレートされた。 In the training data generation process, a 300,000 pairs of training data data sets having a speed model corresponding to the underground structure model and shot gathers (simulated data) corresponding to the speed model were created. The generation parameters (geological parameters) that control the geological properties of the velocity model were determined based on the geological insights of the Marmousi2 geological structural model (Martin, G.S., Willey, R.,. and Marfurt, K.J. [2006] Marmousi2: An elastic upgrade for Marmousi. The Reading Edge, 25 (2): 156-166.). The summary information about the geological property was used to set the feature range, but the dataset itself (benchmark dataset) used to benchmark the trained model is not used. Seismic wave propagation was simulated by a supercomputer.
 NAS処理中のデータリーケージを防止するために、学習データの分割が適用された。300,000個の学習データを、240,000サンプルの大量の訓練データセットと、60,000サンプルの大量の検証データセットに分割した。これらの大量のデータセットは、最適ニューラルアーキテクチャを訓練するために使用された。さらに、大量の訓練データセットから10,000データをサンプリングし、このサブセットを8,000サンプルの少量のモデル設定データセットと2,000サンプルの少量のモデル検証データセットとに分割した。これらの少量のデータセットは、最適ニューラルアーキテクチャをみつけるために使用された。本データセットの分割により、大量の検証データセットへのNASステップ中の非正規アクセス(データリーケージ)を避けることができる。 Training data division was applied to prevent data leakage during NAS processing. The 300,000 training data were divided into a large training data set of 240,000 samples and a large validation data set of 60,000 samples. These large datasets were used to train optimal neural architectures. In addition, 10,000 data were sampled from a large training dataset and this subset was divided into a small model setup dataset of 8,000 samples and a small model validation dataset of 2,000 samples. These small datasets were used to find the optimal neural architecture. By partitioning this dataset, non-regular access (data leakage) during the NAS step to a large number of validation datasets can be avoided.
 モデル設定部813は、層およびチャネル数などのハイパーパラメータをチューニングしてResNetに基づくエンコーダデコーダモデルを最適化する。最終的に、従来の研究が用いているものよりずっと深い、100より多い隠れ層を有する最適なニューラルアーキテクチャ(学習前モデル)を取得した。 The model setting unit 813 optimizes the encoder / decoder model based on ResNet by tuning hyperparameters such as the number of layers and the number of channels. Finally, we obtained an optimal neural architecture (pre-learning model) with more than 100 hidden layers, much deeper than those used in previous studies.
 学習部815は、大量の訓練データセットを用いて最適なニューラルアーキテクチャを訓練した。Marmousi2地質構造モデルと1994Amoco静補正テストデータセットとの2種類の標準ベンチマークデータセットを使って、生成された学習済みモデルを評価した。図16は、Marmousi2地質構造モデルにおけるP波速度(Vp)の推定の一例を示す図である。すなわち、図16は、従来のResNet50に基づくモデル(He, K., Zhang, X., Ren, S., and Sun, J. [2016] Deep residual learning for image recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770‐778.)に標準ベンチマークデータセットを適用した逆問題の結果と、学習装置7により学習された学習済みモデルに標準ベンチマークデータセットを適用した逆問題の結果との比較の一例の示す図である。図16における(a)は、グランドトゥルースを示している。図16における(b)は、実施形態による生成された学習済みモデルによる推定を示している。図16における(c)は、ResNet50に基づくエンコーダデコーダモデルを用いた推定を示している。図16における(d)は、(a)から(c)における赤線に対応する2kmの位置での1次元(1D)プロファイルを示している。図16における(e)は、青線に対応する11kmにおける1Dプロファイルを示している。 The learning unit 815 trained the optimal neural architecture using a large training data set. The generated trained model was evaluated using two standard benchmark datasets, the Marmousi2 geostructure model and the 1994 Amoco static correction test dataset. FIG. 16 is a diagram showing an example of estimation of P wave velocity (Vp) in the Marmousi2 geological structure model. That is, FIG. 16 shows a model based on the conventional ResNet50 (He, K., Zhang, X., Ren, S., and Sun, J. [2016] Deep redearing for image recognition Recognition Co., Ltd. Comparison of the result of the inverse problem in which the standard benchmark data set is applied to Pattern Recognition (CVPR), 770-778.) And the result of the inverse problem in which the standard benchmark data set is applied to the trained model trained by the learning device 7. It is a figure which shows an example. (A) in FIG. 16 shows the grand truth. (B) in FIG. 16 shows the estimation by the trained model generated by the embodiment. FIG. 16 (c) shows the estimation using the encoder-decoder model based on ResNet50. (D) in FIG. 16 shows a one-dimensional (1D) profile at a position of 2 km corresponding to the red line in (a) to (c). (E) in FIG. 16 shows a 1D profile at 11 km corresponding to the blue line.
 逆問題の結果は、Marmousi2地質構造モデルの逆問題の結果に対応する。本実施形態における訓練データセットの質および量により、従来のベースラインとなるResNet50に基づくモデルによる逆問題の結果(c)は、速度モデル(a)を大まかに再生成した。一方、本実施形態により生成された学習済みモデルによる逆問題の結果(b)は、従来の逆問題の結果(c)に比べてさらにわかりやすい結果を示した。例えば、本実施形態により生成された学習済みモデルによる逆問題の結果(b)は、従来の逆問題の結果(c)に比べて、より正確な岩塩層(図16の(d)の深さ4km)の速度を予測し、断層(図16の(e))周辺の複雑なエリアにおいてより詳細な構造を得た。 The result of the inverse problem corresponds to the result of the inverse problem of the Marmousi2 geological structure model. Due to the quality and quantity of the training dataset in this embodiment, the result (c) of the inverse problem with the conventional baseline ResNet50 based model roughly regenerated the velocity model (a). On the other hand, the result (b) of the inverse problem by the trained model generated by the present embodiment shows a result that is easier to understand than the result (c) of the conventional inverse problem. For example, the result (b) of the inverse problem by the trained model generated by this embodiment is more accurate than the result (c) of the conventional inverse problem in the rock salt layer (depth of (d) in FIG. 16). The velocity of 4 km) was predicted, and a more detailed structure was obtained in the complicated area around the fault ((e) in FIG. 16).
 図17は、1994Amoco静補正テストデータセットに関するモデル化の結果を示している。図17における(a)は、グランドトゥルースを示している。図17における(b)は、実施形態による生成された学習済みモデルによる推定を示している。本実施形態により生成された学習済みモデルは、訓練データが1994Amoco静補正テストデータセットに関わる情報を含まないにもかかわらず、高解像度かつ良好な出力を推定した。 FIG. 17 shows the results of modeling for the 1994 Amoco static correction test dataset. (A) in FIG. 17 shows the grand truth. FIG. 17 (b) shows the estimation by the trained model generated by the embodiment. The trained model generated by this embodiment estimated high resolution and good output even though the training data did not contain information related to the 1994 Amoco static correction test dataset.
 本実施形態に係る学習データ生成装置3(以下、本学習データ生成装置3)によれば、一例として、地下構造に関する複数の特徴量各々に対して当該特徴量の値の範囲を設定し、複数の特徴量に関して、当該範囲と乱数とに基づいて、当該範囲における特徴量の値を決定し、決定された値を用いて地下構造のモデルを生成し、地下構造のモデルに対する地震波動伝播シミュレーションにより、地下構造に関する観測値を模擬的に示す模擬データを生成し、当該乱数に応じて生成された複数の地下構造のモデルと、複数の地下構造のモデルに応じて生成された複数の模擬データとを、地震波動伝播シミュレーションにおける入出力の関係により対応付けて、複数の学習データを生成する。本学習データ生成装置3によれば、当該範囲は、地下構造の調査の対象となる領域を含む地域における地質学的な情報に基づいて設定される。ここで、本学習データ生成装置3における地質学的な情報は、地域における検層データと、地域において地下構造に関する観測データと、地域において推論された特徴量の空間分布とのうち少なくとも一つを有する。また、本学習データ生成装置3によれば、特徴量は、地下構造のモデルにおける削剥面の深度と、地下構造のモデルにおける断層の曲がりの程度と、地層の不整合を示し、岩塩層の流動で形成された不整合面とを有する。また、本学習データ生成装置3によれば、特徴量において、正断層または逆断層を設定する。 According to the learning data generation device 3 (hereinafter referred to as the present learning data generation device 3) according to the present embodiment, as an example, a range of the value of the feature amount is set for each of the plurality of feature amounts related to the underground structure, and a plurality of features are set. Based on the range and random numbers, the value of the feature amount in the range is determined, the model of the underground structure is generated using the determined value, and the seismic wave propagation simulation for the model of the underground structure is performed. , Generate simulated data that simulates the observed values related to the underground structure, and generate a plurality of simulated data that are generated according to the random number, and a plurality of simulated data that are generated according to a plurality of models of the underground structure. Are associated with each other according to the input / output relationship in the seismic wave propagation simulation, and a plurality of training data are generated. According to the learning data generation device 3, the range is set based on the geological information in the area including the area to be investigated of the underground structure. Here, the geological information in the learning data generation device 3 includes at least one of logging data in the area, observation data on the underground structure in the area, and spatial distribution of the feature quantity inferred in the area. Have. In addition, according to this learning data generation device 3, the feature quantity indicates the depth of the stripped surface in the model of the underground structure, the degree of bending of the fault in the model of the underground structure, and the inconsistency of the stratum, and the flow of the salt dome layer. It has an inconsistent surface formed by. Further, according to the present learning data generation device 3, a normal fault or a reverse fault is set in the feature amount.
 これらのことから、本学習データ生成装置3によれば、一例として、地質学的な知識や識見などに基づいて設定された地質学的なパラメータの範囲において、乱数を用いて地質学的なパラメータを設定し、地下構造の生成過程を地質学的に踏襲して、設定された地質学的なパラメータを用いて、多様性のある地下構造モデルを大量に生成することができる。すなわち、本学習データ生成装置3によれば、地下構造を自然の歴史を参考に乱数を用いて現実的な地下構造モデルを大量に生成し、大量の学習用データを生成することができる。本学習データ生成装置3により生成された大量の学習用データは、質的に高いすなわち現実に即した大量の地下構造モデルを教師データとして有するため、学習済みモデルの汎化性能を向上させることができる。 Based on these facts, according to the learning data generator 3, as an example, geological parameters using random numbers are used in the range of geological parameters set based on geological knowledge and insight. It is possible to generate a large number of diverse underground structure models by using the set geological parameters by geologically following the formation process of the underground structure. That is, according to the present learning data generation device 3, a large amount of realistic underground structure models can be generated by using random numbers with reference to the natural history of the underground structure, and a large amount of learning data can be generated. Since the large amount of training data generated by the training data generation device 3 has a large amount of underground structure models that are qualitatively high, that is, realistic, as teacher data, it is possible to improve the generalization performance of the trained model. can.
 また、本学習データ生成装置3によれば、一例として、複数の特徴量に対応する複数の前記範囲と複数の前記範囲各々における上限値と下限値とを変更させる2つの指示器とを表示し、当該2つの指示器により指定された範囲の代表値を用いて、地下構造の確認用モデルを生成し、複数の特徴量に対応する複数の前記範囲と、複数の前記範囲各々における2つの指示器と、確認用モデルを表示する。これにより、本学習データ生成装置3によれば、地質学的な知識などを地質学的なパラメータの範囲に反映させる当該範囲の入力時において、ユーザは範囲の変更および調整に伴う地下構造モデルの変化を容易に把握することができる。これにより、地下構造モデルの生成に関するユーザの操作性を向上させることができ、学習データの品質をさらに向上させることができる。これにより、学習済みモデルの汎化性能を向上させることができる。 Further, according to the learning data generation device 3, as an example, a plurality of said ranges corresponding to a plurality of feature quantities and two indicators for changing an upper limit value and a lower limit value in each of the plurality of said ranges are displayed. , A model for confirming the underground structure is generated using the representative values of the ranges specified by the two indicators, and the plurality of the ranges corresponding to the plurality of features and the two instructions in each of the plurality of the ranges are indicated. Display the vessel and the confirmation model. As a result, according to the learning data generation device 3, when the user inputs the range to reflect the geological knowledge and the like in the range of the geological parameters, the user can change and adjust the range of the underground structure model. Changes can be easily grasped. As a result, the user's operability regarding the generation of the underground structure model can be improved, and the quality of the training data can be further improved. As a result, the generalization performance of the trained model can be improved.
  (応用例)
 本応用例は、構造に対する観測により取得された観測データと模擬データと模擬データにおけるデータ値の大きさに応じて重み付けした損失関数とを用いた、例えば敵対的生成ネットワーク(GAN)により、模擬データを観測データの現実性に近づけた改善データを模擬データに基づいて改善するように改善器を学習し、学習された改善器に模擬データを入力して、改善データを生成し、構造のモデルと改善データとを対応付けて、学習データを生成することにある。また、本応用例では、改善データを有する学習データを用いて、構造に関する推定モデル(以下、地下構造推定モデルと呼ぶ)を学習すること、および地下構造推定モデルを用いた地下構造推定処理についても説明する。
(Application example)
In this application example, simulated data is used, for example, by a hostile generation network (GAN), which uses observation data acquired by observing a structure, simulated data, and a loss function weighted according to the size of the data value in the simulated data. Learn the improver so that the improvement data that is closer to the reality of the observed data is improved based on the simulated data, input the simulated data to the learned improver, generate the improvement data, and use the structural model. The purpose is to generate training data by associating it with improvement data. Further, in this application example, the estimation model related to the structure (hereinafter referred to as the underground structure estimation model) is learned by using the training data having the improvement data, and the underground structure estimation process using the underground structure estimation model is also performed. explain.
 また、本応用例において、学習データ生成部319は、学習装置7に搭載されたプロセッサ81に設けられるものとする。なお、本応用例における技術的特徴を推定装置において実現する場合、推定装置におけるプロセッサは、学習データ生成部319と、学習部815と、観測データを学習済みモデルに入力することにより当該観測データに関する構造を推定する推定部とを備える。 Further, in this application example, the learning data generation unit 319 is provided in the processor 81 mounted on the learning device 7. When the technical features in this application example are realized in the estimation device, the processor in the estimation device relates to the learning data generation unit 319, the learning unit 815, and the observation data by inputting the observation data into the trained model. It is provided with an estimation unit that estimates the structure.
 図18は、学習データの生成と、当該学習データを用いた地下構造推定モデルTUSEMの訓練と、訓練された地下構造推定モデルTUSEMを用いた地下構造推定処理との概要の一例を示す図である。図18に示すSimは、実施形態における学習データ生成処理に対応する。すなわち、図18に示すSimは、複数の地下構造モデルを生成して、地下構造モデルUSMに対応する模擬データSDを、波動伝播シミュレーションWPSにより複数生成する処理の概要を示している。図18に示すSimにおける処理内容については、実施形態と同様なため、説明を省略する。また、図18におけるRealでは、地下構造推定処理の実施に用いられる収集済みの観測データ(例えばショットデータ)ODを示している。観測データODの取得については、既存の方法に準拠するため説明を省略する。 FIG. 18 is a diagram showing an outline of the generation of training data, the training of the underground structure estimation model TUSEM using the training data, and the underground structure estimation processing using the trained underground structure estimation model TUSEM. .. The Sim shown in FIG. 18 corresponds to the learning data generation process in the embodiment. That is, Sim shown in FIG. 18 shows an outline of a process of generating a plurality of underground structure models and generating a plurality of simulated data SDs corresponding to the underground structure model USM by wave propagation simulation WPS. Since the processing contents in Sim shown in FIG. 18 are the same as those in the embodiment, the description thereof will be omitted. Further, Real in FIG. 18 shows the collected observation data (for example, shot data) OD used for carrying out the underground structure estimation process. The description of the acquisition of the observation data OD will be omitted because it conforms to the existing method.
 図18におけるS2Rは、模擬データSDと観測データODとに基づいて、改善器(Refiner)RFを敵対的生成ネットワークにより学習する過程と、学習された改善器TRFを用いて模擬データSDを改善データRDに変換する過程とを示している。図18における敵対的生成ネットワークは、訓練対象の改善器(リファイナ(Refiner))RFと識別器(ディスクリミネータ(Discriminator))DCNとを有する。また、敵対的生成ネットワークによる改善器RFの学習過程において、学習中の改善器RFからの出力は、模擬データSDに対して現実的なノイズなどが付加されたノイズ付加データNADに対応する。 S2R in FIG. 18 is a process of learning the improver RF by the hostile generation network based on the simulated data SD and the observation data OD, and the simulated data SD using the learned improver TRF. It shows the process of converting to RD. The hostile generation network in FIG. 18 has a refiner RF and a discriminator DCN to be trained. Further, in the learning process of the improver RF by the hostile generation network, the output from the improver RF during learning corresponds to the noise addition data NAD in which realistic noise or the like is added to the simulated data SD.
 図18におけるINVは、改善データRDと地下構造モデルUSMとによる学習対象のモデルLOMの学習過程と、学習された地下構造推定モデルTUSEMに観測データODを入力し、推定された地下構造UGSを出力する地下構造推定処理の過程とを示している。 INV in FIG. 18 inputs the observation data OD into the learning process of the model LOM to be learned by the improved data RD and the underground structure model USM and the learned underground structure estimation model TUSEM, and outputs the estimated underground structure UGS. It shows the process of underground structure estimation processing.
 学習データ生成部319は、地下構造モデルUSMに対して波動伝播シミュレーションWPSを実行する。これにより、学習データ生成部319は、波動伝播シミュレーションWPSのシミュレーション結果に相当し、当該地下構造モデルUSMに対応する模擬データSDを生成する。学習データ生成部319は、上記処理を複数の地下構造モデルUSMに対して実行することで、複数の地下構造モデルUSMに対応する複数の模擬データSDを生成する。次いで、学習データ生成部319は、ランダムに生成されたノイズを、複数の模擬データSD各々に付加する。これにより、学習データ生成部319は、ランダムなノイズが付加された複数の模擬データ(以下、ノイズ付加模擬データと呼ぶ)を生成する。ノイズの付加は、例えば、図18に示す矢印NAにおいて実施される。なお、ランダムなノイズの付加は、本応用例における処理時間の短縮のために適宜省略されてもよい。学習データ生成部319は、複数の地下構造モデルUSMと複数のノイズ付加模擬データとを、波動伝播シミュレーションWPSへの入出力により対応付けて、メモリに記憶する。また、学習データ生成部319は、既存の取得装置により取得された観測データODと、学習前のネットワークとを、メモリから読み出す。観測データODの総数は、例えば、ノイズ付加模擬データの総数より比べて少なくてもよいが、改善器RFに対する学習の汎化性能の向上のため、所定の数以上での多数であることが望ましい。 The learning data generation unit 319 executes the wave propagation simulation WPS on the underground structure model USM. As a result, the learning data generation unit 319 corresponds to the simulation result of the wave propagation simulation WPS and generates the simulated data SD corresponding to the underground structure model USM. The learning data generation unit 319 generates a plurality of simulated data SDs corresponding to the plurality of underground structure model USMs by executing the above processing on the plurality of underground structure model USMs. Next, the learning data generation unit 319 adds randomly generated noise to each of the plurality of simulated data SDs. As a result, the learning data generation unit 319 generates a plurality of simulated data to which random noise is added (hereinafter, referred to as noise-added simulated data). The addition of noise is carried out, for example, by the arrow NA shown in FIG. The addition of random noise may be appropriately omitted in order to shorten the processing time in this application example. The learning data generation unit 319 associates the plurality of underground structure model USMs with the plurality of noise-added simulated data by input / output to the wave propagation simulation WPS, and stores them in the memory. Further, the learning data generation unit 319 reads the observation data OD acquired by the existing acquisition device and the network before learning from the memory. The total number of observed data ODs may be smaller than, for example, the total number of noise-added simulated data, but it is desirable that the total number is a predetermined number or more in order to improve the generalization performance of learning for the improver RF. ..
 学習データ生成部319は、ネットワークに観測データとノイズ付加模擬データ(ノイズ付加を実行しない場合は模擬データ)とを適用し、改善器RFと識別器DCNとを交互に学習する。改善器RFの学習に用いられる損失関数(以下、改善器ロス関数と呼ぶ)は、模擬データSDにおける信号値の強さに応じて、例えば模擬データSDにおける信号値の大きさに比例して、当該信号値を維持するように重み付けられる。以下、本応用例に特有のロス関数について説明する。なお、ネットワークにおける他の構成および処理等は、既存の技術が適用可能であるため、説明は省略する。 The learning data generation unit 319 applies the observation data and the noise addition simulated data (simulated data when noise addition is not executed) to the network, and alternately learns the improver RF and the discriminator DCN. The loss function used for learning the improver RF (hereinafter referred to as the improver loss function) depends on the strength of the signal value in the simulated data SD, for example, in proportion to the magnitude of the signal value in the simulated data SD. Weighted to maintain that signal value. Hereinafter, the loss function peculiar to this application example will be described. Since existing techniques can be applied to other configurations and processes in the network, the description thereof will be omitted.
 改善器ロス関数LossL1は、模擬データSDに関してネットワークに入力されたノイズ付加模擬データに相当する画像をIsim、ノイズ付加データNADに相当する画像をItaintとすると、例えば、以下の式(1)で定義される。 Assuming that the image corresponding to the noise-added simulated data input to the network with respect to the simulated data SD is Isim and the image corresponding to the noise-added data NAD is Itint , the improver loss function Loss L1 is, for example, the following equation (1). ).
LossL1=mean(abs(Isim)*abs(Isim-Itaint))・・・(1)
 式(1)における右辺は、画像Isimと画像Itaintとの差分の絶対値absに画像Isimの絶対値を画素ごとに乗算し、全画像の画素にわたる平均値meanを計算することを示している。abs(Isim-Itaint)にabs(Isim)を乗算することは、通常のL1ロスmean(abs(Isim-Itaint))における平均値の計算前の絶対値画像abs(Isim-Itaint)に、模擬データSDにおける信号値の強さを重みabs(Isim)として乗算することを示している。これにより、学習データ生成部319は、式(1)に示す改善器ロス関数LossL1が小さくなるように、改善器RFを繰り返し学習する。これにより、改善器RFは、模擬データSDにおける信号値の大きさに比例して当該信号値を維持するように学習される。
Loss L1 = mean (abs (I sim ) * abs (I sim -I taint )) ... (1)
The right side in the equation (1) shows that the absolute value abs of the difference between the image I sim and the image I point is multiplied by the absolute value of the image I sim for each pixel to calculate the mean value mean over the pixels of all the images. ing. Multiplying abs (I sim -I sim ) by abs (I sim ) is an absolute value image abs (I sim -I sim- ) before calculation of the mean value in a normal L1 loss mean (abs (I sim -I sim)). It is shown that I point) is multiplied by the strength of the signal value in the simulated data SD as the weights abs (I sim ) . As a result, the learning data generation unit 319 repeatedly learns the improver RF so that the improver loss function Loss L1 shown in the equation (1) becomes smaller. As a result, the improver RF is learned to maintain the signal value in proportion to the magnitude of the signal value in the simulated data SD.
 なお、改善器ロス関数LossL1における重みは、上記abs(Isim)に限定されない。例えば、改善器ロス関数LossL1における重みは、abs(Isim)の広義的な単調増加の関数(広義単調増加関数)であれば、どのような関数であってもよい。具体的には、改善器ロス関数LossL1における重みは、非線形な重み(abs(Isim))^2、sqrt(abs(Isim))、または上限aを設けたmin(a、abs(Isim)などであってもよい。 The weight in the improver loss function Loss L1 is not limited to the above abs (I sim ). For example, the weight in the improver loss function Loss L1 may be any function as long as it is a function of abs (I sim ) in a broad sense of monotonic increase (broad sense monotonic increase function). Specifically, the weights in the improver loss function Loss L1 are non-linear weights (abs (I sim )) ^ 2, square (abs (I sim )), or min (a, abs (I)) provided with an upper limit a. It may be sim ) or the like.
 学習データ生成部319は、複数の観測データと複数のノイズ付加模擬データ(ノイズ付加を実行しない場合は複数の模擬データ)とによるネットワークの学習により学習された改善器RF(以下、学習済み改善器TRF)を、メモリに記憶する。学習済み改善器TRFは、観測データを反映した改善器であるため、観測データが取得された地域、観測データの収集における収集条件(例えば、観測データの収集に関する観測機器、オペレータによる観測データの収集時における各種特徴、観測データの収集に関する調査会社の特性等)を反映させたものとなり、観測データに特化して、すなわち観測データに関して自動的にカスタマイズされて学習されることとなる。 The learning data generation unit 319 is an improver RF (hereinafter, learned improver RF) learned by learning a network using a plurality of observation data and a plurality of noise addition simulated data (a plurality of simulated data when noise addition is not executed). TRF) is stored in the memory. Since the trained improver TRF is an improver that reflects the observation data, the area where the observation data was acquired, the collection conditions for collecting the observation data (for example, the observation equipment for collecting the observation data, the collection of the observation data by the operator). It reflects various characteristics at the time, characteristics of the research company regarding the collection of observation data, etc.), and is specialized in observation data, that is, it is automatically customized and learned about observation data.
 学習データ生成部319は、ランダムに生成されたノイズを模擬データに付加することでノイズ付加模擬データを生成する。学習データ生成部319は、学習済み改善器TRFをメモリから読み出し、ノイズ付加模擬データまたは模擬データを入力し、改善データを生成する。なお、学習済み改善器TRFに入力されるノイズ付加模擬データは、改善器RFの学習に用いられたノイズ付加模擬データであってもよい。学習データ生成部319は、構造のモデルと改善データとを対応付けて、学習データを生成する。具体的には、学習データ生成部319は、地下構造モデルUSMと改善データRDとを対応付けて、学習データを生成する。学習データ生成部319は、例えば、ノイズ付加模擬データの生成から改善データRDの生成までの処理を複数の模擬データに対して繰り返すことにより、複数の学習データを生成する。学習データ生成部319は、生成された複数の学習データを、メモリに記憶する。 The learning data generation unit 319 generates noise addition simulated data by adding randomly generated noise to the simulated data. The learning data generation unit 319 reads the learned improver TRF from the memory, inputs noise-added simulated data or simulated data, and generates improvement data. The noise addition simulation data input to the trained improver TRF may be the noise addition simulation data used for learning the improver RF. The learning data generation unit 319 associates the structural model with the improvement data and generates learning data. Specifically, the learning data generation unit 319 associates the underground structure model USM with the improvement data RD to generate learning data. The learning data generation unit 319 generates a plurality of learning data by repeating the processes from the generation of the noise-added simulated data to the generation of the improved data RD for the plurality of simulated data, for example. The learning data generation unit 319 stores the generated plurality of learning data in the memory.
 学習部815は、複数の学習データ各々を用いて学習対象のモデルLOMを学習することにより、地下構造推定モデルTUSEMを学習する。複数の学習データを用いたモデルLOMの学習は、既知の方法が適宜利用可能であるため、説明は省略する。地下構造推定モデルTUSEMの学習では、シミュレーション結果である模擬データSDに観測データODによる現実感が付与されたノイズ付加模擬データが用いられている。このため、地下構造推定モデルTUSEMでは、現実のデータである観測データODに対して地下構造の推定であるインバージョンができるようなネットワーク(学習済みモデル)が学習されることとなる。 The learning unit 815 learns the underground structure estimation model TUSEM by learning the model LOM to be learned using each of the plurality of learning data. Since a known method can be appropriately used for training the model LOM using a plurality of training data, the description thereof will be omitted. In the learning of the underground structure estimation model TUSEM, noise-added simulated data in which the simulated data SD, which is the simulation result, is given a sense of reality by the observation data OD is used. Therefore, in the underground structure estimation model TUSEM, a network (learned model) capable of inversion of the underground structure estimation with respect to the observation data OD which is the actual data is learned.
 推定部は、観測データODを地下構造推定モデルTUSEMに入力することにより、地下構造UGSを推定する。推定された地下構造は、メモリに記憶される。なお、推定された地下構造は、ディスプレイに表示されてもよい。 The estimation unit estimates the underground structure UGS by inputting the observation data OD into the underground structure estimation model TUSEM. The estimated underground structure is stored in memory. The estimated underground structure may be displayed on the display.
 以下、説明を具体的にするために、観測データは、地下構造の推定に関する地域において取得された地下構造に関するショットデータであるものとする。また、ショットデータの取得に応じて、当該ショットデータに基づいて地下構造を推定する処理について説明する。図19は、学習データの生成と、当該学習データを用いた地下構造推定モデルの生成と、生成された地下構造推定モデルを用いた地下構造推定処理との一連の処理(以下、モデル生成推定処理と呼ぶ)の手順の一例を示すフローチャートである。 In the following, for the sake of concrete explanation, the observation data shall be shot data related to the underground structure acquired in the area related to the estimation of the underground structure. In addition, a process of estimating the underground structure based on the shot data according to the acquisition of the shot data will be described. FIG. 19 shows a series of processes of generation of training data, generation of an underground structure estimation model using the training data, and underground structure estimation processing using the generated underground structure estimation model (hereinafter, model generation estimation processing). It is a flowchart which shows an example of the procedure of).
  (モデル生成推定処理)
 (ステップS191)
 学習データ生成部319は、複数のショットデータODを取得する。例えば、学習データ生成部319は、取得装置、ショットデータODが記憶されたサーバ装置、またはショットデータODが記憶された記憶媒体から、ショットデータODを取得する。学習データ生成部319は、取得されたショットデータODをメモリに記憶する。
(Model generation estimation process)
(Step S191)
The learning data generation unit 319 acquires a plurality of shot data ODs. For example, the learning data generation unit 319 acquires the shot data OD from the acquisition device, the server device in which the shot data OD is stored, or the storage medium in which the shot data OD is stored. The learning data generation unit 319 stores the acquired shot data OD in the memory.
 (ステップS192)
 学習データ生成部319は、複数の模擬データSDをメモリから読み出す。学習データ生成部319は、複数の模擬データSD各々に対してランダムなノイズを付加し、ノイズ付加模擬データを生成する。学習データ生成部319は、生成されたノイズ付加模擬データをメモリに記憶する。なお、モデル生成推定処理における処理時間の短縮のために、本ステップは省略されてもよい。
(Step S192)
The learning data generation unit 319 reads a plurality of simulated data SDs from the memory. The learning data generation unit 319 adds random noise to each of the plurality of simulated data SDs, and generates noise-added simulated data. The learning data generation unit 319 stores the generated noise-added simulated data in the memory. This step may be omitted in order to shorten the processing time in the model generation estimation process.
 (ステップS193)
 学習データ生成部319は、ノイズ付加模擬データと複数のショットデータとを用いて、改善器RFを識別器DCNとともに学習し、学習済み改善器TRFを生成する。具体的には、学習データ生成部319は、ショットデータを、学習される改善器RFに入力する。学習データ生成部319は、学習される改善器RFからノイズ付加データNADを出力する。学習データ生成部319は、模擬データSDに関してノイズ付加模擬データに相当する画像をIsimと、ノイズ付加データNADに相当する画像をItaintとに基づいて、改善器ロス関数LossL1を算出する。学習データ生成部319は、改善器ロス関数LossL1を低減するように、例えば、誤差逆伝播法により改善器RFを学習する。加えて、学習データ生成部319は、識別器DCNを学習する。学習データ生成部319は、これらの処理を複数のノイズ付加模擬データ各々と複数のショットデータ各々とに応じて繰り返すことで、改善器RFと、識別器DCNとを学習する。当該学習過程が完了すると、学習データ生成部319は、学習済み改善器TRFを生成する。なお、改善器RFと識別器DCNとの学習は、学習装置における学習部815により実現されてもよい。
(Step S193)
The learning data generation unit 319 learns the improver RF together with the classifier DCN using the noise addition simulated data and the plurality of shot data, and generates the trained improver TRF. Specifically, the learning data generation unit 319 inputs the shot data to the trained improver RF. The learning data generation unit 319 outputs the noise addition data NAD from the learned improver RF. The learning data generation unit 319 calculates the improver loss function Loss L1 based on the image corresponding to the noise-added simulated data and the image corresponding to the noise-added data NAD with respect to the simulated data SD. The learning data generation unit 319 learns the improver RF by, for example, an error backpropagation method so as to reduce the improver loss function Loss L1 . In addition, the learning data generation unit 319 learns the classifier DCN. The learning data generation unit 319 learns the improver RF and the discriminator DCN by repeating these processes according to each of the plurality of noise-added simulated data and each of the plurality of shot data. When the learning process is completed, the learning data generation unit 319 generates the learned improver TRF. The learning between the improver RF and the discriminator DCN may be realized by the learning unit 815 in the learning device.
 (ステップS194)
 学習データ生成部319は、複数のノイズ付加模擬データ各々を学習済み改善器TRFに入力し、複数の改善データを生成する。具体的には、学習データ生成部319は、ランダムに生成されたノイズを複数の模擬データ各々に付加することで、複数のノイズ付加模擬データを生成する。
(Step S194)
The learning data generation unit 319 inputs each of the plurality of noise-added simulated data to the trained improver TRF, and generates a plurality of improvement data. Specifically, the learning data generation unit 319 generates a plurality of noise-added simulated data by adding randomly generated noise to each of the plurality of simulated data.
 (ステップS195)
 学習データ生成部319は、複数の地下構造モデルと、複数の改善データとを対応付けて、複数の学習データを生成する。学習データ生成部193は、複数の学習データをメモリに記憶する。
(Step S195)
The learning data generation unit 319 associates a plurality of underground structure models with a plurality of improvement data to generate a plurality of learning data. The learning data generation unit 193 stores a plurality of learning data in the memory.
 (ステップS196)
 学習部815は、複数の学習データを用いて地下構造推定モデルTUSEMを生成する。すなわち、学習部815は、複数の学習データに亘って学習対象のモデルLOMを学習することで、地下構造推定モデルTUSEMを生成する。学習部815は、地下構造推定モデルTUSEMをメモリに記憶する。
(Step S196)
The learning unit 815 generates an underground structure estimation model TUSEM using a plurality of learning data. That is, the learning unit 815 generates the underground structure estimation model TUSEM by learning the model LOM to be learned over a plurality of learning data. The learning unit 815 stores the underground structure estimation model TUSEM in the memory.
 (ステップS197)
 推定部は、地下構造推定モデルTUSEMに複数のショットデータ各々を入力し、地下構造UGSを推定する。推定部は、推定された地下構造を、メモリに記憶する。なお、推定部は、推定された地下構造UGSを、ディスプレイに表示してもよい。
(Step S197)
The estimation unit inputs each of a plurality of shot data into the underground structure estimation model TUSEM and estimates the underground structure UGS. The estimation unit stores the estimated underground structure in the memory. The estimation unit may display the estimated underground structure UGS on the display.
 本実施形態に係る学習データ生成装置3は、構造に対する観測により取得された観測データODと模擬データSDと模擬データSDにおけるデータ値の大きさに応じて重み付けした損失関数LossL1とを用いた敵対的生成ネットワークにより、模擬データSDを観測データODの現実性に近づけた改善データRDを模擬データSDに基づいて生成するように改善器RFを学習し、模擬データSDを学習された改善器TRFに入力して、改善データRDを生成し、地下構造モデルUSMと改善データRDとを対応付けて、学習データを生成する。例えば、本学習データ生成装置3によれば、模擬データSDにおける信号値の大きさに比例した改善器ロス関数LossL1を用いて、改善器RFを学習する。これにより、学習データ生成装置3によれば、模擬データSDにおける信号値を維持するように、学習済み改善器TRFを生成することができる。 The learning data generation device 3 according to the present embodiment is hostile using the observation data OD acquired by observing the structure, the simulated data SD, and the loss function Loss L1 weighted according to the magnitude of the data values in the simulated data SD. By the target generation network, the improver RF is learned so that the simulated data SD is generated based on the simulated data SD, and the simulated data SD is converted into the learned improver TRF. Input to generate improvement data RD, and associate the underground structure model USM with the improvement data RD to generate training data. For example, according to the present learning data generation device 3, the improver RF is learned by using the improver loss function Loss L1 proportional to the magnitude of the signal value in the simulated data SD. As a result, according to the learning data generator 3, the trained improver TRF can be generated so as to maintain the signal value in the simulated data SD.
 加えて、本学習データ生成装置3によれば、観測データODを用いて改善器RFの学習を行うため、観測データODの収集条件によるノイズなどの変動要因も改善器RFの学習過程において学習させることができる。このため、本学習データ生成装置3によれば、模擬データSDを観測データODの現実性に近づけた改善データRDを生成することができる。換言すれば、本学習データ生成装置3は、地下構造モデルUSMのシミュレーション結果である模擬データSDに対して現実性を付与した改善データを生成することで、より現実性を有する学習データを生成することができる。 In addition, according to the learning data generator 3, since the improver RF is learned using the observation data OD, fluctuation factors such as noise due to the collection conditions of the observation data OD are also learned in the learning process of the improver RF. be able to. Therefore, according to the present learning data generation device 3, it is possible to generate the improved data RD in which the simulated data SD is close to the reality of the observation data OD. In other words, the learning data generation device 3 generates more realistic learning data by generating improved data in which reality is added to the simulated data SD which is the simulation result of the underground structure model USM. be able to.
 また、本学習データ生成装置3は、模擬データSDに基づくノイズ付加模擬データと観測データODと上記改善器ロス関数LossL1とを用いて、改善器RFを学習してもよい。このとき、本学習データ生成装置3によれば、観測データODに於けるランダムなノイズに関して、効果的に改善器RFと識別器DCNとを学習させることができる。これにより、本学習データ生成装置3によれば、より現実性の高い改善データを生成可能に、改善器RFを学習することができる。 Further, the learning data generation device 3 may learn the improver RF by using the noise addition simulated data based on the simulated data SD, the observation data OD, and the improver loss function Loss L1 . At this time, according to the learning data generation device 3, the improver RF and the discriminator DCN can be effectively trained with respect to the random noise in the observation data OD. As a result, according to the learning data generation device 3, the improvement device RF can be learned so that more realistic improvement data can be generated.
 以上のことから、本学習データ生成装置3によれば、より現実性の高い改善データを生成できるため、学習データの品質をさらに向上させることができる。 From the above, according to the present learning data generation device 3, it is possible to generate more realistic improvement data, so that the quality of the learning data can be further improved.
 本学習装置は、学習部815により、学習済みの改善器TRFを用いた改善データを有する学習データを用いて、学習対象のモデルLOMを学習する。これにより、本学習装置によれば、現実性の高い改善データと、正解データとしての地下構造モデルUSMとを用いて、学習対象のモデルLOMを学習することで、地下構造推定モデルTUSEMを生成する。以上のことから、本学習装置によれば、観測データODに対して、より信頼性の高い地下構造UGSを出力可能な地下構造推定モデルTUSEMを学習することができる。 This learning device learns the model LOM to be learned by the learning unit 815 using the learning data having the improvement data using the learned improver TRF. As a result, according to this learning device, the underground structure estimation model TUSEM is generated by learning the model LOM to be learned by using the highly realistic improvement data and the underground structure model USM as the correct answer data. .. From the above, according to this learning device, it is possible to learn the underground structure estimation model TUSEM capable of outputting a more reliable underground structure UGS with respect to the observation data OD.
 また、本推定装置によれば、改善器RFの学習に用いられた観測データODを、地下構造推定モデルTUSEMに入力することにより、地下構造UGSを推定する。以上のことから、本推定装置によれば、現実性の高い学習データを用いて生成された地下構造推定モデルTUSEMを用いることにより、現実性の高い地下構造UGSを推定することができる。 Further, according to this estimation device, the underground structure UGS is estimated by inputting the observation data OD used for learning the improver RF into the underground structure estimation model TUSEM. From the above, according to this estimation device, a highly realistic underground structure UGS can be estimated by using the underground structure estimation model TUSEM generated by using highly realistic learning data.
 以上のことから、本実施形態に係る学習データ生成装置3によれば、構造に関する学習データを生成することができる。 From the above, according to the learning data generation device 3 according to the present embodiment, it is possible to generate learning data related to the structure.
 本実施形態の技術的特徴を学習データ生成方法で実現する場合、学習データ生成方法は、少なくとも1つのプロセッサを用いて実行される学習データ生成方法であって、構造に関する複数の特徴量に基づいて、構造のモデルを生成することと、構造のモデルに対する波動伝播シミュレーションにより、構造に関する観測値を模擬的に示す模擬データを生成することと、生成された構造のモデルと模擬データとを対応付けて学習データを生成する。学習データ生成方法に対応する処理手順は、学習データ生成処理の手順に対応するため、説明は省略する。また、学習データ生成方法による効果は、実施形態と同様なため、説明は省略する。本実施形態の技術的特徴をモデル生成方法で実現する場合、モデル生成方法は、上記学習データ生成方法を用いて生成された学習データを用いて、構造に関する情報を推定する推定モデルを生成する。モデル生成方法に関する処理手順は、学習部815などにおける処理の手順に対応するため、説明は省略する。また、モデル生成方法による効果は、実施形態と同様なため、説明は省略する。 When the technical features of the present embodiment are realized by the training data generation method, the training data generation method is a training data generation method executed by using at least one processor, and is based on a plurality of structural features. , Generate a model of the structure, generate simulated data that simulates the observed values related to the structure by wave propagation simulation for the model of the structure, and associate the generated model of the structure with the simulated data. Generate training data. Since the processing procedure corresponding to the learning data generation method corresponds to the procedure of the learning data generation processing, the description thereof will be omitted. Further, since the effect of the learning data generation method is the same as that of the embodiment, the description thereof will be omitted. When the technical features of the present embodiment are realized by the model generation method, the model generation method generates an estimation model that estimates information about the structure by using the training data generated by the above training data generation method. Since the processing procedure related to the model generation method corresponds to the processing procedure in the learning unit 815 and the like, the description thereof will be omitted. Further, since the effect of the model generation method is the same as that of the embodiment, the description thereof will be omitted.
 前述した実施形態における各装置の一部又は全部は、ハードウェアで構成されていてもよいし、CPU、又はGPU等が実行するソフトウェア(プログラム)の情報処理で構成されてもよい。ソフトウェアの情報処理で構成される場合には、前述した実施形態における各装置の少なくとも一部の機能を実現するソフトウェアを、フレキシブルディスク、CD-ROM(Compact Disc-Read Only Memory)、又はUSBメモリ等の非一時的な記憶媒体(非一時的なコンピュータ可読媒体)に収納し、コンピュータ30に読み込ませることにより、ソフトウェアの情報処理を実行してもよい。また、通信ネットワーク5を介して当該ソフトウェアがダウンロードされてもよい。さらに、ソフトウェアがASIC、又はFPGA等の回路に実装されることにより、情報処理がハードウェアにより実行されてもよい。 A part or all of each device in the above-described embodiment may be configured by hardware, or may be configured by information processing of software (program) executed by a CPU, GPU, or the like. In the case of software information processing, software that realizes at least a part of the functions of each device in the above-described embodiment is a flexible disk, a CD-ROM (Computer Disc-Read Only Memory), a USB memory, or the like. The information processing of the software may be executed by storing the software in a non-temporary storage medium (non-temporary computer-readable medium) and causing the computer 30 to read the information. Further, the software may be downloaded via the communication network 5. Further, information processing may be executed by hardware by implementing the software in a circuit such as an ASIC or FPGA.
 ソフトウェアを収納する記憶媒体の種類は限定されるものではない。記憶媒体は、磁気ディスク、又は光ディスク等の着脱可能なものに限定されず、ハードディスク、又はメモリ等の固定型の記憶媒体であってもよい。また、記憶媒体は、コンピュータ内部に備えられてもよいし、コンピュータ外部に備えられてもよい。 The type of storage medium that stores the software is not limited. The storage medium is not limited to a removable one such as a magnetic disk or an optical disk, and may be a fixed storage medium such as a hard disk or a memory. Further, the storage medium may be provided inside the computer or may be provided outside the computer.
 本明細書(請求項を含む)において、「a、b及びcの少なくとも1つ(一方)」又は「a、b又はcの少なくとも1つ(一方)」の表現(同様な表現を含む)が用いられる場合は、a、b、c、a-b、a-c、b-c、又はa-b-cのいずれかを含む。また、a-a、a-b-b、a-a-b-b-c-c等のように、いずれかの要素について複数のインスタンスを含んでもよい。さらに、a-b-c-dのようにdを有する等、列挙された要素(a、b及びc)以外の他の要素を加えることも含む。 In the present specification (including claims), the expression (including similar expressions) of "at least one (one) of a, b and c" or "at least one (one) of a, b or c" is used. When used, it includes any of a, b, c, ab, ac, bc, or abc. Further, a plurality of instances may be included for any of the elements, such as aa, abb, aabbbcc, and the like. Furthermore, it also includes adding elements other than the listed elements (a, b and c), such as having d, such as abcd.
 本明細書(請求項を含む)において、「データを入力として/データに基づいて/に従って/に応じて」等の表現(同様な表現を含む)が用いられる場合は、特に断りがない場合、各種データそのものを入力として用いる場合や、各種データに何らかの処理を行ったもの(例えば、ノイズ加算したもの、正規化したもの、各種データの中間表現等)を入力として用いる場合を含む。また「データに基づいて/に従って/に応じて」何らかの結果が得られる旨が記載されている場合、当該データのみに基づいて当該結果が得られる場合を含むとともに、当該データ以外の他のデータ、要因、条件、及び/又は状態等にも影響を受けて当該結果が得られる場合をも含み得る。また、「データを出力する」旨が記載されている場合、特に断りがない場合、各種データそのものを出力として用いる場合や、各種データに何らかの処理を行ったもの(例えば、ノイズ加算したもの、正規化したもの、各種データの中間表現等)を出力とする場合も含む。 In the present specification (including claims), when expressions such as "with data as input / based on / according to / according to" (including similar expressions) are used, unless otherwise specified. This includes the case where various data itself is used as an input, and the case where various data are processed in some way (for example, noise-added data, normalized data, intermediate representation of various data, etc.) are used as input. In addition, when it is stated that some result can be obtained "based on / according to / according to the data", it includes the case where the result can be obtained based only on the data, and other data other than the data. It may also include cases where the result is obtained under the influence of factors, conditions, and / or conditions. In addition, when it is stated that "data is output", unless otherwise specified, various data itself is used as output, or various data is processed in some way (for example, noise is added, normal). It also includes the case where the output is output (intermediate representation of various data, etc.).
 本明細書(請求項を含む)において、「接続される(connected)」及び「結合される(coupled)」との用語が用いられる場合は、直接的な接続/結合、間接的な接続/結合、電気的(electrically)な接続/結合、通信的(communicatively)な接続/結合、機能的(operatively)な接続/結合、物理的(physically)な接続/結合等のいずれをも含む非限定的な用語として意図される。当該用語は、当該用語が用いられた文脈に応じて適宜解釈されるべきであるが、意図的に或いは当然に排除されるのではない接続/結合形態は、当該用語に含まれるものして非限定的に解釈されるべきである。 In the present specification (including claims), when the terms "connected" and "coupled" are used, direct connection / combination and indirect connection / combination are used. , Electrical connection / combination, communication connection / combination, functional connection / combination, physical connection / combination, etc. Intended as a term. The term should be interpreted as appropriate according to the context in which the term is used, but any connection / combination form that is not intentionally or naturally excluded is not included in the term. It should be interpreted in a limited way.
 本明細書(請求項を含む)において、「AがBするよう構成される(A configured to B)」との表現が用いられる場合は、要素Aの物理的構造が、動作Bを実行可能な構成を有するとともに、要素Aの恒常的(permanent)又は一時的(temporary)な設定(setting/configuration)が、動作Bを実際に実行するように設定(configured/set)されていることを含んでよい。例えば、要素Aが汎用プロセッサである場合、当該プロセッサが動作Bを実行可能なハードウェア構成を有するとともに、恒常的(permanent)又は一時的(temporary)なプログラム(命令)の設定により、動作Bを実際に実行するように設定(configured)されていればよい。また、要素Aが専用プロセッサ又は専用演算回路等である場合、制御用命令及びデータが実際に付属しているか否かとは無関係に、当該プロセッサの回路的構造が動作Bを実際に実行するように構築(implemented)されていればよい。 In the present specification (including claims), when the expression "A configured to B" is used, the physical structure of the element A can perform the operation B. Including that the element A has a structure and the permanent or temporary setting (setting / configuration) of the element A is set (configured / set) to actually execute the operation B. good. For example, when the element A is a general-purpose processor, the processor has a hardware configuration capable of executing the operation B, and the operation B is set by setting a permanent or temporary program (instruction). It suffices if it is configured to actually execute. Further, when the element A is a dedicated processor, a dedicated arithmetic circuit, or the like, the circuit structure of the processor actually executes the operation B regardless of whether or not the control instruction and data are actually attached. It suffices if it is constructed.
 本明細書(請求項を含む)において、含有又は所有を意味する用語(例えば、「含む(comprising/including)」及び有する「(having)等)」が用いられる場合は、当該用語の目的語により示される対象物以外の物を含有又は所有する場合を含む、open-endedな用語として意図される。これらの含有又は所有を意味する用語の目的語が数量を指定しない又は単数を示唆する表現(a又はanを冠詞とする表現)である場合は、当該表現は特定の数に限定されないものとして解釈されるべきである。 In the present specification (including claims), when a term meaning inclusion or possession (for example, "comprising / inclusion" and having "(having), etc.)" is used, the object of the term is used. It is intended as an open-end term, including the case of containing or owning an object other than the indicated object. If the object of these terms that mean inclusion or possession is an expression that does not specify a quantity or suggests a singular (an expression with a or an as an article), the expression is interpreted as not being limited to a specific number. It should be.
 本明細書(請求項を含む)において、ある箇所において「1つ又は複数(one or more)」又は「少なくとも1つ(at least one)」等の表現が用いられ、他の箇所において数量を指定しない又は単数を示唆する表現(a又はanを冠詞とする表現)が用いられているとしても、後者の表現が「1つ」を意味することを意図しない。一般に、数量を指定しない又は単数を示唆する表現(a又はanを冠詞とする表現)は、必ずしも特定の数に限定されないものとして解釈されるべきである。 In the present specification (including claims), expressions such as "one or more" or "at least one" are used in some places, and the quantity is specified in other places. Even if expressions that do not or suggest the singular (expressions with a or an as an article) are used, the latter expression is not intended to mean "one". In general, expressions that do not specify a quantity or suggest a singular (expressions with a or an as an article) should be interpreted as not necessarily limited to a particular number.
 本明細書において、ある実施例の有する特定の構成について特定の効果(advantage/result)が得られる旨が記載されている場合、別段の理由がない限り、当該構成を有する他の1つ又は複数の実施例についても当該効果が得られると理解されるべきである。但し当該効果の有無は、一般に種々の要因、条件、及び/又は状態等に依存し、当該構成により必ず当該効果が得られるものではないと理解されるべきである。当該効果は、種々の要因、条件、及び/又は状態等が満たされたときに実施例に記載の当該構成により得られるものに過ぎず、当該構成又は類似の構成を規定したクレームに係る発明において、当該効果が必ずしも得られるものではない。 In the present specification, when it is stated that a specific effect (advance / result) can be obtained for a specific configuration having an embodiment, unless there is another reason, another one or more having the configuration. It should be understood that the effect can also be obtained in the examples of. However, it should be understood that the presence or absence of the effect generally depends on various factors, conditions, and / or states, etc., and that the effect cannot always be obtained by the configuration. The effect is merely obtained by the configuration described in the examples when various factors, conditions, and / or conditions are satisfied, and in the invention relating to the claim that defines the configuration or a similar configuration. , The effect is not always obtained.
 本明細書(請求項を含む)において、「最大化(maximize)」等の用語が用いられる場合は、グローバルな最大値を求めること、グローバルな最大値の近似値を求めること、ローカルな最大値を求めること、及びローカルな最大値の近似値を求めることを含み、当該用語が用いられた文脈に応じて適宜解釈されるべきである。また、これら最大値の近似値を確率的又はヒューリスティックに求めることを含む。同様に、「最小化(minimize)」等の用語が用いられる場合は、グローバルな最小値を求めること、グローバルな最小値の近似値を求めること、ローカルな最小値を求めること、及びローカルな最小値の近似値を求めることを含み、当該用語が用いられた文脈に応じて適宜解釈されるべきである。また、これら最小値の近似値を確率的又はヒューリスティックに求めることを含む。同様に、「最適化(optimize)」等の用語が用いられる場合は、グローバルな最適値を求めること、グローバルな最適値の近似値を求めること、ローカルな最適値を求めること、及びローカルな最適値の近似値を求めることを含み、当該用語が用いられた文脈に応じて適宜解釈されるべきである。また、これら最適値の近似値を確率的又はヒューリスティックに求めることを含む。 In the present specification (including claims), when terms such as "maximize" are used, the global maximum value is obtained, the approximate value of the global maximum value is obtained, and the local maximum value is obtained. Should be interpreted as appropriate according to the context in which the term is used, including finding an approximation of the local maximum. It also includes probabilistically or heuristically finding approximate values of these maximum values. Similarly, when terms such as "minimize" are used, finding the global minimum, finding the approximation of the global minimum, finding the local minimum, and the local minimum. It should be interpreted as appropriate according to the context in which the term was used, including finding an approximation of the value. It also includes probabilistically or heuristically finding approximate values of these minimum values. Similarly, when terms such as "optimize" are used, finding the global optimal value, finding the approximate value of the global optimal value, finding the local optimal value, and local optimal It should be interpreted as appropriate according to the context in which the term was used, including finding an approximation of the value. It also includes probabilistically or heuristically finding approximate values of these optimal values.
 本明細書(請求項を含む)において、複数のハードウェアが所定の処理を行う場合、各ハードウェアが協働して所定の処理を行ってもよいし、一部のハードウェアが所定の処理の全てを行ってもよい。また、一部のハードウェアが所定の処理の一部を行い、別のハードウェアが所定の処理の残りを行ってもよい。本明細書(請求項を含む)において、「1又は複数のハードウェアが第1の処理を行い、前記1又は複数のハードウェアが第2の処理を行う」等の表現が用いられている場合、第1の処理を行うハードウェアと第2の処理を行うハードウェアは同じものであってもよいし、異なるものであってもよい。つまり、第1の処理を行うハードウェア及び第2の処理を行うハードウェアが、前記1又は複数のハードウェアに含まれていればよい。なお、ハードウェアは、電子回路、又は電子回路を含む装置を含んでよい。 In the present specification (including claims), when a plurality of hardware performs a predetermined process, the respective hardware may cooperate to perform the predetermined process, or some hardware may perform the predetermined process. You may do all of the above. Further, some hardware may perform a part of a predetermined process, and another hardware may perform the rest of the predetermined process. In the present specification (including claims), when expressions such as "one or more hardware performs the first process and the one or more hardware performs the second process" are used. , The hardware that performs the first process and the hardware that performs the second process may be the same or different. That is, the hardware that performs the first process and the hardware that performs the second process may be included in the one or more hardware. The hardware may include an electronic circuit or a device including the electronic circuit.
 本明細書(請求項を含む)において、複数の記憶装置(メモリ)がデータの記憶を行う場合、複数の記憶装置(メモリ)のうち個々の記憶装置(メモリ)は、データの一部のみを記憶してもよいし、データの全体を記憶してもよい。 In the present specification (including the claims), when a plurality of storage devices (memory) store data, each storage device (memory) among the plurality of storage devices (memory) stores only a part of the data. It may be stored or the entire data may be stored.
 以上、本開示の実施形態について詳述したが、本開示は上記した個々の実施形態に限定されるものではない。請求の範囲に規定された内容及びその均等物から導き出される本発明の概念的な思想と趣旨を逸脱しない範囲において種々の追加、変更、置き換え及び部分的削除等が可能である。例えば、前述した全ての実施形態において、数値又は数式を説明に用いている場合は、一例として示したものであり、これらに限られるものではない。また、実施形態における各動作の順序は、一例として示したものであり、これらに限られるものではない。 Although the embodiments of the present disclosure have been described in detail above, the present disclosure is not limited to the individual embodiments described above. Various additions, changes, replacements, partial deletions, etc. are possible without departing from the conceptual idea and purpose of the present invention derived from the contents specified in the claims and their equivalents. For example, in all the above-described embodiments, when numerical values or mathematical formulas are used for explanation, they are shown as examples, and the present invention is not limited thereto. Further, the order of each operation in the embodiment is shown as an example, and is not limited to these.
1  学習システム
3  学習データ生成装置
5  通信ネットワーク
7  学習装置
9A  外部装置
9B  外部装置
10  生成領域
13  削剥下面の直上の領域
15  削剥領域
17  岩塩
19  ショット画像
30  コンピュータ
31  プロセッサ
33  主記憶装置
35  補助記憶装置
37  ネットワークインタフェース
39  デバイスインタフェース
41  バス
81  プロセッサ
311  設定部
313  決定部
315  モデル生成部
317  模擬データ生成部
319  学習データ生成部
811  前処理部
813  モデル設定部
815  学習部
1 Learning system 3 Learning data generator 5 Communication network 7 Learning device 9A External device 9B External device 10 Generation area 13 Area directly above the bottom surface of scraping 15 Stripping area 17 Rock salt 19 Shot image 30 Computer 31 Processor 33 Main storage device 35 Auxiliary storage device 37 Network interface 39 Device interface 41 Bus 81 Processor 311 Setting unit 313 Decision unit 315 Model generation unit 317 Simulated data generation unit 319 Learning data generation unit 811 Preprocessing unit 813 Model setting unit 815 Learning unit

Claims (16)

  1.  少なくとも1つのプロセッサを用いて実行される学習データ生成方法であって、
     構造に関する複数の特徴量に基づいて、前記構造のモデルを生成することと、
     前記構造のモデルに対する波動伝播シミュレーションにより、前記構造に関する観測値を模擬的に示す模擬データを生成することと、
     前記構造のモデルと前記模擬データとを対応付けて、学習データを生成することと、
     を備える学習データ生成方法。
    A learning data generation method executed using at least one processor.
    To generate a model of the structure based on a plurality of features related to the structure,
    By wave propagation simulation for the model of the structure, it is possible to generate simulated data that simulates the observed values related to the structure.
    To generate training data by associating the model of the structure with the simulated data,
    A learning data generation method comprising.
  2.  前記構造は地下構造であって、
     前記波動伝播シミュレーションは、地震波動に関するシミュレーションである、
     請求項1に記載の学習データ生成方法。
    The structure is an underground structure
    The wave propagation simulation is a simulation related to seismic waves.
    The learning data generation method according to claim 1.
  3.  前記複数の特徴量に基づいて、少なくとも、堆積、褶曲、断層、削剥、再堆積、再褶曲、再断層、又は、岩塩貫入の何れか1つに関するイベントを実行することで前記構造のモデルを生成する、
     請求項2に記載の学習データ生成方法。
    Based on the plurality of features, a model of the structure is generated by executing an event related to at least one of deposition, fold, fault, exfoliation, redeposition, refold, refault, or rock salt intrusion. do,
    The learning data generation method according to claim 2.
  4.  堆積、褶曲、断層の順番でイベントを実行することで前記構造のモデルを生成する、
     請求項3に記載の学習データ生成方法。
    A model of the structure is generated by executing events in the order of sedimentation, folds, and faults.
    The learning data generation method according to claim 3.
  5.  断層、削剥、再堆積、再褶曲、再断層の順番でイベントを実行することで前記構造のモデルを生成する、
     請求項3又は請求項4に記載の学習データ生成方法。
    A model of the structure is generated by executing events in the order of fault, scraping, redeposition, refolding, and re-fault.
    The learning data generation method according to claim 3 or 4.
  6.  再断層、岩塩貫入の順番でイベントを実行することで前記構造のモデルを生成する、
     請求項3乃至請求項5の何れか1項に記載の学習データ生成方法。
    A model of the structure is generated by executing events in the order of re-fault and rock salt intrusion.
    The learning data generation method according to any one of claims 3 to 5.
  7.  前記複数の特徴量は、地質学的な情報を含む、
     請求項2乃至請求項6の何れか1項に記載の学習データ生成方法。
    The plurality of features include geological information.
    The learning data generation method according to any one of claims 2 to 6.
  8.  前記地質学的な情報は、地層の横方向への曲げ方、不整合面の入れ方、地下構造のモデル化に関する構造のサイズ(横幅、深さ)、表層への低速層の挿入、又は、層の厚みの分布の何れか1つを含む、
     請求項7に記載の学習データ生成方法。
    The geological information can be obtained from the lateral bending of the formation, the insertion of inconsistent surfaces, the size of the structure (width, depth) related to the modeling of the underground structure, the insertion of the low-speed layer into the surface layer, or Includes any one of the layer thickness distributions,
    The learning data generation method according to claim 7.
  9.  前記特徴量の値の範囲と乱数とに基づいて、前記複数の特徴量を決定する、
     請求項1乃至請求項8の何れか1項に記載の学習データ生成方法。
    The plurality of feature quantities are determined based on the range of the feature quantity values and the random number.
    The learning data generation method according to any one of claims 1 to 8.
  10.  前記構造は地下構造であって、
     前記特徴量の値の範囲は、対象地域における地質学的な情報に基づいて設定される、
     請求項1乃至請求項9の何れか1項に記載の学習データ生成方法。
    The structure is an underground structure
    The range of the feature value values is set based on the geological information in the target area.
    The learning data generation method according to any one of claims 1 to 9.
  11.  前記地質学的な情報は、前記対象地域における検層データと、前記対象地域における地下構造に関する観測データと、前記対象地域において推論された前記特徴量の空間分布のうち少なくとも一つを有する、
     請求項10に記載の学習データ生成方法。
    The geological information has at least one of the stratified data in the target area, the observation data on the underground structure in the target area, and the spatial distribution of the feature amount inferred in the target area.
    The learning data generation method according to claim 10.
  12.  前記構造は地下構造であって、
     前記模擬データは、前記地下構造のショットデータを含む、
     請求項1乃至請求項11の何れか1項に記載の学習データ生成方法。
    The structure is an underground structure
    The simulated data includes shot data of the underground structure.
    The learning data generation method according to any one of claims 1 to 11.
  13.  前記構造に対する観測により取得された観測データと、前記模擬データと、前記模擬データにおけるデータ値の大きさに応じて重み付けした損失関数とに基づいて学習された改善器に前記模擬データを入力して、改善データを生成し、
     前記構造のモデルと前記改善データとを対応付けて、前記学習データを生成する、
     請求項1乃至請求項12の何れか1項に記載の学習データ生成方法。
    The simulated data is input to the improver learned based on the observation data acquired by observing the structure, the simulated data, and the loss function weighted according to the magnitude of the data value in the simulated data. , Generate improvement data,
    The training data is generated by associating the model of the structure with the improvement data.
    The learning data generation method according to any one of claims 1 to 12.
  14.  請求項1乃至請求項13の何れか1項に記載の学習データ生成方法を用いて生成された学習データを用いて、構造に関する情報を推定する推定モデルを生成する、
     モデル生成方法。
    Using the learning data generated by the learning data generation method according to any one of claims 1 to 13, an estimation model for estimating information about the structure is generated.
    Model generation method.
  15.  構造に関する複数の特徴量に基づいて、前記構造のモデルを生成するモデル生成部と、
     前記構造のモデルに対する波動伝播シミュレーションにより、前記構造に関する観測値を模擬的に示す模擬データを生成する模擬データ生成部と、
     前記構造のモデルと前記模擬データとを対応付けて、学習データを生成する学習データ生成部と、
     を備える学習データ生成装置。
    A model generator that generates a model of the structure based on a plurality of features related to the structure,
    A simulated data generation unit that generates simulated data that simulates observation values related to the structure by wave propagation simulation for the model of the structure.
    A learning data generation unit that generates training data by associating a model of the structure with the simulated data.
    A learning data generator equipped with.
  16.  前記複数の特徴量の上限値と下限値とを変更させる2つの指示器とを表示する表示部をさらに備え、
     前記モデル生成部は、前記2つの指示器により指定された範囲の代表値を用いて、前記構造のモデルを生成する、
     請求項15に記載の学習データ生成装置。
    Further, a display unit for displaying two indicators for changing the upper limit value and the lower limit value of the plurality of feature quantities is provided.
    The model generator generates a model of the structure using representative values in the range specified by the two indicators.
    The learning data generation device according to claim 15.
PCT/JP2022/000607 2021-01-15 2022-01-11 Learning data generation method, model generation method, and learning data generation device WO2022153984A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2021-005379 2021-01-15
JP2021005379 2021-01-15
JP2021-095482 2021-06-07
JP2021095482 2021-06-07
JP2021170348 2021-10-18
JP2021-170348 2021-10-18

Publications (1)

Publication Number Publication Date
WO2022153984A1 true WO2022153984A1 (en) 2022-07-21

Family

ID=82446715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/000607 WO2022153984A1 (en) 2021-01-15 2022-01-11 Learning data generation method, model generation method, and learning data generation device

Country Status (1)

Country Link
WO (1) WO2022153984A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7406664B1 (en) 2023-03-31 2023-12-27 住友化学株式会社 Learning model generation method, information processing device, computer program, material selection method, and simulation experiment value generation method
WO2024195108A1 (en) * 2023-03-23 2024-09-26 東京エレクトロン株式会社 Trained model generation method, information processing method, computer program, and information processing device
US12153179B2 (en) 2022-10-21 2024-11-26 Saudi Arabian Oil Company Method and system for determining attenuated seismic time

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018138880A1 (en) * 2017-01-27 2018-08-02 三菱日立パワーシステムズ株式会社 Model parameter value estimation device and estimation method, program, recording medium with program recorded thereto, and model parameter value estimation system
US20200088897A1 (en) * 2018-09-14 2020-03-19 Bp Corporation North America Inc. Machine Learning-Based Analysis of Seismic Attributes

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018138880A1 (en) * 2017-01-27 2018-08-02 三菱日立パワーシステムズ株式会社 Model parameter value estimation device and estimation method, program, recording medium with program recorded thereto, and model parameter value estimation system
US20200088897A1 (en) * 2018-09-14 2020-03-19 Bp Corporation North America Inc. Machine Learning-Based Analysis of Seismic Attributes

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12153179B2 (en) 2022-10-21 2024-11-26 Saudi Arabian Oil Company Method and system for determining attenuated seismic time
WO2024195108A1 (en) * 2023-03-23 2024-09-26 東京エレクトロン株式会社 Trained model generation method, information processing method, computer program, and information processing device
JP7406664B1 (en) 2023-03-31 2023-12-27 住友化学株式会社 Learning model generation method, information processing device, computer program, material selection method, and simulation experiment value generation method

Similar Documents

Publication Publication Date Title
WO2022153984A1 (en) Learning data generation method, model generation method, and learning data generation device
EP3894907B1 (en) Machine learning-augmented geophysical inversion
US20210264262A1 (en) Physics-constrained deep learning joint inversion
EP2975437B1 (en) Method and system to invert for fault activity and tectonic stress
EA032008B1 (en) Two stage seismic velocity model generation
CA2871243C (en) Processing data representing a physical system
CN103913774B (en) Reservoir geology mechanics parameter inversion method based on micro-seismic event
Ely et al. Assessing uncertainties in velocity models and images with a fast nonlinear uncertainty quantification method
AU2008222299A1 (en) Model-based time-preserving tomography
Wang et al. Seismic velocity inversion transformer
CN113740901B (en) Land seismic data full-waveform inversion method and device based on complex undulating surface
CN108508481B (en) A kind of method, apparatus and system of longitudinal wave converted wave seismic data time match
CN110954950B (en) Underground transverse wave velocity inversion method, device, computing equipment and storage medium
Lamert et al. Imaging disturbance zones ahead of a tunnel by elastic full-waveform inversion: Adjoint gradient based inversion vs. parameter space reduction using a level-set method
CN113156493A (en) Time-frequency domain full-waveform inversion method and device using normalized seismic source
Kamath et al. Facies-constrained FWI: Toward application to reservoir characterization
US11965998B2 (en) Training a machine learning system using hard and soft constraints
CN117706623A (en) A microseismic velocity inversion method driven by deep learning and wave equations
Feng et al. Physically realistic training data construction for data-driven full-waveform inversion and traveltime tomography
Sun et al. Enabling uncertainty quantification in a standard full-waveform inversion method using normalizing flows
US20240037819A1 (en) Predictive geological drawing system and method
Waheed The emergence and impact of scientific machine learning in geophysical exploration
CN114966838B (en) Seismic intelligent inversion method and system driven by geological modeling and seismic forward modeling
Jiang et al. Deep Learning Based Optimization Framework for Full-waveform Inversion in Tunnels
Gan et al. Deep learning-based dispersion spectrum inversion for surface wave exploration

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22739390

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22739390

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP