[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022149574A1 - 樹脂組成物、接着剤、及び、相容化剤 - Google Patents

樹脂組成物、接着剤、及び、相容化剤 Download PDF

Info

Publication number
WO2022149574A1
WO2022149574A1 PCT/JP2022/000074 JP2022000074W WO2022149574A1 WO 2022149574 A1 WO2022149574 A1 WO 2022149574A1 JP 2022000074 W JP2022000074 W JP 2022000074W WO 2022149574 A1 WO2022149574 A1 WO 2022149574A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
resin composition
mass
polymer block
group
Prior art date
Application number
PCT/JP2022/000074
Other languages
English (en)
French (fr)
Inventor
真裕 加藤
泰史 千田
遼 佐谷
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2022574055A priority Critical patent/JPWO2022149574A1/ja
Priority to CN202280007529.9A priority patent/CN116438207A/zh
Priority to EP22736742.2A priority patent/EP4276148A1/en
Publication of WO2022149574A1 publication Critical patent/WO2022149574A1/ja
Priority to US18/195,061 priority patent/US20230272205A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/003Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
    • C08F297/04Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes
    • C08F297/046Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes polymerising vinyl aromatic monomers and isoprene, optionally with other conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F287/00Macromolecular compounds obtained by polymerising monomers on to block polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/04Reduction, e.g. hydrogenation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/46Reaction with unsaturated dicarboxylic acids or anhydrides thereof, e.g. maleinisation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J123/00Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J151/00Adhesives based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers
    • C09J151/003Adhesives based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J153/00Adhesives based on block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers
    • C09J153/02Vinyl aromatic monomers and conjugated dienes
    • C09J153/025Vinyl aromatic monomers and conjugated dienes modified

Definitions

  • the present invention relates to a resin composition, an adhesive, and a compatibilizer.
  • Block copolymers having a polymer block containing a structural unit derived from an aromatic vinyl compound and a polymer block containing a structural unit derived from a conjugated diene compound and their hydrogenated products have vibration damping properties. It is known that there are things, and it has been used as a damping material. Further, the block copolymer or a modified product obtained by modifying the hydrogenated product thereof and introducing a reactive functional group can be used as a compatibilizer for complicating a polar resin and a non-polar resin. It is known.
  • Patent Documents 1 to 4 in a resin composition containing a polyolefin resin, a polyamide resin, and a compatibility agent, an olefin-based elastomer or a modified product of a styrene-based elastomer is used as the compatibility agent. It is stated that it will be.
  • Patent Documents 1, 2 and 4 describe that examples of the styrene-based elastomer include block copolymers of aromatic vinyl compounds and conjugated diene compounds and hydrogenated products thereof.
  • Patent Document 5 describes a composition for blow molding containing a mixture of a polyamide resin and a polyolefin resin containing a modified polyolefin, and the polyolefin resin may contain a polyolefin resin and a modified polyolefin. Is described.
  • the polar resin and the non-polar resin are better compatible with each other so as to be suitable for various uses, and even a small amount is good.
  • a compatibilizer having properties that exhibit properties.
  • it may be required to have adhesiveness to a metal such as aluminum, assuming that it is used for an in-vehicle component.
  • a resin composition containing a block copolymer or a modified product of a hydrogenated product thereof has not been sufficiently studied from the viewpoint of adhesiveness to a metal.
  • Another object of the present invention is to provide a resin composition and an adhesive having high adhesiveness to a metal. Another object of the present invention is to provide a resin composition in which one of a polar resin and a polyolefin-based resin is well dispersed in the other. Furthermore, another object of the present invention is to provide a compatibility agent that exhibits good compatibility as a compatibility agent between a polar resin and a non-polar resin.
  • the present invention is as follows.
  • a polymer block (A-1) having a structural unit derived from an aromatic vinyl compound and a polymer block (A-2) having a structural unit derived from a conjugated diene compound Contains the additive (A) and the polyolefin resin (B),
  • the modified hydrogen additive (A) has one or more functional groups selected from an alkoxysilyl group, a carboxy group, an amino group, a hydroxy group, an epoxy group, and a group derived from an acid anhydride.
  • the polyolefin resin (B) comprises polypropylene, polyethylene, polymethylpentene, an ethylene vinyl acetate copolymer, a homopolymer or copolymer of ⁇ -olefin, propylene and / or ethylene and ⁇ -olefin.
  • a modified hydrogen additive of a block copolymer containing a polymer block (A-1) having a structural unit derived from an aromatic vinyl compound and a polymer block (A-2) having a structural unit derived from a conjugated diene compound ( A) consists of
  • the modified hydrogen additive (A) has one or more functional groups selected from an alkoxysilyl group, a carboxy group, an amino group, a hydroxy group, an epoxy group, and a group derived from an acid anhydride.
  • the present invention it is possible to provide a resin composition and an adhesive having high adhesiveness to a metal. Further, according to the present invention, it is possible to provide a resin composition in which one of a polar resin and a polyolefin-based resin is well dispersed in the other. Further, according to the present invention, it is possible to provide a compatibility agent that exhibits good compatibility as a compatibility agent between a polar resin and a non-polar resin.
  • the preferred provisions can be arbitrarily selected, and it can be said that the combination of the preferred provisions is more preferable.
  • the description "XX to YY” means “XX or more and YY or less”.
  • the lower limit value and the upper limit value described in stages can be independently combined with respect to a preferable numerical range (for example, a range such as content). For example, from the description of "preferably 10 to 90, more preferably 30 to 60", “preferably lower limit value (10)” and “more preferable upper limit value (60)” are combined to obtain “10 to 60". You can also.
  • -unit (where "-" indicates a monomer) means “structural unit derived from”, and for example, "propylene unit” means “structural unit derived from propylene”.
  • (meth) acrylic acid refers to both "acrylic acid” and “methacrylic acid”, as well as other similar terms.
  • the weight average molecular weight is a standard polystyrene-equivalent weight average molecular weight determined by gel permeation chromatography (GPC) measurement.
  • GPC gel permeation chromatography
  • BB mainly composed of AA means that the BB contains at least 50% by mass of AA.
  • the first resin composition according to the embodiment of the present invention has a polymer block (A-1) having a structural unit derived from an aromatic vinyl compound and a polymer block (A-1) having a structural unit derived from a conjugated diene compound.
  • the modified hydrogen additive (A) of the block copolymer containing -2) and the polyolefin resin (B) are contained.
  • the modified hydrogen additive (A) has one or more functional groups selected from an alkoxysilyl group, a carboxy group, an amino group, a hydroxy group, an epoxy group, and a group derived from an acid anhydride.
  • the vinyl bond amount of the polymer block (A-2) is 50 to 99 mol%.
  • the first resin composition (D1) may be referred to as "resin composition (D1)".
  • the vinyl bond amount of the polymer block (A-2), that is, the total content of the 3,4-bonding unit and the 1,2-bonding unit in the polymer block (A-2) is within the above range.
  • the resin composition (D1) tends to exhibit excellent vibration damping properties, and the resin composition (D1) exhibits high adhesiveness to various materials, especially to metals.
  • the vinyl bond amount is a value calculated by 1 H-NMR measurement according to the method described in Examples.
  • the above-mentioned "contents of 3,4-bonding unit and 1,2-bonding unit” means "containing 1,2-bonding unit". Read as "quantity" and apply.
  • the resin composition (D1) has high adhesiveness to various materials, particularly metals.
  • the reason why the resin composition (D1) has excellent adhesiveness is not limited to this, but is presumed as follows.
  • the solubility of the modified hydrogen additive (A) is due to the vinyl bond amount of the polymer block (A-2) constituting the modified hydrogen additive (A) being within a predetermined range. Since the parameter- (SP value) approaches the SP value of the polyolefin resin (B), the modified hydrogen additive (A) and the polyolefin resin (B) show good compatibility, so that a fine co-continuous structure is formed. It is formed.
  • the modified hydrogenated agent (A) is uniformly dispersed in the resin composition (D1), and a sufficient amount of modification is performed even in the vicinity of the surface of the composition.
  • the hydrogenated substance (A) is likely to be present. Therefore, it is presumed that the functional group of the modified hydrogenated product (A) introduced by the modification is likely to come into contact with the adherend, and as a result, the adhesiveness to the metal and various other materials is enhanced.
  • FIG. 1A is an enlarged cross-sectional photograph taken with an atomic force microscope (AFM) showing an example of the morphology of the resin composition (D1).
  • a co-continuous structure extending from the upper left to the lower right is formed.
  • the modified hydrogenated additive (A) shows good compatibility with the polyolefin resin (B). Therefore, the co-continuous structure formed in the resin composition (D1) and its molded product has a maximum value of, for example, a very fine one having a maximum value of about 10 to 500 nm in the length direction.
  • the modified hydrogen additive (A) contained in the resin composition (D1) is a polymer block (A-1) having a structural unit derived from an aromatic vinyl compound and a polymer having a structural unit derived from a conjugated diene compound. It is a modified hydrogen additive of a block polymer containing a block (A-2).
  • the modified hydrogen additive (A) has one or more functional groups selected from an alkoxysilyl group, a carboxy group, an amino group, a hydroxy group, an epoxy group, and a group derived from an acid anhydride. Further, the vinyl bond amount of the polymer block (A-2) is 50 to 99 mol%.
  • the group derived from acid anhydride means a group having a structure obtained by dehydration condensation of two carboxylic acid groups possessed by the acid anhydride, and is an acid anhydride.
  • Is maleic anhydride for example, a group having the structure shown below.
  • the block copolymer may be represented by a reference numeral (A0), and the hydrogenated product of the block copolymer (A0) may be represented by a reference numeral (A1). Further, the hydrogenated substance of the block copolymer (A0) may be referred to as "hydrogenated block copolymer (A1)".
  • the modified hydrogen additive (A) is a modified product of the hydrogen additive (A1) of the block copolymer (A0) or a modified product of the block copolymer (A0).
  • the block copolymer (A0) as the raw material of the modified hydrogen additive (A)
  • mechanical properties such as vibration damping property and impact resistance can be imparted to the resin composition (D1).
  • hydrogenating the block copolymer (A0) it becomes easy to improve the thermal stability.
  • the vinyl bond amount of the polymer block (A-2) (that is, the content of the 3,4-bonding unit and the 1,2-bonding unit in the polymer block (A-2)) is 50 to 99 mol%.
  • the modified hydrogen additive (A) and the polyolefin resin (B) are alternately arranged in a narrow width. Therefore, the properties such as vibration damping property and impact resistance of the modified hydrogenated additive (A) are likely to be exhibited in the resin composition (D1) as well.
  • the resin composition (D1) since a predetermined functional group is introduced by modification, the resin composition (D1) has high adhesiveness to metals and various other materials in combination with the above-mentioned fine co-continuous structure. Become.
  • the constituent components of the block copolymer (A0) or its hydrogenated product (A1), their usage ratios, characteristics, and the like for obtaining the modified hydrogenated product (A) will be described. Although these are substances before modification, they modify the polymer block (A-1) and the polymer block (A-2) of the block copolymer (A0) and the hydrogenated block copolymer (A1). It also has a hydrogenated additive (A), and its main skeleton does not change even if it is modified. Therefore, the following description of the polymer block (A-1) and the polymer block (A-2) is common to the modified hydrogenated product (A).
  • the block copolymer (A0) is a polymer block (A-1) containing a structural unit derived from an aromatic vinyl compound and a polymer block (A-2) containing a structural unit derived from a conjugated diene compound. And have.
  • the polymer block (A-1) and the polymer block (A-2) will be described below.
  • the polymer block (A-1) constituting the block copolymer (A0) is a structural unit derived from an aromatic vinyl compound used as a monomer from the viewpoint of mechanical properties such as vibration damping and impact resistance. It is preferable to have.
  • the polymer block (A-1) contains 70% by mass of a structural unit derived from an aromatic vinyl compound (hereinafter, may be abbreviated as “aromatic vinyl compound unit”) in the polymer block (A-1). It is preferably contained in excess of%, more preferably 80% by mass or more, still more preferably 90% by mass or more, still more preferably 95% by mass or more, substantially from the viewpoint of mechanical properties such as impact resistance. It is particularly preferably 100% by mass.
  • the content of the aromatic vinyl compound unit in the polymer block (A-1) is preferably more than 70% by mass and 100% by mass or less.
  • the block copolymer (A0) contains a structural unit derived from an aromatic vinyl compound only in the polymer block (A-1) from the viewpoint of mechanical properties.
  • the content of the structural unit derived from the aromatic vinyl compound in the block copolymer (A0) is preferably 4 to 50% by mass, more preferably 5 to 30% by mass, from the viewpoint of flexibility. It is more preferably 6 to 16% by mass, and all the structural units derived from the aromatic vinyl compound in the block copolymer (A0) are contained in the polymer block (A-1). Even more preferable.
  • aromatic vinyl compound examples include styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, ⁇ -methylstyrene, ⁇ -methylstyrene, 2,6-dimethylstyrene, 2,4-dimethylstyrene, and ⁇ .
  • aromatic vinyl compounds may be used alone or in combination of two or more.
  • styrene, ⁇ -methylstyrene, p-methylstyrene, and a mixture thereof are preferable, and styrene is more preferable, from the viewpoint of manufacturing cost and physical characteristic balance.
  • the polymer block (A-1) is a structural unit derived from an unsaturated monomer other than the aromatic vinyl compound (hereinafter, “other unsaturated monomer”, as long as it does not interfere with the object and effect of the present invention. It may be abbreviated as "unit"), but is preferably 30 mol% or less, more preferably less than 20 mol%, still more preferably less than 15 mol% in the polymer block (A-1). It is even more preferably less than 10 mol%, even more preferably less than 5 mol%, and particularly preferably 0 mol%. In other words, the content of the other unsaturated monomer unit in the polymer block (A-1) is preferably 0 to 30 mol%.
  • Examples of the other unsaturated monomer include butadiene, isoprene, ⁇ -farnesene, 2,3-dimethylbutadiene, 1,3-pentadiene, 1,3-hexadiene, isobutylene, methyl methacrylate, methylvinyl ether and ⁇ -. At least one selected from the group consisting of pinen, 8,9-p-mentene, dipentene, methylenenorbornene, 2-methylenetetrahydrofuran and the like can be mentioned.
  • the bonding form is not particularly limited and may be random or tapered.
  • the block copolymer (A0) may have at least one of the polymer blocks (A-1).
  • the polymer blocks (A-1) may be the same or different.
  • “the polymer block is different” means the monomer unit constituting the polymer block, the weight average molecular weight, the stereoregularity, and the ratio and the copolymer of each monomer unit when having a plurality of monomer units. It means that at least one of the forms of polymerization (random, gradient, block) is different.
  • the weight average molecular weight (Mw) of the polymer block (A-1) is not particularly limited, but at least one polymer block (A-1) among the polymer blocks (A-1) contained in the block copolymer (A0) (
  • the weight average molecular weight of A-1) is preferably 3,000 to 60,000, more preferably 4,000 to 50,000.
  • the weight average molecular weight is a standard polystyrene-equivalent weight average molecular weight obtained by gel permeation chromatography (GPC) measurement.
  • the content of the polymer block (A-1) in the block copolymer (A0) is preferably 50% by mass or less, more preferably 30% by mass or less, and preferably 16% by mass or less. It is more preferably 14% by mass or less, and particularly preferably 14% by mass or less. If it is 50% by mass or less, it is a block copolymer (A0) having appropriate flexibility and excellent vibration damping property without lowering the peak top strength of tan ⁇ (hereinafter, may be referred to as peak strength). ) Or a hydrogenated block copolymer (A1).
  • the lower limit is preferably 4% by mass or more, more preferably 5% by mass or more, and further preferably 6% by mass or more.
  • the content of the polymer block (A-1) in the block copolymer (A0) or the hydrogenated block copolymer (A1) is preferably 4 to 50% by mass.
  • the content of the polymer block (A-1) in the block copolymer (A0) is a value obtained by 1 H-NMR measurement, and more specifically, a value measured according to the method described in Examples. be.
  • the content of the polymer block (A-1) in the block copolymer (A0) is defined as the content of the polymer block (A-1) in the modified hydrogen additive (A).
  • the polymer block (A-2) constituting the block copolymer (A0) is referred to as a structural unit derived from a conjugated diene compound (hereinafter referred to as “conjugated diene compound unit”) from the viewpoint of vibration damping and thermal stability. May be referred to.).
  • the polymer block (A-2) preferably contains 30 mol% or more of the conjugated diene compound unit. Among them, from the viewpoint of vibration damping and thermal stability, the polymer block (A-2) contains the conjugated diene compound unit in an amount of more preferably 50 mol% or more, still more preferably 65 mol% or more, still more preferably 80.
  • the content is mol% or more, more preferably 90 mol% or more, substantially 100 mol%.
  • the content of the conjugated diene compound unit in the polymer block (A-2) is preferably 30 mol% or more and 100 mol% or less.
  • the above-mentioned "conjugated diene compound unit” may be a structural unit derived from one type of conjugated diene compound or a structural unit derived from two or more types of conjugated diene compounds.
  • the conjugated diene compound preferably contains isoprene, or isoprene and butadiene, from the viewpoint of achieving both excellent vibration damping properties and thermal stability. Further, as the conjugated diene compound, a conjugated diene compound other than isoprene and butadiene may be contained as described later. On the other hand, from the viewpoint of easily exhibiting excellent vibration damping properties and thermal stability, the content of isoprene in the conjugated diene compound is preferably 20% by mass or more, more preferably 40% by mass or more, still more preferably 45% by mass.
  • isoprene as the conjugated diene compound, more preferably 55% by mass or more, still more preferably 75% by mass or more, and particularly preferably 100% by mass.
  • the content of isoprene in the conjugated diene compound is preferably 20% by mass or more and 100% by mass or less.
  • the mixing ratio [isoprene / butadiene] is not particularly limited as long as the effect of the present invention is not impaired, but is preferably 5/95. It is ⁇ 95/5, more preferably 10/90 to 90/10, still more preferably 40/60 to 70/30, and particularly preferably 45/55 to 65/35.
  • the mixing ratio [isoprene / butadiene] is shown in molar ratio, it is preferably 5/95 to 95/5, more preferably 10/90 to 90/10, still more preferably 40/60 to 70/30, and particularly. It is preferably 45/55 to 55/45.
  • conjugated diene compound examples include ⁇ -farnesene, hexadiene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, and myrcene, in addition to the above-mentioned isoprene and butadiene.
  • the conjugated diene compound may be used alone or in combination of two or more.
  • the polymer block (A-2) may contain a structural unit derived from a polymerizable monomer other than the conjugated diene compound, as long as it does not interfere with the object and effect of the present invention.
  • the content of the structural unit derived from the polymerizable monomer other than the conjugated diene compound in the polymer block (A-2) is preferably less than 70 mol%, more preferably less than 50 mol%. , More preferably less than 35 mol%, particularly preferably less than 20 mol%.
  • the lower limit of the content of the structural unit derived from the polymerizable monomer other than the conjugated diene compound is not particularly limited, but may be 0 mol% or 5 mol%. It may be 10 mol%.
  • Examples of the other polymerizable monomer include styrene, ⁇ -methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, pt-butylstyrene, 2,4-dimethylstyrene and vinyl.
  • Aromatic vinyl compounds such as naphthalene and vinylanthrene, as well as methyl methacrylate, methylvinyl ether, N-vinylcarbazole, ⁇ -pinene, 8,9-p-mentene, dipentene, methylenenorbornene, 2-methylenetetrachloride, 1,3- Preferred are at least one compound selected from the group consisting of cyclopentadiene, 1,3-cyclohexadiene, 1,3-cycloheptadiene, 1,3-cyclooctadiene and the like. Of these, styrene, ⁇ -methylstyrene, and p-methylstyrene are more preferable, and styrene is even more preferable.
  • the block copolymer (A0) may have at least one polymer block (A-2).
  • the polymer blocks (A-2) may be the same or different.
  • the bonding form thereof is random, tapered, completely alternating, partially blocked, blocked, or two or more of them. It may consist of a combination.
  • the binding form of the conjugated diene compound is not particularly limited as long as the object and effect of the present invention are not impaired.
  • the structural unit constituting the polymer block (A-2) is any one of an isoprene unit and a mixture unit of isoprene and butadiene
  • the bond form of isoprene and butadiene is 1, in the case of butadiene.
  • 2-bond, 1,4-bond, and isoprene, 1,2-bond, 3,4-bond, and 1,4-bond vinyl bonds can be taken. Only one of these binding forms may be present, or two or more thereof may be present.
  • the total content of the 3,4-bonding unit and the 1,2-bonding unit (that is, the vinyl bond amount) in the polymer block (A-2) is 50 mol% or more. It is preferably 55 mol% or more, further preferably 60 mol% or more, still more preferably 65 mol% or more, still more preferably 70 mol% or more, still more preferably 75 mol% or more.
  • the vinyl bond amount in the polymer block (A-2) is 50 mol% or more, good vibration damping property is ensured, and the vibration damping property tends to improve as the vinyl bond amount increases.
  • the vinyl bond amount in the polymer block (A-2) is 99 mol% or less, may be 95 mol% or less, may be 92 mol% or less, and may be 90 mol% or less. May be good.
  • the vinyl bond amount of the polymer block (A-2) is 50 to 99 mol%, preferably 55 to 99 mol%, more preferably 60 to 99 mol%, still more preferably 65 to 99 mol%. %, More preferably 70 to 99 mol%, and particularly preferably 75 to 99 mol%.
  • the vinyl bond amount is a value calculated by 1 H-NMR measurement according to the method described in Examples.
  • the polymer block (A-2) is a structural unit derived from a conjugated diene compound, and contains one or more alicyclic skeletons (X) represented by the following formula (X) in the main chain. You may have.
  • R 1 to R 3 each independently represent a hydrogen atom or a hydrocarbon group having 1 to 11 carbon atoms, and a plurality of R 1 to R 3 may be the same or different from each other.
  • the hydrocarbon group preferably has 1 to 5 carbon atoms, more preferably 1 to 3 carbon atoms, and further preferably 1 (that is, a methyl group). Further, the hydrocarbon group may be a linear or branched chain, or may be a saturated or unsaturated hydrocarbon group. From the viewpoint of physical properties and formation of the alicyclic skeleton (X), it is particularly preferable that R 1 to R 3 are independently hydrogen atoms or methyl groups, respectively.
  • the vinyl group in the above formula (X) can be hydrogenated to form a hydrogenated product. Therefore, the meaning of the alicyclic skeleton (X) in the hydrogenated substance also includes the skeleton in which the vinyl group in the above formula (X) is hydrogenated.
  • the polymer block (A-2) has an alicyclic skeleton (X) of preferably 1 mol% or more, more preferably 1.1 mol% or more, still more preferably 1.4 mol% or more, still more preferably. It contains 1.8 mol% or more, more preferably 4 mol% or more, still more preferably 10 mol% or more, and particularly preferably 13 mol% or more. Further, the upper limit of the content of the alicyclic skeleton (X) in the polymerization block (A-2) is not particularly limited as long as it does not impair the effect of the present invention, but from the viewpoint of productivity, 40 It is preferably mol% or less, preferably 30 mol% or less, 20 mol% or less, or 18 mol% or less.
  • the content of the alicyclic skeleton (X) contained in the block copolymer (A0) or the hydrogenated block copolymer (A1) was determined by measuring the block copolymer by 13 C-NMR. It is a value obtained from the integrated value derived from the alicyclic skeleton (X) in A-2).
  • Amount of vinyl bond in polymer block (A-2) is any one of an isoprene unit, a butadiene unit, and a mixture unit of isoprene and butadiene, isoprene other than the bond form forming the alicyclic skeleton (X) and isoprene and Butadiene has 1,2-bond and 1,4-bond in the case of butadiene, and 1,2-bond, 3,4-bond and 1,4-bond in the case of isoprene. be able to.
  • the contents of the 3,4-bonding unit and the 1,2-bonding unit in the polymer block (A-2) (hereinafter, simply referred to as simple).
  • the total amount (sometimes referred to as "vinyl bond amount”) is 50 to 99 mol%, preferably 55 to 95 mol%, more preferably 63 to 95 mol%, still more preferably 70 to 95 mol%. be.
  • the compatibility with the non-polar resin, particularly the compatibility with the polyolefin resin (B) can be enhanced, and by extension, high adhesiveness to metals and other materials is exhibited. Let me. In addition, it becomes easy to develop excellent vibration damping properties.
  • the weight average molecular weight (Mw) of the polymer block (A-2) is not particularly limited, but is the total weight average molecular weight of the polymer blocks (A-2) of the block copolymer (A0) before hydrogenation. However, it is preferably 15,000 to 400,000, more preferably 20,000 to 300,000, still more preferably 30,000 to 250,000, still more preferably 30,000 to 200,000, and even more preferably. It is 30,000 to 150,000. If the total weight average molecular weight of the polymer block (A-2) is within the above range, more excellent vibration damping properties can be easily exhibited.
  • the content of the polymer block (A-2) in the block copolymer (A0) is preferably 99% by mass or less, more preferably 97% by mass or less, still more preferably 94% by mass or less.
  • a modified hydrogen additive having mechanical properties, mechanical properties, and moldability suitable for various applications while having vibration damping properties.
  • (A) or the resin composition (D1) containing the same can be easily obtained.
  • the content of the polymer block (A-2) in the block copolymer (A0) is preferably 30% by mass or more, more preferably 35% by mass or more, still more preferably 60% by mass or more, still more preferably.
  • the modified hydrogenated additive (A) having excellent vibration damping properties or the resin composition (D1) containing the modified hydrogenated additive (A) can be obtained. ..
  • the polymer block (A-2) may contain a structural unit derived from a polymerizable monomer other than the conjugated diene compound, as long as it does not interfere with the object and effect of the present invention.
  • the content of the structural unit derived from the polymerizable monomer other than the conjugated diene compound in the polymer block (A-2) is preferably less than 50 mol%, more preferably less than 30 mol%. , More preferably less than 20 mol%, even more preferably less than 10 mol%, particularly preferably 0 mol%.
  • the content of the structural unit derived from the polymerizable monomer other than the conjugated diene compound is preferably 0 mol% or more and less than 50 mol%.
  • the other polymerizable monomer include styrene, ⁇ -methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, pt-butylstyrene, 2,4-dimethylstyrene, and N.
  • -Aromatic vinyl compounds such as vinylcarbazole, vinylnaphthalene and vinylanthrene, as well as methyl methacrylate, methylvinyl ether, ⁇ -pinene, 8,9-p-mentene, dipentene, methylenenorbornene, 2-methylenetetrakelate, 1,3- Preferred are at least one compound selected from the group consisting of cyclopentadiene, 1,3-cyclohexadiene, 1,3-cycloheptadiene, 1,3-cyclooctadiene and the like.
  • the block copolymer (A0) may have at least one of the above-mentioned polymer blocks (A-2). When the block copolymer (A0) has two or more polymer blocks (A-2), the polymer blocks (A-2) may be the same or different.
  • the block copolymer (A0) is not limited in its bonding form, and is linear, branched, or linear. It can be either radial or a combination of two or more of these.
  • the bonding form of the polymer block (A-1) and the polymer block (A-2) is preferably linear, and as an example, the polymer block (A-1) is A, and the polymer block (A-1) is A.
  • polymer block (A-2) is represented by B
  • the diblock copolymer represented by AB the triblock copolymer represented by ABA or BAB
  • A- Tetrablock copolymers represented by BAB pentablock copolymers represented by ABABA or BABBA
  • (AB) nZ type co examples include polymers (Z represents a coupling agent residue and n represents an integer of 3 or more).
  • linear triblock copolymers or diblock copolymers are preferable, and ABA type triblock copolymers are preferably used from the viewpoints of flexibility, ease of production, and the like. ..
  • the ABA type triblock copolymer examples include a styrene-hydrogenated butadiene / isoprene-styrene copolymer. That is, it is preferable that the block copolymer contains at least a styrene-hydrogenated butadiene / isoprene-styrene copolymer.
  • the entire bonded polymer block is treated as one polymer block.
  • the polymer block which should be strictly expressed as YZ-Y Z represents a coupling residue
  • YZ-Y Z represents a coupling residue
  • ABZBA The block copolymer to be described as (Z represents a coupling agent residue) is described as ABA and is treated as an example of a triblock copolymer.
  • the block copolymer (A0) may contain a polymer block other than the polymerization blocks (A-1) and (A-2) as long as it does not interfere with the object and effect of the present invention.
  • the total content of the polymer block (A-1) and the polymer block (A-2) is preferably 90% by mass or more, more preferably 95% by mass or more, and substantially 100% by mass. % Is particularly preferable. When it is 90% by mass or more, it becomes easy to obtain a resin composition which tends to exhibit more excellent vibration damping property. In other words, the total content of the polymer block (A-1) and the polymer block (A-2) in the block copolymer (A0) is preferably 90 to 100% by mass.
  • the weight average molecular weight (Mw) of the block copolymer (A0) and the hydrogenated block copolymer (A1) obtained in terms of standard polystyrene by gel permeation chromatography is preferably 50,000 to 400,000. It is more preferably 60,000 to 300,000, still more preferably 70,000 to 250,000, even more preferably 80,000 to 200,000, and particularly preferably 90,000 to 180,000.
  • Mw weight average molecular weight of the block copolymer (A0) or the hydrogenated block copolymer (A1) is 50,000 or more, the heat resistance becomes high, and when it is 400,000 or less, the obtained resin composition Handleability is good.
  • the hydrogenation rate of the polymer block (A-2) exceeds 0 mol%. Is. That is, at least a part of the carbon-carbon double bond of the polymer block (A-2) is hydrogenated.
  • the hydrogenation rate is preferably 50 mol% or more from the viewpoint of ensuring vibration damping properties over a wide range of temperatures and thermal stability.
  • the hydrogenation ratio is more preferably 60 mol% or more, still more preferably 70 mol% or more, and more.
  • the upper limit of the hydrogenation rate is not particularly limited, but the upper limit may be 99 mol% or 98.5 mol%. In other words, the hydrogenation rate is preferably 50 to 99 mol%.
  • the hydrogenation rate was determined by measuring the content of carbon-carbon double bonds in the structural unit derived from the conjugated diene compound in the polymer block (A-2) by 1 H-NMR measurement after hydrogenation. It is a value, and more particularly, it is a value measured according to the method described in Examples.
  • the modified hydrogen additive (A) is, for example, an alkoxysilyl group, a carboxy group, an amino group, a hydroxy group, an epoxy group, and the hydrogenated block copolymer (A1) obtained by hydrogenating the block copolymer (A0). It can be produced by reacting a compound having one or more functional groups selected from the groups derived from the acid anhydride and the functional group to introduce the functional group and modifying the hydrogenated block copolymer (A1). can.
  • the functional group is preferably one or more functional groups selected from an alkoxysilyl group and a group derived from an acid anhydride. The method for producing the modified hydrogenated product (A) will be described later.
  • the resin composition (D1) containing the modified hydrogenated additive (A) can be provided with high adhesiveness to metals and other materials.
  • the modified hydrogen additive (A) preferably has the above functional group in the side chain, whereby the difference in molecular motility between the main chain and the side chain becomes large, the glass transition temperature is controlled, and the modified hydrogen additive (A) is excellent in a wide range of temperatures. It is possible to show the vibration damping property.
  • the content of the functional group in the modified hydrogenated product (A) is preferably 0.1 phr or more, more preferably 0.15 phr or more, still more preferably 0.2 phr or more, still more preferably 0.25 phr or more.
  • the content of the functional group in the modified hydrogenated product (A) is preferably 5.0 phr or less, more preferably 4.0 phr or less, still more preferably 3.0 phr or less, still more preferably 2.0 phr or less. Even more preferably, it is 0.95 phr or less.
  • the content of the functional group in the modified hydrogenated product (A) is preferably 0.1 to 5.0 phr.
  • the content of the functional group in the modified hydrogen additive (A) is preferably 0.1 mol% or more, more preferably 0.15 mol% or more, still more preferably 0.2 mol% or more, still more preferably. Is 0.25 mol% or more.
  • the content of the functional group in the modified hydrogen additive (A) is preferably 5.0 mol% or less, more preferably 4.0 mol% or less, still more preferably 3.0 mol% or less, still more preferably. Is 2.0 mol% or less, more preferably 0.95 mol% or less.
  • the content of the functional group in the modified hydrogenated product (A) is preferably 0.1 to 5.0 mol%.
  • the adhesiveness of the resin composition (D1) containing the modified hydrogenated product (A) can be improved.
  • the content of the functional group (phr) means the mass part of the functional group with respect to 100 parts by mass of the modified hydrogen additive (A), and the content of the functional group in the modified hydrogen additive (A) is titrated. It can be calculated by 1 H-NMR measurement and measurement based on infrared spectroscopic analysis (IR measurement).
  • the amount of modification in the modified hydrogenated agent (A) can be adjusted by adjusting the ratio and type of the modifying agent used.
  • the weight average molecular weight of the modified hydrogenated product (A) is preferably 50,000 to 400,000, more preferably 60,000 to 300,000, still more preferably 70,000 to 250,000, and particularly. It is preferably 80,000 to 200,000, most preferably 90,000 to 180,000.
  • the weight average molecular weight of the modified hydrogenated product (A) can be adjusted, for example, by adjusting the amount of the polymerization initiator used in the polymerization.
  • the glass transition temperature of the modified hydrogenated product (A) is preferably ⁇ 30 to + 30 ° C., more preferably ⁇ 15 to + 30 ° C., and even more preferably ⁇ 10 to + 25 ° C. from the viewpoint of improving vibration damping.
  • the glass transition temperature is a value measured by using a differential scanning calorimeter (DSC) measuring device, and is specifically measured by the method described in Examples.
  • the glass transition temperature of the modified hydrogenated product (A) can be adjusted, for example, by the content of 3,4-bonds and 1,2-bonds of the conjugated diene.
  • the melt flow rate of the modified hydrogenated product (A) measured under the conditions of a temperature of 230 ° C. and a load of 21 N according to JIS K7210 (2014) is preferably 1 to 30 g / 10 min, more preferably 1 to 30 g / 10 min, from the viewpoint of moldability. It is 3 to 25 g / 10 min, more preferably 5 to 20 g / 10 min.
  • the tan ⁇ (tangent loss) of the modified hydrogen additive (A) is the ratio of the loss modulus / storage modulus at a frequency of 1 Hz in dynamic viscous measurement, and the peak top temperature and intensity of tan ⁇ are the vibration damping property and the vibration damping property. It greatly contributes to other physical properties.
  • the peak top intensity of tan ⁇ is the value of tan ⁇ when the peak of tan ⁇ is maximized.
  • the peak top temperature of tan ⁇ is the temperature at which the peak of tan ⁇ becomes maximum.
  • the peak top temperature and intensity of tan ⁇ of the block copolymer (A0) or the hydrogenated block copolymer (A1) are the same as that of the block copolymer (A0) or the hydrogenated block copolymer (A1).
  • a single-layer sheet having a thickness of 1.0 mm is produced, and the single-layer sheet is cut into a disk shape and measured as a test piece.
  • the measurement conditions are a strain amount of 0.1%, a frequency of 1 Hz, a measurement temperature of ⁇ 70 to + 100 ° C., and a temperature rise rate of 3 ° C./min in accordance with JIS K 7244-10 (2005).
  • the peak top temperature of tan ⁇ and the peak top intensity of tan ⁇ of the block copolymer (A0) or the hydrogenated block copolymer (A1) are values measured in more detail according to the method described in Examples.
  • the modified hydrogenated product (A) can have a peak top intensity of tan ⁇ of 1.0 or more by the above measurement. Some of the higher ones are 1.5 or more, and even 1.9 or more. The higher the peak top strength of tan ⁇ , the better the physical properties such as vibration damping at that temperature, and if it is 1.0 or more, sufficient vibration damping can be obtained in an actual use environment. Further, in the modified hydrogenated product (A), the peak top temperature of tan ⁇ is preferably ⁇ 50 ° C. or higher, more preferably ⁇ 40 ° C. or higher, still more preferably ⁇ 30 ° C. or higher, still more preferably ⁇ 25 ° C. or higher. Yes, it may be 0 ° C. or higher.
  • the upper limit of the peak top temperature of tan ⁇ may be + 50 ° C. or lower, + 40 ° C. or lower, or + 35 ° C. or lower as long as the effect of the present invention is not impaired. good.
  • the range of the peak top temperature of tan ⁇ is, for example, preferably ⁇ 50 to + 50 ° C, more preferably ⁇ 40 to + 40 ° C, still more preferably ⁇ 30 to + 30 ° C, and even more preferably ⁇ 25 to + 25 ° C. ..
  • the peak top temperature of the tan ⁇ is ⁇ 50 ° C. or higher or + 50 ° C. or lower, sufficient vibration damping property can be obtained in an actual use environment.
  • the modified hydrogenated additive (A) uses at least an aromatic vinyl compound and a conjugated diene compound as monomers, and polymerizes them to form a block copolymer (A0) before hydrogenating the block copolymer (A0). Alternatively, it can be produced by undergoing a modification reaction using a modifier after hydrogenation.
  • the block copolymer (A0) uses at least an aromatic vinyl compound and a conjugated diene compound as monomers, and by carrying out a polymerization reaction, a polymer block (A-1) containing a structural unit derived from the above aromatic vinyl compound. ) And a polymer block (A-2) containing a structural unit derived from the conjugated diene compound can be obtained as a block copolymer.
  • the aromatic vinyl compound, conjugated diene compound, polymer block (A-1) and polymer block (A-2) are synonymous with those described above in the description of the modified hydrogenated product (A).
  • the above polymerization reaction can be produced by, for example, a solution polymerization method, an emulsion polymerization method, a solid phase polymerization method, or the like.
  • the solution polymerization method is preferable, and for example, known methods such as anionic polymerization method such as anionic polymerization and cationic polymerization, and radical polymerization method can be applied.
  • the anion polymerization method is preferable.
  • an aromatic vinyl compound and a conjugated diene compound are sequentially added in the presence of a solvent, an anionic polymerization initiator, and if necessary, a Lewis base to obtain a block copolymer, and if necessary, coupling is performed.
  • the agent may be added and reacted.
  • Examples of the organic lithium compound that can be used as a polymerization initiator for anionic polymerization in the above method include methyllithium, ethyllithium, n-butyllithium, sec-butyllithium, tert-butyllithium, and pentyllithium.
  • Examples of the dilithium compound that can be used as the polymerization initiator include naphthalenedilithium and dilithiohexylbenzene.
  • Examples of the coupling agent include dichloromethane, dibromomethane, dichloroethane, dibromoethane, dibromobenzene, phenylbenzoate and the like.
  • the amount of these polymerization initiators and coupling agents used is appropriately determined by the desired weight average molecular weight of the block copolymer (A0) or the hydrogenated block copolymer (A1).
  • the initiator such as an alkyllithium compound or a dilithium compound is 0.01 to 0.2 per 100 parts by mass of the monomer of the polymer block (A-1) used for the polymerization and the monomer such as the conjugated diene compound. It is preferably used in a proportion of parts by mass, and when a coupling agent is used, it is preferably used in a proportion of 0.001 to 0.8 parts by mass per 100 parts by mass of the total of the monomers.
  • the solvent is not particularly limited as long as it does not adversely affect the anion polymerization reaction.
  • aliphatic hydrocarbons such as cyclohexane, methylcyclohexane, n-hexane and n-pentane; aromatic hydrocarbons such as benzene, toluene and xylene. And so on.
  • the polymerization reaction is usually carried out at a temperature of 0 to 100 ° C., preferably 10 to 70 ° C. for 0.5 to 50 hours, preferably 1 to 30 hours.
  • Lewis bases such as dimethyl ether, diethyl ether, tetrahydrofuran, 2,2-di (2-tetrahydrofuryl) propane (DTHP); ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, and the like.
  • Glycol ethers such as tetraethylene glycol dimethyl ether; amines such as triethylamine, N, N, N', N'-tetramethylenediamine, N, N, N', N'-tetramethylethylenediamine (TMEDA), N-methylmorpholin.
  • TEDA triethylamine
  • TEDA triethylamine
  • TEDA N-methylethylenediamine
  • TEDA N-methylmorpholin.
  • sodium or potassium salts of aliphatic alcohols such as sodium t-butyrate, natrim t-amilate or sodium isopentylate, or dialkyl sodium cyclohexanolates, eg sodium alicyclic alcohols such as sodium mentrate or Metallic salts such as potassium salts; and the like.
  • Lewis bases tetrahydrofuran and DTHP are preferably used from the viewpoint of vibration damping and thermal stability.
  • DTHP tetrahydrofuran
  • DTHP DTHP. Is more preferable to use.
  • These Lewis bases can be used alone or in combination of two or more.
  • the amount of the Lewis base added is the isoprene unit and / or the isoprene unit constituting the polymer block (A-2). Alternatively, it is determined by how much the amount of vinyl bond in butadiene units is controlled. Therefore, the amount of Lewis base added is not strictly limited, but is usually 0.1 to 1,000 mol per gram atom of lithium contained in the alkyllithium compound or dilithium compound used as the polymerization initiator. It is preferably used in the range of 1 to 100 mol.
  • a block copolymer can be obtained by adding an active hydrogen compound such as alcohols, carboxylic acids and water to terminate the polymerization reaction.
  • the block copolymer (A0) obtained by the above production method is hydrogenated (hydrogenated reaction) in the presence of a hydrogenated catalyst in an inert organic solvent to obtain a hydrogenated block copolymer (A1). ) Can be produced.
  • the hydrogenation reaction the carbon-carbon double bond derived from the conjugated diene compound in the polymer block (A-2) in the block copolymer (A0) is hydrogenated, and the block copolymer (A0) is hydrogenated. It can be a product, that is, a hydrogenated block copolymer (A1).
  • the block copolymer (A0) may be hydrogenated after being modified by the method described below.
  • the hydrogen pressure is about 0.1 to 20 MPa, preferably 0.5 to 15 MPa, more preferably 0.5 to 5 MPa
  • the reaction temperature is about 20 to 250 ° C., preferably 50 to 180 ° C., more preferably.
  • the hydrogenated catalyst include lane nickel; a heterogeneous catalyst in which a metal such as Pt, Pd, Ru, Rh, and Ni is supported on a carrier such as carbon, alumina, and diatomaceous earth; a transition metal compound, an alkylaluminum compound, and an alkyllithium.
  • a Chigler-based catalyst composed of a combination with a compound or the like; a metallocene-based catalyst or the like can be mentioned.
  • the polymerization reaction solution is poured into methanol or the like, stirred, filtered, and heated or dried under reduced pressure. It can be obtained by pouring the polymerization reaction solution into hot water together with steam, subjecting it to so-called steam stripping to azeotropically remove the solvent, and then heating or drying under reduced pressure.
  • the hydrogenation rate of the carbon-carbon double bond in the polymer block (A-2) when hydrogenated is determined by the resin composition (D1) or the resin composition (D2) described later. ) Can be specified according to the desired performance in various applications. The higher the hydrogenation rate of the hydrogenated product, the more the hydrogenated product can be obtained with improved heat resistance and weather resistance.
  • the modified hydrogenated product (A) used in the resin composition (D1) is described above. As described above, the hydrogenation rate of the polymer block (A-2) is preferably 50 to 99 mol%.
  • the modified hydrogen additive (A) is the above-mentioned functional group by introducing the above-mentioned functional group after hydrogenating the block copolymer (A0) or before hydrogenating the block copolymer (A0). Can be produced by hydrogenation after introduction.
  • the block copolymer (A0) is hydrogenated to form a hydrogenated block copolymer (A1), and then a specific functional group is introduced to produce the product. Is preferable.
  • modification reaction the reaction of introducing the above-mentioned functional group into the hydrogenated block copolymer (A1) to modify it (hereinafter, may be referred to as “modification reaction”) can be carried out by a known method.
  • the hydrogenated block copolymer (A1) is dissolved in an organic solvent, various modifiers capable of adding the above-mentioned functional groups are added thereto, and the temperature is about 50 to 300 ° C., 0. It can be carried out by reacting in about 5 to 10 hours.
  • the modification reaction can be carried out, for example, by melting the hydrogenated block copolymer (A1) using an extruder or the like without using a solvent and adding various modifiers.
  • the temperature of the modification reaction is usually 400 ° C. or lower from the melting point of the hydrogenated block copolymer (A1) or higher, preferably 90 to 350 ° C., more preferably 100 to 300 ° C., and the reaction time is usually. It takes about 0.5 to 10 minutes. Further, it is preferable to add a radical initiator when the modification reaction is carried out in a molten state, and an antiaging agent may be added from the viewpoint of suppressing side reactions.
  • the modification reaction is preferably carried out by the latter method of modifying in a molten state from the viewpoint of facilitating excellent workability, vibration damping and thermal stability. That is, in a preferred embodiment of the method for producing the modified hydrogen additive (A), the block copolymer (A0) is hydrogenated to obtain a hydrogenated block copolymer (A1), and then the hydrogenated block copolymer in a molten state is co-weighted.
  • the coalescence (A1) one or more functional groups selected from an alkoxysilyl group, a carboxy group, an amino group, a hydroxy group, an epoxy group, and a group derived from acid anhydride are introduced using a radical initiator. Further has a step of
  • Examples of the modifying agent to which the above functional group can be added include dimethyldiethoxysilane, tetramethoxysilane, tetraethoxysilane, 3-aminopropyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, and hydroxymethyltriethoxysilane.
  • the amount of the modifier added may be appropriately determined according to the content of the functional group in the above-mentioned modified hydrogen additive (A) so as to have a desired content of the functional group.
  • the modifier is usually about 0.01 to 10 parts by mass, preferably 0.01 to 5 parts by mass, and more preferably 0.01 to 3 parts by mass with respect to 100 parts by mass of the polymer (A1) or block copolymer (A0). It is by mass, more preferably 0.05 to 2 parts by mass.
  • radical initiator organic peroxides or organic peroxides such as dialkyl peroxides, diacyl peroxides, peroxyesters, peroxyketals, and hydroperoxides are used, and azobisisobutyro is used. Azo compounds such as nitrile and dimethylazoisobutyrate can also be used.
  • organic peroxides are preferable, and dialkyl peroxides are more preferable.
  • the amount of the radical initiator added may be appropriately determined depending on the combination of the hydrogenated block copolymer (A1) or the block copolymer (A0) and the modifier, and the hydrogenated block copolymer (A1) or the block
  • the radical initiator is usually about 0.01 to 10 parts by mass, preferably 0.01 to 5 parts by mass, more preferably 0.01 to 3 parts by mass, and further, with respect to 100 parts by mass of the copolymer (A0). It is preferably 0.05 to 2 parts by mass.
  • polyolefin-based resin (B) contained in the resin composition (D1) examples include polypropylene, polyethylene, polymethylpentene, an ethylene-vinyl acetate copolymer, and a resin in which a plurality of these are combined.
  • polypropylene examples include block polypropylene which is a block copolymer with ⁇ -olefin such as homopolypropylene and ethylene, and random polypropylene which is a random copolymer with ⁇ -olefin such as ethylene.
  • polyethylene examples include high-density polyethylene, medium-density polyethylene, low-density polyethylene, linear low-density polyethylene, and the like.
  • the polymethylpentene includes a homopolymer of 4-methyl-1-pentene, a structural unit derived from 4-methyl-1-pentene, and an ⁇ -olefin having 2 to 20 carbon atoms (however, 4-methyl-. Examples thereof include copolymers having structural units derived from 1-).
  • the ethylene-vinyl acetate copolymer is not particularly limited as long as it is a resin copolymerized with ethylene using acetic acid as a comonomer, and various vinyl acetate group contents (VA content) can be used.
  • polyolefin resin (B) a homopolymer or copolymer of ⁇ -olefin, a copolymer of propylene and / or ethylene and ⁇ -olefin, and the like can also be used as the polyolefin resin (B).
  • ⁇ -olefin examples include 1-butene, 1-pentene, 3-methyl-1-butene, 1-hexene, 3-methyl-1-pentene, 4-methyl-1-pentene, 1-heptene, 1 -Alkenes include ⁇ -olefins having 20 or less carbon atoms such as octene, 1-nonene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicosen, and one or 2 of these. More than seeds can be used.
  • the polyolefin resin (B) is a polypropylene, polyethylene, polymethylpentene, ethylene vinyl acetate copolymer, a homopolymer or copolymer of ⁇ -olefin, propylene and / or ethylene and ⁇ -olefin. It is at least one resin selected from the group consisting of the copolymer of.
  • the resin composition (D1) can contain various additives as long as the effects of the present invention are not impaired.
  • Additives include, for example, talc, clay, mica, calcium silicate, glass, hollow spheres of glass, glass fiber, calcium carbonate, magnesium carbonate, basic magnesium carbonate, aluminum hydroxide, magnesium hydroxide, calcium hydroxide, hoe.
  • the additive examples include a tackifier resin, a plasticizer, a filler, a cross-linking agent (isocyanate-based cross-linking agent, an epoxy-based cross-linking agent, a metal chelate-based cross-linking agent, an aziridine-based cross-linking agent, an amine resin, etc.), a heat stabilizer, and the like.
  • a cross-linking agent isocyanate-based cross-linking agent, an epoxy-based cross-linking agent, a metal chelate-based cross-linking agent, an aziridine-based cross-linking agent, an amine resin, etc.
  • a heat stabilizer and the like.
  • UV absorber Infrared absorber, Antioxidant, Lubricating agent, Coloring agent, Antistatic agent, Flame retardant, Water repellent, Waterproofing agent, Hydrophilicity-imparting agent, Conductivity-imparting agent, Thermal conductivity-imparting agent , Electromagnetic wave shielding agent, translucency adjusting agent, fluorescent agent, slidability imparting agent, transparency imparting agent, antiblocking agent, metal inactivating agent, antibacterial agent, crystal nucleating agent, crack inhibitor, ozone Deterioration inhibitors, rodent-proofing agents, dispersants, thickeners, light-resistant agents, weather-resistant agents, copper damage inhibitors, reinforcing agents, mold-proofing agents, macrocyclic molecules (cyclodextrins, calix array, kukurubituriru, etc.) can.
  • the above additives can be used alone or in combination of two or more.
  • the content of the additive in the resin composition (D1) is not limited, and can be appropriately adjusted according to the type of the additive, the use of the resin composition (D1), and the like.
  • the content of the above-mentioned additive is, for example, 50% by mass or less, 45% by mass or less, and 30% by mass or less with respect to the total mass of the resin composition (D1). , 20% by mass or less, 10% by mass or less, and may be 0.01% by mass or more, 0.1% by mass or more, 1% by mass or more, and 5% by mass or more.
  • the content of the additive in the resin composition (D1) is preferably 0.01 to 50% by mass.
  • Aa / Ba is preferable from the viewpoint of adhesiveness. It is 95/5 to 5/95, more preferably 80/20 to 10/90, and even more preferably 70/30 to 10/90.
  • the total mass of the modified hydrogen additive (A) and the polyolefin-based resin (B) contained in the first resin composition (D1) is preferably 50 mass from the viewpoint of sufficiently developing adhesiveness. % Or more, more preferably 65% by mass or more, still more preferably 70% by mass or more, still more preferably 80% by mass or more, and particularly preferably 90% by mass or more.
  • the upper limit of the total mass is not particularly limited, and may be 100% by mass, 99.9% by mass, or 99.5% by mass.
  • the total mass of the modified hydrogenated additive (A) and the polyolefin-based resin (B) contained in the first resin composition (D1) is preferably 50 to 100% by mass.
  • the adhesive strength of the resin composition (D1) to the aluminum alloy plate (A5052P) is preferably 2.5 N / mm 2 or more, more preferably 3.0 N / mm 2 or more, still more preferably, from the viewpoint of ensuring high adhesiveness. Is 3.5 N / mm 2 or more, more preferably 4.0 N / mm 2 or more. Further, the adhesive strength of the resin composition (D1) to the stainless steel sheet (SUS304) is preferably 3.5 N / mm 2 or more, more preferably 4.0 N / mm 2 or more, and further, from the viewpoint of ensuring high adhesiveness.
  • the upper limit of the adhesive strength is not limited, but 30 N / mm 2 may be used as a guideline for the adhesive strength that can be actually measured.
  • the adhesive strength of the resin composition (D1) when the metal plate is used as an object to be adhered is determined by using a test piece having a length of 34 mm, a width of 10 mm, and a thickness of 0.05 cm and putting it between a pair of metal plates to pressurize it. After heating, using the shear peeling test device Instron 3345 (manufactured by Instron), the ends of the two adherends on the non-bonded side are pulled in opposite directions under the condition of a tensile speed of 5 mm / min. It is measured by shear peeling. Specifically, it is measured by the method described in Examples.
  • the MFR of the resin composition (D1) is preferably 5 to 30 g / 10 min, more preferably 10 to 25 g / 10 min, still more preferably 15 from the viewpoint of ensuring fluidity when preparing the resin composition (D1). It is ⁇ 25 g / 10 min.
  • MFR is measured using a melt indexer (MELT INDEXER L241 manufactured by Tateyama Kagaku High Technologies Co., Ltd.) under the conditions of a temperature of 230 ° C. and a load of 21N according to JIS K7210 (2014).
  • the tensile elastic modulus of the resin composition (D1) is preferably 10 to 400 MPa, more preferably 20 to 350 MPa, still more preferably 25 to 300 MPa, from the viewpoint of achieving both flexibility and mechanical strength.
  • the upper and lower limits of the tensile elastic modulus are not particularly limited and can be appropriately specified according to the intended use.
  • the tensile elastic modulus can be measured according to JIS K6251 (2017) using dumbbell No. 3 as a test piece under the condition of a tensile speed of 500 mm / min.
  • the breaking stress of the resin composition (D1) is preferably 10 to 35 MPa, more preferably 15 to 30 MPa, still more preferably 20 to 30 MPa from the viewpoint of mechanical strength.
  • the upper limit of the breaking stress is not particularly limited and can be appropriately specified according to the application.
  • the breaking stress can be measured according to JIS K6251 (2017) using dumbbell No. 3 as a test piece under the condition of a tensile speed of 500 mm / min.
  • the resin composition (D1) has a breaking elongation measured under the condition of a tensile speed of 500 mm / min using dumbbell No. 3 as a test piece in accordance with JIS K6251 (2017). It is preferably 200% or more, more preferably 300% or more, still more preferably 600% or more.
  • the resin composition (D1) has a type D durometer hardness measured according to JIS K6253-3 (2012) at an atmospheric temperature of 23 ° C., preferably 20 to 70, more preferably. Is 25 to 65, more preferably 30 to 60.
  • the resin composition (D1) contains a modified hydrogen additive (A), a polyolefin resin (B), and various additives as needed, such as a henshell mixer, a V blender, a ribbon blender, a tumbler blender, and a conical blender. It is manufactured by mixing using a mixer of the above, or after that, by melt-kneading at about 80 to 350 ° C. using a kneader such as a single-screw extruder, a twin-screw extruder, a kneader, a Banbury mixer, and a roll. Can be manufactured.
  • a kneader such as a single-screw extruder, a twin-screw extruder, a kneader, a Banbury mixer, and a roll. Can be manufactured.
  • a resin composition can also be prepared by dissolving and mixing each component in a solvent in which at least the modified hydrogen additive (A) and the polyolefin resin (B) are soluble, and removing the solvent.
  • the resin composition can be in any shape such as veil, crumb, pellet and the like.
  • the above resin composition can be obtained by an injection molding method, an injection compression molding method, an extrusion molding method, a blow molding method, a press molding by a melt kneading machine or by using a veil, crumb, pellet or the like of the resin composition as a raw material.
  • Various molded products can be obtained by a method, a vacuum molding method, a foam molding method, or the like.
  • the resin composition (D1) has adhesiveness to various materials and particularly high adhesiveness to metal, glass and aluminum sashes and metals in windows of automobiles and buildings It can be suitably used as a sealant for a joint with an opening or the like, or a connection between glass and a metal frame in a solar cell module or the like. It is also useful in a wide range of applications as a molded body or structure bonded to glass, such as window moldings and gaskets for automobiles and buildings, glass sealants, and antiseptic materials. Furthermore, it can be used as an adhesive or a coating agent for various information terminal devices such as notebook personal computers, mobile phones, video cameras, and secondary battery separators used in hybrid vehicles, fuel cell vehicles, and the like.
  • the adhesive according to the embodiment of the present invention contains a resin composition (D1).
  • the above-mentioned adhesive exhibits adhesiveness to various materials such as metal, glass and resin, and for example, metal and resin, glass and resin, metal and glass, and polarity.
  • a resin and a non-polar resin, a non-polar resin and a non-polar resin, a polar resin and a polar resin, and the like can be bonded.
  • the above-mentioned adhesive has particularly high adhesiveness to metals.
  • the metal to which the adhesive can be adhered examples thereof include aluminum, aluminum alloys, stainless steels, coppers, and magnesium alloys.
  • the adhesive exhibits high adhesiveness to aluminum, aluminum alloys, and stainless steel, and is therefore preferably applied to these metals.
  • the adhesive may be all the resin composition (D1) or may contain the resin composition (D1) and other additives.
  • Examples of the additive that can be contained in the above-mentioned adhesive include the same as those described above.
  • the total amount of the modified hydrogen additive (A) and the polyolefin resin (B) contained in the adhesive is preferably 70% by mass or more, more preferably 80% by mass, from the viewpoint of ensuring the adhesiveness to the adherend. % Or more, more preferably 90% by mass or more. In other words, the total amount of the modified hydrogenated additive (A) and the polyolefin-based resin (B) contained in the adhesive is preferably 70 to 100% by mass.
  • the characteristics such as adhesive strength, hardness, tensile elastic modulus, breaking stress, and breaking elongation of the adhesive to the adherend are the same as those described for the resin composition (D1).
  • the adhesive When the adhesive is adhered to a metal, the adhesive is placed on the metal to be adhered and heated, or the adhesive melted by heating is supplied onto the metal to be adhered. be able to.
  • the adhesive When the metals are bonded to each other using the adhesive, the adhesive is placed on one of the metals to be adhered, and the other metal is superposed on the metal to be heated and pressed, or the metal is heated and melted. This can be done by supplying the above-mentioned adhesive onto one metal to be adhered, superimposing the other metal on the metal, and pressurizing the other metal.
  • the compatibilizer according to the embodiment of the present invention is a compatibilizer for making a polar resin and a non-polar resin compatible with each other.
  • the modified hydrogen additive (A) has one or more functional groups selected from an alkoxysilyl group, a carboxy group, an amino group, a hydroxy group, an epoxy group, and a group derived from an acid anhydride.
  • the vinyl bond amount of the polymer block (A-2) is 50 to 99 mol%.
  • the compatibilizer may be composed of the modified hydrogen additive (A) alone, or may contain a component other than the modified hydrogen additive (A).
  • components include processing aids, reinforcing agents, fillers, plasticizers, air bubbles, heat stabilizers, light stabilizers, ultraviolet absorbers, antioxidants, lubricants, antistatic agents, and antibacterial agents.
  • the content of the modified hydrogenated agent (A) in the compatibilizer is preferably 80% by mass or more, more preferably 80% by mass or more, based on the total mass of the compatibilizer, from the viewpoint of facilitating sufficient compatibility. Is 90% by mass or more, more preferably 95% by mass or more.
  • the upper limit is not particularly limited and may be 100% by mass, but from the viewpoint of facilitating good productivity, for example, it may be 99.8% by mass or less.
  • the content of the modified hydrogenated product (A) in the compatibilizer is preferably 80 to 100% by mass.
  • the polar resin that is the target of the compatibility of the compatibilizer is the same as the polar resin (C) described later.
  • the non-polar resin to be compatible with the compatibility agent is, for example, the resin mentioned as the above-mentioned polyolefin resin (B), and other examples include a styrene resin and the like.
  • the compatibilizer may be mixed with the polar resin (C) and the polyolefin resin (B), or may be mixed with the polar resin (C) and then the polyolefin resin (B) may be added. , The polar resin (C) may be added after mixing with the polyolefin resin (B).
  • the second resin composition (D2) includes the above-mentioned first resin composition (D1) and the polar resin (C).
  • the second resin composition (D2) may be referred to as "resin composition (D2)".
  • the modified hydrogen additive (A) contained in the first resin composition (D1) has a polymer block (A-2) having a high vinyl bond amount and a specific functional group introduced by the modification. Therefore, when the resin composition (D1) and the polar resin (C) are melt-kneaded, for example, the modified hydrogen additive (A) becomes compatible with the polyolefin resin (B) and the polar resin (C).
  • a second resin composition (D2) was obtained in which one of the polyolefin resin (B) and the polar resin (C) was well dispersed with the other of the polyolefin resin (B) and the polar resin (C). Be done.
  • the resin composition (D2) is superior in processability and moldability as compared with the polyolefin resin (B) alone.
  • the amount of the modified hydrogenated agent (A) can be reduced.
  • one of the polar resin (C) and the polyolefin resin (B) is easily dispersed in the other of the polar resin (C) and the polyolefin resin (B)
  • the resin composition (D2) or its molding is easily formed.
  • the product has a good appearance.
  • the characteristics due to the block copolymer (A0) used as a raw material are likely to appear.
  • the resin composition (D2) uses the modified hydrogen additive (A) obtained from the block copolymer (A0) having a high vinyl bond amount of the polymer block (A-2), the resin composition (A) In D2) or its molded product, vibration damping and the like can be enhanced. Further, by appropriately selecting the types of the polar resin (C) and the polyolefin resin (B), the physical properties such as the tensile strength and elongation characteristics of the resin composition (D2) or its molded product can be excellent. can do.
  • a preferred embodiment of the resin composition (D2) has a sea-island structure in which domains containing the polar resin (C) are dispersed in an island shape in the matrix of the polyolefin resin (B), and more preferably, modified hydrogen is added.
  • the component mainly composed of the substance (A) has a structure existing along the periphery of the domain mainly composed of the polar resin (C).
  • FIG. 2 is a schematic cross-sectional view showing an example of the sea-island structure in the resin composition (D2).
  • a plurality of domains 10 are present in the matrix 20 made of the polyolefin resin (B).
  • the domain 10 includes a core portion 10a mainly composed of a polar resin (C) and a shell portion 10b mainly composed of a modified hydrogen additive (A).
  • FIG. 3A is an enlarged cross-sectional photograph taken with a scanning electron microscope (SEM) showing an example of the morphology of the resin composition (D2).
  • FIG. 3A corresponds to Example 8 described later, and domains containing the polar resin (C) are dispersed in an island shape in the matrix of the polyolefin resin (B).
  • Another preferred embodiment of the resin composition (D2) has a sea-island structure in which the domains containing the polyolefin resin (B) are dispersed in an island shape in the matrix of the polar resin (C), more preferably modified.
  • the component mainly composed of the hydrogen additive (A) has a structure existing along the periphery of the domain mainly composed of the polyolefin resin (B).
  • the modified hydrogen additive (A) having the polymer block (A-2) having a high vinyl bond amount promotes the compatibility between the polyolefin resin (B) and the polar resin (C).
  • the size of the domain mainly composed of the polar resin (C) and the domain mainly composed of the polyolefin resin (B) formed in the resin composition (D2) and its molded product have, for example, an average diameter of 500 nm or less. It can be fine.
  • the dispersion diameter of the domain mainly composed of the polar resin (C) or the domain mainly composed of the polyolefin resin (B) is preferably 0.01 to 8 ⁇ m, more preferably 0.02 to 6 ⁇ m, and further preferably 0.03. It is ⁇ 4 ⁇ m.
  • the dispersion diameter is the volume average dispersion diameter of the major axis of the core shell structure. Specifically, a 1 mm-thick test piece obtained by the sheet preparation method described later is cross-sectioned using an ultramicrotome, stained with a 0.5% aqueous solution of ruthenium tetroxide, and vapor-deposited with platinum. Processed.
  • the average diameter which is the average value of the dispersion diameters, is preferably 500 nm or less, more preferably 400 nm or less, and further preferably 300 nm or less.
  • the lower limit of the average diameter of the domain is not particularly limited, but is, for example, 100 nm or more.
  • the dispersibility of the polar resin (C) in the polyolefin resin (B) or the dispersibility of the polar resin (C) in the polyolefin resin (B) can be improved, and the mechanical properties of the resin composition (D2) or the molded product of the resin composition (D2) can be improved.
  • the domain mainly composed of the polar resin (C) may contain one or more subdomains composed of components different from those of the polar resin (C).
  • the subdomain include a domain composed of a polyolefin resin (B), a modified hydrogenated product (A), a polymer before modification, a hydrogenated product, and the like.
  • the presence of a core-shell structure containing a domain composed of a component different from that of the polar resin (C) makes it easier to improve impact resistance.
  • the domain mainly composed of the polyolefin-based resin (B) may contain one or a plurality of subdomains composed of components different from those of the polyolefin-based resin (B).
  • Examples of the subdomain include a domain composed of a polar resin (C), a modified hydrogenated product (A), a polymer before modification, a hydrogenated product, and the like.
  • a core-shell structure containing a domain composed of a component different from that of the polyolefin resin (B) makes it easier to improve the impact resistance.
  • the polar resin (C) contained in the resin composition (D2) is a resin having a polar group such as a carboxy group, a sulfonic acid group, a hydroxyl group, or a cyano group, and an ether bond, an ester bond, an amide bond, a sulfide bond, etc. in the resin.
  • the polar resin (C) is preferably a resin having a polar group such as a sulfonic acid group or a cyano group, a resin having an ether bond, an ester bond, an amide bond, a sulfide bond or the like in the resin, oxygen or nitrogen in the molecule.
  • Preferred polar resins are polyamides such as nylon 6, nylon 66, nylon 610, nylon 9, nylon 6/66, nylon 66/610, nylon 6/11, nylon 6/12, nylon 12, nylon 46, and amorphous nylon.
  • polyester resins such as polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, polylactic acid; polyacetal resins such as polyoxymethylene homopolymers and polyoxymethylene copolymers; polyphenylene sulfide (PPS) resins, polyphenylene ether resins, polyallylate resins, Polyether sulfone resin, polyurethane resin, polyvinyl alcohol resin, polycarbonate resin, ethylene / vinyl acetate copolymer, ethylene / methacrylic acid copolymer, polyether ketone, polyether ether ketone, polyvinyl chloride, polyvinylidene chloride, It is at least one selected from the group consisting of polyacrylonitrile, vinylon, triacetyl cellulose, ABS resin, AS resin, ACS resin, xylene resin, acrylic resin, and polyester-based thermoplastic elastomer.
  • PPS polyphenylene sulfide
  • polyamide resin More preferably, it is at least one selected from polyamide resin, polyester resin, polyacetal resin, polyphenylene sulfide resin, polyurethane resin, polyvinyl alcohol resin, polycarbonate resin, and polyester thermoplastic elastomer, and more preferably polyamide resin.
  • the polyester-based thermoplastic elastomer used as the polar resin (C) includes, for example, (i) an aliphatic and / or alicyclic diol having 2 to 12 carbon atoms, and (ii) an aromatic dicarboxylic acid or an alkyl ester thereof. (Iii) It can be obtained by subjecting a polyalkylene ether glycol to a raw material and subjecting an oligomer obtained by an esterification reaction or a transesterification reaction to a polycondensation reaction. Examples of commercially available polyester-based thermoplastic elastomers include Hytrel 3046 (registered trademark) manufactured by Toray DuPont Co., Ltd.
  • the resin composition (D2) can contain various additives as long as the effects of the present invention are not impaired.
  • examples of such an additive include those similar to those described in the resin composition (D1).
  • the content of the above-mentioned additive in the resin composition (D2) is not limited, and can be appropriately adjusted according to the type of the additive, the use of the resin composition (D2), and the like.
  • the content of the above-mentioned additive is, for example, 50% by mass or less, 45% by mass or less, and 30% by mass or less with respect to the total mass of the resin composition (D2). , 20% by mass or less, 10% by mass or less, and may be 0.01% by mass or more, 0.1% by mass or more, 1% by mass or more, and 5% by mass or more.
  • the content of the additive in the resin composition (D2) is preferably 0.01 to 50% by mass.
  • the ratio of the polar resin (C) in the resin composition (D2) is preferably 10 to 90% by mass with respect to the total mass of the resin composition (D2). From the viewpoint of the flexibility of the composition, it is more preferably 10 to 50% by mass, further preferably 10 to 45% by mass, and even more preferably 10 to 40% by mass. Further, from the viewpoint of mechanical strength, it is more preferably 50 to 90% by mass, still more preferably 50 to 85% by mass, still more preferably 50 to 80% by mass, based on the total mass of the resin composition (D2). ..
  • Bb / C is preferable from the viewpoint of the flexibility of the composition.
  • 90/10 to 50/50 more preferably 90/10 to 55/45, still more preferably 90/10 to 60/40, even more preferably 90/10 to 70/30, particularly preferably 90/10. ⁇ 75/25.
  • Bb / C is preferably 50/50 to 10/90, more preferably 50/50 to 15/85, still more preferably 50/50 to 20/80, and even more preferably. Is 50/50 to 25/75, particularly preferably 50/50 to 30/70.
  • the mass of the modified hydrogenated product (A) in the resin composition (D2) is Ab and the mass of the polyolefin resin (B) is Bb, the characteristics of the modified hydrogenated product (A) such as vibration damping.
  • Ab / Bb is preferably 30/70 to 1/99, more preferably 25/75 to 3/98, and even more preferably 20/80 to 5/95, from the viewpoint of facilitating the exertion of.
  • the resin composition (D2) may further contain a block copolymer (A0) and a hydrogenated product thereof (A1) in addition to the resin composition (D1) and the polar resin (C). ..
  • the total content of the block copolymer (A0) and its hydrogenated product (A1) is preferably 1 to 20% by mass, more preferably 1 to 20% by mass, based on the total mass of the resin composition (D2) from the viewpoint of mechanical properties. Is 1 to 10% by mass, more preferably 1 to 5% by mass.
  • the resin composition (D2) contains resin components other than the modified hydrogen additive (A), the polyolefin-based resin (B), the block copolymer (A0), and the hydrogenated block copolymer (A1). It may be included.
  • a non-polar resin other than the polyolefin resin (B) may be contained.
  • a preferred embodiment of the resin composition (D2) is an embodiment containing only the polyolefin resin (B) as the non-polar resin.
  • the content of the resin component other than the hydrogenated block copolymer (A1) is preferably 0 to 50% by mass, more preferably 0 to 30% by mass, still more preferably 0 to 20% by mass, and more. It is more preferably 0 to 10% by mass, and most preferably 0 to 5% by mass.
  • the resin composition (D2) has a strain amount of 0.1%, a frequency of 10 Hz, and a measured temperature in accordance with JIS K7244-10 (2005) from the viewpoint of exhibiting good vibration damping properties in a wide temperature range.
  • the peak intensity at 0 to 50 ° C. of the loss tangent (tan ⁇ ) measured under the conditions of ⁇ 100 to + 150 ° C. and a heating rate of 3 ° C./min is preferably 0.1 to 2.0, more preferably 0.1. It is about 1.0, more preferably 0.1 to 0.5.
  • the good anti-vibration property of the resin composition (D2) in a wide temperature range includes the type of block copolymer (A0), the type and content ratio of the monomer used in the modified hydrogen additive (A), the vinyl bond amount, and the vinyl bond amount. Balance of hydrogen addition rate, selection of production method of modified hydrogen additive (A), control of other components of modified hydrogen additive (A), or polar resin (C) used for resin composition (D2). ) And the polyolefin resin (B), and the content ratio thereof can be adjusted.
  • the resin composition (D2) is based on JIS K7161-1 (2014), and the multipurpose test piece A1 type is used as the test piece, and the tensile fracture strain measured under the condition of a tensile speed of 50 mm / min is a machine. From the viewpoint of strength, it is preferably 25% or more, more preferably 30% or more, further preferably 50% or more, still more preferably 75% or more, still more preferably 100% or more, still more preferably 150%, still more. It is preferably 200% or more, more preferably 250% or more, still more preferably 300% or more.
  • the resin composition (D2) has a type D durometer hardness measured in accordance with JIS K6253-3 (2012) at an atmospheric temperature of 23 ° C., preferably 20 to 90, more preferably from the viewpoint of flexibility. Is 25 to 85, more preferably 30 to 80.
  • the resin composition (D2) is a mixture of a polar resin (C) and a resin composition (D1), and if necessary, various additives, such as a henschel mixer, a V blender, a ribbon blender, a tumbler blender, and a conical blender.
  • various additives such as a henschel mixer, a V blender, a ribbon blender, a tumbler blender, and a conical blender.
  • a kneader such as a single-screw extruder, a twin-screw extruder, a kneader, a Banbury mixer, or a roll. be able to.
  • the resin composition can also be prepared by dissolving each component in a solvent in which at least the polar resin (C) and the resin composition (D1) are soluble and mixing them, and removing the solvent.
  • the resin composition (D2) it is sufficient that the polar resin (C) and the resin composition (D1) are mixed as a result, and the mixing order of the individual components constituting these may be particularly important.
  • the modified hydrogen additive (A) and the polyolefin resin (B) constituting the resin composition (D1) may be individually sequentially added to and mixed with the polar resin (C), or the modified hydrogen additive (modified hydrogen additive).
  • A) and the polyolefin resin (B) may be mixed and then added / mixed to the polar resin (C), or the polar resin (C), the modified hydrogen additive (A) and the polyolefin resin (B) may be mixed. May be mixed at once.
  • the order of addition is not limited, but from the viewpoint of further improving the dispersibility and the physical properties of the obtained resin composition (D2), the modified hydrogen additive (A) and the polar resin (C) are added.
  • the order of addition of the polyolefin resin (B) is preferable.
  • the resin composition (D2) can be in any shape such as veil, crumb, pellet and the like.
  • the resin composition (D2) is prepared by an injection molding method, an injection compression molding method, an extrusion molding method, a blow molding method, using a melt kneading machine or using a veil, crumb, pellet or the like of the resin composition as a raw material.
  • Various molded products can be obtained by a press molding method, a vacuum molding method, a foam molding method, or the like.
  • the resin composition (D2) can be used for various purposes.
  • the resin composition (D2) of the present embodiment has excellent vibration damping properties and high elongation characteristics, and can be used for various purposes. Therefore, the present invention also provides a vibration damping material, a film, a sheet, and the like using the above resin composition (D2). Further, it is also possible to provide a laminate having an X layer containing the resin composition (D2) and a Y layer laminated on at least one surface of the X layer.
  • the laminated glass for example, laminated glass is suitable, and by using the X layer as a laminated glass interlayer film and the Y layer as a laminated glass, not only excellent vibration damping property but also excellent. Sound insulation can also be expected.
  • the resin composition (D2) is a cooling component for various automobile members in the automobile field, such as a thermostat housing, a radiator tank, a radiator hose, a water outlet, a water pump housing, and a rear joint; an intercooler tank, an intercooler case, and a turbo.
  • Intake and exhaust system parts such as duct pipes, EGR cooler cases, resonators, throttle bodies, intake manifolds, tail pipes; fuel delivery pipes, gasoline tanks, quick connectors, canisters, pump modules, fuel pipes, oil strainers, lock nuts, sealing materials.
  • Fuel system parts such as; structural parts such as mount brackets, torque rods, cylinder head covers; drive system parts such as bearing retainers, gear tensioners, head lamp actuator gears, HVAC gears, slide door rollers, clutch peripheral parts, etc .; air brake tubes, etc.
  • In-vehicle electrical components such as wire harness connectors, motor parts, sensors, ABS bobbins, combination switches, in-vehicle switches, electronic control unit (ECU) boxes in the engine room; sliding door dampers, door mirror stays, door mirror brackets, Inner mirror stay, roof rail, engine mount bracket, air cleaner inlet pipe, door checker, plastic chain, emblem, clip, breaker cover, cup holder, airbag, fender, spoiler, radiator support, radiator grill, louver, air scoop, It can also be used for interior / exterior parts such as hood bulges, back doors, fuel sender modules, floor mats, instrument panels, dashboards, dash insulators, dam rubbers, weather strips, and tires.
  • ECU electronice control unit
  • various recorders such as TVs, Blu-ray recorders and HDD recorders in the home appliances field, projectors, game machines, digital cameras, home videos, antennas, speakers, electronic dictionaries, IC recorders, FAXs, copy machines, telephones, doorphones, rice cookers.
  • sealing materials adhesives, adhesives, packings, O-rings, belts, soundproofing materials, etc. in various electric products such as lighting equipment, air conditioners, outdoor units of air conditioners, dehumidifiers, and humidifiers. It can also be used as a fiber.
  • the glass transition temperature of the modified hydrogen additive (Y-2) to (Y-7) described later, which is the modified hydrogen additive (A), is a DSC measuring device. It was measured using (DSC250 manufactured by TA Instruments). Specifically, using the above device, measurement is performed under the conditions of a temperature range of ⁇ 120 ° C. to + 350 ° C. and a heating rate of 10 ° C./min, and the temperature of the bending point of the baseline shift due to the glass transition is changed to the glass transition. The temperature was set. The glass transition temperature of the hydrogenated substance (Y-1) of the block copolymer was also measured in the same manner.
  • Peak top temperature and peak top intensity of tan ⁇ The peak top temperature and intensity of tan ⁇ of the modified hydrogenated additives (Y-2) to (Y-7) described later, which are the modified hydrogenated substances (A), are modified.
  • a distortion control type dynamic viscoelastic device "ARES-G2" with a disk diameter of 8 mm (TA Instruments) Ment Co., Ltd.) was used as a parallel plate vibration rheometer.
  • the test sheet completely fills the gap between the two flat plates, and with a strain amount of 0.1%, the test sheet is vibrated at a frequency of 1 Hz, and the temperature is fixed at 3 ° C / min from -70 ° C to 200 ° C.
  • the temperature was raised at a rapid rate, and the maximum value of the peak intensity of tan ⁇ (peak top intensity) and the temperature at which the maximum value was obtained (peak top temperature) were determined.
  • the hydrogenated product (Y-1) of the block copolymer of Production Example 1 is not modified. Further, the vinyl bond amounts of the polymer blocks (A-2) of the modified hydrogen additives (Y-2) to (Y-4) of Production Examples 2 to 4 are 82, 78, and 83 mol%, respectively. On the other hand, the amount of vinyl bonds in the polymer blocks (A-2) of the modified hydrogen additives (Y-5) and (Y-6) of Production Examples 5 and 6 was 40 mol%, and the modified hydrogen of Production Example 7 was used. The vinyl bond amount of the polymer block (A-2) of the additive (Y-7) is 60 mol%.
  • the peak top intensities of tan ⁇ of the hydrogenated substances (Y-1) and the modified hydrogenated substances (Y-2) to (Y-4) of the block copolymers are 1.0 or more.
  • the peak top temperature of tan ⁇ is higher than that of the modified hydrogenated additives (Y-5) and (Y-6). Therefore, the hydrogenated additive (Y-1) and the modified hydrogenated substances (Y-2) to (Y-4) are compared with the modified hydrogenated substances (Y-5) and (Y-6). It can be said that it has properties suitable as a vibration damping material at a temperature closer to room temperature.
  • the modified hydrogenated product (Y-7) also has a peak top intensity of tan ⁇ of 1.0 or more, and the peak top temperature of tan ⁇ is higher than that of the modified hydrogenated products (Y-5) and (Y-6). At temperature. Therefore, the modified hydrogenated additive (Y-7) has properties suitable as a vibration damping material at a higher temperature than the modified hydrogenated additives (Y-5) and (Y-6).
  • test piece sheet and test piece The resin compositions obtained in Examples 1 to 12 and Comparative Examples 1 to 8 described later were used in a press molding apparatus "NF-50H" (Kanto Metal Industry Co., Ltd.). After preheating at a temperature of 230 ° C. for 1 minute, a sheet is produced by pressurizing the sheet at the same temperature at a pressure of 10 MPa for 3 minutes via a spacer having a predetermined thickness, and the sheet is cut into a predetermined size and tested. It was a piece.
  • NF-50H Korean Industry Co., Ltd.
  • the test piece for "tensile test”, “hardness measurement”, and “morphology observation” described later or the sheet for obtaining the test piece has a length of 15 cm x a width of 15 cm x a thickness.
  • the thickness was 0.1 cm
  • the sheet for obtaining the test piece for the "shear peel test” was 15 cm in length ⁇ 15 cm in width ⁇ 0.05 cm in thickness.
  • the sheet for obtaining the test piece for "impact resistance” measurement was 15 cm in length ⁇ 15 cm in width ⁇ 0.4 cm in thickness.
  • the test piece for "dynamic viscoelasticity measurement” was 2 cm in length ⁇ 0.5 cm in width ⁇ 0.1 cm in thickness.
  • the test piece for "tensile test”, “hardness measurement”, and “impact resistance” described later or the sheet for obtaining the test piece is 15 cm in length ⁇ 15 cm in width ⁇ .
  • the thickness was 0.4 cm
  • the test piece for "dynamic viscoelasticity measurement” was 2 cm in length ⁇ 0.5 cm in width ⁇ 0.1 cm in thickness.
  • a multipurpose test piece A1 type was prepared at the temperature shown in Table 5 below using an injection molding machine (C75SX manufactured by Toshiba Machine Co., Ltd.), and each test item was prepared. It was used as a test piece.
  • As the test piece for "dynamic viscoelasticity measurement” a sheet was prepared by the same method as in Examples 1 to 12 and Comparative Examples 1 to 8, and the length was 2 cm, the width was 0.5 cm, and the thickness was 0.1 cm. ..
  • the hardness was measured using a type D durometer (manufactured by Polymer Meter Co., Ltd.) according to JIS K6253-3 (2012).
  • melt flow rate According to JIS K7210 (2014), each using a melt indexer (MELT INDEXER L241 manufactured by Tateyama Kagaku High Technologies Co., Ltd.) under the conditions of a temperature of 230 ° C. and a load of 21N. The MFR of the resin composition was measured.
  • Example 4 Using the resin compositions obtained in Example 4 and Comparative Examples 2 and 3, a sheet was prepared by the above procedure and used as a test piece. Then, the morphology of the cross section of the test piece was observed using an atomic force microscope (AFM). In the observation, a cross section of the test piece was taken out using an ultramicrotome (Leica EM FC7 manufactured by Leica Microsystems). Then, the cross section of the test piece was observed using an AFM (SPM scanning probe microscope SPM-0700 manufactured by Shimadzu Corporation).
  • AFM SPM scanning probe microscope SPM-0700 manufactured by Shimadzu Corporation
  • Example 8 Using the resin compositions obtained in Example 8 and Comparative Examples 4 to 6, a sheet was prepared by the above procedure and used as a test piece. Then, the morphology of the cross section of this test piece was observed with a scanning electron microscope (SEM). For observation, the test piece was cross-sectionald using an ultramicrotome (Leica EM FC7 manufactured by Leica Microsystems), stained with a 0.5% aqueous solution of ruthenium tetroxide, and vapor-deposited with platinum. Then, the cross section subjected to this treatment was observed by SEM (JSM-6510 manufactured by JEOL Ltd.).
  • SEM scanning electron microscope
  • Examples 1 to 7 [Comparative Examples 1 to 3] 3 using a small torque detection motor unit equipped with a Brabender mixer (Braverder's "Plastograph (registered trademark) EC") under the conditions of a temperature of 230 ° C. and a screw rotation speed of 100 rpm with the formulations shown in Table 3.
  • the resin compositions of Examples 1 to 7 were prepared as the first resin composition (D1).
  • the resin compositions of Comparative Examples 1 to 3 were prepared by the same procedure.
  • the types and amounts of each component used to prepare each resin composition and the measurement results are shown in Table 3 below.
  • the AFM phase difference image of the composition of Example 4 is shown in FIG. 1 (a), and the AFM phase difference images of Comparative Examples 2 and 3 are shown in FIGS. 1 (b) and 1 (c), respectively.
  • each resin composition The components used in the preparation of each resin composition are as follows.
  • (Denatured hydrogenated agent (A)) -Denatured hydrogenated substances Y-2, Y-3, Y-4, Y-5, Y-6 (Hydrogenated block copolymer) -Hydrogen additive Y-1 (Polyolefin-based resin (B)) -Random polypropylene (Prime Polypro J226T manufactured by Prime Polymer Co., Ltd., Melt Index (MI) 20)
  • (Antioxidant) Phenolic antioxidant ADEKA STAB AO-60 (manufactured by ADEKA Corporation)
  • Example 4 exhibit high adhesiveness to aluminum and stainless steel. Further, when Example 4 is compared with Comparative Examples 2 and 3, first, as is clear from Table 3, it can be seen that the resin composition of Example 4 has a large MFR and high fluidity. As is clear from FIGS. 1 (a) to 1 (c), the resin composition of Example 4 has a fine co-continuous structure having a width of about several nm, whereas the resin composition of Example 4 is a comparative example. It can be seen that in the resin compositions of 2 and 3, the width of the co-continuous structure is about 1 ⁇ m to several ⁇ m, which is coarser than the co-continuous structure of the resin composition of Example 4.
  • the modified hydrogen additive (A) in which the polymer block (A-2) has a vinyl bond amount in a specific range a fine co-continuous structure is formed in the resin composition (D1), and tension is obtained.
  • the elastic modulus is lowered to soften the polyolefin resin (B), and the resin composition (D1) is imparted with high fluidity, and as a result, it is high with respect to the metal to be adhered. It can be seen that it shows adhesiveness.
  • Examples 8 to 12 [Comparative examples 4 to 8] Using a small torque detection motor unit equipped with a Brabender mixer (Braverder's "Plastograph (registered trademark) EC") with the formulation shown in Table 4, a temperature of 230 ° C. and a screw rotation speed of 100 rpm for 3 minutes. By melt-kneading, the resin compositions of Examples 8 to 12 were prepared as the second resin composition (D2). Further, the resin compositions of Comparative Examples 4 to 8 were prepared by the same procedure. The types and amounts of each component used to prepare each resin composition and the measurement results are shown in Table 4 below. The results of viscoelasticity measurement are shown in FIG. Further, the enlarged cross-sectional SEM photographs of Example 8 are shown in FIG.
  • the enlarged cross-sectional TEM photographs of Examples 8 and 11 are shown in FIGS. 4 (a) and 4 (b), respectively
  • the enlarged cross-sectional TEM photographs of Comparative Example 4 and Comparative Example 5 are shown in FIGS. 4 (c) and 4 (b), respectively. It is shown in 4 (d) respectively.
  • each of the resin compositions are as follows.
  • (Polyolefin-based resin (B)) -Random polypropylene (PrimePolypro F327, MI 7 made by Prime Polymer Co., Ltd.)
  • the resin compositions of Examples 8 to 12 have larger tensile fracture strains than the comparative examples, and in particular, the tensile fracture strains of the resin compositions of Examples 8 to 11 are larger than those of the comparative examples. It turns out to be very large. Further, the resin compositions of Examples 8 and 11, Comparative Example 4 which is a resin composition containing no modified hydrogen additive, and Comparative Example 5 which is a resin composition containing a modified hydrogen compound having a small vinyl bond amount. As a result, since the former Sharpy impact value is equal to or higher than the latter Sharpy impact value, it can be seen that the resin composition of the example tends to enhance the impact resistance. Further, as is clear from FIG.
  • Examples 13 to 18 [Comparative Examples 9 to 15] Using a twin-screw extruder (ZSK-26mc manufactured by Coperion) with the formulation shown in Table 5, melt-knead at the temperature shown in Table 5 under the condition of a screw rotation speed of 300 rpm, and discharge at a rate of 10 kg / h. As a second resin composition (D2), the resin compositions of Examples 13 to 18 were prepared. Further, the resin compositions of Comparative Examples 9 to 15 were prepared by the same procedure. The types and amounts of each component used to prepare each resin composition and the measurement results are shown in Table 5 below.
  • each of the resin compositions are as follows.
  • Trecon 1401) Polycarbonate (Iupiron S3000 manufactured by Mitsubishi Engineering Plastics Co., Ltd.) -Polylactic acid (Ingeo 3001D manufactured by NatureWorks) (Maleic anhydride-modified polypropylene) -ADMER QE840 manufactured by Mitsui Chemicals, Inc. (Antioxidant) ⁇ Phenolic antioxidant ADEKA STAB AO-60 (manufactured by ADEKA Corporation)
  • the resin compositions of Examples 13, 16 and 18 have a larger tensile fracture strain and excellent elongation characteristics as compared with the resin compositions of Examples 14, 15 and 17. Further, the resin composition of Example 17 has a significantly larger Charpy impact value than the resin compositions of Comparative Examples 9 to 15 and the resin compositions of Examples 13 to 16 and 18, and has particularly excellent impact resistance. It can be seen that it has.
  • the first resin composition and adhesive of the present invention show good adhesiveness to various materials, they can be used in a wide range of fields such as automobiles, electric products, and building materials. Further, since the second resin composition of the present invention has good mechanical properties such as high vibration damping properties in a wide temperature range and high elongation properties, pellets, veils, vibration damping materials, and sound insulating materials. It can be used for sole materials, flooring materials, adhesives, adhesives, laminates, fibers, automobile parts, and the like. Further, since the compatibility agent of the present invention has high compatibility performance, it can be used in fields such as recycling of food packaging containers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

芳香族ビニル化合物に由来する構造単位を有する重合体ブロック(A-1)及び共役ジエン化合物に由来する構造単位を有する重合体ブロック(A-2)を含むブロック共重合体の変性水素添加物(A)と、ポリオレフィン系樹脂(B)とを含み、変性水素添加物(A)は、アルコキシシリル基、カルボキシ基、アミノ基、ヒドロキシ基、エポキシ基、及び酸無水物由来の基から選ばれる1種又は2種以上の官能基を有し、重合体ブロック(A-2)のビニル結合量が50~99モル%である樹脂組成物、及び、極性樹脂(C)を更に含む樹脂組成物。

Description

樹脂組成物、接着剤、及び、相容化剤
 本発明は、樹脂組成物、接着剤、及び、相容化剤に関する。
 芳香族ビニル化合物に由来する構造単位を含有する重合体ブロックと、共役ジエン化合物に由来する構造単位を含有する重合体ブロックとを有するブロック共重合体及びその水素添加物には制振性を有するものがあることが知られており、制振材に利用されてきた。また、上記ブロック共重合体又はその水素添加物を変性して反応性を有する官能基を導入した変性物は、極性樹脂と非極性樹脂とを相容化するための相容化剤として用い得ることが知られている。
 例えば、特許文献1~4には、ポリオレフィン樹脂と、ポリアミド樹脂と、相容化剤とが配合された樹脂組成物において、相容化剤として、オレフィン系エラストマーやスチレン系エラストマーの変性物が用いられることが記載されている。このうち、特許文献1、2、4には、上記スチレン系エラストマーとして、芳香族ビニル化合物と共役ジエン化合物とのブロック共重合体及びその水素添加物が挙げられることが記載されている。
 また、特許文献5には、ポリアミド樹脂と、変性ポリオレフィンを含むポリオレフィン樹脂との混合物を含むブロー成型用組成物が記載されており、上記ポリオレフィン樹脂がポリオレフィン樹脂と変性ポリオレフィンとを含むものでもよいことが記載されている。
国際公開第2017/169814号 特開2013-147645号公報 特開2013-147648号公報 国際公開第2017/094738号 特開平6-234897号公報
 しかし、上記ブロック共重合体又はその水素添加物の変性物の利用が広まるにつれて、様々な用途に適するように、極性樹脂と非極性樹脂とをより良好に相容化し、少量でも良好な相容性を示すような特性を有する相容化剤が求められている。
 一方、例えば、車載部品に用いることなどを想定して、アルミニウム等の金属への接着性が求められる場合がある。しかしながら、ブロック共重合体又はその水素添加物の変性物を含む樹脂組成物について、金属に対する接着性の観点からは十分な検討がなされていないのが実情である。
 そこで本発明は、金属に対して高い接着性を有する樹脂組成物及び接着剤を提供することを課題とする。
 また、本発明は、極性樹脂及びポリオレフィン系樹脂のうち一方が他方に良好に分散された樹脂組成物を提供することを他の課題とする。
 更に、本発明は、極性樹脂と非極性樹脂との相容化剤として、良好な相容性を発現する相容化剤を提供することを更に他の課題とする。
 上記課題を解決すべく鋭意検討した結果、本発明者らは下記本発明を想到し、当該課題を解決できることを見出した。
 すなわち、本発明は下記のとおりである。
[1]芳香族ビニル化合物に由来する構造単位を有する重合体ブロック(A-1)及び共役ジエン化合物に由来する構造単位を有する重合体ブロック(A-2)を含むブロック共重合体の変性水素添加物(A)と、ポリオレフィン系樹脂(B)とを含み、
 変性水素添加物(A)は、アルコキシシリル基、カルボキシ基、アミノ基、ヒドロキシ基、エポキシ基、及び酸無水物由来の基から選ばれる1種又は2種以上の官能基を有し、
 重合体ブロック(A-2)のビニル結合量が50~99モル%である、樹脂組成物。
[2]変性水素添加物(A)のガラス転移温度が-30~+30℃である、上記[1]に記載の樹脂組成物。
[3]ポリオレフィン系樹脂(B)が、ポリプロピレン、ポリエチレン、ポリメチルペンテン、エチレン酢酸ビニル共重合体、及び、α-オレフィンの単独重合体又は共重合体、プロピレン及び/又はエチレンとα-オレフィンとの共重合体からなる群から選択される少なくとも1種の樹脂である、上記[1]又は[2]に記載の樹脂組成物。
[4]変性水素添加物(A)中の重合体ブロック(A-1)の含有量が、4~50質量%である、上記[1]~[3]のいずれか一つに記載の樹脂組成物。
[5]変性水素添加物(A)の平均分子量が50,000~400,000である、上記[1]~[4]のいずれか一つに記載の樹脂組成物。
[6]重合体ブロック(A-2)の水素添加率が50~99モル%である、上記[1]~[5]のいずれか一つに記載の樹脂組成物。
[7]変性水素添加物(A)における前記官能基の含有量が、変性水素添加物(A)に対して、0.1~5.0phrである、上記[1]~[6]のいずれか一つに記載の樹脂組成物。
[8]JIS K7210(2014年)に従って、温度230℃、荷重21Nの条件で測定したメルトフローレートが、1~30g/10minである、上記[1]~[7]のいずれか一つに記載の樹脂組成物。
[9]変性水素添加物(A)の質量をAa、ポリオレフィン系樹脂(B)の質量をBaとするとき、Aa/Baが95/5~5/95である、上記[1]~[8]のいずれか一つに記載の樹脂組成物。
[10]上記[1]~[9]のいずれか一つに記載の樹脂組成物を含む、接着剤。
[11]極性樹脂(C)を更に含む、上記[1]~[8]のいずれか一つに記載の樹脂組成物。
[12]前記樹脂組成物の全質量に対して、極性樹脂(C)を10~90質量%含む、上記[11]に記載の樹脂組成物。
[13]ポリオレフィン系樹脂(B)及び極性樹脂(C)のうち一方のマトリクス中に、平均径が500nm以下の、ポリオレフィン系樹脂(B)及び極性樹脂(C)のうち他方を含むドメインが分散している、上記[11]又は[12]に記載の樹脂組成物。
[14]極性樹脂(C)が、ポリアミド樹脂、ポリビニルアルコール系樹脂、ポリエステル系樹脂、及び、ポリカーボネート樹脂からなる群より選択される少なくとも1種の樹脂である、上記[11]~[13]のいずれか一つに記載の樹脂組成物。
[15]JIS K7244-10(2005年)に準拠して、歪み量0.1%、周波数10Hz、測定温度-100~+150℃、昇温速度3℃/分の条件で測定した損失正接(tanδ)の、0~50℃におけるピーク強度が0.1~2.0である、上記[11]~[14]のいずれか一つに記載の樹脂組成物。
[16]前記樹脂組成物中の、変性水素添加物(A)の質量をAb、ポリオレフィン系樹脂(B)の質量をBbとするとき、Ab/Bbが30/70~1/99である、上記[11]~[15]のいずれか一つに記載の樹脂組成物。
[17]前記樹脂組成物中の、ポリオレフィン系樹脂(B)の質量をBb、極性樹脂(C)の質量をCとするとき、Bb/Cが90/10~10/90である、上記[11]~[16]のいずれか1項に記載の樹脂組成物。
[18]極性樹脂と非極性樹脂とを相容化させるための相容化剤であって、
 芳香族ビニル化合物に由来する構造単位を有する重合体ブロック(A-1)及び共役ジエン化合物に由来する構造単位を有する重合体ブロック(A-2)を含むブロック共重合体の変性水素添加物(A)からなり、
 変性水素添加物(A)は、アルコキシシリル基、カルボキシ基、アミノ基、ヒドロキシ基、エポキシ基、及び酸無水物由来の基から選ばれる1種又は2種以上の官能基を有し、
 重合体ブロック(A-2)のビニル結合量が50~99モル%である、相容化剤。
 本発明によれば、金属に対して高い接着性を有する樹脂組成物及び接着剤を提供することができる。
 また、本発明によれば、極性樹脂及びポリオレフィン系樹脂のうち一方が他方に良好に分散された樹脂組成物を提供することができる。
 更に、本発明によれば、極性樹脂と非極性樹脂との相容化剤として、良好な相容性を発現する相容化剤を提供することができる。
第1の樹脂組成物(D1)及び比較例の樹脂組成物のモルフォロジーの一例を示す拡大断面写真である。 海島構造の一例を示す断面模式図である。 第2の樹脂組成物(D2)及び比較例の樹脂組成物のモルフォロジーの一例を示す拡大断面写真である。 第2の樹脂組成物(D2)及び比較例の樹脂組成物のモルフォロジーの一例を示す拡大断面写真である。 第2の樹脂組成物(D2)の粘弾性特性の一例を示す図である。
 本明細書において、好ましいとする規定は任意に選択でき、好ましいとする規定同士の組み合わせはより好ましいといえる。
 本明細書において、「XX~YY」との記載は、「XX以上YY以下」を意味する。
 本明細書において、好ましい数値範囲(例えば、含有量等の範囲)について、段階的に記載された下限値及び上限値は、それぞれ独立して組み合わせることができる。例えば、「好ましくは10~90、より好ましくは30~60」という記載から、「好ましい下限値(10)」と「より好ましい上限値(60)」とを組み合わせて、「10~60」とすることもできる。
 本明細書において、「~単位」(ここで「~」は単量体を示す)とは「~に由来する構造単位」を意味し、例えば「プロピレン単位」とは「プロピレンに由来する構造単位」を意味する。
 本明細書において、例えば、「(メタ)アクリル酸」とは、「アクリル酸」と「メタクリル酸」の双方を示し、他の類似用語も同様である。
 本明細書において、重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)測定によって求めた標準ポリスチレン換算の重量平均分子量である。
 本明細書において、「AAを主体とするBB」という場合、BBに少なくともAAが50質量%超含まれていることを意味する。
[第1の樹脂組成物(D1)]
 本発明の実施形態に係る第1の樹脂組成物は、芳香族ビニル化合物に由来する構造単位を有する重合体ブロック(A-1)及び共役ジエン化合物に由来する構造単位を有する重合体ブロック(A-2)を含むブロック共重合体の変性水素添加物(A)と、ポリオレフィン系樹脂(B)とを含み、
 変性水素添加物(A)は、アルコキシシリル基、カルボキシ基、アミノ基、ヒドロキシ基、エポキシ基、及び酸無水物由来の基から選ばれる1種又は2種以上の官能基を有し、
 重合体ブロック(A-2)のビニル結合量が50~99モル%である。
 なお、本明細書においては、第1の樹脂組成物(D1)を「樹脂組成物(D1)」と称することもある。
 重合体ブロック(A-2)のビニル結合量、すなわち、重合体ブロック(A-2)中の3,4-結合単位及び1,2-結合単位の含有量の合計が、上記範囲であることにより、樹脂組成物(D1)が優れた制振性を発現しやすくなることに加え、樹脂組成物(D1)が、各種材料に対して、特に金属に対して高い接着性を示す。
 ここで、ビニル結合量は、実施例に記載の方法に従って、H-NMR測定によって算出した値である。
 なお、重合体ブロック(A-2)がブタジエンのみからなる場合には、前記の「3,4-結合単位及び1,2-結合単位の含有量」とは「1,2-結合単位の含有量」と読み替えて適用する。
 樹脂組成物(D1)は、各種材料、特に金属に対して高い接着性を有する。樹脂組成物(D1)が優れた接着性を有する理由は、これに限るものではないが、以下のように推測される。
 樹脂組成物(D1)において、変性水素添加物(A)を構成する重合体ブロック(A-2)のビニル結合量が所定の範囲とされていることにより、変性水素添加物(A)の溶解度パラメータ―(SP値)がポリオレフィン系樹脂(B)のSP値に近づくため、変性水素添加物(A)とポリオレフィン系樹脂(B)とが良好な相容性を示すため微細な共連続構造が形成される。また、それによって、組成物全体の柔軟性が確保されるとともに、変性水素添加物(A)が樹脂組成物(D1)中に均一に分散され、組成物の表面付近においても十分な量の変性水素添加物(A)が存在しやすくなる。このため、変性によって導入された変性水素添加物(A)の官能基が被接着体に接触しやすくなり、結果的に金属やその他の各種材料に対する接着性が高くなるものと推測される。
<樹脂組成物(D1)のモルフォロジー>
 樹脂組成物(D1)の好ましい一態様は、変性水素添加物(A)とポリオレフィン系樹脂(B)とが、交互に隣り合った状態で伸びる構造を有する共連続構造を有する。
 図1(a)は、樹脂組成物(D1)のモルフォロジーの一例を示す、原子間力顕微鏡(AFM)を用いて撮影した拡大断面写真である。図1(a)では、左上から右下に向かう方向に沿って伸びる共連続構造が形成されている。
 上述したように、変性水素添加物(A)はポリオレフィン系樹脂(B)に対して良好な相容性を示す。したがって、樹脂組成物(D1)やその成形品において形成される共連続構造は、その最大値が、例えば、長さ方向で10~500nm程度の非常に微細なものである。
<変性水素添加物(A)>
 樹脂組成物(D1)に含まれる変性水素添加物(A)は、芳香族ビニル化合物に由来する構造単位を有する重合体ブロック(A-1)及び共役ジエン化合物に由来する構造単位を有する重合体ブロック(A-2)を含むブロック共重合体の変性水素添加物である。そして、変性水素添加物(A)は、アルコキシシリル基、カルボキシ基、アミノ基、ヒドロキシ基、エポキシ基、及び酸無水物由来の基から選ばれる1種又は2種以上の官能基を有する。更に、重合体ブロック(A-2)のビニル結合量が50~99モル%である。
 なお、本明細書において、酸無水物由来の基とは、酸無水物が有していた2つのカルボン酸基を脱水縮合させて得られる構造を備えた基を意味しており、酸無水物が無水マレイン酸の場合、例えば、下記に示す構造を有する基である。
Figure JPOXMLDOC01-appb-C000001

 以下、上記ブロック共重合体を符号(A0)で、ブロック共重合体(A0)の水素添加物を符号(A1)で表すことがある。また、ブロック共重合体(A0)の水素添加物を「水添ブロック共重合体(A1)」ということがある。
 変性水素添加物(A)は、ブロック共重合体(A0)の水素添加物(A1)の変性物、又は、ブロック共重合体(A0)の変性物の水素添加物である。
 変性水素添加物(A)の原料としてブロック共重合体(A0)を用いていることにより、制振性及び耐衝撃性等の機械的特性を樹脂組成物(D1)に付与することができる。また、ブロック共重合体(A0)を水素添加していることにより、熱安定性も高めやすくなる。
 更に、重合体ブロック(A-2)のビニル結合量(つまり、重合体ブロック(A-2)における3,4-結合単位及び1,2-結合単位の含有量)が50~99モル%であることにより、制振性を高めるとともに、変性水素添加物(A)とポリオレフィン系樹脂(B)とが狭幅で交互に配置する共連続構造を形成しやすくする。このため、変性水素添加物(A)が有する制振性や耐衝撃性等の特性を樹脂組成物(D1)においても発現しやすくなる。
 加えて、変性によって所定の官能基が導入されているため、上記の微細な共連続構造とも相まって、樹脂組成物(D1)が、金属やその他の各種材料に対して高い接着性を持つようになる。
 次に、変性水素添加物(A)を得るための、ブロック共重合体(A0)又はその水素添加物(A1)の構成成分とその使用割合、及び、特性等について説明する。なお、これらは変性前の物質であるが、ブロック共重合体(A0)や水添ブロック共重合体(A1)が有する重合体ブロック(A-1)及び重合体ブロック(A-2)を変性水素添加物(A)も有しており、変性を行ってもそれらの主骨格に変化はない。そのため、以下の重合体ブロック(A-1)及び重合体ブロック(A-2)に関する説明は、変性水素添加物(A)にも共通するものである。
(ブロック共重合体(A0))
 ブロック共重合体(A0)は、芳香族ビニル化合物に由来する構造単位を含有する重合体ブロック(A-1)と、共役ジエン化合物に由来する構造単位を含有する重合体ブロック(A-2)とを有するものである。以下に、重合体ブロック(A-1)及び重合体ブロック(A-2)について説明する。
(重合体ブロック(A-1)の構成)
 ブロック共重合体(A0)を構成する重合体ブロック(A-1)は、制振性及び耐衝撃性等の機械的特性の観点から、モノマーとして用いられる芳香族ビニル化合物に由来する構造単位を有することが好ましい。
 重合体ブロック(A-1)は、芳香族ビニル化合物に由来する構造単位(以下、「芳香族ビニル化合物単位」と略称することがある。)を、重合体ブロック(A-1)中70質量%超含有することが好ましく、耐衝撃性等の機械的特性の観点から、より好ましくは80質量%以上、更に好ましくは90質量%以上、より更に好ましくは95質量%以上であり、実質的に100質量%であることが特に好ましい。換言すれば、重合体ブロック(A-1)中の芳香族ビニル化合物単位の含有量は、好ましくは70質量%超100質量%以下である。
 また、上記ブロック共重合体(A0)は、重合体ブロック(A-1)のみに芳香族ビニル化合物に由来する構造単位を含んでいることが、力学物性の観点から好ましい。ブロック共重合体(A0)中の芳香族ビニル化合物に由来する構造単位の含有量は、柔軟性の観点から、4~50質量%であることが好ましく、5~30質量%であることがより好ましく、6~16質量%であることが更に好ましく、上記ブロック共重合体(A0)中の芳香族ビニル化合物に由来する構造単位は全て重合体ブロック(A-1)に含まれていることがより更に好ましい。
 上記芳香族ビニル化合物としては、スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、α-メチルスチレン、β-メチルスチレン、2,6-ジメチルスチレン、2,4-ジメチルスチレン、α-メチル-o-メチルスチレン、α-メチル-m-メチルスチレン、α-メチル-p-メチルスチレン、β-メチル-o-メチルスチレン、β-メチル-m-メチルスチレン、β-メチル-p-メチルスチレン、2,4,6-トリメチルスチレン、α-メチル-2,6-ジメチルスチレン、α-メチル-2,4-ジメチルスチレン、β-メチル-2,6-ジメチルスチレン、β-メチル-2,4-ジメチルスチレン、o-クロロスチレン、m-クロロスチレン、p-クロロスチレン、2,6-ジクロロスチレン、2,4-ジクロロスチレン、α-クロロ-o-クロロスチレン、α-クロロ-m-クロロスチレン、α-クロロ-p-クロロスチレン、β-クロロ-o-クロロスチレン、β-クロロ-m-クロロスチレン、β-クロロ-p-クロロスチレン、2,4,6-トリクロロスチレン、α-クロロ-2,6-ジクロロスチレン、α-クロロ-2,4-ジクロロスチレン、β-クロロ-2,6-ジクロロスチレン、β-クロロ-2,4-ジクロロスチレン、o-t-ブチルスチレン、m-t-ブチルスチレン、p-t-ブチルスチレン、o-メトキシスチレン、m-メトキシスチレン、p-メトキシスチレン、o-クロロメチルスチレン、m-クロロメチルスチレン、p-クロロメチルスチレン、o-ブロモメチルスチレン、m-ブロモメチルスチレン、p-ブロモメチルスチレン、シリル基で置換されたスチレン誘導体、インデン、ビニルナフタレン、N-ビニルカルバゾール等が挙げられる。これらの芳香族ビニル化合物は1種単独で用いてもよく、2種以上用いてもよい。なかでも、製造コストと物性バランスの観点から、スチレン、α-メチルスチレン、p-メチルスチレン、及びこれらの混合物が好ましく、スチレンがより好ましい。
 本発明の目的及び効果の妨げにならない限り、重合体ブロック(A-1)は芳香族ビニル化合物以外の他の不飽和単量体に由来する構造単位(以下、「他の不飽和単量体単位」と略称することがある。)を含有してもよいが、重合体ブロック(A-1)中好ましくは30モル%以下、より好ましくは20モル%未満、更に好ましくは15モル%未満、より更に好ましくは10モル%未満、より更に好ましくは5モル%未満、特に好ましくは0モル%である。換言すれば、重合体ブロック(A-1)中の他の不飽和単量体単位の含有量は、好ましくは0~30モル%である。
 該他の不飽和単量体としては、例えばブタジエン、イソプレン、β-ファルネセン、2,3-ジメチルブタジエン、1,3-ペンタジエン、1,3-ヘキサジエン、イソブチレン、メタクリル酸メチル、メチルビニルエーテル、β-ピネン、8,9-p-メンテン、ジペンテン、メチレンノルボルネン、2-メチレンテトラヒドロフラン等からなる群から選択される少なくとも1種が挙げられる。重合体ブロック(A-1)が該他の不飽和単量体単位を含有する場合の結合形態は特に制限はなく、ランダム、テーパー状のいずれでもよい。
 ブロック共重合体(A0)は、前記重合体ブロック(A-1)を少なくとも1つ有していればよい。ブロック共重合体(A0)が重合体ブロック(A-1)を2つ以上有する場合には、それら重合体ブロック(A-1)は、同一であっても異なっていてもよい。なお、本明細書において「重合体ブロックが異なる」とは、重合体ブロックを構成するモノマー単位、重量平均分子量、立体規則性、及び複数のモノマー単位を有する場合には各モノマー単位の比率及び共重合の形態(ランダム、グラジェント、ブロック)のうち少なくとも1つが異なることを意味する。
(重合体ブロック(A-1)の重量平均分子量)
 重合体ブロック(A-1)の重量平均分子量(Mw)は、特に制限はないが、ブロック共重合体(A0)が有する重合体ブロック(A-1)のうち、少なくとも1つの重合体ブロック(A-1)の重量平均分子量が、好ましくは3,000~60,000、より好ましくは4,000~50,000である。ブロック共重合体(A0)が、上記範囲内の重量平均分子量である重合体ブロック(A-1)を少なくとも1つ有することにより、制振性のさらなる向上に寄与できる。
 なお、重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)測定によって求めた標準ポリスチレン換算の重量平均分子量である。
(重合体ブロック(A-1)の含有量)
 ブロック共重合体(A0)における重合体ブロック(A-1)の含有量は、50質量%以下であることが好ましく、30質量%以下であることがより好ましく、16質量%以下であることが更に好ましく、14質量%以下であることが特に好ましい。
 50質量%以下であれば、適度な柔軟性を有し、tanδのピークトップ強度(以下、ピーク強度と称する場合もある。)が低下することなく制振性に優れたブロック共重合体(A0)又は水添ブロック共重合体(A1)とすることができる。また、下限値は、4質量%以上であることが好ましく、5質量%以上であることがより好ましく、6質量%以上であることが更に好ましい。4質量%以上であれば、樹脂組成物(D1)や後述する樹脂組成物(D2)の各種用途に好適な耐衝撃性等の機械的特性、成形加工性及び塗工性等の取扱い性を有するブロック共重合体(A0)又は水添ブロック共重合体(A1)とすることができる。換言すれば、ブロック共重合体(A0)又は水添ブロック共重合体(A1)における重合体ブロック(A-1)の含有量は、好ましくは4~50質量%である。
 なお、ブロック共重合体(A0)における重合体ブロック(A-1)の含有量は、H-NMR測定により求めた値であり、より詳細には実施例に記載の方法に従って測定した値である。
 本発明では、ブロック共重合体(A0)における重合体ブロック(A-1)の含有量を変性水素添加物(A)中の重合体ブロック(A-1)の含有量とする。
(重合体ブロック(A-2)の構成)
 ブロック共重合体(A0)を構成する重合体ブロック(A-2)は、制振性及び熱安定性等の観点から、共役ジエン化合物に由来する構造単位(以下、「共役ジエン化合物単位」と称すことがある。)を有する。
 重合体ブロック(A-2)は、共役ジエン化合物単位を30モル%以上含有することが好ましい。なかでも制振性及び熱安定性の観点から、重合体ブロック(A-2)は、共役ジエン化合物単位を、より好ましくは50モル%以上、更に好ましくは65モル%以上、より更に好ましくは80モル%以上、より更に好ましくは90モル%以上、実質的に100モル%含有することが特に好ましい。換言すれば、重合体ブロック(A-2)中の共役ジエン化合物単位の含有量は、好ましくは30モル%以上100モル%以下である。
 なお、上記「共役ジエン化合物単位」は、共役ジエン化合物1種に由来する構造単位であっても、共役ジエン化合物2種以上に由来する構造単位であってもよい。
 上記共役ジエン化合物は、優れた制振性及び熱安定性を両立する観点から、好ましくはイソプレン、又は、イソプレン及びブタジエンを含有する。また共役ジエン化合物として、後述するとおりイソプレン及びブタジエン以外の共役ジエン化合物を含有してもよい。一方で、優れた制振性及び熱安定性を発現しやすい観点から、共役ジエン化合物におけるイソプレンの含有量が、好ましくは20質量%以上、より好ましくは40質量%以上、更に好ましくは45質量%以上、より更に好ましくは55質量%以上、より更に好ましくは75質量%以上、特に好ましくは100質量%、すなわち共役ジエン化合物としてイソプレンを用いることが特に好ましい。換言すれば、共役ジエン化合物におけるイソプレンの含有量は、好ましくは20質量%以上100質量%以下である。
 また、共役ジエン化合物がブタジエンとイソプレンの混合物である場合、それらの混合比率[イソプレン/ブタジエン](質量比)は、本発明の効果を損なわない限りにおいて特に制限はないが、好ましくは5/95~95/5、より好ましくは10/90~90/10、更に好ましくは40/60~70/30、特に好ましくは45/55~65/35である。なお、該混合比率[イソプレン/ブタジエン]をモル比で示すと、好ましくは5/95~95/5、より好ましくは10/90~90/10、更に好ましくは40/60~70/30、特に好ましくは45/55~55/45である。
 共役ジエン化合物としては、上記イソプレン及びブタジエン以外に、β-ファルネセン、ヘキサジエン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、ミルセン等を挙げることができる。共役ジエン化合物は、1種単独で用いてもよく、2種以上用いてもよい。
 また、本発明の目的及び効果の妨げにならない限り、重合体ブロック(A-2)は共役ジエン化合物以外の他の重合性の単量体に由来する構造単位を含有してもよい。この場合、重合体ブロック(A-2)において、共役ジエン化合物以外の他の重合性の単量体に由来する構造単位の含有量は、好ましくは70モル%未満、より好ましくは50モル%未満、更に好ましくは35モル%未満、特に好ましくは20モル%未満である。共役ジエン化合物以外の他の重合性の単量体に由来する構造単位の含有量の下限値に特に制限はないが、0モル%であってもよいし、5モル%であってもよいし、10モル%であってもよい。
 該他の重合性の単量体としては、例えばスチレン、α-メチルスチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、p-t-ブチルスチレン、2,4-ジメチルスチレン、ビニルナフタレン及びビニルアントラセン等の芳香族ビニル化合物、並びにメタクリル酸メチル、メチルビニルエーテル、N-ビニルカルバゾール、β-ピネン、8,9-p-メンテン、ジペンテン、メチレンノルボルネン、2-メチレンテトラヒドロフラン、1,3-シクロペンタジエン、1,3-シクロヘキサジエン、1,3-シクロヘプタジエン、1,3-シクロオクタジエン等からなる群から選択される少なくとも1種の化合物が好ましく挙げられる。なかでも、スチレン、α-メチルスチレン、p-メチルスチレンがより好ましく、スチレンが更に好ましい。
 またブロック共重合体(A0)は、重合体ブロック(A-2)を少なくとも1つ有していればよい。ブロック共重合体(A0)が重合体ブロック(A-2)を2つ以上有する場合には、それら重合体ブロック(A-2)は、同一であっても異なっていてもよい。重合体ブロック(A-2)が、2種以上の構造単位を有している場合は、それらの結合形態はランダム、テーパー、完全交互、一部ブロック状、ブロック、又はそれらの2種以上の組み合わせからなっていてもよい。
 本発明の目的及び効果を損なわない限りにおいて、共役ジエン化合物の結合形態に特に制限はない。例えば、重合体ブロック(A-2)を構成する構造単位が、イソプレン単位、イソプレン及びブタジエンの混合物単位のいずれかである場合、イソプレン及びブタジエンそれぞれの結合形態としては、ブタジエンの場合には1,2-結合、1,4-結合、イソプレンの場合には1,2-結合、3,4-結合、1,4-結合のビニル結合をとることができる。これらの結合形態の1種のみが存在していても、2種以上が存在していてもよい。
 ブロック共重合体(A0)においては、重合体ブロック(A-2)における3,4-結合単位及び1,2-結合単位の含有量(つまりビニル結合量)の合計は、50モル%以上であり、好ましくは55モル%以上、更に好ましくは60モル%以上、より更に好ましくは65モル%以上、より更に好ましくは70モル%以上、より更に好ましくは75モル%以上である。重合体ブロック(A-2)におけるビニル結合量が50モル%以上であれば良好な制振性が確保され、ビニル結合量が高くなるにしたがい制振性が向上する傾向がある。
 また、重合体ブロック(A-2)におけるビニル結合量は、99モル%以下であり、95モル%以下であってもよく、92モル%以下であってもよく、90モル%以下であってもよい。
 換言すれば、重合体ブロック(A-2)のビニル結合量は、50~99モル%であり、好ましくは55~99モル%、より好ましくは60~99モル%、更に好ましくは65~99モル%、より更に好ましくは70~99モル%、特に好ましくは75~99モル%である。
 ここで、ビニル結合量は、実施例に記載の方法に従って、H-NMR測定によって算出される値である。
 重合体ブロック(A-2)は、共役ジエン化合物に由来する構造単位であって、下記式(X)で表される1種以上の脂環式骨格(X)を主鎖に含む構造単位を有していてもよい。
Figure JPOXMLDOC01-appb-C000002
 上記式(X)中、R~Rは、それぞれ独立に水素原子又は炭素数1~11の炭化水素基を示し、複数あるR~Rはそれぞれ同一でも異なってもよい。上記炭化水素基の炭素数は、好ましくは炭素数1~5であり、より好ましくは1~3であり、更に好ましくは1(すなわち、メチル基)である。また、上記炭化水素基は、直鎖又は分岐鎖であってもよく、飽和又は不飽和炭化水素基であってもよい。物性及び脂環式骨格(X)形成の観点から、R~Rは、それぞれ独立に水素原子又はメチル基であることが特に好ましい。
 なお、ブロック共重合体(A0)を水素添加した場合、上記式(X)におけるビニル基は水素添加されて水素添加体となり得る。そのため、水素添加物における脂環式骨格(X)の意味するところには、上記式(X)におけるビニル基が水素添加された骨格も含まれる。
 重合体ブロック(A-2)は、脂環式骨格(X)を、好ましくは1モル%以上、より好ましくは1.1モル%以上、更に好ましくは1.4モル%以上、より更に好ましくは1.8モル%以上含み、より更に好ましくは4モル%以上、より更に好ましくは10モル%以上、特に好ましくは13モル%以上含む。また、重合ブロック(A-2)中の脂環式骨格(X)の含有量の上限は、本発明の効果を損なわない範囲内であれば特に制限はないが、生産性の観点から、40モル%以下であることが好ましく、30モル%以下であってもよく、20モル%以下であってもよく、18モル%以下であってもよい。
 なお、ブロック共重合体(A0)又は水添ブロック共重合体(A1)に含まれる上記脂環式骨格(X)含有量は、ブロック共重合体の13C-NMR測定により、重合体ブロック(A-2)中の脂環式骨格(X)由来の積分値から求めた値である。
(重合体ブロック(A-2)のビニル結合量)
 重合体ブロック(A-2)を構成する構造単位が、イソプレン単位、ブタジエン単位、イソプレン及びブタジエンの混合物単位のいずれかである場合、脂環式骨格(X)を形成する結合形態以外のイソプレン及びブタジエンそれぞれの結合形態としては、ブタジエンの場合には1,2-結合、1,4-結合を、イソプレンの場合には1,2-結合、3,4-結合、1,4-結合をとることができる。
 ブロック共重合体(A0)及び水添ブロック共重合体(A1)においては、重合体ブロック(A-2)中の3,4-結合単位及び1,2-結合単位の含有量(以下、単に「ビニル結合量」と称することがある。)の合計が、50~99モル%であり、好ましくは55~95モル%、より好ましくは63~95モル%、更に好ましくは70~95モル%である。
 上記記範囲であれば、非極性樹脂との相容性、特に、ポリオレフィン系樹脂(B)との相容性を高くすることができ、延いては金属やその他の材料に対する高い接着性を発現させる。また、優れた制振性を発現させやすくなる。
(重合体ブロック(A-2)の重量平均分子量)
 重合体ブロック(A-2)の重量平均分子量(Mw)は、特に制限はないが、水素添加前のブロック共重合体(A0)が有する重合体ブロック(A-2)の合計の重量平均分子量が、好ましくは15,000~400,000、より好ましくは20,000~300,000、更に好ましくは30,000~250,000、より更に好ましくは30,000~200,000、より更に好ましくは30,000~150,000である。重合体ブロック(A-2)の合計の重量平均分子量が、上記範囲内であればより優れた制振性を発現しやすくなる。
(重合体ブロック(A-2)の含有量)
 ブロック共重合体(A0)における重合体ブロック(A-2)の含有量は、好ましくは99質量%以下、より好ましくは97質量%以下、更に好ましくは94質量%以下である。重合体ブロック(A-2)の含有量が、99質量%以下であれば、制振性を有しつつ、各種用途に好適な機械的特性、力学物性、及び成形性を有する変性水素添加物(A)又はこれを含有する樹脂組成物(D1)とすることが容易となる。また、ブロック共重合体(A0)における重合体ブロック(A-2)の含有量は、好ましくは30質量%以上、より好ましくは35質量%以上、更に好ましくは60質量%以上、より更に好ましくは75質量%以上、より更に好ましくは80質量%以上、より更に好ましくは85質量%以上である。重合体ブロック(A-2)の含有量が、30質量%以上であれば、制振性により優れた変性水素添加物(A)又はこれを含有する樹脂組成物(D1)とすることができる。
(重合体ブロック(A-2)における他の構造単位)
 重合体ブロック(A-2)は、本発明の目的及び効果の妨げにならない限り、前記共役ジエン化合物以外の他の重合性の単量体に由来する構造単位を含有していてもよい。この場合、重合体ブロック(A-2)において、共役ジエン化合物以外の他の重合性の単量体に由来する構造単位の含有量は、好ましくは50モル%未満、より好ましくは30モル%未満、更に好ましくは20モル%未満、より更に好ましくは10モル%未満、特に好ましくは0モル%である。換言すれば、重合体ブロック(A-2)において、共役ジエン化合物以外の他の重合性の単量体に由来する構造単位の含有量は、好ましくは0モル%以上50モル%未満である。
 該他の重合性の単量体としては、例えばスチレン、α-メチルスチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、p-t-ブチルスチレン、2,4-ジメチルスチレン、N-ビニルカルバゾール、ビニルナフタレン及びビニルアントラセン等の芳香族ビニル化合物、並びにメタクリル酸メチル、メチルビニルエーテル、β-ピネン、8,9-p-メンテン、ジペンテン、メチレンノルボルネン、2-メチレンテトラヒドロフラン、1,3-シクロペンタジエン、1,3-シクロヘキサジエン、1,3-シクロヘプタジエン、1,3-シクロオクタジエン等からなる群から選択される少なくとも1種の化合物が好ましく挙げられる。
 ブロック共重合体(A0)は、上記重合体ブロック(A-2)を少なくとも1つ有していればよい。ブロック共重合体(A0)が重合体ブロック(A-2)を2つ以上有する場合には、それら重合体ブロック(A-2)は、同一であっても異なっていてもよい。
(重合体ブロック(A-1)と重合体ブロック(A-2)の結合様式)
 ブロック共重合体(A0)は、重合体ブロック(A-1)と重合体ブロック(A-2)とが結合している限りは、その結合形式は限定されず、直鎖状、分岐状、放射状、又はこれらの2つ以上が組合わさった結合様式のいずれでもよい。なかでも、重合体ブロック(A-1)と重合体ブロック(A-2)の結合形式は直鎖状であることが好ましく、その例としては重合体ブロック(A-1)をAで、また重合体ブロック(A-2)をBで表したときに、A-Bで示されるジブロック共重合体、A-B-A又はB-A-Bで示されるトリブロック共重合体、A-B-A-Bで示されるテトラブロック共重合体、A-B-A-B-A又はB-A-B-A-Bで示されるペンタブロック共重合体、(A-B)nZ型共重合体(Zはカップリング剤残基を表し、nは3以上の整数を表す)等を挙げることができる。なかでも、直鎖状のトリブロック共重合体、又はジブロック共重合体が好ましく、A-B-A型のトリブロック共重合体が、柔軟性、製造の容易性等の観点から好ましく用いられる。
 A-B-A型のトリブロック共重合体として具体的には、スチレン-水添ブタジエン/イソプレン-スチレン共重合体が挙げられる。すなわち、ブロック共重合体として少なくともスチレン-水添ブタジエン/イソプレン-スチレン共重合体を含むことが好ましい。
 ここで、本明細書においては、同種の重合体ブロックが二官能のカップリング剤等を介して直線状に結合している場合、結合している重合体ブロック全体は一つの重合体ブロックとして取り扱われる。これに従い、上記例示も含め、本来、厳密にはY-Z-Y(Zはカップリング残基を表す)と表記されるべき重合体ブロックは、特に単独の重合体ブロックYと区別する必要がある場合を除き、全体としてYと表示される。本明細書においては、カップリング剤残基を含むこの種の重合体ブロックを上記のように取り扱うので、例えば、カップリング剤残基を含み、厳密にはA-B-Z-B-A(Zはカップリング剤残基を表す)と表記されるべきブロック共重合体はA-B-Aと表記され、トリブロック共重合体の一例として取り扱われる。
(重合体ブロック(A-1)及び(A-2)の含有量)
 ブロック共重合体(A0)において、本発明の目的及び効果の妨げにならない限り、前記重合ブロック(A-1)及び(A-2)以外の重合体ブロックを含有していてもよいが、前記重合体ブロック(A-1)及び前記重合体ブロック(A-2)の合計含有量は、90質量%以上であることが好ましく、95質量%以上であることがより好ましく、実質的に100質量%であることが特に好ましい。90質量%以上であれば、より優れた制振性を発揮しやすい樹脂組成物を得やすくなる。換言すれば、上記ブロック共重合体(A0)における重合体ブロック(A-1)及び前記重合体ブロック(A-2)の合計含有量は、好ましくは90~100質量%である。
(ブロック共重合体(A0)及び水添ブロック共重合体(A1)の重量平均分子量)
 ブロック共重合体(A0)及び水添ブロック共重合体(A1)のゲルパーミエーションクロマトグラフィーによる標準ポリスチレン換算で求めた重量平均分子量(Mw)は、好ましくは50,000~400,000であり、より好ましくは60,000~300,000であり、更に好ましくは70,000~250,000、より更に好ましくは80,000~200,000、特に好ましくは90,000~180,000である。ブロック共重合体(A0)又は水添ブロック共重合体(A1)の重量平均分子量が50,000以上であれば、耐熱性が高くなり、400,000以下であれば、得られる樹脂組成物の取扱い性が良好となる。
(水素添加率)
 変性水素添加物(A)、又は、未変性の水添ブロック共重合体である水添ブロック共重合体(A1)においては、重合体ブロック(A-2)の水素添加率は0モル%超である。つまり、重合体ブロック(A-2)が有する炭素-炭素二重結合の少なくとも一部が水素添加されている。
 上記水素添加率は、幅広い温度における制振性と、熱安定性とを確保する観点から、好ましくは50モル%以上である。また、変性水素添加物(A)を含む樹脂組成物(D1)の柔軟性や力学物性の観点から、上記水素添加率は、より好ましくは60モル%以上、更に好ましくは70モル%以上、より更に好ましくは80モル%以上、特に好ましくは90モル%以上である。水素添加率の上限値に特に制限はないが、上限値は99モル%であってもよく、98.5モル%であってもよい。換言すれば、上記水素添加率は、好ましくは50~99モル%である。
 なお、上記水素添加率は、重合体ブロック(A-2)中の共役ジエン化合物由来の構造単位中の炭素-炭素二重結合の含有量を、水素添加後のH-NMR測定によって求めた値であり、より詳細には実施例に記載の方法に従って測定した値である。
(官能基)
 変性水素添加物(A)は、例えば、上記ブロック共重合体(A0)を水素添加した水添ブロック共重合体(A1)に、アルコキシシリル基、カルボキシ基、アミノ基、ヒドロキシ基、エポキシ基、及び酸無水物由来の基から選ばれる1種又は2種以上の官能基を有する化合物を反応させて官能基を導入し、水添ブロック共重合体(A1)を変性することで製造することができる。当該官能基は、好ましくはアルコキシシリル基及び酸無水物由来の基から選ばれる1種又は2種以上の官能基である。なお、変性水素添加物(A)の製造方法は後述する。
 水添ブロック共重合体(A1)に上記官能基を導入することにより、変性水素添加物(A)を含む樹脂組成物(D1)に、金属やその他の材料に対する高い接着性をもたらすことができる。変性水素添加物(A)は、側鎖に上記官能基を有することが好ましく、これにより主鎖と側鎖との分子運動性の差が大きくなり、ガラス転移温度が制御されて幅広い温度において優れた制振性を示し得るものとすることができる。
 変性水素添加物(A)における上記官能基の含有量は、好ましくは0.1phr以上、より好ましくは0.15phr以上、更に好ましくは0.2phr以上、より更に好ましくは0.25phr以上である。また、変性水素添加物(A)における上記官能基の含有量は、好ましくは5.0phr以下、より好ましくは4.0phr以下、更に好ましくは3.0phr以下、より更に好ましくは2.0phr以下、より更に好ましくは0.95phr以下である。換言すれば、変性水素添加物(A)における上記官能基の含有量は、好ましくは0.1~5.0phrである。
 また、変性水素添加物(A)における上記官能基の含有量は、好ましくは0.1モル%以上、より好ましくは0.15モル%以上、更に好ましくは0.2モル%以上、より更に好ましくは0.25モル%以上である。また、変性水素添加物(A)における上記官能基の含有量は、好ましくは5.0モル%以下、より好ましくは4.0モル%以下、更に好ましくは3.0モル%以下、より更に好ましくは2.0モル%以下、より更に好ましくは0.95モル%以下である。換言すれば、変性水素添加物(A)における上記官能基の含有量は、好ましくは0.1~5.0モル%である。
 変性水素添加物(A)における上記官能基の含有量が、上記範囲内であれば変性水素添加物(A)を含む樹脂組成物(D1)の接着性を優れたものとすることができる。なお、当該官能基の含有量(phr)は、変性水素添加物(A)100質量部に対する官能基の質量部を意味し、変性水素添加物(A)における上記官能基の含有量は、滴定やH-NMR測定、赤外分光分析に基づく測定(IR測定)により算出することができる。
 変性水素添加物(A)における変性量は、使用する変性剤の使用割合や種類等を調整することにより、調整することができる。
(変性水素添加物(A)の特性)
 変性水素添加物(A)の重量平均分子量は、好ましくは50,000~400,000であり、より好ましくは60,000~300,000であり、更に好ましくは70,000~250,000、特に好ましくは80,000~200,000、最も好ましくは90,000~180,000である。
 変性水素添加物(A)の重量平均分子量は、例えば、重合時に用いる重合開始剤の量により調整することができる。
 変性水素添加物(A)のガラス転移温度は、制振性向上の観点から、好ましくは-30~+30℃、より好ましくは-15~+30℃、更に好ましくは-10~+25℃である。
 なお、本明細書において、ガラス転移温度は、示差走査熱量計(DSC)測定装置を用いて測定した値であり、具体的には実施例に記載の方法で測定される。
 変性水素添加物(A)のガラス転移温度は、例えば、共役ジエンの3,4-結合及び1,2-結合の含有量により調整することができる。
 変性水素添加物(A)の、JIS K7210(2014年)に従って、温度230℃、荷重21Nの条件で測定したメルトフローレートは、成形性の観点から、好ましくは1~30g/10min、より好ましくは3~25g/10min、更に好ましくは5~20g/10minである。
 変性水素添加物(A)のtanδ(損失正接)は、動的粘弾測定における周波数1Hzにおける損失弾性率/貯蔵弾性率の比であり、tanδのピークトップ温度及び強度は、制振性、及びその他の物性に大きく寄与する。ここで、tanδのピークトップ強度とは、tanδのピークが最大となるときのtanδの値のことである。また、tanδのピークトップ温度とは、tanδのピークが最大となるときの温度のことである。
 本明細書においてブロック共重合体(A0)又は水添ブロック共重合体(A1)のtanδのピークトップ温度及び強度は、ブロック共重合体(A0)又は水添ブロック共重合体(A1)を、温度230℃、圧力10MPaで3分間加圧することで、厚み1.0mmの単層シートを作製し、該単層シートを円板形状に切り出し、これを試験片として測定する。測定条件は、JIS K 7244-10(2005年)に準拠して、歪み量0.1%、周波数1Hz、測定温度-70~+100℃、昇温速度3℃/分である。
 なお、ブロック共重合体(A0)又は水添ブロック共重合体(A1)のtanδのピークトップ温度及びtanδのピークトップ強度は、より詳細には実施例に記載の方法に従って測定した値である。
 変性水素添加物(A)は、上記測定により、tanδのピークトップ強度が1.0以上となり得る。より高いものでは、1.5以上、更には1.9以上となるものもある。tanδのピークトップ強度が高い程、その温度における制振性等の物性に優れることを示し、1.0以上であれば、実使用環境下において充分な制振性を得ることができる。
 また、変性水素添加物(A)は、tanδのピークトップ温度が、好ましくは-50℃以上、より好ましくは-40℃以上、更に好ましくは-30℃以上、より更に好ましくは-25℃以上であり、0℃以上であってもよい。また、上記tanδのピークトップ温度の上限は、本発明の効果を損なわない範囲であればよく、+50℃以下であってもよく、+40℃以下であってもよく、+35℃以下であってもよい。tanδのピークトップ温度の範囲として、例えば、好ましくは-50~+50℃であり、より好ましくは-40~+40℃、更に好ましくは-30~+30℃、より更に好ましくは-25~+25℃である。上記tanδのピークトップ温度が-50℃以上または+50℃以下であれば、実使用環境下において充分な制振性を得ることができる。
<変性水素添加物(A)の製造方法>
 変性水素添加物(A)は、少なくとも芳香族ビニル化合物及び共役ジエン化合物をモノマーとして用い、これらを重合してブロック共重合体(A0)とし、このブロック共重合体(A0)を水素化する前又は水素化した後に、変性剤を用いて変性反応する工程を経ることによって製造することができる。
(ブロック共重合体(A0)の調製)
 ブロック共重合体(A0)は、モノマーとして少なくとも芳香族ビニル化合物及び共役ジエン化合物を用い、重合反応を行うことによって、上記芳香族ビニル化合物に由来する構造単位を含有する重合体ブロック(A-1)と、上記共役ジエン化合物に由来する構造単位を含有する重合体ブロック(A-2)とを有するブロック共重合体として得ることができる。
 なお、上記芳香族ビニル化合物、共役ジエン化合物、重合体ブロック(A-1)及び重合体ブロック(A-2)は、変性水素添加物(A)の説明において前述したものと同義である。
 上記重合反応は、例えば、溶液重合法、乳化重合法、又は固相重合法等により製造することができる。なかでも溶液重合法が好ましく、例えば、アニオン重合、カチオン重合等のイオン重合法、ラジカル重合法等の公知の方法を適用できる。なかでも、アニオン重合法が好ましい。アニオン重合法では、溶媒、アニオン重合開始剤、及び必要に応じてルイス塩基の存在下、芳香族ビニル化合物及び共役ジエン化合物を逐次添加して、ブロック共重合体を得、必要に応じてカップリング剤を添加して反応させればよい。
 上記方法においてアニオン重合の重合開始剤として使用し得る有機リチウム化合物としては、例えばメチルリチウム、エチルリチウム、n-ブチルリチウム、sec-ブチルリチウム、tert-ブチルリチウム、ペンチルリチウム等が挙げられる。また、重合開始剤として使用し得るジリチウム化合物としては、例えばナフタレンジリチウム、ジリチオヘキシルベンゼン等が挙げられる。
 前記カップリング剤としては、例えばジクロロメタン、ジブロモメタン、ジクロロエタン、ジブロモエタン、ジブロモベンゼン、安息香酸フェニル等が挙げられる。
 これらの重合開始剤及びカップリング剤の使用量は、ブロック共重合体(A0)又は水添ブロック共重合体(A1)の所望とする重量平均分子量により適宜決定される。通常は、アルキルリチウム化合物、ジリチウム化合物等の開始剤は、重合に用いる重合体ブロック(A-1)のモノマー及び共役ジエン化合物等の単量体の合計100質量部当たり0.01~0.2質量部の割合で用いられるのが好ましく、カップリング剤を使用する場合は、前記単量体の合計100質量部当たり0.001~0.8質量部の割合で用いられるのが好ましい。
 溶媒としては、アニオン重合反応に悪影響を及ぼさなければ特に制限はなく、例えば、シクロヘキサン、メチルシクロヘキサン、n-ヘキサン、n-ペンタン等の脂肪族炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素等が挙げられる。また、重合反応は、通常0~100℃、好ましくは10~70℃の温度で、0.5~50時間、好ましくは1~30時間行う。
 また、共役ジエン化合物の重合の際に共触媒としてルイス塩基を添加する方法により、重合体ブロック(A-2)における上記脂環式骨格(X)の含有量や、3,4-結合及び1,2-結合の含有量を高めることができる。
 用いることのできるルイス塩基としては、例えば、ジメチルエーテル、ジエチルエーテル、テトラヒドロフラン、2,2-ジ(2-テトラヒドロフリル)プロパン(DTHFP)等のエーテル類;エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル等のグリコールエーテル類;トリエチルアミン、N,N,N’,N’-テトラメチレンジアミン、N,N,N’,N’-テトラメチルエチレンジアミン(TMEDA)、N-メチルモルホリン等のアミン類;ナトリウムt-ブチレート、ナトリムt-アミレート又はナトリウムイソペンチレート等の脂肪族アルコールのナトリウム又はカリウム塩、あるいは、ジアルキルナトリウムシクロヘキサノレート、例えば、ナトリウムメントレートのような脂環式アルコールのナトリウム又はカリウム塩等の金属塩;等が挙げられる。
 上記ルイス塩基のなかでも、制振性と熱安定性の観点から、テトラヒドロフラン及びDTHFPを用いることが好ましい。また、高いビニル結合量とすることができ、過剰量の水添触媒を用いずとも高い水素添加率を達成しやすく、より優れた制振性と熱安定性の両立を実現し得ることからDTHFPを用いることがより好ましい。
 これらのルイス塩基は、1種単独で又は2種以上を組み合わせて用いることができる。
 ルイス塩基の添加量は、前記重合体ブロック(A-2)が、特にイソプレン及び/又はブタジエンに由来する構造単位を含む場合には、重合体ブロック(A-2)を構成するイソプレン単位及び/又はブタジエン単位のビニル結合量をどの程度に制御するかにより決定される。そのため、ルイス塩基の添加量に厳密な意味での制限はないが、重合開始剤として用いられるアルキルリチウム化合物又はジリチウム化合物に含有されるリチウム1グラム原子当たり、通常0.1~1,000モル、好ましくは1~100モルの範囲内で用いるのが好ましい。
 上記した方法により重合を行なった後、アルコール類、カルボン酸類、水等の活性水素化合物を添加して重合反応を停止させることにより、ブロック共重合体を得ることができる。
(水素添加反応)
 上記の製造方法により得られたブロック共重合体(A0)を、不活性有機溶媒中で水添触媒の存在下に水素添加反応(水添反応)することにより、水添ブロック共重合体(A1)を作製することができる。上記水添反応により、ブロック共重合体(A0)における重合体ブロック(A-2)中の共役ジエン化合物由来の炭素-炭素二重結合が水素添加され、ブロック共重合体(A0)の水素添加物、すなわち、水添ブロック共重合体(A1)とすることができる。
 なお、ブロック共重合体(A0)を後述の方法で変性した後に水素添加してもよい。
 水添反応は、水素圧力を0.1~20MPa程度、好ましくは0.5~15MPa、より好ましくは0.5~5MPa、反応温度を20~250℃程度、好ましくは50~180℃、より好ましくは70~180℃、反応時間を通常0.1~100時間程度、好ましくは1~50時間として実施することができる。
 水添触媒としては、例えば、ラネーニッケル;Pt、Pd、Ru、Rh、Ni等の金属をカーボン、アルミナ、珪藻土等の担体に担持させた不均一系触媒;遷移金属化合物とアルキルアルミニウム化合物、アルキルリチウム化合物等との組み合わせからなるチーグラー系触媒;メタロセン系触媒等が挙げられる。
 このようにして得られた水添ブロック共重合体(A1)(又は、変性水素添加物(A))は、重合反応液をメタノール等に注ぎ、撹拌後にろ過し、加熱又は減圧乾燥させるか、重合反応液をスチームとともに熱水中に注ぎ、溶媒を共沸させて除去するいわゆるスチームストリッピングを施した後、加熱又は減圧乾燥することにより取得することができる。
 水素添加物とする際の上記重合体ブロック(A-2)中の炭素-炭素二重結合の水素添加率をどの程度にするかは、樹脂組成物(D1)や後述する樹脂組成物(D2)の各種用途において所望される性能に応じて特定することができる。
 水素添加物の水素添加率が高い程、耐熱性や耐候性が向上した水素添加物とすることが可能であり、樹脂組成物(D1)に用いる変性水素添加物(A)においては、上述したように、重合体ブロック(A-2)の水素添加率は、好ましくは50~99モル%である。
(変性反応)
 変性水素添加物(A)は、ブロック共重合体(A0)を水素添加した後に前述の官能基を導入することにより、又は、ブロック共重合体(A0)を水素添加する前に前述の官能基を導入した後に水素添加することにより生成することができる。ラジカル反応による変性の場合は、反応制御の観点から、ブロック共重合体(A0)を水素添加して水添ブロック共重合体(A1)とした後、特定の官能基を導入して製造することが好ましい。
 また、水添ブロック共重合体(A1)に前述の官能基を導入して変性する反応(以下、「変性反応」と称すことがある)は、公知の方法で行うことができる。
 上記変性反応は、例えば、水添ブロック共重合体(A1)を有機溶媒に溶解し、そこへ前述の官能基を付加することができる各種変性剤を添加し、50~300℃程度、0.5~10時間程度で反応させることにより行うことができる。
 また上記変性反応は、例えば、水添ブロック共重合体(A1)を、溶媒を用いずに押出機等を使用して溶融状態にし、各種変性剤を添加することにより行うことができる。この場合、変性反応の温度は、通常水添ブロック共重合体(A1)の融点以上から400℃以下であり、好ましくは90~350℃、より好ましくは100~300℃であり、反応時間は通常0.5~10分程度である。
 また、溶融状態で上記変性反応を行う際にラジカル開始剤を添加することが好ましく、副反応を抑制する観点等から老化防止剤を添加してもよい。
 上記変性水素添加物(A)の製造方法において、上記変性反応は、作業性や、制振性及び熱安定性が優れやすくなる観点から、後者の溶融状態で変性する方法により行うことが好ましい。
 すなわち、変性水素添加物(A)の製造方法の好ましい態様は、ブロック共重合体(A0)を水素添加して水添ブロック共重合体(A1)とした後、溶融状態の水添ブロック共重合体(A1)に、ラジカル開始剤を用いて、アルコキシシリル基、カルボキシ基、アミノ基、ヒドロキシ基、エポキシ基、及び酸無水物由来の基から選ばれる1種又は2種以上の官能基を導入する工程を更に有する。
 上記官能基を付加することができる変性剤としては、ジメチルジエトキシシラン、テトラメトキシシラン、テトラエトキシシラン、3-アミノプロピルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ヒドロキシメチルトリエトキシシラン、ビニルベンジルジエチルアミン、ビニルベンジルジメチルアミン、1-グリシジル-4-(2-ピリジル)ピペラジン、1-グリシジル-4-フェニルピペラジン、1-グリシジル-4-メチルピペラジン、1-グリシジル-4-メチルホモピペラジン、1-グリシジルヘキサメチレンイミン、及びテトラグリシジル-1,3-ビスアミノメチルシクロヘキサン等が挙げられ、また変性剤として、無水マレイン酸、無水シトラコン酸、無水2,3-ジメチルマレイン酸、無水イタコン酸等の不飽和カルボン酸無水物も用いることができる。更に、特開2011-132298号公報に記載の変性剤から、上記官能基を付加することができる変性剤を採用してもよい。上記変性剤は、1種単独で又は2種以上を組み合わせて用いることができる。
 変性剤の添加量は、前述した変性水素添加物(A)における上記官能基の含有量に応じて、所望する上記官能基の含有量となるように適宜決定すればよいが、水添ブロック共重合体(A1)又はブロック共重合体(A0)100質量部に対し、変性剤は通常0.01~10質量部程度、好ましくは0.01~5質量部、より好ましくは0.01~3質量部であり、更に好ましくは0.05~2質量部である。
 ラジカル開始剤としては、ジアルキルパーオキサイド類、ジアシルパーオキサイド類、パーオキシエステル類、パーオキシケタール類、及びハイドロパーオキサイド類等の有機パーオキサイド又は有機パーエステルを用いられ、またアゾビスイソブチロニトリル、及びジメチルアゾイソブチレート等のアゾ化合物等も用いることができる。上記ラジカル開始剤のなかでも、好ましくは有機パーオキサイドであり、より好ましくはジアルキルパーオキサイド類である。
 ラジカル開始剤の添加量は、水添ブロック共重合体(A1)又はブロック共重合体(A0)と変性剤との組み合わせにより適宜決定すればよいが、水添ブロック共重合体(A1)又はブロック共重合体(A0)100質量部に対しラジカル開始剤は、通常0.01~10質量部程度、好ましくは0.01~5質量部、より好ましくは0.01~3質量部であり、更に好ましくは0.05~2質量部である。
<ポリオレフィン系樹脂(B)>
 樹脂組成物(D1)に含まれるポリオレフィン系樹脂(B)としては、ポリプロピレン、ポリエチレン、ポリメチルペンテン、エチレン酢酸ビニル共重合体、及び、これらのうち複数種類を組み合わせた樹脂が挙げられる。
 上記ポリプロピレンとしては、ホモポリプロピレン、エチレン等のα-オレフィンとのブロック共重合体であるブロックポリプロピレン、エチレン等のα-オレフィンとのランダム共重合体であるランダムポリプロピレン等が挙げられる。
 上記ポリエチレンとしては、例えば、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、直鎖低密度ポリエチレン等が挙げられる。
 上記ポリメチルペンテンとしては、4-メチル-1-ペンテンの単独重合体や、4-メチル-1-ペンテンから導かれる構造単位及び炭素原子数2~20のα-オレフィン(但し、4-メチル-1-ペンテンを除く。)から導かれる構造単位を有する共重合体等が挙げられる。
 上記エチレン酢酸ビニル共重合体としては、酢酸をコモノマーとしてエチレンと共重合した樹脂であれば特に限定されず、種々の酢酸ビニル基含有率(VA含有率)のものを用いることができる。
 また、α-オレフィンの単独重合体又は共重合体、プロピレン及び/又はエチレンとα-オレフィンとの共重合体等もポリオレフィン系樹脂(B)として使用できる。
 上記α-オレフィンとしては、例えば、1-ブテン、1-ペンテン、3-メチル-1-ブテン、1-ヘキセン、3-メチル-1-ペンテン、4-メチル-1-ペンテン、1-ヘプテン、1-オクテン、1-ノネン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセンなどの炭素数20以下のα-オレフィンが挙げられ、これらの1種又は2種以上を用いることができる。
 一態様において、ポリオレフィン系樹脂(B)は、ポリプロピレン、ポリエチレン、ポリメチルペンテン、エチレン酢酸ビニル共重合体、及び、α-オレフィンの単独重合体又は共重合体、プロピレン及び/又はエチレンとα-オレフィンとの共重合体からなる群から選択される少なくとも1種の樹脂である。
<添加剤>
 樹脂組成物(D1)には、本発明の効果を損なわない範囲において、各種添加剤を含有することができる。
 添加剤としては、例えば、タルク、クレー、マイカ、ケイ酸カルシウム、ガラス、ガラス中空球、ガラス繊維、炭酸カルシウム、炭酸マグネシウム、塩基性炭酸マグネシウム、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム、ホウ酸亜鉛、ドーソナイト、ポリリン酸アンモニウム、カルシウムアルミネート、ハイドロタルサイト、シリカ、珪藻土、アルミナ、酸化チタン、酸化鉄、酸化亜鉛、酸化マグネシウム、酸化スズ、酸化アンチモン、バリウムフェライト、ストロンチウムフェライト、カーボンブラック、グラファイト、炭素繊維、活性炭、炭素中空球、チタン酸カルシウム、チタン酸ジルコン酸鉛、炭化ケイ素等の無機フィラー;木粉、でんぷん等の有機フィラー、セルロースファイバー、セルロースナノファイバー、カーボンファイバー、カーボンナノファイバー等が挙げられる。上記添加剤としては、更に粘着付与樹脂、可塑剤、充填剤、架橋剤(イソシアネート系架橋剤、エポキシ系架橋剤、金属キレート系架橋剤、アジリジン系架橋剤、アミン樹脂等)、熱安定剤、光安定剤、紫外線吸収剤、赤外線吸収剤、酸化防止剤、滑剤、着色剤、帯電防止剤、難燃剤、撥水剤、防水剤、親水性付与剤、導電性付与剤、熱伝導性付与剤、電磁波シールド性付与剤、透光性調整剤、蛍光剤、摺動性付与剤、透明性付与剤、アンチブロッキング剤、金属不活性化剤、防菌剤、結晶核剤、亀裂防止剤、オゾン劣化防止剤、防鼠剤、分散剤、増粘剤、耐光剤、耐候剤、銅害防止剤、補強剤、防かび剤、大環状分子(シクロデキストリン、カリックスアレーン、ククルビツリル等)を挙げることができる。
 上記添加剤は、1種単独で、又は2種以上を組み合わせて用いることができる。
 樹脂組成物(D1)における上記添加剤の含有量に制限はなく、当該添加剤の種類や樹脂組成物(D1)の用途などに応じて適宜調整することができる。樹脂組成物(D1)が上記添加剤を含有する場合、上記添加剤の含有量は樹脂組成物(D1)の全質量に対して、例えば50質量%以下、45質量%以下、30質量%以下、20質量%以下、10質量%以下であってもよく、また、0.01質量%以上、0.1質量%以上、1質量%以上、5質量%以上であってもよい。換言すれば、樹脂組成物(D1)中の上記添加剤の含有量は、好ましくは0.01~50質量%である。
<樹脂組成物(D1)中の各成分の割合>
 第1の樹脂組成物(D1)において、変性水素添加物(A)の質量をAa、ポリオレフィン系樹脂(B)の質量をBaとするとき、接着性の観点から、Aa/Baが、好ましくは95/5~5/95、より好ましくは80/20~10/90、更に好ましくは70/30~10/90である。
 また、第1の樹脂組成物(D1)に含まれる、変性水素添加物(A)及びポリオレフィン系樹脂(B)の合計質量は、接着性を十分に発現させる等の観点から、好ましくは50質量%以上、より好ましくは65質量%以上、更に好ましくは70質量%以上、より更に好ましくは80質量%以上、特に好ましくは90質量%以上である。上記合計質量の上限に特に制限はなく、100質量%であってもよいし、99.9質量%であってもよいし、99.5質量%であってもよい。換言すれば、第1の樹脂組成物(D1)に含まれる、変性水素添加物(A)及びポリオレフィン系樹脂(B)の合計質量は、好ましくは50~100質量%である。
<樹脂組成物(D1)の特性>
(金属に対する接着強度)
 樹脂組成物(D1)のアルミニウム合金板(A5052P)に対する接着強度は、高い接着性を確保する観点から、好ましくは2.5N/mm以上、より好ましくは3.0N/mm以上、更に好ましくは3.5N/mm以上、より更に好ましくは4.0N/mm以上である。
 また、樹脂組成物(D1)のステンレス鋼板(SUS304)に対する接着強度は、高い接着性を確保する観点から、好ましくは3.5N/mm以上、より好ましくは4.0N/mm以上、更に好ましくは4.5N/mm以上、より更に好ましくは5.0N/mm以上、特に好ましくは5.5N/mm以上である。
 いずれの場合も接着強度の上限に制限はないが、実測可能な接着強度の目安として、30N/mmであってもよい。
 なお、金属板を被接着体としたときの樹脂組成物(D1)の接着強度は、長さ34mm×幅10mm×厚さ0.05cmの試験片を用いて一対の金属板の間に入れて加圧加熱し、せん断剥離試験装置インストロン3345(インストロン社製)を用いて、引張速度5mm/minの条件で、2枚の被接着体の接着されていない側の端部を互いに逆方向に引っ張ってせん断剥離することにより測定される。詳しくは、実施例に記載の方法によって測定される。
(メルトフローレート(MFR))
 樹脂組成物(D1)のMFRは、樹脂組成物(D1)を調製する際の流動性を確保する観点から、好ましくは5~30g/10min、より好ましくは10~25g/10min、更に好ましくは15~25g/10minである。
 MFRは、JIS K7210(2014年)に準じて、温度230℃、荷重21Nの条件で、メルトインデクサ(株式会社立山科学ハイテクノロジーズ製MELT INDEXER L241)を用いて測定される。
(引張弾性率)
 樹脂組成物(D1)の引張弾性率は、柔軟性と機械強度の両立の観点から、好ましくは10~400MPa、より好ましくは20~350MPa、更に好ましくは25~300MPaである。引張弾性率の上限や下限については特に制限はなく、用途に応じ適宜特定することができる。
 引張弾性率は、JIS K6251(2017年)に準じて、ダンベル3号を試験片とし、引張速度500mm/minの条件で測定することができる。
(破断応力)
 樹脂組成物(D1)の破断応力は、機械強度の観点から、好ましくは10~35MPa、より好ましくは15~30MPa、更に好ましくは20~30MPaである。破断応力の上限については特に制限はなく、用途に応じ適宜特定することができる。
 破断応力は、JIS K6251(2017年)に準じて、ダンベル3号を試験片とし、引張速度500mm/minの条件で測定することができる。
(破断伸度)
 また、樹脂組成物(D1)は、機械強度の観点から、JIS K6251(2017年)に準拠して、ダンベル3号を試験片とし、引張速度500mm/minの条件で測定される破断伸度が、好ましくは200%以上、より好ましくは300%以上、更に好ましくは600%以上である。
(硬度)
 樹脂組成物(D1)は、柔軟性の観点から、JIS K6253-3(2012年)に準拠して測定される、雰囲気温度23℃におけるタイプDデュロメーター硬さが、好ましくは20~70、より好ましくは25~65、更に好ましくは30~60である。
<樹脂組成物(D1)の製造方法>
 樹脂組成物(D1)は、変性水素添加物(A)と、ポリオレフィン系樹脂(B)と、必要に応じて各種添加剤とを、ヘンシェルミキサー、Vブレンダー、リボンブレンダー、タンブラーブレンダー、コニカルブレンダー等の混合機を用いて混合することによって製造するか、又はその後、一軸押出機、二軸押出機、ニーダー、バンバリーミキサー、ロール等の混練機を用いて80~350℃程度で溶融混練することによって製造することができる。
 また、少なくとも変性水素添加物(A)及びポリオレフィン系樹脂(B)が可溶な溶媒に各成分を溶解させて混合し、溶媒を除去することによって樹脂組成物を調製することもできる。
 上記樹脂組成物は、ベール、クラム、及びペレット等のいずれの形状にもすることができる。また、上記樹脂組成物は、溶融混練成形機により、又は、樹脂組成物のベール、クラム、あるいはペレット等を原料として、射出成形法、射出圧縮成形法、押出成形法、ブロー成形法、プレス成形法、真空成形法、及び発泡成形法等により各種成形品とすることができる。
<樹脂組成物(D1)の用途>
 樹脂組成物(D1)は、各種材料に対して接着性を有しており、特に金属に対して高い接着性を有していることから、自動車や建築物の窓におけるガラスとアルミニウムサッシや金属開口部などとの接合部、太陽電池モジュールなどにおけるガラスと金属製枠体との接続部などのシーラントとして好適に使用できる。また、自動車や建築物のウィンドウモールやガスケット、ガラスのシーリング材、防腐蝕材など、ガラスと接着された成形体や構造体として広い範囲の用途に有用である。更には、ノート型パソコン、携帯電話、ビデオカメラなどの各種情報端末機器や、ハイブリッド自動車、燃料電池自動車などに用いられる二次電池のセパレーターなどの接着剤やコート剤として使用することができる。
[接着剤]
 本発明の実施形態に係る接着剤は、樹脂組成物(D1)を含む。
 上記接着剤は、樹脂組成物(D1)を含むことにより、金属、ガラス、樹脂等の各種の材料に対して接着性を発現し、例えば、金属と樹脂、ガラスと樹脂、金属とガラス、極性樹脂と非極性樹脂、非極性樹脂と非極性樹脂、極性樹脂と極性樹脂等を接着することができる。上記接着剤は、特に金属に対して高い接着性を有する。
 上記接着剤の接着の対象となる金属に特に制限はなく、例えば、アルミニウム、アルミニウム合金、ステンレス鋼、銅、マグネシウム合金等が挙げられる。特に、上記接着剤は、アルミニウム、アルミニウム合金、及び、ステンレス鋼に対して高い接着性を示すため、これらの金属に対して適用することが好ましい。
 上記接着剤は、全て樹脂組成物(D1)でもよいし、樹脂組成物(D1)と他の添加物を含むものでもよい。
 上記接着剤に含むことができる添加剤としては、上述したものと同様のものが挙げられる。
 上記接着剤に含まれる、変性水素添加物(A)及びポリオレフィン系樹脂(B)の合計量は、被接着物に対する接着性を確保する観点から、好ましくは70質量%以上、より好ましくは80質量%以上、更に好ましくは90質量%以上である。換言すれば、上記接着剤に含まれる、変性水素添加物(A)及びポリオレフィン系樹脂(B)の合計量は、好ましくは70~100質量%である。
 上記接着剤の被接着物に対する接着強度、硬度、引張弾性率、破断応力、破断伸度等の特性は、樹脂組成物(D1)について述べたものと同様である。
 上記接着剤を金属に接着する場合は、被接着体となる金属上に上記接着剤を配置して加熱するか、加熱溶融した上記接着剤を被接着体となる金属上に供給することによって行うことができる。
 また、上記接着剤を用いて金属同士を接着する場合は、被接着体となる一方の金属上に上記接着剤を配置し、その上に他方の金属を重ねて加熱加圧するか、加熱溶融した上記接着剤を被接着体となる一方の金属上に供給し、その上に他方の金属を重ねて加圧することによって行うことができる。
[相容化剤]
 本発明の実施形態に係る相容化剤は、極性樹脂と非極性樹脂とを相容化させるための相容化剤であって、
 芳香族ビニル化合物に由来する構造単位を有する重合体ブロック(A-1)及び共役ジエン化合物に由来する構造単位を有する重合体ブロック(A-2)を含むブロック共重合体の変性水素添加物(A)を含み、
 変性水素添加物(A)は、アルコキシシリル基、カルボキシ基、アミノ基、ヒドロキシ基、エポキシ基、及び酸無水物由来の基から選ばれる1種又は2種以上の官能基を有し、
 重合体ブロック(A-2)のビニル結合量が50~99モル%である。
 上記相容化剤は、変性水素添加物(A)単体からなるものでもよいし、変性水素添加物(A)以外の成分を含んでいてもよい。
 このような成分としては、例えば、加工助剤、補強剤、充填剤、可塑剤、連通気泡剤、熱安定剤、光安定剤、紫外線吸収剤、酸化防止剤、滑剤、帯電防止剤、防菌剤、防かび剤、分散剤、着色剤、発泡剤、発泡助剤、難燃剤、撥水剤、防水剤、導電性付与剤、熱伝導性付与剤、電磁波シールド性付与剤、蛍光剤、結晶核剤等が挙げられる。
 相容化剤における変性水素添加物(A)の含有量は、十分な相容性を確保しやすくする観点から、相容化剤の全質量に対して、好ましくは80質量%以上、より好ましくは90質量%以上、更に好ましくは95質量%以上である。上限に特に制限はなく100質量%でもよいが、良好な生産性を確保しやすくする観点から、例えば、99.8質量%以下とすることができる。換言すれば、相容化剤中の変性水素添加物(A)の含有量は、好ましくは80~100質量%である。
 上記相容化剤の相容化の対象となる極性樹脂は、後述する極性樹脂(C)と同様である。また、上記相容化剤の相容化の対象となる非極性樹脂は、例えば、上述のポリオレフィン系樹脂(B)として挙げた樹脂であり、これ以外に、スチレン系樹脂等が挙げられる。
 上記相容化剤は、極性樹脂(C)及びポリオレフィン系樹脂(B)とともに混合してもよいし、極性樹脂(C)と混合してからポリオレフィン系樹脂(B)を添加してもよいし、ポリオレフィン系樹脂(B)と混合してから極性樹脂(C)を添加するようにしてもよい。
[第2の樹脂組成物(D2)]
 本発明の実施形態に係る第2の樹脂組成物(D2)は、上記の第1の樹脂組成物(D1)と極性樹脂(C)とを含む。以下、第2の樹脂組成物(D2)を「樹脂組成物(D2)」と称することがある。
 第1の樹脂組成物(D1)に含まれる変性水素添加物(A)は、変性によって特定の官能基が導入され、かつ、高いビニル結合量の重合体ブロック(A-2)を有する。このため、樹脂組成物(D1)と極性樹脂(C)とを、例えば、溶融混練すると、変性水素添加物(A)がポリオレフィン系樹脂(B)と極性樹脂(C)との相容化を促進し、ポリオレフィン系樹脂(B)及び極性樹脂(C)のうち一方にポリオレフィン系樹脂(B)及び極性樹脂(C)のうち他方が良好に分散した第2の樹脂組成物(D2)が得られる。したがって、樹脂組成物(D2)は、ポリオレフィン系樹脂(B)単体に比べて加工性や成形性に優れている。また、変性水素添加物(A)の量を少なくすることができる。
 また、極性樹脂(C)及びポリオレフィン系樹脂(B)のうち一方が極性樹脂(C)及びポリオレフィン系樹脂(B)のうち他方に分散されやすくなることにより、樹脂組成物(D2)又はその成形品は、外観が良好である。加えて、樹脂組成物(D2)又はその成形品において、原料として用いたブロック共重合体(A0)に起因する特性が現れやすくなる。上記樹脂組成物(D2)は、重合体ブロック(A-2)のビニル結合量が高いブロック共重合体(A0)から得た変性水素添加物(A)を用いているので、樹脂組成物(D2)又はその成形品において、制振性等を高めることができる。また、極性樹脂(C)やポリオレフィン系樹脂(B)の種類等を適切に選択することにより、上記樹脂組成物(D2)又はその成形品の引張強度や伸び特性等の物性を優れたものとすることができる。
<樹脂組成物(D2)のモルフォロジー>
 樹脂組成物(D2)の好ましい一態様は、ポリオレフィン系樹脂(B)のマトリクス中に、極性樹脂(C)を含むドメインが島状に分散した海島構造を有し、より好ましくは、変性水素添加物(A)を主体とする成分が、極性樹脂(C)を主体とするドメインの周囲に沿って存在する構造を有する。
 図2は、樹脂組成物(D2)における海島構造の一例を示す断面模式図である。図2に示すように、樹脂組成物(D2)あるいはその成形物においては、複数のドメイン10がポリオレフィン系樹脂(B)からなるマトリクス20中に存在している。ドメイン10は、極性樹脂(C)を主体とするコア部分10aと、変性水素添加物(A)を主体とするシェル部分10bとを含む。
 図3(a)は、樹脂組成物(D2)のモルフォロジーの一例を示す、走査型電子顕微鏡(SEM)を用いて撮影した拡大断面写真である。図3(a)は後述する実施例8に対応しており、ポリオレフィン系樹脂(B)のマトリクス中に極性樹脂(C)を含むドメインが島状に分散している。
 樹脂組成物(D2)の好ましい他の一態様は、極性樹脂(C)のマトリクス中に、ポリオレフィン系樹脂(B)を含むドメインが島状に分散した海島構造を有し、より好ましくは、変性水素添加物(A)を主体とする成分が、ポリオレフィン系樹脂(B)を主体とするドメインの周囲に沿って存在する構造を有する。
 上述したように、高いビニル結合量の重合体ブロック(A-2)を有する変性水素添加物(A)が、ポリオレフィン系樹脂(B)と極性樹脂(C)との相容化を促進するため、樹脂組成物(D2)やその成形品において形成される、極性樹脂(C)を主体とするドメインの大きさやポリオレフィン系樹脂(B)を主体とするドメインは、例えば、平均径で500nm以下の微細なものとすることができる。
 極性樹脂(C)を主体とするドメイン又はポリオレフィン系樹脂(B)を主体とするドメインの分散径は、好ましくは0.01~8μm、より好ましくは0.02~6μm、更に好ましくは0.03~4μmである。ここで、分散径とは、コアシェル構造の長径の体積平均分散径である。具体的には、後述するシート作製方法で得た厚さ1mmの試験片を、ウルトラミクロトームを用いて試験片の断面出しを行い、四酸化ルテニウムの0.5%水溶液により染色し、白金で蒸着処理した。そして、この処理が施された断面を、SEMにより観察し50個の長径の平均値を体積平均分散径とする。
 上記分散径の平均値である平均径は、好ましくは500nm以下、より好ましくは400nm以下、更に好ましくは300nm以下である。上記ドメインの平均径の下限値に特に制限はないが、例えば、100nm以上である。
 上記ドメインの体積平均分散径や平均径が上記数値範囲にあることで、ポリオレフィン系樹脂(B)中の極性樹脂(C)の分散性又は極性樹脂(C)のポリオレフィン系樹脂(B)中の分散性を良好にすることができ、樹脂組成物(D2)又は樹脂組成物(D2)の成形品の力学物性を良好にすることができる。
 上記極性樹脂(C)を主体とするドメイン内には、極性樹脂(C)とは異なる成分からなるサブドメインを一つ又は複数含んでいてもよい。当該サブドメインとしては、ポリオレフィン系樹脂(B)、変性水素添加物(A)、変性前の重合体や水素添加物等からなるドメインが挙げられる。このように、極性樹脂(C)とは異なる成分からなるドメインを含むコアシェル構造が存在すると、耐衝撃性を向上させやすくなる。また、上記ポリオレフィン系樹脂(B)を主体とするドメイン内には、ポリオレフィン系樹脂(B)とは異なる成分からなるサブドメインを一つ又は複数含んでいてもよい。当該サブドメインとしては、極性樹脂(C)、変性水素添加物(A)、変性前の重合体や水素添加物等からなるドメインが挙げられる。このように、ポリオレフィン系樹脂(B)とは異なる成分からなるドメインを含むコアシェル構造が存在すると、耐衝撃性を向上させやすくなる。
<極性樹脂(C)>
 樹脂組成物(D2)に含まれる極性樹脂(C)は、カルボキシ基、スルホン酸基、水酸基、シアノ基等の極性基を有する樹脂、樹脂中にエーテル結合、エステル結合、アミド結合、スルフィド結合等を有する樹脂、分子中に、酸素、窒素、硫黄、ハロゲンのうち少なくとも1つを含む樹脂等を指し、分子内で電子的に分極が発生する樹脂であって、熱可塑性を有するものである。
 極性樹脂(C)は、好ましくは、スルホン酸基、シアノ基等の極性基を有する樹脂、樹脂中にエーテル結合、エステル結合、アミド結合、スルフィド結合等を有する樹脂、分子中に、酸素、窒素、硫黄、ハロゲンのうち少なくとも1つを含む樹脂等であり、より好ましくは、樹脂中にエーテル結合、エステル結合、及び、アミド結合のうち少なくも一つを有する樹脂である。
 好ましい極性樹脂は、ナイロン6、ナイロン66、ナイロン610、ナイロン9、ナイロン6/66、ナイロン66/610、ナイロン6/11、ナイロン6/12、ナイロン12、ナイロン46、非晶質ナイロン等のポリアミド樹脂;ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリ乳酸等のポリエステル樹脂;ポリオキシメチレンホモポリマー、ポリオキシメチレンコポリマー等のポリアセタール樹脂;ポリフェニレンサルファイド(PPS)樹脂、ポリフェニレンエーテル樹脂、ポリアリレート樹脂、ポリエーテルサルフォン樹脂、ポリウレタン樹脂、ポリビニルアルコール系樹脂、ポリカーボネート樹脂、エチレン・酢酸ビニル共重合体、エチレン・メタクリル酸共重合体、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリアクリロニトリル、ビニロン、トリアセチルセルロース、ABS樹脂、AS樹脂、ACS樹脂、キシレン樹脂、アクリル樹脂、及び、ポリエステル系熱可塑性エラストマーからなる群より選ばれる少なくとも1種である。
 より好ましくは、ポリアミド樹脂、ポリエステル樹脂、ポリアセタール樹脂、ポリフェニレンサルファイド樹脂、ポリウレタン樹脂、ポリビニルアルコール系樹脂、ポリカーボネート樹脂、及び、ポリエステル系熱可塑性エラストマーから選ばれる少なくとも1種であり、更に好ましくは、ポリアミド樹脂、ポリビニルアルコール系樹脂、ポリエステル系樹脂、及び、ポリカーボネート樹脂から選択される少なくとも1種の樹脂である。
 極性樹脂(C)として用いられるポリエステル系熱可塑性エラストマーは、例えば、(i)炭素数2~12の脂肪族及び/又は脂環族ジオールと、(ii)芳香族ジカルボン酸又はそのアルキルエステルと、(iii)ポリアルキレンエーテルグリコールと、を原料とし、エステル化反応、又は、エステル交換反応により得られたオリゴマーを重縮合反応させて得ることができる。
 市販のポリエステル系熱可塑性エラストマーとしては、例えば、東レ・デュポン株式会社製ハイトレル3046(登録商標)が挙げられる。
<添加剤>
 樹脂組成物(D2)には、本発明の効果を損なわない範囲において、各種添加剤を含有することができる。このような添加剤としては、樹脂組成物(D1)で述べたものと同様のものが挙げられる。
 樹脂組成物(D2)における上記添加剤の含有量に制限はなく、当該添加剤の種類や樹脂組成物(D2)の用途などに応じて適宜調整することができる。樹脂組成物(D2)が上記添加剤を含有する場合、上記添加剤の含有量は樹脂組成物(D2)の全質量に対して、例えば50質量%以下、45質量%以下、30質量%以下、20質量%以下、10質量%以下であってもよく、また0.01質量%以上、0.1質量%以上、1質量%以上、5質量%以上であってもよい。換言すれば、樹脂組成物(D2)中の上記添加剤の含有量は、好ましくは0.01~50質量%である。
<樹脂組成物(D2)中の各成分の割合>
 樹脂組成物(D2)中の極性樹脂(C)の割合は、樹脂組成物(D2)の全質量に対して、好ましくは10~90質量%である。組成物の柔軟性の観点から、より好ましくは10~50質量%、更に好ましくは10~45質量%、より更に好ましくは10~40質量%である。また、機械強度の観点から、樹脂組成物(D2)の全質量に対して、より好ましくは50~90質量%、更に好ましくは50~85質量%、より更に好ましくは50~80質量%である。
 また、樹脂組成物(D2)中のポリオレフィン系樹脂(B)の質量をBb、極性樹脂(C)の質量をCとしたとき、組成物の柔軟性の観点から、Bb/Cは、好ましくは90/10~50/50、より好ましくは90/10~55/45、更に好ましくは90/10~60/40である、より更に好ましくは90/10~70/30、特に好ましくは90/10~75/25である。また、機械強度の観点から、Bb/Cは、好ましくは50/50~10/90、より好ましくは50/50~15/85、更に好ましくは50/50~20/80である、より更に好ましくは50/50~25/75、特に好ましくは50/50~30/70である。
 Bb/Cが上記範囲にあることで、ポリオレフィン系樹脂(B)の機械物性の大きな低下を抑制しつつ、制振性等の物性を向上することができる。
 樹脂組成物(D2)中の、変性水素添加物(A)の質量をAb、ポリオレフィン系樹脂(B)の質量をBbとするとき、変性水素添加物(A)が有する制振性等の特性を発揮させやすくする観点から、Ab/Bbが、好ましくは30/70~1/99、より好ましくは25/75~3/98、更に好ましくは20/80~5/95である。
 なお、樹脂組成物(D2)には、樹脂組成物(D1)及び極性樹脂(C)に加えて、ブロック共重合体(A0)やその水素添加物(A1)が更に含まれていてもよい。ブロック共重合体(A0)及びその水素添加物(A1)の合計含有量は、力学物性の観点から、樹脂組成物(D2)の全質量に対して、好ましくは1~20質量%、より好ましくは1~10質量%、更に好ましくは1~5質量%である。
 なお、樹脂組成物(D2)には、変性水素添加物(A)、ポリオレフィン系樹脂(B)、ブロック共重合体(A0)、及び、水添ブロック共重合体(A1)以外の樹脂成分が含まれていてもよい。例えば、ポリオレフィン系樹脂(B)以外の非極性樹脂が含まれていてもよい。なお、非極性樹脂としてポリオレフィン系樹脂(B)のみを含む態様が樹脂組成物(D2)の好ましい一態様である。
 樹脂組成物(D2)の制振性や力学物性を確保する観点から、樹脂組成物(D2)において、変性水素添加物(A)、ポリオレフィン系樹脂(B)、ブロック共重合体(A0)、及び、水添ブロック共重合体(A1)以外に含まれる樹脂成分の含有量は、好ましくは0~50質量%、より好ましくは0~30質量%、より更に好ましくは0~20質量%、より更に好ましくは0~10質量%、最も好ましくは0~5質量%である。
<樹脂組成物(D2)の特性>
(損失正接(tanδ))
 樹脂組成物(D2)は、幅広い温度領域で良好な制振性を示すようにする観点から、JIS K7244-10(2005年)に準拠して、歪み量0.1%、周波数10Hz、測定温度-100~+150℃、昇温速度3℃/分の条件で測定した損失正接(tanδ)の、0~50℃におけるピーク強度が、好ましくは0.1~2.0、より好ましくは0.1~1.0、更に好ましくは0.1~0.5である。
 樹脂組成物(D2)が有する幅広い温度領域での良好な制振性は、ブロック共重合体(A0)の種類、変性水素添加物(A)に用いるモノマーの種類や含有割合、ビニル結合量及び水素添加率のバランス、変性水素添加物(A)の製造方法の選択、その他の変性水素添加物(A)の各構成要素等の制御、あるいは、樹脂組成物(D2)に用いる極性樹脂(C)とポリオレフィン系樹脂(B)との組み合わせ及びその含有割合等の調整等により達成することができる。
(引張破壊ひずみ)
 また、樹脂組成物(D2)は、JIS K7161-1(2014年)に準拠して、多目的試験片A1型を試験片とし、引張速度50mm/minの条件で測定される引張破壊ひずみが、機械強度の観点から、好ましくは25%以上、より好ましくは30%以上、更に好ましくは50%以上、より更に好ましくは75%以上、より更に好ましくは100%以上、より更に好ましくは150%、より更に好ましくは200%以上、より更に好ましくは250%以上、より更に好ましくは300%以上である。
(硬度)
 樹脂組成物(D2)は、JIS K6253-3(2012年)に準拠して測定される、雰囲気温度23℃におけるタイプDデュロメーター硬さが、柔軟性の観点から、好ましくは20~90、より好ましくは25~85、更に好ましくは30~80である。
<樹脂組成物(D2)の製造方法>
 樹脂組成物(D2)は、極性樹脂(C)と樹脂組成物(D1)とを、必要に応じて各種添加剤とを、ヘンシェルミキサー、Vブレンダー、リボンブレンダー、タンブラーブレンダー、コニカルブレンダー等の混合機を用いて混合することによって製造するか、又はその後、一軸押出機、二軸押出機、ニーダー、バンバリーミキサー、ロール等の混練機を用いて80~350℃程度で溶融混練することによって製造することができる。
 また、少なくとも極性樹脂(C)と樹脂組成物(D1)が可溶な溶媒に各成分を溶解させて混合し、溶媒を除去することによって樹脂組成物を調製することもできる。
 なお、樹脂組成物(D2)を製造するに当たっては、結果的に極性樹脂(C)と樹脂組成物(D1)とが混合されていればよく、これらを構成する個別成分の混合順序等に特に制限はない。例えば、樹脂組成物(D1)を構成する変性水素添加物(A)及びポリオレフィン系樹脂(B)を、個別に順次極性樹脂(C)に添加・混合してもよいし、変性水素添加物(A)及びポリオレフィン系樹脂(B)を混合してから極性樹脂(C)に添加・混合してもよいし、極性樹脂(C)と変性水素添加物(A)とポリオレフィン系樹脂(B)とを一括で混合してもよい。上述のように添加順序に制限はないが、分散性や、得られる樹脂組成物(D2)の物性をより向上させる観点から、変性水素添加物(A)と極性樹脂(C)を添加したのちにポリオレフィン系樹脂(B)を添加する添加順序が好ましい。
 樹脂組成物(D2)は、ベール、クラム、及びペレット等のいずれの形状にもすることができる。また、樹脂組成物(D2)は、溶融混練成形機により、又は、樹脂組成物のベール、クラム、あるいはペレット等を原料として、射出成形法、射出圧縮成形法、押出成形法、ブロー成形法、プレス成形法、真空成形法、及び発泡成形法等により各種成形品とすることができる。
<樹脂組成物(D2)の用途>
 樹脂組成物(D2)は、各種用途に使用することができる。
 本実施形態の樹脂組成物(D2)は、制振性に優れ、高い伸び特性を有しており、各種用途に用いることができる。そのため、本発明は、上記樹脂組成物(D2)を用いた、制振材、フィルム、及び、シート等も提供する。
 また、上記樹脂組成物(D2)を含有してなるX層と、該X層の少なくとも一方の面に積層されたY層とを有する積層体も提供することができる。該積層体としては、例えば合わせガラスが好適であり、上記X層を合わせガラス用中間膜とし、上記Y層をガラスとする合わせガラスとすることで、優れた制振性のみならず、優れた遮音性も期待できる。
 その他の用途として、ペレット、ベール、吸音材、遮音材、ダムラバー、靴底材料、床材、ウェザーストリップ、フロアマット、ダッシュインシュレーター、ルーフライニング、ドアパネル、エンジンヘッドカバー、ドアホールシール、フェンダーライナー等が挙げられ、これら用途にも有用である。
 また上記樹脂組成物(D2)は、自動車分野における各種の自動車用部材、例えばサーモスタットハウジング、ラジエータータンク、ラジエーターホース、ウォーターアウトレット、ウォーターポンプハウジング、リアジョイント等の冷却部品;インタークーラータンク、インタークーラーケース、ターボダクトパイプ、EGRクーラーケース、レゾネーター、スロットルボディ、インテークマニホールド、テールパイプ等の吸排気系部品;燃料デリバリーパイプ、ガソリンタンク、クイックコネクタ、キャニスター、ポンプモジュール、燃料配管、オイルストレーナー、ロックナット、シール材等の燃料系部品;マウントブラケット、トルクロッド、シリンダヘッドカバー等の構造部品;ベアリングリテイナー、ギアテンショナー、ヘッドランプアクチュエータギア、HVACギア、スライドドアローラー、クラッチ周辺部品等の駆動系部品;エアブレーキチューブ等のブレーキ系統部品;エンジンルーム内のワイヤーハーネスコネクタ、モーター部品、センサー、ABSボビン、コンビネーションスイッチ、車載スイッチ、電子制御ユニット(ECU)ボックス等の車載電装部品;スライドドアダンパー、ドアミラーステイ、ドアミラーブラケット、インナーミラーステイ、ルーフレール、エンジンマウントブラケット、エアクリーナーのインレットパイプ、ドアチェッカー、プラチェーン、エンブレム、クリップ、ブレーカーカバー、カップホルダー、エアバック、フェンダー、スポイラー、ラジエーターサポート、ラジエーターグリル、ルーバー、エアスクープ、フードバルジ、バックドア、フューエルセンダーモジュール、フロアマット、インストルメントパネル、ダッシュボード、ダッシュインシュレーター、ダムラバー、ウェザーストリップ、タイヤ等の内外装部品等に用いることもできる。
 また、家電分野におけるテレビ、ブルーレイレコーダーやHDDレコーダー等の各種レコーダー類、プロジェクター、ゲーム機、デジタルカメラ、ホームビデオ、アンテナ、スピーカー、電子辞書、ICレコーダー、FAX、コピー機、電話機、ドアホン、炊飯器、電子レンジ、オーブンレンジ、冷蔵庫、食器洗い機、食器乾燥機、IHクッキングヒーター、ホットプレート、掃除機、洗濯機、充電器、ミシン、アイロン、乾燥機、電動自転車、空気清浄機、浄水器、電動歯ブラシ、照明器具、エアコン、エアコンの室外機、除湿機、加湿機等の各種電気製品における、シール材、接着剤、粘着剤、パッキン、Oリング、ベルト、防音材等に利用可能である。繊維として用いることもできる。
 以下、本発明を実施例及び比較例により具体的に説明するが、本発明はこれらに限定されるものではない。
1.変性水素添加物(A)
[各物性の測定方法]
 後述の製造例で得られた水添ブロック共重合体(A1)、及び、変性水素添加物(A)の物性評価方法を以下に示す。
(1)重合体ブロック(A-1)の含有量
 水添前のブロック共重合体をCDClに溶解してH-NMR測定[装置:「ADVANCE 400 Nano bay」(Bruker社製)、測定温度:30℃]を行い、スチレンに由来するピーク強度とジエンに由来するピーク強度の比から重合体ブロック(A-1)の含有量を算出した。
(2)重量平均分子量(Mw)
 下記条件のゲルパーミエーションクロマトグラフィー(GPC)測定により、重合体ブロック(A-1)、重合体ブロック(A-2)、ブロック共重合体の水素添加物、及び、変性水素添加物のポリスチレン換算の重量平均分子量(Mw)を求めた。
(GPC測定装置及び測定条件)
・装置    :GPC装置「HLC-8020」(東ソー株式会社製)
・分離カラム :東ソ-株式会社製の「TSKgel GMHXL」、「G4000HXL」及び「G5000HXL」を直列に連結した。
・溶離液   :テトラヒドロフラン
・溶離液流量 :0.7mL/min
・サンプル濃度:5mg/10mL
・カラム温度 :40℃
・検出器:示差屈折率(RI)検出器
・検量線:標準ポリスチレンを用いて作成
(3)重合体ブロック(A-2)における水素添加率
 H-NMR測定により、イソプレン及び/又はブタジエンの残存オレフィン由来のピーク面積とエチレン、プロピレン及び/又はブチレン由来のピーク面積との比から算出した。
・装置:核磁気共鳴装置「ADVANCE 400 Nano bay」(Bruker社製)
・溶媒:CDCl
(4)重合体ブロック(A-2)におけるビニル結合量
 水添前のブロック共重合体をCDClに溶解してH-NMR測定[装置:「ADVANCE 400 Nano bay」(Bruker社製)、測定温度:30℃]を行った。イソプレン及び/又はブタジエン由来の構造単位の全ピーク面積と、イソプレン構造単位における3,4-結合単位及び1,2-結合単位、ブタジエン構造単位における1,2-結合単位、又は、イソプレンとブタジエンの混合物に由来する構造単位の場合はそれぞれの前記結合単位に対応するピーク面積の比とからビニル結合量(3,4-結合単位と1,2-結合単位の含有量の合計)を算出した。
(5)変性水素添加物(A)の変性量(phr)
 変性水素添加物(A)の無水マレイン酸変性量は、以下の手順で測定した。変性水素添加物(A)5gをトルエン180mlに溶解した後、エタノール20mlを加え、0.1モル/L水酸化カリウム溶液で滴定し、下記計算式を用い変性量を算出した。
無水マレイン酸変性量(phr)=滴定量×5.611/サンプル量×98×100/56.11×1000
(6)変性水素添加物(A)の変性量(モル%)
上記で算出した無水マレイン酸変性量(phr)から、下記計算式を用い変性量(mol%)を算出した。
無水マレイン酸変性量(mol%)={無水マレイン酸変性量(phr)/無水マレイン酸分子量}/{無水マレイン酸変性量(phr)/無水マレイン酸分子量+重合体ブロック(A)含有量(質量%)/重合体ブロック(A)構造単位分子量+重合体ブロック(B)含有量(質量%)/重合体ブロック(B)構造単位分子量}×100
(7)変性水素添加物(A)のガラス転移温度
 変性水素添加物(A)である、後述する変性水素添加物(Y-2)~(Y-7)のガラス転移温度は、DSC測定装置(ティー・エイ・インスツルメント社製DSC250)を用いて測定した。具体的には、上記装置を用いて、温度範囲-120℃~+350℃、昇温速度10℃/分の条件にて測定を行い、ガラス転移によるベースラインシフトの変曲点の温度をガラス転移温度とした。
 また、ブロック共重合体の水素添加物(Y-1)のガラス転移温度も同様に測定した。
(8)tanδのピークトップ温度、ピークトップ強度
 変性水素添加物(A)である、後述する変性水素添加物(Y-2)~(Y-7)のtanδのピークトップ温度及び強度は、変性水素添加物(A)を、温度230℃、圧力10MPaで3分間加圧することで、厚み1.0mmの単層シートを作製し、該単層シートを円板形状に切り出し、これを試験片とした。測定には、JIS K 7244-10(2005年)に基づいて、平行平板振動レオメータとして、円板の直径が8mmのゆがみ制御型動的粘弾性装置「ARES-G2」(ティー・エイ・インスツルメント社製)を用いた。
 上記試験シートによって2枚の平板間の隙間を完全に充填し、歪み量0.1%で、上記試験シートに1Hzの周波数で振動を与え、-70℃から200℃まで3℃/分の定速で昇温し、tanδのピーク強度の最大値(ピークトップ強度)及び該最大値が得られた温度(ピークトップ温度)を求めた。
[製造例1]
(ブロック共重合体の水素添加物(Y-1)の製造)
 窒素置換し、乾燥させた耐圧容器に、溶媒としてシクロヘキサン50kg、アニオン重合開始剤として濃度10.5質量%のsec-ブチルリチウムのシクロヘキサン溶液87g(sec-ブチルリチウムの実質的な添加量:9.14g)を仕込んだ。
 耐圧容器内を50℃に昇温した後、スチレン(1)1.0kgを加えて1時間重合させ、容器内温度50℃で、ルイス塩基として2,2-ジ(2-テトラヒドロフリル)プロパン(DTHFP)33gを加え、イソプレン8.16kg及びブタジエン6.48kgの混合液を5時間かけて加えた後2時間重合させ、更にスチレン(2)1.0kgを加えて1時間重合させることにより、ポリスチレン-ポリ(イソプレン/ブタジエン)-ポリスチレントリブロック共重合体を含む反応液を得た。
 該反応液に、オクチル酸ニッケル及びトリメチルアルミニウムから形成されるチーグラー系水素添加触媒を水素雰囲気下で添加し、水素圧力1MPa、80℃の条件で5時間反応させた。該反応液を放冷及び放圧させた後、水洗により上記触媒を除去し、真空乾燥させることにより、ポリスチレン-ポリ(イソプレン/ブタジエン)-ポリスチレントリブロック共重合体の水素添加物(以下、Y-1と称する)を得た。
 各原料及びその使用量を表1に、前記物性評価の結果を表2に示した。
[製造例2]
(変性水素添加物(Y-2)の製造)
 Coperion社製二軸押出機「ZSK26mc」(26mmφ、L/D=56)を下記押出条件にて使用し、上記で得られた水添ブロック共重合体Y-1を10kg配合して溶融状態とし、ラジカル開始剤として2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン(パーヘキサ25B-40、日本油脂株式会社製)を0.05kg、変性剤として無水マレイン酸0.15kgを配合して、変性反応を行い、変性水素添加物(Y-2)を得た。
 各原料及びその使用量を表1に、前記物性評価の結果を表2に示す。
[製造例3]
(変性水素添加物(Y-3)の製造)
 アニオン重合開始剤として濃度10.5質量%のsec-ブチルリチウムのシクロヘキサン溶液73.4g(sec-ブチルリチウムの実質的な添加量:7.71g)を用いた以外は製造例1と同様にして、ブロック共重合体の水素添加物を作製した。更に、この水素添加物を製造例2と同様の手順でマレイン酸変性することにより、変性水素添加物(Y-3)を調製した。
 各原料及びその使用量を表1に、前記物性評価の結果を表2に示した。
[製造例4]
(変性水素添加物(Y-4)の製造)
 イソプレン及び触媒を表1に示す量に変更し、ブタジエンは使用しないようにした以外は製造例1と同様にして、ブロック共重合体の水素添加物を作製した。更に、この水素添加物を、無水マレイン酸及びラジカル開始剤を表1に示す量に変更した以外は製造例2と同様の手順でマレイン酸変性することにより、変性水素添加物(Y-4)を調製した。
 各原料及びその使用量を表1に、前記物性評価の結果を表2に示した。
[製造例5]
(変性水素添加物(Y-5)の製造)
 スチレン(1)、スチレン(2)、ブタジエン、及び、触媒を表1に示す量に変更し、イソプレンは使用せず、ルイス塩基をテトラヒドロフラン110gに変更した以外は製造例1と同様にして、ブロック共重合体の水素添加物を作製した。更に、この水素添加物を、無水マレイン酸及びラジカル開始剤を表1に示す量に変更した以外は製造例2と同様の手順でマレイン酸変性することにより、変性水素添加物(Y-5)を調製した。
 各原料及びその使用量を表1に、前記物性評価の結果を表2に示した。
[製造例6]
(変性水素添加物(Y-6)の製造)
 スチレン(1)、スチレン(2)、ブタジエン、及び、触媒を表1に示す量に変更し、イソプレンは使用せず、ルイス塩基をテトラヒドロフラン110gに変更した以外は製造例1と同様にして、ブロック共重合体の水素添加物を作製した。更に、この水素添加物を、無水マレイン酸及びラジカル開始剤を表1に示す量に変更した以外は製造例2と同様の手順でマレイン酸変性することにより、変性水素添加物(Y-6)を調製した。
 各原料及びその使用量を表1に、前記物性評価の結果を表2に示した。
[製造例7]
(変性水素添加物(Y-7)の製造)
 スチレン(1)、スチレン(2)、イソプレン、ブタジエン、及び、触媒を表1に示す量に変更し、ルイス塩基をテトラヒドロフラン310gに変更した以外は製造例1と同様にして、ブロック共重合体の水素添加物を作製した。更に、この水素添加物を、製造例2と同様の手順でマレイン酸変性することにより、変性水素添加物(Y-7)を調製した。
 各原料及びその使用量を表1に、前記物性評価の結果を表2に示した。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表2に示すように、製造例1のブロック共重合体の水素添加物(Y-1)は変性されていないものである。また、製造例2~4の変性水素添加物(Y-2)~(Y-4)の重合体ブロック(A-2)のビニル結合量は、それぞれ82、78、83モル%であるのに対して、製造例5、6の変性水素添加物(Y-5)、(Y-6)の重合体ブロック(A-2)のビニル結合量は40モル%であり、製造例7の変性水素添加物(Y-7)の重合体ブロック(A-2)のビニル結合量は60モル%である。
 また、表2に示すように、ブロック共重合体の水素添加物(Y-1)と変性水素添加物(Y-2)~(Y-4)は、tanδのピークトップ強度が1.0以上を示し、tanδのピークトップ温度が変性水素添加物(Y-5)、(Y-6)に比べて高い温度にある。このため、上記水素添加物(Y-1)及び変性水素添加物(Y-2)~(Y-4)は、上記変性水素添加物(Y-5)及び(Y-6)に比べて、より室温に近い温度で制振材料として好適な特性を有しているといえる。上記変性水素添加物(Y-7)も、tanδのピークトップ強度が1.0以上を示し、tanδのピークトップ温度が変性水素添加物(Y-5)、(Y-6)に比べて高い温度にある。このため、変性水素添加物(Y-7)は、変性水素添加物(Y-5)及び(Y-6)に比べて、より高い温度で制振材料として好適な特性を有するものである。
2.樹脂組成物(D1)及び樹脂組成物(D2)
[各物性の測定方法]
 後述する各実施例及び比較例で得られた樹脂組成物の各物性の測定方法を以下に示す。
(1)試験片用シート及び試験片の作製
 後述する実施例1~12及び比較例1~8で得られた樹脂組成物を、それぞれプレス成形装置「NF-50H」(株式会社神藤金属工業所製)により、温度230℃で1分間予熱後、同温度にて所定厚さのスペーサーを介して圧力10MPaで3分間加圧することでシートを作製し、該シートを所定サイズに切断したものを試験片とした。
 実施例1~7及び比較例1~3については、後述する「引張試験」「硬度測定」「モルフォロジー観察」用の試験片又は試験片を得るためのシートは、長さ15cm×幅15cm×厚さ0.1cmとし、「せん断剥離試験」用の試験片を得るためのシートは、長さ15cm×幅15cm×厚さ0.05cmとした。「耐衝撃性」測定用の試験片を得るためのシートは、長さ15cm×幅15cm×厚さ0.4cmとした。「動的粘弾性測定」用の試験片は、長さ2cm×幅0.5cm×厚さ0.1cmとした。
 実施例8~12及び比較例4~8については、後述する「引張試験」「硬度測定」「耐衝撃性」用の試験片又は試験片を得るためのシートは、長さ15cm×幅15cm×厚さ0.4cmとし、「動的粘弾性測定」用の試験片は、長さ2cm×幅0.5cm×厚さ0.1cmとした。
 実施例13~18及び比較例9~15については、射出成型機(東芝機械株式会社製C75SX)を用いて、後に示す表5に記載の温度で多目的試験片A1型を作製し、各試験項目の試験片とした。「動的粘弾性測定」用の試験片は、実施例1~12及び比較例1~8と同様の方法でシートを作製し、長さ2cm×幅0.5cm×厚さ0.1cmとした。
(2)せん断剥離試験
 実施例1~7及び比較例1~3について、上記の厚さ0.05cmのシートを、長さ34mm×幅10mmに切断して「せん断剥離試験」用の試験片を作製した。
 被接着体である一対の金属板の一方の端部の上面と、他方の端部の下面との間に試験片を挿入し、厚さ2.5mmのスペーサーとともに、上記プレス成形装置を用いて、プレス温度200℃、プレス圧力0MPaの条件で2分間プレスすることにより、2枚の被接着体を接着した。
 そして、せん断剥離試験装置インストロン3345(インストロン社製)を用いて、引張速度5mm/minの条件で、2枚の被接着体の接着されていない側の端部を互いに逆方向に引っ張ってせん断剥離することにより、接着強度を測定した。
 被接着体としては、それぞれ、長さ120mm×幅35mm×厚さ1mmの、ステンレス鋼板(SUS304)、及び、アルミニウム合金板(A5052P)を用いた。
(3)引張試験
 実施例1~7及び比較例1~3については、上記シートを切り出すことにより、ダンベル3号試験片を作製した。
 上記試験片を用い、JIS K6251(2017年)に準じて、インストロン3345(インストロン社製)を用いて、引張速度500mm/minにて、引張弾性率(MPa)、破断応力(MPa)、破断伸度(%)を測定した。
 実施例8~12及び比較例4~8については、上記シートを切り出すことにより、多目的試験片A1型を作製し、実施例13~18及び比較例9~15については、上述の射出成形機で作製した多目的試験片A1型を用い、JIS K7161-1(2014年)に準じて、インストロン3345(インストロン社製)を用いて、引張速度50mm/minにて、引張弾性率(MPa)、引張強さ(MPa)、引張破壊ひずみ(%)を測定した。
(4)硬度の測定
 JIS K6253-3(2012年)に準じて、タイプDデュロメーター(高分子計器株式会社製)を用いて硬度を測定した。
(5)メルトフローレート(MFR)の測定
 JIS K7210(2014年)に準じて、温度230℃、荷重21Nの条件で、メルトインデクサ(株式会社立山科学ハイテクノロジーズ製MELT INDEXER L241)を用いて、各樹脂組成物のMFRを測定した。
(6)モルフォロジーの観察1
 実施例4、比較例2、3で得られた樹脂組成物を用いて上記の手順でシートを作製して試験片とした。そして、試験片の断面のモルフォロジーを、原子間力顕微鏡(AFM)を用いて観察した。
 なお、観察に当たっては、ウルトラミクロトーム(Leica Microsystems社製Leica EM FC7)を用いて試験片の断面出しを行った。そして、AFM(株式会社島津製作所製SPM走査型プローブ顕微鏡SPM-0700)を用いて上記試験片の断面の観察を行った。
(7)モルフォロジーの観察2
 実施例8及び比較例4~6で得られた樹脂組成物を用いて上記の手順でシートを作製して試験片とした。そして、この試験片の断面のモルフォロジーを、走査電子顕微鏡(SEM)で観察した。
 なお、観察に当たっては、ウルトラミクロトーム(Leica Microsystems社製Leica EM FC7)を用いて試験片の断面出しを行い、四酸化ルテニウムの0.5%水溶液により染色し、白金で蒸着処理した。そして、この処理が施された断面を、SEM(日本電子株式会社製JSM-6510)により観察した。
(8)モルフォロジーの観察3
 実施例8、11及び比較例4、5で得られた樹脂組成物を用いて上記の手順でシートを作製して試験片とした。そして、この試験片の断面のモルフォロジーを、走査電子顕微鏡(TEM)で観察した。
 なお、観察に当たっては、ウルトラミクロトーム(Leica Microsystems社製Leica EM FC7)を用いて試験片を薄膜状に切削し、四酸化ルテニウムの0.5%水溶液により染色した。そして、この染色が施された断面を、TEM(株式会社日立ハイテク製HT7700)により観察した。
(9)耐衝撃性
 実施例8~12及び比較例4~8については、上述した樹脂組成物のシートを切り出すことにより試験片(厚さ4mm、長さ80mm、幅10mm(ノッチ加工後の残り幅8mm))を作製した。実施例13~18及び比較例9~15については、多目的試験片A1型の両端を切削して試験片(厚さ4mm、長さ80mm、幅10mm(ノッチ加工後の残り幅8mm))とした。そして、JIS K7111-1:2012に準じて、デジタル衝撃試験機 IT型((株)東洋精機製作所製)を使用して、ハンマー荷重を2Jとし、23℃におけるシャルピー衝撃値を測定して耐衝撃性(kJ/m)を評価した。
(10)動的粘弾性測定
 JIS K 7244-4(1999年)に従って測定を行った。具体的には、実施例8~18及び比較例4~15について上記試験片を用いて、「DMA242」(NETZSCH社製)を用いて、周波数10Hzの条件で-100℃から+150℃まで3℃/分で昇温して測定することにより、0~50℃におけるtanδのピーク温度及びピーク強度を測定した。tanδのピーク強度の値が大きいほど、制振性に優れることを示す。
[実施例1~7][比較例1~3]
 表3に示す配合で、Brabender社製ミキサーを備えた小型トルク検出モーターユニット(Brabender社製「プラストグラフ(登録商標)EC」)を用いて、温度230℃、スクリュー回転数100rpmの条件下で3分間溶融混練することにより、第1の樹脂組成物(D1)として、実施例1~7の樹脂組成物を作製した。また、同様の手順で、比較例1~3の樹脂組成物を作製した。
 各樹脂組成物を作製するのに用いた各成分の種類及び使用量と、測定結果とを以下の表3に示す。また、実施例4の組成物のAFM位相差像を図1(a)に示し、比較例2、3のAFM位相差像を図1(b)、図1(c)にそれぞれ示す。
 各樹脂組成物の作製に用いた成分は以下のとおりである。
(変性水素添加物(A))
・変性水素添加物Y-2、Y-3、Y-4、Y-5、Y-6
(ブロック共重合体の水素添加物)
・水素添加物Y-1
(ポリオレフィン系樹脂(B))
・ランダムポリプロピレン(株式会社プライムポリマー製プライムポリプロJ226T、メルトインデックス(MI)=20)
(酸化防止剤)
・フェノール系酸化防止剤アデカスタブAO-60(株式会社ADEKA製)
Figure JPOXMLDOC01-appb-T000005
 表3から明らかなように、実施例1~7の樹脂組成物は、アルミニウム及びステンレスに対して高い接着性を示すことが判る。
 また、実施例4と、比較例2、3とを比較すると、まず、表3から明らかなように、実施例4の樹脂組成物はMFRが大きく、高い流動性を有することが判る。そして、図1(a)~図1(c)から明らかなように、実施例4の樹脂組成物は、数nm程度の幅の細かい共連続構造が形成されているのに対して、比較例2、3の樹脂組成物では、共連続構造の幅が1μm~数μm程度であり、実施例4の樹脂組成物の共連続構造よりも粗いことが判る。
 これらから、重合体ブロック(A-2)が特定範囲のビニル結合量である変性水素添加物(A)を用いることにより、樹脂組成物(D1)中に、細かい共連続構造が形成され、引張弾性率を低下させてポリオレフィン系樹脂(B)を柔軟化させていること、及び、樹脂組成物(D1)に高い流動性が付与され、結果的に、被接着体である金属に対して高い接着性を示していることが判る。
[実施例8~12][比較例4~8]
 表4に示す配合で、Brabender社製ミキサーを備えた小型トルク検出モーターユニット(Brabender社製「プラストグラフ(登録商標)EC」)を用い、温度230℃、スクリュー回転数100rpmの条件下で3分間溶融混練することにより、第2の樹脂組成物(D2)として、実施例8~12の樹脂組成物を作製した。また、同様の手順で、比較例4~8の樹脂組成物を作製した。
 各樹脂組成物を作製するのに用いた各成分の種類及び使用量と、測定結果とを以下の表4に示す。また、粘弾性測定の結果を図5に示す。また、実施例8の拡大断面SEM写真を図3(a)に示し、比較例4~6の拡大断面SEM写真を図3(b)~図3(d)にそれぞれ示す。また、実施例8及び実施例11の拡大断面TEM写真を図4(a)及び図4(b)にそれぞれ示し、比較例4及び比較例5の拡大断面TEM写真を図4(c)及び図4(d)にそれぞれ示す。
 各該樹脂組成物の作製に用いた成分は以下のとおりである。
(変性水素添加物(A))
・変性水素添加物Y-2、Y-3、Y-4、Y-5、Y-6
(ポリオレフィン系樹脂(B))
・ランダムポリプロピレン(株式会社プライムポリマー製プライムポリプロF327、MI=7)
(極性樹脂(C))
・ポリアミド6(宇部興産株式会社製UBE Nylon 1013B)
(無水マレイン酸変性ポリプロピレン)
・三井化学株式会社製ADMER QE840
(無水マレイン酸変性エチレンαオレフィン系共重合体)
・三井化学株式会社製Tafmer MH5020
(酸化防止剤)
・フェノール系酸化防止剤アデカスタブAO-60(株式会社ADEKA製)
Figure JPOXMLDOC01-appb-T000006
 表4に示されるように、実施例8~12の樹脂組成物は引張破壊ひずみがいずれも比較例よりも大きく、特に実施例8~11の樹脂組成物の引張破壊ひずみが比較例に比べて非常に大きいことが判る。また、実施例8、11の樹脂組成物と、変性水素添加物を含まない樹脂組成物である比較例4、及び、ビニル結合量が小さい変性水素化合物を含む樹脂組成物である比較例5とを比較すると、前者のシャルピー衝撃値が後者のシャルピー衝撃値以上であることから、実施例の樹脂組成物は耐衝撃性を高めやすいことが判る。さらに、図3(a)から明らかなように、実施例8の樹脂組成物においては、ポリオレフィン系樹脂(B)であるランダムポリプロピレン中に、極性樹脂(C)であるポリアミド樹脂が数十~数百nm程度の細かい径で分散して存在していることが判る。また、図4(a)及び図4(b)から明らかなように、実施例11の樹脂組成物においても、ドメインが実施例8と同様の海島構造が形成されていることが判る。これらのことから、実施例8~12の樹脂組成物においては、極性樹脂(C)がポリオレフィン系樹脂(B)に良好に相容していることが理解できる。
 また、表4及び図5から明らかなように、実施例8~10の樹脂組成物は、0~50℃の温度範囲に高いtanδピーク強度を有し、この温度範囲で良好な制振性を示すことが理解できる。
 これに対して、比較例4~6の樹脂組成物においては、極性樹脂(C)の分散に偏りがあり、その分散径も実施例6~8に比べて非常に大きいことが判る(図3(b)~図3(d)参照)。そして、図4(c)に示されるように、比較例4の樹脂組成物においては、ポリオレフィン系樹脂(B)と極性樹脂であるポリアミド樹脂との成形時の収縮率の違いを反映して、ドメインの周囲にボイドが形成され、かつドメインを起点にしてポリオレフィン系樹脂(B)のマトリクス中にクラックが発生していることが判る。また、図4(d)に示されるように、比較例5の樹脂組成物においては、分散体が多数凝集して大きな凝集体を形成していることが判る。また、表4に示されるように、比較例4~8の樹脂組成物においては、引張破壊ひずみが実施例8~12の樹脂組成物に比べて低いことが分る。特に、変性水素添加物を用いていない比較例4では、引張破壊ひずみが著しく低く、極性樹脂(C)とポリオレフィン系樹脂(B)との相容性が劣っていることが判る。また、実施例8~10は比較例5、6に比べて高い引張強さを有している。これは、実施例8~10の樹脂組成物に含まれる樹脂成分の相溶性が良好なため、ポリプロピレンとポリアミドの界面強度が向上することによるものと推測される。
[実施例13~18][比較例9~15]
 表5に示す配合で、二軸押出機(Coperion社製ZSK-26mc)を用い、表5に示す温度で、スクリュー回転数300rpmの条件下で溶融混練し、10kg/hの速度で吐出することにより、第2の樹脂組成物(D2)として、実施例13~18の樹脂組成物を作製した。また、同様の手順で、比較例9~15の樹脂組成物を作製した。
 各樹脂組成物を作製するのに用いた各成分の種類及び使用量と、測定結果とを以下の表5に示す。
 各該樹脂組成物の作製に用いた成分は以下のとおりである。
(変性水素添加物(A))
・変性水素添加物Y-3、Y-6、Y-7
(ポリオレフィン系樹脂(B))
・ランダムポリプロピレン(株式会社プライムポリマー製プライムポリプロF327、MI=7)
・ホモポリプロピレン(株式会社プライムポリマー製プライムポリプロJ106G、MI=15)
(極性樹脂(C))
・ポリアミド6(宇部興産株式会社製UBE Nylon 1013B)
・ポリブチレンテレフタレート(東レ株式会社製トレコン1401)
・ポリカーボネート(三菱エンジニアリングプラスチックス株式会社製ユーピロンS3000)
・ポリ乳酸(NatureWorks社製Ingeo 3001D)
(無水マレイン酸変性ポリプロピレン)・三井化学株式会社製ADMER QE840
(酸化防止剤)
・フェノール系酸化防止剤アデカスタブAO-60(株式会社ADEKA製)
Figure JPOXMLDOC01-appb-T000007
 表5に示されるように、実施例13~18の樹脂組成物は、重合体ブロック(A-2)のビニル結合量が50~99モル%である変性水素添加物を用いていない比較例9~15の樹脂組成物に比べて、tanδのピーク強度が大きく、制振性に優れていることが理解できる。
 また、表5に示されるように、実施例14~17の樹脂組成物は、実施例13、18の樹脂組成物に比べて、引張弾性率が高く、より良好な機械強度を有していることが判る。特に、実施例14、15、17の樹脂組成物は引張弾性率が特に高く、かつ引張強さも高いことから、より優れた機械強度を有していることが判る。
 また、実施例13、16、18の樹脂組成物は、実施例14、15、17の樹脂組成物に比べて、引張破壊ひずみが大きく、優れた伸び特性を有していることが判る。また、実施例17の樹脂組成物は、比較例9~15の樹脂組成物及び実施例13~16、18の樹脂組成物に比べて、シャルピー衝撃値が格段に大きく、特に優れた耐衝撃性を有していることが判る。
 本発明の第1の樹脂組成物及び接着剤は、各種の材料対して良好な接着性を示すため、自動車、電気製品、建材等の幅広い分野に用いることができる。また、本発明の第2の樹脂組成物は、幅広い温度範囲での高い制振性等の良好な力学特性を有し、高い伸び特性を有することから、ペレット、ベール、制振材、遮音材、靴底材料、床材、接着剤、粘着剤、積層体、繊維、及び、自動車部品等に利用することが可能である。
 また、本発明の相容化剤は、高い相容化性能を有しているため、食品包装容器のリサイクル等の分野に利用することが可能である。
10:ドメイン
10a:コア部分
10b:シェル部分
20:マトリクス

 

Claims (18)

  1.  芳香族ビニル化合物に由来する構造単位を有する重合体ブロック(A-1)及び共役ジエン化合物に由来する構造単位を有する重合体ブロック(A-2)を含むブロック共重合体の変性水素添加物(A)と、ポリオレフィン系樹脂(B)とを含み、
     変性水素添加物(A)は、アルコキシシリル基、カルボキシ基、アミノ基、ヒドロキシ基、エポキシ基、及び酸無水物由来の基から選ばれる1種又は2種以上の官能基を有し、
     重合体ブロック(A-2)のビニル結合量が50~99モル%である、樹脂組成物。
  2.  変性水素添加物(A)のガラス転移温度が-30~+30℃である、請求項1に記載の樹脂組成物。
  3.  ポリオレフィン系樹脂(B)が、ポリプロピレン、ポリエチレン、ポリメチルペンテン、エチレン酢酸ビニル共重合体、及び、α-オレフィンの単独重合体又は共重合体、プロピレン及び/又はエチレンとα-オレフィンとの共重合体からなる群から選択される少なくとも1種の樹脂である、請求項1又は2に記載の樹脂組成物。
  4.  変性水素添加物(A)中の重合体ブロック(A-1)の含有量が、4~50質量%である、請求項1~3のいずれか1項に記載の樹脂組成物。
  5.  変性水素添加物(A)の重量平均分子量が50,000~400,000である、請求項1~4のいずれか1項に記載の樹脂組成物。
  6.  重合体ブロック(A-2)の水素添加率が50~99モル%である、請求項1~5のいずれか1項に記載の樹脂組成物。
  7.  変性水素添加物(A)における前記官能基の含有量が、変性水素添加物(A)に対して、0.1~5.0phrである、請求項1~6のいずれか1項に記載の樹脂組成物。
  8.  JIS K7210(2014年)に従って、温度230℃、荷重21Nの条件で測定した、変性水素添加物(A)のメルトフローレートが、1~30g/10minである、請求項1~7のいずれか1項に記載の樹脂組成物。
  9.  変性水素添加物(A)の質量をAa、ポリオレフィン系樹脂(B)の質量をBaとするとき、Aa/Baが95/5~5/95である、請求項1~8のいずれか1項に記載の樹脂組成物。
  10.  請求項1~9のいずれか1項に記載の樹脂組成物を含む、接着剤。
  11.  極性樹脂(C)を更に含む、請求項1~8のいずれか1項に記載の樹脂組成物。
  12.  前記樹脂組成物の全質量に対して、極性樹脂(C)を10~90質量%含む、請求項11に記載の樹脂組成物。
  13.  ポリオレフィン系樹脂(B)及び極性樹脂(C)のうち一方のマトリクス中に、平均径が500nm以下の、ポリオレフィン系樹脂(B)及び極性樹脂(C)のうち他方を含むドメインが分散している、請求項11又は12に記載の樹脂組成物。
  14.  極性樹脂(C)が、ポリアミド樹脂、ポリビニルアルコール系樹脂、ポリエステル系樹脂、及び、ポリカーボネート樹脂からなる群より選択される少なくとも1種の樹脂である、請求項11~13のいずれか1項に記載の樹脂組成物。
  15.  JIS K7244-10(2005年)に準拠して、歪み量0.1%、周波数10Hz、測定温度-100~+150℃、昇温速度3℃/分の条件で測定した損失正接(tanδ)の、0~50℃におけるピーク強度が0.1~2.0である、請求項11~14のいずれか1項に記載の樹脂組成物。
  16.  前記樹脂組成物中の、変性水素添加物(A)の質量をAb、ポリオレフィン系樹脂(B)の質量をBbとするとき、Ab/Bbが30/70~1/99である、請求項11~15のいずれか1項に記載の樹脂組成物。
  17.  前記樹脂組成物中の、ポリオレフィン系樹脂(B)の質量をBb、極性樹脂(C)の質量をCとするとき、Bb/Cが90/10~10/90である、請求項11~16のいずれか1項に記載の樹脂組成物。
  18.  極性樹脂と非極性樹脂とを相容化させるための相容化剤であって、
     芳香族ビニル化合物に由来する構造単位を有する重合体ブロック(A-1)及び共役ジエン化合物に由来する構造単位を有する重合体ブロック(A-2)を含むブロック共重合体の変性水素添加物(A)を含み、
     変性水素添加物(A)は、アルコキシシリル基、カルボキシ基、アミノ基、ヒドロキシ基、エポキシ基、及び酸無水物由来の基から選ばれる1種又は2種以上の官能基を有し、
     重合体ブロック(A-2)のビニル結合量が50~99モル%である、相容化剤。

     
PCT/JP2022/000074 2021-01-08 2022-01-05 樹脂組成物、接着剤、及び、相容化剤 WO2022149574A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022574055A JPWO2022149574A1 (ja) 2021-01-08 2022-01-05
CN202280007529.9A CN116438207A (zh) 2021-01-08 2022-01-05 树脂组合物、粘接剂和相容剂
EP22736742.2A EP4276148A1 (en) 2021-01-08 2022-01-05 Resin composition, adhesive agent, and compatibilizer
US18/195,061 US20230272205A1 (en) 2021-01-08 2023-05-09 Resin composition, adhesive agent, and compatibilizer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021002403 2021-01-08
JP2021-002403 2021-01-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/195,061 Continuation-In-Part US20230272205A1 (en) 2021-01-08 2023-05-09 Resin composition, adhesive agent, and compatibilizer

Publications (1)

Publication Number Publication Date
WO2022149574A1 true WO2022149574A1 (ja) 2022-07-14

Family

ID=82357967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/000074 WO2022149574A1 (ja) 2021-01-08 2022-01-05 樹脂組成物、接着剤、及び、相容化剤

Country Status (6)

Country Link
US (1) US20230272205A1 (ja)
EP (1) EP4276148A1 (ja)
JP (1) JPWO2022149574A1 (ja)
CN (1) CN116438207A (ja)
TW (1) TW202237730A (ja)
WO (1) WO2022149574A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024024756A1 (ja) * 2022-07-25 2024-02-01 株式会社クラレ 樹脂組成物、成形体、積層構造体、及び積層構造体の製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63254119A (ja) * 1988-01-21 1988-10-20 Asahi Chem Ind Co Ltd 変性ブロツク共重合体
JPH0337287A (ja) * 1989-07-04 1991-02-18 Chisso Corp エマルジョン型接着剤組成物およびその製造方法
JPH10279774A (ja) * 1997-02-10 1998-10-20 Mitsubishi Chem Corp 接着用樹脂組成物、積層体および延伸フィルム
JP2005015528A (ja) * 2003-06-23 2005-01-20 Asahi Kasei Chemicals Corp 熱可塑性樹脂成形体
JP2011132298A (ja) 2009-12-22 2011-07-07 Sumitomo Rubber Ind Ltd 変性共重合体、それを用いたゴム組成物および空気入りタイヤ
JP2020189917A (ja) * 2019-05-22 2020-11-26 株式会社クラレ エチレン−ビニルアルコール共重合体を含む樹脂組成物、成形体及び多層構造体
JP2021181561A (ja) * 2020-05-15 2021-11-25 旭化成株式会社 変性共役ジエン系重合体、変性共役ジエン系重合体組成物、多層体、多層体の製造方法、及び成形体

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105899603B (zh) * 2013-12-11 2018-09-07 株式会社可乐丽 树脂组合物、成形体和树脂改质剂
US11015046B2 (en) * 2017-07-31 2021-05-25 Kuraray Co., Ltd. Thermoplastic resin composition, hot melt adhesive, automobile member, and hygienic material member
KR102637223B1 (ko) * 2018-05-31 2024-02-15 주식회사 쿠라레 변성 수소 첨가물 및 그 제조 방법, 수지 조성물, 그리고 이들의 각종 용도

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63254119A (ja) * 1988-01-21 1988-10-20 Asahi Chem Ind Co Ltd 変性ブロツク共重合体
JPH0337287A (ja) * 1989-07-04 1991-02-18 Chisso Corp エマルジョン型接着剤組成物およびその製造方法
JPH10279774A (ja) * 1997-02-10 1998-10-20 Mitsubishi Chem Corp 接着用樹脂組成物、積層体および延伸フィルム
JP2005015528A (ja) * 2003-06-23 2005-01-20 Asahi Kasei Chemicals Corp 熱可塑性樹脂成形体
JP2011132298A (ja) 2009-12-22 2011-07-07 Sumitomo Rubber Ind Ltd 変性共重合体、それを用いたゴム組成物および空気入りタイヤ
JP2020189917A (ja) * 2019-05-22 2020-11-26 株式会社クラレ エチレン−ビニルアルコール共重合体を含む樹脂組成物、成形体及び多層構造体
JP2021181561A (ja) * 2020-05-15 2021-11-25 旭化成株式会社 変性共役ジエン系重合体、変性共役ジエン系重合体組成物、多層体、多層体の製造方法、及び成形体

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024024756A1 (ja) * 2022-07-25 2024-02-01 株式会社クラレ 樹脂組成物、成形体、積層構造体、及び積層構造体の製造方法

Also Published As

Publication number Publication date
US20230272205A1 (en) 2023-08-31
TW202237730A (zh) 2022-10-01
EP4276148A1 (en) 2023-11-15
JPWO2022149574A1 (ja) 2022-07-14
CN116438207A (zh) 2023-07-14

Similar Documents

Publication Publication Date Title
JP6751211B2 (ja) ブロック共重合体の水素添加物
JP7454566B2 (ja) 樹脂組成物、樹脂組成物の製造方法、及び、成形品
JP7194179B2 (ja) 変性水素添加物及びその製造方法、樹脂組成物、並びにこれらの各種用途
CN110945034B (zh) 嵌段共聚物的氢化物、树脂组合物和它们的各种用途
US11492438B2 (en) Block copolymer hydrogenate, resin composition, and various applications thereof
WO2022149574A1 (ja) 樹脂組成物、接着剤、及び、相容化剤
WO2021235457A1 (ja) 樹脂組成物、樹脂改質剤、分散体組成物、自動車用部材、及び、樹脂組成物の製造方法
JP7364672B2 (ja) 水添ブロック共重合体、樹脂組成物、及び、それらの各種用途
JP7430848B2 (ja) 変性水添ブロック共重合体及び樹脂組成物
TWI853936B (zh) 樹脂組成物、樹脂組成物之製造方法、及成形品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22736742

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022574055

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022736742

Country of ref document: EP

Effective date: 20230808