[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022151868A1 - 一种dmrs绑定窗口确定方法、装置及存储介质 - Google Patents

一种dmrs绑定窗口确定方法、装置及存储介质 Download PDF

Info

Publication number
WO2022151868A1
WO2022151868A1 PCT/CN2021/135718 CN2021135718W WO2022151868A1 WO 2022151868 A1 WO2022151868 A1 WO 2022151868A1 CN 2021135718 W CN2021135718 W CN 2021135718W WO 2022151868 A1 WO2022151868 A1 WO 2022151868A1
Authority
WO
WIPO (PCT)
Prior art keywords
dmrs
size
window
binding window
binding
Prior art date
Application number
PCT/CN2021/135718
Other languages
English (en)
French (fr)
Inventor
王磊
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Priority to EP21919059.2A priority Critical patent/EP4280510A4/en
Publication of WO2022151868A1 publication Critical patent/WO2022151868A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to a method, an apparatus, and a storage medium for determining a DMRS binding window.
  • the coverage of the cell is a technical indicator that operators are very concerned about, and the uplink channel transmission is the bottleneck of coverage in the 5G NR system. Therefore, how to enhance the coverage of the uplink channel is an important topic at present.
  • Currently processing a Transport Block (TB) over multiple time slots and channel estimation across time slots are candidate technologies for uplink channel enhancement. Since both of these two technologies involve transmitting uplink information on multiple consecutive time slots, the design of the demodulation reference signal (Demodulation Reference Signal, DMRS) is necessarily different from the current technology in which the DMRS pattern is determined by using the time slot as the basic unit. There is a certain balance between the resource overhead of DMRS and the gain of channel estimation accuracy. In order to achieve optimal transmission performance, corresponding DMRS transmission patterns need to be designed on multiple consecutive time slots.
  • DMRS Demodulation Reference Signal
  • DMRS bundling reference signal bundling window
  • Embodiments of the present disclosure provide a method, device, and storage medium for determining a DMRS binding window, so as to solve the problem that the current DMRS pattern cannot meet the transmission requirements of multiple time slots.
  • an embodiment of the present disclosure provides a method for determining a DMRS binding window, applied to a terminal, including:
  • the size of the DMRS binding window of the uplink multi-slot demodulation reference signal DMRS transmission pattern is determined based on the network side device configuration or the predefined rule agreed between the network side device and the terminal.
  • an embodiment of the present disclosure provides a method for determining a DMRS binding window, which is applied to a network side device, including:
  • the DMRS binding window size of the uplink multi-slot demodulation reference signal DMRS transmission pattern is determined or configured to the terminal based on a predefined rule, wherein the predefined rule is pre-agreed between the network side device and the terminal.
  • an embodiment of the present disclosure provides a terminal, including a memory, a transceiver, and a processor:
  • a memory for storing a computer program
  • a transceiver for sending and receiving data under the control of the processor
  • a processor for reading the computer program in the memory and performing the following operations:
  • the size of the DMRS binding window of the uplink multi-slot demodulation reference signal DMRS transmission pattern is determined based on the network side device configuration or the predefined rule agreed between the network side device and the terminal.
  • an embodiment of the present disclosure provides a network-side device, including a memory, a transceiver, and a processor:
  • a memory for storing a computer program
  • a transceiver for sending and receiving data under the control of the processor
  • a processor for reading the computer program in the memory and performing the following operations:
  • the DMRS binding window size of the uplink multi-slot demodulation reference signal DMRS transmission pattern is determined or configured to the terminal based on a predefined rule, wherein the predefined rule is pre-agreed between the network side device and the terminal.
  • an embodiment of the present disclosure provides an apparatus for determining a DMRS binding window, applied to a terminal, including:
  • the determining module is configured to determine the size of the DMRS binding window of the uplink multi-slot demodulation reference signal DMRS transmission pattern based on the network side device configuration or the predefined rule agreed between the network side device and the terminal.
  • an embodiment of the present disclosure provides an apparatus for determining a DMRS binding window, which is applied to a network side device, including:
  • the configuration module is configured to determine or configure the DMRS binding window size of the uplink multi-slot demodulation reference signal DMRS transmission pattern to the terminal based on a predefined rule, wherein the predefined rule is pre-agreed between the network side device and the terminal.
  • an embodiment of the present disclosure provides a processor-readable storage medium, where the processor-readable storage medium stores a computer program, and the computer program is configured to cause a processor to execute the first aspect or the second aspect.
  • the method, device, and storage medium for determining a DMRS binding window determine the size of a DMRS binding window of an uplink multi-slot DMRS transmission pattern based on a network-side device configuration or a predefined rule agreed between a network-side device and a terminal,
  • the time domain range of the uplink multi-slot DMRS transmission pattern is determined, so that the DMRS transmission pattern can be designed based on this, the problem that the current DMRS pattern cannot meet the transmission requirements of multiple time slots is solved, and the transmission performance of the uplink channel is effectively improved. Increased coverage.
  • FIG. 1 is a flowchart of steps of a method for determining a DMRS binding window applied to a terminal in an embodiment of the present disclosure
  • FIG. 2 is a flowchart of steps of a method for determining a DMRS binding window applied to a network side device in an embodiment of the present disclosure
  • FIG. 3 is one of the schematic diagrams of determining a DMRS binding window in an embodiment of the present disclosure
  • FIG. 4 is the second schematic diagram of determining a DMRS binding window in an embodiment of the present disclosure
  • FIG. 5 is a third schematic diagram of determining a DMRS binding window in an embodiment of the present disclosure.
  • FIG. 6 is a fourth schematic diagram of determining a DMRS binding window in an embodiment of the present disclosure.
  • FIG. 7 is a fifth schematic diagram of determining a DMRS binding window in an embodiment of the present disclosure.
  • FIG. 8 is a sixth schematic diagram of determining a DMRS binding window in an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a terminal in an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a network side device in an embodiment of the present disclosure.
  • FIG. 11 is a block diagram of a module of an apparatus for determining a DMRS binding window applied to a terminal in an embodiment of the present disclosure
  • FIG. 12 is a block diagram of a module of an apparatus for determining a DMRS binding window applied to a network side device in an embodiment of the present disclosure.
  • the DMRS pattern (DMRS pattern) for uplink transmission is determined in units of time slots (slots) in a semi-static configuration. That is, at the beginning of the DMRS pattern design, the purpose is to satisfy the transmission performance of uplink data in one time slot.
  • the current DMRS pattern cannot meet the requirement of multiple time slots transmission.
  • DMRS needs to be designed with multiple time slots as granularity, so as to achieve a balance between channel estimation accuracy and DMRS resource overhead.
  • the current DMRS design in the system is based on time slots.
  • the DMRS needs to be designed with multiple consecutive time slots as the unit, the corresponding indication cannot be provided, so that the appropriate DMRS on multiple consecutive time slots can be selected according to the channel transmission conditions.
  • the pattern method cannot be implemented.
  • the embodiments of the present disclosure provide a method, an apparatus, and a storage medium for determining a DMRS binding window, so as to solve the problem that the current DMRS pattern cannot meet the transmission requirements of multiple time slots.
  • the method and the device are conceived based on the same application. Since the principles of the method and the device for solving the problem are similar, the implementation of the device and the method can be referred to each other, and repeated descriptions will not be repeated here.
  • the applicable system may be a global system of mobile communication (GSM) system, a code division multiple access (CDMA) system, a wideband code division multiple access (Wideband Code Division Multiple Access, WCDMA) general packet Wireless service (general packet radio service, GPRS) system, long term evolution (long term evolution, LTE) system, LTE frequency division duplex (frequency division duplex, FDD) system, LTE time division duplex (time division duplex, TDD) system, Long term evolution advanced (LTE-A) system, universal mobile telecommunication system (UMTS), worldwide interoperability for microwave access (WiMAX) system, 5G New Radio (New Radio, NR) system, etc.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband Code Division Multiple Access
  • General packet Wireless service general packet Radio service
  • GPRS general packet Wireless service
  • LTE long term evolution
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • LTE-A Long term evolution advanced
  • the terminal device involved in the embodiments of the present disclosure may be a device that provides voice and/or data connectivity to a user, a handheld device with a wireless connection function, or other processing device connected to a wireless modem.
  • the name of the terminal device may be different.
  • the terminal device may be called user equipment (User Equipment, UE).
  • Wireless terminal equipment can communicate with one or more core networks (Core Network, CN) via a radio access network (Radio Access Network, RAN).
  • RAN Radio Access Network
  • "telephone) and computers with mobile terminal equipment eg portable, pocket-sized, hand-held, computer-built or vehicle-mounted mobile devices, which exchange language and/or data with the radio access network.
  • Wireless terminal equipment may also be referred to as a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, an access point , a remote terminal device (remote terminal), an access terminal device (access terminal), a user terminal device (user terminal), a user agent (user agent), and a user device (user device), which are not limited in the embodiments of the present disclosure.
  • the terminal equipment and other network equipment eg core network equipment, access network equipment (ie network side equipment)
  • the terminal equipment is also regarded as a kind of network equipment.
  • the network device involved in the embodiment of the present disclosure may be a network-side device, and the network-side device may include a plurality of cells providing services for the terminal.
  • the network-side device may also be called an access point, or may be a device in the access network that communicates with the wireless terminal device through one or more sectors on the air interface, or other names.
  • the network device can be used to exchange received air frames with Internet Protocol (IP) packets, and act as a router between the wireless terminal device and the rest of the access network, which can include the Internet. Protocol (IP) communication network.
  • IP Internet Protocol
  • the network devices may also coordinate attribute management for the air interface.
  • the network device involved in the embodiments of the present disclosure may be a network device (Base Transceiver Station, BTS) in the Global System for Mobile Communications (GSM) or Code Division Multiple Access (Code Division Multiple Access, CDMA). ), it can also be a network device (NodeB) in Wide-band Code Division Multiple Access (WCDMA), or it can be an evolved network device in a long term evolution (LTE) system (evolutional Node B, eNB or e-NodeB), 5G network side equipment (gNB) in 5G network architecture (next generation system), or home evolved network side equipment (Home evolved Node B, HeNB), relay node (relay node), home network side device (femto), pico network side device (pico), etc., are not limited in the embodiments of the present disclosure.
  • a network device may include a centralized unit (CU) node and a distributed unit (DU) node, and the centralized unit and the distributed unit may also be geographically separated.
  • FIG. 1 it is a flowchart of steps of a method for determining a DMRS binding window applied to a terminal in an embodiment of the present disclosure, and the method includes the following steps:
  • Step 101 Determine the size of the DMRS binding window of the uplink multi-slot DMRS transmission pattern based on the configuration of the network side device or the predefined rule agreed between the network side device and the terminal.
  • the multi-slot DMRS transmission pattern refers to a DMRS transmission pattern designed in units of multiple time slots.
  • the terminal may determine the DMRS binding window size of the uplink multi-slot DMRS transmission pattern based on the configuration of the network side device, or determine the DMRS binding window size of the uplink multi-slot DMRS transmission pattern based on a predefined rule agreed with the network side device
  • the size of the window is fixed, so that the time domain range of the uplink multi-slot DMRS transmission pattern can be determined, so that the DMRS transmission pattern can be designed based on this, which solves the problem that the current DMRS pattern cannot meet the transmission requirements of multiple time slots, and effectively improves the uplink.
  • the transmission performance of the channel increases the coverage.
  • any one of the following methods may be used:
  • Manner 1 Determine the size of the DMRS bundling window based on the repetition times of uplink channel transmission.
  • the size of the DMRS bundling window is associated with the number of repetitions of uplink channel transmission, that is, the number of transmission time intervals (TTIs) occupied by the uplink channel repeated transmission.
  • the size of the DMRS bundling window based on the repetition times of uplink channel transmission it can be determined by any of the following:
  • the number of repetitions of uplink channel transmission can be directly determined as the size of the DMRS bundling window, that is, the size of the DMRS bundling window is the same as the number of repetitions of uplink channel transmission.
  • the number of repetitions may be indicated by a semi-static indication of Radio Resource Control (RRC for short) signaling or by a related information field in Downlink Control Information (DCI).
  • RRC Radio Resource Control
  • DCI Downlink Control Information
  • the threshold value of the preset number of times is determined as the size of the DMRS binding window, and when the number of repetitions is less than the threshold value of the preset number of times, the number of repetitions is determined as the DMRS binding window size Set the window size.
  • a threshold value for the number of repetitions may be set.
  • the smaller threshold value may be determined as the size of the DMRS binding window, and when the uplink channel transmission is repeated more than the threshold value, the smaller threshold value may be determined as the size of the DMRS binding window.
  • the smaller number of repetitions R is determined as the size of the DMRS bundling window, so as to ensure the validity of the determined size of the DMRS bundling window.
  • the preset number of times threshold may be indicated by explicit signaling sent by the network side device, or may be determined by a protocol predefined, or related to terminal capabilities, which is not specifically limited in the present disclosure.
  • a preset functional relationship between the size of the DMRS binding window and the number of repetitions may be pre-defined, and then the size of the DMRS binding window is implicitly derived based on the preset functional relationship through the number of repetitions.
  • the size of the DMRS bundling window is determined by the repetition times of uplink channel transmission.
  • Manner 2 When it is determined to enable the function of transmitting one transport block on multiple time slots, the size of the DMRS binding window is determined based on the number of time slots for transmitting one transport block.
  • the size of the DMRS bundling window can be associated with the multi-slot indication (multi-slot indication) of uplink channel transmission, that is, associated with whether the function of transmitting one transport block on multiple time slots is enabled.
  • the DMRS binding window size is determined based on the number of time slots for transmitting a transport block, and can be determined by any of the following items at this time:
  • the number of timeslots for transmitting one transport block may be directly determined as the size of the DMRS binding window, that is, the size of the DMRS binding window is the same as the number of timeslots for transmitting one transport block.
  • the preset number threshold is determined as the size of the DMRS binding window, and when the number of time slots is less than the preset number threshold, the The number of slots is determined as the size of the DMRS binding window.
  • a threshold value of the number of timeslots for transmitting one transmission block may be set.
  • the threshold value of the smaller number may be set. The limit is determined as the size of the DMRS binding window, and when the number of time slots for transmitting a transport block is less than the number threshold, the smaller number of time slots is determined as the size of the DMRS binding window, so as to ensure the determined Validity of DMRS binding window size.
  • the preset number threshold value may be indicated by explicit signaling sent by the network side device, or may be determined by a protocol predefined, or related to the terminal capability, which is not specifically limited in this disclosure .
  • a preset functional relationship between the size of the DMRS binding window and the number of timeslots for transmitting one transport block may be pre-defined, and then the size of the DMRS binding window is implicitly derived from the number of timeslots.
  • the size of the DMRS bundling window can be determined by the number of time slots for transmitting one transmission block by any of the above items.
  • Manner 3 Determine the size of the DMRS binding window through a predefined method.
  • the size of the DMRS binding window may be determined in a predefined manner.
  • the following methods may be included for predefining:
  • the DMRS binding window size is predefined based on the DMRS binding window size supported by the terminal type; or,
  • the DMRS binding window size is predefined.
  • the terminal may predefine the size of the DMRS binding window based on the terminal type.
  • terminals with different capabilities support DMRS binding windows of different sizes
  • the terminal may predefine the size of the DMRS binding window based on terminal capabilities. It should be noted here that, at this time, the terminal capability needs to be reported to the network side device.
  • the above embodiment enables the terminal to determine the size of the DMRS binding window based on a predefined rule, that is, based on the repetition times of uplink channel transmission, the number of timeslots for transmitting one transport block, or a predefined manner.
  • the terminal may also determine whether the terminal has the DMRS binding capability based on the terminal capability, and when it is determined that the terminal has the DMRS binding capability, the step of determining the size of the DMRS binding window is performed again .
  • the terminal also needs to send terminal capability information to the network side device, where the terminal capability information carries information used to indicate whether the terminal has the DMRS binding capability, so that the network side device can determine whether the terminal has DMRS based on the terminal capability information.
  • Binding capability if it is determined that the terminal has the DMRS binding capability, the network side device determines to detect and receive DMRS within the determined DMRS binding window and perform joint channel estimation, otherwise it is no longer necessary to determine the DMRS binding window.
  • the terminal when determining the size of the DMRS binding window of the uplink multi-slot DMRS transmission pattern based on the configuration of the network side equipment, the terminal may receive the indication information configured by the network side equipment through RRC signaling or DCI , wherein the indication information carries the size of the DMRS binding window, and then the size of the DMRS binding window is determined based on the indication information.
  • the size of the DMRS bundling window may be indicated by RRC signaling or display bits in DCI.
  • the above-mentioned DCI indicating the size of the DMRS bundling window is a UE-specific DCI or a common DCI, and the indication information is carried by the display bits in the UE-specific DCI or the reserved bits in the common DCI.
  • the UE-specific DCI may be DCI scrambled by a cell radio network temporary identifier (C-RNTI for short) or a temporary cell radio network temporary identifier (TC-RNTI).
  • C-RNTI cell radio network temporary identifier
  • TC-RNTI temporary cell radio network temporary identifier
  • the public DCI is scrambled by System Information Radio Network Temporary Identifier (SI-RNTI for short), Random Access Radio Network Temporary Identifier (RA-RNTI for short) and/or Paging Radio Network Temporary Identity (P-RNTI for short) DCI, and the DCI format is 1_0.
  • SI-RNTI System Information Radio Network Temporary Identifier
  • RA-RNTI Random Access Radio Network Temporary Identifier
  • P-RNTI Paging Radio Network Temporary Identity
  • the indication information carried by the reserved bytes in the common DCI indicates a set of DMRS binding window sizes, and at this time, the terminal can determine the adopted DMRS binding window size according to its own capabilities.
  • the DMRS bundling window size of the uplink multi-slot DMRS transmission pattern it is also necessary to divide the DMRS bundling window size based on time division duplex (TDD for short) resource configuration or invalid symbols , to get the final DMRS binding window size.
  • TDD time division duplex
  • the determined DMRS binding window cannot contain any downlink symbols (DL symbols), or semi-static flexible symbols (flexible symbols) used to transmit SSB/CORESET#0, or invalid symbols (invalid symbols) indicated by higher layer signaling ).
  • the size of the DMRS bundling window needs to be divided based on the TDD resource configuration or invalid symbols, so as to obtain the final DMRS bundling window size.
  • the DMRS binding window size of the uplink multi-slot DMRS transmission pattern is determined, when the frequency hopping function of the uplink transmission is enabled, it is also necessary to determine the final DMRS binding based on the frequency hopping pattern. Set the window size.
  • the final DMRS binding window size is less than or equal to the number of time slots included in each frequency hopping.
  • the size of the DMRS binding window needs to be further determined according to the frequency frequency hopping pattern.
  • the final DMRS binding window size is less than or equal to the number of time slots included in each frequency hopping. number.
  • the present disclosure realizes the process of determining the size of the DMRS bundling window through the above-mentioned embodiments, thereby realizing the determination of the time domain range of the uplink multi-slot DMRS transmission pattern, so that the DMRS transmission pattern can be designed based on this, and the uplink channel is effectively improved. Transmission performance, increased coverage.
  • FIG. 2 it is a flowchart of steps of a method for determining a DMRS binding window applied to a network side device in an embodiment of the present disclosure, and the method includes the following steps:
  • Step 201 Determine or configure the DMRS binding window size of the uplink multi-slot DMRS transmission pattern to the terminal based on a predefined rule.
  • the pre-defined rule is pre-agreed between the network side device and the terminal.
  • the network side device may determine the size of the DMRS binding window of the uplink multi-slot DMRS transmission pattern based on a predefined rule pre-agreed by the network side device and the terminal, or configure the DMRS binding window of the uplink multi-slot DMRS transmission pattern to the terminal size, so that both the network side equipment and the terminal can determine the size of the DMRS binding window of the uplink multi-slot DMRS transmission pattern, thereby realizing the determination of the time domain range of the uplink multi-slot DMRS transmission pattern, so that the DMRS transmission pattern can be designed based on this.
  • the current DMRS pattern cannot meet the transmission requirements of multiple time slots, which effectively improves the transmission performance of the uplink channel and increases the coverage.
  • any one of the following methods may be used:
  • Manner 1 Determine the size of the DMRS bundling window based on the repetition times of uplink channel transmission.
  • the size of the DMRS bundling window based on the repetition times of uplink channel transmission it can be determined by any of the following:
  • the number of repetitions needs to be indicated to the terminal through the RRC signaling semi-static configuration or through the relevant information field in the DCI.
  • the threshold value of the preset number of times is determined as the size of the DMRS binding window, and when the number of repetitions is less than the threshold value of the preset number of times, the number of repetitions is determined as the DMRS binding window size Set the window size.
  • Manner 2 When it is determined to enable the function of transmitting one transport block on multiple time slots, the size of the DMRS binding window is determined based on the number of time slots for transmitting one transport block.
  • the size of the DMRS binding window is determined based on the number of time slots for transmitting one transport block. At this time, it can be determined by any of the following:
  • the preset number threshold is determined as the size of the DMRS binding window, and when the number of time slots is less than the preset number threshold, the The number of slots is determined as the size of the DMRS binding window.
  • Manner 3 Determine the size of the DMRS binding window through a predefined method.
  • the size of the DMRS binding window may be determined in a predefined manner.
  • the following methods may be included for predefining:
  • the DMRS binding window size is predefined based on the DMRS binding window size supported by the terminal type; or,
  • the DMRS binding window size is predefined based on the DMRS binding window size supported by the terminal capability.
  • the above embodiment enables the network side device to determine the size of the DMRS binding window based on a predefined rule, and for a specific introduction, please refer to the related content on the terminal side, and details are not repeated here.
  • the network-side device may also receive terminal capability information sent by the terminal, where the terminal capability information carries information used to indicate whether the terminal has the DMRS binding capability.
  • the terminal capability information carries information used to indicate whether the terminal has the DMRS binding capability.
  • the network side device determines based on the terminal capability information that the terminal does not have the capability of DMRS binding, the size of the DMRS binding window is no longer determined.
  • the network side device when the network side device configures the DMRS binding window size of the uplink multi-slot DMRS transmission pattern to the terminal, it may send indication information to the terminal through RRC signaling or DCI, where the indication information carries There is DMRS binding window size.
  • the above-mentioned DCI indicating the size of the DMRS bundling window is UE-specific DCI or common DCI, and the indication information is carried by the display bits in the UE-specific DCI or the reserved bits in the common DCI.
  • the UE-specific DCI may be DCI scrambled by a cell radio network temporary identifier (C-RNTI for short) or a temporary cell radio network temporary identifier (TC-RNTI).
  • C-RNTI cell radio network temporary identifier
  • TC-RNTI temporary cell radio network temporary identifier
  • the public DCI is scrambled by System Information Radio Network Temporary Identifier (SI-RNTI for short), Random Access Radio Network Temporary Identifier (RA-RNTI for short) and/or Paging Radio Network Temporary Identity (P-RNTI for short) DCI, and the DCI format is 1_0.
  • SI-RNTI System Information Radio Network Temporary Identifier
  • RA-RNTI Random Access Radio Network Temporary Identifier
  • P-RNTI Paging Radio Network Temporary Identity
  • the indication information carried by the reserved bytes in the common DCI indicates a set of DMRS binding window sizes, and at this time, the terminal can determine the adopted DMRS binding window size according to its own capabilities.
  • the network side device also needs to divide the DMRS binding window size based on Time Division Duplex (TDD for short) resource configuration or invalid symbols to obtain the final DMRS binding window size.
  • TDD Time Division Duplex
  • the final DMRS binding window size also needs to be determined based on the frequency hopping pattern.
  • the final DMRS binding window size is less than or equal to the number of time slots included in each frequency hopping.
  • the uplink channel/signal includes at least PUSCH and/or PUCCH. It is assumed in this embodiment that the uplink coverage enhancement scheme includes processing TBs on multiple time slots or DMRS bundling across time slots. Of course, the present disclosure does not exclude any other temporal enhancement schemes.
  • a DMRS transmission pattern based on multiple time slots needs to be defined. Further, it is first necessary to determine the time domain range defined by the DMRS (the time domain range of the multi-slot DMRS pattern is defined based on, for example, N slots), that is, the DMRS bundling window (DMRS bundling window).
  • the DMRS bundling window is bound with the repetition number (repetition number) of uplink channel transmission, that is, bound with the number of TTIs occupied by the uplink channel repeated transmission.
  • (1) PUSCH/PUCCH continuous transmission scenario As shown in Figure 3, in this scenario, PUSCH and PUCCH perform data transmission on consecutive time slots, and there is no drop or delayed transmission due to invalid symbols.
  • the size of the DMRS bundling window is the same as the number of repetition numbers.
  • (2) PUSCH discontinuous transmission scenario In this scenario, some PUSCH repetitions are dropped due to conflicts with invalid symbols. As shown in Figure 4, the number of repetitions is 4, combined with UL grant, including R#1, R#2, R#3 and R#4, the third repetition R#3 conflicts with the invalid symbol and is dropped, thus There are only 3 repetitions, and they are divided into two parts by the invalid symbol (the first part contains two consecutive PUSCH transmissions, and the second part contains only one PUSCH transmission). In this scenario, two DMRS bundling windows are determined by repetition number and invalid symbol, namely Sub-W#1 (contains two slots) and Sub-W#2 (contains one slot).
  • PUCCH discontinuous transmission scenario part of the PUCCH repetition is used to collide with the invalid symbol, and needs to be delayed to the slot where the PUCCH can be transmitted for transmission.
  • the number of repetitions is 4, of which slot#n+5, slot#n+6, and slot#n+7 are downlink subframes, so they cannot be used for PUCCH transmission and need to be delayed later (in this example , the third and fourth PUCCH repetitions are delayed to transmit on slot#n+8 and slot#n+9).
  • two DMRS bundling windows are determined by repetition number and invalid symbol, namely Sub-W#1 (contains two slots) and Sub-W#2 (contains two slots).
  • the DMRS bundling window is bound with the repetition times of uplink channel transmission, that is, with the number of TTIs occupied by the uplink channel repeated transmission.
  • the number of repetitions needs to be considered, and the relationship between the number of repetitions and the threshold of the preset number of times needs to be considered, and finally the size of the actual DMRS bundling window is determined.
  • the preset number of times threshold may be indicated by explicit signaling sent by the network side device, or may be determined in a manner predefined by a protocol, or related to terminal capabilities, which is not limited in the present disclosure.
  • the DMRS bundling window is bound with the repetition times of uplink channel transmission, that is, with the number of TTIs occupied by the uplink channel repeated transmission.
  • T may be related to the terminal capability, or may be configured through explicit signaling sent by the base station, or determined in a manner predefined by a protocol, which is not limited in this embodiment.
  • the network side device can determine whether to define, determine or indicate the DMRS bundling window according to the capability information reported by the terminal. For example, a terminal with UE capability#A, when Repetition transmission is enabled, will determine the size of the DMRS bundling window according to the explicit signaling or implicit method notified by the network side device; for a terminal without capability#A, the network side will be ignored. For the relevant instructions of the device, only the DMRS pattern can be determined with the granularity of the slot.
  • the DMRS bundling window is bound to the multi-slot indication of uplink channel transmission, that is, whether it is enabled on multiple slots This function is bound to transmit a TB on the slot.
  • the size of the DMRS bundling window is determined in a predefined manner. For example, one or several DMRS bundling windows of different sizes are predefined by the protocol.
  • the terminal may determine the size of the DMRS bundling window according to its own type or capability. specific,
  • DMRS bundling windows of different sizes such as RedCap terminals, CE terminals, and normal terminals support DMRS bundling windows of different sizes.
  • terminals with different capabilities support DMRS bundling windows of different sizes.
  • a certain type of terminal can report its own capabilities, and different terminal capabilities correspond to DMRS bundling windows of different sizes.
  • the size of the DMRS bundling window is explicitly configured through RRC signaling (signaling).
  • the terminal After receiving the DMRS bundling window size indication information carried by the RRC signaling, the terminal determines the DMRS bundling window size according to the indication information.
  • the base station carries N bits indication information in the UE-dedicated RRC signaling to indicate the size of the DMRS bundling window.
  • N 2bits.
  • the RRC signaling instructs the DMRS bundling window to take effect only when the size of the bundling window is less than or equal to the number of TTIs occupied by the uplink transmission. For example, uplink transmission occupies 4 time slots, and the DMRS bundling window size configured by RRC is 8, then the DMRS bundling window does not take effect at this time.
  • the above method needs to consider TDD configuration or invalid symbol pattern to determine the final DMRS bundling window size, the specific method is similar to the method in the first embodiment, and the present disclosure does not make any limitation.
  • this embodiment can be combined with any method in the first embodiment to the third embodiment, for example, considering a threshold, or a mapping function, etc., which is not limited in the present disclosure.
  • the network side device indicates the size of the DMRS bundling window through an explicit bit in the DCI.
  • the DCI carrying the DMRS bundling window size indication information is UE-specific DCI.
  • the CRC of the UE-specific DCI is scrambled by C-RNTI or TC-RNTI.
  • the DCI is DCI format 0_1 and/or DCI format 0_2 for scheduling PUSCH transmission, or DCI format 1_1 and/or DCI format 1_2 indicating PUCCH transmission.
  • N 2 bits, which can be used to indicate DMRS bundling sizes of 4 different sizes.
  • the DCI is the DCI format 0_0 for scheduling msg3 transmission or the DCI format 1_0 for scheduling msg4 transmission.
  • the N bits in the reserved bit field are used to indicate the DMRS bundling window size of the terminal.
  • the reserved bit fields include NDI and HPN fields.
  • the N bits in the reserved bit field are used to indicate the DMRS bundling window size of the terminal.
  • the reserved bit field includes the DAI field.
  • the number of bits in the reserved bits used and the size of the DMRS bundling window indicated by the bits are not limited in this disclosure.
  • solution of this embodiment can be used in combination with any solution in the first embodiment to the seventh embodiment, and the present disclosure does not make any limitation, for example, considering invalid symbols, setting a threshold T, and the like.
  • the base station indicates the size of the DMRS bundling window through an explicit bit in the DCI.
  • the DCI carrying the DMRS bundling window size indication information is a public DCI, that is, the DCI used for scheduling broadcast data, and the CRC of the DCI passes SI-RNTI and/or RA-RNTI and/or P-RNTI, and the format is DCI format 1_0.
  • indicating a group of DMRS bundling windows use the bitmap to indicate.
  • the bit in the bitmap is 1, it means that the corresponding DMRS bundling window size is valid, and 0 means it is not valid.
  • the corresponding relationship between the bitmap and the DMRS bundling window is determined in a manner predefined by the protocol.
  • the terminal determines the size of the DMRS bundling window actually used in the group of DMRS bundling windows according to its own capabilities.
  • solution of this embodiment can be used in combination with any solution in the first embodiment to the seventh embodiment, and the present disclosure does not make any limitation, for example, considering invalid symbols, setting a threshold T, and the like.
  • the size of the DMRS bundling window is determined by any method in the first to tenth embodiments above, it is necessary to further determine the final DMRS bundling window according to the frequency hopping pattern (frequency hopping pattern). size.
  • the final DMRS bundling window is the same as the number of time slots included in each frequency hopping (hop). In this embodiment, as shown in FIG.
  • the size of the DMRS bundling window obtained by the aforementioned method is 4 slots (slot#n+3 to slot#n+6), and the frequency hopping function is enabled, assuming that each The hop (including Hop#1 and Hop#2) contains two consecutive time slots, and in this scenario, the final DMRS bundling window (actual DMRS bundling window) size is 2 time slots.
  • the determination of the size of the DMRS bundling window is implemented, so that a multi-slot DMRS transmission pattern can be designed according to the size of the DMRS bundling window, thereby enabling optimal uplink transmission performance.
  • FIG. 9 is a schematic structural diagram of a terminal provided by an embodiment of the present disclosure.
  • the terminal 900 includes a memory 902, a transceiver 903 and a processor 901; wherein, the processor 901 and the memory 902 may also be physically separated.
  • the memory 902 is used to store computer programs; the transceiver 903 is used to send and receive data under the control of the processor 901 .
  • the bus system 904 may include any number of interconnected buses and bridges, specifically, one or more processors represented by the processor 901 and various circuits of the memory represented by the memory 902 are linked together.
  • the bus system 904 may also link together various other circuits, such as peripherals, voltage regulators, and power management circuits, etc., which are well known in the art and, therefore, will not be described further herein.
  • the bus interface provides the interface.
  • Transceiver 903 may be a number of elements, including transmitters and receivers, providing means for communicating with various other devices over transmission media including wireless channels, wired channels, fiber optic cables, etc. Transmission medium.
  • the user interface 905 may also be an interface capable of externally connecting the required equipment, and the connected equipment includes but is not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 901 is responsible for managing the bus architecture and general processing, and the memory 902 may store data used by the processor 901 in performing operations.
  • the processor 901 can be a central processor (CPU), an application specific integrated circuit (ASIC), a field programmable gate array (Field-Programmable Gate Array, FPGA) or a complex programmable logic device ( Complex Programmable Logic Device, CPLD), the processor can also adopt a multi-core architecture.
  • CPU central processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • CPLD Complex Programmable Logic Device
  • the processor 901 is configured to execute any of the methods provided by the embodiments of the present disclosure according to the obtained executable instructions by invoking the computer program stored in the memory 902, for example:
  • the size of the DMRS binding window of the uplink multi-slot demodulation reference signal DMRS transmission pattern is determined based on the network side device configuration or the predefined rule agreed between the network side device and the terminal.
  • the DMRS binding window size of the uplink multi-slot DMRS transmission pattern is determined based on a predefined rule agreed between the network side device and the terminal, including any of the following:
  • the size of the DMRS binding window is determined based on the number of time slots for transmitting one transport block
  • the size of the DMRS binding window is determined in a predefined manner.
  • determining the size of the DMRS bundling window based on the repetition times of uplink channel transmission including any of the following:
  • the preset times threshold is determined as the size of the DMRS binding window, and when the repetition times is less than the preset times threshold, the preset times threshold is determined as the size of the DMRS binding window.
  • the number of repetitions is determined as the size of the DMRS binding window;
  • the size of the DMRS binding window is determined according to a preset functional relationship between the size of the DMRS binding window and the number of repetitions.
  • the number of repetitions is semi-statically indicated by radio resource control RRC signaling or indicated by a related information field in downlink control information DCI.
  • determining the size of the DMRS bundling window based on the number of time slots for transmitting one transport block including any of the following:
  • the preset number threshold is determined as the size of the DMRS binding window, and when the number of time slots is less than the preset number When the threshold value is used, the number of time slots is determined as the size of the DMRS binding window;
  • the size of the DMRS bundling window is determined according to a preset functional relationship between the size of the DMRS bundling window and the number of time slots.
  • determining the size of the DMRS binding window in a predefined manner includes:
  • the DMRS binding window size is predefined based on the DMRS binding window size supported by the terminal type; or,
  • the DMRS binding window size is predefined based on the DMRS binding window size supported by the terminal capability.
  • the size of the DMRS bundling window is determined.
  • the terminal capability information carries information used to indicate whether the terminal has the capability of DMRS binding.
  • determine the size of the DMRS binding window of the uplink multi-slot DMRS transmission pattern including:
  • the indication information configured by the network side device through RRC signaling or DCI, wherein the indication information carries the size of the DMRS binding window;
  • the size of the DMRS binding window is determined.
  • the size of the DMRS binding window is less than or equal to the number of transmission time intervals TTI occupied by uplink transmission.
  • the DCI is a terminal-specific UE-specific DCI or a common DCI
  • the indication information is carried by display bits in the UE-specific DCI or reserved bits in the common DCI.
  • the UE-specific DCI is the DCI scrambled by the cell radio network temporary identifier C-RNTI or the temporary cell radio network temporary identifier TC-RNTI.
  • the common DCI is a DCI scrambled by a system information radio network temporary identifier SI-RNTI, a random access radio network temporary identifier RA-RNTI and/or a paging radio network temporary identifier P-RNTI, and
  • the DCI format is 1_0.
  • the indication information carried by the reserved bytes in the common DCI indicates a group of DMRS binding window sizes.
  • the method further includes:
  • the DMRS bundling window size is divided based on the time division duplex TDD resource configuration or invalid symbols to obtain the final DMRS bundling window size.
  • the method further includes:
  • the final DMRS binding window size is determined based on the frequency hopping pattern
  • the final DMRS bundling window size is less than or equal to the number of time slots included in each frequency hopping.
  • the terminal provided by the embodiments of the present disclosure can design a multi-slot DMRS transmission pattern according to the size of the DMRS bundling window by determining the size of the DMRS bundling window of the uplink multi-slot DMRS transmission pattern, so as to achieve optimal uplink transmission performance .
  • FIG. 10 is a schematic structural diagram of a network side device provided by an embodiment of the present disclosure.
  • the network device 1000 includes a memory 1002, a transceiver 1003, and a processor 1001: the processor 1001 and the memory 1002 may also be physically separated layout.
  • the memory 1002 is used to store computer programs; the transceiver 1003 is used to send and receive data under the control of the processor 1001 .
  • the bus system 1004 may include any number of interconnected buses and bridges, specifically one or more processors represented by the processor 1001 and various circuits of the memory represented by the memory 1002 are linked together .
  • the bus system 1004 may also link together various other circuits, such as peripherals, voltage regulators, and power management circuits, etc., which are well known in the art and, therefore, will not be described further herein.
  • the bus interface provides the interface.
  • Transceiver 1003 may be multiple elements, ie, including transmitters and receivers, providing means for communicating with various other devices over transmission media including wireless channels, wired channels, fiber optic cables, and the like.
  • the processor 1001 is responsible for managing the bus architecture and general processing, and the memory 1002 may store data used by the processor 1001 in performing operations.
  • the processor 1001 may be a central processor (CPU), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or a complex programmable logic device (Complex Programmable Logic Device). , CPLD), the processor can also use a multi-core architecture.
  • CPU central processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • CPLD complex programmable logic device
  • the processor 1001 is configured to execute any of the methods provided by the embodiments of the present disclosure according to the obtained executable instructions by calling the computer program stored in the memory 1002, for example:
  • the DMRS binding window size of the uplink multi-slot demodulation reference signal DMRS transmission pattern is determined or configured to the terminal based on a predefined rule, wherein the predefined rule is pre-agreed between the network side device and the terminal.
  • the size of the DMRS binding window is determined based on the number of time slots for transmitting one transport block
  • the size of the DMRS binding window is determined in a predefined manner.
  • determining the size of the DMRS bundling window based on the repetition times of uplink channel transmission including any of the following:
  • the preset times threshold is determined as the size of the DMRS binding window, and when the repetition times is less than the preset times threshold, the preset times threshold is determined as the size of the DMRS binding window.
  • the number of repetitions is determined as the size of the DMRS binding window;
  • the size of the DMRS binding window is determined according to a preset functional relationship between the size of the DMRS binding window and the number of repetitions.
  • the number of repetitions is indicated to the terminal through a radio resource control RRC signaling semi-static configuration or through a related information field in the downlink control information DCI.
  • determining the size of the DMRS bundling window based on the number of time slots for transmitting one transport block including any of the following:
  • the preset number threshold is determined as the size of the DMRS binding window, and when the number of time slots is less than the preset number When the threshold value is used, the number of time slots is determined as the size of the DMRS binding window;
  • the size of the DMRS bundling window is determined according to a preset functional relationship between the size of the DMRS bundling window and the number of time slots.
  • determining the size of the DMRS binding window in a predefined manner includes:
  • the DMRS binding window size is predefined based on the DMRS binding window size supported by the terminal type; or,
  • the DMRS binding window size is predefined based on the DMRS binding window size supported by the terminal capability.
  • the terminal capability information carries information used to indicate whether the terminal has the capability of DMRS binding
  • the size of the DMRS bundling window is determined.
  • configure the DMRS binding window size of the uplink multi-slot DMRS transmission pattern to the terminal including:
  • the size of the DMRS binding window is less than or equal to the number of transmission time intervals TTI occupied by uplink transmission.
  • the DCI is a terminal-specific UE-specific DCI or a common DCI
  • the indication information is carried by display bits in the UE-specific DCI or reserved bits in the common DCI.
  • the UE-specific DCI is the DCI scrambled by the cell radio network temporary identifier C-RNTI or the temporary cell radio network temporary identifier TC-RNTI.
  • the common DCI is a DCI scrambled by a system information radio network temporary identifier SI-RNTI, a random access radio network temporary identifier RA-RNTI and/or a paging radio network temporary identifier P-RNTI, and
  • the DCI format is 1_0.
  • the indication information carried by the reserved bytes in the common DCI indicates a group of DMRS binding window sizes.
  • the size of the DMRS bundling window is divided based on the time division duplex TDD resource configuration or invalid symbols to obtain the final DMRS bundling window size.
  • the final DMRS binding window size is determined based on the frequency hopping pattern
  • the final DMRS bundling window size is less than or equal to the number of time slots included in each frequency hopping.
  • the network side device provided by the embodiments of the present disclosure can design a multi-slot DMRS transmission pattern according to the size of the DMRS binding window by determining the size of the DMRS binding window of the uplink multi-slot DMRS transmission pattern, so as to realize the optimal uplink transmission performance.
  • FIG. 11 is a block diagram of a module of a DMRS binding window device provided by an embodiment of the present disclosure, the device is applied to a terminal, and the device includes:
  • the determining module 1101 is configured to determine the size of the DMRS binding window of the uplink multi-slot demodulation reference signal DMRS transmission pattern based on the network side device configuration or the predefined rule agreed between the network side device and the terminal.
  • the determining module is configured to execute any of the following:
  • a first determination submodule configured to determine the size of the DMRS bundling window based on the repetition times of uplink channel transmission
  • a second determining submodule configured to determine the size of the DMRS binding window based on the number of time slots for transmitting one transport block when it is determined to enable the function of transmitting one transport block on multiple time slots;
  • the third determination submodule is configured to determine the size of the DMRS binding window in a predefined manner.
  • the first determination submodule is configured to execute any of the following:
  • the preset times threshold is determined as the size of the DMRS binding window, and when the repetition times is less than the preset times threshold, the preset times threshold is determined as the size of the DMRS binding window.
  • the number of repetitions is determined as the size of the DMRS binding window;
  • the size of the DMRS binding window is determined according to a preset functional relationship between the size of the DMRS binding window and the number of repetitions.
  • the number of repetitions is semi-statically indicated by radio resource control RRC signaling or indicated by a related information field in downlink control information DCI.
  • the second determination submodule is configured to execute any of the following:
  • the preset number threshold is determined as the size of the DMRS binding window, and when the number of time slots is less than the preset number When the threshold value is used, the number of time slots is determined as the size of the DMRS binding window;
  • the size of the DMRS bundling window is determined according to a preset functional relationship between the size of the DMRS bundling window and the number of time slots.
  • the third determination submodule is specifically used for:
  • the DMRS binding window size is predefined based on the DMRS binding window size supported by the terminal type; or,
  • the DMRS binding window size is predefined based on the DMRS binding window size supported by the terminal capability.
  • a judgment module configured to determine whether the terminal has the capability of DMRS bundling based on the capability of the terminal; when it is determined that the terminal has the capability of DMRS bundling, determine the size of the DMRS bundling window.
  • a sending module configured to send terminal capability information to the network side device, wherein the terminal capability information carries information used to indicate whether the terminal has the capability of DMRS binding.
  • the determining module is specifically used to:
  • Receive indication information configured by the network side device through RRC signaling or DCI, where the indication information carries the size of the DMRS binding window; and determine the size of the DMRS binding window based on the indication information.
  • the size of the DMRS binding window is less than or equal to the number of transmission time intervals TTI occupied by uplink transmission.
  • the DCI is a terminal-specific UE-specific DCI or a common DCI
  • the indication information is carried by display bits in the UE-specific DCI or reserved bits in the common DCI.
  • the UE-specific DCI is the DCI scrambled by the cell radio network temporary identifier C-RNTI or the temporary cell radio network temporary identifier TC-RNTI.
  • the common DCI is a DCI scrambled by a system information radio network temporary identifier SI-RNTI, a random access radio network temporary identifier RA-RNTI and/or a paging radio network temporary identifier P-RNTI, and
  • the DCI format is 1_0.
  • the indication information carried by the reserved bytes in the common DCI indicates a group of DMRS binding window sizes.
  • the method further includes:
  • the size of the DMRS bundling window is divided based on the time division duplex TDD resource configuration or invalid symbols to obtain the final DMRS bundling window size.
  • the method further includes:
  • the final DMRS binding window size is determined based on the frequency hopping pattern
  • the size of the final DMRS bundling window is less than or equal to the number of time slots included in each frequency hopping.
  • FIG. 12 is a block diagram of a module of an apparatus for determining a DMRS binding window provided by an embodiment of the present disclosure, and the apparatus includes:
  • the configuration module 1201 determines or configures the DMRS binding window size of the uplink multi-slot demodulation reference signal DMRS transmission pattern to the terminal based on a predefined rule, wherein the predefined rule is pre-agreed between the network side device and the terminal.
  • the configuration module is configured to perform any of the following:
  • a first determination submodule configured to determine the size of the DMRS bundling window based on the repetition times of uplink channel transmission
  • a second determining submodule configured to determine the size of the DMRS binding window based on the number of time slots for transmitting one transport block when it is determined to enable the transmission of one transport block on multiple time slots;
  • the third determination submodule is configured to determine the size of the DMRS binding window in a predefined manner.
  • the first determination submodule is configured to execute any of the following:
  • the preset times threshold is determined as the size of the DMRS binding window, and when the repetition times is less than the preset times threshold, the preset times threshold is determined as the size of the DMRS binding window.
  • the number of repetitions is determined as the size of the DMRS binding window;
  • the size of the DMRS binding window is determined according to a preset functional relationship between the size of the DMRS binding window and the number of repetitions.
  • the number of repetitions is indicated to the terminal through a radio resource control RRC signaling semi-static configuration or through a related information field in the downlink control information DCI.
  • the second determination submodule is configured to execute any of the following:
  • the preset number threshold is determined as the size of the DMRS binding window, and when the number of time slots is less than the preset number When the threshold value is used, the number of time slots is determined as the size of the DMRS binding window;
  • the size of the DMRS bundling window is determined according to a preset functional relationship between the size of the DMRS bundling window and the number of time slots.
  • the third determination submodule is specifically used for:
  • the DMRS binding window size is predefined based on the DMRS binding window size supported by the terminal type; or,
  • the DMRS binding window size is predefined based on the DMRS binding window size supported by the terminal capability.
  • a receiving module configured to receive terminal capability information sent by the terminal, wherein the terminal capability information carries information used to indicate whether the terminal has the capability of DMRS binding; when it is determined based on the terminal capability information that the terminal has DMRS binding the ability to determine the DMRS binding window size.
  • the configuration module is used to:
  • the size of the DMRS binding window is less than or equal to the number of transmission time intervals TTI occupied by uplink transmission.
  • the DCI is a terminal-specific UE-specific DCI or a common DCI
  • the indication information is carried by display bits in the UE-specific DCI or reserved bits in the common DCI.
  • the UE-specific DCI is the DCI scrambled by the cell radio network temporary identifier C-RNTI or the temporary cell radio network temporary identifier TC-RNTI.
  • the common DCI is a DCI scrambled by a system information radio network temporary identifier SI-RNTI, a random access radio network temporary identifier RA-RNTI and/or a paging radio network temporary identifier P-RNTI, and
  • the DCI format is 1_0.
  • the indication information carried by the reserved bytes in the common DCI indicates a group of DMRS binding window sizes.
  • the size of the DMRS bundling window is divided based on the time division duplex TDD resource configuration or invalid symbols to obtain the final DMRS bundling window size.
  • the final DMRS binding window size is determined based on the frequency hopping pattern
  • the size of the final DMRS bundling window is less than or equal to the number of time slots included in each frequency hopping.
  • each functional unit in each embodiment of the present disclosure may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a processor-readable storage medium.
  • the technical solutions of the present disclosure essentially or the parts that contribute to the prior art, or all or part of the technical solutions can be embodied in the form of software products, and the computer software products are stored in a storage medium , including several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to execute all or part of the steps of the methods described in the various embodiments of the present disclosure.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .
  • an embodiment of the present disclosure further provides a processor-readable storage medium, where a computer program is stored in the processor-readable storage medium, and the computer program is used to cause the processor to execute the processes described in the foregoing embodiments. Methods.
  • the processor-readable storage medium can be any available medium or data storage device that can be accessed by a processor, including, but not limited to, magnetic storage (eg, floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.), optical storage (eg, CD, DVD, BD, HVD, etc.), and semiconductor memory (eg, ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid-state disk (SSD)), etc.
  • magnetic storage eg, floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.
  • optical storage eg, CD, DVD, BD, HVD, etc.
  • semiconductor memory eg, ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid-state disk (SSD)
  • a processor-readable storage medium stores a computer program, and the computer program is configured to cause the processor to execute the foregoing method for determining a DMRS binding window.
  • embodiments of the present disclosure may be provided as a method, system, or computer program product. Accordingly, the present disclosure may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present disclosure may take the form of a computer program product embodied on one or more computer-usable storage media having computer-usable program code embodied therein, including but not limited to disk storage, optical storage, and the like.
  • processor-executable instructions may also be stored in a processor-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the processor-readable memory result in the manufacture of means comprising the instructions product, the instruction means implements the functions specified in the flow or flow of the flowchart and/or the block or blocks of the block diagram.
  • processor-executable instructions can also be loaded onto a computer or other programmable data processing device to cause a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented process that Execution of the instructions provides steps for implementing the functions specified in the flowchart or blocks and/or the block or blocks of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例提供一种DMRS绑定窗口确定方法、装置及存储介质,方法包括:基于网络侧设备配置或网络侧设备与终端约定的预定义规则,确定上行多时隙解调参考信号DMRS传输图样的DMRS绑定窗口大小。本公开实施例实现了DMRS时域范围的确定。

Description

一种DMRS绑定窗口确定方法、装置及存储介质
相关申请的交叉引用
本申请要求于2021年01月18日提交的申请号为2021100651318,发明名称为“一种DMRS绑定窗口确定方法、装置及存储介质”的中国专利申请的优先权,其通过引用方式全部并入本文。
技术领域
本公开涉及通信技术领域,尤其涉及一种DMRS绑定窗口确定方法、装置及存储介质。
背景技术
在当前5G新无线接入(5th Generation New RAT,NR)移动通信系统中,小区的覆盖范围是运营商非常关注的技术指标,而上行信道传输是5G NR系统中覆盖的瓶颈。因此针对如何增强上行信道的覆盖范围是目前的重要课题。目前在多个时隙上处理一个传输块(Transport Block,TB)以及跨时隙的信道估计是上行信道增强的候选技术。由于该两种技术均涉及到在多个连续的时隙上传输上行信息,其解调参考信号(Demodulation Reference Signal,DMRS)的设计必然不同于当前技术中以时隙为基本单位确定DMRS图样。DMRS在资源上的开销以及带来的信道估计准确性的增益之间存在一定的平衡。为了实现最优的传输性能,需要在多个连续时隙上设计对应的DMRS传输图样。
但是,在多个连续时隙上设计对应DMRS传输图样的一个基本问题是如何确定多时隙DMRS图样(multi-slot DMRS pattern)定义的时域范围,也即解决参考信号绑定窗口(DMRS bundling)的大小。如何确定DMRS bundling窗口的大小,当前并没有明确的方案。
发明内容
本公开实施例提供一种DMRS绑定窗口确定方法、装置及存储介质,以解决当前的DMRS图样并不能满足多个时隙传输要求的问题。
第一方面,本公开实施例提供一种DMRS绑定窗口确定方法,应用于终端,包括:
基于网络侧设备配置或网络侧设备与终端约定的预定义规则,确定上行多时隙解调参考信号DMRS传输图样的DMRS绑定窗口大小。
第二方面,本公开实施例提供一种DMRS绑定窗口确定方法,应用于网络侧设备,包括:
基于预定义规则确定或向终端配置上行多时隙解调参考信号DMRS传输图样的DMRS绑定窗口大小,其中所述预定义规则为网络侧设备与终端预先约定。
第三方面,本公开实施例提供一种终端,包括存储器,收发机,处理器:
存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
基于网络侧设备配置或网络侧设备与终端约定的预定义规则,确定上行多时隙解调参考信号DMRS传输图样的DMRS绑定窗口大小。
第四方面,本公开实施例提供一种网络侧设备,包括存储器,收发机,处理器:
存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
基于预定义规则确定或向终端配置上行多时隙解调参考信号DMRS传输图样的DMRS绑定窗口大小,其中所述预定义规则为网络侧设备与终端预先约定。
第五方面,本公开实施例提供一种DMRS绑定窗口确定装置,应用于终端,包括:
确定模块,用于基于网络侧设备配置或网络侧设备与终端约定的预定义规则,确定上行多时隙解调参考信号DMRS传输图样的DMRS绑定窗口大小。
第六方面,本公开实施例提供一种DMRS绑定窗口确定装置,应用于网络侧设备,包括:
配置模块,用于基于预定义规则确定或向终端配置上行多时隙解调参考信号DMRS传输图样的DMRS绑定窗口大小,其中所述预定义规则为网络侧设备与终端预先约定。
第七方面,本公开实施例提供一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使处理器执行第一方面或第二方面所述的方法。
本公开实施例提供的DMRS绑定窗口确定方法、装置及存储介质,通过基于网络侧设备配置或网络侧设备与终端约定的预定义规则,确定上行多时隙DMRS传输图样的DMRS绑定窗口大小,实现了确定上行多时隙DMRS传输图样的时域范围,使得能够基于此设计DMRS传输图样,解决了当前的DMRS图样并不能满足多个时隙传输要求的问题,有效提升了上行信道的传输性能,增加了覆盖范围。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例中应用于终端的DMRS绑定窗口确定方法的步骤流程图;
图2为本公开实施例中应用于网络侧设备的DMRS绑定窗口确定方法的步骤流程图;
图3为本公开实施例中确定DMRS绑定窗口的示意图之一;
图4为本公开实施例中确定DMRS绑定窗口的示意图之二;
图5为本公开实施例中确定DMRS绑定窗口的示意图之三;
图6为本公开实施例中确定DMRS绑定窗口的示意图之四;
图7为本公开实施例中确定DMRS绑定窗口的示意图之五;
图8为本公开实施例中确定DMRS绑定窗口的示意图之六;
图9为本公开实施例中终端的结构示意图;
图10为本公开实施例中网络侧设备的结构示意图;
图11为本公开实施例中应用于终端的DMRS绑定窗口确定装置的模块框图;
图12为本公开实施例中应用于网络侧设备的DMRS绑定窗口确定装置的模块框图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,并不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
目前上行传输的DMRS图样(DMRS pattern)是按照半静态配置的方式以时隙(slot)为单位进行确定的。也即在DMRS图样设计之初,其目的均是满足上行数据在一个时隙内的传输性能。当上行数据在多个时隙上进行传输时,当前的DMRS图样并不能满足多个时隙传输的要求。当上行数据在连续多个时隙内传输时,为了达到最优的传输性能,需要以多个时隙为粒度设计DMRS,从而达到信道估计精度与DMRS资源开销间的平衡。
目前系统中的DMRS设计均以时隙为单位,当需要以多个连续时隙为单位设计DMRS时,无法提供相应的指示,从而使得根据信道传输状况选择在多个连续时隙上合适的DMRS图样的方法无法实现。
因此,本公开实施例提供一种DMRS绑定窗口确定方法、装置及存储 介质,以解决当前的DMRS图样并不能满足多个时隙传输要求的问题。
其中,方法和装置是基于同一申请构思的,由于方法和装置解决问题的原理相似,因此装置和方法的实施可以相互参见,重复之处不再赘述。
本公开实施例提供的技术方案可以适用于多种系统,尤其是5G系统。例如适用的系统可以是全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)通用分组无线业务(general packet radio service,GPRS)系统、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统、高级长期演进(long term evolution advanced,LTE-A)系统、通用移动系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)系统、5G新空口(New Radio,NR)系统等。这多种系统中均包括终端设备和网络设备。系统中还可以包括核心网部分,例如演进的分组系统(Evloved Packet System,EPS)、5G系统(5GS)等。
本公开实施例涉及的终端设备,可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备等。在不同的系统中,终端设备的名称可能也不相同,例如在5G系统中,终端设备可以称为用户设备(User Equipment,UE)。无线终端设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网(Core Network,CN)进行通信,无线终端设备可以是移动终端设备,如移动电话(或称为“蜂窝”电话)和具有移动终端设备的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiated Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端设备也可以称为系统、 订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、用户装置(user device),本公开实施例中并不限定。由于终端设备与其它网络设备(例如核心网设备、接入网设备(即网络侧设备))一起构成一个可支持通信的网络,在本发明中,终端设备也视为一种网络设备。
本公开实施例涉及的网络设备,可以是网络侧设备,该网络侧设备可以包括多个为终端提供服务的小区。根据具体应用场合不同,网络侧设备又可以称为接入点,或者可以是接入网中在空中接口上通过一个或多个扇区与无线终端设备通信的设备,或者其它名称。网络设备可用于将收到的空中帧与网际协议(Internet Protocol,IP)分组进行相互更换,作为无线终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)通信网络。网络设备还可协调对空中接口的属性管理。例如,本公开实施例涉及的网络设备可以是全球移动通信系统(Global System for Mobile communications,GSM)或码分多址接入(Code Division Multiple Access,CDMA)中的网络设备(Base Transceiver Station,BTS),也可以是带宽码分多址接入(Wide-band Code Division Multiple Access,WCDMA)中的网络设备(NodeB),还可以是长期演进(long term evolution,LTE)系统中的演进型网络设备(evolutional Node B,eNB或e-NodeB)、5G网络架构(next generation system)中的5G网络侧设备(gNB),也可以是家庭演进网络侧设备(Home evolved Node B,HeNB)、中继节点(relay node)、家庭网络侧设备(femto)、微微网络侧设备(pico)等,本公开实施例中并不限定。在一些网络结构中,网络设备可以包括集中单元(centralized unit,CU)节点和分布单元(distributed unit,DU)节点,集中单元和分布单元也可以地理上分开布置。
此外,应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本公开的至少一个实施例中。 因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。
下面对本公开进行具体说明。
如图1所示,为本公开实施例中应用于终端的DMRS绑定窗口确定方法的步骤流程图,该方法包括如下步骤:
步骤101:基于网络侧设备配置或网络侧设备与终端约定的预定义规则,确定上行多时隙DMRS传输图样的DMRS绑定窗口大小。
具体的,多时隙DMRS传输图样指以多个时隙为单位设计的DMRS传输图样。
在本步骤中,终端可以基于网络侧设备的配置,确定上行多时隙DMRS传输图样的DMRS绑定窗口大小,或基于与网络侧设备约定的预定义规则,确定上行多时隙DMRS传输图样的DMRS绑定窗口大小,从而实现了确定上行多时隙DMRS传输图样的时域范围,使得能够基于此设计DMRS传输图样,解决了当前的DMRS图样并不能满足多个时隙传输要求的问题,有效提升了上行信道的传输性能,增加了覆盖范围。
可选地,在本实施例中,基于网络侧设备与终端约定的预定义规则,确定上行多时隙DMRS传输图样的DMRS绑定窗口大小时,可以通过下述任意一项方式:
方式一:基于上行信道传输的重复次数,确定DMRS绑定窗口大小。
在该方式中,将DMRS绑定窗口的大小与上行信道传输的重复次数向关联,即与上行信道重复传输所占用的传输时间间隔(TTI)个数相关联。
此时,基于上行信道传输的重复次数,确定DMRS绑定窗口大小时,可以通过下述任意一项进行确定:
(1)将重复次数确定为DMRS绑定窗口大小。
具体的,可以直接将上行信道传输的重复次数直接确定为DMRS绑定窗口大小,即DMRS绑定窗口大小与行信道传输的重复次数相同。
此外,具体的,重复次数可以通过无线资源控制(简称RRC)信令半静 态指示或通过下行控制信息(DCI)中的相关信息域进行指示。
(2)当重复次数大于预设次数门限值时,将预设次数门限值确定为DMRS绑定窗口大小,且当重复次数小于预设次数门限值时,将重复次数确定为DMRS绑定窗口大小。
具体的,本实施例可以设置重复次数的次数门限值,当上行信道传输的重复次数大于次数门限值时,可以将较小的次数门限值确定为DMRS绑定窗口大小,并当上行信道传输的重复次数小于次数门限值时,将较小的重复次数R确定为DMRS绑定窗口大小,从而保证所确定的DMRS绑定窗口大小的有效性。
需要说明的是,所述预设次数门限值可通过网络侧设备发送的显式信令进行指示,也可以通过协议预定义的方式确定,或者与终端能力相关,本公开不做具体限定。
(3)通过DMRS绑定窗口大小与重复次数之间的预设函数关系,确定DMRS绑定窗口大小。
具体的,可以预先定义DMRS绑定窗口大小与重复次数之间的预设函数关系,然后通过重复次数基于该预设函数关系隐式推导出DMRS绑定窗口大小。
例如,预设函数关系可以为DMRS bundling size=floor(repetition number/N),其中N为大于1的正整数,repetition number表示重复次数。
这样通过上述任一项均实现了通过上行信道传输的重复次数确定DMRS绑定窗口大小。
方式二:当确定开启在多时隙上传输一个传输块的功能时,基于传输一个传输块的时隙个数,确定DMRS绑定窗口大小。
在该方式中,可以将DMRS绑定窗口大小与上行信道传输的多时隙指示(multi-slot indication)进行关联,也即与是否开启在多个时隙上传输一个传输块这个功能进行关联。
具体的,当确定开启在多时隙上传输一个传输块的功能时,基于传输一个传输块的时隙个数,确定DMRS绑定窗口大小,此时可以通过下述任意一 项进行确定:
(1)将传输一个传输块的时隙个数确定为DMRS绑定窗口大小。
具体的,可以直接将传输一个传输块的时隙个数确定为DMRS绑定窗口大小,即DMRS绑定窗口大小与传输一个传输块的时隙个数相同。
(2)当时隙个数大于预设个数门限值时,将预设个数门限值确定为DMRS绑定窗口大小,且当时隙个数小于预设个数门限值时,将时隙个数确定为DMRS绑定窗口大小。
具体的,本实施例可以设置传输一个传输块的时隙个数的个数门限值,当传输一个传输块的时隙个数大于个数门限值时,可以将较小的个数门限值确定为DMRS绑定窗口大小,并当传输一个传输块的时隙个数小于个数门限值时,将较小的时隙个数确定为DMRS绑定窗口大小,从而保证所确定的DMRS绑定窗口大小的有效性。
需要说明的是,所述预设个数门限值可通过网络侧设备发送的显式信令进行指示,也可以通过协议预定义的方式确定,或者与终端能力相关,本公开不做具体限定。
(3)通过DMRS绑定窗口大小与时隙个数之间的预设函数关系,确定DMRS绑定窗口大小。
具体的,可以预先定义DMRS绑定窗口大小与传输一个传输块的时隙个数之间的预设函数关系,然后通过时隙个数隐式推导出DMRS绑定窗口大小。
这样通过上述任一项均实现了通过传输一个传输块的时隙个数确定DMRS绑定窗口大小。
方式三:通过预定义方式,确定DMRS绑定窗口大小。
具体的,DMRS绑定窗口大小可以通过预定义方式进行确定,此时通过预定义方式确定DMRS绑定窗口大小时,可以包括下述方式进行预定义:
基于终端类型所支持的DMRS绑定窗口大小,预定义所述DMRS绑定窗口大小;或者,
基于终端能力所支持的DMRS绑定窗口大小,预定义所述DMRS绑定窗 口大小。
具体的,不同类型的终端支持不同大小的DMRS绑定窗口,因此本实施例中终端可以基于终端类型预定义DMRS绑定窗口大小。
此外,不同能力的终端支持不同大小的DMRS绑定窗口,同样本实施例中终端可以基于终端能力预定义DMRS绑定窗口大小。在此需要说明的是,此时需要将终端能力上报给网络侧设备。
这样通过方式实现了对DMRS绑定窗口大小的预定义。
上述实施例使得终端能够基于预定义规则,即基于上行信道传输的重复次数、传输一个传输块的时隙个数或预定义的方式,确定DMRS绑定窗口大小。
在此需要说明的是,在本实施例中,终端还可以基于终端能力确定终端是否具有DMRS绑定的能力,当确定终端具有DMRS绑定的能力时,再执行确定DMRS绑定窗口大小的步骤。
当然,当确定终端不具有DMRS绑定的能力时,不再需要确定DMRS绑定窗口的大小。
此外,终端还需要向网络侧设备发送终端能力信息,其中终端能力信息中携带有用于指示终端是否具有DMRS绑定的能力的信息,从而使得网络侧设备能够基于该终端能力信息判断终端是否具有DMRS绑定的能力,如果确定终端有该DMRS绑定的能力,则网络侧设备确定在所确定的DMRS绑定窗口内检测接收DMRS并做联合信道估计,否则不再需要确定DMRS绑定窗口。
另外,可选地,在本实施例中,终端基于网络侧设备配置,确定上行多时隙DMRS传输图样的DMRS绑定窗口大小时,可以接收网络侧设备通过RRC信令或DCI所配置的指示信息,其中指示信息中携带有DMRS绑定窗口大小,然后基于指示信息,确定DMRS绑定窗口大小。
具体的,DMRS绑定窗口大小可以通过RRC信令或DCI中的显示比特进行指示。
当然,当DMRS绑定窗口大小小于或等于上行传输所占的传输时间间隔TTI个数时生效。
此外,上述指示DMRS绑定窗口大小的DCI为终端专属(UE-specific)DCI或公共DCI,且指示信息通过UE-specific DCI中的显示比特位或公共DCI中的保留比特位进行承载。
具体的,UE-specific DCI可以为通过小区无线网络临时标识(简称C-RNTI)或临时小区无线网络临时标识(TC-RNTI)加扰的DCI。
公共DCI为通过系统信息无线电网络临时标识符(简称SI-RNTI)、随机接入无线电网络临时标识符(简称RA-RNTI)和/或寻呼无线网络临时标识(简称P-RNTI)加扰的DCI,且DCI格式为1_0。
还需要说明的是,公共DCI中的保留字节所承载的指示信息指示一组DMRS绑定窗口大小,此时终端可以根据自身能力从中确定所采用的DMRS绑定窗口大小。
这样,通过上述方式,实现了网络侧设备对终端的DMRS绑定窗口大小的配置。
另外,可选地,在本实施例中,确定上行多时隙DMRS传输图样的DMRS绑定窗口大小之后,还需要基于时分双工(简称TDD)资源配置或无效符号对DMRS绑定窗口大小进行划分,得到最终的DMRS绑定窗口大小。
例如,所确定的DMRS绑定窗口不能包含任何下行符号(DL symbol),或者用于传输SSB/CORESET#0的半静态可变符号(flexible symbol),或者高层信令指示的无效符号(invalid symbol)。此时,则需要基于TDD资源配置或无效符号对DMRS绑定窗口大小进行划分,从而得到最终的DMRS绑定窗口大小。
另外,可选地,在本实施例中,确定上行多时隙DMRS传输图样的DMRS绑定窗口大小之后,当开启上行传输的频率跳频功能时,还需要基于频率跳频图案确定最终的DMRS绑定窗口大小。
其中,最终的DMRS绑定窗口大小小于或等于每个跳频包含的时隙个数。
具体的,若开启上行传输的频率跳频功能,则需要根据频率跳频图案进一步地确定DMRS绑定窗口大小,此时最终的DMRS绑定窗口大小小于或等 于每个跳频包含的时隙个数。
这样,本公开通过上述实施例,实现了DMRS绑定窗口大小的确定过程,从而实现了确定上行多时隙DMRS传输图样的时域范围,使得能够基于此设计DMRS传输图样,有效提升了上行信道的传输性能,增加了覆盖范围。
如图2所示,为本公开实施例中应用于网络侧设备的DMRS绑定窗口确定方法的步骤流程图,该方法包括如下步骤:
步骤201:基于预定义规则确定或向终端配置上行多时隙DMRS传输图样的DMRS绑定窗口大小。
其中,预定义规则为网络侧设备与终端预先约定。
在本步骤中,网络侧设备可以基于网络侧设备与终端预先约定的预定义规则确定上行多时隙DMRS传输图样的DMRS绑定窗口大小,或者向终端配置上行多时隙DMRS传输图样的DMRS绑定窗口大小,使得网络侧设备和终端均能够确定上行多时隙DMRS传输图样的DMRS绑定窗口大小,从而实现了确定上行多时隙DMRS传输图样的时域范围,使得能够基于此设计DMRS传输图样,解决了当前的DMRS图样并不能满足多个时隙传输要求的问题,有效提升了上行信道的传输性能,增加了覆盖范围。
可选地,在本实施例中,基于预定义规则确定上行多时隙DMRS传输图样的DMRS绑定窗口大小时,可以通过下述任意一项方式:
方式一:基于上行信道传输的重复次数,确定DMRS绑定窗口大小。
此时,基于上行信道传输的重复次数,确定DMRS绑定窗口大小时,可以通过下述任意一项进行确定:
(1)将重复次数确定为DMRS绑定窗口大小。
具体的,在该项中,还需要通过RRC信令半静态配置或通过DCI中的相关信息域,将重复次数指示给终端。
(2)当重复次数大于预设次数门限值时,将预设次数门限值确定为DMRS绑定窗口大小,且当重复次数小于预设次数门限值时,将重复次数确定为DMRS绑定窗口大小。
(3)通过DMRS绑定窗口大小与重复次数之间的预设函数关系,确 定DMRS绑定窗口大小。
方式二:当确定开启在多时隙上传输一个传输块的功能时,基于传输一个传输块的时隙个数,确定DMRS绑定窗口大小。
具体的,当确定开启在多时隙上传输一个传输块的功能时,基于传输一个传输块的时隙个数,确定DMRS绑定窗口大小,此时可以通过下述任意一项进行确定:
(1)将传输一个传输块的时隙个数确定为DMRS绑定窗口大小。
(2)当时隙个数大于预设个数门限值时,将预设个数门限值确定为DMRS绑定窗口大小,且当时隙个数小于预设个数门限值时,将时隙个数确定为DMRS绑定窗口大小。
(3)通过DMRS绑定窗口大小与时隙个数之间的预设函数关系,确定DMRS绑定窗口大小。
方式三:通过预定义方式,确定DMRS绑定窗口大小。
具体的,DMRS绑定窗口大小可以通过预定义方式进行确定,此时通过预定义方式确定DMRS绑定窗口大小时,可以包括下述方式进行预定义:
基于终端类型所支持的DMRS绑定窗口大小,预定义所述DMRS绑定窗口大小;或者,
基于终端能力所支持的DMRS绑定窗口大小,预定义所述DMRS绑定窗口大小。
上述实施例使得网络侧设备能够基于预定义规则,确定DMRS绑定窗口大小,且具体介绍可以参见终端侧相关内容,在此不再进行具体赘述。
在此需要说明的是,在本实施例中,网络侧设备还可以接收终端发送的终端能力信息,其中终端能力信息中携带有用于指示终端是否具有DMRS绑定的能力的信息,当基于终端能力信息确定终端具有DMRS绑定的能力时,确定DMRS绑定窗口大小。
当然在此需要说明的是,当网络侧设备基于终端能力信息确定终端不具有DMRS绑定的能力时,不再确定DMRS绑定窗口大小。
另外,可选地,在本实施例中,网络侧设备向终端配置上行多时隙DMRS 传输图样的DMRS绑定窗口大小时,可以通过RRC信令或DCI向终端发送指示信息,其中指示信息中携带有DMRS绑定窗口大小。
当然,当DMRS绑定窗口大小小于或等于上行传输所占的传输时间间隔TTI个数时生效。
此外,上述指示DMRS绑定窗口大小的DCI为UE-specific DCI或公共DCI,且指示信息通过UE-specific DCI中的显示比特位或公共DCI中的保留比特位进行承载。
具体的,UE-specific DCI可以为通过小区无线网络临时标识(简称C-RNTI)或临时小区无线网络临时标识(TC-RNTI)加扰的DCI。
公共DCI为通过系统信息无线电网络临时标识符(简称SI-RNTI)、随机接入无线电网络临时标识符(简称RA-RNTI)和/或寻呼无线网络临时标识(简称P-RNTI)加扰的DCI,且DCI格式为1_0。
还需要说明的是,公共DCI中的保留字节所承载的指示信息指示一组DMRS绑定窗口大小,此时终端可以根据自身能力从中确定所采用的DMRS绑定窗口大小。
这样,通过上述方式,实现了网络侧设备对终端的DMRS绑定窗口大小的配置。
另外,可选地,在本实施例中,网络侧设备还需要基于时分双工(简称TDD)资源配置或无效符号对DMRS绑定窗口大小进行划分,得到最终的DMRS绑定窗口大小。
另外,可选地,在本实施例中,当开启上行传输的频率跳频功能时,还需要基于频率跳频图案确定最终的DMRS绑定窗口大小。
其中,最终的DMRS绑定窗口大小小于或等于每个跳频包含的时隙个数。
在此需要说明的,关于上述实施例的具体介绍可以参见终端侧方法相关内容,在此不再对此进行具体介绍。
下面通过具体实施例对本公开进行具体说明。
第一实施例:
假设网络中存在部分终端需要进行上行覆盖增强。上行信道/信号至少包括PUSCH和/或PUCCH。本实施例中假设上行覆盖增强方案包括在多个时隙上处理TB或者跨时隙的DMRS bundling。当然,本公开不排除任何其他的时域增强方案。为了实现最优的上行传输性能,需要定义基于多个时隙的DMRS传输图样。进一步地,首先需要确定DMRS定义的时域范围(多时隙DMRS图样基于多大的时域范围进行定义,例如N个slot),也即DMRS绑定窗口(DMRS bundling window)。
在本实施例中,所述DMRS bundling window与上行信道传输的重复次数(repetition number)绑定,也即与所述上行信道重复传输所占用的TTI个数绑定。DMRS bundling window的大小与repetition指示的slot number相同。具体的,假设网络侧设备通过半静态配置(针对PUCCH以及PUSCH)或者DCI中的TDRA域指示(仅针对PUSCH)指示终端进行上行传输时的重复次数为R,本实施例假设R=4。则此时DMRS bundling window的大小与repetition number相同,也即在时域上占据4个时隙。
根据repetition number确定DMRS bundling window之后,需要根据invalid symbol(即不能用于上行传输的symbol)进一步的对所述DMRS bundling进行划分。下图给出了三种不同的应用场景,即:
(1)PUSCH/PUCCH连续传输场景。如图3所示,在此场景下,PUSCH和PUCCH在连续的时隙上进行数据的传输(transmission),没有因为无效符号(invalid symbol)而导致的丢弃(drop)或者延迟传输。此时,DMRS bundling window的大小与repetition number数目相同。在本实施例中,结合上行授权(UL grant),repetition包括R#1、R#2、R#3和R#4,所述DMRS bundling window size=4,且包括时隙slot#n+3至slot#n+6。
(2)PUSCH不连续传输场景。在此场景下,部分PUSCH repetition由于与invalid symbols发生冲突,所述PUSCH repetition被drop。如图4所示,repetition数目为4,结合UL grant,包括R#1、R#2、R#3和R#4,其中第三个repetition R#3与invalid symbol发生冲突从而被drop,从而只有3个repetition,且被invalid symbol分为两部分(第一部分包含连续两个PUSCH 传输,第二部分只包含一个PUSCH传输)。在此场景下,通过repetition number和invalid symbol确定了两个DMRS bundling window,即Sub-W#1(包含两个slot)和Sub-W#2(包含一个slot)。
(3)PUCCH不连续传输场景。在此场景下,部分PUCCH repetition用于与invalid symbol发生冲突,需要向后延迟(delay)至可传输PUCCH的slot上进行传输。如图5所示,repetition数目为4,其中slot#n+5,slot#n+6,slot#n+7为下行子帧,因此不能用于PUCCH的传输,需要往后delay(在此例中,第三和第四个PUCCH repetition延迟到slot#n+8和slot#n+9上传输)。在此场景下,通过repetition number和invalid symbol确定了两个DMRS bundling window,即Sub-W#1(包含两个slot)和Sub-W#2(包含两个slot)。
第二实施例:
在本实施例中,所述DMRS bundling window与上行信道传输的重复次数绑定,也即与所述上行信道重复传输所占用的TTI个数绑定。在确定DMRS bundling window大小时,需要考虑repetition次数,并考虑所述repetition次数与预设次数门限的关系,最终确定实际的DMRS bundling window的大小。所述预设次数门限可通过网络侧设备发送的显式信令进行指示,也可以通过协议预定义的方式确定,或者与终端能力相关,本公开不做任何限定。
在本实施例中,如图6所示,假设repetition number R=8(包括R#1至R#8),门限值T=4。由于R>4,则DMRS bundling window size由门限值T确定,即为4。再如图7所示,假设Repetition number R=2(包括R#1和R#2),T=4。由于R<4,则DMRS bundling window size由实际的R确定,即为2。
进一步地,在该实施例中还可以考虑invalid symbols的影响,具体方式如第一实施例所述,此处不再赘述。
第三实施例:
在本实施例中,所述DMRS bundling window与上行信道传输的重复次数绑定,也即与所述上行信道重复传输所占用的TTI个数绑定。定义与Repetition number的函数关系,通过repetition number隐式的推导出DMRS bundling size,例如DMRS bundling size=floor(repetition number/N),其中N为大于1的正整 数。本实施例中假设N=2。
进一步地,可假设该函数只会应用于重复次数R>8的场景,也即,有如下函数关系确定DMRS bundling size:
Figure PCTCN2021135718-appb-000001
在本实施例中,假设N=2且门限值T=8。假设实际的重复传输次数为4,则按照如上公式,DMRS bundling window大小为4。再假设实际的重复传输次数为16,则按照如上公式,DMRS bundling window大小为8。其中T可与终端能力相关,或者可以通过基站发送的显式信令进行配置,或者协议预定义的方式确定,本实施例在此不做任何限定。
进一步地,在该实施例中还可以考虑invalid symbols的影响,具体方式如第一实施例所述,此处不再赘述。
第四实施例:
网络侧设备可根据终端上报的能力信息确定是否定义、确定或者指示DMRS bundling window。例如具有UE capability#A的终端,当开启了Repetition传输时,会根据网络侧设备通知的显式信令或者隐式的方式确定DMRS bundling window大小;不具有capability#A的终端,会忽略网络侧设备的相关指示,只会以slot为粒度确定DMRS pattern。
第五实施例:
当终端需要在多个slot上传输一个TB时,也即TB processing on multi-slot的场景,所述DMRS bundling window与上行信道传输的multi-slot indication绑定,也即与是否开启了在多个slot上传输一个TB这个功能绑定。
此时DMRS bundling window的具体确定方式与上述第一实施例至第四实施例的方式类型,在此不再进行具体赘述。
第六实施例:
本实施例中,DMRS bundling window大小通过预定义的方式确定。例如通过协议预定义一种或者几种不同大小的DMRS bundling window。终端可根据自身类型或者能力确定所述DMRS bundling window的大小。具体的,
不同类型的终端支持不同大小的DMRS bundling window,例如RedCap 终端,CE终端,normal终端支持不同大小的DMRS bundling window。
或者,不同能力的终端支持不同大小的DMRS bundling window。例如某种类型的终端可以上报自身能力,不同的终端能力对应不同大小的DMRS bundling window。
需要说明的是,上述DMRS bundling window只会在上行传输在多个时隙上传输时生效。
进一步地,在该实施例中还可以考虑invalid symbols的影响,具体方法如第一实施例所述,此处不再赘述。
第七实施例:
在本实施例中,所述DMRS bundling window大小通过RRC信令(signaling)进行显式配置。终端接收到所述RRC signaling携带的DMRS bundling window大小指示信息后,按照所述指示信息确定DMRS bundling window大小。在本实施例中,假设基站在UE-dedicated RRC signaling中携带N bits指示信息指示DMRS bundling window的大小。假设N=2bits。则所述指示信令与DMRS bundling window的对应关系如下表所示:
DMRS bundling window size indication DMRS bundling window size
00 DMRS bundling is not allowed
01 DMRS bundling window size=2
10 DMRS bundling window size=3
11 DMRS bundling window size=4
需要注意的是,如上表格仅提供一个可能性的例子,并不严格的要求RRC signaling中携带的bits指示信息与DMRS bundling window size存在如上一一对应的关系。本公开亦不排除其他大小的指示域。
进一步地,所述RRC signaling指示DMRS bundling window只会在bundling window大小小于等于上行传输所占的TTI个数时生效。例如上行传输占据4个时隙,而RRC配置的DMRS bundling window size为8,则此时DMRS bundling window不生效。
进一步地,如上方式需要考虑TDD configuration或者invalid symbol  pattern确定最终的DMRS bundling window大小,具体方式与第一实施例中的方法类似,本公开不做任何限定。
进一步地,该实施例可与第一实施例至第三实施例中的任意方法进行组合,例如考虑门限,或者映射函数等,本公开不做任何限定。
第八实施例:
在本实施例中,网络侧设备通过DCI中的显式bit指示所述DMRS bundling window的大小。所述携带DMRS bundling window大小指示信息的DCI为UE-specific DCI。所述UE-specific DCI的CRC通过C-RNTI或者TC-RNTI加扰。
当所述DCI的CRC通过C-RNTI进行加扰时,所述DCI的为调度PUSCH传输的DCI format 0_1和/或DCI format 0_2,或者为指示PUCCH传输的DCI format 1_1和/或DCI format 1_2。在其中增加N bits的DMRS bundling window size indication域,N为正整数。
在本实施例中,假设N=2bits,则可用于指示4种不同大小的DMRS bundling size。
当所述DCI的CRC通过TC-RNTI进行加扰时,所述DCI的为调度msg3传输的DCI format 0_0或者调度msg4传输的DCI format 1_0。
当所述DCI为调度msg3传输的DCI format 0_0时,使用预留(reserved)的bit field中的N bits指示该终端的DMRS bundling window size。所述reserved bit field包括NDI以及HPN field。
当所述DCI为调度msg4传输的DCI format 1_0时,使用reserved的bit field中的N bits指示该终端的DMRS bundling window size。所述reserved bit field包括DAI field。
需要注意的是,采用所述reserved bits中的多少bit,以及所述bit指示的DMRS bundling window的大小本公开并不做任何限制。
进一步地,该实施例方案可与第一实施例至第七实施例中的任意方案组合使用,本公开并不做任何限定,例如考虑invalid symbols,设置门限T等。
第九实施例:
在本实施例中,基站通过DCI中的显式bit指示所述DMRS bundling window的大小。所述携带DMRS bundling window大小指示信息的DCI为公共DCI,即用于调度broadcast数据的DCI,所述DCI的CRC通过SI-RNTI和/或RA-RNTI和/或P-RNTI,格式为DCI format 1_0。
利用所述DCI中的reserved bits指示一个或者一组DMRS bundling window的大小。当指示一组DMRS bundling window时,采用bitmap的方式进行指示,bitmap中的bit位为1时表示对应的DMRS bundling window大小生效,0表示不生效。所述bitmap与DMRS bundling window的对应关系通过协议预定义的方式确定。终端根据自身能力在所述一组DMRS bundling window中确定实际使用的DMRS bundling window大小。
进一步地,该实施例方案可与第一实施例至第七实施例中的任意方案组合使用,本公开并不做任何限定,例如考虑invalid symbols,设置门限T等。
第十实施例:
当上行传输开启了频域跳频功能时,通过如上第一至第十实施例中的任意方法确定了DMRS bundling window大小后,需要进一步根据频率调频图案(frequency hopping pattern)确定最终的DMRS bundling window大小。具体地,所述最终的DMRS bundling window与每个跳频(hop)内包含的时隙个数相同。在本实施例中,如图8所示,假设由前述方法获得的DMRS bundling window大小为4个slot(slot#n+3至slot#n+6),且开启了frequency hopping功能,假设每个hop(包括Hop#1和Hop#2)包含连续的两个时隙,则在此场景下,最终的DMRS绑定窗口(actual DMRS bundling window)大小为2个时隙。
通过上述任一实施例,均实现了对DMRS绑定窗口大小的确定,使得能够根据该DMRS绑定窗口大小设计多时隙的DMRS传输图案,从而使得能够实现最优的上行传输性能。
图9是本公开实施例提供的一种终端的结构示意图。如图9所示,终端900包括存储器902,收发机903和处理器901;其中,处理器901与存储器902也可以物理上分开布置。
存储器902,用于存储计算机程序;收发机903,用于在处理器901的控制下收发数据。
其中,在图9中,总线系统904可以包括任意数量的互联的总线和桥,具体由处理器901代表的一个或多个处理器和存储器902代表的存储器的各种电路链接在一起。总线系统904还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机903可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元,这些传输介质包括,这些传输介质包括无线信道、有线信道、光缆等传输介质。针对不同的用户设备,用户接口905还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器901负责管理总线架构和通常的处理,存储器902可以存储处理器901在执行操作时所使用的数据。
可选的,处理器901可以是中央处埋器(CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD),处理器也可以采用多核架构。
处理器901通过调用存储器902存储的计算机程序,用于按照获得的可执行指令执行本公开实施例提供的任一所述方法,例如:
基于网络侧设备配置或网络侧设备与终端约定的预定义规则,确定上行多时隙解调参考信号DMRS传输图样的DMRS绑定窗口大小。
可选地,基于网络侧设备与终端约定的预定义规则,确定上行多时隙DMRS传输图样的DMRS绑定窗口大小,包括下述任意一项:
基于上行信道传输的重复次数,确定所述DMRS绑定窗口大小;
当确定开启在多时隙上传输一个传输块的功能时,基于传输一个传输块的时隙个数,确定所述DMRS绑定窗口大小;
通过预定义方式,确定所述DMRS绑定窗口大小。
可选地,所述基于上行信道传输的重复次数,确定所述DMRS绑定窗口大小,包括下述任意一项:
将所述重复次数确定为所述DMRS绑定窗口大小;
当所述重复次数大于预设次数门限值时,将所述预设次数门限值确定为所述DMRS绑定窗口大小,且当所述重复次数小于预设次数门限值时,将所述重复次数确定为所述DMRS绑定窗口大小;
通过所述DMRS绑定窗口大小与所述重复次数之间的预设函数关系,确定所述DMRS绑定窗口大小。
可选地,所述重复次数通过无线资源控制RRC信令半静态指示或通过下行控制信息DCI中的相关信息域进行指示。
可选地,所述基于传输一个传输块的时隙个数,确定所述DMRS绑定窗口大小,包括下述任意一项:
将传输一个传输块的时隙个数确定为所述DMRS绑定窗口大小;
当所述时隙个数大于预设个数门限值时,将所述预设个数门限值确定为所述DMRS绑定窗口大小,且当所述时隙个数小于预设个数门限值时,将所述时隙个数确定为所述DMRS绑定窗口大小;
通过所述DMRS绑定窗口大小与所述时隙个数之间的预设函数关系,确定所述DMRS绑定窗口大小。
可选地,所述通过预定义方式,确定所述DMRS绑定窗口大小,包括:
基于终端类型所支持的DMRS绑定窗口大小,预定义所述DMRS绑定窗口大小;或者,
基于终端能力所支持的DMRS绑定窗口大小,预定义所述DMRS绑定窗口大小。
可选地,还包括:
基于终端能力确定终端是否具有DMRS绑定的能力;
当确定所述终端具有DMRS绑定的能力时,确定所述DMRS绑定窗口大小。
可选地,还包括:
向所述网络侧设备发送终端能力信息,其中所述终端能力信息中携带有用于指示终端是否具有DMRS绑定的能力的信息。
可选地,基于网络侧设备配置,确定上行多时隙DMRS传输图样的DMRS绑定窗口大小,包括:
接收所述网络侧设备通过RRC信令或DCI所配置的指示信息,其中所述指示信息中携带有所述DMRS绑定窗口大小;
基于所述指示信息,确定所述DMRS绑定窗口大小。
可选地,当所述DMRS绑定窗口大小小于或等于上行传输所占的传输时间间隔TTI个数时生效。
可选地,所述DCI为终端专属UE-specific DCI或公共DCI,且所述指示信息通过所述UE-specific DCI中的显示比特位或公共DCI中的保留比特位进行承载。
可选地,所述UE-specific DCI为通过小区无线网络临时标识C-RNTI或临时小区无线网络临时标识TC-RNTI加扰的DCI。
可选地,所述公共DCI为通过系统信息无线电网络临时标识符SI-RNTI、随机接入无线电网络临时标识符RA-RNTI和/或寻呼无线网络临时标识P-RNTI加扰的DCI,且所述DCI格式为1_0。
可选地,所述公共DCI中的保留字节所承载的指示信息指示一组DMRS绑定窗口大小。
可选地,所述确定上行多时隙解调参考信号DMRS传输图样的DMRS绑定窗口大小之后,还包括:
基于时分双工TDD资源配置或无效符号对所述DMRS绑定窗口大小进行划分,得到最终的DMRS绑定窗口大小。
可选地,所述确定上行多时隙解调参考信号DMRS传输图样的DMRS绑定窗口大小之后,还包括:
当开启上行传输的频率跳频功能时,基于频率跳频图案确定最终的DMRS绑定窗口大小;
其中,所述最终的DMRS绑定窗口大小小于或等于每个跳频包含的时隙 个数。
本公开实施例提供的终端,通过确定上行多时隙DMRS传输图样的DMRS绑定窗口大小,使得能够根据该DMRS绑定窗口大小设计多时隙的DMRS传输图案,从而使得能够实现最优的上行传输性能。
图10为本公开实施例提供的网络侧设备结构示意图,如图10所示,该网络设备1000包括存储器1002,收发机1003,处理器1001:其中,处理器1001与存储器1002也可以物理上分开布置。
存储器1002,用于存储计算机程序;收发机1003,用于在处理器1001的控制下收发数据。
具体地,其中,在图10中,总线系统1004可以包括任意数量的互联的总线和桥,具体由处理器1001代表的一个或多个处理器和存储器1002代表的存储器的各种电路链接在一起。总线系统1004还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1003可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元,这些传输介质包括无线信道、有线信道、光缆等传输介质。处理器1001负责管理总线架构和通常的处理,存储器1002可以存储处理器1001在执行操作时所使用的数据。
处理器1001可以是中央处埋器(CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD),处理器也可以采用多核架构。
处理器1001通过调用存储器1002存储的计算机程序,用于按照获得的可执行指令执行本公开实施例提供的任一所述方法,例如:
基于预定义规则确定或向终端配置上行多时隙解调参考信号DMRS传输图样的DMRS绑定窗口大小,其中所述预定义规则为网络侧设备与终端预先约定。
可选地,基于预定义规则确定上行多时隙DMRS传输图样的DMRS绑定 窗口大小,包括下述任意一项:
基于上行信道传输的重复次数,确定所述DMRS绑定窗口大小;
当确定开启在多时隙上传输一个传输块时,基于传输一个传输块的时隙个数,确定所述DMRS绑定窗口大小;
通过预定义方式,确定所述DMRS绑定窗口大小。
可选地,所述基于上行信道传输的重复次数,确定所述DMRS绑定窗口大小,包括下述任意一项:
将所述重复次数确定为所述DMRS绑定窗口大小;
当所述重复次数大于预设次数门限值时,将所述预设次数门限值确定为所述DMRS绑定窗口大小,且当所述重复次数小于预设次数门限值时,将所述重复次数确定为所述DMRS绑定窗口大小;
通过所述DMRS绑定窗口大小与所述重复次数之间的预设函数关系,确定所述DMRS绑定窗口大小。
可选地,通过无线资源控制RRC信令半静态配置或通过下行控制信息DCI中的相关信息域,将所述重复次数指示给所述终端。
可选地,所述基于传输一个传输块的时隙个数,确定所述DMRS绑定窗口大小,包括下述任意一项:
将传输一个传输块的时隙个数确定为所述DMRS绑定窗口大小;
当所述时隙个数大于预设个数门限值时,将所述预设个数门限值确定为所述DMRS绑定窗口大小,且当所述时隙个数小于预设个数门限值时,将所述时隙个数确定为所述DMRS绑定窗口大小;
通过所述DMRS绑定窗口大小与所述时隙个数之间的预设函数关系,确定所述DMRS绑定窗口大小。
可选地,所述通过预定义方式,确定所述DMRS绑定窗口大小,包括:
基于终端类型所支持的DMRS绑定窗口大小,预定义所述DMRS绑定窗口大小;或者,
基于终端能力所支持的DMRS绑定窗口大小,预定义所述DMRS绑定窗口大小。
可选地,还包括:
接收所述终端发送的终端能力信息,其中所述终端能力信息中携带有用于指示终端是否具有DMRS绑定的能力的信息;
当基于所述终端能力信息确定终端具有DMRS绑定的能力时,确定所述DMRS绑定窗口大小。
可选地,向终端配置上行多时隙DMRS传输图样的DMRS绑定窗口大小,包括:
通过RRC信令或DCI向所述终端发送指示信息,其中所述指示信息中携带有所述DMRS绑定窗口大小。
可选地,当所述DMRS绑定窗口大小小于或等于上行传输所占的传输时间间隔TTI个数时生效。
可选地,所述DCI为终端专属UE-specific DCI或公共DCI,且所述指示信息通过所述UE-specific DCI中的显示比特位或公共DCI中的保留比特位进行承载。
可选地,所述UE-specific DCI为通过小区无线网络临时标识C-RNTI或临时小区无线网络临时标识TC-RNTI加扰的DCI。
可选地,所述公共DCI为通过系统信息无线电网络临时标识符SI-RNTI、随机接入无线电网络临时标识符RA-RNTI和/或寻呼无线网络临时标识P-RNTI加扰的DCI,且所述DCI格式为1_0。
可选地,所述公共DCI中的保留字节所承载的指示信息指示一组DMRS绑定窗口大小。
可选地,还包括:
基于时分双工TDD资源配置或无效符号对所述DMRS绑定窗口大小进行划分,得到最终的DMRS绑定窗口大小。
可选地,还包括:
当开启上行传输的频率跳频功能时,基于频率跳频图案确定最终的DMRS绑定窗口大小;
其中,所述最终的DMRS绑定窗口大小小于或等于每个跳频包含的时隙 个数。
本公开实施例提供的网络侧设备,通过确定上行多时隙DMRS传输图样的DMRS绑定窗口大小,使得能够根据该DMRS绑定窗口大小设计多时隙的DMRS传输图案,从而使得能够实现最优的上行传输性能。
在此需要说明的是,本公开实施例提供的上述终端和网络侧设备,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
图11是本公开实施例提供的一种DMRS绑定窗口装置的模块框图,该装置应用于终端,该装置包括:
确定模块1101,用于基于网络侧设备配置或网络侧设备与终端约定的预定义规则,确定上行多时隙解调参考信号DMRS传输图样的DMRS绑定窗口大小。
可选地,所述确定模块,用于执行下述任意一项:
第一确定子模块,用于基于上行信道传输的重复次数,确定所述DMRS绑定窗口大小;
第二确定子模块,用于当确定开启在多时隙上传输一个传输块的功能时,基于传输一个传输块的时隙个数,确定所述DMRS绑定窗口大小;
第三确定子模块,用于通过预定义方式,确定所述DMRS绑定窗口大小。
可选地,所述第一确定子模块用于执行下述任意一项:
将所述重复次数确定为所述DMRS绑定窗口大小;
当所述重复次数大于预设次数门限值时,将所述预设次数门限值确定为所述DMRS绑定窗口大小,且当所述重复次数小于预设次数门限值时,将所述重复次数确定为所述DMRS绑定窗口大小;
通过所述DMRS绑定窗口大小与所述重复次数之间的预设函数关系,确定所述DMRS绑定窗口大小。
可选地,所述重复次数通过无线资源控制RRC信令半静态指示或通过下行控制信息DCI中的相关信息域进行指示。
可选地,所述第二确定子模块用于执行下述任意一项:
将传输一个传输块的时隙个数确定为所述DMRS绑定窗口大小;
当所述时隙个数大于预设个数门限值时,将所述预设个数门限值确定为所述DMRS绑定窗口大小,且当所述时隙个数小于预设个数门限值时,将所述时隙个数确定为所述DMRS绑定窗口大小;
通过所述DMRS绑定窗口大小与所述时隙个数之间的预设函数关系,确定所述DMRS绑定窗口大小。
可选地,所述第三确定子模块具体用于:
基于终端类型所支持的DMRS绑定窗口大小,预定义所述DMRS绑定窗口大小;或者,
基于终端能力所支持的DMRS绑定窗口大小,预定义所述DMRS绑定窗口大小。
可选地,还包括:
判断模块,用于基于终端能力确定终端是否具有DMRS绑定的能力;当确定所述终端具有DMRS绑定的能力时,确定所述DMRS绑定窗口大小。
可选地,还包括:
发送模块,用于向所述网络侧设备发送终端能力信息,其中所述终端能力信息中携带有用于指示终端是否具有DMRS绑定的能力的信息。
可选地,所述确定模块具体用于,
接收所述网络侧设备通过RRC信令或DCI所配置的指示信息,其中所述指示信息中携带有所述DMRS绑定窗口大小;基于所述指示信息,确定所述DMRS绑定窗口大小。
可选地,当所述DMRS绑定窗口大小小于或等于上行传输所占的传输时间间隔TTI个数时生效。
可选地,所述DCI为终端专属UE-specific DCI或公共DCI,且所述指示信息通过所述UE-specific DCI中的显示比特位或公共DCI中的保留比特位进行承载。
可选地,所述UE-specific DCI为通过小区无线网络临时标识C-RNTI或临时小区无线网络临时标识TC-RNTI加扰的DCI。
可选地,所述公共DCI为通过系统信息无线电网络临时标识符SI-RNTI、随机接入无线电网络临时标识符RA-RNTI和/或寻呼无线网络临时标识P-RNTI加扰的DCI,且所述DCI格式为1_0。
可选地,所述公共DCI中的保留字节所承载的指示信息指示一组DMRS绑定窗口大小。
可选地,所述确定上行多时隙解调参考信号DMRS传输图样的DMRS绑定窗口大小之后,还包括:
基于时分双工TDD资源配置或无效符号对所述DMRS绑定窗口大小进行划分,得到最终的DMRS绑定窗口大小。
可选地,所述确定上行多时隙解调参考信号DMRS传输图样的DMRS绑定窗口大小之后,还包括:
当开启上行传输的频率跳频功能时,基于频率跳频图案确定最终的DMRS绑定窗口大小;
其中,所述最终的DMRS绑定窗口大小小于或等于每个跳频包含的时隙个数。
图12是本公开实施例提供的一种DMRS绑定窗口确定装置的模块框图,该装置包括:
配置模块1201,基于预定义规则确定或向终端配置上行多时隙解调参考信号DMRS传输图样的DMRS绑定窗口大小,其中所述预定义规则为网络侧设备与终端预先约定。
可选地,配置模块用于执行下述任意一项:
第一确定子模块,用于基于上行信道传输的重复次数,确定所述DMRS绑定窗口大小;
第二确定子模块,用于当确定开启在多时隙上传输一个传输块时,基于传输一个传输块的时隙个数,确定所述DMRS绑定窗口大小;
第三确定子模块,用于通过预定义方式,确定所述DMRS绑定窗口大小。
可选地,所述第一确定子模块用于执行下述任意一项:
将所述重复次数确定为所述DMRS绑定窗口大小;
当所述重复次数大于预设次数门限值时,将所述预设次数门限值确定为所述DMRS绑定窗口大小,且当所述重复次数小于预设次数门限值时,将所述重复次数确定为所述DMRS绑定窗口大小;
通过所述DMRS绑定窗口大小与所述重复次数之间的预设函数关系,确定所述DMRS绑定窗口大小。
可选地,通过无线资源控制RRC信令半静态配置或通过下行控制信息DCI中的相关信息域,将所述重复次数指示给所述终端。
可选地,所述第二确定子模块用于执行下述任意一项:
将传输一个传输块的时隙个数确定为所述DMRS绑定窗口大小;
当所述时隙个数大于预设个数门限值时,将所述预设个数门限值确定为所述DMRS绑定窗口大小,且当所述时隙个数小于预设个数门限值时,将所述时隙个数确定为所述DMRS绑定窗口大小;
通过所述DMRS绑定窗口大小与所述时隙个数之间的预设函数关系,确定所述DMRS绑定窗口大小。
可选地,所述第三确定子模块具体用于:
基于终端类型所支持的DMRS绑定窗口大小,预定义所述DMRS绑定窗口大小;或者,
基于终端能力所支持的DMRS绑定窗口大小,预定义所述DMRS绑定窗口大小。
可选地,还包括:
接收模块,用于接收所述终端发送的终端能力信息,其中所述终端能力信息中携带有用于指示终端是否具有DMRS绑定的能力的信息;当基于所述终端能力信息确定终端具有DMRS绑定的能力时,确定所述DMRS绑定窗口大小。
可选地,所述配置模块用于:
通过RRC信令或DCI向所述终端发送指示信息,其中所述指示信息中携带有所述DMRS绑定窗口大小。
可选地,当所述DMRS绑定窗口大小小于或等于上行传输所占的传输时 间间隔TTI个数时生效。
可选地,所述DCI为终端专属UE-specific DCI或公共DCI,且所述指示信息通过所述UE-specific DCI中的显示比特位或公共DCI中的保留比特位进行承载。
可选地,所述UE-specific DCI为通过小区无线网络临时标识C-RNTI或临时小区无线网络临时标识TC-RNTI加扰的DCI。
可选地,所述公共DCI为通过系统信息无线电网络临时标识符SI-RNTI、随机接入无线电网络临时标识符RA-RNTI和/或寻呼无线网络临时标识P-RNTI加扰的DCI,且所述DCI格式为1_0。
可选地,所述公共DCI中的保留字节所承载的指示信息指示一组DMRS绑定窗口大小。
可选地,还包括:
基于时分双工TDD资源配置或无效符号对所述DMRS绑定窗口大小进行划分,得到最终的DMRS绑定窗口大小。
可选地,还包括:
当开启上行传输的频率跳频功能时,基于频率跳频图案确定最终的DMRS绑定窗口大小;
其中,所述最终的DMRS绑定窗口大小小于或等于每个跳频包含的时隙个数。
需要说明的是,本公开实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个处理器可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个 存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
在此需要说明的是,本公开实施例提供的上述装置,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
另一方面,本公开实施例还提供一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行上述实施例中所述的方法。
所述处理器可读存储介质可以是处理器能够存取的任何可用介质或数据存储设备,包括但不限于磁性存储器(例如软盘、硬盘、磁带、磁光盘(MO)等)、光学存储器(例如CD、DVD、BD、HVD等)、以及半导体存储器(例如ROM、EPROM、EEPROM、非易失性存储器(NAND FLASH)、固态硬盘(SSD))等。
由上述实施例可见,处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行上述DMRS绑定窗口确定方法。
本领域内的技术人员应明白,本公开的实施例可提供为方法、系统、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本公开是参照根据本公开实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机可执行指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机可执行指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器, 使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些处理器可执行指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的处理器可读存储器中,使得存储在该处理器可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些处理器可执行指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (94)

  1. 一种DMRS绑定窗口确定方法,应用于终端,其特征在于,包括:
    基于网络侧设备配置或网络侧设备与终端约定的预定义规则,确定上行多时隙解调参考信号DMRS传输图样的DMRS绑定窗口大小。
  2. 根据权利要求1所述的DMRS绑定窗口确定方法,其特征在于,基于网络侧设备与终端约定的预定义规则,确定上行多时隙DMRS传输图样的DMRS绑定窗口大小,包括下述任意一项:
    基于上行信道传输的重复次数,确定所述DMRS绑定窗口大小;
    当确定开启在多时隙上传输一个传输块的功能时,基于传输一个传输块的时隙个数,确定所述DMRS绑定窗口大小;
    通过预定义方式,确定所述DMRS绑定窗口大小。
  3. 根据权利要求2所述的DMRS绑定窗口确定方法,其特征在于,所述基于上行信道传输的重复次数,确定所述DMRS绑定窗口大小,包括下述任意一项:
    将所述重复次数确定为所述DMRS绑定窗口大小;
    当所述重复次数大于预设次数门限值时,将所述预设次数门限值确定为所述DMRS绑定窗口大小,且当所述重复次数小于预设次数门限值时,将所述重复次数确定为所述DMRS绑定窗口大小;
    通过所述DMRS绑定窗口大小与所述重复次数之间的预设函数关系,确定所述DMRS绑定窗口大小。
  4. 根据权利要求3所述的DMRS绑定窗口确定方法,其特征在于,
    所述重复次数通过无线资源控制RRC信令半静态指示或通过下行控制信息DCI中的相关信息域进行指示。
  5. 根据权利要求2所述的DMRS绑定窗口确定方法,其特征在于,所述基于传输一个传输块的时隙个数,确定所述DMRS绑定窗口大小,包括下述任意一项:
    将传输一个传输块的时隙个数确定为所述DMRS绑定窗口大小;
    当所述时隙个数大于预设个数门限值时,将所述预设个数门限值确定为 所述DMRS绑定窗口大小,且当所述时隙个数小于预设个数门限值时,将所述时隙个数确定为所述DMRS绑定窗口大小;
    通过所述DMRS绑定窗口大小与所述时隙个数之间的预设函数关系,确定所述DMRS绑定窗口大小。
  6. 根据权利要求2所述的DMRS绑定窗口确定方法,其特征在于,所述通过预定义方式,确定所述DMRS绑定窗口大小,包括:
    基于终端类型所支持的DMRS绑定窗口大小,预定义所述DMRS绑定窗口大小;或者,
    基于终端能力所支持的DMRS绑定窗口大小,预定义所述DMRS绑定窗口大小。
  7. 根据权利要求1所述的DMRS绑定窗口确定方法,其特征在于,还包括:
    基于终端能力确定终端是否具有DMRS绑定的能力;
    当确定所述终端具有DMRS绑定的能力时,确定所述DMRS绑定窗口大小。
  8. 根据权利要求1所述的DMRS绑定窗口确定方法,其特征在于,还包括:
    向所述网络侧设备发送终端能力信息,其中所述终端能力信息中携带有用于指示终端是否具有DMRS绑定的能力的信息。
  9. 根据权利要求1所述的DMRS绑定窗口确定方法,其特征在于,基于网络侧设备配置,确定上行多时隙DMRS传输图样的DMRS绑定窗口大小,包括:
    接收所述网络侧设备通过RRC信令或DCI所配置的指示信息,其中所述指示信息中携带有所述DMRS绑定窗口大小;
    基于所述指示信息,确定所述DMRS绑定窗口大小。
  10. 根据权利要求9所述的DMRS绑定窗口确定方法,其特征在于,
    当所述DMRS绑定窗口大小小于或等于上行传输所占的传输时间间隔TTI个数时生效。
  11. 根据权利要求9所述的DMRS绑定窗口确定方法,其特征在于,
    所述DCI为终端专属UE-specific DCI或公共DCI,且所述指示信息通过所述UE-specific DCI中的显示比特位或公共DCI中的保留比特位进行承载。
  12. 根据权利要求11所述的DMRS绑定窗口确定方法,其特征在于,
    所述UE-specific DCI为通过小区无线网络临时标识C-RNTI或临时小区无线网络临时标识TC-RNTI加扰的DCI。
  13. 根据权利要求11所述的DMRS绑定窗口确定方法,其特征在于,
    所述公共DCI为通过系统信息无线电网络临时标识符SI-RNTI、随机接入无线电网络临时标识符RA-RNTI和/或寻呼无线网络临时标识P-RNTI加扰的DCI,且所述DCI格式为1_0。
  14. 根据权利要求11所述的DMRS绑定窗口确定方法,其特征在于,
    所述公共DCI中的保留字节所承载的指示信息指示一组DMRS绑定窗口大小。
  15. 根据权利要求1至14任一项所述的DMRS绑定窗口确定方法,其特征在于,所述确定上行多时隙解调参考信号DMRS传输图样的DMRS绑定窗口大小之后,还包括:
    基于时分双工TDD资源配置或无效符号对所述DMRS绑定窗口大小进行划分,得到最终的DMRS绑定窗口大小。
  16. 根据权利要求1至14任一项所述的DMRS绑定窗口确定方法,其特征在于,所述确定上行多时隙解调参考信号DMRS传输图样的DMRS绑定窗口大小之后,还包括:
    当开启上行传输的频率跳频功能时,基于频率跳频图案确定最终的DMRS绑定窗口大小;
    其中,所述最终的DMRS绑定窗口大小小于或等于每个跳频包含的时隙个数。
  17. 一种DMRS绑定窗口确定方法,应用于网络侧设备,其特征在于,包括:
    基于预定义规则确定或向终端配置上行多时隙解调参考信号DMRS传输 图样的DMRS绑定窗口大小,其中所述预定义规则为网络侧设备与终端预先约定。
  18. 根据权利要求17所述的DMRS绑定窗口确定方法,其特征在于,基于预定义规则确定上行多时隙DMRS传输图样的DMRS绑定窗口大小,包括下述任意一项:
    基于上行信道传输的重复次数,确定所述DMRS绑定窗口大小;
    当确定开启在多时隙上传输一个传输块时,基于传输一个传输块的时隙个数,确定所述DMRS绑定窗口大小;
    通过预定义方式,确定所述DMRS绑定窗口大小。
  19. 根据权利要求18所述的DMRS绑定窗口确定方法,其特征在于,所述基于上行信道传输的重复次数,确定所述DMRS绑定窗口大小,包括下述任意一项:
    将所述重复次数确定为所述DMRS绑定窗口大小;
    当所述重复次数大于预设次数门限值时,将所述预设次数门限值确定为所述DMRS绑定窗口大小,且当所述重复次数小于预设次数门限值时,将所述重复次数确定为所述DMRS绑定窗口大小;
    通过所述DMRS绑定窗口大小与所述重复次数之间的预设函数关系,确定所述DMRS绑定窗口大小。
  20. 根据权利要求19所述的DMRS绑定窗口确定方法,其特征在于,
    通过无线资源控制RRC信令半静态配置或通过下行控制信息DCI中的相关信息域,将所述重复次数指示给所述终端。
  21. 根据权利要求18所述的DMRS绑定窗口确定方法,其特征在于,所述基于传输一个传输块的时隙个数,确定所述DMRS绑定窗口大小,包括下述任意一项:
    将传输一个传输块的时隙个数确定为所述DMRS绑定窗口大小;
    当所述时隙个数大于预设个数门限值时,将所述预设个数门限值确定为所述DMRS绑定窗口大小,且当所述时隙个数小于预设个数门限值时,将所述时隙个数确定为所述DMRS绑定窗口大小;
    通过所述DMRS绑定窗口大小与所述时隙个数之间的预设函数关系,确定所述DMRS绑定窗口大小。
  22. 根据权利要求18所述的DMRS绑定窗口确定方法,其特征在于,所述通过预定义方式,确定所述DMRS绑定窗口大小,包括:
    基于终端类型所支持的DMRS绑定窗口大小,预定义所述DMRS绑定窗口大小;或者,
    基于终端能力所支持的DMRS绑定窗口大小,预定义所述DMRS绑定窗口大小。
  23. 根据权利要求17所述的DMRS绑定窗口确定方法,其特征在于,还包括:
    接收所述终端发送的终端能力信息,其中所述终端能力信息中携带有用于指示终端是否具有DMRS绑定的能力的信息;
    当基于所述终端能力信息确定终端具有DMRS绑定的能力时,确定所述DMRS绑定窗口大小。
  24. 根据权利要求17所述的DMRS绑定窗口确定方法,其特征在于,向终端配置上行多时隙DMRS传输图样的DMRS绑定窗口大小,包括:
    通过RRC信令或DCI向所述终端发送指示信息,其中所述指示信息中携带有所述DMRS绑定窗口大小。
  25. 根据权利要求24所述的DMRS绑定窗口确定方法,其特征在于,
    当所述DMRS绑定窗口大小小于或等于上行传输所占的传输时间间隔TTI个数时生效。
  26. 根据权利要求24所述的DMRS绑定窗口确定方法,其特征在于,
    所述DCI为终端专属UE-specific DCI或公共DCI,且所述指示信息通过所述UE-specific DCI中的显示比特位或公共DCI中的保留比特位进行承载。
  27. 根据权利要求26所述的DMRS绑定窗口确定方法,其特征在于,
    所述UE-specific DCI为通过小区无线网络临时标识C-RNTI或临时小区无线网络临时标识TC-RNTI加扰的DCI。
  28. 根据权利要求26所述的DMRS绑定窗口确定方法,其特征在于,
    所述公共DCI为通过系统信息无线电网络临时标识符SI-RNTI、随机接入无线电网络临时标识符RA-RNTI和/或寻呼无线网络临时标识P-RNTI加扰的DCI,且所述DCI格式为1_0。
  29. 根据权利要求26所述的DMRS绑定窗口确定方法,其特征在于,
    所述公共DCI中的保留字节所承载的指示信息指示一组DMRS绑定窗口大小。
  30. 根据权利要求17至29任一项所述的DMRS绑定窗口确定方法,其特征在于,还包括:
    基于时分双工TDD资源配置或无效符号对所述DMRS绑定窗口大小进行划分,得到最终的DMRS绑定窗口大小。
  31. 根据权利要求17至29任一项所述的DMRS绑定窗口确定方法,其特征在于,还包括:
    当开启上行传输的频率跳频功能时,基于频率跳频图案确定最终的DMRS绑定窗口大小;
    其中,所述最终的DMRS绑定窗口大小小于或等于每个跳频包含的时隙个数。
  32. 一种终端,其特征在于,包括存储器,收发机,处理器:
    存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
    基于网络侧设备配置或网络侧设备与终端约定的预定义规则,确定上行多时隙解调参考信号DMRS传输图样的DMRS绑定窗口大小。
  33. 根据权利要求32所述的终端,其特征在于,基于网络侧设备与终端约定的预定义规则,确定上行多时隙DMRS传输图样的DMRS绑定窗口大小,包括下述任意一项:
    基于上行信道传输的重复次数,确定所述DMRS绑定窗口大小;
    当确定开启在多时隙上传输一个传输块的功能时,基于传输一个传输块的时隙个数,确定所述DMRS绑定窗口大小;
    通过预定义方式,确定所述DMRS绑定窗口大小。
  34. 根据权利要求33所述的终端,其特征在于,所述基于上行信道传输的重复次数,确定所述DMRS绑定窗口大小,包括下述任意一项:
    将所述重复次数确定为所述DMRS绑定窗口大小;
    当所述重复次数大于预设次数门限值时,将所述预设次数门限值确定为所述DMRS绑定窗口大小,且当所述重复次数小于预设次数门限值时,将所述重复次数确定为所述DMRS绑定窗口大小;
    通过所述DMRS绑定窗口大小与所述重复次数之间的预设函数关系,确定所述DMRS绑定窗口大小。
  35. 根据权利要求34所述的终端,其特征在于,所述重复次数通过无线资源控制RRC信令半静态指示或通过下行控制信息DCI中的相关信息域进行指示。
  36. 根据权利要求33所述的终端,其特征在于,所述基于传输一个传输块的时隙个数,确定所述DMRS绑定窗口大小,包括下述任意一项:
    将传输一个传输块的时隙个数确定为所述DMRS绑定窗口大小;
    当所述时隙个数大于预设个数门限值时,将所述预设个数门限值确定为所述DMRS绑定窗口大小,且当所述时隙个数小于预设个数门限值时,将所述时隙个数确定为所述DMRS绑定窗口大小;
    通过所述DMRS绑定窗口大小与所述时隙个数之间的预设函数关系,确定所述DMRS绑定窗口大小。
  37. 根据权利要求33所述的终端,其特征在于,所述通过预定义方式,确定所述DMRS绑定窗口大小,包括:
    基于终端类型所支持的DMRS绑定窗口大小,预定义所述DMRS绑定窗口大小;或者,
    基于终端能力所支持的DMRS绑定窗口大小,预定义所述DMRS绑定窗口大小。
  38. 根据权利要求32所述的终端,其特征在于,所述操作还包括:
    基于终端能力确定终端是否具有DMRS绑定的能力;
    当确定所述终端具有DMRS绑定的能力时,确定所述DMRS绑定窗口大 小。
  39. 根据权利要求32所述的终端,其特征在于,所述操作还包括:
    向所述网络侧设备发送终端能力信息,其中所述终端能力信息中携带有用于指示终端是否具有DMRS绑定的能力的信息。
  40. 根据权利要求32所述的终端,其特征在于,基于网络侧设备配置,确定上行多时隙DMRS传输图样的DMRS绑定窗口大小,包括:
    接收所述网络侧设备通过RRC信令或DCI所配置的指示信息,其中所述指示信息中携带有所述DMRS绑定窗口大小;
    基于所述指示信息,确定所述DMRS绑定窗口大小。
  41. 根据权利要求40所述的终端,其特征在于,当所述DMRS绑定窗口大小小于或等于上行传输所占的传输时间间隔TTI个数时生效。
  42. 根据权利要求40所述的终端,其特征在于,所述DCI为终端专属UE-specific DCI或公共DCI,且所述指示信息通过所述UE-specific DCI中的显示比特位或公共DCI中的保留比特位进行承载。
  43. 根据权利要求42所述的终端,其特征在于,所述UE-specific DCI为通过小区无线网络临时标识C-RNTI或临时小区无线网络临时标识TC-RNTI加扰的DCI。
  44. 根据权利要求42所述的终端,其特征在于,所述公共DCI为通过系统信息无线电网络临时标识符SI-RNTI、随机接入无线电网络临时标识符RA-RNTI和/或寻呼无线网络临时标识P-RNTI加扰的DCI,且所述DCI格式为1_0。
  45. 根据权利要求42所述的终端,其特征在于,所述公共DCI中的保留字节所承载的指示信息指示一组DMRS绑定窗口大小。
  46. 根据权利要求32至45任一项所述的终端,其特征在于,所述确定上行多时隙解调参考信号DMRS传输图样的DMRS绑定窗口大小之后,还包括:
    基于时分双工TDD资源配置或无效符号对所述DMRS绑定窗口大小进行划分,得到最终的DMRS绑定窗口大小。
  47. 根据权利要求32至45任一项所述的终端,其特征在于,所述确定上行多时隙解调参考信号DMRS传输图样的DMRS绑定窗口大小之后,还包括:
    当开启上行传输的频率跳频功能时,基于频率跳频图案确定最终的DMRS绑定窗口大小;
    其中,所述最终的DMRS绑定窗口大小小于或等于每个跳频包含的时隙个数。
  48. 一种网络侧设备,其特征在于,包括存储器,收发机,处理器:
    存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
    基于预定义规则确定或向终端配置上行多时隙解调参考信号DMRS传输图样的DMRS绑定窗口大小,其中所述预定义规则为网络侧设备与终端预先约定。
  49. 根据权利要求48所述的网络侧设备,其特征在于,基于预定义规则确定上行多时隙DMRS传输图样的DMRS绑定窗口大小,包括下述任意一项:
    基于上行信道传输的重复次数,确定所述DMRS绑定窗口大小;
    当确定开启在多时隙上传输一个传输块时,基于传输一个传输块的时隙个数,确定所述DMRS绑定窗口大小;
    通过预定义方式,确定所述DMRS绑定窗口大小。
  50. 根据权利要求49所述的网络侧设备,其特征在于,所述基于上行信道传输的重复次数,确定所述DMRS绑定窗口大小,包括下述任意一项:
    将所述重复次数确定为所述DMRS绑定窗口大小;
    当所述重复次数大于预设次数门限值时,将所述预设次数门限值确定为所述DMRS绑定窗口大小,且当所述重复次数小于预设次数门限值时,将所述重复次数确定为所述DMRS绑定窗口大小;
    通过所述DMRS绑定窗口大小与所述重复次数之间的预设函数关系,确定所述DMRS绑定窗口大小。
  51. 根据权利要求50所述的网络侧设备,其特征在于,通过无线资源控 制RRC信令半静态配置或通过下行控制信息DCI中的相关信息域,将所述重复次数指示给所述终端。
  52. 根据权利要求49所述的网络侧设备,其特征在于,所述基于传输一个传输块的时隙个数,确定所述DMRS绑定窗口大小,包括下述任意一项:
    将传输一个传输块的时隙个数确定为所述DMRS绑定窗口大小;
    当所述时隙个数大于预设个数门限值时,将所述预设个数门限值确定为所述DMRS绑定窗口大小,且当所述时隙个数小于预设个数门限值时,将所述时隙个数确定为所述DMRS绑定窗口大小;
    通过所述DMRS绑定窗口大小与所述时隙个数之间的预设函数关系,确定所述DMRS绑定窗口大小。
  53. 根据权利要求49所述的网络侧设备,其特征在于,所述通过预定义方式,确定所述DMRS绑定窗口大小,包括:
    基于终端类型所支持的DMRS绑定窗口大小,预定义所述DMRS绑定窗口大小;或者,
    基于终端能力所支持的DMRS绑定窗口大小,预定义所述DMRS绑定窗口大小。
  54. 根据权利要求49所述的网络侧设备,其特征在于,还包括:
    接收所述终端发送的终端能力信息,其中所述终端能力信息中携带有用于指示终端是否具有DMRS绑定的能力的信息;
    基于所述终端能力信息确定终端是否具有DMRS绑定的能力,当确定所述终端具有DMRS绑定的能力时,确定所述DMRS绑定窗口大小。
  55. 根据权利要求49所述的网络侧设备,其特征在于,向终端配置上行多时隙DMRS传输图样的DMRS绑定窗口大小,包括:
    通过RRC信令或DCI向所述终端发送指示信息,其中所述指示信息中携带有所述DMRS绑定窗口大小。
  56. 根据权利要求55所述的网络侧设备,其特征在于,当所述DMRS绑定窗口大小小于或等于上行传输所占的传输时间间隔TTI个数时生效。
  57. 根据权利要求55所述的网络侧设备,其特征在于,所述DCI为终 端专属UE-specific DCI或公共DCI,且所述指示信息通过所述UE-specific DCI中的显示比特位或公共DCI中的保留比特位进行承载。
  58. 根据权利要求57所述的网络侧设备,其特征在于,所述UE-specific DCI为通过小区无线网络临时标识C-RNTI或临时小区无线网络临时标识TC-RNTI加扰的DCI。
  59. 根据权利要求57所述的网络侧设备,其特征在于,所述公共DCI为通过系统信息无线电网络临时标识符SI-RNTI、随机接入无线电网络临时标识符RA-RNTI和/或寻呼无线网络临时标识P-RNTI加扰的DCI,且所述DCI格式为1_0。
  60. 根据权利要求57所述的网络侧设备,其特征在于,所述公共DCI中的保留字节所承载的指示信息指示一组DMRS绑定窗口大小。
  61. 根据权利要求48至60任一项所述的网络侧设备,其特征在于,还包括:
    基于时分双工TDD资源配置或无效符号对所述DMRS绑定窗口大小进行划分,得到最终的DMRS绑定窗口大小。
  62. 根据权利要求48至60任一项所述的网络侧设备,其特征在于,还包括:
    当开启上行传输的频率跳频功能时,基于频率跳频图案确定最终的DMRS绑定窗口大小;
    其中,所述最终的DMRS绑定窗口大小小于或等于每个跳频包含的时隙个数。
  63. 一种DMRS绑定窗口确定装置,应用于终端,其特征在于,包括:
    确定模块,用于基于网络侧设备配置或网络侧设备与终端约定的预定义规则,确定上行多时隙解调参考信号DMRS传输图样的DMRS绑定窗口大小。
  64. 根据权利要求63所述的DMRS绑定窗口确定装置,其特征在于,所述确定模块,用于执行下述任意一项:
    第一确定子模块,用于基于上行信道传输的重复次数,确定所述DMRS绑定窗口大小;
    第二确定子模块,用于当确定开启在多时隙上传输一个传输块的功能时,基于传输一个传输块的时隙个数,确定所述DMRS绑定窗口大小;
    第三确定子模块,用于通过预定义方式,确定所述DMRS绑定窗口大小。
  65. 根据权利要求64所述的DMRS绑定窗口确定装置,其特征在于,所述第一确定子模块用于执行下述任意一项:
    将所述重复次数确定为所述DMRS绑定窗口大小;
    当所述重复次数大于预设次数门限值时,将所述预设次数门限值确定为所述DMRS绑定窗口大小,且当所述重复次数小于预设次数门限值时,将所述重复次数确定为所述DMRS绑定窗口大小;
    通过所述DMRS绑定窗口大小与所述重复次数之间的预设函数关系,确定所述DMRS绑定窗口大小。
  66. 根据权利要求65所述的DMRS绑定窗口确定装置,其特征在于,所述重复次数通过无线资源控制RRC信令半静态指示或通过下行控制信息DCI中的相关信息域进行指示。
  67. 根据权利要求64所述的DMRS绑定窗口确定装置,其特征在于,所述第二确定子模块用于执行下述任意一项:
    将传输一个传输块的时隙个数确定为所述DMRS绑定窗口大小;
    当所述时隙个数大于预设个数门限值时,将所述预设个数门限值确定为所述DMRS绑定窗口大小,且当所述时隙个数小于预设个数门限值时,将所述时隙个数确定为所述DMRS绑定窗口大小;
    通过所述DMRS绑定窗口大小与所述时隙个数之间的预设函数关系,确定所述DMRS绑定窗口大小。
  68. 根据权利要求64所述的DMRS绑定窗口确定装置,其特征在于,所述第三确定子模块具体用于:
    基于终端类型所支持的DMRS绑定窗口大小,预定义所述DMRS绑定窗口大小;或者,
    基于终端能力所支持的DMRS绑定窗口大小,预定义所述DMRS绑定窗口大小。
  69. 根据权利要求63所述的DMRS绑定窗口确定装置,其特征在于,还包括:
    基于终端能力确定终端是否具有DMRS绑定的能力;
    当确定所述终端具有DMRS绑定的能力时,确定所述DMRS绑定窗口大小。
  70. 根据权利要求63所述的DMRS绑定窗口确定装置,其特征在于,还包括:
    发送模块,用于向所述网络侧设备发送终端能力信息,其中所述终端能力信息中携带有用于指示终端是否具有DMRS绑定的能力的信息。
  71. 根据权利要求63所述的DMRS绑定窗口确定装置,其特征在于,所述确定模块具体用于:
    接收所述网络侧设备通过RRC信令或DCI所配置的指示信息,其中所述指示信息中携带有所述DMRS绑定窗口大小;
    基于所述指示信息,确定所述DMRS绑定窗口大小。
  72. 根据权利要求71所述的DMRS绑定窗口确定装置,其特征在于,当所述DMRS绑定窗口大小小于或等于上行传输所占的传输时间间隔TTI个数时生效。
  73. 根据权利要求71所述的DMRS绑定窗口确定装置,其特征在于,所述DCI为终端专属UE-specific DCI或公共DCI,且所述指示信息通过所述UE-specific DCI中的显示比特位或公共DCI中的保留比特位进行承载。
  74. 根据权利要求73所述的DMRS绑定窗口确定装置,其特征在于,所述UE-specific DCI为通过小区无线网络临时标识C-RNTI或临时小区无线网络临时标识TC-RNTI加扰的DCI。
  75. 根据权利要求73所述的DMRS绑定窗口确定装置,其特征在于,所述公共DCI为通过系统信息无线电网络临时标识符SI-RNTI、随机接入无线电网络临时标识符RA-RNTI和/或寻呼无线网络临时标识P-RNTI加扰的DCI,且所述DCI格式为1_0。
  76. 根据权利要求73所述的DMRS绑定窗口确定装置,其特征在于, 所述公共DCI中的保留字节所承载的指示信息指示一组DMRS绑定窗口大小。
  77. 根据权利要求63至76任一项所述的DMRS绑定窗口确定装置,其特征在于,所述确定上行多时隙解调参考信号DMRS传输图样的DMRS绑定窗口大小之后,还包括:
    基于时分双工TDD资源配置或无效符号对所述DMRS绑定窗口大小进行划分,得到最终的DMRS绑定窗口大小。
  78. 根据权利要求63至76任一项所述的DMRS绑定窗口确定装置,其特征在于,所述确定上行多时隙解调参考信号DMRS传输图样的DMRS绑定窗口大小之后,还包括:
    当开启上行传输的频率跳频功能时,基于频率跳频图案确定最终的DMRS绑定窗口大小;
    其中,所述最终的DMRS绑定窗口大小小于或等于每个跳频包含的时隙个数。
  79. 一种DMRS绑定窗口确定装置,应用于网络侧设备,其特征在于,包括:
    配置模块,用于基于预定义规则确定或向终端配置上行多时隙解调参考信号DMRS传输图样的DMRS绑定窗口大小,其中所述预定义规则为网络侧设备与终端预先约定。
  80. 根据权利要求79所述的DMRS绑定窗口确定装置,其特征在于,所述配置模块用于执行下述任意一项:
    第一确定子模块,用于基于上行信道传输的重复次数,确定所述DMRS绑定窗口大小;
    第二确定子模块,用于当确定开启在多时隙上传输一个传输块时,基于传输一个传输块的时隙个数,确定所述DMRS绑定窗口大小;
    第三确定子模块,用于通过预定义方式,确定所述DMRS绑定窗口大小。
  81. 根据权利要求80所述的DMRS绑定窗口确定装置,其特征在于,所述第一确定子模块用于执行下述任意一项:
    将所述重复次数确定为所述DMRS绑定窗口大小;
    当所述重复次数大于预设次数门限值时,将所述预设次数门限值确定为所述DMRS绑定窗口大小,且当所述重复次数小于预设次数门限值时,将所述重复次数确定为所述DMRS绑定窗口大小;
    通过所述DMRS绑定窗口大小与所述重复次数之间的预设函数关系,确定所述DMRS绑定窗口大小。
  82. 根据权利要求81所述的DMRS绑定窗口确定装置,其特征在于,通过无线资源控制RRC信令半静态配置或通过下行控制信息DCI中的相关信息域,将所述重复次数指示给所述终端。
  83. 根据权利要求80所述的DMRS绑定窗口确定装置,其特征在于,所述第二确定子模块用于执行下述任意一项:
    将传输一个传输块的时隙个数确定为所述DMRS绑定窗口大小;
    当所述时隙个数大于预设个数门限值时,将所述预设个数门限值确定为所述DMRS绑定窗口大小,且当所述时隙个数小于预设个数门限值时,将所述时隙个数确定为所述DMRS绑定窗口大小;
    通过所述DMRS绑定窗口大小与所述时隙个数之间的预设函数关系,确定所述DMRS绑定窗口大小。
  84. 根据权利要求80所述的DMRS绑定窗口确定装置,其特征在于,所述第三确定子模块具体用于:
    基于终端类型所支持的DMRS绑定窗口大小,预定义所述DMRS绑定窗口大小;或者,
    基于终端能力所支持的DMRS绑定窗口大小,预定义所述DMRS绑定窗口大小。
  85. 根据权利要求79所述的DMRS绑定窗口确定装置,其特征在于,还包括:
    接收模块,用于接收所述终端发送的终端能力信息,其中所述终端能力信息中携带有用于指示终端是否具有DMRS绑定的能力的信息;
    当基于所述终端能力信息确定终端具有DMRS绑定的能力时,确定所述 DMRS绑定窗口大小。
  86. 根据权利要求79所述的DMRS绑定窗口确定装置,其特征在于,所述配置模块用于:
    通过RRC信令或DCI向所述终端发送指示信息,其中所述指示信息中携带有所述DMRS绑定窗口大小。
  87. 根据权利要求86所述的DMRS绑定窗口确定装置,其特征在于,当所述DMRS绑定窗口大小小于或等于上行传输所占的传输时间间隔TTI个数时生效。
  88. 根据权利要求86所述的DMRS绑定窗口确定装置,其特征在于,所述DCI为终端专属UE-specific DCI或公共DCI,且所述指示信息通过所述UE-specific DCI中的显示比特位或公共DCI中的保留比特位进行承载。
  89. 根据权利要求88所述的DMRS绑定窗口确定装置,其特征在于,所述UE-specific DCI为通过小区无线网络临时标识C-RNTI或临时小区无线网络临时标识TC-RNTI加扰的DCI。
  90. 根据权利要求88所述的DMRS绑定窗口确定装置,其特征在于,所述公共DCI为通过系统信息无线电网络临时标识符SI-RNTI、随机接入无线电网络临时标识符RA-RNTI和/或寻呼无线网络临时标识P-RNTI加扰的DCI,且所述DCI格式为1_0。
  91. 根据权利要求88所述的DMRS绑定窗口确定装置,其特征在于,所述公共DCI中的保留字节所承载的指示信息指示一组DMRS绑定窗口大小。
  92. 根据权利要求79至91任一项所述的DMRS绑定窗口确定装置,其特征在于,还包括:
    基于时分双工TDD资源配置或无效符号对所述DMRS绑定窗口大小进行划分,得到最终的DMRS绑定窗口大小。
  93. 根据权利要求79至91任一项所述的DMRS绑定窗口确定装置,其特征在于,还包括:
    当开启上行传输的频率跳频功能时,基于频率跳频图案确定最终的 DMRS绑定窗口大小;
    其中,所述最终的DMRS绑定窗口大小小于或等于每个跳频包含的时隙个数。
  94. 一种处理器可读存储介质,其特征在于,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使处理器执行权利要求1至16任一项所述的方法,或执行权利要求17至31任一项所述的方法。
PCT/CN2021/135718 2021-01-18 2021-12-06 一种dmrs绑定窗口确定方法、装置及存储介质 WO2022151868A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21919059.2A EP4280510A4 (en) 2021-01-18 2021-12-06 METHOD AND APPARATUS FOR DETERMINING A DMRS BUNDLING WINDOW AND STORAGE MEDIUM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110065131.8A CN114826512B (zh) 2021-01-18 2021-01-18 一种dmrs绑定窗口确定方法、装置及存储介质
CN202110065131.8 2021-01-18

Publications (1)

Publication Number Publication Date
WO2022151868A1 true WO2022151868A1 (zh) 2022-07-21

Family

ID=82446833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/135718 WO2022151868A1 (zh) 2021-01-18 2021-12-06 一种dmrs绑定窗口确定方法、装置及存储介质

Country Status (3)

Country Link
EP (1) EP4280510A4 (zh)
CN (1) CN114826512B (zh)
WO (1) WO2022151868A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220248476A1 (en) * 2021-02-01 2022-08-04 Qualcomm Incorporated Bundle size configuration for demodulation reference signal bundling in case of uplink random access channel message repetition
CN116319189A (zh) * 2023-03-10 2023-06-23 广东移远通信技术有限公司 用于无线通信的方法及装置
US11863472B2 (en) 2020-07-31 2024-01-02 Wilus Institute Of Standards And Technology Inc. Method for transmitting uplink channel in wireless communication system, and device therefor

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117580169A (zh) * 2022-08-05 2024-02-20 维沃移动通信有限公司 数据传输处理方法、装置、终端及网络侧设备
WO2024065354A1 (en) * 2022-09-29 2024-04-04 Zte Corporation Systems and methods for coverage enhancement in non terrestrial network
CN115843426A (zh) * 2022-09-30 2023-03-24 北京小米移动软件有限公司 时长确定方法及装置、存储介质
CN118300761A (zh) * 2023-01-05 2024-07-05 维沃移动通信有限公司 一种时间窗的处理方法、装置、终端及网络侧设备
CN116368924A (zh) * 2023-02-16 2023-06-30 北京小米移动软件有限公司 通信控制方法、系统及装置、通信设备及存储介质
CN116368768A (zh) * 2023-02-16 2023-06-30 北京小米移动软件有限公司 信息处理方法及装置、通信设备及存储介质

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019140342A1 (en) * 2018-01-12 2019-07-18 Qualcomm Incorporated Demodulation reference signal (dmrs) bundling in slot aggregation and slot format considerations for new radio

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107040354B (zh) * 2016-02-04 2020-10-27 中兴通讯股份有限公司 上行dmrs的配置方法、网元、上行dmrs的传输方法和装置
CN107371250B (zh) * 2016-05-13 2023-07-14 中兴通讯股份有限公司 指令的发送方法及装置、指令的接收方法及装置
US11310022B2 (en) * 2019-06-20 2022-04-19 Qualcomm Incorporated Demodulation reference signal bundling
WO2022031919A1 (en) * 2020-08-05 2022-02-10 Idac Holdings, Inc. Demodulation reference signals transmission in wireless systems
EP4278793A1 (en) * 2021-01-14 2023-11-22 Qualcomm Incorporated Pusch dmrs bundling indication for pusch repetitions

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019140342A1 (en) * 2018-01-12 2019-07-18 Qualcomm Incorporated Demodulation reference signal (dmrs) bundling in slot aggregation and slot format considerations for new radio
CN111567002A (zh) * 2018-01-12 2020-08-21 高通股份有限公司 时隙聚集中的解调参考信号(dmrs)集束和用于新无线电的时隙格式考虑

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CATT: "Discussion on potential techniques for PUCCH coverage enhancement", 3GPP DRAFT; R1-2007875, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20201026 - 20201113, 17 October 2020 (2020-10-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051939950 *
See also references of EP4280510A4 *
XIAOMI: "Discussion on PUCCH enhancements", 3GPP DRAFT; R1-2107938, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210816 - 20210827, 7 August 2021 (2021-08-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052038710 *
XIAOMI: "PUSCH coverage enhancement", 3GPP DRAFT; R1-2007640, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20201026 - 20201113, 17 October 2020 (2020-10-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051939822 *
ZTE CORPORATION: "Discussion on PUCCH coverage enhancement", 3GPP DRAFT; R1-2100098, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210125 - 20210205, 19 January 2021 (2021-01-19), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051970803 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11863472B2 (en) 2020-07-31 2024-01-02 Wilus Institute Of Standards And Technology Inc. Method for transmitting uplink channel in wireless communication system, and device therefor
US20220248476A1 (en) * 2021-02-01 2022-08-04 Qualcomm Incorporated Bundle size configuration for demodulation reference signal bundling in case of uplink random access channel message repetition
US11974334B2 (en) * 2021-02-01 2024-04-30 Qualcomm Incorporated Bundle size configuration for demodulation reference signal bundling in case of uplink random access channel message repetition
CN116319189A (zh) * 2023-03-10 2023-06-23 广东移远通信技术有限公司 用于无线通信的方法及装置
CN116319189B (zh) * 2023-03-10 2023-08-04 广东移远通信技术有限公司 用于无线通信的方法及装置

Also Published As

Publication number Publication date
EP4280510A4 (en) 2024-07-03
CN114826512A (zh) 2022-07-29
CN114826512B (zh) 2023-10-10
EP4280510A1 (en) 2023-11-22

Similar Documents

Publication Publication Date Title
WO2022151868A1 (zh) 一种dmrs绑定窗口确定方法、装置及存储介质
WO2022151980A1 (zh) 资源指示方法、装置和存储介质
WO2022068683A1 (zh) Bwp的配置方法、装置、网络侧设备及终端
CN112242884A (zh) 信息传输方法及装置
TW202041072A (zh) 通訊方法和終端設備
TWI803150B (zh) 信號傳輸方法、裝置、終端設備、網路設備及存儲介質
WO2022156548A1 (zh) 一种uci复用传输方法、装置及存储介质
WO2022156448A1 (zh) 一种信息确定方法、装置及存储介质
WO2023000899A1 (zh) 一种信息传输方法、装置、终端设备及网络设备
WO2022152094A1 (zh) 一种控制信道监测方法、装置及存储介质
US20240188029A1 (en) Reference signal transmission position indication determining method and apparatus
WO2024032274A1 (zh) 确定harq进程标识的方法及装置
WO2024169709A1 (zh) 一种信息处理方法、装置及可读存储介质
CN115150029B (zh) 物理上行共享信道重复传输方法、装置及可读存储介质
WO2022152261A1 (zh) 信号传输方法、装置、终端设备、网络设备及存储介质
WO2023134703A1 (zh) Pusch传输方法、装置及存储介质
WO2022237498A1 (zh) 重复传输的确定方法、装置、终端及网络侧设备
CN114765488B (zh) Harq-ack使能控制方法、装置、设备及存储介质
WO2024093639A1 (zh) 随机接入过程prach发送功率的控制方法及装置
WO2023134575A1 (zh) 物理下行控制信道pdcch监听方法、装置、设备以及存储介质
WO2022042484A1 (zh) 信息反馈方法、信息接收方法、终端和网络设备
WO2024067199A1 (zh) 资源协调方法、装置及存储介质
WO2024207959A1 (zh) 传输资源确定方法、设备、装置和存储介质
WO2024067164A1 (zh) 相干联合传输方法及装置
WO2023050429A1 (zh) 数据调度方法、信息发送方法以及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21919059

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021919059

Country of ref document: EP

Effective date: 20230818