WO2022152003A1 - 非激活态下数据传输方法及装置 - Google Patents
非激活态下数据传输方法及装置 Download PDFInfo
- Publication number
- WO2022152003A1 WO2022152003A1 PCT/CN2021/143941 CN2021143941W WO2022152003A1 WO 2022152003 A1 WO2022152003 A1 WO 2022152003A1 CN 2021143941 W CN2021143941 W CN 2021143941W WO 2022152003 A1 WO2022152003 A1 WO 2022152003A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- terminal
- dci
- resource
- rnti
- timer
- Prior art date
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 210
- 238000000034 method Methods 0.000 title claims abstract description 207
- 238000004891 communication Methods 0.000 claims abstract description 93
- 230000008569 process Effects 0.000 claims abstract description 66
- 238000012419 revalidation Methods 0.000 claims description 82
- 230000015654 memory Effects 0.000 claims description 54
- 230000004044 response Effects 0.000 claims description 36
- 230000011664 signaling Effects 0.000 claims description 30
- 238000013475 authorization Methods 0.000 claims description 4
- 238000010200 validation analysis Methods 0.000 claims description 3
- 101000741965 Homo sapiens Inactive tyrosine-protein kinase PRAG1 Proteins 0.000 claims 4
- 102100038659 Inactive tyrosine-protein kinase PRAG1 Human genes 0.000 claims 4
- 238000001514 detection method Methods 0.000 abstract description 4
- 230000006870 function Effects 0.000 description 51
- 238000012545 processing Methods 0.000 description 31
- 238000010586 diagram Methods 0.000 description 19
- 101710093976 Plasmid-derived single-stranded DNA-binding protein Proteins 0.000 description 18
- 235000019527 sweetened beverage Nutrition 0.000 description 18
- 238000013461 design Methods 0.000 description 16
- 230000000694 effects Effects 0.000 description 11
- 238000007726 management method Methods 0.000 description 9
- 238000004590 computer program Methods 0.000 description 8
- 238000005265 energy consumption Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 230000001360 synchronised effect Effects 0.000 description 6
- 238000011084 recovery Methods 0.000 description 5
- 230000007704 transition Effects 0.000 description 5
- 102100022320 SPRY domain-containing SOCS box protein 1 Human genes 0.000 description 4
- 101710178378 SPRY domain-containing SOCS box protein 1 Proteins 0.000 description 4
- 101710141933 Single-stranded DNA-binding protein 1 Proteins 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 101100274486 Mus musculus Cited2 gene Proteins 0.000 description 2
- 101100533725 Mus musculus Smr3a gene Proteins 0.000 description 2
- 101150096622 Smr2 gene Proteins 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 238000013468 resource allocation Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000001960 triggered effect Effects 0.000 description 2
- 101100096715 Bacillus anthracis ssb gene Proteins 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/02—Power saving arrangements
- H04W52/0209—Power saving arrangements in terminal devices
- H04W52/0225—Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
- H04W52/0248—Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal dependent on the time of the day, e.g. according to expected transmission activity
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/02—Power saving arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/002—Transmission of channel access control information
- H04W74/004—Transmission of channel access control information in the uplink, i.e. towards network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/002—Transmission of channel access control information
- H04W74/006—Transmission of channel access control information in the downlink, i.e. towards the terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/08—Non-scheduled access, e.g. ALOHA
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/08—Non-scheduled access, e.g. ALOHA
- H04W74/0833—Random access procedures, e.g. with 4-step access
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/20—Manipulation of established connections
- H04W76/27—Transitions between radio resource control [RRC] states
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Definitions
- the embodiments of the present invention relate to communication technologies, and in particular, to a small data transmission process in an inactive state.
- the data packets that the terminal in the RRC inactive state needs to transmit is very small, such as instant messages of WeChat and QQ, and so on.
- supporting the terminal to directly transmit small data in the RRC inactive state without switching the state to the RRC connected state can reduce signaling overhead and terminal power consumption.
- the transmission without switching the RRC state can be implemented through random access-based small data transmission (Random Access Small Data Transmission, RA-SDT).
- RA-SDT Random Access Small Data Transmission
- the amount of data transmitted by RA-SDT at one time is limited.
- the amount of data to be transmitted exceeds the amount of data that can be transmitted in one transmission using RA-SDT or after RA-SDT is performed, data transmission between the base station and the terminal is required. How to carry out subsequent data transmission is a topic worthy of study.
- the present invention provides a communication method and a device used in the communication method, so as to avoid unnecessary downlink control information (Downlink Control Information, DCI) detection of a terminal in a radio resource control (Radio Resource Control, RRC) inactive state, reduce Terminal energy consumption.
- DCI Downlink Control Information
- RRC Radio Resource Control
- the present invention provides a communication method
- the execution subject of the method can be a terminal, and can also be a component (chip, circuit or others) configured in the terminal, including: the terminal performs random access process-based communication Small data transmission (Random Access Small Data Transmission, RA-SDT), and obtain C-RNTI based on the random access process; the terminal starts a timer; before the timer times out, the terminal detects the The downlink control information DCI scrambled by the C-RNTI performs subsequent data transmission based on the detected DCI; wherein, the terminal is in a radio resource control RRC inactive state.
- RA-SDT Random Access Small Data Transmission
- the terminal After the terminal performs random access, it will continuously detect the DCI scrambled by the C-RNTI.
- the time range for the inactive terminal to detect the DCI scrambled by the C-RNTI can be controlled, thereby reducing unnecessary DCI detection by the terminal. Reduce terminal energy consumption.
- the terminal detects the downlink control information DCI scrambled by the C-RNTI before the timer expires, including: the timer expires Before, the terminal detects the first DCI scrambled by the C-RNTI; the subsequent transmission of the small data transmission based on the detected DCI includes: the terminal passes the first DCI
- the indicated resources perform subsequent data transmissions of the small data transmissions.
- the resources indicated by the first DCI include resources used for uplink data transmission or resources used for downlink data transmission.
- the subsequent data transmission includes uplink data transmission and/or downlink data transmission.
- the data transmitted by the subsequent data transmission is small data and/or large data.
- the network device and the terminal can perform subsequent data transmission according to the resources indicated by the DCI scrambled by the C-RNTI, and flexibly control the transmission resources by adopting dynamic scheduling to improve the transmission capability.
- the second possible implementation manner of the first aspect includes that the terminal obtains, by the first DCI or a resource indicated by the first DCI, a configuration authorization from a network device (Configure Grant, CG) resource revalidation indication information, the CG resource revalidation indication information is used to instruct the CG resource to revalidate; the terminal performs data transmission through the CG resource based on the CG resource revalidation indication information.
- a configuration authorization from a network device Configure Grant, CG resource revalidation indication information
- CG resource revalidation indication information is used to instruct the CG resource to revalidate
- the terminal performs data transmission through the CG resource based on the CG resource revalidation indication information.
- the third possible implementation manner of the first aspect includes: the terminal obtains a timing advance (Timing Advance, TA) in the random access process, and after obtaining the obtained After the TA is described, it is determined that the CG resource is revalidated; the terminal performs data transmission through the CG resource.
- TA Timing Advance
- uplink data transmission can be further performed through CG resources, thereby reducing the scheduling overhead of the base station.
- the terminal detects the downlink control information DCI scrambled by the C-RNTI before the timer expires until the timer expires, including : Before the timer expires, the terminal detects the first DCI scrambled by the C-RNTI and the second DCI scrambled by the C-RNTI;
- the data transmission includes: the terminal receives, through the first DCI or a resource indicated by the first DCI, CG resource revalidation indication information from a network device, where the CG resource revalidation indication information is used to instruct the CG resource to revalidate;
- the terminal performs the subsequent data transmission through the resource indicated by the second DCI; the terminal performs data transmission through the CG resource.
- the CG resource revalidation instruction and the C-RNTI scrambled DCI on which data transmission depends can be different DCIs, which can improve the flexibility of the base station to control the revalidation CG resources, control resource utilization according to actual needs, and improve resource utilization. utilization efficiency.
- the terminal performs data transmission through CG resources, including: the timing of the terminal After the timer expires, the terminal performs data transmission through the CG resource.
- the resource indicated by the DCI scrambled by the C-RNTI is first used to transmit data in a dynamic scheduling manner, and then the CG resource is used to transmit the data, which can utilize resources flexibly and efficiently, and can also reduce the overhead of base station scheduling.
- the terminal detects the downlink control information DCI scrambled by the C-RNTI before the timer expires, including: the timer expires Before, the terminal detects the first DCI scrambled by the C-RNTI; the subsequent data transmission based on the detected DCI includes: the terminal transmits the data through the first DCI or the first DCI.
- the resource indicated by the DCI obtains the CG resource revalidation indication information from the network device, and the subsequent data transmission is performed through the CG resource based on the CG resource revalidation indication information.
- the CG resource revalidation indication is obtained only according to the DCI scrambled by the C-RNTI, and uplink data transmission is performed through the CG resource, which can reduce the scheduling overhead of the base station.
- a seventh possible implementation manner of the first aspect includes that the CG resource revalidation indication information is further used to indicate the revalidated CG resource, or, The revalidation time of the CG resource, or one or more of the correspondence between the CG resource and the synchronization signal and the physical broadcast channel block (Synchronization Signal and PBCH Block, SSB, synchronization channel block for short).
- the CG resource revalidation indication information is further used to indicate the revalidated CG resource, or, The revalidation time of the CG resource, or one or more of the correspondence between the CG resource and the synchronization signal and the physical broadcast channel block (Synchronization Signal and PBCH Block, SSB, synchronization channel block for short).
- detecting and configuring an authorized wireless network temporary identity (Configure Grant Radio Network Temporary Identity, CG-RNTI) plus scrambled third DCI to obtain feedback information for the data transmission through the CG resource.
- an authorized wireless network temporary identity Configure Grant Radio Network Temporary Identity, CG-RNTI
- the ninth possible implementation manner of the first aspect includes that the CG-RNTI is configured through CG resource revalidation indication information, or the CG-RNTI is the The CG-RNTI before the terminal enters the RRC inactive state, and the validation of the CG-RNTI before the terminal enters the RRC inactive state is indicated by the CG resource revalidation information, or, it is valid by default.
- the tenth possible implementation manner of the first aspect includes, after the random access procedure, receiving a message for releasing radio resource control, so The message indicates the start of the timer; the terminal starts the timer based on the message.
- the CG resource can be flexibly controlled through the CG resource revalidation instruction, and the utilization efficiency of the CG resource can be improved.
- an eleventh possible implementation manner of the first aspect includes that the CG resource revalidation indication information is carried in the resource indicated by the DCI, so the The resources indicated by the DCI are also used to carry at least one of the following information: random access response, radio resource control RRC signaling, or, medium access control control element (Medium Access Control Control Element, MAC CE) signaling.
- random access response radio resource control RRC signaling
- medium access control control element Medium Access Control Control Element, MAC CE
- a twelfth possible implementation manner of the first aspect includes that the CG resource revalidation indication information is carried in the DCI, and the DCI includes scheduling The DCI of the Physical Downlink Shared Channel (PDSCH), the DCI of the scheduling Physical Uplink Shared Channel (PUSCH), the positive acknowledgment (Acknowledgement, ACK)/Negative Acknowledgement (NACK) of the scheduling PUSCH Feedback DCI, or DCI for scheduling random access responses.
- PDSCH Physical Downlink Shared Channel
- PUSCH Physical Uplink Shared Channel
- NACK Negative Acknowledgement
- the thirteenth possible implementation manner of the first aspect includes: receiving a message for instructing the terminal to enter the RRC inactive state, so the The above message is also used to instruct the terminal to reserve the CG resource after the timing advance TA is invalid.
- CG resources can be controlled and configured in various ways, and the flexibility of utilizing CG resources can be improved.
- the fourteenth possible implementation manner of the first aspect includes that the start and timeout of the timer are based on the timing
- the configuration of the timer is the fixed value specified by the protocol, or the configuration value received by the terminal, or the part of the configuration is the fixed value specified by the protocol, or the part of the configuration is the configuration value received by the terminal .
- the configuration of the timer is received, and the configuration includes the timer duration configuration, or, in the timer start indication at least one of.
- the sixteenth possible implementation manner of the first aspect includes configuring the timer duration as a specific value, or an index value corresponding to the duration specified by the protocol.
- the seventeenth possible implementation manner of the first aspect includes that the configuration of the timer received by the terminal is carried in a physical downlink shared channel In the PDSCH, the PDSCH is also used to carry at least one of the following information: system message, random access response, RRC signaling, and medium access control control unit MAC CE signaling.
- the eighteenth possible implementation manner of the first aspect includes that the configuration received by the terminal is carried in downlink control information DCI, and the DCI Including the DCI scrambled by the Paging Radio Network Temporary Identity (P-RNTI), the DCI scrambled by the System Information Radio Network Temporary Identity (SI-RNTI), the DCI of the PDSCH, Scheduling the DCI of the Physical Uplink Shared Channel (PUSCH), scheduling the DCI of the ACK/NACK feedback of the PUSCH, or scheduling the DCI of the random access response.
- P-RNTI Paging Radio Network Temporary Identity
- SI-RNTI System Information Radio Network Temporary Identity
- PUSCH Physical Uplink Shared Channel
- scheduling the DCI of the ACK/NACK feedback of the PUSCH or scheduling the DCI of the random access response.
- the flexibility of timer configuration can be improved, the timer can be flexibly used to control the time range of the terminal to detect the DCI scrambled by the C-RNTI, and the energy consumption of the terminal can be reduced.
- a communication method may be a network device, or a component (chip, circuit or others) configured in the network device, including: the network device performs a random access process-based communication with the terminal.
- Small data transmission RA-SDT sending a cell radio temporary identifier C-RNTI to the terminal, or sending a temporary cell radio network temporary identifier (Temporary Cell RNTI, TC-RNTI) to the terminal, where the TC-RNTI is located.
- the network device After the network device sends the contention resolution message, it becomes the C-RNTI of the terminal; the network device starts a timer; before the timer expires, the network device sends the C-RNTI scrambled message to the terminal Downlink control information DCI, and perform subsequent transmission, and the resources used for the subsequent transmission are related to the DCI scrambled by the C-RNTI; wherein, the terminal is in a radio resource control RRC inactive state.
- the network device sends the C-RNTI scrambled downlink control information DCI to the terminal before the timer expires, including: Before the timer expires, the network device sends the first DCI scrambled by the C-RNTI to the terminal; for subsequent transmissions, the resources used for the subsequent transmissions are added with the C-RNTI.
- the scrambled DCI correlation includes: the network device performs the subsequent data transmission through the resource indicated by the first DCI.
- the resources indicated by the first DCI include resources used for uplink data transmission or resources used for downlink data transmission.
- the subsequent data transmission includes uplink data transmission and/or downlink data transmission.
- the data transmitted in the subsequent data transmission is small data and/or large data.
- the second possible implementation manner of the second aspect includes that the network device sends a configuration authorization to the terminal through the first DCI or a resource indicated by the first DCI CG resource revalidation indication information, the CG resource revalidation indication information is used to instruct the CG resource to revalidate; based on the CG resource revalidation indication information, the network device performs data transmission through the CG resource.
- the third possible implementation manner of the second aspect includes: the network device sends a timing advance TA to the terminal during the random access process, and when sending After the TA, it is determined that the CG resource is revalidated; the network device performs data transmission through the CG resource.
- the network device sends the C-RNTI scrambled downlink control information DCI to the terminal before the timer expires, including: Before the timer expires, the network device sends the first DCI scrambled by the C-RNTI and the second DCI scrambled by the C-RNTI to the terminal; when performing subsequent transmission, the subsequent transmission
- the used resource is related to the DCI scrambled by the C-RNTI, including: the network device sends CG resource revalidation indication information to the terminal through the first DCI or the resource indicated by the first DCI, and the CG resource
- the revalidation indication information is used to instruct the CG resource to revalidate; the network device performs the subsequent data transmission through the resource indicated by the second DCI; based on the CG resource revalidation indication information, the network device uses the CG resources for data transmission.
- a fifth possible implementation manner of the second aspect includes that the network device performing data transmission through the CG resource includes: After the timer expires, the network device performs data transmission through the CG resource.
- a sixth possible implementation manner of the second aspect includes: before the timer expires, the network device sends the first DCI scrambled by the C-RNTI to the terminal; transmission, the resources used in the subsequent transmission being related to the DCI scrambled by the C-RNTI include: the network device sending a CG resource revalidation to the terminal through the first DCI or the resource indicated by the first DCI indication information, and the subsequent data transmission is performed through the CG resource based on the CG resource revalidation indication information.
- a seventh possible implementation manner of the second aspect includes that the CG resource revalidation indication information is further used to indicate the revalidated CG resource, or , the time when the CG resource is revalidated, or one or more items of the corresponding relationship between the CG resource and the synchronization signal block SSB.
- an eighth possible implementation manner of the second aspect includes sending a third DCI scrambled with the authorized wireless network temporary identifier CG-RNTI, sending a The feedback information of the data transmission through the CG resource.
- the ninth possible implementation manner of the second aspect includes that the CG-RNTI is configured through CG resource revalidation indication information, or the CG-RNTI is all The CG-RNTI configured by the network device or another network device before the terminal enters the RRC inactive state, and the validation of the CG-RNTI configured before the terminal enters the RRC inactive state is determined by the The CG resource revalidation information indicated above, or, is valid by default.
- a tenth possible implementation method of the second aspect includes, after the random access process, sending a message for releasing radio resources to the terminal A control message, the message instructing the start of the timer of the terminal; the network device starts the timer of the network device based on the message.
- the CG resource revalidation indication information is carried in the resource indicated by the DCI.
- the resource indicated by the DCI is also used to carry at least one of the following information: random access response, RRC signaling, or medium access control control element MAC CE signaling.
- a twelfth possible implementation method of the second aspect includes that the CG resource revalidation indication information is carried in the DCI, and the DCI It includes the DCI for scheduling PDSCH, the DCI for scheduling PUSCH, the DCI for scheduling ACK/NACK feedback of PUSCH, or the DCI for scheduling random access response.
- a thirteenth possible implementation manner of the second aspect includes sending a message for instructing the terminal to enter the RRC inactive state, where the The above message is also used to instruct the terminal to reserve the CG resource after the timing advance TA is invalid.
- the fourteenth possible implementation method of the second aspect includes that the timer is started and timed out based on the timing
- the configuration of the timer, the configuration of the timer is a fixed value specified by the protocol, or the configuration value sent by the network device, or the part of the configuration is a fixed value specified by the protocol, or the part of the configuration is sent by the network device. configuration value.
- the fifteenth possible implementation manner of the second aspect includes sending a configuration of the timer, where the configuration includes a timer duration configuration, or, starting a timer at least one of the instructions.
- the sixteenth possible implementation manner of the second aspect includes configuring the timer duration as a specific value, or an index value corresponding to the duration specified by the protocol.
- a seventeenth possible implementation manner of the second aspect includes that the configuration of the timer sent by the network device is carried on a physical downlink shared channel In the PDSCH, the PDSCH is also used to carry at least one of the following information: system message, random access response, RRC signaling, and medium access control control unit MAC CE signaling.
- the eighteenth possible implementation manner of the second aspect includes that the configuration of the timer sent by the network device is carried in the downlink control information DCI.
- the DCI includes the DCI scrambled by the paging wireless network temporary identifier P-RNTI, the DCI scrambled by the system message wireless network temporary identifier SI-RNTI, the DCI for scheduling the physical downlink data channel PDSCH, and the DCI for scheduling the physical uplink data channel PUSCH.
- a third aspect of the embodiments of the present application provides a communication device.
- the device provided by the present application has the function of implementing the behavior of the base station or the terminal in the above method aspect, and includes components for executing the steps or functions described in the above method aspect. (means).
- the steps or functions can be implemented by software, or by hardware, or by a combination of hardware and software.
- the above-mentioned apparatus includes one or more processors, and further, may include a communication unit.
- the one or more processors are configured to support the apparatus to perform the corresponding functions of the base station in the above method. For example, a timer configuration message is generated.
- the communication unit is used to support the communication between the apparatus and other devices, and realize the function of receiving and/or sending. For example, a timer configuration message is sent to the terminal.
- the apparatus may further include one or more memories, where the memories are coupled to the processor and store necessary program instructions and/or data of the base station.
- the one or more memories may be integrated with the processor, or may be provided separately from the processor. This application is not limited.
- the device may be a base station, a next generation base station (Next Generation NodeB, gNB) or a transmission point (Transmitting and Receiving Point, TRP), a distributed unit (distributed unit, DU) or a centralized unit (centralized unit, CU), etc.
- the communication unit may be a transceiver, or a transceiver circuit.
- the transceiver may also be an input/output circuit or an interface.
- the device may also be a chip.
- the communication unit may be an input/output circuit or an interface of the chip.
- the above device includes a transceiver, a processor and a memory.
- the processor is used to control the transceiver to send and receive signals
- the memory is used to store a computer program
- the processor is used to run the computer program in the memory, so that the apparatus executes the method performed by the base station in the second aspect.
- the above-mentioned apparatus includes one or more processors, and further, may include a communication unit.
- the one or more processors are configured to support the apparatus to perform the corresponding functions of the terminal in the above method. For example, based on the timer configuration sent by the base station, running the timer, etc.
- the communication unit is used to support the communication between the apparatus and other devices, and realize the function of receiving and/or sending. For example, receive a timer configuration message, or a CG resource revalidation message.
- the apparatus may further include one or more memories, which are coupled to the processor and store necessary program instructions and/or data of the apparatus.
- the one or more memories may be integrated with the processor, or may be provided separately from the processor. This application is not limited.
- the apparatus may be an intelligent terminal or a wearable device, etc.
- the communication unit may be a transceiver or a transceiver circuit.
- the transceiver may also be an input/output circuit or an interface.
- the device may also be a chip.
- the communication unit may be an input/output circuit or an interface of the chip.
- the above device includes a transceiver, a processor and a memory.
- the processor is used to control the transceiver to send and receive signals
- the memory is used to store a computer program
- the processor is used to run the computer program in the memory, so that the apparatus executes the method performed by the terminal in the first aspect.
- a system in a fourth aspect, includes the above-mentioned base station.
- the system further includes the above-mentioned terminal.
- a readable storage medium or program product for storing a program, the program comprising instructions for performing the method of the first aspect or the second aspect.
- a readable storage medium or program product for storing a program that, when executed on a computer, causes the computer to execute the instructions of the method of the first aspect or the second aspect.
- FIG. 1 is a schematic diagram of a communication system provided by an embodiment of the present application.
- FIG. 2 is a schematic diagram of a network architecture in which multiple DUs share one CU according to an embodiment of the present application
- FIG. 3 is a schematic diagram of protocol layer functions of a CU and DU provided by an embodiment of the present application
- FIG. 4 is a schematic diagram of an RRC state transition provided by an embodiment of the present application.
- FIG. 5 is a schematic diagram of an initial access process of a terminal according to an embodiment of the present application.
- 6a and 6b are schematic diagrams of a random access process provided by an embodiment of the present application.
- FIG. 7a and 7b are schematic diagrams of the RA-SDT process provided by the embodiments of the present application.
- FIG. 8 is a schematic diagram of a CG-SDT process provided by an embodiment of the present application.
- FIG. 9 is a schematic flowchart of a communication method provided by an embodiment of the present application.
- FIG. 10 is a schematic flowchart of a communication method provided by an embodiment of the present application.
- FIG. 11 is a schematic flowchart of a communication method provided by an embodiment of the present application.
- FIG. 13 is a schematic flowchart of a communication method provided by an embodiment of the present application.
- FIG. 14 is a schematic structural diagram of a terminal according to an embodiment of the present application.
- FIG. 15 is a schematic structural diagram of an access network device according to an embodiment of the present application.
- FIG. 16 is a schematic structural diagram of a communication apparatus according to an embodiment of the present application.
- words such as “first” and “second” are used to distinguish the same or similar items with basically the same function and effect.
- the first information and the second information are only for distinguishing different information, and the sequence of the first information is not limited.
- the words “first”, “second” and the like do not limit the quantity and execution order, and the words “first”, “second” and the like are not necessarily different.
- At least one item (one) refers to one or more, and “multiple” refers to two or more.
- And/or which describes the association relationship of the associated objects, indicates that there can be three kinds of relationships, for example, A and/or B, which can indicate: the existence of A alone, the existence of A and B at the same time, and the existence of B alone, where A, B can be singular or plural.
- the character “/” generally indicates that the related objects are an “or” relationship, but may also indicate an “and/or” relationship, which can be understood with reference to the context.
- At least one item(s) below” or similar expressions thereof refer to any combination of these items, including any combination of single item(s) or plural items(s).
- At least one (a) of a, b, or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c may be single or multiple .
- LTE Long Term Evolution
- WiMAX Worldwide Interoperability For Microwave Access
- 5G fifth generation
- NR New Radio Access Technology
- the technical solutions of the embodiments of the present application can also be applied to device-to-device (Device to Device, D2D) communication, vehicle-to-Everything (V2X) communication, machine-to-machine (Machine to Machine, M2M) communication, machine Type Communication (Machine Type Communication, MTC), and Internet of Things (Internet of Things, IoT) communication systems or other communication systems.
- D2D Device to Device
- V2X Vehicle-to-Everything
- M2X machine-to-machine
- M2M Machine Type Communication
- IoT Internet of Things
- the network architecture and service scenarios described in the embodiments of the present application are for the purpose of illustrating the technical solutions of the embodiments of the present application more clearly, and do not constitute a limitation on the technical solutions provided by the embodiments of the present application.
- the evolution of the architecture and the emergence of new business scenarios, the technical solutions provided in the embodiments of the present application are also applicable to similar technical problems.
- different base stations may be base stations with different identities, or may be base stations with the same identity that are deployed in different geographic locations.
- the base station does not know whether it will involve the scenario applied by the embodiments of the present application.
- the base station or the baseband chip can support the methods provided by the embodiments of the present application before deployment. In some scenarios, the methods provided by the embodiments of the present application may also be supported by upgrading or loading after deployment. It can be understood that the aforementioned different identifiers may be base station identifiers, cell identifiers or other identifiers.
- FIG. 1 shows a schematic diagram of a communication system applicable to the communication method of the embodiment of the present application.
- the communication system 100 includes an access network device 101 (Node1 and Node2), a UE 102 and a core network device CN 103.
- the access network device 101 may be configured with multiple antennas, and the UE102 may also be configured with multiple antennas. antenna.
- Access network equipment and core network equipment may be collectively referred to as network equipment, or, network side equipment, access network and core network may be collectively referred to as network side.
- access network equipment and terminals may also include various components related to signal transmission and reception (eg, processors, modulators, multiplexers, demodulators or demultiplexers, etc.).
- the access network device refers to a radio access network (Radio Access Network, RAN) node (or device) that accesses the terminal to the wireless network, and may also be referred to as a base station.
- the access network device is a device with wireless transceiver function or a chip that can be installed in the device.
- the device can broadly cover various names in the following, or be replaced with the following names, such as: Node B (NodeB), evolution type Base station (Evolved NodeB, eNB), gNB, relay station, access point, TRP, transmitting point (Transmitting Point, TP), primary station MeNB, secondary station SeNB, multi-standard radio (MSR) node, home base station, network controller, Access Node, Wireless Node, Access Point (AP), Transmission Node, Transceiver Node, Baseband Unit (BBU), Remote Radio Unit (RRU), Active Antenna Unit (AAU), Radio Head (RRH), Central Unit (CU), distribution unit (DU), positioning node, etc.
- a base station may be a macro base station, a micro base station, a relay node, a donor node, or the like, or a combination thereof.
- a base station may also refer to a communication module, modem or chip used to be provided in the aforementioned equipment or apparatus.
- the base station may also be a mobile switching center, a device that assumes the function of a base station in D2D, V2X, and M2M communications, a network-side device in a 6G network, a device that assumes the function of a base station in a future communication system, and the like.
- Base stations can support networks of the same or different access technologies. The embodiments of the present application do not limit the specific technology and specific device form adopted by the network device.
- the device can be stationary or mobile.
- a helicopter or drone can be configured to act as a mobile base station, and one or more cells can move according to the location of the mobile base station.
- a helicopter or drone may be configured to function as a device that communicates with another base station.
- an access network device may include CUs and DUs.
- the gNB may also include a radio unit (RU).
- CU and DU can be understood as the division of the base station from the perspective of logical functions.
- the CU and DU can be physically separated or deployed together.
- multiple DUs may share one CU or one DU may be connected to multiple CUs, and the CUs and DUs may be connected through an F1 interface.
- FIG. 2 is a schematic diagram of a network architecture in which multiple DUs share one CU according to an embodiment of the application. As shown in FIG.
- the core network and the RAN communicate with each other, and the base stations in the RAN are separated into CUs and DUs. Multiple DUs share one CU.
- the network architecture shown in FIG. 2 can be applied to a 5G communication system, and can also share one or more components or resources with an LTE system.
- the access network equipment including the CU node and the DU node separates the protocol layers, and the functions of some protocol layers are centrally controlled by the CU, and the functions of the remaining part or all of the protocol layers are distributed in the DU, and the CU centrally controls the DU.
- CU is deployed with RRC layer, PDCP layer, and Service Data Adaptation Protocol (SDAP) layer in the protocol stack;
- DU is deployed with wireless links in the protocol stack Control (Radio Link Control, RLC) layer, medium access control (Medium Access Control, MAC) layer, and physical layer (Physical Layer, PHY).
- RLC Radio Link Control
- MAC Medium Access Control
- PHY Physical Layer
- the CU has the processing capabilities of RRC, PDCP and SDAP.
- DU has the processing capability of RLC, MAC and PHY. It can be understood that the division of the above functions is only an example, and does not constitute a limitation on the CU and the DU.
- a terminal may also be referred to as terminal equipment, user equipment (User Equipment, UE), access terminal, subscriber unit, subscriber station, mobile terminal (Mobile Terminal, MT), mobile station (Mobile Station, MS), remote station, remote terminal , mobile device, user terminal, wireless communication device, user agent or user equipment.
- UE User Equipment
- a terminal is a device that provides voice and/or data connectivity to a user and can be used to connect people, things and machines.
- the terminal in the embodiment of the present application may be a mobile phone (Mobile Phone), a tablet computer (Pad), a computer with a wireless transceiver function, a wearable device, a mobile Internet device (Mobile Internet Device, MID), a virtual reality (Virtual Reality, VR) terminal, Augmented Reality (AR) terminal, wireless terminal in Industrial Control, wireless terminal in self-driving, wireless terminal in Remote Medical (Remote Medical), intelligent Wireless terminals in the power grid (Smart Grid), wireless terminals in Transportation Safety, wireless terminals in Smart City, wireless terminals in Smart Home, etc.
- the embodiments of the present application do not limit application scenarios.
- the methods and steps implemented by the terminal in this application can also be implemented by components (such as chips or circuits) that can be used in the terminal.
- terminals the aforementioned terminals and components (eg, chips or circuits) that can be provided in the aforementioned terminals are collectively referred to as terminals.
- the terminal can also be used to act as a base station.
- a terminal may act as a scheduling entity that provides sidelink signals between terminals in V2X or D2D or the like.
- cell phones and automobiles communicate with each other using sidelink signals. Communication between cell phones and smart home devices without relaying communication signals through base stations.
- the core network device refers to the device in the core network (Core Network, CN) that provides service support for the terminal.
- core network equipment are: Access and Mobility Management Function (AMF) entity, Session Management Function (SMF) entity, User Plane Function (UPF) Entities, etc., are not listed here.
- AMF Access and Mobility Management Function
- SMF Session Management Function
- UPF User Plane Function
- the AMF entity may be responsible for terminal access management and mobility management
- the SMF entity may be responsible for session management, such as user session establishment, etc.
- the UPF entity may be a user plane functional entity, mainly responsible for connecting external network.
- AMF entities may also be referred to as AMF network elements or AMF functional entities
- SMF entities may also be referred to as SMF network elements or SMF functions entity etc.
- both Node1 and Node2 can communicate with multiple UEs.
- the UE communicating with Node1 and the UE communicating with Node2 may be the same or different.
- the UE 102 shown in FIG. 1 can communicate with Node1 and Node2 at the same time, but this only shows a possible scenario. In some scenarios, the UE may only communicate with Node1 or Node2, which is not limited in this application .
- FIG. 1 is only a simplified schematic diagram for easy understanding, and the communication system may also include other access network devices, terminals, or core network devices, which are not shown in FIG. 1 .
- the RRC state of the UE includes a connected state (RRC_CONNECTED), an idle state (RRC_IDLE), and an inactive state (RRC_INACTIVE, or a third state).
- the RRC inactive (inactive) state is a newly introduced state in which the terminal is connected to the 5G core network through the base station, and the state is between the connected state and the idle state.
- RRC_INACTIVE there is no RRC connection between the terminal and the access network device, but the connection between the access network device and the core network device is maintained, and the terminal saves all or part of the information necessary to establish/restore the connection. Therefore, in the RRC_INACTIVE state, when the terminal needs to establish a connection, it can quickly establish or restore an RRC connection with the network device according to the stored relevant information.
- the UE When the UE is in the RRC_CONNECTED state, the UE has established links with the base station and the core network. When data arrives at the network, it can be directly transmitted to the UE; when the UE is in the RRC_INACTIVE state, it means that the UE has established links with the base station and the core network before. , but the link between the UE and the base station is released, but the base station will store the context of the UE. When there is data to be transmitted, the base station can quickly restore this link; when the UE is in the RRC_IDLE state, the connection between the UE and the base station and the network There is no link. When there is data to be transmitted, a link from the UE to the base station and the core network needs to be established.
- FIG. 4 is a schematic diagram of an RRC state transition provided by an embodiment of the present application.
- the UE in the RRC_IDLE state, the UE can access the base station, and the UE can communicate with the base station during the access process or after accessing the base station.
- the RRC establishment process is performed, so that the state of the UE is converted from the RRC_IDLE state to the RRC_CONNECTED state.
- the UE may initiate an RRC establishment process, and attempt to establish an RRC connection with the base station to enter the RRC_CONNECTED state.
- the RRC setup process between the UE and the base station includes: the UE sends an RRC setup request (RRCSetupResuest) message to the base station, and after receiving the request: the base station sends an RRC setup (RRCSetup) message to the UE, so that the state of the UE can be converted to RRC_CONNECTED state; or, the base station sends an RRC reject (RRCReject) message to the UE, so that the UE continues to stay in the RRC_IDLE state.
- RRC setup request RRCSetupResuest
- RRCSetup RRC setup
- RRCReject RRC reject
- the base station may change the state of the UE from the RRC_CONNECTED state to the RRC_IDLE state or the RRC_INACTIVE state by releasing the RRC process, such as sending an RRC release (RRCRelease) message to the UE.
- RRC release RRCRelease
- the UE may enter the RRC_IDLE state by releasing the RRC connection, or the UE may enter the RRC_CONNECTED state by resuming the RRC connection.
- the base station knows that the UE is within the coverage or management range of the base station; the core network knows which base station the UE is within the coverage or management range, and the core network knows through which base station it can locate or find the UE.
- the UE can change the state of the UE from the RRC_INACTIVE state to the RRC_CONNECTED state through the RRC establishment or RRC recovery (resume) process; the base station can change the state of the UE from the RRC_INACTIVE state to the RRC_IDLE state through the RRC release process.
- the UE can initiate an RRC recovery process to try to restore the RRC connection with the base station to enter the RRC_CONNECTED state.
- the RRC recovery process between the UE and the base station includes: the UE sends an RRC recovery request (RRCResumeResuest) message to the base station, and after receiving the request: the base station sends an RRC setup (RRCSetup) message or an RRC recovery (RRCResume) message to the UE, so that The state of the UE can be converted to the RRC_CONNECTED state; or, the base station sends an RRC release (RRCRelease) message to the UE, so that the state of the UE is converted from the RRC_INACTIVE state to the RRC_IDLE state; or, the base station sends an RRC reject (RRCReject) message to the UE, so that the UE continues to Stay in RRC_INACTIVE state.
- RRC recovery request RRCResumeResuest
- RRC setup RRC setup
- RRCResume RRC recovery
- the base station When the UE is in the RRC_INACTIVE state, there is no RRC connection between the UE and the base station. At this time, the base station does not know whether the UE is within the coverage of the base station or whether it is within the management range of the base station; the core network knows which base station the UE is within the coverage or management range, and the core network knows through which base station it can locate to or find the UE.
- the process of cell search mainly includes:
- Step 1 The terminal searches for the SSB.
- the SSB includes a primary synchronization signal (Primary Synchronization Signal, PSS), a secondary synchronization signal (Secondary Synchronization Signal, SSS), and a physical broadcast channel (Physical Broadcast Channel, PBCH).
- PSS Primary Synchronization Signal
- SSS Secondary Synchronization Signal
- PBCH Physical Broadcast Channel
- Step 2 The terminal obtains a master information block (Master Information Block, MIB) from the PBCH.
- MIB Master Information Block
- Step 3 The terminal determines a common search space (Common Search Space, CSS) according to the PDCCH configuration (PDCCH Config) information in the MIB, and determines a control resource set (Control Resource Set, CORESET) #0.
- a common search space Common Search Space, CSS
- PDCCH Config PDCCH configuration
- CORESET Control Resource Set
- the frequency range of CORESET#0 may be the frequency range of the initial BWP.
- Step 4 The terminal then blindly detects the DCI scrambled by the SI-RNTI according to the time-frequency resources jointly determined by CORESET#0 and the CSS.
- Step 5 Acquire a System Information Block (SIB) in the time unit (eg, time slot) indicated by the arrow in FIG. 5 according to the instruction of the DCI.
- SIB System Information Block
- the DCI may be a DCI used for scheduling PDSCH
- the PDSCH carries a system information block, including paging resources and random access resources.
- a terminal may use a two-step access method or a four-step access method to perform random access.
- the two-step access method may be referred to as the 2-Step RACH mode for short
- the four-step access method may be referred to as the 4-Step RACH mode for short.
- the two-step random access procedure may include:
- Step 1 the terminal sends a random access preamble (Preamble) to the base station on the Packet Random Access Channel (PRACH), which is also called MsgA.
- Preamble a random access preamble
- PRACH Packet Random Access Channel
- the above Preamble can be a sequence, and its function is to notify the base station that there is a random access request, and enable the base station to estimate the transmission delay between the terminal and the base station, so that the base station can calibrate the uplink timing (Uplink Timing) of the terminal, and will calibrate The information is notified to the terminal through the timing advance TA instruction, so that the terminal obtains the timing advance amount TA.
- Uplink Timing Uplink Timing
- the above-mentioned MsgA may include the ID of the terminal, such as the UE ID.
- the terminal can determine a random access wireless network temporary identifier (Random Access RNTI, RA-RNTI) according to the timing of sending the Preamble.
- Random Access RNTI Random Access RNTI
- the above MsgA may carry an RRC configuration request.
- Step 2 the base station sends a random access response to the terminal, which may also be called MsgB.
- the base station can determine the same RA-RNTI as in the above step 1 according to the reception timing of the Preamble.
- Control information eg, DCI
- RA-RNTI e.g., DCI
- the above random access response includes the unique identifier of the terminal to designate the terminal that has successfully accessed, and other terminals that have not successfully accessed will re-initiate random access.
- the above random access response may further include the C-RNTI allocated to the terminal.
- the base station can perform RRC configuration on the terminal through the above MsgB.
- the four-step random access process may include:
- Step 1 the terminal sends a random access preamble, also called a message 1 (Message1, Msg1), to the base station.
- a random access preamble also called a message 1 (Message1, Msg1)
- This Preamble function is consistent with the Preamble function in step 1 of 2-Step RACH.
- the terminal can determine the RA-RNTI according to the timing of sending the Preamble.
- Step 2 after detecting the Preamble, the base station can determine the same RA-RNTI as in Step 1 according to the reception timing of the Preamble, and send a random access response, also called Message 2 (Msg2), to the terminal.
- Msg2 Message 2
- the DCI used for scheduling the above random access response can be scrambled with RA-RNTI, and the content of the random access response includes the sequence number (Preamble Index) of the Preamble received in step 1, TA, uplink resource allocation information and Temporary cell wireless network temporary identifier (Temporary Cell RNTI, TC-RNTI), etc.
- the terminal receives the random access response.
- Step 3 the terminal sends message 3.
- the terminal If the random access preamble indicated by the preamble index carried in the received random access response is the same as the preamble sent by the terminal to the base station in the above step 1, the terminal considers that the random access response contains its own random access response . After receiving the random access response, the terminal determines the uplink resource allocated by the base station for the terminal, and sends an uplink message, also called message 3 (Message3, Msg3), on the uplink resource. Optionally, the terminal may initiate an RRC connection request in Msg3.
- the Msg3 may include an RRC connection request (RRC Connection Request), and the RRC connection request carries the ID of the terminal (eg, UE).
- Step 4 the base station receives the uplink message of the terminal, and returns a contention resolution message, also called message 4 (Message4, Msg4), to the terminal that has successfully accessed.
- message 4 also called message 4 (Message4, Msg4)
- the PDSCH carrying the above-mentioned Msg4 is scheduled by control information (such as DCI), and the control information is scrambled by the cell wireless network temporary identity TC-RNTI of the terminal, and the above-mentioned Msg4 can carry the terminal identity of the successful access. , and other terminals that fail to access will re-initiate random access.
- the base station may perform RRC configuration on the terminal through the above Msg4.
- 5G NR terminals in the RRC inactive state did not support unicast data transmission, that is, the terminal needs to restore the RRC connection Unicast data transmission can only be performed after entering the RRC connection state.
- the data packets that the terminal in the RRC inactive state needs to transmit is usually very small (ie Small Data, small data), and the signaling required for the terminal to enter the RRC connected state from the RRC inactive state is even greater than
- the data volume of small data leads to unnecessary power consumption and signaling overhead.
- the embodiment of the present application does not limit the size of the small data, for example, it can be considered that the small data is a data packet carried by a transmission block (Transmit Block, TB), or the small data is the data whose data packet size is less than a threshold, For example, small data is a data packet carrying information of less than 100 bytes or other positive integer bytes, etc.
- the specific threshold can be determined according to the system design requirements, or determined based on the protocol agreement, or determined by the network side.
- the small data may be terminal-specific data packets, etc., and specific scenarios may cover smartphone-related services, such as instant messaging of instant messaging software, heartbeat packets or push messages of application programs; and related services of non-smartphones. Services such as periodic data from wearables such as heartbeat packets, periodic readings sent by industrial wireless sensor networks, smart meters, etc.
- which terminal-specific data packets can be determined according to system design requirements, or determined based on a protocol agreement, or determined by an instruction from the network side, which is not limited herein.
- big data is data whose data packet size is greater than a threshold.
- the specific threshold can be determined according to system design requirements, or determined based on a protocol agreement, or determined by an instruction from the network side, which is not limited here.
- the business or scenario corresponding to big data is not limited here.
- Inactive small data transmission can be implemented in the following two ways:
- RA-based small data transmission means that the terminal sends uplink user plane data to the base station during the RA process (for the sake of simplicity, the data described below will be Representing user plane data) or receiving downlink user plane data, during this process, the terminal is still in the RRC inactive state and will not switch to the RRC connected state.
- the terminal sends uplink data to the base station through MsgA, or receives downlink data sent by the base station in MsgB; in 4-Step RACH, the terminal sends uplink data to the base station through Msg3, or receives data sent by the base station in Msg4 Downlink data.
- the 2-Step RACH-SDT process may include:
- MsgA The terminal sends a random access preamble (Preamble) to the base station on the PRACH, and sends small uplink data to the base station on the corresponding PUSCH, optionally including the terminal ID.
- Preamble a random access preamble
- MsgB The base station sends a random access response (Random Access Response, RAR) to the terminal, and the RAR may include the feedback information of MsgA to inform the terminal whether the base station has successfully received the uplink small data. At the same time, downlink small data is sent in the corresponding PDSCH.
- RAR Random Access Response
- PRACH resources, Preamble resources, PUSCH resources (including demodulation reference signal (Demodulation reference signal, DMRS) resources in PUSCH), and resources for receiving RAR can all be configured by the base station in the terminal RRC connection state.
- PUSCH resources including demodulation reference signal (Demodulation reference signal, DMRS) resources in PUSCH
- RAR can all be configured by the base station in the terminal RRC connection state.
- the 4-step RACH-SDT process may include:
- the terminal sends a Preamble (random access preamble) to the base station on the PRACH.
- Msg2 The base station sends an RAR to the terminal, and the RAR includes the uplink scheduling information of Msg3.
- the terminal sends uplink small data to the base station on the resource scheduled by the RAR, optionally including the terminal ID, such as the UE ID.
- Msg4 The base station sends feedback information to the terminal to inform the terminal whether the uplink small data is successfully received. At the same time, downlink small data is sent in the corresponding PDSCH.
- PRACH resources, Preamble resources, PUSCH resources (including DMRS resources in PUSCH), and resources for receiving RAR are all configured by the base station for the terminal, which can be the terminal-specific resources when the terminal is connected, or it can be configured in the terminal connection state.
- License-free uplink small data transmission means that the base station pre-configures PUSCH resources and transmission parameters for uplink data transmission for the terminal in a semi-static manner.
- the terminal When the terminal has uplink data to send, it directly uses the pre-configured PUSCH resources and transmission parameters.
- the parameter sends data to the base station without receiving the dynamic grant (Dynamic UL Grant) of the base station and without sending the Preamble.
- Pre-configured Uplink Resource (Pre-configured Uplink Resource) transmission in LTE and CG (Configured Grant) transmission based on configuration in NR belong to the category of uplink license-free transmission.
- the base station configures resources and transmission parameters for the terminal through RRC signaling, such as one or more of the following configurations: period of time-domain resources, open-loop power control-related parameters, waveform , redundancy version sequence, number of repetitions, frequency hopping mode, resource allocation type, number of Hybrid Automatic Retransmission reQuest (HARQ) processes, DMRS-related parameters, modulation and coding scheme table, Resource Block Group, RBG) size, time domain resources, frequency domain resources, MCS (Modulation and Coding Scheme), etc.
- RRC signaling such as one or more of the following configurations: period of time-domain resources, open-loop power control-related parameters, waveform , redundancy version sequence, number of repetitions, frequency hopping mode, resource allocation type, number of Hybrid Automatic Retransmission reQuest (HARQ) processes, DMRS-related parameters, modulation and coding scheme table, Resource Block Group, RBG) size, time domain resources, frequency domain resources, MCS (Modulation and Coding Scheme), etc.
- the terminal does not need to send the preamble, so it is more suitable for the scenario where the terminal and the base station are in a synchronized state. Compared with the RA-based scheme, it can further save signaling overhead and terminal power consumption.
- the data transmitted on the allocated CG resources may also be data with a large amount of data, that is, it may not be small data.
- the CG resources are used for small data transmission.
- the configured authorized small data transmission (Configured Grant Small Data Transmission, CG-SDT) specifically refers to the RRC inactive state terminal through the CG resource. Small data transfer.
- the CG-SDT process may include:
- Step 1 The terminal sends small data through the PUSCH on the allocated CG resources, optionally including the terminal ID.
- Step 2 The base station sends feedback to the terminal in the PDCCH to inform the terminal whether the uplink small data is received.
- the transmission process after the first transmission of the small data is the subsequent transmission of the small data.
- the data transmitted in the subsequent transmission of small data may be data that has not been transmitted due to the amount of data to be transmitted exceeding the capacity of the first transmission during the first transmission, or may be new data that the terminal or base station needs to transmit after the first transmission.
- the first possible method is that after the first transmission of RA-SDT or CG-SDT, the base station instructs the terminal to switch from the RRC inactive state to the RRC connection through an indication message, such as MsgB or Msg4 or CG-Response In the RRC connected state, dynamic scheduling or CG is used for transmission.
- an indication message such as MsgB or Msg4 or CG-Response In the RRC connected state, dynamic scheduling or CG is used for transmission.
- the second possible method is that after the RA-SDT or CG-SDT is transmitted for the first time, the state transition is not performed, and the transmission is performed by means of dynamic scheduling or CG in the inactive state.
- this application mainly considers the subsequent transmission of small data in the inactive state without performing state transition after the first transmission of the RA-SDT.
- CORESET is a time-frequency resource used by the terminal to determine the search range of control information.
- a CORESET can be configured to one or more terminals. For example, if CORESET1 is configured to terminal 1, terminal 2, terminal 3 and terminal 4, the base station may send the PDCCHs of terminal 1, terminal 2, terminal 3 and terminal 4 on CORESET1.
- CORESET2 is configured to terminal 5, terminal 6, terminal 7 and terminal 8, then the base station can send the PDCCHs of terminal 5, terminal 6, terminal 7 and terminal 8 on CORESET2.
- a terminal can also be configured with one or more CORESETs.
- SS The time set of the PDCCH that the terminal needs to monitor is called SS.
- SS can be divided into common search space (Common Search Space, CSS) and terminal-specific search space (UE-specific Search Space, USS).
- CSS is used to transmit control information related to public information such as Paging, Radom Access Response (RA Response), and Broadcast Control Channel (BCCH).
- RA Response Radom Access Response
- BCCH Broadcast Control Channel
- the common control information of each terminal is used for scheduling cell common information or scheduling common information of multiple terminals.
- the USS is used to transmit the terminal-specific PDCCH, for example, the control information carried on the PDCCH is the PDSCH and/or PUSCH used for scheduling the terminal.
- the subsequent transmission may be performed according to the DCI scrambled by the C-RNTI.
- the prior art does not specify how to determine the time range for transmission according to the DCI scrambled by the C-RNTI in the subsequent transmission process, and the terminal will continuously detect the DCI scrambled by the C-RNTI.
- the terminal still continuously detects the DCI scrambled by the C-RNTI, which will cause unnecessary energy consumption.
- the base station may consider revalidating the CG resources and perform uplink data transmission through the CG-SDT resources, thereby saving scheduling overhead.
- the CG-RNTI used in the CG process is different from the C-RNTI, or the DCI format used in the CG process is different from the DCI format used in the RA-SDT process, so it needs to be indicated from the DCI scrambled by the C-RNTI.
- the transmission mode of dynamic scheduling of resources is converted to the transmission mode of transmission through CG resources. However, there is still no clear mechanism for the conversion of the transmission mode at present.
- the present invention provides a method, the method includes: the base station and the terminal each maintain a timer, the timer states of the base station and the terminal are consistent, and before the timer times out, the base station and the terminal according to C- RNTI scrambled DCI for data transmission.
- the base station and the terminal perform the first transmission of the small data transmission RA-SDT based on the random access process.
- the base station sends the C-RNTI configuration to the terminal, or the base station sends the TC-RNTI configuration to the terminal.
- the TC-RNTI is converted to the C-RNTI of the terminal.
- the terminal is in an inactive state.
- the base station determines, according to the BSR reported by the terminal in the first transmission of RA-SDT, whether the terminal still has data to be sent after the first transmission is completed. If there is no data to be sent, optionally, the base station instructs the terminal Subsequent data transfer processes are not performed.
- S902 The base station and the terminal start the timer.
- the base station and the terminal respectively start timers, and the status of the timer can be used to control the data transmission of the DCI scrambled based on the C-RNTI, and the status of the timer is related to the configuration of the timer.
- the content of the configuration of the timer may include one or more of the following:
- the duration configuration is used to indicate the duration of the timer running continuously
- Timer Start Indication used to instruct the timer to start.
- the configuration content of the timer may also include other timer-related configurations or instructions, such as:
- Indication to restart the timer used to instruct the timer to restart according to the existing configuration.
- the configuration of the timer may be a fixed value agreed in the protocol, or a configuration value sent by the base station, or part of a fixed value and part of a configuration value sent by the base station.
- the duration configuration of the timer has the following possible implementations:
- the duration of the timer is configured as a fixed value agreed in the protocol, for example, the duration of the timer specified in the protocol is a fixed value of 10 milliseconds.
- the duration of the timer is configured as a configuration value of the base station, and the configuration value is a specific value or an index value.
- the base station needs to configure the timer duration to be 10 milliseconds.
- the protocol can specify that the unit of the timer duration configuration in the timer configuration message is milliseconds, and set the timer duration configuration information element in the timer configuration message to "10".
- the timer duration index configuration is represented by 2 bits in the timer configuration message, and set to “00”, the terminal according to Table 1
- the timer duration corresponding to the query index value "00" is 10 milliseconds, so that the timer duration configuration is 10 milliseconds.
- Table 1 Example of index value-timer duration comparison table
- the starting indication of the timer has the following possible implementations:
- the start indication of the timer is a condition or event agreed in the protocol. For example, it is agreed in the protocol that the base station and the terminal start a timer based on a message for releasing RRC, such as an RRC release message.
- the start indication of the timer is a configuration value, and the timer is started based on the configuration sent by the base station.
- the base station carries the timer start indication information element in the timer configuration message, the length is 1 bit, and it is agreed in the protocol that when the information element is "1", it indicates to start the timer, and the base station and the terminal according to the start indication information Meta starts the timer.
- the configuration of the timer is carried in DCI, and the DCI includes DCI scrambled by P-RNTI, DCI scrambled by SI-RNTI, DCI scheduling PDSCH, and ACK/PUSCH scheduling DCI for NACK feedback, DCI for scheduling random access response, etc.
- the terminal configuration information is indicated by using idle bits or newly added bits in the DCI.
- the timer configuration is carried in PDSCH, and the PDSCH is used to carry at least one of the following information: system message, random access response, RRC signaling, and MAC CE signaling.
- the configuration of the timer is carried in the RRC release message, and the base station and the terminal start the timer according to the configuration of the timer in the RRC release message.
- the base station Before the timer expires, the base station sends the DCI scrambled by the C-RNTI, and the terminal detects the DCI scrambled by the C-RNTI.
- the control resource set CORESET where the DCI scrambled by the C-RNTI is located is a public CORESET or a terminal-specific CORESET.
- the search space where the DCI scrambled by the C-RNTI is located is a public search space or a terminal-specific search space.
- the public CORESET and the public search space are configured by system messages.
- the configuration of the terminal-specific CORESET and the dedicated search space includes the following possible implementations:
- the terminal-specific radio resource control RRC configuration information is carried through Msg4/MsgB, and the terminal-specific CORESET and/or search space are configured.
- the information carried by PDSCH in the resource indicated in the DCI scrambled by the C-RNTI carries terminal-specific radio resource control RRC configuration information, configures terminal-specific CORESET, and/or search space.
- the terminal-specific CORESET and/or search space used by the terminal before entering the inactive state is revalidated.
- only the terminal-specific CORESET and/or the search space within the BWP frequency range of the initial bandwidth part may be revalidated, so as to prevent the terminal from switching to a BWP with a larger frequency range and causing the terminal's energy consumption to increase.
- S904 The base station and the terminal perform subsequent data transmission based on the DCI scrambled by the C-RNTI.
- the DCI scrambled based on the C-RNTI performs subsequent data transmission, including one or more of the following:
- the base station and the terminal perform subsequent data transmission through the resources indicated by the DCI scrambled by the C-RNTI; or, the base station and the terminal transmit the control information through the resources indicated by the DCI scrambled by the C-RNTI or the DCI scrambled by the C-RNTI, for example,
- the base station sends a message to indicate that the CG resource is revalidated, and data transmission is performed through the CG-SDT resource.
- the subsequent data transmission includes uplink data transmission and/or downlink data transmission.
- the data transmitted in the subsequent data transmission includes big data and/or small data.
- S905 The timer expires, optionally, the base station and the terminal discard the C-RNTI at the MAC layer.
- the base station determines to stop sending the DCI scrambled by the C-RNTI, and the terminal determines to stop detecting the DCI scrambled by the C-RNTI.
- the base station simultaneously indicates resources for data transmission in the DCI scrambled by the C-RNTI
- the base station and the terminal according to the DCI The indicated resource transmits data, optionally, the required resource for subsequent HARQ retransmission is indicated by the DCI scrambled by the C-RNTI.
- the time for data transmission based on the DCI scrambled by the C-RNTI can be controlled by the running state of the timer, thereby reducing the unnecessary detection of the DCI scrambled by the C-RNTI scrambled by the terminal device and reducing the energy consumption of the terminal device. the goal of.
- CG-SDT resources can also be used to reduce the overhead of base station scheduling.
- FIG. 10 a flowchart of a possible implementation is provided, and the method of this embodiment includes:
- the base station and the terminal perform the first transmission of the small data transmission RA-SDT based on the random access process.
- the base station sends the C-RNTI configuration to the terminal, or the base station sends the TC-RNTI configuration to the terminal.
- the TC-RNTI is converted to the C-RNTI of the terminal.
- S1002 The base station and the terminal start a timer.
- the base station Before the timer expires, the base station sends the first DCI scrambled by the C-RNTI, and the terminal detects the first DCI scrambled by the C-RNTI.
- S1004 The base station and the terminal perform data transmission through the resource indicated by the first DCI.
- the control mode for the revalidation of the CG resource has the following possible implementation modes:
- a possible implementation is that the base station and the terminal re-validate the CG resources according to the agreement in the agreement. For example, it is agreed in the agreement that the base station and the terminal re-validate all the CG resources after performing uplink synchronization. For example, during the access process, the base station sends a TA. After that, all CG resources will be re-validated by default, and the terminal will re-validate the default CG resources after receiving the TA.
- the base station sends a CG resource revalidation instruction to the terminal to control the CG resource revalidation.
- the CG resource revalidation indication is carried by the first DCI or the resource indicated by the first DCI.
- the CG resource revalidation indication may include one or more of the following: the ID of the reactivated CG resource, the configuration of the correspondence between the CG resource and the SSB, the revalidation of the CG-RNTI, the updated CG-RNTI, the Time domain and/or frequency domain resource update, or time when CG resources are revalidated.
- the ID of the reactivated CG resource is used to indicate the ID of the reactivated CG resource.
- the base station configures two sets of CG resources for the terminal, and the IDs of the resources are 0 and 1 respectively.
- the ID of the CG resource to be revalidated can be indicated in the CG resource revalidation instruction. For example, to indicate that the CG resource whose resource ID is 0 is revalidated, then The CG resource with ID 1 does not take effect again.
- the configuration of the corresponding relationship between the CG resources and the SSB is used for the base station to re-indicate the corresponding relationship between each CG resource and the SSB in the multiple sets of CG resources for the terminal.
- the base station has configured 2 sets of CG resources for the terminal and indicated the corresponding relationship between CG resources and SSB.
- the CG resource with ID 0 corresponds to SSB-0
- the CG resource with ID 1 corresponds to SSB- 1
- the base station may instruct the terminal to update the corresponding relationship between the CG resource and the SSB.
- the corresponding relationship is updated to be that the CG resource with ID 0 corresponds to SSB-1, and the CG resource with ID 1 corresponds to SSB-0.
- the updating of the time domain and frequency domain resources of the CG resources includes that the base station configures new CG resources for the terminal, including time domain resources and/or frequency domain resources, or changes to the time domain resources and/or time domain resources of the original CG resources. or frequency domain resources to modify.
- a possible implementation manner of the time for the revalidation of the CG resources is that the base station configures the time period for delaying the revalidation of the CG resources.
- the revalidation instruction is given, and the CG resource starts to become valid 10 milliseconds after the terminal receives the validating instruction.
- the configuration of the duration of delaying the revalidation of the CG resource can be configured by referring to the content related to the configuration of the timer duration in S902, agreeing a fixed value through a protocol, or specifying a specific duration value or an index value by the base station. No longer.
- the revalidated CG resource may be configured in a message instructing the terminal to switch from the RRC connected state to the RRC inactive state, or may be configured in the MsgB or Msg4 message during the RA-SDT process.
- the CG resource is configured in the MsgB or Msg4 message during the RA-SDT process, the base station and the terminal re-validate the CG resource according to the agreement.
- the configuration of the CG resource may include one or more of the following: CG-RNTI, the related configuration of the time and frequency domain resources of the CG resource, the ID of the CG resource, the corresponding relationship between the CG resource and the SSB, and the timing advance TA.
- CG-RNTI the related configuration of the time and frequency domain resources of the CG resource
- ID of the CG resource the ID of the CG resource
- corresponding relationship between the CG resource and the SSB the timing advance TA
- the corresponding relationship between the CG resource and the SSB is used by the base station to indicate the corresponding relationship between each CG resource and the SSB in the multiple sets of CG resources for the terminal.
- the base station configures two sets of CG resources for the terminal, indicating that the CG resource with ID 0 corresponds to SSB- 0, the CG resource whose ID is 1 corresponds to SSB-1.
- the terminal can select the CG resource for data transmission based on the corresponding relationship between the CG resource and the SSB according to the measurement of the SSB. For example, if the SSB received by the terminal is SSB-1 or the SSBs that exceed a preset threshold among the multiple SSBs received by the terminal include SSB-1, the CG resource with ID 1 can be used for data transmission.
- the TA failure includes TA timeout, reference signal received power (Reference Signal Received Power, RSRP) reaching a threshold value, or the terminal moves to a neighboring cell.
- RSRP Reference Signal Received Power
- S1006 Perform uplink data transmission through the CG-SDT resource.
- the base station and the terminal start to transmit uplink data through the CG-SDT resource, and carry the feedback information of the uplink data through the third DCI scrambled by the CG-RNTI.
- the CG-RNTI may be carried in the CG resource revalidation instruction, or the CG-RNTI is the CG-RNTI before the terminal enters the RRC inactive state, and the base station instructs the terminal to enter the RRC inactive state through the CG resource revalidation instruction message. Whether the CG-RNTI before the RRC inactive state takes effect, or whether it takes effect by default.
- S1007 The timer expires, optionally, the base station and the terminal discard the C-RNTI at the MAC layer.
- S1006 is performed before S1007, that is, after the CG resource is revalidated, the base station and the terminal device can perform uplink data transmission through the CG-SDT resource.
- S1006 is performed after S1007, that is, after the CG resource takes effect again, and after the timer expires, the base station and the terminal perform uplink data transmission through the CG-SDT resource.
- the effect of reducing the overhead of base station scheduling can be achieved.
- the C-RNTI scrambled DCI on which the CG resource revalidation indication depends and the C-RNTI scrambled DCI on which data transmission depends may also be different DCIs.
- FIG. 11 a flowchart of a possible implementation manner is provided, and the method of this embodiment includes:
- the base station and the terminal perform the first transmission of the small data transmission RA-SDT based on the access process.
- the base station sends the C-RNTI configuration to the terminal, or the base station sends the TC-RNTI configuration to the terminal, After the contention is resolved, the TC-RNTI is converted to the C-RNTI of the terminal.
- S1102 The base station and the terminal start timers.
- the base station Before the timer expires, the base station sends the first DCI scrambled by the C-RNTI and the second DCI scrambled by the C-RNTI, and the terminal detects the first DCI and the second DCI at the same time.
- S1104 The base station and the terminal perform data transmission through the resource indicated by the first DCI.
- S1105 Revalidate the CG resource based on the second DCI.
- the difference from S1005 is that the second DCI in this embodiment does not indicate a resource for transmitting data.
- the CG resource revalidation indication is carried by the second DCI, and the second DCI includes the DCI for scheduling PDSCH, the DCI for scheduling PUSCH, the DCI for scheduling ACK/NACK feedback of PUSCH, the DCI for scheduling random access response, etc.
- the idle bits or newly added bits in the DCI indicate information that the terminal CG resource is revalidated; or,
- the CG resource revalidation indication is carried by the resource indicated by the second DCI, and the resource is used to carry at least one of the following information: random access response, RRC signaling, and MAC CE signaling.
- S1106 Perform uplink data transmission through the CG-SDT resource.
- S1107 The timer expires, optionally, the base station and the terminal discard the C-RNTI at the MAC layer.
- the C-RNTI scrambled DCI on which the CG resource revalidation instruction depends and the C-RNTI scrambled DCI used for data transmission are different DCIs, so as to improve the flexibility of controlling the CG resource revalidation. Effect.
- data transmission may also be performed through the CG resource after the first transmission of the RA-SDT, without performing the data transmission through the resource indicated by the DCI scrambled by the C-RNTI.
- FIG. 12 a flowchart of a possible implementation is provided. The method in this embodiment includes:
- the base station and the terminal perform the first transmission of the small data transmission RA-SDT based on the access process.
- the base station sends the C-RNTI configuration to the terminal, or the base station sends the TC-RNTI configuration to the terminal, After the contention is resolved, the TC-RNTI is converted to the C-RNTI of the terminal.
- S1202 The base station and the terminal start a timer.
- the base station Before the timer expires, the base station sends the second DCI scrambled by the C-RNTI to the terminal, and the terminal detects the second DCI scrambled by the C-RNTI.
- the base station sends an indication that the CG resource is revalidated to the terminal through the second DCI scrambled by the C-RNTI or the resource indicated by the second DCI scrambled by the C-RNTI.
- S1204 Revalidate the CG resource based on the second DCI.
- S1205 Perform uplink data transmission through the CG-SDT resource.
- S1206 The timer expires, optionally, the base station and the terminal discard the C-RNTI at the MAC layer.
- uplink data transmission is performed through CG resources after the first transmission of RA-SDT, instead of data transmission through resources indicated by DCI scrambled by C-RNTI, which can reduce the scheduling overhead of the base station.
- FIG. 13 a flowchart of a possible implementation is provided, including:
- S1301 The terminal sends a Preamble to request random access from the base station.
- the base station replies to random access the corresponding RAR, which carries the TC-RNTI.
- the terminal sends Msg3, and on the resource scheduled by the RAR, sends uplink small data to the base station, optionally including the ID of the terminal.
- S1304 The base station replies to Msg4, which carries a contention resolution message.
- the base station and the terminal convert the TC-RNTI to the C-RNTI.
- the base station sends configuration information of CG resources to the terminal, including: CG-RNTI, time domain and/or frequency domain resources of 2 sets of CG resources, IDs of 2 sets of CG resources, 2 sets of CG resources and SSB resources. corresponding relationship, and instruct the terminal to retain the CG-RNTI and CG resources after the TA fails.
- S1305 The base station sends the DCI scrambled by the C-RNTI to the terminal, and the terminal detects the DCI.
- S1306 Perform data transmission through the resource indicated by the DCI scrambled by the C-RNTI.
- the base station sends the DCI scrambled by the C-RNTI to the terminal, and in the resource indicated by the DCI, carries the CG resource revalidation indication through RRC signaling, such as RRC reconfiguration signaling, to instruct the terminal to revalidate the CG resource.
- RRC signaling such as RRC reconfiguration signaling
- the base station instructs to revalidate the CG resource whose ID is 1.
- the base station sends the DCI scrambled by the C-RNTI, which carries the configuration indication of the timer.
- timer configuration instruction 2 bits are used as the timer duration index value configuration information element, the content is "10", and 1 bit is used as the timer start indication information element, and the content is "1".
- the index value "10" corresponds to a timer duration of 40ms, that is, the base station configures a timer duration of 40ms.
- the base station and the terminal start the timer according to the configuration of the timer, and set the running time of the timer to 40ms.
- S1310 The base station sends an RRC release message.
- the base station may carry the control indication of the timer in the RRC release message, or stipulate in the protocol a default control indication of the timer by the RRC release message, the control indication may include: continue running the timer, stop timing timer, or restart the timer.
- the base station and the terminal can transmit control information through the DCI scrambled by the C-RNTI and/or the resources indicated by the DCI scrambled by the C-RNTI, such as RRC signaling, MAC CE signaling, etc.
- S1311 The timer expires, optionally, the base station and the terminal discard the C-RNTI at the MAC layer.
- the base station stops sending the DCI scrambled by the C-RNTI, and the terminal stops detecting the DCI scrambled by the C-RNTI.
- S1312 The base station and the terminal perform uplink data transmission through the CG-SDT resource.
- the used CG-SDT resource is the CG-SDT resource whose ID is 1 indicated in the CG resource revalidation instruction.
- the TA fails, and the terminal determines to stop using the CG-SDT resource for uplink data transmission.
- the terminal determines to stop using the CG-SDT resource for uplink data transmission.
- the base station and the terminal reserve the configuration of the CG-RNTI and CG resources based on the information configured in the CG resource revalidation instruction.
- the base station can flexibly control and select the data transmission mode, which specifically includes the following possible implementation modes:
- the base station and the terminal complete the first RA-SDT transmission, and when the base station and the terminal complete the uplink synchronization during the access process, the default CG resources are reactivated, data transmission is performed through the CG-SDT resources, and the base station stops sending For the DCI scrambled by the C-RNTI, the terminal stops detecting the DCI scrambled by the C-RNTI.
- the base station and the terminal device discard the C-RNTI at the MAC layer.
- the base station and the terminal complete the first transmission of RA-SDT, the base station and the terminal transmit data through the resources indicated by the DCI scrambled by the C-RNTI, and start a timer; After the resource indicated by the scrambled DCI or the C-RNTI scrambled DCI indicates that the CG resource takes effect again, the base station and the terminal stop the timer and start data transmission through the CG-SDT resource, the base station stops sending the C-RNTI scrambled DCI, and the terminal Stop detecting the DCI scrambled by the C-RNTI.
- the base station and the terminal device discard the C-RNTI at the MAC layer.
- the base station and the terminal complete the first transmission of RA-SDT, the base station and the terminal transmit data through the resources indicated by the DCI scrambled by the C-RNTI, and start a timer; After sending the resource indicated by the scrambled DCI or the C-RNTI scrambled DCI to stop the timer instruction, the base station and the terminal stop the timer and start data transmission through the CG-SDT resource, and the base station stops sending the C-RNTI scrambled DCI, The terminal stops detecting the DCI scrambled by the C-RNTI.
- the base station and the terminal device discard the C-RNTI at the MAC layer.
- the CG-SDT resource may be the CG resource revalidation instruction sent by the base station through the resource indicated by the DCI scrambled by the C-RNTI or the DCI scrambled by the C-RNTI before the instruction to stop the timer. Indicates resources to revalidate, or, by default, revalidates all CG resources.
- the base station can directly control the used transmission resources, so as to achieve the effect of flexibly controlling the transmission mode.
- FIG. 14 is a schematic structural diagram of a terminal provided by an embodiment of the present application.
- the terminal can be applied to the system shown in FIG. 1 to perform the functions of the terminal in the foregoing method embodiments.
- FIG. 14 only shows the main components of the terminal.
- the terminal 1400 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
- the processor is mainly used to process communication protocols and communication data, control the entire terminal, execute software programs, and process data of the software programs, for example, to support the terminal to perform the actions described in the above method embodiments.
- the memory is mainly used to store software programs and data.
- the control circuit is mainly used for the conversion of the baseband signal and the radio frequency signal and the processing of the radio frequency signal.
- the control circuit together with the antenna can also be called a transceiver, which is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
- Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users.
- the processor can read the software program in the memory, interpret and execute the instructions of the software program, and process the data of the software program.
- the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
- the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal through the antenna in the form of electromagnetic waves.
- the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, which converts the baseband signal into data and processes the data.
- FIG. 14 only shows one memory and one processor. In an actual terminal, there may be multiple processors and multiple memories.
- the memory may also be referred to as a storage medium or a storage device or the like.
- the memory may be a storage element on the same chip as the processor, that is, an on-chip storage element, or an independent storage element, which is not limited in this embodiment of the present application.
- the terminal may include a baseband processor and a central processing unit.
- the baseband processor is mainly used to process communication protocols and communication data
- the central processing unit is mainly used to control the entire terminal, execute A software program that processes data from the software program.
- the processor in FIG. 14 may integrate the functions of the baseband processor and the central processing unit.
- the baseband processor and the central processing unit may also be independent processors, interconnected by technologies such as a bus.
- a terminal may include multiple baseband processors to adapt to different network standards, a terminal may include multiple central processors to enhance its processing capability, and various components of the terminal may be connected through various buses.
- the baseband processor may also be expressed as a baseband processing circuit or a baseband processing chip.
- the central processing unit can also be expressed as a central processing circuit or a central processing chip.
- the function of processing the communication protocol and communication data may be built in the processor, or may be stored in the memory in the form of a software program, and the processor executes the software program to realize the baseband processing function.
- an antenna and a control circuit with a transceiving function may be regarded as a transceiving unit 1401 of the terminal 1400, for example, used to support the terminal to perform a receiving function and a transmitting function.
- the processor 1402 having the processing function is regarded as the processing unit 1402 of the terminal 1400 .
- the terminal 1400 includes a transceiver unit 1401 and a processing unit 1402 .
- the transceiving unit may also be referred to as a transceiver, a transceiver, a transceiving device, or the like.
- the device used for realizing the receiving function in the transceiver unit 1401 may be regarded as a receiving unit, and the device used for realizing the sending function in the transceiver unit 1401 may be regarded as a sending unit, that is, the transceiver unit 1401 includes a receiving unit and a sending unit,
- the receiving unit may also be called a receiver, an input port, a receiving circuit, etc.
- the sending unit may be called a transmitter, a transmitter or a transmitting circuit, and the like.
- the processor 1402 may be configured to execute the instructions stored in the memory, so as to control the transceiver unit 1401 to receive signals and/or send signals, so as to complete the functions of the terminal in the foregoing method embodiments.
- the processor 1402 also includes an interface for implementing signal input/output functions.
- the function of the transceiver unit 1401 can be considered to be implemented by a transceiver circuit or a dedicated chip for transceiver.
- FIG. 15 is a schematic structural diagram of an access network device provided by an embodiment of the present application, such as a schematic structural diagram of a base station.
- the base station can be applied to the system shown in FIG. 1 to perform the functions of the access network device in the foregoing method embodiment.
- Base station 1500 may include one or more DUs 1501 and one or more CUs 1502.
- CU1502 can communicate with NG core (Next Generation Core Network, NC) or EPC.
- the DU 1501 may include at least one antenna 15011 , at least one radio frequency unit 15012 , at least one processor 15013 and at least one memory 15016 .
- the DU 1501 part is mainly used for the transmission and reception of radio frequency signals, the conversion of radio frequency signals and baseband signals, and part of baseband processing.
- the CU 1502 may include at least one processor 15022 and at least one memory 15021 .
- the CU1502 and the DU1501 can communicate through interfaces, wherein the control plane interface can be Fs-C, such as F1-C, and the user plan interface can be Fs-U, such as F1-U.
- the CU 1502 part is mainly used to perform baseband processing, control the base station, and the like.
- the DU 1501 and the CU 1502 may be physically set together, or may be physically separated, that is, a distributed base station.
- the CU1502 is the control center of the base station, which can also be called a processing unit, and is mainly used to complete the baseband processing function.
- the CU 1502 may be used to control the base station to perform the operation procedures related to the access network device in the foregoing method embodiments.
- the baseband processing on the CU and DU can be divided according to the protocol layers of the wireless network.
- the functions of the PDCP layer and the above protocol layers are set in the CU, and the protocol layers below PDCP, such as the functions of the RLC layer, the MAC layer, and the PHY layer, etc. Set in DU.
- the base station 1500 may include one or more radio frequency units (RUs), one or more DUs, and one or more CUs.
- the DU may include at least one processor 15013 and at least one memory 15014
- the RU may include at least one antenna 15011 and at least one radio frequency unit 15012
- the CU may include at least one processor 15022 and at least one memory 15021 .
- the CU1502 may be composed of one or more single boards, and multiple single boards may jointly support a wireless access network (such as a 5G network) with a single access indication, or may respectively support wireless access systems of different access standards.
- Access network such as LTE network, 5G network or other network.
- the memory 15021 and the processor 15022 may serve one or more single boards. That is to say, the memory and processor can be provided separately on each single board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits may also be provided on each single board.
- the DU1201 can be composed of one or more single boards.
- Multiple single boards can jointly support a wireless access network (such as a 5G network) with a single access indication, or can support a wireless access network with different access standards (such as a 5G network). LTE network, 5G network or other network).
- the memory 15014 and processor 15013 may serve one or more single boards. That is to say, the memory and processor can be provided separately on each single board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits may also be provided on each single board.
- FIG. 16 is a schematic structural diagram of a communication apparatus 1600 .
- the communication apparatus 1600 may be used to implement the methods described in the foregoing method embodiments, and reference may be made to the descriptions in the foregoing method embodiments.
- the communication apparatus 1300 may be a chip, an access network device (such as a base station), or a terminal.
- the communication device 1600 includes one or more processors 1601 .
- the processor 1601 may be a general-purpose processor or a special-purpose processor or the like. For example, it may be a baseband processor, or a central processing unit.
- the baseband processor may be used to process communication protocols and communication data
- the central processing unit may be used to control devices (eg, base stations, terminals, or chips, etc.), execute software programs, and process data of software programs.
- the apparatus may include a transceiving unit for implementing signal input (reception) and output (transmission).
- the device may be a chip, and the transceiver unit may be an input and/or output circuit of the chip, or a communication interface.
- the chip can be used in a terminal or an access network device (such as a base station) or a core network device.
- the apparatus may be a terminal or an access network device (such as a base station), and the transceiver unit may be a transceiver, a radio frequency chip, or the like.
- the communication apparatus 1600 includes one or more processors 1601, and the one or more processors 1601 can implement the methods of the base station or the terminal in the embodiments shown in Figs. 9-13.
- the communication device 1600 includes means for receiving the DCI scrambled by the C-RNTI from the base station and performing data transmission (means), and means for controlling the operation of the timer (means) means).
- the functions of the described components may be implemented by one or more processors. For example, it may be transmitted by one or more processors, by a transceiver, or by an input/output circuit, or by an interface of a chip. Reference may be made to the relevant descriptions in the foregoing method embodiments.
- the communication apparatus 1600 includes means for sending the DCI scrambled by the C-RNTI to the terminal and performing data transmission, and means for generating the DCI scrambled by the C-RNTI , and the means used to control the running of the timer.
- the communication apparatus 1600 includes means for sending the DCI scrambled by the C-RNTI to the terminal and performing data transmission, and means for generating the DCI scrambled by the C-RNTI , and the means used to control the running of the timer.
- it may be received through a transceiver, or an input/output circuit, or an interface to a chip, through one or more processors.
- the processor 1601 may implement other functions in addition to implementing the methods in the embodiments shown in FIGS. 9-13 .
- the processor 1601 may also include instructions 1603, and the instructions may be executed on the processor, so that the communication apparatus 1600 executes the methods described in the foregoing method embodiments.
- the communication apparatus 1600 may also include a circuit, and the circuit may implement the functions of the access network device or terminal in the foregoing method embodiments.
- the communication device 1600 may include one or more memories 1602 having stored thereon instructions 1604 that are executable on the processor to cause the communication device 1600 to execute The method described in the above method embodiment.
- data may also be stored in the memory.
- Instructions and/or data may also be stored in the optional processor.
- the one or more memories 1602 may store the timer configuration described in the above embodiments, or other information involved in the above embodiments.
- the processor and the memory can be provided separately or integrated together.
- the communication apparatus 1600 may further include a transceiver unit 1605 and an antenna 1606, or a communication interface.
- the transceiver unit 1605 may be referred to as a transceiver, a transceiver circuit, or a transceiver, etc., and is used to implement the transceiver function of the device through the antenna 1606 .
- the communication interface (not shown in the figure) can be used for the communication between the core network device and the access network device, or between the access network device and the access network device.
- the communication interface may be a wired communication interface, such as an optical fiber communication interface.
- the processor 1601 may be referred to as a processing unit, and controls a device (such as a terminal or a base station or an AMF).
- a device such as a terminal or a base station or an AMF.
- the present application also provides a communication system, which includes a combination of one or more of the foregoing one or more access network devices, and, one or more terminals, and, and core network devices.
- processors in the embodiments of the present application may be a central processing unit (central processing unit, CPU), and the processor may also be other general-purpose processors, digital signal processors (digital signal processors, DSP), dedicated integrated Circuit (application specific integrated circuit, ASIC), off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
- a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
- the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
- the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically programmable Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
- Volatile memory may be random access memory (RAM), which acts as an external cache.
- RAM random access memory
- SRAM static random access memory
- DRAM dynamic random access memory
- DRAM synchronous dynamic random access memory
- SDRAM synchronous dynamic random access memory
- DDR SDRAM double data rate synchronous dynamic random access memory
- enhanced SDRAM enhanced synchronous dynamic random access memory
- SLDRAM synchronous connection dynamic random access memory Fetch memory
- direct memory bus random access memory direct rambus RAM, DR RAM
- the above embodiments may be implemented in whole or in part by software, hardware (eg, circuits), firmware, or any other combination.
- the above-described embodiments may be implemented in whole or in part in the form of a computer program product.
- the computer program product includes one or more computer instructions or computer programs. When the computer instructions or computer programs are loaded or executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.
- the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
- the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server, or data center Transmission to another website site, computer, server or data center by means of wire, such as optical fiber, or wireless, such as infrared, wireless, microwave, etc.
- the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, or the like that contains one or more sets of available media.
- the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVDs), or semiconductor media.
- the semiconductor medium may be a solid state drive.
- the disclosed system, communication apparatus and method may be implemented in other manners.
- the apparatus embodiments described above are only illustrative.
- the division of the units is only a logical function division. In actual implementation, there may be other division methods.
- multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
- the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
- the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
- each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
- the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
- the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
- the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
- the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .
- U disk mobile hard disk
- read-only memory Read-Only Memory
- RAM random access memory
- magnetic disk or optical disk and other media that can store program codes .
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
一种通信方法和装置,该方法包括:网络设备同终端进行基于接入的小数据传输的首次传输,并基于随机接入过程确定C-RNTI;网络设备和终端启动计时器;在所述计时器超时前,网络设备和终端基于所述C-RNTI加扰的DCI进行后续的数据传输;其中,终端处于无线资源控制RRC非激活态。采用本申请的方法和装置,可以减少终端对C-RNTI加扰的DCI不必要的盲检,降低终端能耗。
Description
本申请要求于2021年1月15日提交中国专利局、申请号为202110053301.0、发明名称为“非激活态下数据传输方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本发明实施例涉及通信技术,尤其涉及非激活态下的小数据传输过程。
在一些场景下,处于RRC非激活态的终端所需要传输的数据包很小,如微信、QQ的及时消息等等。这些场景下,支持终端在RRC非激活态直接传输小数据而不将状态转换至RRC连接态,可降低信令开销和终端功耗。
现有技术中可以通过基于随机接入的小数据传输(Random Access Small Data Transmission,RA-SDT)实现不切换RRC状态的传输。然而,RA-SDT一次传输的数据量有限,当需要传输的数据量超过使用RA-SDT一次传输所能传输的数据量或进行RA-SDT后,基站和终端之间还需进行数据传输时,如何进行后续数据的传输是值得研究的课题。
发明内容
本发明提供一种通信方法和通信方法中使用的装置,以期避免终端在无线资源控制(Radio Resource Control,RRC)非激活态下的不必要的下行控制信息(Downlink Control Information,DCI)检测,减少终端能耗。
第一方面,本发明提供了一种通信方法,该方法的执行主体可以为终端,还可以为配置于终端中的部件(芯片、电路或其它等),包括:终端进行基于随机接入过程的小数据传输(Random Access Small Data Transmission,RA-SDT),并,基于所述随机接入过程获得C-RNTI;所述终端启动计时器;所述终端在所述计时器超时前,检测所述C-RNTI加扰的下行控制信息DCI,基于所检测到的所述DCI进行后续的数据传输;其中,终端处于无线资源控制RRC非激活态。
终端在进行随机接入后,会不断检测C-RNTI加扰的DCI,通过上述实施方法,可控制非激活态终端检测C-RNTI加扰DCI的时间范围,从而减少终端不必要的DCI检测,降低终端能耗。
结合第一方面,在第一方面的第一种可能的实施方式中,所述终端在所述计时器超时前检测所述C-RNTI加扰的下行控制信息DCI,包括:所述计时器超时前,所述终端检测到所述C-RNTI加扰的第一DCI;所述基于所检测到的所述DCI进行所述小数据传输的后续传输,包括:所述终端通过所述第一DCI指示的资源进行所述小数据传输的后续的数据传输。所述第一DCI指示的资源包括用于上行数据传输的资源,或用于下行数据传输的资源。所述后续的数据传输包括上行数据传输,和/或下行数据传输。所述后续的数据传输传输的 数据,为小数据,和/或大数据。
通过上述实施方法,可以网络设备和终端可以根据C-RNTI加扰的DCI所指示的资源进行后续的数据传输,采用动态调度的方式灵活控制传输资源,提高传输能力。
结合第一方面的第一种可能的实施方式,第一方面第二种可能的实施方式包括,所述终端通过所述第一DCI或所述第一DCI指示的资源获得来自网络设备的配置授权(Configure Grant,CG)资源重生效指示信息,所述CG资源重生效指示信息用于指示CG资源重新生效;所述终端基于所述CG资源重生效指示信息通过CG资源进行数据传输。
结合第一方面的第一种可能的实现方式,第一方面第三种可能的实施方式包括,所述终端在所述随机接入过程中获得时间提前量(Timing Advance,TA),在获得所述TA后,确定CG资源重生效;所述终端通过所述CG资源进行数据传输。
通过上述实施方法,可以进一步通过CG资源进行上行数据传输,从而减少基站进行调度的开销。
结合第一方面,在第一方面的第四种可能的实施方式中,所述终端在所述计时器超时前检测所述C-RNTI加扰的下行控制信息DCI直至所述计时器超时,包括:所述计时器超时前,所述终端检测到所述C-RNTI加扰的第一DCI和所述C-RNTI加扰的第二DCI;所述基于所检测到的所述DCI进行后续的数据传输包括:所述终端通过所述第一DCI或所述第一DCI指示的资源接收来自网络设备的CG资源重生效指示信息,所述CG资源重生效指示信息用于指示CG资源重新生效;所述终端通过所述第二DCI指示的资源进行所述的后续的数据传输;所述终端通过所述CG资源进行数据传输。
通过上述实施方法,CG资源重新生效指示和数据传输所依赖的C-RNTI加扰的DCI可以为不同的DCI,可以提高基站控制重新生效CG资源的灵活性,根据实际需要控制资源利用,提高资源的利用效率。
结合第一方面的第二种至第四种可能的实施方式,在第一方面的第五种可能的实施方式中,所述终端通过CG资源进行数据传输,包括:所述终端的所述计时器超时后,所述终端通过所述CG资源进行数据传输。
通过上述实施方法,先采用动态调度的方式利用C-RNTI加扰的DCI指示的资源传输数据,再使用CG资源传输数据,可以灵活高效利用资源,也可以减少基站调度的开销。
结合第一方面,在第一方面的第六种可能的实施方式中,所述终端在所述计时器超时前检测所述C-RNTI加扰的下行控制信息DCI,包括:所述计时器超时前,所述终端检测到所述C-RNTI加扰的第一DCI;所述基于所检测到的所述DCI进行后续的数据传输包括:所述终端通过所述第一DCI或所述第一DCI指示的资源获得来自网络设备的CG资源重生效指示信息,并基于所述CG资源重生效指示信息通过CG资源进行所述的后续的数据传输。
通过上述实施方法,仅根据C-RNTI加扰的DCI获取CG资源重新生效指示,通过CG资源进行上行数据传输,可以减少基站调度开销。
结合第一方面的第二种至第六种可能的实施方式,第一方面的第七种可能的实施方式包括,所述CG资源重生效指示信息还用于指示重生效的CG资源,或,所述CG资源重新生效的时间,或CG资源与同步信号与物理广播信道块(Synchronization Signal and PBCH Block,SSB,简称同步信道块)的对应关系中的一项或多项。
结合第一方面的第二种至第七种可能的实施方式,第一方面的第八种可能的实施方式 中,检测配置授权无线网络临时标识(Configure Grant Radio Network Temporary Identity,CG-RNTI)加扰的第三DCI,获得针对所述通过CG资源所进行的数据传输的反馈信息。
结合第一方面的第八种可能的实施方式,第一方面的第九种可能的实施方式包括,所述CG-RNTI通过CG资源重生效指示信息配置,或者,所述CG-RNTI为所述终端进入所述RRC非激活态前的CG-RNTI,且所述终端进入所述RRC非激活态前的CG-RNTI的生效由所述CG资源重生效信息指示,或,为默认生效。
结合第一方面的第二种至第九种可能的实施方式,第一方面的第十种可能的实施方式包括,在所述随机接入过程后,接收用于释放无线资源控制的消息,所述消息指示所述计时器的启动;所述终端基于所述消息启动所述计时器。
通过上述的实施方法,可以通过CG资源重新生效指示对CG资源进行灵活的控制,提高CG资源的利用效率。
结合第一方面的第二种至第十种可能的实施方式,第一方面的第十一种可能的实施方式包括,所述CG资源重生效指示信息携带在所述DCI指示的资源中,所述DCI指示的资源还用于承载以下信息中的至少一种:随机接入响应,无线资源控制RRC信令,或,媒体接入控制控制元素(Medium Access Control Control Element,MAC CE)信令。
结合第一方面的第二种至第十种可能的实施方式,第一方面第十二种可能的实施方式包括,所述CG资源重生效指示信息携带在所述DCI中,所述DCI包括调度物理下行共享信道(Physical Downlink Shared Channel,PDSCH)的DCI,调度物理上行数据信道(Physical Uplink Shared Channel,PUSCH)的DCI,调度PUSCH的肯定确认(Acknowledgement,ACK)/否定确认(Negative Acknowledgement,NACK)反馈的DCI,或,调度随机接入响应的DCI。
结合第一方面的第二种至第十二种可能的实施方式,第一方面的第十三种可能的实施方式包括,接收用于指示所述终端进入所述RRC非激活态的消息,所述消息还用于指示所述终端时间提前量TA失效后,保留CG资源。
通过上述的实施方法,可以通过多种方式控制和配置CG资源,提高利用CG资源灵活性。
结合第一方面,及第一方面的第二种至第十三种可能的实施方式,第一方面第十四种可能的可能的实施方式包括,所述计时器的启动和超时基于所述计时器的配置,所述计时器的配置为协议规定的固定值,或,终端接收的配置值,或,配置中的部分为协议规定的固定值,或,配置中的部分为终端接收的配置值。
结合第一方面第十四种可能的实施方式,第一方面第十五种可能的实施方式中,接收所述计时器的配置,所述配置包括计时器时长配置,或,计时器启动指示中的至少一项。
结合第一方面的第十五种可能的实施方式,第一方面的第十六种可能的实施方式包括,计时器时长配置为具体数值,或,协议规定的时长对应的索引值。
结合第一方面的第十五种至第十六种可能的实施方式,第一方面的第十七种可能的实施方式包括,所述终端接收的所述计时器的配置携带在物理下行共享信道PDSCH中,所述PDSCH还用于承载以下信息中的至少一种:系统消息,随机接入响应、RRC信令、媒体接入控制控制单元MAC CE信令。
结合第一方面的第十五种至第十六种可能的实施方式,第一方面的第十八种可能的实 施方式包括,所述终端接收的配置携带在下行控制信息DCI中,所述DCI包括寻呼无线网络临时标识(Paging Radio Network Temporary Identity,P-RNTI)加扰的DCI,系统消息无线网络临时标识(System Information Radio Network Temporary Identity,SI-RNTI)加扰的DCI,PDSCH的DCI,调度物理上行数据信道(Physical Uplink Shared Channel,PUSCH)的DCI,调度PUSCH的ACK/NACK反馈的DCI,或调度随机接入响应的DCI。
通过上述实施方式,可以提高计时器配置的灵活性,灵活利用计时器控制终端检测C-RNTI加扰的DCI的时间范围,降低终端能耗。
第二方面,提供一种通信方法,该方法的执行主体可以为网络设备,或者配置于网络设备中的部件(芯片、电路或其它等),包括:网络设备进行与终端基于随机接入过程的小数据传输RA-SDT,向所述终端发送小区无线临时标识C-RNTI,或,向所述终端发送临时小区无线网络临时标识(Temporary Cell RNTI,TC-RNTI),所述TC-RNTI在所述网络设备发送竞争解决消息后成为所述终端的C-RNTI;所述网络设备启动计时器;所述网络设备在所述计时器超时前,向所述终端发送所述C-RNTI加扰的下行控制信息DCI,并,进行后续的传输,所述后续的传输所使用的资源与所述C-RNTI加扰的DCI相关;其中,所述终端处于无线资源控制RRC非激活态。
结合第二方面,第二方面的第一种可能的实施方式中,所述网络设备在所述计时器超时前向所述终端发送所述C-RNTI加扰的下行控制信息DCI,包括:所述计时器超时前,所述网络设备向所述终端发送所述C-RNTI加扰的第一DCI;所述进行后续的传输,所述后续的传输所使用的资源与所述C-RNTI加扰的DCI相关包括:所述网络设备通过所述第一DCI指示的资源进行所述后续的数据传输。所述第一DCI指示的资源包括用于上行数据传输的资源,或用于下行数据传输的资源。所述后续的数据传输包括上行数据传输,和/或下行数据传输。所述后续的数据传输传输的数据,为小数据,和/或大数据。
结合第二方面的第一种可能的实施方式,第二方面的第二种可能的实施方式包括,所述网络设备通过所述第一DCI或所述第一DCI指示的资源向终端发送配置授权CG资源重生效指示信息,所述CG资源重生效指示信息用于指示CG资源重新生效;基于所述CG资源重生效指示信息,所述网络设备通过所述CG资源进行数据传输。
结合第二方面的第一种可能的实施方式,第二方面的第三种可能的实施方式包括,所述网络设备在所述随机接入过程中向所述终端发送时间提前量TA,在发送所述TA后,确定CG资源重生效;所述网络设备通过所述CG资源进行数据传输。
结合第二方面,在第二方面的第四种可能的实施方式中,所述网络设备在所述计时器超时前向所述终端发送所述C-RNTI加扰的下行控制信息DCI,包括:所述计时器超时前,所述网络设备向终端发送所述C-RNTI加扰的第一DCI和所述C-RNTI加扰的第二DCI;所述进行后续的传输,所述后续的传输所使用的资源与所述C-RNTI加扰的DCI相关包括:所述网络设备通过所述第一DCI或所述第一DCI指示的资源向终端发送CG资源重生效指示信息,所述CG资源重生效指示信息用于指示CG资源重新生效;所述网络设备通过所述第二DCI指示的资源进行所述后续的数据传输;基于所述CG资源重生效指示信息,所述网络设备通过所述CG资源进行数据传输。
结合第二方面的第二种至第四种可能的实施方法,在第二方面的第五种可能的实施方式包括,所述网络设备通过所述CG资源进行数据传输包括:所述网络设备的所述计时器超 时后,所述网络设备通过所述CG资源进行数据传输。
结合第二方面,在第二方面的第六种可能的实施方式包括,所述计时器超时前,所述网络设备向终端发送所述C-RNTI加扰的第一DCI;所述进行后续的传输,所述后续的传输所使用的资源与所述C-RNTI加扰的DCI相关包括:所述网络设备通过所述第一DCI或所述第一DCI指示的资源向终端发送CG资源重生效指示信息,并基于所述CG资源重生效指示信息通过CG资源进行所述后续的数据传输。
结合第二方面的第二种至第六种可能的实施方法,在第二方面的第七种可能的实施方式包括,所述CG资源重生效指示信息还用于指示重生效的CG资源,或,所述CG资源重新生效的时间,或CG资源与同步信号块SSB的对应关系中的一项或多项。
结合第二方面的第二种至第七种可能的实施方法,在第二方面的第八种可能的实施方式包括,发送配置授权无线网络临时标识CG-RNTI加扰的第三DCI,发送针对所述通过CG资源所进行的数据传输的反馈信息。
结合第二方面的第八种可能的实施方法,在第二方面的第九种可能的实施方式包括,所述CG-RNTI通过CG资源重生效指示信息配置,或者,所述CG-RNTI为所述网络设备或另一网络设备在所述终端进入所述RRC非激活态前配置的CG-RNTI,且所述在所述终端进入所述RRC非激活态前配置的CG-RNTI的生效由所述CG资源重生效信息指示,或,为默认生效。
结合第二方面的第二种至第九种可能的实施方法,在第二方面的第十种可能的实施方式包括,在所述随机接入过程后,向所述终端发送用于释放无线资源控制的消息,所述消息指示所述终端的计时器的启动;所述网络设备基于所述消息启动所述网络设备的所述计时器。
结合第二方面的第二种至第十种可能的实施方法,在第二方面的第十一种可能的实施方式包括,所述CG资源重生效指示信息携带在所述DCI指示的资源中,所述DCI指示的资源还用于承载以下信息中的至少一种:随机接入响应,RRC信令,或,媒体接入控制控制元素MAC CE信令。
结合第二方面的第二种至第十种可能的实施方法,在第二方面的第十二种可能的实施方式包括,所述CG资源重生效指示信息携带在所述DCI中,所述DCI包括调度PDSCH的DCI,调度PUSCH的DCI,调度PUSCH的ACK/NACK反馈的DCI,或,调度随机接入响应的DCI。
结合第二方面的第二种至第十二种可能的实施方法,第二方面的第十三种可能的实施方式包括,发送用于指示所述终端进入所述RRC非激活态的消息,所述消息还用于指示所述终端时间提前量TA失效后,保留CG资源。
结合第二方面,及第二方面的第一种至第十三种可能的实施方法,在第二方面的第十四种可能的实施方式包括,所述计时器的启动和超时基于所述计时器的配置,所述计时器的配置为协议规定的固定值,或,网络设备发送的配置值,或,配置中的部分为协议规定的固定值,或,配置中的部分为网络设备发送的配置值。
结合第二方面的第十四种可能的实现方式,第二方面的第十五种可能的实施方式包括,发送所述计时器的配置,所述配置包括计时器时长配置,或,计时器启动指示中的至少一项。
结合第二方面的第十五种可能的实现方式,第二方面的第十六种可能的实施方式包括,计时器时长配置为具体数值,或,协议规定的时长对应的索引值。
结合第二方面的第十五至第十六种可能的实现方式,第二方面的第十七种可能的实施方式包括,所述网络设备发送的所述计时器的配置携带在物理下行共享信道PDSCH中,所述PDSCH还用于承载以下信息中的至少一种:系统消息,随机接入响应、RRC信令、媒体接入控制控制单元MAC CE信令。
结合第二方面的第十五至第十六种可能的实现方式,第二方面的第十八种可能的实施方式包括,所述网络设备发送的所述计时器的配置携带在下行控制信息DCI中,所述DCI包括寻呼无线网络临时标识P-RNTI加扰的DCI,系统消息无线网络临时标识SI-RNTI加扰的DCI,调度物理下行数据信道PDSCH的DCI,调度物理上行数据信道PUSCH的DCI,调度PUSCH的ACK/NACK反馈的DCI,或,调度随机接入响应的DCI。
本申请实施例第三方面提供了一种通信装置,本申请提供的装置具有实现上述方法方面中基站或终端行为的功能,其包括用于执行上述方法方面所描述的步骤或功能相对应的部件(means)。所述步骤或功能可以通过软件实现,或硬件实现,或者通过硬件和软件结合来实现。
在一种可能的设计中,上述装置包括一个或多个处理器,进一步的,可以包括通信单元。所述一个或多个处理器被配置为支持所述装置执行上述方法中基站相应的功能。例如,生成计时器配置消息。所述通信单元用于支持所述装置与其他设备通信,实现接收和/或发送功能。例如,向终端发送计时器配置消息。
可选的,所述装置还可以包括一个或多个存储器,所述存储器用于与处理器耦合,其保存基站必要的程序指令和/或数据。所述一个或多个存储器可以和处理器集成在一起,也可以与处理器分离设置。本申请并不限定。
所述装置可以为基站,下一代基站(Next Generation NodeB,gNB)或传输点(Transmitting and Receiving Point,TRP),分布式单元(distributed unit,DU)或集中式单元(centralized unit,CU)等,所述通信单元可以是收发器,或收发电路。可选的,所述收发器也可以为输入/输出电路或者接口。
所述装置还可以为芯片。所述通信单元可以为芯片的输入/输出电路或者接口。
另一个可能的设计中,上述装置,包括收发器、处理器和存储器。该处理器用于控制收发器收发信号,该存储器用于存储计算机程序,该处理器用于运行存储器中的计算机程序,使得该装置执行第二方面中基站完成的方法。
在一种可能的设计中,上述装置包括一个或多个处理器,进一步的,可以包括通信单元。所述一个或多个处理器被配置为支持所述装置执行上述方法中终端相应的功能。例如,基于基站发送的计时器配置,运行计时器等。所述通信单元用于支持所述装置与其他设备通信,实现接收和/或发送功能。例如,接收计时器配置消息,或CG资源重新生效消息。
可选的,所述装置还可以包括一个或多个存储器,所述存储器用于与处理器耦合,其保存装置必要的程序指令和/或数据。所述一个或多个存储器可以和处理器集成在一起,也可以与处理器分离设置。本申请并不限定。
所述装置可以为智能终端或可穿戴设备等,所述通信单元可以是收发器,或收发电路。可选的,所述收发器也可以为输入/输出电路或者接口。
所述装置还可以为芯片。所述通信单元可以为芯片的输入/输出电路或者接口。
另一个可能的设计中,上述装置,包括收发器、处理器和存储器。该处理器用于控制收发器收发信号,该存储器用于存储计算机程序,该处理器用于运行该存储器中的计算机程序,使得该装置执行第一方面中终端完成的方法。
第四方面,提供了一种系统,该系统包括上述基站。
可选的,该系统进一步包括上述终端。
第五方面,提供了一种可读存储介质或程序产品,用于存储程序,该程序包括用于执行第一方面或第二方面中的方法的指令。
第六方面,提供了一种可读存储介质或程序产品,用于存储程序,当所述程序在计算机上运行时,使得计算机执行第一方面或第二方面中的方法的指令。
应当理解的是,本申请的第二方面至第六方面与本申请的第一方面的技术方案相对应,各方面及对应的可行实施方式所取得的有益效果相似,不再赘述。
图1为本申请实施例提供的一种通信系统的示意图;
图2为本申请实施例提供的一种多个DU共用一个CU的网络架构示意图;
图3为本申请实施例提供的一种CU和DU的协议层功能的示意图;
图4为本申请实施例提供的一种RRC状态转变示意图;
图5为本申请实施例提供的终端初始接入过程的示意图;
图6a和图6b为本申请实施例提供的随机接入过程的示意图;
图7a和图7b为本申请实施例提供的RA-SDT过程的示意图;
图8为本申请实施例提供的CG-SDT过程的示意图;
图9为本申请实施例提供的一种通信方法的流程示意图;
图10为本申请实施例提供的一种通信方法的流程示意图;
图11为本申请实施例提供的一种通信方法的流程示意图;
图12为本申请实施例提供的一种通信方法的流程示意图;
图13为本申请实施例提供的一种通信方法的流程示意图;
图14为本申请实施例提供的一种终端的结构示意图;
图15为本申请实施例提供的一种接入网设备的结构示意图;
图16为本申请实施例提供的一种通信装置的结构示意图。
为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。例如,第一信息和第二信息仅仅是为了区分不同的信息,并不对其先后顺序进行限定。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
需要说明的是,本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被 解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
本申请实施例中,“至少一项(个)”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系,但也可能表示的是一种“和/或”的关系,具体可参考前后文进行理解。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(Long Term Evolution,LTE)系统,全球互联微波接入(Worldwide Interoperability For Microwave Access,WiMAX)通信系统,第五代(5th Generation,5G)系统,如新一代无线接入技术(New Radio Access Technology,NR),多种系统融合的网络,物联网系统,车联网系统,以及未来的通信系统,如第六代6G系统等。本申请实施例的技术方案还可以应用于设备到设备(Device to Device,D2D)通信,车辆外联(Vehicle-to-Everything,V2X)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),以及物联网(Internet of Things,IoT)通信系统或者其他通信系统。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请实施例中不同基站可以为具有不同的标识的基站,也可以为具有相同的标识的被部署在不同地理位置的基站。部分场景中,在基站被部署前,基站不知道其是否会涉及本申请实施例所应用的场景,基站,或基带芯片,可以在部署前支持本申请实施例所提供的方法。部分场景中,也可以通过部署后的升级或加载,来支持本申请实施例所提供的方法。可以理解的是,前述具有不同的标识可以为基站标识,也可以为小区标识或者其他标识。
本申请实施例中部分场景以无线通信网络中NR网络的场景为例进行说明,应当指出的是,本申请实施例中的方案还可以应用于其他无线通信网络中,相应的名称也可以用其他无线通信网络中的对应功能的名称进行替代。
为便于理解本申请实施例,首先以图1中示出的通信系统为例详细说明适用于本申请实施例的通信系统。图1示出了适用于本申请实施例的通信方法的通信系统的示意图。如图1所示,该通信系统100包括接入网设备101(Node1和Node2),UE 102和核心网设备CN 103,接入网设备101可配置有多个天线,UE102也可配置有多个天线。接入网设备和核心网设备可以统称为网络设备,或,网络侧设备,接入网和核心网可以统称为网络侧。
应理解,接入网设备和终端还可包括与信号发送和接收相关的多个部件(例如,处理器、调制器、复用器、解调器或解复用器等)。
其中,接入网设备是指将终端接入到无线网络的无线接入网(Radio Access Network, RAN)节点(或设备),又可以称为基站。接入网设备为具有无线收发功能的设备或可设置于该设备的芯片,该设备可以广义的覆盖如下中的各种名称,或与如下名称进行替换,比如:节点B(NodeB)、演进型基站(Evolved NodeB,eNB)、gNB、中继站、接入点、TRP、发射点(Transmitting Point,TP)、主站MeNB、辅站SeNB、多制式无线(MSR)节点、家庭基站、网络控制器、接入节点、无线节点、接入点(AP)、传输节点、收发节点、基带单元(BBU)、射频拉远单元(RRU)、有源天线单元(AAU)、射频头(RRH)、中心单元(CU)、分布单元(DU)、定位节点等。基站可以是宏基站、微基站、中继节点、施主节点或类似物,或其组合。基站还可以指用于设置于前述设备或装置内的通信模块、调制解调器或芯片。基站还可以是移动交换中心以及D2D、V2X、M2M通信中承担基站功能的设备、6G网络中的网络侧设备、未来的通信系统中承担基站功能的设备等。基站可以支持相同或不同接入技术的网络。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。
该设备可以是固定的,也可以是移动的。例如,直升机或无人机可以被配置成充当移动基站,一个或多个小区可以根据该移动基站的位置移动。在其他示例中,直升机或无人机可以被配置成用作与另一基站通信的设备。
在一些部署中,接入网设备(例如:gNB)可以包括CU和DU。gNB还可以包括射频单元(radio unit,RU)。CU和DU可以理解为是对基站从逻辑功能角度的划分,CU和DU在物理上可以分离,也可以部署在一起。例如,多个DU可以共用一个CU或者一个DU也可以连接多个CU,CU和DU之间可以通过F1接口相连。示例性的,图2为本申请实施例提供的一种多个DU共用一个CU的网络架构示意图,如图2所示,核心网和RAN互连通信,RAN中的基站分离成CU和DU,多个DU共用一个CU。图2所示的网络架构可以应用于5G通信系统,也可以与LTE系统共享一个或多个部件或资源。包括CU节点和DU节点的接入网设备将协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。作为一种实现方式,如图3所示,CU部署有协议栈中的RRC层,PDCP层,以及业务数据适应协议(Service Data Adaptation Protocol,SDAP)层;DU部署有协议栈中的无线链路控制(Radio Link Control,RLC)层,媒体接入控制(Medium Access Control,MAC)层,以及物理层(Physical Layer,PHY)。从而,CU具有RRC、PDCP和SDAP的处理能力。DU具有RLC、MAC和PHY的处理能力。可以理解的是,上述功能的切分仅为一个示例,不构成对CU和DU的限定。
终端也可以称为终端设备、用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动终端(Mobile Terminal,MT)、移动台(Mobile Station,MS)、远方站、远程终端、移动设备、用户终端、无线通信设备、用户代理或用户装置。终端是指向用户提供语音和/或数据连通性的设备,可以用于连接人、物和机。本申请的实施例中的终端可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、可穿戴设备、移动互联网设备(Mobile Internet Device,MID)、虚拟现实(Virtual Reality,VR)终端、增强现实(Augmented Reality,AR)终端、工业控制(Industrial Control)中的无线终端、无人驾驶(self-driving)中的无线终端、远程医疗(Remote Medical)中的无线终端、智能电网(Smart Grid)中的无线终端、运输安全(Transportation Safety)中的无线终端、智慧城市(Smart City)中的无线终端、智慧家庭(Smart Home)中的无线终端等等。本申请的实施例对应用场景不做限定。本申请中由终端实现的方法和步骤,也可以由可用于终端的部件(例如芯片或 者电路)等实现。本申请中将前述终端及可设置于前述终端的部件(例如芯片或者电路)统称为终端。可选的,终端也可以用于充当基站。例如,终端可以充当调度实体,其在V2X或D2D等中的终端之间提供侧行链路信号。比如,蜂窝电话和汽车利用侧行链路信号彼此通信。蜂窝电话和智能家居设备之间通信,而无需通过基站中继通信信号。
核心网设备,是指为终端提供业务支持的核心网(Core Network,CN)中的设备。目前,一些核心网设备的举例为:接入和移动性管理功能(Access and Mobility Management Function,AMF)实体、会话管理功能(Session Management Function,SMF)实体、用户面功能(User Plane Function,UPF)实体等等,此处不一一列举。其中,所述AMF实体可以负责终端的接入管理和移动性管理;所述SMF实体可以负责会话管理,如用户的会话建立等;所述UPF实体可以是用户面的功能实体,主要负责连接外部网络。需要说明的是,本申请中实体也可以称为网元或功能实体,例如,AMF实体也可以称为AMF网元或AMF功能实体,又例如,SMF实体也可以称为SMF网元或SMF功能实体等。
在该通信系统100中,Node1和Node2均可以与多个UE通信。但应理解,与Node1通信的UE和与Node2通信的UE可以是相同的,也可以是不同的。图1中示出的UE 102可同时与Node1和Node2通信,但这仅示出了一种可能的场景,在某些场景中,UE可能仅与Node1或Node2通信,本申请对此不做限定。应理解,图1仅为便于理解而示例的简化示意图,该通信系统中还可以包括其他接入网设备,终端,或者核心网设备,图1中未予以画出。在NR和LTE系统中,UE的RRC状态包括连接态(RRC_CONNECTED)、空闲态(RRC_IDLE)、非激活态(RRC_INACTIVE,或者称为第三态)。其中,RRC非激活(inactive)状态是终端通过基站连接到5G核心网中新引入的状态,该状态介于连接态和空闲态之间。在RRC_INACTIVE状态下,终端与接入网设备之间没有RRC连接,但保持接入网设备与核心网设备的连接,终端保存有建立/恢复连接所必须的全部或部分信息。因而在RRC_INACTIVE状态下,终端在需要建立连接时,可以根据保存的相关信息,快速地与网络设备建立或恢复RRC连接。
当UE处于RRC_CONNECTED状态时,UE与基站以及核心网都已建立链路,当有数据到达网络时可以直接传送到UE;当UE处于RRC_INACTIVE状态时,表示UE之前和基站以及核心网建立过链路,但是UE到基站这一段链路被释放,但是基站会存储UE的上下文,当有数据需要传输时,基站可以快速恢复这段链路;当UE处于RRC_IDLE状态时,UE与基站和网络之间都没有链路,当有数据需要传输时,需要建立UE到基站及核心网的链路。
示例性的,图4为本申请实施例提供的一种RRC状态转变示意图,如图4所示,在RRC_IDLE态时,UE可以接入基站,接入过程中或接入基站后UE可以和基站进行RRC建立过程,使得UE的状态从RRC_IDLE态转换为RRC_CONNECTED态。在RRC_IDLE态时,UE从基站接收到寻呼消息后或者由UE的高层触发后,UE可以发起RRC建立过程,试图和基站建立RRC连接以进入RRC_CONNECTED态。例如,UE和基站之间的RRC建立过程包括:UE向基站发送RRC建立请求(RRCSetupResuest)消息,接收到该请求后:基站向UE发送RRC建立(RRCSetup)消息,使得UE的状态可以转换为RRC_CONNECTED态;或者,基站向UE发送RRC拒绝(RRCReject)消息,使得UE继续停留在RRC_IDLE态。UE是RRC_IDLE态时,没有UE和基站之间的RRC连接。当UE处于RRC_CONNECTED 状态时,基站可以通过释放RRC过程,例如向UE发送RRC释放(RRCRelease)消息,使得UE的状态从RRC_CONNECTED态转变为RRC_IDLE状态或RRC_INACTIVE状态。当UE处于RRC_INACTIVE状态时,UE可以通过释放RRC连接而进入RRC_IDLE状态,或者,UE可以通过恢复RRC连接而进入RRC_CONNECTED状态。示例性地,UE是RRC_CONNECTED态时,存在UE和基站之间的RRC连接。此时,基站知道该UE在该基站的覆盖范围内或者在该基站的管理范围内;核心网知道UE在哪个基站的覆盖范围内或者管理范围内,核心网知道通过哪个基站可以定位到或者找到该UE。在RRC_INACTIVE时,UE可以通过RRC建立或RRC恢复(resume)过程,使得UE的状态从RRC_INACTIVE态转换为RRC_CONNECTED态;基站可以通过RRC释放过程,使得UE的状态从RRC_INACTIVE态转换为RRC_IDLE态。在RRC_INACTIVE态时,UE从基站接收到寻呼消息后或者由UE的高层触发后,UE可以发起RRC恢复过程,试图恢复和基站间的RRC连接以进入RRC_CONNECTED态。例如,UE和基站之间的RRC恢复过程包括:UE向基站发送RRC恢复请求(RRCResumeResuest)消息,接收到该请求后:基站向UE发送RRC建立(RRCSetup)消息或者RRC恢复(RRCResume)消息,使得UE的状态可以转换为RRC_CONNECTED态;或者,基站向UE发送RRC释放(RRCRelease)消息,使得UE的状态从RRC_INACTIVE态转换为RRC_IDLE态;或者,基站向UE发送RRC拒绝(RRCReject)消息,使得UE继续停留在RRC_INACTIVE态。UE是RRC_INACTIVE态时,没有UE和基站之间的RRC连接。此时,基站不知道该UE是否在该基站的覆盖范围内或者是否在该基站的管理范围内;核心网知道UE在哪个基站的覆盖范围内或者管理范围内,核心网知道通过哪个基站可以定位到或者找到该UE。
为了便于理解,首先对本申请实施例所涉及的通信名词或术语进行解释说明,该通信名词或术语,也作为本申请发明内容的一部分。
一、终端的小区搜索过程
当非连接态的终端(例如,空闲态的终端或非激活态的终端)需要与网络设备下行同步并获取系统消息(或更新系统消息)时,需要进行小区搜索。如图5所示,小区搜索的过程主要包括:
步骤1:终端搜索SSB。SSB中包括主同步信号(Primary Synchronization Signal,PSS)和辅同步信号(Secondary Synchronization Signal,SSS),以及物理广播信道(Physical Broadcast Channel,PBCH)。
步骤2:终端从PBCH中获取主信息块(Master Information Block,MIB)。
步骤3:终端根据MIB中的PDCCH配置(PDCCH Config)信息,确定公共搜索空间(Common Search Space,CSS),以及确定控制资源集合(Control Resource Set,CORESET)#0。可选的,CORESET#0的频率范围可为初始BWP的频率范围。
步骤4:终端再根据CORESET#0和CSS共同确定的时频资源中,盲检测由SI-RNTI加扰的DCI。
步骤5:根据DCI的指示,在图5箭头所指示的时间单元(如时隙)中获取系统信息块(System Information Block,SIB)。其中,该DCI可以为用于调度PDSCH的DCI,该PDSCH上承载有系统信息块,其中包括寻呼资源和随机接入资源。
二、终端的随机接入过程
在无线通信系统中,如LTE、NR或未来的通信系统中,终端可以采用两步接入法或者四步接入法进行随机接入。其中,两步接入法可简称为2-Step RACH方式,四步接入法可简称为4-Step RACH方式。
在一种可能的实现方式中,如图6a所示,两步随机接入流程,可以包括:
步骤1,终端在分组随机接入信道(Packet Random Access Channel,PRACH)上向基站发送随机接入前导(Preamble),该消息也称为MsgA。
上述Preamble可以是一个序列,其作用是通知基站有一个随机接入请求,并使得基站能估计终端与基站之间的传输时延,以便基站校准该终端的上行定时(Uplink Timing),并将校准信息通过定时提前TA指令告知终端,使得终端获得定时提前量TA。
可选的,上述MsgA中可包括终端的ID,如UE ID。
终端可以根据Preamble的发送时机,确定随机接入无线网络临时标识(Random Access RNTI,RA-RNTI)。
上述MsgA中可以携带RRC配置请求。
步骤2,基站向终端发送随机接入响应,该消息也可称为MsgB。
基站根据Preamble的接收时机,可以确定出与上述步骤1中相同的RA-RNTI。用RA-RNTI加扰控制信息(如DCI),该控制信息用于调度承载随机接入响应的数据信道(如PDSCH)。上述随机接入响应中包括终端的唯一标识以指定接入成功的终端,而其他没有接入成功的终端将重新发起随机接入。上述随机接入响应中还可以包括给该终端分配的C-RNTI。基站可以通过上述MsgB可对终端进行RRC配置。
在一种可能的实现方式中,如图6b所示,四步随机接入的流程,可以包括:
步骤1,终端向基站发送随机接入前导Preamble,也称为消息1(Message1,Msg1)。该Preamble作用与2-Step RACH步骤1中Preamble作用一致。
终端可以根据Preamble的发送时机,确定RA-RNTI。
步骤2,基站在检测到Preamble后,根据Preamble的接收时机,可以确定出与步骤1中相同的RA-RNTI,向终端发送随机接入响应,也称为消息2(Message2,Msg2)。
可选的,用于调度上述随机接入响应的DCI可用RA-RNTI加扰,随机接入响应的内容包含步骤1中所收到Preamble的序列编号(Preamble Index)、TA、上行资源分配信息和临时的小区无线网络临时标识(Temporary Cell RNTI,TC-RNTI)等。
相应的,终端接收随机接入响应。
步骤3,终端发送消息3。
如果所接收的随机接入响应中携带的preamble index所指示的随机接入preamble和上述步骤1中终端向基站发送的preamble相同,则终端认为该随机接入响应是包含了自己的随机接入响应。终端在接收到随机接入响应后,确定基站为终端分配的上行资源,并在该上行资源上发送上行消息,也称为消息3(Message3,Msg3)。可选的,终端在Msg3中可以发起RRC连接请求。该Msg3可以包括RRC连接请求(RRC Connection Request),该RRC连接请求中携带有终端(如UE)的ID。
步骤4,基站接收到终端的上行消息,向成功接入的终端返回竞争解决消息,也称为消息4(Message4,Msg4)。
可选的,承载上述Msg4的PDSCH是通过控制信息(如DCI)调度的,该控制信息是 由终端的小区无线网络临时标识TC-RNTI加扰的,上述Msg4中可携带接入成功的终端标识,而其他没有成功接入的终端将重新发起随机接入。进一步,基站可能过上述Msg4对终端进行RRC配置。
三、非激活态小数据传输
在第三代合作伙伴计划(The 3rd Generation Partnership Project,3GPP)的Release 16标准之前,针对于处于RRC非激活态态的5G NR终端是不支持单播数据传输的,即终端需要重新恢复RRC连接进入RRC连接态后才能进行单播数据传输。
但是在某些场景下,处于RRC非激活态的终端所需要传输的数据包通常很小(即Small Data,小数据),而终端由RRC非激活态进入RRC连接态所需要的信令甚至大于小数据的数据量,导致了不必要的功耗和信令开销。可选的,本申请实施例对小数据的大小并不限制,例如可以认为小数据是一个传输块(Transmit Block,TB)携带的数据包,或者小数据是数据包大小小于一阈值的数据,比如:小数据是携带有小于100字节或其它正整数字节信息的数据包等,具体阈值可以依据系统设计需求确定,或,基于协议约定确定,或,由网络侧进行指示确定,在此不予限定。和/或,该小数据可以是终端特定的数据包等,具体的场景可以涵盖智能手机相关业务,如即时通信软件的即时消息、应用程序APP的心跳包或推送消息;以及非智能手机的相关业务,如可穿戴设备的周期性数据例如心跳包,工业无线传感器网络所发送的周期性读数,智能电表等等。具体是哪些终端特定的数据包,可以依据系统设计需求确定,或,基于协议约定确定,或,由网络侧进行指示确定,在此不予限定。相应的,大数据是数据包大小大于一阈值的数据,具体阈值可以依据系统设计需求确定,或,基于协议约定确定,或,由网络侧进行指示确定,在此不予限定。大数据对应的业务或场景,在此不予限定。
支持终端在INACTIVE态直接传输小数据,而不进行状态转换,可以显著降低信令开销和功耗。
非激活态小数据传输可以通过如下两类方法实现:
1.基于随机接入(Random Access)的小数据传输(RA-SDT)
有别于传统的RA,基于RA的小数据传输(RA-SDT)是指终端在RA的过程中,向基站发送上行用户面数据(为简单起见,下文所述的数据如果没有特别指出,均代表用户面数据)或接收下行用户面数据,在此过程之中,终端始终仍处于RRC非激活态,不会切换到RRC连接态。例如,2-Step RACH中,终端通过MsgA向基站发送上行数据,或在MsgB接收基站发送的下行数据;4-Step RACH中,终端通过Msg3向基站发送上行数据,或在Msg4中接收基站发送的下行数据。
具体的,在一种可能的实现方式中,如图7a所示,2-Step RACH-SDT流程,可以包括:
MsgA:终端在PRACH上向基站发送随机接入前导(Preamble),在对应的PUSCH中向基站发送上行小数据,可选的,包括终端ID。
MsgB:基站向终端发送随机接入响应(Random Access Response,RAR),RAR中可以包括MsgA的反馈信息,告知终端基站是否成功收到了上行小数据。同时,在对应的PDSCH中发送下行小数据。
其中,PRACH资源、Preamble资源、PUSCH资源(包括PUSCH中的解调参考信号(Demodulation reference signal,DMRS)资源)、以及接收RAR的资源,均可以由基站在 终端RRC连接态时配置。
在一种可能的实现方式中,如图7b所示,4-step RACH-SDT流程,可以包括:
Msg1:终端在PRACH上向基站发送Preamble(随机接入前导)。
Msg2:基站向终端发送RAR,RAR中包括Msg3的上行调度信息。
Msg3:终端在RAR调度的资源上,向基站发送上行小数据,可选地包括终端的ID,如UE ID。
Msg4:基站向终端发送反馈信息,告知该终端是否成功接收到上行小数据。同时,在对应的PDSCH中发送下行小数据。
其中,PRACH资源、Preamble资源、PUSCH资源(包括PUSCH中的DMRS资源)、以及接收RAR的资源,均为基站给终端配置的,可以是在终端连接态时配置终端专属的资源,也可以是在系统消息中广播竞争使用的资源。
2.基于免授权GF(Grant-Free)的上行小数据传输
基于免授权的上行小数据传输是指,基站通过半静态的方式为终端预配置用于上行数据传输的PUSCH资源以及传输参数,当终端有上行数据需要发送时,直接使用预配置的PUSCH资源和参数向基站发送数据,而不必接收基站的动态授权(Dynamic UL Grant),也不必发送Preamble。LTE中基于预配置上行资源PUR(Pre-configured Uplink Resource)传输和NR中基于配置的授权CG(Configured Grant)传输都属于上行免授权传输范畴。
基于PUR的传输和基于CG的传输都是基站通过RRC信令为终端配置资源和传输参数配置,例如以下配置中的一种或多种:时域资源的周期、开环功控相关参数、波形、冗余版本序列、重复次数、跳频模式、资源分配类型、混合自动重传请求(Hybrid Automatic Retransmission reQuest,HARQ)进程数、DMRS相关参数、调制编码方案表格、资源块组(Resource Block Group,RBG)大小、以及时域资源、频域资源、MCS(Modulation and Coding Scheme)等。
基于免授权的小数据传输中,终端不需要发送Preamble,因此更适用于终端与基站处于同步状态的场景,相比基于RA的方案,可以进一步节省信令开销和终端功耗。
需要说明的是,RRC非激活态下,在已经分配的CG资源上传输的数据也可以是较大数据量的数据,即可以不是小数据,本申请实施例中以使用CG资源进行小数据传输为例介绍。为与LTE中的PUR和NR中的RRC连接态CG传输相区别,本发明中,配置的授权小数据传输(Configured Grant Small Data Transmission,CG-SDT)特指RRC非激活态终端通过CG资源进行小数据传输。
具体的,在一种可能的实现方式中,如图8所示,CG-SDT流程,可以包括:
步骤1:终端在已经分配的CG资源上通过PUSCH发送小数据,可选地包括终端ID。
步骤2:基站在PDCCH中向终端发送反馈,告知终端是否收到了上行小数据。
四、非激活态小数据后续的传输
小数据的首次传输之后的传输过程为小数据的后续的传输。小数据后续的传输中所传输的数据,可以是首次传输时由于待传输的数据量超过首次传输的能力导致仍未传输的数据,也可以是首次传输后终端或基站需要传输的新的数据。
这种情况下,第一种可能的方法是,在RA-SDT或CG-SDT首次传输后,基站通过指示消息,例如MsgB或Msg4或CG-Response,指示终端从RRC非激活态切换至RRC连接 态,在RRC连接态下,采用动态调度的方式或CG等方式进行传输。
第二种可能的方法是,在RA-SDT或CG-SDT首次传输后,不进行状态转换,在非激活态下,通过动态调度或者CG等方式进行传输。
需要说明的是,本申请主要考虑RA-SDT首次传输后,不进行状态转换,在非激活态下的小数据后续的传输。
五、控制资源集合(Control Resource Set,CORESET)
CORESET是一块用于终端确定控制信息的搜索范围的时频资源。一个CORESET可以配置给一个或多个终端。比如,CORESET1配置给终端1,终端2,终端3和终端4,则基站可以在CORESET1上发送终端1,终端2,终端3和终端4的PDCCH。CORESET2配置给终端5,终端6,终端7和终端8,则基站可以在CORESET2上发送终端5,终端6,终端7和终端8的PDCCH。一个终端也可配置一个或多个CORESET。
六、搜索空间(Search Space,SS)
终端需要监听的PDCCH的时间集合称为SS。SS可分为公共搜索空间(Common Search Space,CSS)和终端特定的搜索空间(UE-specific Search Space,USS)。CSS用于传输与寻呼(Paging)、随时接入响应(Radom Access Response,RA Response)、广播控制信道(Broadcast Control Channel,BCCH)等公共信息相关的控制信息,该控制信息是小区级别或者多个终端的公共控制信息,用于调度小区公共信息或者调度多个终端的公共信息。USS用于传输该终端特定的PDCCH,例如该PDCCH上携带的控制信息是用于调度该终端的PDSCH和/或PUSCH。
基站和终端在进行RA-SDT首次传输后,可以根据C-RNTI加扰的DCI进行后续的传输。但是现有技术并未明确后续的传输过程中如何确定根据C-RNTI加扰的DCI进行传输的时间范围,终端会不断检测C-RNTI加扰的DCI。当所需传输的数据量较小时,在数据传输完成后,终端仍然不断检测C-RNTI加扰的DCI会造成不必要的能耗。
此外,另一种可能的方法是,在RA-SDT首次传输后,基站可以考虑重新生效CG资源,通过CG-SDT资源进行上行数据传输,从而节省调度的开销。但是,CG过程所使用的CG-RNTI与C-RNTI不同,或CG过程所使用的DCI格式与RA-SDT过程所使用的DCI格式有所不同,因此需要从通过C-RNTI加扰的DCI指示资源的动态调度的传输方式,转换为通过CG资源进行传输的传输方式。然而目前传输方式的转换仍没有明确的机制。
为了解决上述的技术问题,本发明提供了一种方法,该方法包括:基站和终端各自维护一个计时器,基站和终端的计时器状态保持一致,在计时器超时前,基站和终端根据C-RNTI加扰的DCI进行数据传输。
如图9,提供了一种可能的实现方式的流程图,本实施例的方法包括:
S901:基站和终端进行基于随机接入过程的小数据传输RA-SDT的首次传输,在所述的接入过程中,基站向终端发送C-RNTI配置,或,基站向终端发送TC-RNTI配置,在竞争解决后,该TC-RNTI转换为终端的C-RNTI。其中,终端处于非激活态。
在一种可能的实施方法中,基站根据RA-SDT首次传输中终端上报的BSR,确定终端在完成首次传输之后是否仍有待发送的数据,若没有待发送的数据,可选的,基站指示终端不执行后续的数据传输流程。
S902:基站和终端启动计时器。
基站和终端分别启动计时器,所述计时器的状态可以用于控制基于C-RNTI加扰的DCI的数据传输,所述计时器的状态与计时器的配置相关。
所述计时器的配置的内容,可以包括以下内容的一项或多项:
时长配置,用于指示计时器持续运行的时长;
计时器启动指示,用于指示计时器启动。
所述计时器的配置的内容,还可以包括其他计时器相关的配置或指示,例如:
停止计时器的指示,用于指示计时器停止;
重新启动计时器的指示,用于指示计时器按照已有的配置重新启动。
所述计时器的状态具体如何控制基于C-RNTI加扰的DCI的数据传输可以参考本申请中本实施例及其他实施例的描述,在此不予赘述。
所述计时器的配置可以是协议中约定的固定值,或,基站发送的配置值,或,部分为固定值,部分为基站发送的配置值。
其中,计时器的时长配置,有如下可能的实施方式:
一种可能的实施方式中,所述计时器的时长配置为协议中约定的固定数值,例如,协议中约定计时器时长为固定值10毫秒。
一种可能的实施方式中,所述计时器的时长配置为基站的配置值,所述配置值为具体数值,或索引值。例如,基站需要配置计时器时长为10毫秒,可在协议中规定计时器配置消息中的计时器时长配置的单位为毫秒,并在计时器配置消息中的计时器时长配置信元设置为“10”;或者,协议中规定索引值和计时器时长的对照表,如表1所示,在计时器配置消息中通过2比特表示计时器时长索引配置,并设置为“00”,终端根据表1查询索引值“00”对应的计时器时长为10毫秒,从而得到计时器时长配置为10毫秒。
表1 索引值-计时器时长对照表样例
其中,计时器的启动指示有如下可能的实施方式:
在一种可能的实施方式中,所述计时器的启动指示为协议中约定的条件或事件。例如,在协议中约定基站和终端基于用于释放RRC的消息,如RRC释放消息,启动计时器。
在一种可能的实施方式中,所述计时器的启动指示为配置值,基于基站发送的配置启动计时器。例如,基站在计时器的配置消息中携带计时器的启动指示信元,长度为1比特,并在协议中约定,该信元为“1”时指示启动计时器,基站和终端根据启动指示信元启动计时器。
计时器配置的承载方式有以下几种可能的实施方式:
在一种可能的实施方式中,所述计时器的配置在DCI中携带,所述DCI包括P-RNTI加扰的DCI,SI-RNTI加扰的DCI,调度PDSCH的DCI,调度PUSCH的ACK/NACK反馈的DCI,调度随机接入响应的DCI等。通过利用DCI中空闲的比特位或新增比特位指示终 端配置的信息。
在一种可能的实施方式中,所述计时器配置在PDSCH中携带,所述PDSCH用于承载以下信息中的至少一种:系统消息、随机接入响应、RRC信令、MAC CE信令。例如,在RRC释放消息中携带计时器的配置,基站和终端根据RRC释放消息中计时器的配置启动计时器。
S903:在计时器超时前,基站发送所述C-RNTI加扰的DCI,终端检测所述C-RNTI加扰的DCI。
所述C-RNTI加扰的DCI所在的控制资源集合CORESET为公共CORESET或终端专属的CORESET。所述C-RNTI加扰的DCI所在的搜索空间,为公共搜索空间或终端专属的搜索空间。
其中,所述公共CORESET和公共搜索空间由系统消息进行配置。
其中,所述终端专属的CORESET和专属的搜索空间的配置,有如下可能的实施方式:
在一种可能的实施方式中,所述通过Msg4/MsgB携带终端专属无线资源控制RRC配置信息,配置终端专属的CORESET,和/或搜索空间。
在一种可能的实施方式中,通过所述C-RNTI加扰的DCI中指示的资源中PDSCH承载的信息携带终端专属无线资源控制RRC配置信息,配置终端专属的CORESET,和/或搜索空间。
在一种可能的实施方式中,在RA-SDT过程中重新生效所述终端进入非激活态前使用的终端专属的CORESET,和/或搜索空间。可选地,可以仅重新生效初始带宽部分BWP频率范围内的终端专属CORESET,和/或搜索空间,避免终端切换到更大频率范围的BWP中导致终端的能耗增加。
S904:基站和终端基于C-RNTI加扰的DCI进行后续的数据传输。
其中,所述基于C-RNTI加扰的DCI进行后续的数据传输,包括以下中的一种或多种:
基站和终端通过C-RNTI加扰的DCI指示的资源进行后续的数据传输;或,基站和终端通过C-RNTI加扰的DCI或C-RNTI加扰的DCI指示的资源传输控制信息,例如,基站发送消息指示重新生效CG资源,通过CG-SDT资源进行数据传输。
其中,所述后续的数据传输包括上行数据传输,和/或下行数据传输。所述的后续的数据传输中传输的数据包括大数据,和/或小数据。
需要说明的是,本实施例及后续实施例以传输小数据为例进行说明。
S905:计时器超时,可选的,基站和终端在MAC层丢弃C-RNTI。
计时器超时后,基站确定停止发送所述C-RNTI加扰的DCI,终端确定停止检测所述C-RNTI加扰的DCI。
需要说明的是,若在所述计时器超时的时刻,基站同时在C-RNTI加扰的DCI中指示了进行数据传输的资源,一种可能的实施方式中,基站和终端根据所述DCI中指示的资源传输数据,可选的,通过C-RNTI加扰的DCI指示后续的混合自动重传请求HARQ重传的所需资源。
通过上述实施例的方式,可以通过计时器的运行状态控制基于C-RNTI加扰的DCI进行数据传输的时间,从而减少终端设备不必要的C-RNTI加扰的DCI检测,达到减少终端能耗的目的。
在后续的数据传输过程之中,还可以使用CG-SDT资源,减少基站调度的开销。如图10,提供一种可能的实现方式的流程图,本实施例的方法包括:
S1001:基站和终端进行基于随机接入过程的小数据传输RA-SDT的首次传输,在所述的接入过程中,基站向终端发送C-RNTI配置,或,基站向终端发送TC-RNTI配置,在竞争解决后,该TC-RNTI转换为终端的C-RNTI。
可参考S901,不再赘述。
S1002:基站和终端启动计时器。
可参考S902,不再赘述。
S1003:在计时器超时前,基站发送C-RNTI加扰的第一DCI,终端检测C-RNTI加扰的第一DCI。
可参考S903,不再赘述。
S1004:基站和终端通过第一DCI指示的资源进行数据传输。
S1005:CG资源重新生效。
所述CG资源重新生效的控制方式,有以下可能的实施方式:
一种可能的实施方式为,基站和终端根据协议的约定重新生效CG资源,例如,在协议中约定基站和终端进行上行同步后重新生效全部CG资源,比如:在接入过程中,基站发送TA后默认重新生效全部CG资源,终端在接收TA后默认CG资源重新生效。
一种可能的实施方式为,基站向终端发送CG资源重新生效指示,控制CG资源的重新生效。例如,通过所述第一DCI或第一DCI指示的资源承载CG资源重新生效指示。
所述CG资源重新生效指示可以包括以下中的一项或多项:重新激活的CG资源的ID,CG资源与SSB的对应关系配置,CG-RNTI重新生效,更新的CG-RNTI,CG资源的时域和/或频域资源更新,或,CG资源重新生效的时间。
其中,所述重新激活的CG资源的ID,用于指示被重新激活的CG资源的ID。例如,基站为终端配置2套CG资源,资源的ID分别为0,1,可以在CG资源重生效指示中指示重新生效的CG资源的ID,例如指示资源ID为0的CG资源重新生效,则ID为1的CG资源不重新生效。
其中,所述CG资源与SSB的对应关系配置,用于基站重新指示终端多套CG资源中各CG资源与SSB的对应关系。例如基站在随机接入过程中,为终端已配置了2套CG资源并指示了CG资源与SSB的对应关系,如ID为0的CG资源对应SSB-0,ID为1的CG资源对应SSB-1;在CG资源重生效指示中,基站可指示终端更新CG资源与SSB的对应关系,如对应关系更新为ID为0的CG资源对应SSB-1,ID为1的CG资源对应SSB-0。
其中,所述CG资源的时域及频域资源更新,包括,基站为终端配置新的CG资源,包括时域资源和/或频域资源,或者对原有的CG资源的时域资源和/或频域资源进行修改。
其中,所述CG资源重新生效的时间,一种可能的实施方式是,基站配置推迟重新生效CG资源的时长,例如配置所述推迟重新生效CG资源的时长为10毫秒,则基站在发送CG资源重新生效指示,和终端接收所述生效指示10毫秒以后CG资源开始生效。其中,所述推迟重新生效CG资源的时长的配置,可以参考S902中计时器时长配置相关的内容,通过协议约定固定值,或通过基站指示时长具体数值,或索引值的方式进行配置,在此不再赘述。
其中,所述的重新生效的CG资源,可以在指示终端从RRC连接态切换到RRC非激活态的消息中进行配置,也可以在RA-SDT过程中在MsgB或Msg4消息中进行配置。当CG资源在RA-SDT过程中在MsgB或Msg4消息中进行配置的情况下,基站和终端根据协议的约定重新生效CG资源。
所述的CG资源的配置可以包括以下中的一项或多项:CG-RNTI,CG资源的时、频域资源相关配置,CG资源的ID,CG资源和SSB的对应关系,时间提前量TA失效后保留CG-RNTI的指示,或,TA失效后保留CG资源的指示。其中,所述CG资源和SSB的对应关系用于基站指示终端多套CG资源中各CG资源与SSB的对应关系,例如基站向终端配置2套CG资源,指示ID为0的CG资源对应SSB-0,ID为1的CG资源对应SSB-1,在多套CG资源激活时,终端根据SSB的测量情况,可以基于所述的CG资源与SSB对应关系,选择进行数据传输的CG资源。比如,终端收到的SSB为SSB-1或是收到的多个SSB中超过一预设阈值的SSB包括SSB-1,则可以使用ID为1的CG资源进行数据传输。其中,所述TA失效包括TA超时、参考信号接收功率(Reference Signal Received Power,RSRP)达到门限值、或,终端移动到邻区。
S1006:通过CG-SDT资源进行上行数据传输。
基站和终端开始通过CG-SDT资源进行上行数据传输,并通过CG-RNTI加扰的第三DCI携带所述上行数据的反馈信息。
其中,所述CG-RNTI可以在CG资源重新生效指示中携带,或,所述CG-RNTI为终端进入RRC非激活态前的CG-RNTI,基站通过CG资源重新生效指示消息指示所述终端进入RRC非激活态前的CG-RNTI是否生效,或者,默认生效。
S1007:计时器超时,可选的,基站和终端在MAC层丢弃C-RNTI。
可参考S905,不再赘述。
在一种可能的实施方式中,S1006在S1007之前执行,即CG资源重新生效后,基站和终端设备即可通过CG-SDT资源进行上行数据传输。
在一种可能的实施方式中,S1006在S1007之后执行,即CG资源重新生效后,待计时器超时后,基站和终端通过CG-SDT资源进行上行数据传输。
上述实施例中,通过重新激活CG资源,使用CG资源进行数据传输,可以达到减少基站调度的开销的效果。
可选的,CG资源重新生效指示所依赖的C-RNTI加扰的DCI和数据传输所依赖的C-RNTI加扰的DCI也可以是不同的DCI。如图11,提供一种可能的实现方式的流程图,本实施例的方法包括:
S1101:基站和终端进行基于接入过程的小数据传输RA-SDT的首次传输,在所述的接入过程中,基站向终端发送C-RNTI配置,或,基站向终端发送TC-RNTI配置,在竞争解决后,该TC-RNTI转换为终端的C-RNTI。
可参考S901,不再赘述。
S1102:基站和终端启动计时器。
可参考S902,不再赘述。
S1103:在计时器超时前,基站发送C-RNTI加扰的第一DCI和C-RNTI加扰的第二DCI,同时终端检测所述第一DCI和第二DCI。
DCI相关的内容可参考S903,不再赘述。
S1104:基站和终端通过第一DCI指示的资源进行数据传输。
S1105:基于第二DCI重新生效CG资源。
CG资源指示及CG资源配置相关内容可参考S1005。
需要说明的是,与S1005不同之处在于,本实施例中所述第二DCI未指示传输数据的资源。
CG资源重生效指示通过所述第二DCI承载,所述第二DCI包括调度PDSCH的DCI、调度PUSCH的DCI、调度PUSCH的ACK/NACK反馈的DCI、调度随机接入响应的DCI等,可以通过DCI中空闲的比特位或新增比特位指示终端CG资源重生效的信息;或,
CG资源重生效指示通过所述第二DCI指示的资源承载,所述资源用于承载以下信息中的至少一种:随机接入响应、RRC信令、MAC CE信令。
S1106:通过CG-SDT资源进行上行数据传输。
可参考S1006,不再赘述。
S1107:计时器超时,可选的,基站和终端在MAC层丢弃C-RNTI。
可参考S905,在此不再赘述。
上述实施例中,CG资源重新生效指示所依赖的C-RNTI加扰的DCI和用于数据传输的C-RNTI加扰的DCI为不同的DCI,达到了提高控制CG资源重新生效的灵活性的效果。
在上述实施例的基础上,还可以在RA-SDT的首次传输之后通过CG资源进行数据传输,而不通过C-RNTI加扰的DCI指示的资源进行数据传输。如图12,提供一种可能的实施方式的流程图,本实施例方法包括:
S1201:基站和终端进行基于接入过程的小数据传输RA-SDT的首次传输,在所述的接入过程中,基站向终端发送C-RNTI配置,或,基站向终端发送TC-RNTI配置,在竞争解决后,该TC-RNTI转换为终端的C-RNTI。
可参考S1101,不再赘述。
S1202:基站和终端启动计时器。
可参考S1102,不再赘述。
S1203:在计时器超时前,基站向终端发送C-RNTI加扰的第二DCI,终端检测C-RNTI加扰的第二DCI。
基站通过C-RNTI加扰的第二DCI或通过C-RNTI加扰的第二DCI所指示的资源,向终端发送CG资源重新生效的指示。
DCI相关内容可参考S903,不再赘述。
S1204:基于第二DCI重新生效CG资源。
可参考S1105,不再赘述。
S1205:通过CG-SDT资源进行上行数据传输。
可参考S1006,不再赘述。
S1206:计时器超时,可选的,基站和终端在MAC层丢弃C-RNTI。
可参考S905,在此不再赘述。
通过上述实施例,在RA-SDT的首次传输之后通过CG资源进行上行数据传输,而不通过C-RNTI加扰的DCI指示的资源进行数据传输,可以减少基站的调度开销。
基于图9-12的实施例,如图13,提供一种可能的实现方式的流程图,包括:
S1301:终端发送Preamble,向基站请求进行随机接入。
S1302:基站回复随机接入相应RAR,其中携带TC-RNTI。
S1303:终端发送Msg3,并在RAR调度的资源上,向基站发送上行小数据,可选地包括终端的ID。
S1304:基站回复Msg4,携带竞争解决消息。
基站和终端将TC-RNTI转换为C-RNTI。
所述Msg4消息中,基站向终端发送CG资源的配置信息,包括:CG-RNTI,2套CG资源的时域和/或频域资源,2套CG资源的ID,2套CG资源和SSB的对应关系,并指示终端在TA失效后保留所述的CG-RNTI及CG资源。
S1305:基站向终端发送C-RNTI加扰的DCI,终端检测所述DCI。
S1306:通过C-RNTI加扰的DCI指示的资源进行数据传输。
S1307:基站向终端发送C-RNTI加扰的DCI,并在DCI指示的资源中,通过RRC信令,例如RRC重配信令,携带CG资源重新生效指示,指示终端CG资源重新生效。
在CG资源重新生效指示中,基站指示重新生效ID为1的CG资源。
在本实施方法中,在协议中约定定时器超时后再通过CG-SDT资源进行上行数据传输,因此此后仍基于C-RNTI加扰的DCI指示的资源进行数据传输。
S1308:基站发送C-RNTI加扰的DCI,其中携带计时器的配置指示。
所述计时器配置指示中,使用2比特作为计时器时长索引值配置信元,内容为“10”,使用1比特作为计时器启动指示信元,内容为“1”。
根据表1,索引值“10”对应计时器时长为40ms,即基站配置计时器时长为40ms。
根据S902中协议约定的计时器启动指示字段内容含义,“1”表示启动计时器指示。
S1309:基站和终端启动计时器。
基站和终端根据计时器的配置,启动计时器,设定计时器的运行时长为40ms。
S1310:基站发送RRC释放消息。
若计时器尚未超时,基站可在RRC释放消息中携带计时器的控制指示,或在协议中约定RRC释放消息对计时器默认的控制指示,所述控制指示可以包括:继续运行计时器、停止计时器,或重新启动计时器。
本实施例中以继续运行计时器为例,在RRC释放消息之后,基站和终端可通过C-RNTI加扰的DCI,和/或C-RNTI加扰的DCI指示的资源传输控制信息,如RRC信令,MAC CE信令等。
S1311:计时器超时,可选的,基站和终端在MAC层丢弃C-RNTI。
基站停止发送C-RNTI加扰的DCI,终端停止检测C-RNTI加扰的DCI。
S1312:基站和终端通过CG-SDT资源进行上行数据的传输。
所使用的CG-SDT资源为CG资源重新生效指示中所指示的ID为1的CG-SDT资源。
S1313:TA失效,终端确定停止使用CG-SDT资源进行上行数据传输。
TA失效后,终端确定停止使用CG-SDT资源进行上行数据传输,同时,基站和终端基于CG资源重新生效指示中配置的信息,保留CG-RNTI和CG资源的配置。
通过上述实施例,详细描述了从终端进行随机接入到TA失效的流程,达到了从基于 C-RNTI加扰的DCI指示传输资源的动态调度,并切换到使用CG资源进行传输的效果。
需要说明的时,在本申请中,还提供了以下实施例,这些实施例可以独立于前述实施例或与前述实施例结合。在这些实施例中,对于数据传输的方式,基站可以进行灵活控制和选择,具体包括如下可能的实施方式:
在一种可能的实施方式中,基站和终端完成RA-SDT首次传输,基站和终端在接入过程中完成上行同步时,默认CG资源重新激活,通过CG-SDT资源进行数据传输,基站停止发送C-RNTI加扰的DCI,终端停止检测C-RNTI加扰的DCI,可选的,基站和终端设备在MAC层丢弃C-RNTI。
在一种可能的实施方式中,基站和终端完成RA-SDT首次传输,基站和终端通过C-RNTI加扰的DCI指示的资源进行数据传输,并启动计时器;基站通过所述C-RNTI加扰的DCI或C-RNTI加扰的DCI指示的资源指示CG资源重新生效后,基站和终端停止计时器,开始通过CG-SDT资源进行数据传输,基站停止发送C-RNTI加扰的DCI,终端停止检测C-RNTI加扰的DCI,可选的,基站和终端设备在MAC层丢弃C-RNTI。
在一种可能的实施方式中,基站和终端完成RA-SDT首次传输,基站和终端通过C-RNTI加扰的DCI指示的资源进行数据传输,并启动计时器;基站通过所述C-RNTI加扰的DCI或C-RNTI加扰的DCI指示的资源发送停止计时器的指示后,基站和终端停止计时器,开始通过CG-SDT资源进行数据传输,基站停止发送C-RNTI加扰的DCI,终端停止检测C-RNTI加扰的DCI,可选的,基站和终端设备在MAC层丢弃C-RNTI。其中,所述CG-SDT资源可以为基站在所述停止计时器的指示前,通过所述C-RNTI加扰的DCI或C-RNTI加扰的DCI指示的资源发送的CG资源重新生效指示中指示重新生效的资源,或,默认重新生效所有CG资源。
通过上述实施方式,基站可以对所使用的传输资源进行直接控制,达到灵活控制传输方式的效果。
可以理解的是,以上实施例中各个具体流程中的细节描述可以相互借鉴或结合,在此不予赘述。
以上结合图9-13详细说明了本申请实施例的通信方法。以下结合图14至图16详细说明本申请实施例的通信装置。
图14是本申请实施例提供的一种终端的结构示意图。该终端可适用于图1所示出的系统中,执行上述方法实施例中终端的功能。为了便于说明,图14仅示出了终端的主要部件。如图14所示,终端1400包括处理器、存储器、控制电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端进行控制,执行软件程序,处理软件程序的数据,例如用于支持终端执行上述方法实施例中所描述的动作。存储器主要用于存储软件程序和数据。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器,主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端开机后,处理器可以读取存储器的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电 磁波的形式向外发送。当有数据发送到终端时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图14仅示出了一个存储器和一个处理器。在实际的终端中,可以存在多个处理器和多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以为与处理器处于同一芯片上的存储元件,即片内存储元件,或者为独立的存储元件,本申请实施例对此不做限定。
作为一种可选的实现方式,所述终端可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端进行控制,执行软件程序,处理软件程序的数据。图14中的处理器可以集成基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端可以包括多个基带处理器以适应不同的网络制式,终端可以包括多个中央处理器以增强其处理能力,终端的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储器中,由处理器执行软件程序以实现基带处理功能。
在本申请实施例中,可以将具有收发功能的天线和控制电路视为终端1400的收发单元1401,例如,用于支持终端执行接收功能和发送功能。将具有处理功能的处理器1402视为终端1400的处理单元1402。如图14所示,终端1400包括收发单元1401和处理单元1402。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元1401中用于实现接收功能的器件视为接收单元,将收发单元1401中用于实现发送功能的器件视为发送单元,即收发单元1401包括接收单元和发送单元,接收单元也可以称为接收机、输入口、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
处理器1402可用于执行该存储器存储的指令,以控制收发单元1401接收信号和/或发送信号,完成上述方法实施例中终端的功能。所述处理器1402还包括接口,用以实现信号的输入/输出功能。作为一种实现方式,收发单元1401的功能可以考虑通过收发电路或者收发的专用芯片实现。
图15是本申请实施例提供的一种接入网设备的结构示意图,如可以为基站的结构示意图。如图15所示,该基站可应用于如图1所示的系统中,执行上述方法实施例中接入网设备的功能。基站1500可包括一个或多个DU1501和一个或多个CU 1502。CU1502可以与NG core(下一代核心网,NC)或EPC通信。所述DU1501可以包括至少一个天线15011,至少一个射频单元15012,至少一个处理器15013和至少一个存储器15016。所述DU 1501部分主要用于射频信号的收发以及射频信号与基带信号的转换,以及部分基带处理。CU1502可以包括至少一个处理器15022和至少一个存储器15021。CU1502和DU1501之间可以通过接口进行通信,其中,控制面(Control plan)接口可以为Fs-C,比如F1-C,用户面(User Plan)接口可以为Fs-U,比如F1-U。
所述CU 1502部分主要用于进行基带处理,对基站进行控制等。所述DU1501与CU 1502可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。所述CU1502为基站 的控制中心,也可以称为处理单元,主要用于完成基带处理功能。例如所述CU 1502可以用于控制基站执行上述方法实施例中关于接入网设备的操作流程。
具体的,CU和DU上的基带处理可以根据无线网络的协议层划分,例如PDCP层及以上协议层的功能设置在CU,PDCP以下的协议层,例如RLC层,MAC层和PHY层等的功能设置在DU。
此外,可选的,基站1500可以包括一个或多个射频单元(RU),一个或多个DU和一个或多个CU。其中,DU可以包括至少一个处理器15013和至少一个存储器15014,RU可以包括至少一个天线15011和至少一个射频单元15012,CU可以包括至少一个处理器15022和至少一个存储器15021。
在一个实例中,所述CU1502可以由一个或多个单板构成,多个单板可以共同支持单一接入指示的无线接入网(如5G网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述存储器15021和处理器15022可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。所述DU1201可以由一个或多个单板构成,多个单板可以共同支持单一接入指示的无线接入网(如5G网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述存储器15014和处理器15013可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
图16给出了一种通信装置1600的结构示意图。通信装置1600可用于实现上述方法实施例中描述的方法,可以参见上述方法实施例中的说明。所述通信装置1300可以是芯片,接入网设备(如基站),或,终端等。
所述通信装置1600包括一个或多个处理器1601。所述处理器1601可以是通用处理器或者专用处理器等。例如可以是基带处理器、或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对装置(如,基站、终端、或芯片等)进行控制,执行软件程序,处理软件程序的数据。所述装置可以包括收发单元,用以实现信号的输入(接收)和输出(发送)。例如,装置可以为芯片,所述收发单元可以是芯片的输入和/或输出电路,或者通信接口。所述芯片可以用于终端或接入网设备(比如基站)或核心网设备。又如,装置可以为终端或接入网设备(比如基站),所述收发单元可以为收发器,射频芯片等。
所述通信装置1600包括一个或多个所述处理器1601,所述一个或多个处理器1601可实现图9-13所示的实施例中基站或者终端的方法。
在一种可能的设计中,所述通信装置1600包括用于接收来自基站的通过C-RNTI加扰的DCI,并进行数据传输的部件(means),以及用于控制计时器的运行的部件(means)。可以通过一个或多个处理器来实现所述的部件的功能。例如可以通过一个或多个处理器,通过收发器、或输入/输出电路、或芯片的接口发送。可以参见上述方法实施例中的相关描述。
在一种可能的设计中,所述通信装置1600包括用于向终端发送通过C-RNTI加扰的DCI,并进行数据传输的部件(means),以及用于生成通过C-RNTI加扰的DCI,并用于控制计时器的运行的部件(means)。所述可以参见上述方法实施例中的相关描述。例如可以通过收发器、或输入/输出电路、或芯片的接口接收,通过一个或多个处理器。
可选的,处理器1601除了实现图9-13所示的实施例的方法,还可以实现其他功能。
可选的,一种设计中,处理器1601也可以包括指令1603,所述指令可以在所述处理器上被运行,使得所述通信装置1600执行上述方法实施例中描述的方法。
在又一种可能的设计中,通信装置1600也可以包括电路,所述电路可以实现前述方法实施例中接入网设备或终端的功能。
在又一种可能的设计中所述通信装置1600中可以包括一个或多个存储器1602,其上存有指令1604,所述指令可在所述处理器上被运行,使得所述通信装置1600执行上述方法实施例中描述的方法。可选的,所述存储器中还可以存储有数据。可选的处理器中也可以存储指令和/或数据。例如,所述一个或多个存储器1602可以存储上述实施例中所描述的计时器配置,或者上述实施例中所涉及的其他信息。所述处理器和存储器可以单独设置,也可以集成在一起。
在又一种可能的设计中,所述通信装置1600还可以包括收发单元1605以及天线1606,或者,包括通信接口。所述收发单元1605可以称为收发机、收发电路、或者收发器等,用于通过天线1606实现装置的收发功能。所述通信接口(图中未示出),可以用于核心网设备和接入网设备,或是,接入网设备和接入网设备之间的通信。可选的,该通信接口可以为有线通信的接口,比如光纤通信的接口。
所述处理器1601可以称为处理单元,对装置(比如终端或者基站或者AMF)进行控制。
本申请还提供一种通信系统,其包括前述的一个或多个接入网设备,和,一个或多个终端,和,核心网设备中的一项或多项的组合。
应理解,在本申请实施例中的处理器可以是中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
上述实施例,可以全部或部分地通过软件、硬件(如电路)、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所 述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线,例如光纤,或是无线,例如红外、无线、微波等,方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、通信装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。
Claims (44)
- 一种通信方法,其特征在于,包括:终端进行基于随机接入过程的小数据传输RA-SDT,并,基于所述随机接入过程获得小区无线网络临时标识C-RNTI;所述终端启动计时器;所述终端在所述计时器超时前,检测所述C-RNTI加扰的下行控制信息DCI,基于所检测到的所述DCI进行后续的数据传输;其中,终端处于无线资源控制RRC非激活态。
- 如权利要求1所述的方法,其特征在于,所述终端在所述计时器超时前检测所述C-RNTI加扰的下行控制信息DCI,包括:所述计时器超时前,所述终端检测到所述C-RNTI加扰的第一DCI;所述基于所检测到的所述DCI进行后续的数据传输包括:所述终端通过所述第一DCI指示的资源进行后续的数据传输。
- 如权利要求2所述的方法,其特征在于,所述方法还包括:所述终端通过所述第一DCI或所述第一DCI指示的资源获得来自网络设备的配置授权CG资源重生效指示信息,所述CG资源重生效指示信息用于指示CG资源重新生效;所述终端基于所述CG资源重生效指示信息通过CG资源进行数据传输。
- 如权利要求2所述的方法,其特征在于,所述方法还包括:所述终端在所述随机接入过程中获得时间提前量TA,在获得所述TA后,确定CG资源重生效;所述终端通过所述CG资源进行数据传输。
- 如权利要求1所述的方法,其特征在于,所述终端在所述计时器超时前检测所述C-RNTI加扰的下行控制信息DCI直至所述计时器超时,包括:所述计时器超时前,所述终端检测到所述C-RNTI加扰的第一DCI和所述C-RNTI加扰的第二DCI;所述基于所检测到的所述DCI进行后续的数据传输包括:所述终端通过所述第一DCI或所述第一DCI指示的资源接收来自网络设备的CG资源重生效指示信息,所述CG资源重生效指示信息用于指示CG资源重新生效;所述终端通过所述第二DCI指示的资源进行所述的后续的数据传输;所述终端通过所述CG资源进行数据传输。
- 如权利要求3-5所述的方法,其特征在于,所述终端通过CG资源进行数据传输,包括:所述终端的所述计时器超时后,所述终端通过所述CG资源进行数据传输。
- 如权利要求1所述的方法,其特征在于,所述终端在所述计时器超时前检测所述C-RNTI加扰的下行控制信息DCI,包括:所述计时器超时前,所述终端检测到所述C-RNTI加扰的第一DCI;所述基于所检测到的所述DCI进行后续的数据传输包括:所述终端通过所述第一DCI或所述第一DCI指示的资源获得来自网络设备的CG资源重生效指示信息,并基于所述CG资源重生效指示信息通过CG资源进行所述的后续的数据 传输。
- 如权利要求3-7中任一项所述的方法,其特征在于,所述CG资源重生效指示信息还用于指示重生效的CG资源,或,所述CG资源重新生效的时间,或CG资源与同步信号块SSB的对应关系中的一项或多项。
- 如权利要求3-8中任一项所述的方法,其特征在于,还包括:检测配置授权无线网络临时标识CG-RNTI加扰的第三DCI,获得针对所述通过CG资源所进行的数据传输的反馈信息。
- 如权利要求9所述的方法,其特征在于,所述CG-RNTI通过CG资源重生效指示信息配置,或者,所述CG-RNTI为所述终端进入所述RRC非激活态前的CG-RNTI,且所述终端进入所述RRC非激活态前的CG-RNTI的生效由所述CG资源重生效信息指示,或,为默认生效。
- 如权利要求3-10所述的方法,其特征在于,还包括:在所述随机接入过程后,接收用于释放无线资源控制的消息,所述消息指示所述计时器的启动;所述终端基于所述消息启动所述计时器。
- 如权利要求3-11任一项所述的方法,其特征在于,所述CG资源重生效指示信息携带在所述DCI指示的资源中,所述DCI指示的资源还用于承载以下信息中的至少一种:随机接入响应,无线资源控制RRC信令,或,媒体接入控制控制元素MAC CE信令。
- 如权利要求3-11任一项所述的方法,其特征在于,所述CG资源重生效指示信息携带在所述DCI中,所述DCI包括调度物理下行共享信道PDSCH的DCI,调度物理上行数据信道PUSCH的DCI,调度PUSCH的肯定确认ACK/否定确认NACK反馈的DCI,或,调度随机接入响应的DCI。
- 如权利要求3-13中任一项所述的方法,其特征在于,还包括:接收用于指示所述终端进入所述RRC非激活态的消息,所述消息还用于指示所述终端时间提前量TA失效后,保留CG资源。
- 如权利要求1-14中任一项所述的方法,其特征在于,所述计时器的启动和超时基于所述计时器的配置,所述计时器的配置为协议规定的固定值,或,终端接收的配置值,或,配置中的部分为协议规定的固定值,或,配置中的部分为终端接收的配置值。
- 如权利要求15所述的方法,其特征在于,还包括:接收所述计时器的配置,所述配置包括计时器时长配置,或,计时器启动指示中的至少一项。
- 如权利要求16所述的方法,其特征在于,计时器时长配置为具体数值,或,协议规定的时长对应的索引值。
- 如权利要求16或17所述的方法,其特征在于,所述终端接收的所述计时器的配置携带在物理下行共享信道PDSCH中,所述PDSCH还用于承载以下信息中的至少一种:系统消息,随机接入响应、RRC信令、媒体接入控制控制单元MAC CE信令。
- 如权利要求16或17所述的方法,其特征在于,所述终端接收的所述计时器的配置携带在下行控制信息DCI中,所述DCI包括寻呼无线网络临时标识P-RNTI加扰的DCI,系统消息无线网络临时标识SI-RNTI加扰的DCI,调度物理下行数据信道PDSCH的DCI, 调度物理上行数据信道PUSCH的DCI,调度PUSCH的肯定确认ACK/否定确认NACK反馈的DCI,或,调度随机接入响应的DCI。
- 一种通信方法,其特征在于,包括:网络设备进行与终端基于随机接入过程的小数据传输RA-SDT,向所述终端发送小区无线临时标识C-RNTI,或,向所述终端发送临时小区无线网络临时标识TC-RNTI,所述TC-RNTI在所述网络设备发送竞争解决消息后成为所述终端的C-RNTI;所述网络设备启动计时器;所述网络设备在所述计时器超时前,向所述终端发送所述C-RNTI加扰的下行控制信息DCI,并,进行后续的传输,所述后续的传输所使用的资源与所述C-RNTI加扰的DCI相关。其中,所述终端处于无线资源控制RRC非激活态。
- 如权利要求20所述的方法,其特征在于,所述网络设备在所述计时器超时前向所述终端发送所述C-RNTI加扰的下行控制信息DCI,包括:所述计时器超时前,所述网络设备向所述终端发送所述C-RNTI加扰的第一DCI;所述进行后续的传输,所述后续的传输所使用的资源与所述C-RNTI加扰的DCI相关包括:所述网络设备通过所述第一DCI指示的资源进行所述后续的数据传输。
- 如权利要求21所述的方法,其特征在于,所述方法还包括:所述网络设备通过所述第一DCI或所述第一DCI指示的资源向终端发送配置授权CG资源重生效指示信息,所述CG资源重生效指示信息用于指示CG资源重新生效;基于所述CG资源重生效指示信息,所述网络设备通过所述CG资源进行数据传输。
- 如权利要求21所述的方法,其特征在于,所述方法还包括:所述网络设备在所述随机接入过程中向所述终端发送时间提前量TA,在发送所述TA后,确定CG资源重生效;所述网络设备通过所述CG资源进行数据传输。
- 如权利要求20所述的方法,其特征在于,所述网络设备在所述计时器超时前向所述终端发送所述C-RNTI加扰的下行控制信息DCI,包括:所述计时器超时前,所述网络设备向终端发送所述C-RNTI加扰的第一DCI和所述C-RNTI加扰的第二DCI;所述进行后续的传输,所述后续的传输所使用的资源与所述C-RNTI加扰的DCI相关包括:所述网络设备通过所述第一DCI或所述第一DCI指示的资源向终端发送CG资源重生效指示信息,所述CG资源重生效指示信息用于指示CG资源重新生效;所述网络设备通过所述第二DCI指示的资源进行所述后续的数据传输;基于所述CG资源重生效指示信息,所述网络设备通过所述CG资源进行数据传输。
- 如权利要求22-24所述的方法,其特征在于,所述网络设备通过所述CG资源进行数据传输包括:所述网络设备的所述计时器超时后,所述网络设备通过所述CG资源进行数据传输。
- 如权利要求20所述的方法,其特征在于,所述网络设备在所述计时器超时前向所述终端发送所述C-RNTI加扰的下行控制信息DCI,包括:所述计时器超时前,所述网络设备向终端发送所述C-RNTI加扰的第一DCI;所述进行后续的传输,所述后续的传输所使用的资源与所述C-RNTI加扰的DCI相关包括:所述网络设备通过所述第一DCI或所述第一DCI指示的资源向终端发送CG资源重生效指示信息,并基于所述CG资源重生效指示信息通过CG资源进行所述后续的数据传输。
- 如权利要求22-26中任一项所述的方法,其特征在于,所述CG资源重生效指示信息还用于指示重生效的CG资源,或,所述CG资源重新生效的时间,或CG资源与同步信号块SSB的对应关系中的一项或多项。
- 如权利要求22-27中任一项所述的方法,其特征在于,还包括:发送配置授权无线网络临时标识CG-RNTI加扰的第三DCI,发送针对所述通过CG资源所进行的数据传输的反馈信息。
- 如权利要求28所述的方法,其特征在于,所述CG-RNTI通过CG资源重生效指示信息配置,或者,所述CG-RNTI为所述网络设备或另一网络设备在所述终端进入所述RRC非激活态前配置的CG-RNTI,且所述在所述终端进入所述RRC非激活态前配置的CG-RNTI的生效由所述CG资源重生效信息指示,或,为默认生效。
- 如权利要求22-29所述的方法,其特征在于,还包括:在所述随机接入过程后,向所述终端发送用于释放无线资源控制的消息,所述消息指示所述终端的计时器的启动;所述网络设备基于所述消息启动所述网络设备的所述计时器。
- 如权利要求22-30任一项所述的方法,其特征在于,所述CG资源重生效指示信息携带在所述DCI指示的资源中,所述DCI指示的资源还用于承载以下信息中的至少一种:随机接入响应,RRC信令,或,媒体接入控制控制元素MAC CE信令。
- 如权利要求22-30任一项所述的方法,其特征在于,所述CG资源重生效指示信息携带在所述DCI中,所述DCI包括调度PDSCH的DCI,调度物理上行数据信道PUSCH的DCI,调度PUSCH的肯定确认ACK/否定确认NACK反馈的DCI,或,调度随机接入响应的DCI。
- 如权利要求22-31中任一项所述的方法,其特征在于,还包括:发送用于指示所述终端进入所述RRC非激活态的消息,所述消息还用于指示所述终端时间提前量TA失效后,保留CG资源。
- 如权利要求20-33中任一项所述的方法,其特征在于,所述计时器的启动和超时基于所述计时器的配置,所述计时器的配置为协议规定的固定值,或,网络设备发送的配置值,或,配置中的部分为协议规定的固定值,或,配置中的部分为网络设备发送的配置值。
- 如权利要求34所述的方法,其特征在于,还包括:发送所述计时器的配置,所述配置包括计时器时长配置,或,计时器启动指示中的至少一项。
- 如权利要求35所述的方法,其特征在于,计时器时长配置为具体数值,或,协议规定的时长对应的索引值。
- 如权利要求35或36所述的方法,其特征在于,所述网络设备发送的所述计时器的配置携带在物理下行共享信道PDSCH中,所述PDSCH还用于承载以下信息中的至少一 种:系统消息,随机接入响应、RRC信令、媒体接入控制控制单元MAC CE信令。
- 如权利要求35或36所述的方法,其特征在于,所述网络设备发送的所述计时器的配置携带在下行控制信息DCI中,所述DCI包括寻呼无线网络临时标识P-RNTI加扰的DCI,系统消息无线网络临时标识SI-RNTI加扰的DCI,调度物理下行数据信道PDSCH的DCI,调度PUSCH的肯定确认ACK/否定确认NACK反馈的DCI,或,调度随机接入响应的DCI。
- 一种装置,其特征在于,用于实现如权利要求1至19任一项所述的方法。
- 一种装置,其特征在于,包括处理器,所述处理器和存储器耦合,所述处理器用于执行所述存储器存储的程序,以使得所述装置执行如权利要求1至19任一项所述的方法。
- 一种装置,其特征在于,用于实现如权利要求20至38任一项所述的方法。
- 一种装置,其特征在于,包括处理器,所述处理器和存储器耦合,所述处理器用于执行所述存储器存储的程序,以使得所述装置执行如权利要求20至38任一项所述的方法。
- 一种通信系统,其特征在于,包括权利要求39或40所述的装置,和权利要求41或42所述的装置。
- 一种计算机可读存储介质,其特征在于,包括程序,当其在计算机上运行时,使得计算机执行权利要求1至19任一项所述的方法,或者权利要求20至38任一项所述的方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110053301.0A CN114765834A (zh) | 2021-01-15 | 2021-01-15 | 非激活态下数据传输方法及装置 |
CN202110053301.0 | 2021-01-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022152003A1 true WO2022152003A1 (zh) | 2022-07-21 |
Family
ID=82362889
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/143941 WO2022152003A1 (zh) | 2021-01-15 | 2021-12-31 | 非激活态下数据传输方法及装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN114765834A (zh) |
WO (1) | WO2022152003A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024140257A1 (zh) * | 2022-12-27 | 2024-07-04 | 华为技术有限公司 | 一种基于配置授权的通信方法及装置 |
WO2024153034A1 (zh) * | 2023-01-20 | 2024-07-25 | 上海朗帛通信技术有限公司 | 一种被用于无线通信的通信节点中的方法和装置 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117527139A (zh) * | 2022-07-28 | 2024-02-06 | 展讯通信(上海)有限公司 | 数据传输方法及装置、计算机可读存储介质、终端 |
CN117528803A (zh) * | 2022-07-29 | 2024-02-06 | 大唐移动通信设备有限公司 | 小数据传输方法、终端、网络设备、装置及存储介质 |
CN115297561A (zh) * | 2022-08-04 | 2022-11-04 | 中国电信股份有限公司 | 随机下行小包数据的传输方法、系统、设备及存储介质 |
CN115297546A (zh) * | 2022-08-04 | 2022-11-04 | 中国电信股份有限公司 | 小包数据传输方法、系统、设备及存储介质 |
WO2024031225A1 (en) * | 2022-08-08 | 2024-02-15 | Apple Inc. | Managing small data transmission in unlicensed radio frequency band by wireless device |
CN117835460A (zh) * | 2022-09-29 | 2024-04-05 | 大唐移动通信设备有限公司 | 小数据传输方法、终端、装置及存储介质 |
CN118524547A (zh) * | 2023-02-17 | 2024-08-20 | 维沃移动通信有限公司 | 小数据传输方法、装置、终端及网络侧设备 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020029204A1 (en) * | 2018-08-09 | 2020-02-13 | Zte Corporation | State transitions for idle mode transmissions using pre-configured dedicated resources |
WO2020034560A1 (en) * | 2019-01-04 | 2020-02-20 | Zte Corporation | Methods, apparatus and systems for data transmission in a power efficient state |
WO2020186465A1 (zh) * | 2019-03-19 | 2020-09-24 | Oppo广东移动通信有限公司 | 用于两步随机接入的方法、终端设备和网络设备 |
CN112218369A (zh) * | 2019-07-10 | 2021-01-12 | 苹果公司 | 处于rrc非活动状态下时的数据通信 |
-
2021
- 2021-01-15 CN CN202110053301.0A patent/CN114765834A/zh active Pending
- 2021-12-31 WO PCT/CN2021/143941 patent/WO2022152003A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020029204A1 (en) * | 2018-08-09 | 2020-02-13 | Zte Corporation | State transitions for idle mode transmissions using pre-configured dedicated resources |
WO2020034560A1 (en) * | 2019-01-04 | 2020-02-20 | Zte Corporation | Methods, apparatus and systems for data transmission in a power efficient state |
WO2020186465A1 (zh) * | 2019-03-19 | 2020-09-24 | Oppo广东移动通信有限公司 | 用于两步随机接入的方法、终端设备和网络设备 |
CN112218369A (zh) * | 2019-07-10 | 2021-01-12 | 苹果公司 | 处于rrc非活动状态下时的数据通信 |
Non-Patent Citations (1)
Title |
---|
HUAWEI, HISILICON: "Small data transmission with RA-based schemes", 3GPP DRAFT; R2-2010280, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Online; 20201102 - 20201113, 23 October 2020 (2020-10-23), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051942960 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024140257A1 (zh) * | 2022-12-27 | 2024-07-04 | 华为技术有限公司 | 一种基于配置授权的通信方法及装置 |
WO2024153034A1 (zh) * | 2023-01-20 | 2024-07-25 | 上海朗帛通信技术有限公司 | 一种被用于无线通信的通信节点中的方法和装置 |
Also Published As
Publication number | Publication date |
---|---|
CN114765834A (zh) | 2022-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022152003A1 (zh) | 非激活态下数据传输方法及装置 | |
JP7551899B2 (ja) | 周波数領域リソース決定方法、デバイス、及び記憶媒体 | |
US20200163106A1 (en) | Coordination Between Prose BSR and Cellular BSR | |
KR102348988B1 (ko) | 빔 실패 복구 방법, 장치 및 장치 | |
CN111466150A (zh) | 在无线通信系统中处理带宽部分不活动计时器的方法和装置 | |
CN107360562B (zh) | 处理无线资源控制状态改变的装置及方法 | |
WO2011018043A1 (zh) | 一种终端标识的使用方法、系统和设备 | |
CN113260089B (zh) | 利用多个不连续接收组对活动时间的确定 | |
CN113475113B (zh) | 处理多个活动bwp的方法和装置 | |
KR20200097467A (ko) | 무선통신 시스템에서 2단계 랜덤 엑세스 절차를 지시하는 방법 및 장치 | |
WO2020164527A1 (zh) | 一种随机接入方法和装置 | |
EP3955685A1 (en) | Random access method and apparatus | |
CN111867125B (zh) | 一种随机接入方法和装置 | |
JP6265504B2 (ja) | 複数の基地局と関係する通信デバイスに使用される同時通信の開放操作の方法と装置 | |
WO2023051366A1 (zh) | 一种控制传输的方法及相关装置 | |
WO2022028267A1 (zh) | 一种指示数据传输的方法、装置 | |
WO2022205346A1 (zh) | 终端设备切换搜索空间集分组sssg的方法、终端设备和网络设备 | |
JP7456551B2 (ja) | 信号の送受信方法、装置及び通信システム | |
EP3036951A1 (en) | Methods and network nodes for management of resources | |
WO2022178860A1 (zh) | 资源处理方法、装置、设备及存储介质 | |
WO2023080160A1 (ja) | 通信装置、基地局及び通信方法 | |
RU2791244C1 (ru) | Способ и устройство произвольного доступа | |
WO2023205959A1 (zh) | 通信方法及通信装置 | |
WO2023004619A1 (zh) | 信息传输方法、设备及存储介质 | |
US11937232B2 (en) | Method and device for wireless communication |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21919190 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21919190 Country of ref document: EP Kind code of ref document: A1 |