[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022149556A1 - Imaging device and electronic apparatus - Google Patents

Imaging device and electronic apparatus Download PDF

Info

Publication number
WO2022149556A1
WO2022149556A1 PCT/JP2021/048905 JP2021048905W WO2022149556A1 WO 2022149556 A1 WO2022149556 A1 WO 2022149556A1 JP 2021048905 W JP2021048905 W JP 2021048905W WO 2022149556 A1 WO2022149556 A1 WO 2022149556A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
transistor
image pickup
pickup apparatus
pixels
Prior art date
Application number
PCT/JP2021/048905
Other languages
French (fr)
Japanese (ja)
Inventor
裕一 山口
祐哉 北林
奈津子 大谷
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Publication of WO2022149556A1 publication Critical patent/WO2022149556A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components

Definitions

  • the embodiments of the present disclosure relate to an image pickup apparatus and an electronic device.
  • An image pickup device in which each pixel is separated by a deep trench (Full Trench Isolation) in order to prevent color mixing due to long wavelength light such as red light is known.
  • This image pickup apparatus is provided with a photoelectric conversion unit, a floating diffusion (FD), a transfer gate (TG), and a pixel transistor in each pixel (see Patent Document 1).
  • the present disclosure provides an image pickup device capable of suppressing a decrease in quantum efficiency and an electronic device using this image pickup device.
  • the image pickup apparatus captures the first pixel that photoelectrically converts the light of the first wavelength band, the second pixel that photoelectrically converts the light of the second wavelength band, and the light of the third wavelength band.
  • a pixel array unit arranged in a matrix with a pixel group including a third pixel to be photoelectrically converted as a unit, and at least one pixel provided corresponding to the pixel group and excluding the first pixel of the corresponding pixel group. It includes a pixel transistor arranged in a region including the pixel transistor.
  • the first to third wavelength bands are wavelength bands corresponding to red, green, and blue light, respectively, and the first to third pixels are red pixels and green pixels, respectively. It may be a blue pixel.
  • the pixel transistor may include a reset transistor, an amplification transistor, and a selection transistor.
  • the pixel transistor may be arranged in the region of the third pixel excluding the first pixel and the second pixel of the corresponding pixel group.
  • the pixel group may include a floating diffusion shared by a plurality of pixels included in the pixel group.
  • the pixel transistor may be arranged in the region of the blue pixel and the region of the green pixel.
  • the pixel transistor may be arranged between the region of the blue pixel and the region of the green pixel.
  • the image pickup apparatus may include a pixel separation portion extending in the depth direction of the pixels along the pixel boundary to separate the pixels included in the pixel group.
  • the pixel group includes two pixels adjacent to each other in the first direction and two pixels adjacent to each other in the second direction intersecting the first direction, and these four pixels are included.
  • the red pixel, the green pixel, and the blue pixel may be included.
  • the four pixels may include two green pixels.
  • one pixel transistor is shared by two pixel groups arranged adjacent to the first direction or the second direction, and the first portion of the one pixel transistor is shared. May be arranged in one of the two pixel groups, and the second portion of the one pixel transistor may be arranged in the other of the two pixel groups.
  • the first portion is arranged in the region of the blue pixel of one of the two pixel groups, and the second portion is the blue color of the other of the two pixel groups. It may be arranged in the area of the pixel.
  • the two pixel groups are arranged adjacent to the second direction, and the first portion extends between the two pixel groups and in the first direction.
  • the second portion may be arranged along the region at the other end of the two pixel groups in the second direction and along the region extending in the first direction.
  • the two pixel groups are arranged adjacent to each other in the second direction, and the first portion is an end portion of one of the two pixel groups in the first direction. And is arranged along the region extending in the second direction, the second portion is at the other end of the two pixel groups in the first direction and along the region extending in the second direction. May be arranged.
  • the pixel transistor includes a reset transistor, an amplification transistor, and a selection transistor, and the amplification transistor and the selection transistor include the blue pixel of one of the two pixel groups.
  • the reset transistor may be arranged in a region, and the reset transistor may be arranged in a region including the blue pixel of the other of the two pixel groups.
  • the pixel transistor includes a reset transistor, an amplification transistor, and a selection transistor, and the amplification transistor may be arranged in both the first portion and the second portion. ..
  • the pixel transistor includes a conversion efficiency switching transistor that switches the conversion efficiency of photoelectric conversion, and the conversion efficiency switching transistor is a region of the blue pixel of one or the other of the two pixel groups. It may be arranged in.
  • the first floating diffusion shared by a plurality of pixels included in one of the two pixel groups and the second floating diffusion shared by a plurality of pixels included in the other of the two pixel groups may be equipped with floating diffusion.
  • the electronic device includes an image pickup device and a signal processing unit that performs signal processing based on the pixel signal captured by the image pickup device, and the image pickup device photoelectrically emits light in the first wavelength band.
  • Pixels arranged in a matrix in units of a pixel group including a first pixel to be converted, a second pixel for photoelectric conversion of light in the second wavelength band, and a third pixel for photoelectric conversion of light in the third wavelength band.
  • Array part and A pixel transistor provided corresponding to the pixel group and arranged in a region including at least one pixel excluding the first pixel of the corresponding pixel group. It is equipped with.
  • the plan view which shows the structure of the pixel group in 1st Embodiment. 3A is a cross-sectional view taken along the cutting line AA shown in FIG. 2, and FIG. 3B is a cross-sectional view taken along the cutting line BB shown in FIG.
  • FIG. 4 is a cross-sectional view of a pixel group cut along the cutting line XX shown in FIG.
  • FIG. 15 is a cross-sectional view of a pixel group cut along the cutting line YY shown in FIG.
  • FIG. 18 is a plan view of the pixel group of the image pickup apparatus of the sixth embodiment as viewed from the front side.
  • 19A is a cross-sectional view taken along the cutting line AA shown in FIG. 18, and
  • FIG. 19B is a cross-sectional view taken along the cutting line BB shown in FIG.
  • FIG. 20 is a circuit diagram showing a pixel group of the sixth embodiment.
  • the block diagram which shows an example of the schematic structure of a vehicle control system. Explanatory drawing which shows an example of the installation position of the outside information detection unit and the image pickup unit.
  • FIG. 1 shows the overall configuration of the image pickup apparatus according to the first embodiment.
  • the image pickup device 250 of this embodiment is, for example, a back-illuminated image sensor 250, which includes a pixel area 251, a pixel drive line 252, a vertical signal line 253, a vertical drive unit 254, and a column processing unit 255. It includes a horizontal drive unit 256, a system control unit 257, a signal processing unit 258, and a memory unit 259. These are formed on a semiconductor substrate (chip) such as a silicon substrate (not shown).
  • a semiconductor substrate such as a silicon substrate (not shown).
  • the pixel region 251 is formed on a sensor chip made of a first semiconductor substrate, and the pixel drive line 252, the vertical signal line 253, the vertical drive unit 254, the column processing unit 255, the horizontal drive unit 256, the system control unit 257, and the signal processing.
  • a unit 258 and a memory unit 259 may be formed on a circuit chip made of a second semiconductor substrate, and these chips may be bonded together.
  • the pixel area 251 is a pixel array in which pixels are two-dimensionally arranged, and an optical signal is converted into an electric signal for imaging.
  • a pixel drive line 252 is provided for every two rows of a pixel, and a vertical signal line 253 is provided for every two columns.
  • the configuration of the pixels constituting the pixel region 251 will be described in detail later.
  • the vertical drive unit 254 is configured by a shift register, an address decoder, or the like, and pixel signals corresponding to the charges stored in each image sensor in the pixel area 251 are read out in order from the top in the order of odd-numbered columns and even-numbered columns. As described above, the drive signal is supplied to the pixel drive line 252.
  • the column processing unit 255 has a signal processing circuit for each of the two rows of pixels in the pixel area 251. Each signal processing circuit of the column processing unit 255 performs A / D conversion processing and correlated double sampling (CDS (Correlated Double Sampling)) for the pixel signal read from the corresponding pixel and supplied through the vertical signal line 253. ) Perform signal processing such as processing.
  • the column processing unit 255 temporarily holds the pixel signal after signal processing.
  • the horizontal drive unit 256 is composed of a shift register, an address decoder, etc., and sequentially selects the signal processing circuit of the column processing unit 255. As a result, the pixel signals signal-processed by each signal processing circuit of the column processing unit 255 are sequentially output to the signal processing unit 258.
  • the system control unit 257 is composed of a timing generator or the like that generates various timing signals, and controls the vertical drive unit 254, the column processing unit 255, and the horizontal drive unit 256 based on the various timing signals generated by the timing generator. do.
  • the signal processing unit 258 performs various signal processing on the pixel signal output from the column processing unit. At this time, the signal processing unit 258 stores the intermediate result of signal processing and the like in the memory unit 259 as necessary, and refers to the signal processing unit 258 at a necessary timing.
  • the signal processing unit 258 outputs the pixel signal after signal processing.
  • the memory unit 259 is composed of a DRAM (Dynamic Random Access Memory), a SRAM (Static Random Access Memory), or the like.
  • FIG. 2 is a plan view seen from the front surface side (opposite side to the back surface side) of the image pickup apparatus.
  • the pixel group 10 includes a red pixel 10R that converts light in the wavelength band corresponding to red (first wavelength band) into charge, and a green pixel that converts light in the wavelength band corresponding to green (second wavelength band) into charge. It includes 10G1 and 10G2, and a blue pixel 10B that converts light in a wavelength band corresponding to blue (third wavelength band) into a charge.
  • the red pixel 10R, the green pixel 10G1, 10G2, and the blue pixel 10B correspond to the first pixel, the second pixel, and the third pixel, respectively.
  • the red pixel 10R is arranged in the first row and the first column
  • the green pixel 10G1 is arranged in the first row and the second column
  • the green pixel 10G2 is arranged in the second row and the first column
  • the second row is arranged in the second row.
  • the blue pixel 10B is arranged in the second column of the row.
  • the sequence shown in FIG. 2 is called a Bayer sequence. It should be noted that each pixel may be a pixel corresponding to a color in a wavelength band other than red, green, and blue.
  • Deep trenches are provided between the red pixels 10R, the green pixels 10G1, 10G2, and the blue pixels 10B, and the elements are separated by the insulating films 20a, 20b, 20c, 20d, 20e, and 20f provided in these trenches. There is. That is, these trenches and the insulating film serve as pixel separation portions.
  • the trench is provided as an FTI (Full Trench Isolation) penetrating the semiconductor substrate.
  • the insulating film 20a is arranged in the left column direction of the red pixel 10R and the green pixel 10G2.
  • the insulating film 20b is arranged in the row direction between the red pixel 10R and the green pixel 10G1 and between the green pixel 10G2 and the blue pixel 10B.
  • the insulating film 20c is arranged in the right column direction of the green pixel 10G1 and the blue pixel 10B.
  • the insulating film 20d is arranged in the row direction on the upper side of the red pixel 10R and the green pixel 10G1.
  • the insulating film 20e is arranged in the row direction between the red pixel 10R and the green pixel 10G2 and between the green pixel 10G1 and the blue pixel 10B.
  • the insulating film 20f is arranged in the lower row direction of the green pixel 10G2 and the blue pixel 10B.
  • a P-type impurity region 25G1 having a triangular planar shape is arranged so as to connect to the insulating film 20e and the insulating film 20c.
  • This P-type impurity region 25G1 is used to connect the pixel region 251 on which the green pixel 10G1 is formed to the GND potential.
  • a P-type impurity region 25R having a triangular planar shape is arranged so as to connect to the insulating film 20e and the insulating film 20a.
  • This P-type impurity region 25R is used to connect the pixel region 251 on which the red pixel 10R is formed to the GND potential.
  • a P-type impurity region 25G2 having a triangular planar shape is arranged so as to connect to the insulating film 20e and the insulating film 20a.
  • the P-type impurity region 25G2 is used to connect the pixel region 251 on which the green pixel 10G2 is formed to the GND potential.
  • a P-type impurity region 25B having a triangular planar shape is arranged so as to connect to the insulating film 20e and the insulating film 20c.
  • the P-type impurity region 25B is used to connect the pixel region 251 on which the blue pixel 10B is formed to the GND potential.
  • the red pixel 10R, the green pixel 10G1, 10G2, and the blue pixel 10B each include a photoelectric conversion element (photodiode) PD, a transfer transistor TG, and a floating diffusion FD, respectively.
  • a pixel transistor is arranged in a pixel region other than the red pixel 10R.
  • the selection transistor SEL, the reset transistor RST, and the amplification transistor AMP are collectively referred to as a pixel transistor.
  • the reset transistor RST is arranged in the area of the green pixel 10G1
  • the selection transistor SEL is arranged in the area of the green pixel 10G1
  • the amplification transistor AMP is arranged in the area of the blue pixel 10B.
  • the pixel transistor is not arranged in the region of the red pixel 10R.
  • FIG. 3A shows a cross section of the pixel group cut along the cutting line AA shown in FIG. 2, and FIG. 3B shows a cross section cut along the cutting line BB shown in FIG.
  • the red pixel 10R, the green pixels 10G1, 10G2, and the blue pixel 10B each have a photoelectric conversion element PD formed in the semiconductor region 12.
  • the red pixel 10R is provided with a red filter 14R on the photoelectric conversion element PD, and a microlens 18 is provided above the red filter 14R.
  • the green pixel 10G2 is provided with a green filter 14G on the photoelectric conversion element PD, and a microlens 18 is provided above the green filter 14G (FIG. 3A).
  • the green pixel 10G1 is provided with a green filter 14G on the photoelectric conversion element PD, and a microlens 18 is provided above the green filter 14G.
  • the blue pixel 10B is provided with a blue filter 14B on the photoelectric conversion element PD, and a microlens 18 is provided above the blue filter 14B (FIG. 3B).
  • a set transistor SEL is provided below the photoelectric conversion element PD of the green pixel 10G2 via an insulating film 21 (FIG. 3A).
  • a reset transistor RST is provided below the photoelectric conversion element PD of the green pixel 10G1 via an insulating film 21, and an amplification transistor AMP is provided below the photoelectric conversion element PD of the blue pixel 10B via an insulating film 21. (Fig. 3B).
  • the pixel transistor since the pixel transistor is not provided in the region of the red pixel 10R, the signal charge photoelectrically converted at the deep position of the photoelectric conversion element PD is not absorbed by the pixel transistor, and the pixel. It is possible to suppress the decrease in quantum efficiency in the group. Further, since the pixel transistors SEL, RST, and AMP are respectively arranged below the photoelectric conversion element PD of the green pixels 10G1 and 10G2 and the blue pixel 10B via the insulating film 21, the size of the pixel transistor can be increased.
  • each photoelectric conversion element FD is connected to the floating diffusion FD via the transfer transistor TG.
  • This floating diffusion FD is connected to the power supply VDD via the reset transistor RST and is also connected to the gate of the amplification transistor AMP.
  • the drain is connected to the power supply VDD and the drain is connected to the source of the selection transistor SEL. That is, the amplification transistor AMP becomes a source follower amplifier.
  • the reading operation for the pixels configured in this way is as follows. At the stage when the exposure is completed, the signal charge is accumulated in the photoelectric conversion element PD, and the floating diffusion FD has the noise charge accumulated during the exposure period. At this time, by applying a reset pulse to the gate of the reset transistor RST of the pixel in the selected row, the noise charge is discharged from the floating diffusion FD and the floating diffusion FD is reset to the potential VDD. Further, when a row selection pulse is applied to the gate of the selection transistor SEL, the source follower amplifier AMP becomes conductive, and the reset floating diffusion FD potential is output from the source follower amplifier AMP. Subsequently, a read pulse is applied from the vertical drive unit 254 (FIG.
  • the signal charge of the photoelectric conversion element PD is transferred to the floating diffusion FD, and the potential of the floating diffusion FD decreases. .. Subsequently, the potential of the floating diffusion FD in which the signal charge is accumulated is output from the source follower amplifier AMP. Then, in the step, the difference between the reset output and the output due to the signal charge is obtained, for example, by correlated double sampling. In the final step, the signal charge in the floating diffusion FD is reset to complete the read operation.
  • the pixel transistors are provided in the regions of the color pixels 10G1, 10G2, and 10B other than the red pixel 10R, the decrease in quantum efficiency can be suppressed. .. In addition, the size of the pixel transistor in the pixel group can be increased.
  • FIG. 5 is a plan view of the pixel arrangement of the image pickup apparatus of the second embodiment and the wiring of the selection transistor as viewed from the front side.
  • the image pickup device of the second embodiment has the same arrangement of color pixels in the pixel group as the image pickup device of the first embodiment shown in FIG. 2, but the arrangement and wiring of the pixel transistors are different. Have. That is, the image pickup apparatus of the second embodiment has a configuration in which a pixel transistor is shared with respect to two pixel groups 10 1 and 102 arranged in the column direction. Each color pixel of the two pixel groups 10 1 and 10 2 is separated by the insulating film 20.
  • the amplification transistor AMP and the selection transistor SEL are arranged in the region of the blue pixel 10B of the first -stage pixel group 101, and the reset transistor RST and the dummy transistor DMY are arranged in the region of the blue pixel 10B of the second -stage pixel group 102. It has an arranged configuration.
  • the dummy transistor DMY has the same structure as the selection transistor SEL, the amplification transistor AMP, and the reset transistor RST, but is not wired and does not function as a transistor.
  • the circuit diagram of the pixel groups 101 and 102 arranged in this way is shown in FIG.
  • the wiring for each element in this circuit diagram is shown by a thick solid line in FIG. These wirings are mainly arranged on the insulating film between the red pixel 10R and the green pixel 10G1 and the insulating film between the green pixel 10G2 and the blue pixel 10B.
  • the pixel transistor is not arranged in the region of the red pixel 10R, it is possible to suppress the decrease in quantum efficiency.
  • FIG. 7 is a plan view of the pixel arrangement of the image pickup apparatus of the first modification and the wiring of the selection transistor as viewed from the front side
  • FIG. 8 is a circuit diagram of the pixel group of the first modification.
  • the image pickup apparatus of this first modification has a configuration in which the dummy transistor DMY arranged in the region of the blue pixel 10B of the pixel group 102 is replaced with the amplification transistor AMP2 in the image pickup apparatus of the second embodiment shown in FIG. ing.
  • the amplification transistor AMP arranged in the region of the blue pixel 10B of the pixel group 101 shown in FIG. 5 becomes the amplification transistor AMP1, and the amplification transistor AMP1 and the amplification transistor AMP2 have a common gate and are connected in parallel (FIG. 7). , FIG. 8). With such a configuration, the transconductance Gm of the amplification transistor can be increased.
  • the pixel transistor is not arranged in the region of the red pixel 10R as in the second embodiment, the decrease in quantum efficiency can be suppressed.
  • FIG. 9 is a plan view of the pixel arrangement of the image pickup apparatus of the second modification and the wiring of the selection transistor as viewed from the front side
  • FIG. 10 is a circuit diagram of the pixel group of the second modification.
  • the image pickup device of this second modification replaces the dummy transistor DMY arranged in the region of the blue pixel 10B of the pixel group 102 with the conversion efficiency changeover switch FDG (FIG. 5). 9).
  • the sub-floating diffusion Sub-FD is also referred to as a capacitance addition section.
  • the conversion efficiency selector switch FDG is arranged in series between the reset transistor RST and the floating diffusion FD.
  • the sub-floating diffusion Sub-FD is arranged between the connection node of the reset transistor RST and the conversion efficiency selector switch FDG and the ground node (FIG. 10). With this configuration, the conversion efficiency of photoelectric conversion can be switched.
  • the conversion efficiency selector switch FDG is used when the conversion efficiency of the pixels is in the low mode.
  • this conversion efficiency selector switch FDG is on, a parasitic capacitance including the reset transistor RST is added to the sub-floating diffusion Sub-FD, so that the conversion efficiency is significantly improved as compared with the case of parallel connection shown in FIG. 11 described later. Can be lowered.
  • FIG. 11 is a circuit diagram of the pixel group of the image pickup apparatus of the third modification.
  • This third modification has the same configuration in the image pickup apparatus of the second modification except that the connection of the conversion efficiency selector switch FDG and the sub-floating diffusion Sub-FD is different.
  • the conversion efficiency selector switch FDG and the sub-floating diffusion Sub-FD are connected in parallel with the floating diffusion FD. With this configuration, it has a conversion efficiency switching function.
  • FIG. 12 is a plan view of the pixel group of the image pickup apparatus of the third embodiment as viewed from the front side.
  • the image pickup apparatus of the third embodiment is the image pickup apparatus of the second embodiment shown in FIG. Is physically shared.
  • physically sharing means that it may be directly connected to the floating diffusion FD or may be connected via wiring.
  • the shared floating diffusion FD is arranged in a region including a semiconductor region 12 in which the red pixel 10R, the green pixels 10G1, 10G2, and the blue pixel 10B of the pixel group 10 1 are in common contact (for example, a fourth described later). 14 and 15 of the embodiments).
  • the floating diffusion FD is connected to each transfer gate TG of the red pixel 10R, the green pixel 10G1, 10G2, and the blue pixel 10B.
  • the trench is provided so as not to penetrate the semiconductor region.
  • the floating diffusion FD of the red pixel 10R, the green pixels 10G1, 10G2, and the blue pixel 10B of the second -stage pixel group 102 is shared.
  • the shared floating diffusion FD is arranged in a region including a semiconductor portion to which the red pixel 10R, the green pixels 10G1 , 10G2, and the blue pixel 10B of the pixel group 102 are commonly connected (for example, a fourth described later). 14 and 15 of the embodiments).
  • the floating diffusion FD is connected to each transfer gate TG of the red pixel 10R, the green pixel 10G1, 10G2, and the blue pixel 10B.
  • the amplification transistor AMP and the selection transistor SEL have the blue pixel 10B of the first -stage pixel group 101 and the second -stage pixel group 102. It is arranged on the insulating film 20A between the green pixel 10G1 and the green pixel 10G1.
  • the insulating film 20A is included in the region including the blue pixel 10B of the first -stage pixel group 101 and is included in the region including the green pixel 10G1 of the second -stage pixel group 102.
  • the amplification transistor AMP and the selection transistor SEL are arranged in the region including the blue pixel 10B of the first -stage pixel group 101 and the region including the green pixel 10G1 of the second -stage pixel group 102.
  • the reset transistor RST and the dummy transistor DMY have a blue pixel 10B of the second -stage pixel group 101 and a green pixel of the third-stage pixel group not shown in the figure. It is arranged on the insulating film 20B between them.
  • the insulating films of the blue pixels 10B arranged in the row direction they are arranged on the insulating film 20B at a position far from the green pixels 10G1 of the pixel group 101. Since the insulating film 20B is included in the region including the blue pixel 10B of the second -stage pixel group 101, the reset transistor RST and the dummy transistor DMY are included in the region including the blue pixel 10B of the second -stage pixel group 101. Be placed.
  • the shared floating diffusion FDs of the first-stage pixel group 10 1 and the second-stage pixel group 10 2 are wired to the gate of the amplification transistor AMP and the drain of the reset transistor RST, respectively (indicated by a thick solid line in FIG. 12). Be connected.
  • the pixel transistor is not arranged in the region of the red pixel 10R as in the second embodiment, the decrease in quantum efficiency can be suppressed.
  • FIG. 13 is a plan view of the pixel group of the image pickup apparatus of the first modification as viewed from the front side.
  • the image pickup apparatus of this first modification has the amplification transistor AMP, the selection transistor SEL, the reset transistor RST, and the dummy transistor DMY on the insulating film in the column direction (longitudinal direction). Be placed.
  • the amplification transistor AMP and the selection transistor SEL are the insulating film on the side far from the green pixel 10G2 of the pixel group 101 among the insulating films in the column direction (vertical direction) of the blue pixel 10B of the pixel group 101. It is placed on 20C. That is, the amplification transistor AMP and the selection transistor SEL are arranged in the region including the blue pixel 10B of the pixel group 101 . Further, the reset transistor RST and the dummy transistor DMY are arranged on the insulating film 20D on the side far from the green pixel 10G2 of the pixel group 102 among the insulating films in the column direction (vertical direction) of the blue pixel 10B of the pixel group 102. To. That is, the reset transistor RST and the dummy transistor DMY are arranged in the region including the blue pixel 10B of the pixel group 102.
  • the shared floating diffusion FDs of the first-stage pixel group 10 1 and the second -stage pixel group 102 are wired to the gate of the amplification transistor AMP and the drain of the reset transistor RST, respectively (FIG. 13 is connected by a thick solid line).
  • the pixel transistor is not arranged in the region of the red pixel 10R as in the third embodiment, the decrease in quantum efficiency can be suppressed.
  • FIG. 14 is a plan view of the pixel group 10 of the image pickup apparatus of the fourth embodiment as viewed from the front side.
  • FIG. 15 is a cross-sectional view taken along the cutting line XX shown in FIG.
  • the floating diffusion FD of the red pixel 10R, the green pixel 10G1, the green pixel 10G2, and the blue pixel 10B constituting the pixel group 10 is shared. That is, the floating diffusion FD is arranged in a region including a semiconductor region 12 to which the red pixels 10R, the green pixels 10G1, 10G2, and the blue pixels 10B of the pixel group 10 are commonly connected.
  • the red pixel 10R, the green pixels 10G1, 10G2, and the blue pixel 10B of the pixel group 10 are covered with the insulating film 20.
  • the amplification transistor, the reset transistor RSL, and the selection transistor SEL which are the pixel transistors of the pixel group 10, are the same row as the blue pixel 10B and adjacent to each other in the lower pixel group (not shown). It is placed on an insulating film between the green pixels of the. That is, the amplification transistor, the reset transistor RSL, and the selection transistor SEL are arranged in the region including the blue pixel 10B.
  • the green pixel 10G1 is provided with, for example, a P-type impurity region 25G1 having a triangular planar shape so as to be connected to the insulating film 20e and the insulating film 20c.
  • a P-type impurity region 25R having a triangular planar shape is arranged so as to connect to the insulating film 20e and the insulating film 20a.
  • a P-type impurity region 25G2 having a triangular planar shape is arranged so as to connect to the insulating film 20e and the insulating film 20a.
  • a P-type impurity region 25B having a triangular planar shape is arranged so as to connect to the insulating film 20e and the insulating film 20c.
  • a red filter 14R is arranged above the photoelectric conversion element PD of the red pixel 10R of the pixel group 10, and a microlens 18 is arranged above the red filter 14R.
  • a blue filter 14B is arranged above the photoelectric conversion element PD of the blue pixel 10B, and a microlens 18 is arranged above the blue filter 14B.
  • a green filter is arranged above the photoelectric conversion element PD of the green pixels 10G1 and 10G2, and a microlens is arranged above the green filter.
  • the circuit diagram of the pixel group 10 in the fourth embodiment is the same as the circuit diagram of the first embodiment shown in FIG.
  • the pixel transistor is not arranged in the region of the red pixel 10R as in the first embodiment, the decrease in quantum efficiency can be suppressed.
  • FIG. 16 is a plan view of the pixel group of the image pickup apparatus of the fifth embodiment as viewed from the front side.
  • FIG. 17 is a cross-sectional view taken along the cutting line YY shown in FIG.
  • the image pickup apparatus of the fifth embodiment is different from the image pickup apparatus of the fourth embodiment shown in FIG. 14, and is a floating diffusion FD in each semiconductor region 12 of the red pixel 10R, the green pixel 10G1, the green pixel 10G2, and the blue pixel 10B. Is provided. That is, in the present embodiment, unlike the fourth embodiment shown in FIG. 16, the floating diffusion FD is not displayed in the cross-sectional view shown in FIG.
  • the reset transistor RST, the amplification transistor 10AMP, and the selection transistor SEL are provided in the region of the blue pixel 10B. These transistors are arranged along the lateral direction (row direction) as shown in FIG.
  • the reset transistor RST, the amplification transistor 10AMP, and the selection transistor SEL are arranged in the vertical direction (column direction), as shown in FIG. 13, the insulating film arranged in the column direction far from the green pixel 10G2 of the blue pixel 10B. Just place it on top.
  • the floating diffusion FDs of the red pixel 10R, the green pixel 10G1, the green pixel 10G2, and the blue pixel 10B are connected to the gate of the amplification transistor AMP and connected to the source of the reset transistor RST.
  • the circuit diagram of the pixel group in the fifth embodiment is the same as the circuit diagram shown in FIG.
  • the pixel transistors AMP, RST, and SEL are arranged in the region of the blue pixel, and the pixel transistor is not arranged in the region of the red pixel 10R as in the first embodiment. It is possible to suppress a decrease in quantum efficiency.
  • FIG. 18 is a plan view of the pixel group 10 of the image pickup apparatus of the sixth embodiment as viewed from the front side.
  • 19A is a cross-sectional view taken along the cutting line AA shown in FIG. 18, and
  • FIG. 19B is a cross-sectional view taken along the cutting line BB shown in FIG.
  • FIG. 20 is a circuit diagram showing a pixel group of the sixth embodiment.
  • the pixel group 10 in the sixth embodiment has the same arrangement as the pixel group 10 in the first embodiment shown in FIG.
  • the trench between the green pixel 10G and the blue pixel 10B does not penetrate the semiconductor region.
  • the red pixels 10R, the green pixels 10G1, 10G2, and the blue pixels 10B are each separated from the back surface side to the front surface side by the insulating film 20. Therefore, the photoelectric conversion element PD of each pixel can use the entire semiconductor region 12 of the pixel, the effective area of the pixel can be increased, and the characteristics can be improved.
  • the green pixel 10G2 may be replaced with an IR pixel, that is, a pixel in which red and green are mixed.
  • the reset transistor RST of the pixel group 10 is arranged on the insulating film 20 that separates the green pixel 10G1 and the blue pixel 10B. Further, the amplification transistor AMP and the selection transistor SEL of the pixel group 10 are arranged on the insulating film 20 located far from the green pixel 10G1 among the insulating films 20 arranged in the row direction (horizontal direction) of the blue pixel 10B. ..
  • the source of the reset transistor RST is connected to the floating diffusion FD, and the drain is connected to the potential VDD.
  • the amplification transistor AMP and the selection transistor SEL are connected in series, and the gate of the amplification transistor AMP is connected to the floating diffusion FD.
  • the circuit diagram of the pixel group 10 in the sixth embodiment is the same as the circuit diagram of the first embodiment shown in FIG. 4, except that the floating diffusion FD is not shared. Similar to the first embodiment, in this sixth embodiment, since the pixel transistor is not arranged in the region of the red pixel, the decrease in quantum efficiency can be suppressed.
  • the technique according to the present disclosure can be applied to various products.
  • the technology according to the present disclosure is any kind of movement such as an automobile, an electric vehicle, a hybrid electric vehicle, a motorcycle, a bicycle, a personal mobility, an airplane, a drone, a ship, a robot, a construction machine, and an agricultural machine (tractor). It may be realized as a device mounted on the body.
  • FIG. 21 is a block diagram showing a schematic configuration example of a vehicle control system 7000, which is an example of a mobile control system to which the technique according to the present disclosure can be applied.
  • the vehicle control system 7000 includes a plurality of electronic control units connected via a communication network 7010.
  • the vehicle control system 7000 includes a drive system control unit 7100, a body system control unit 7200, a battery control unit 7300, an outside information detection unit 7400, an in-vehicle information detection unit 7500, and an integrated control unit 7600. ..
  • the communication network 7010 connecting these multiple control units conforms to any standard such as CAN (Controller Area Network), LIN (Local Interconnect Network), LAN (Local Area Network) or FlexRay (registered trademark). It may be an in-vehicle communication network.
  • CAN Controller Area Network
  • LIN Local Interconnect Network
  • LAN Local Area Network
  • FlexRay registered trademark
  • Each control unit includes a microcomputer that performs arithmetic processing according to various programs, a storage unit that stores programs executed by the microcomputer or parameters used for various arithmetic, and a drive circuit that drives various controlled devices. To prepare for.
  • Each control unit is provided with a network I / F for communicating with other control units via the communication network 7010, and is connected to devices or sensors inside and outside the vehicle by wired communication or wireless communication.
  • a communication I / F for performing communication is provided. In FIG.
  • the functional configuration of the integrated control unit 7600 includes a microcomputer 7610, a general-purpose communication I / F7620, a dedicated communication I / F7630, a positioning unit 7640, a beacon receiving unit 7650, an in-vehicle device I / F7660, and an audio image output unit 7670.
  • the vehicle-mounted network I / F 7680 and the storage unit 7690 are illustrated.
  • Other control units also include a microcomputer, a communication I / F, a storage unit, and the like.
  • the drive system control unit 7100 controls the operation of the device related to the drive system of the vehicle according to various programs.
  • the drive system control unit 7100 has a driving force generator for generating a driving force of a vehicle such as an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting the driving force to the wheels, and a steering angle of the vehicle. It functions as a control device such as a steering mechanism for adjusting and a braking device for generating braking force of the vehicle.
  • the drive system control unit 7100 may have a function as a control device such as ABS (Antilock Brake System) or ESC (Electronic Stability Control).
  • the vehicle state detection unit 7110 is connected to the drive system control unit 7100.
  • the vehicle state detection unit 7110 may include, for example, a gyro sensor that detects the angular speed of the axial rotation motion of the vehicle body, an acceleration sensor that detects the acceleration of the vehicle, an accelerator pedal operation amount, a brake pedal operation amount, or steering wheel steering. It includes at least one of sensors for detecting angles, engine speeds, wheel speeds, and the like.
  • the drive system control unit 7100 performs arithmetic processing using a signal input from the vehicle state detection unit 7110, and controls an internal combustion engine, a drive motor, an electric power steering device, a brake device, and the like.
  • the body system control unit 7200 controls the operation of various devices mounted on the vehicle body according to various programs.
  • the body system control unit 7200 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as headlamps, back lamps, brake lamps, turn signals or fog lamps.
  • a radio wave transmitted from a portable device that substitutes for a key or signals of various switches may be input to the body system control unit 7200.
  • the body system control unit 7200 receives inputs of these radio waves or signals and controls a vehicle door lock device, a power window device, a lamp, and the like.
  • the battery control unit 7300 controls the secondary battery 7310, which is the power supply source of the drive motor, according to various programs. For example, information such as the battery temperature, the battery output voltage, or the remaining capacity of the battery is input to the battery control unit 7300 from the battery device including the secondary battery 7310. The battery control unit 7300 performs arithmetic processing using these signals, and controls the temperature control of the secondary battery 7310 or the cooling device provided in the battery device.
  • the outside information detection unit 7400 detects information outside the vehicle equipped with the vehicle control system 7000.
  • the image pickup unit 7410 and the vehicle exterior information detection unit 7420 is connected to the vehicle exterior information detection unit 7400.
  • the image pickup unit 7410 includes at least one of a ToF (Time Of Flight) camera, a stereo camera, a monocular camera, an infrared camera, and other cameras.
  • the vehicle outside information detection unit 7420 is used, for example, to detect the current weather or an environment sensor for detecting the weather, or other vehicles, obstacles, pedestrians, etc. around the vehicle equipped with the vehicle control system 7000. At least one of the ambient information detection sensors is included.
  • the environment sensor may be, for example, at least one of a raindrop sensor that detects rainy weather, a fog sensor that detects fog, a sunshine sensor that detects the degree of sunshine, and a snow sensor that detects snowfall.
  • the ambient information detection sensor may be at least one of an ultrasonic sensor, a radar device, and a LIDAR (Light Detection and Ranging, Laser Imaging Detection and Ranging) device.
  • the image pickup unit 7410 and the vehicle exterior information detection unit 7420 may be provided as independent sensors or devices, or may be provided as a device in which a plurality of sensors or devices are integrated.
  • FIG. 22 shows an example of the installation position of the image pickup unit 7410 and the vehicle exterior information detection unit 7420.
  • the image pickup unit 7910, 7912, 7914, 7916, 7918 are provided, for example, at at least one of the front nose, side mirror, rear bumper, back door, and upper part of the windshield of the vehicle interior of the vehicle 7900.
  • the image pickup unit 7910 provided in the front nose and the image pickup section 7918 provided in the upper part of the windshield in the vehicle interior mainly acquire an image in front of the vehicle 7900.
  • the image pickup units 7912 and 7914 provided in the side mirrors mainly acquire images of the side of the vehicle 7900.
  • the image pickup unit 7916 provided in the rear bumper or the back door mainly acquires an image of the rear of the vehicle 7900.
  • the image pickup unit 7918 provided on the upper part of the windshield in the vehicle interior is mainly used for detecting a preceding vehicle, a pedestrian, an obstacle, a traffic light, a traffic sign, a lane, or the like.
  • FIG. 22 shows an example of the shooting range of each of the imaging units 7910, 7912, 7914, 7916.
  • the imaging range a indicates the imaging range of the imaging unit 7910 provided on the front nose
  • the imaging ranges b and c indicate the imaging range of the imaging units 7912 and 7914 provided on the side mirrors, respectively
  • the imaging range d indicates the imaging range d.
  • the imaging range of the imaging unit 7916 provided on the rear bumper or the back door is shown. For example, by superimposing the image data captured by the image pickup units 7910, 7912, 7914, 7916, a bird's-eye view image of the vehicle 7900 as viewed from above can be obtained.
  • the vehicle exterior information detection unit 7920, 7922, 7924, 7926, 7928, 7930 provided on the front, rear, side, corner and the upper part of the windshield in the vehicle interior of the vehicle 7900 may be, for example, an ultrasonic sensor or a radar device.
  • the vehicle exterior information detection units 7920, 7926, 7930 provided on the front nose, rear bumper, back door, and upper part of the windshield in the vehicle interior of the vehicle 7900 may be, for example, a lidar device.
  • These out-of-vehicle information detection units 7920 to 7930 are mainly used for detecting a preceding vehicle, a pedestrian, an obstacle, or the like.
  • the vehicle outside information detection unit 7400 causes the image pickup unit 7410 to capture an image of the outside of the vehicle and receives the captured image data. Further, the vehicle outside information detection unit 7400 receives the detection information from the connected vehicle outside information detection unit 7420.
  • the vehicle exterior information detection unit 7420 is an ultrasonic sensor, a radar device, or a lidar device
  • the vehicle exterior information detection unit 7400 transmits ultrasonic waves, electromagnetic waves, or the like, and receives received reflected wave information.
  • the out-of-vehicle information detection unit 7400 may perform object detection processing or distance detection processing such as a person, a vehicle, an obstacle, a sign, or a character on the road surface based on the received information.
  • the out-of-vehicle information detection unit 7400 may perform an environment recognition process for recognizing rainfall, fog, road surface conditions, etc. based on the received information.
  • the out-of-vehicle information detection unit 7400 may calculate the distance to an object outside the vehicle based on the received information.
  • the vehicle outside information detection unit 7400 may perform image recognition processing or distance detection processing for recognizing a person, a vehicle, an obstacle, a sign, a character on the road surface, or the like based on the received image data.
  • the vehicle outside information detection unit 7400 performs processing such as distortion correction or alignment on the received image data, and synthesizes the image data captured by different image pickup units 7410 to generate a bird's-eye view image or a panoramic image. May be good.
  • the vehicle exterior information detection unit 7400 may perform the viewpoint conversion process using the image data captured by different image pickup units 7410.
  • the in-vehicle information detection unit 7500 detects the in-vehicle information.
  • a driver state detection unit 7510 that detects a driver's state is connected to the in-vehicle information detection unit 7500.
  • the driver state detection unit 7510 may include a camera that captures the driver, a biosensor that detects the driver's biological information, a microphone that collects sound in the vehicle interior, and the like.
  • the biosensor is provided on, for example, on the seat surface or the steering wheel, and detects the biometric information of the passenger sitting on the seat or the driver holding the steering wheel.
  • the in-vehicle information detection unit 7500 may calculate the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 7510, and may determine whether the driver is asleep. You may.
  • the in-vehicle information detection unit 7500 may perform processing such as noise canceling processing on the collected voice signal.
  • the integrated control unit 7600 controls the overall operation in the vehicle control system 7000 according to various programs.
  • An input unit 7800 is connected to the integrated control unit 7600.
  • the input unit 7800 is realized by a device that can be input-operated by the occupant, such as a touch panel, a button, a microphone, a switch, or a lever. Data obtained by recognizing the voice input by the microphone may be input to the integrated control unit 7600.
  • the input unit 7800 may be, for example, a remote control device using infrared rays or other radio waves, or an external connection device such as a mobile phone or a PDA (Personal Digital Assistant) corresponding to the operation of the vehicle control system 7000. You may.
  • the input unit 7800 may be, for example, a camera, in which case the passenger can input information by gesture. Alternatively, data obtained by detecting the movement of the wearable device worn by the passenger may be input. Further, the input unit 7800 may include, for example, an input control circuit that generates an input signal based on the information input by the passenger or the like using the input unit 7800 and outputs the input signal to the integrated control unit 7600. By operating the input unit 7800, the passenger or the like inputs various data to the vehicle control system 7000 and instructs the processing operation.
  • the storage unit 7690 may include a ROM (Read Only Memory) for storing various programs executed by the microcomputer, and a RAM (Random Access Memory) for storing various parameters, calculation results, sensor values, and the like. Further, the storage unit 7690 may be realized by a magnetic storage device such as an HDD (Hard Disc Drive), a semiconductor storage device, an optical storage device, an optical magnetic storage device, or the like.
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the general-purpose communication I / F 7620 is a general-purpose communication I / F that mediates communication with various devices existing in the external environment 7750.
  • General-purpose communication I / F7620 is a cellular communication protocol such as GSM (registered trademark) (Global System of Mobile communications), WiMAX (registered trademark), LTE (registered trademark) (Long Term Evolution) or LTE-A (LTE-Advanced).
  • GSM Global System of Mobile communications
  • WiMAX registered trademark
  • LTE registered trademark
  • LTE-A Long Term Evolution-Advanced
  • Bluetooth® may be implemented.
  • the general-purpose communication I / F7620 connects to a device (for example, an application server or a control server) existing on an external network (for example, the Internet, a cloud network, or a business-specific network) via a base station or an access point, for example. You may. Further, the general-purpose communication I / F7620 uses, for example, P2P (Peer To Peer) technology, and is a terminal existing in the vicinity of the vehicle (for example, a driver, a pedestrian or a store terminal, or an MTC (Machine Type Communication) terminal). May be connected with.
  • P2P Peer To Peer
  • MTC Machine Type Communication
  • the dedicated communication I / F 7630 is a communication I / F that supports a communication protocol formulated for use in a vehicle.
  • the dedicated communication I / F7630 uses a standard protocol such as WAVE (Wireless Access in Vehicle Environment), DSRC (Dedicated Short Range Communications), which is a combination of the lower layer IEEE802.11p and the upper layer IEEE1609, or a cellular communication protocol. May be implemented.
  • Dedicated communication I / F7630 is typically vehicle-to-vehicle (Vehicle to Vehicle) communication, road-to-vehicle (Vehicle to Infrastructure) communication, vehicle-to-house (Vehicle to Home) communication, and pedestrian-to-vehicle (Vehicle to Pedestrian) communication. ) Carry out V2X communication, a concept that includes one or more of the communications.
  • the positioning unit 7640 receives, for example, a GNSS signal from a GNSS (Global Navigation Satellite System) satellite (for example, a GPS signal from a GPS (Global Positioning System) satellite), executes positioning, and executes positioning, and the latitude, longitude, and altitude of the vehicle. Generate location information including.
  • the positioning unit 7640 may specify the current position by exchanging signals with the wireless access point, or may acquire position information from a terminal such as a mobile phone, PHS, or smartphone having a positioning function.
  • the beacon receiving unit 7650 receives radio waves or electromagnetic waves transmitted from a radio station or the like installed on the road, and acquires information such as the current position, traffic jam, road closure, or required time.
  • the function of the beacon receiving unit 7650 may be included in the above-mentioned dedicated communication I / F 7630.
  • the in-vehicle device I / F 7660 is a communication interface that mediates the connection between the microcomputer 7610 and various in-vehicle devices 7760 existing in the vehicle.
  • the in-vehicle device I / F7660 may establish a wireless connection using a wireless communication protocol such as wireless LAN, Bluetooth (registered trademark), NFC (Near Field Communication) or WUSB (Wireless USB).
  • a wireless communication protocol such as wireless LAN, Bluetooth (registered trademark), NFC (Near Field Communication) or WUSB (Wireless USB).
  • the in-vehicle device I / F7660 is via a connection terminal (and a cable if necessary) (not shown), USB (Universal Serial Bus), HDMI (registered trademark) (High-Definition Multimedia Interface, or MHL (Mobile High)).
  • -Definition Link and other wired connections may be established.
  • the in-vehicle device 7760 includes, for example, at least one of a passenger's mobile device or wearable device, or an information device carried in or attached to the vehicle. Further, the in-vehicle device 7760 may include a navigation device for searching a route to an arbitrary destination.
  • the in-vehicle device I / F 7660 may be a control signal to and from these in-vehicle devices 7760. Or exchange the data signal.
  • the in-vehicle network I / F7680 is an interface that mediates communication between the microcomputer 7610 and the communication network 7010.
  • the vehicle-mounted network I / F7680 transmits / receives signals and the like according to a predetermined protocol supported by the communication network 7010.
  • the microcomputer 7610 of the integrated control unit 7600 is via at least one of general-purpose communication I / F7620, dedicated communication I / F7630, positioning unit 7640, beacon receiving unit 7650, in-vehicle device I / F7660, and in-vehicle network I / F7680.
  • the vehicle control system 7000 is controlled according to various programs based on the information acquired. For example, the microcomputer 7610 calculates the control target value of the driving force generator, the steering mechanism, or the braking device based on the acquired information inside and outside the vehicle, and outputs a control command to the drive system control unit 7100. May be good.
  • the microcomputer 7610 realizes ADAS (Advanced Driver Assistance System) functions including vehicle collision avoidance or impact mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, vehicle lane deviation warning, and the like. Cooperative control may be performed for the purpose of.
  • the microcomputer 7610 automatically travels autonomously without relying on the driver's operation by controlling the driving force generator, steering mechanism, braking device, etc. based on the acquired information on the surroundings of the vehicle. Coordinated control may be performed for the purpose of driving or the like.
  • the microcomputer 7610 has information acquired via at least one of general-purpose communication I / F7620, dedicated communication I / F7630, positioning unit 7640, beacon receiving unit 7650, in-vehicle device I / F7660, and in-vehicle network I / F7680. Based on the above, three-dimensional distance information between the vehicle and an object such as a surrounding structure or a person may be generated, and local map information including the peripheral information of the current position of the vehicle may be created. Further, the microcomputer 7610 may predict the danger of a vehicle collision, a pedestrian or the like approaching or entering a closed road, and generate a warning signal based on the acquired information.
  • the warning signal may be, for example, a signal for generating a warning sound or lighting a warning lamp.
  • the audio image output unit 7670 transmits an output signal of at least one of audio and image to an output device capable of visually or audibly notifying information to the passenger or the outside of the vehicle.
  • an audio speaker 7710, a display unit 7720, and an instrument panel 7730 are exemplified as output devices.
  • the display unit 7720 may include, for example, at least one of an onboard display and a head-up display.
  • the display unit 7720 may have an AR (Augmented Reality) display function.
  • the output device may be other devices such as headphones, wearable devices such as eyeglass-type displays worn by passengers, projectors or lamps other than these devices.
  • the display device displays the results obtained by various processes performed by the microcomputer 7610 or the information received from other control units in various formats such as texts, images, tables, and graphs. Display visually.
  • the audio output device converts an audio signal composed of reproduced audio data, acoustic data, or the like into an analog signal and outputs the audio signal audibly.
  • At least two control units connected via the communication network 7010 may be integrated as one control unit.
  • each control unit may be composed of a plurality of control units.
  • the vehicle control system 7000 may include another control unit (not shown).
  • the other control unit may have a part or all of the functions carried out by any of the control units. That is, as long as information is transmitted and received via the communication network 7010, predetermined arithmetic processing may be performed by any of the control units.
  • a sensor or device connected to any control unit may be connected to another control unit, and a plurality of control units may send and receive detection information to and from each other via the communication network 7010. .
  • the image pickup apparatus of the first to sixth embodiments can be used as the image pickup unit 7410 shown in FIG. 21 or the image pickup units 7910 to 7916 shown in FIG. 22.
  • the following configurations also belong to the technical scope of the present disclosure.
  • (1) Includes a first pixel that photoelectrically converts light in the first wavelength band, a second pixel that photoelectrically converts light in the second wavelength band, and a third pixel that photoelectrically converts light in the third wavelength band.
  • a pixel array unit arranged in a matrix with a pixel group as a unit, and a pixel provided corresponding to the pixel group and arranged in a region including at least one pixel excluding the first pixel of the corresponding pixel group.
  • the first to third wavelength bands are wavelength bands corresponding to red, green, and blue light, respectively, and the first to third pixels are red pixels, green pixels, and blue pixels, respectively ().
  • the image pickup apparatus according to 1). (3) The image pickup apparatus according to (1), wherein the pixel transistor includes a reset transistor, an amplification transistor, and a selection transistor. (4) The image pickup apparatus according to any one of (1) to (3), wherein the pixel transistor is arranged in the region of the third pixel excluding the first pixel and the second pixel of the corresponding pixel group. .. (5) The image pickup apparatus according to any one of (1) to (4), wherein the pixel group includes a floating diffusion shared by a plurality of pixels included in the pixel group. (6) The image pickup apparatus according to (2), wherein the pixel transistor is arranged in the region of the blue pixel and the region of the green pixel.
  • the image pickup apparatus according to (2) wherein the pixel transistor is arranged between the blue pixel region and the green pixel region.
  • the image pickup apparatus according to (1) to (7) comprising a pixel separating portion extending in the depth direction of the pixels along a pixel boundary for separating the pixels included in the pixel group.
  • the pixel group includes two pixels adjacent to each other in the first direction and two pixels adjacent to each other in the second direction intersecting the first direction, and these four pixels are the red pixel, the said.
  • the image pickup apparatus according to (2) which includes a green pixel and the blue pixel.
  • One pixel transistor is shared by the two pixel groups arranged adjacent to the first direction or the second direction, and the first portion of the one pixel transistor is the two.
  • the first portion is arranged in the region of the blue pixel of one of the two pixel groups, and the second portion is arranged in the region of the blue pixel of the other of the two pixel groups.
  • the two pixel groups are arranged adjacent to the second direction, and the first portion is arranged between the two pixel groups and along the region extending in the first direction.
  • the image pickup apparatus wherein the second portion is arranged at the end of the other of the two pixel groups in the second direction and along a region extending in the first direction.
  • the two pixel groups are arranged adjacent to each other in the second direction, and the first portion is an end portion of one of the two pixel groups in the first direction and the first portion.
  • the second portion was arranged at the other end of the two pixel groups in the first direction and along the region extending in the second direction (). 12) The imaging device according to the above.
  • the pixel transistor includes a reset transistor, an amplification transistor, and a selection transistor, and the amplification transistor and the selection transistor are arranged in a region including the blue pixel of one of the two pixel groups.
  • the pixel transistor includes a reset transistor, an amplification transistor, and a selection transistor, and the amplification transistor is arranged in both the first portion and the second portion.
  • the pixel transistor includes a conversion efficiency switching transistor that switches the conversion efficiency of photoelectric conversion, and the conversion efficiency switching transistor is arranged in the region of the blue pixel of one or the other of the two pixel groups (17).
  • the imaging device according to the above. (18) A first floating diffusion shared by a plurality of pixels included in one of the two pixel groups and a second floating diffusion shared by a plurality of pixels included in the other of the two pixel groups.
  • a pixel separation portion extending in the depth direction of the pixels along the pixel boundary is provided to separate the first pixel group included in the two pixel groups and the plurality of pixels included in the second pixel group (19). 11) The imaging device according to the above.
  • a first pixel that includes an image pickup device and a signal processing unit that performs signal processing based on the pixel signal captured by the image pickup device, and the image pickup device photoelectrically converts light in the first wavelength band.
  • a pixel array unit arranged in a matrix with a pixel group including a second pixel for photoelectric conversion of light in the second wavelength band and a third pixel for photoelectric conversion of light in the third wavelength band as a unit.
  • An electronic device including a pixel transistor provided corresponding to the pixel group and arranged in a region including at least one pixel excluding the first pixel of the corresponding pixel group.
  • Body system control unit 7300 ... ⁇ ⁇ Battery control unit, 7310 ⁇ ⁇ ⁇ Secondary battery, 7400 ⁇ ⁇ ⁇ Vehicle outside information detection unit, 7410 ⁇ ⁇ ⁇ Imaging unit, 7420 ⁇ ⁇ ⁇ Vehicle interior information detection unit, 7500 ⁇ ⁇ ⁇ Vehicle interior information detection unit, 7510 ⁇ ⁇ Driver status detection unit, 7600 ⁇ ⁇ ⁇ Integrated control unit, 7610 ⁇ ⁇ ⁇ Microcomputer, 7620 ⁇ ⁇ ⁇ General-purpose communication I / F, 7630 ⁇ ⁇ ⁇ Dedicated communication I / F, 7640 ⁇ ⁇ ⁇ Positioning unit, 7650 ... Beacon receiver, 7660 ... In-vehicle device I / F, 7670 ...
  • Audio image output unit 7680 ... In-vehicle network I / F, 7690 ... Storage unit, 7710 ... Audio speaker , 7720 ... Display unit, 7730 ... Instrument panel, 7750 ... External environment, 7760 ... Vehicle interior equipment, 7800 ... Input unit, 7900 ... Vehicle, 7910-7916 ... Imaging Department, 7920-7930 ... External information detection unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

[Problem] To provide an imaging device capable of suppressing the decline in quantum efficiency, and an electronic apparatus using the imaging device. [Solution] An imaging device according to the present disclosure comprises: a pixel array unit in which pixel groups, each serving as a unit, are disposed in a matrix, each of the pixel groups including a first pixel for photoelectrically converting light in a first waveband, a second pixel for photoelectrically converting light in a second waveband, and a third pixel for photoelectrically converting light in a third waveband; and pixel transistors provided in correspondence with the pixel groups and each disposed in a region that includes at least one pixel excluding the first pixel in a corresponding one of the pixel groups.

Description

撮像装置および電子機器Imaging equipment and electronic equipment
 本開示の実施形態は、撮像装置および電子機器に関する。 The embodiments of the present disclosure relate to an image pickup apparatus and an electronic device.
 赤色光等の長波長の光による混色を防止するために各画素が深いトレンチ(Full Trench Isolation)によって分離された撮像装置が知られている。この撮像装置は、各画素内に、光電変換部と、フローティングディフュージョン(FD)と、転送ゲート(TG)と、画素トランジスタとが設けられている(特許文献1参照)。 An image pickup device in which each pixel is separated by a deep trench (Full Trench Isolation) in order to prevent color mixing due to long wavelength light such as red light is known. This image pickup apparatus is provided with a photoelectric conversion unit, a floating diffusion (FD), a transfer gate (TG), and a pixel transistor in each pixel (see Patent Document 1).
WO2017/130723WO2017 / 130723
 特許文献1に記載された撮像装置においては、赤色光等の長波長光は、シリコン(Si)の吸収率が低いため、他の波長帯の光を光電変換する画素に比べて、量子効率(すなわち入射光子数に対する光電流として取り出される光電子または正孔の数の割合)が低くなるという課題がある。 In the image pickup apparatus described in Patent Document 1, since long-wavelength light such as red light has a low absorption rate of silicon (Si), the quantum efficiency (quantum efficiency) is higher than that of pixels that photoelectrically convert light in other wavelength bands. That is, there is a problem that the ratio of the number of photoelectrons or holes taken out as a photocurrent to the number of incident photons) is low.
 本開示は、量子効率の低下を抑制することのできる撮像装置およびこの撮像装置を用いた電子機器を提供するものである。 The present disclosure provides an image pickup device capable of suppressing a decrease in quantum efficiency and an electronic device using this image pickup device.
 本開示の第1態様による撮像装置は、第1の波長帯の光を光電変換する第1画素、第2の波長帯の光を光電変換する第2画素、および第3の波長帯の光を光電変換する第3画素を含む画素群を単位としてマトリクス状に配置された画素アレイ部と、前記画素群に対応して設けられ、対応する画素群の前記第1画素を除く少なくとも1つの画素を含む領域内に配置される画素トランジスタと、を備えている。 The image pickup apparatus according to the first aspect of the present disclosure captures the first pixel that photoelectrically converts the light of the first wavelength band, the second pixel that photoelectrically converts the light of the second wavelength band, and the light of the third wavelength band. A pixel array unit arranged in a matrix with a pixel group including a third pixel to be photoelectrically converted as a unit, and at least one pixel provided corresponding to the pixel group and excluding the first pixel of the corresponding pixel group. It includes a pixel transistor arranged in a region including the pixel transistor.
 第1態様による撮像装置において、前記第1乃至第3の波長帯はそれぞれ、赤色、緑色、青色の光に対応した波長帯であり、前記第1乃至第3画素はそれぞれ赤色画素、緑色画素、青色画素であってもよい。 In the image pickup apparatus according to the first aspect, the first to third wavelength bands are wavelength bands corresponding to red, green, and blue light, respectively, and the first to third pixels are red pixels and green pixels, respectively. It may be a blue pixel.
 第1態様による撮像装置において、前記画素トランジスタは、リセットトランジスタと、増幅トランジスタと、選択トランジスタと、を含んでいてもよい。 In the image pickup apparatus according to the first aspect, the pixel transistor may include a reset transistor, an amplification transistor, and a selection transistor.
 第1態様による撮像装置において、前記画素トランジスタは、対応する画素群の前記第1画素及び前記第2画素を除く前記第3画素の領域内に配置されていてもよい。 In the image pickup apparatus according to the first aspect, the pixel transistor may be arranged in the region of the third pixel excluding the first pixel and the second pixel of the corresponding pixel group.
 第1態様による撮像装置において、前記画素群は、この画素群に含まれる複数の画素が共有するフローティングディフュージョンを備えていてもよい。 In the image pickup apparatus according to the first aspect, the pixel group may include a floating diffusion shared by a plurality of pixels included in the pixel group.
 第1態様による撮像装置において、前記画素トランジスタは、前記青色画素の領域内および前記緑色画素の領域内に配置されていてよい。 In the image pickup apparatus according to the first aspect, the pixel transistor may be arranged in the region of the blue pixel and the region of the green pixel.
 第1態様による撮像装置において、前記画素トランジスタは、前記青色画素の領域と前記緑色画素の領域との間に配置されていてもよい。 In the image pickup apparatus according to the first aspect, the pixel transistor may be arranged between the region of the blue pixel and the region of the green pixel.
 第1態様による撮像装置において、前記画素群に含まれる画素同士分離する、画素境界に沿って画素の深さ方向に延びる画素分離部を備えていてもよい。 The image pickup apparatus according to the first aspect may include a pixel separation portion extending in the depth direction of the pixels along the pixel boundary to separate the pixels included in the pixel group.
 第1態様による撮像装置において、前記画素群は、第1方向に隣接する2つの画素と、前記第1方向に交差する第2方向に隣接する2つの画素とを含み、これら4つの画素は、前記赤色画素、前記緑色画素、および前記青色画素を含んでいてもよい。 In the image pickup apparatus according to the first aspect, the pixel group includes two pixels adjacent to each other in the first direction and two pixels adjacent to each other in the second direction intersecting the first direction, and these four pixels are included. The red pixel, the green pixel, and the blue pixel may be included.
 第1態様による撮像装置において、前記4つの画素は、2つの前記緑色画素を含んでいてもよい。 In the image pickup apparatus according to the first aspect, the four pixels may include two green pixels.
 第1態様による撮像装置において、前記第1方向又は前記第2方向に隣接して配置される2つの前記画素群にて、一つの前記画素トランジスタを共有し、前記一つの画素トランジスタの第1部分は、前記2つの画素群のうち一方に配置され、前記一つの画素トランジスタの第2部分は、前記2つの画素群のうち他方に配置されていてもよい。 In the image pickup apparatus according to the first aspect, one pixel transistor is shared by two pixel groups arranged adjacent to the first direction or the second direction, and the first portion of the one pixel transistor is shared. May be arranged in one of the two pixel groups, and the second portion of the one pixel transistor may be arranged in the other of the two pixel groups.
 第1態様による撮像装置において、前記第1部分は、前記2つの画素群のうち一方の前記青色画素の領域内に配置され、前記第2部分は、前記2つの画素群のうち他方の前記青色画素の領域内に配置されていてもよい。 In the image pickup apparatus according to the first aspect, the first portion is arranged in the region of the blue pixel of one of the two pixel groups, and the second portion is the blue color of the other of the two pixel groups. It may be arranged in the area of the pixel.
 第1態様による撮像装置において、前記2つの画素群は、前記第2方向に隣接して配置されており、前記第1部分は、前記2つの画素群の間で、かつ前記第1方向に延びる領域に沿って配置され、前記第2部分は、前記2つの画素群のうち他方の前記第2方向の端部で、かつ前記第1方向に延びる領域に沿って配置されていてもよい。 In the image pickup apparatus according to the first aspect, the two pixel groups are arranged adjacent to the second direction, and the first portion extends between the two pixel groups and in the first direction. The second portion may be arranged along the region at the other end of the two pixel groups in the second direction and along the region extending in the first direction.
 第1態様による撮像装置において、前記2つの画素群は、前記第2方向に隣接して配置されており、前記第1部分は、前記2つの画素群のうち一方の前記第1方向の端部で、かつ前記第2方向に延びる領域に沿って配置され、前記第2部分は、前記2つの画素群のうち他方の前記第1方向の端部で、かつ前記第2方向に延びる領域に沿って配置されていてもよい。 In the image pickup apparatus according to the first aspect, the two pixel groups are arranged adjacent to each other in the second direction, and the first portion is an end portion of one of the two pixel groups in the first direction. And is arranged along the region extending in the second direction, the second portion is at the other end of the two pixel groups in the first direction and along the region extending in the second direction. May be arranged.
 第1態様による撮像装置において、前記画素トランジスタはリセットトランジスタと、増幅トランジスタと、選択トランジスタと、を含み、前記増幅トランジスタおよび前記選択トランジスタは、前記2つの画素群のうち一方の前記青色画素を含む領域に配置され、前記リセットトランジスタは、前記2つの画素群のうち他方の前記青色画素を含む領域に配置されていてもよい。 In the image pickup apparatus according to the first aspect, the pixel transistor includes a reset transistor, an amplification transistor, and a selection transistor, and the amplification transistor and the selection transistor include the blue pixel of one of the two pixel groups. The reset transistor may be arranged in a region, and the reset transistor may be arranged in a region including the blue pixel of the other of the two pixel groups.
 第1態様による撮像装置において、前記画素トランジスタはリセットトランジスタと、増幅トランジスタと、選択トランジスタと、を含み、前記増幅トランジスタは、前記第1部分および前記第2部分の双方に配置されていてもよい。 In the image pickup apparatus according to the first aspect, the pixel transistor includes a reset transistor, an amplification transistor, and a selection transistor, and the amplification transistor may be arranged in both the first portion and the second portion. ..
 第1態様による撮像装置において、前記画素トランジスタは、光電変換の変換効率を切り換える変換効率切換トランジスタを含み、前記変換効率切換トランジスタは、前記2つの画素群のうち一方又は他方の前記青色画素の領域に配置されていてもよい。 In the image pickup apparatus according to the first aspect, the pixel transistor includes a conversion efficiency switching transistor that switches the conversion efficiency of photoelectric conversion, and the conversion efficiency switching transistor is a region of the blue pixel of one or the other of the two pixel groups. It may be arranged in.
 第1態様による撮像装置において、前記2つの画素群のうち一方に含まれる複数の画素が共有する第1フローティングディフュージョンと、前記2つの画素群のうち他方に含まれる複数の画素が共有する第2フローティングディフュージョンと、備えていてもよい。 In the image pickup apparatus according to the first aspect, the first floating diffusion shared by a plurality of pixels included in one of the two pixel groups and the second floating diffusion shared by a plurality of pixels included in the other of the two pixel groups. It may be equipped with floating diffusion.
 第1態様による撮像装置において、前記第1画素群および前記第2画素分に含まれる複数の画素同士を分離する、画素境界に沿って画素の深さ方向に延びる画素分離部を備えていてもよい。 Even if the image pickup apparatus according to the first aspect includes a pixel separation unit extending in the depth direction of the pixels along the pixel boundary, the image pickup device according to the first aspect separates a plurality of pixels included in the first pixel group and the second pixel. good.
 第2態様による電子機器は、撮像装置と、前記撮像装置で撮像された画素信号に基づいて信号処理を行う信号処理部と、を備え、前記撮像装置は、第1の波長帯の光を光電変換する第1画素、第2の波長帯の光を光電変換する第2画素、および第3の波長帯の光を光電変換する第3画素を含む画素群を単位としてマトリクス状に配置された画素アレイ部と、
 前記画素群に対応して設けられ、対応する画素群の前記第1画素を除く少なくとも1つの画素を含む領域内に配置される画素トランジスタと、
 を備えている。
The electronic device according to the second aspect includes an image pickup device and a signal processing unit that performs signal processing based on the pixel signal captured by the image pickup device, and the image pickup device photoelectrically emits light in the first wavelength band. Pixels arranged in a matrix in units of a pixel group including a first pixel to be converted, a second pixel for photoelectric conversion of light in the second wavelength band, and a third pixel for photoelectric conversion of light in the third wavelength band. Array part and
A pixel transistor provided corresponding to the pixel group and arranged in a region including at least one pixel excluding the first pixel of the corresponding pixel group.
It is equipped with.
第1実施形態による撮像装置の全体構成を示す回路図。The circuit diagram which shows the whole structure of the image pickup apparatus by 1st Embodiment. 第1実施形態における画素群の構成を示す平面図。The plan view which shows the structure of the pixel group in 1st Embodiment. 図3Aは図2に示す切断線A-Aで切断した断面図、図3Bは図2に示す切断線B-Bで切断した断面図。3A is a cross-sectional view taken along the cutting line AA shown in FIG. 2, and FIG. 3B is a cross-sectional view taken along the cutting line BB shown in FIG. 第1実施形態における画素群の回路図。The circuit diagram of the pixel group in 1st Embodiment. 第2実施形態による撮像装置おける画素群の構成を示す平面図。The plan view which shows the structure of the pixel group in the image pickup apparatus by 2nd Embodiment. 第2実施形態における画素群の回路図。The circuit diagram of the pixel group in the 2nd Embodiment. 第2実施形態の第1変形例における画素群の構成を示す平面図。The plan view which shows the structure of the pixel group in the 1st modification of 2nd Embodiment. 第1変形例における画素群の回路図。The circuit diagram of the pixel group in the 1st modification. 第2実施形態の第2変形例における画素群の構成を示す平面図。The plan view which shows the structure of the pixel group in the 2nd modification of 2nd Embodiment. 第2変形例における画素群の回路図。The circuit diagram of the pixel group in the 2nd modification. 第2実施形態の第3変形例における画素群の回路図。The circuit diagram of the pixel group in the 3rd modification of the 2nd Embodiment. 第3実施形態による撮像装置における画素群を示平面図。The plan view which shows the pixel group in the image pickup apparatus according to 3rd Embodiment. 第3実施形態の第1変形例による撮像装置における画素群を示平面図。The plan view shows the pixel group in the image pickup apparatus according to 1st modification of 3rd Embodiment. 第4実施形態による撮像装置における画素群を示す平面図。The plan view which shows the pixel group in the image pickup apparatus according to 4th Embodiment. 図14に示す切断線X-Xで切断した画素群の断面図。FIG. 4 is a cross-sectional view of a pixel group cut along the cutting line XX shown in FIG. 第5実施形態による撮像装置における画素群を示す平面図。The plan view which shows the pixel group in the image pickup apparatus according to 5th Embodiment. 図15に示す切断線Y-Yで切断した画素群の断面図。FIG. 15 is a cross-sectional view of a pixel group cut along the cutting line YY shown in FIG. 図18は、第6実施形態の撮像装置の画素群を表側から見た平面図図FIG. 18 is a plan view of the pixel group of the image pickup apparatus of the sixth embodiment as viewed from the front side. 図19Aは図18に示す切断線A-Aで切断した断面図、図19Bは図18に示す切断線B-Bで切断した断面図。19A is a cross-sectional view taken along the cutting line AA shown in FIG. 18, and FIG. 19B is a cross-sectional view taken along the cutting line BB shown in FIG. 図20は、第6実施形態の画素群を示す回路図である。FIG. 20 is a circuit diagram showing a pixel group of the sixth embodiment. 車両制御システムの概略的な構成の一例を示すブロック図。The block diagram which shows an example of the schematic structure of a vehicle control system. 車外情報検出部及び撮像部の設置位置の一例を示す説明図。Explanatory drawing which shows an example of the installation position of the outside information detection unit and the image pickup unit.
 本開示の実施形態について図面を参照して説明する。以下の実施形態では、撮像装置および電子機器の構成部分を主に説明するが、撮像装置および電子機器には、図示又は説明されていない構成部分や機能が存在しうる。以下の説明は、図示又は説明されていない構成部分や機能を除外するものではない。 The embodiments of the present disclosure will be described with reference to the drawings. In the following embodiments, the components and functions of the image pickup device and the electronic device will be mainly described, but the image pickup device and the electronic device may have components and functions not shown or described. The following description does not exclude components or functions not shown or described.
 また、以下の説明で参照される図面は、本開示の実施形態の説明と、その理解を促すための図面であり、分かり易くするために、図中に示される形状、寸法、比などは実際と異なる場合がある。 Further, the drawings referred to in the following description are drawings for explaining the embodiments of the present disclosure and promoting their understanding, and for the sake of clarity, the shapes, dimensions, ratios, etc. shown in the drawings are actually shown. May differ from.
 (第1実施形態)
  第1実施形態による撮像装置の全体構成を図1に示す。この実施形態の撮像装置250は、例えば裏面照射型のイメージセンサ250であって、画素領域251と、画素駆動線252と、垂直信号線253と、垂直駆動部254と、カラム処理部255と、水平駆動部256と、システム制御部257と、信号処理部258と、メモリ部259と、を備えている。これらが図示せぬシリコン基板等の半導体基板(チップ)に形成されている。なお、画素領域251を第1半導体基板からなるセンサチップに形成され、画素駆動線252、垂直信号線253、垂直駆動部254、カラム処理部255、水平駆動部256、システム制御部257、信号処理部258、およびメモリ部259を第2半導体基板からなる回路チップに形成し、これらのチップを貼り合わせてもよい。
(First Embodiment)
FIG. 1 shows the overall configuration of the image pickup apparatus according to the first embodiment. The image pickup device 250 of this embodiment is, for example, a back-illuminated image sensor 250, which includes a pixel area 251, a pixel drive line 252, a vertical signal line 253, a vertical drive unit 254, and a column processing unit 255. It includes a horizontal drive unit 256, a system control unit 257, a signal processing unit 258, and a memory unit 259. These are formed on a semiconductor substrate (chip) such as a silicon substrate (not shown). The pixel region 251 is formed on a sensor chip made of a first semiconductor substrate, and the pixel drive line 252, the vertical signal line 253, the vertical drive unit 254, the column processing unit 255, the horizontal drive unit 256, the system control unit 257, and the signal processing. A unit 258 and a memory unit 259 may be formed on a circuit chip made of a second semiconductor substrate, and these chips may be bonded together.
 画素領域251には、画素が2次元配列された画素アレイであって、光信号を電気信号に変換して撮像を行う。この画素領域251には画素に対して2行ごとに画素駆動線252が設けられ、2列ごとに垂直信号線253が設けられている。本実施形態において、画素領域251を構成する画素の構成について、後で詳細に説明する。 The pixel area 251 is a pixel array in which pixels are two-dimensionally arranged, and an optical signal is converted into an electric signal for imaging. In this pixel area 251, a pixel drive line 252 is provided for every two rows of a pixel, and a vertical signal line 253 is provided for every two columns. In this embodiment, the configuration of the pixels constituting the pixel region 251 will be described in detail later.
 垂直駆動部254は、シフトレジスタやアドレスデコーダなどによって構成され、画素領域251の各撮像素子に蓄積された電荷に対応する画素信号が、奇数列、偶数列の順に行単位で上から順に読み出されるように、画素駆動線252に駆動信号を供給する。 The vertical drive unit 254 is configured by a shift register, an address decoder, or the like, and pixel signals corresponding to the charges stored in each image sensor in the pixel area 251 are read out in order from the top in the order of odd-numbered columns and even-numbered columns. As described above, the drive signal is supplied to the pixel drive line 252.
 カラム処理部255は、画素領域251の画素の2列ごとに信号処理回路を有する。カラム処理部255の各信号処理回路は、対応する画素から読み出され、垂直信号線253を通して供給される画素信号に対して、A/D変換処理、相関二重サンプリング(CDS(Correlated Double Sampling))処理等の信号処理を行う。カラム処理部255は信号処理後の画素信号を一時的に保持する。 The column processing unit 255 has a signal processing circuit for each of the two rows of pixels in the pixel area 251. Each signal processing circuit of the column processing unit 255 performs A / D conversion processing and correlated double sampling (CDS (Correlated Double Sampling)) for the pixel signal read from the corresponding pixel and supplied through the vertical signal line 253. ) Perform signal processing such as processing. The column processing unit 255 temporarily holds the pixel signal after signal processing.
 水平駆動部256は、シフトレジスタやアドレスデコーダなどによって構成され、カラム処理部255の信号処理回路を順番に選択する。これにより、カラム処理部255の各信号処理回路で信号処理された画素信号が順番に信号処理部258に出力される。 The horizontal drive unit 256 is composed of a shift register, an address decoder, etc., and sequentially selects the signal processing circuit of the column processing unit 255. As a result, the pixel signals signal-processed by each signal processing circuit of the column processing unit 255 are sequentially output to the signal processing unit 258.
 システム制御部257は、各種のタイミング信号を生成するタイミングジェネレータ等で構成され、タイミングジェネレータで生成された各種のタイミング信号を基に垂直駆動部254、カラム処理部255、および水平駆動部256を制御する。
 信号処理部258は、カラム処理部から出力される画素信号に対して種々の信号処理を行う。このとき、信号処理部258は、必要に応じて信号処理の途中結果などをメモリ部259に格納し、必要なタイミングで参照する。信号処理部258は、信号処理後の画素信号を出力する。
The system control unit 257 is composed of a timing generator or the like that generates various timing signals, and controls the vertical drive unit 254, the column processing unit 255, and the horizontal drive unit 256 based on the various timing signals generated by the timing generator. do.
The signal processing unit 258 performs various signal processing on the pixel signal output from the column processing unit. At this time, the signal processing unit 258 stores the intermediate result of signal processing and the like in the memory unit 259 as necessary, and refers to the signal processing unit 258 at a necessary timing. The signal processing unit 258 outputs the pixel signal after signal processing.
 メモリ部259は、DRAM(Dynamic Random Access Memory)やSRAM(Static Random Access Memory)などにより構成される。 The memory unit 259 is composed of a DRAM (Dynamic Random Access Memory), a SRAM (Static Random Access Memory), or the like.
 本実施形態の撮像装置の画素領域251において、2次元配列された複数の画素は、2行2列に配置された色画素を有する画素群に分けられる。この画素群を図2に示す。図2は、撮像装置の表面側(裏面と反対側)から見た平面図である。画素群10は、赤色に対応する波長帯(第1波長帯)の光を電荷に変換する赤色画素10Rと、緑色に対応する波長帯(第2波長帯)の光を電荷に変換する緑色画素10G1、10G2と、青色に対応する波長帯(第3波長帯)の光を電荷に変換する青色画素10Bと、を備えている。赤色画素10R、緑色画素10G1,10G2、および青色画素10Bは、それぞれ第1画素、第2画素、および第3画素に該当する。例えば、図2において、第1行第1列に赤色画素10Rが配置され、第1行第2列に緑色画素10G1が配置され、第2行第1列に緑色画素10G2が配置され、第2行第2列に青色画素10Bが配置されている。この図2に示す配列はベイヤー配列と呼ばれる。なお、各画素は赤、緑、青以外の波長帯の色に対応した画素であってもよい。 In the pixel area 251 of the image pickup apparatus of the present embodiment, a plurality of pixels arranged two-dimensionally are divided into a pixel group having color pixels arranged in two rows and two columns. This pixel group is shown in FIG. FIG. 2 is a plan view seen from the front surface side (opposite side to the back surface side) of the image pickup apparatus. The pixel group 10 includes a red pixel 10R that converts light in the wavelength band corresponding to red (first wavelength band) into charge, and a green pixel that converts light in the wavelength band corresponding to green (second wavelength band) into charge. It includes 10G1 and 10G2, and a blue pixel 10B that converts light in a wavelength band corresponding to blue (third wavelength band) into a charge. The red pixel 10R, the green pixel 10G1, 10G2, and the blue pixel 10B correspond to the first pixel, the second pixel, and the third pixel, respectively. For example, in FIG. 2, the red pixel 10R is arranged in the first row and the first column, the green pixel 10G1 is arranged in the first row and the second column, the green pixel 10G2 is arranged in the second row and the first column, and the second row. The blue pixel 10B is arranged in the second column of the row. The sequence shown in FIG. 2 is called a Bayer sequence. It should be noted that each pixel may be a pixel corresponding to a color in a wavelength band other than red, green, and blue.
 赤色画素10R、緑色画素10G1、10G2、および青色画素10Bの間には深いトレンチが設けられ、これらのトレンチ内に設けられた絶縁膜20a、20b、20c、20d、20e、20fによって素子分離されている。すなわち、これらのトレンチおよび絶縁膜は画素分離部となる。なお、この第1実施形態においては、トレンチは半導体基板を貫通するFTI(Full Trench Isolation)として設けられている。絶縁膜20aは、赤色画素10Rおよび緑色画素10G2の左側の列方向に配置されている。絶縁膜20bは、赤色画素10Rと緑色画素10G1との間および緑色画素10G2と青色画素10Bとの間の列方向に配置されている。絶縁膜20cは、緑色画素10G1および青色画素10Bの右側の列方向に配置されている。絶縁膜20dは、赤色画素10Rおよび緑色画素10G1の上側の行方向に配置されている。絶縁膜20eは、赤色画素10Rと緑色画素10G2との間および緑色画素10G1と青色画素10Bとの間に行方向に配列されている。絶縁膜20fは、緑色画素10G2と青色画素10Bの下側の行方向に配列されている。 Deep trenches are provided between the red pixels 10R, the green pixels 10G1, 10G2, and the blue pixels 10B, and the elements are separated by the insulating films 20a, 20b, 20c, 20d, 20e, and 20f provided in these trenches. There is. That is, these trenches and the insulating film serve as pixel separation portions. In this first embodiment, the trench is provided as an FTI (Full Trench Isolation) penetrating the semiconductor substrate. The insulating film 20a is arranged in the left column direction of the red pixel 10R and the green pixel 10G2. The insulating film 20b is arranged in the row direction between the red pixel 10R and the green pixel 10G1 and between the green pixel 10G2 and the blue pixel 10B. The insulating film 20c is arranged in the right column direction of the green pixel 10G1 and the blue pixel 10B. The insulating film 20d is arranged in the row direction on the upper side of the red pixel 10R and the green pixel 10G1. The insulating film 20e is arranged in the row direction between the red pixel 10R and the green pixel 10G2 and between the green pixel 10G1 and the blue pixel 10B. The insulating film 20f is arranged in the lower row direction of the green pixel 10G2 and the blue pixel 10B.
 また、緑色画素10G1には、絶縁膜20eおよび絶縁膜20cに接続するように平面形状が三角形の例えばP型不純物領域25G1が配置されている。このP型不純物領域25G1は、緑色画素10G1が形成されている画素領域251をGND電位に接続するのに用いられる。 Further, in the green pixel 10G1, for example, a P-type impurity region 25G1 having a triangular planar shape is arranged so as to connect to the insulating film 20e and the insulating film 20c. This P-type impurity region 25G1 is used to connect the pixel region 251 on which the green pixel 10G1 is formed to the GND potential.
 赤色画素10Rには、絶縁膜20eおよび絶縁膜20aに接続するように平面形状が三角形状の例えばP型不純物領域25Rが配置されている。このP型不純物領域25Rは、赤色画素10Rが形成されている画素領域251をGND電位に接続するのに用いられる。 In the red pixel 10R, for example, a P-type impurity region 25R having a triangular planar shape is arranged so as to connect to the insulating film 20e and the insulating film 20a. This P-type impurity region 25R is used to connect the pixel region 251 on which the red pixel 10R is formed to the GND potential.
 緑色画素10G2には、絶縁膜20eおよび絶縁膜20aに接続するように平面形状が三角形の例えばP型不純物領域25G2が配置されている。このP型不純物領域25G2は、緑色画素10G2が形成されている画素領域251をGND電位に接続するのに用いられる。 In the green pixel 10G2, for example, a P-type impurity region 25G2 having a triangular planar shape is arranged so as to connect to the insulating film 20e and the insulating film 20a. The P-type impurity region 25G2 is used to connect the pixel region 251 on which the green pixel 10G2 is formed to the GND potential.
 青色画素10Bには、絶縁膜20eおよび絶縁膜20cに接続するように平面形状が三角形の例えばP型不純物領域25Bが配置されている。このP型不純物領域25Bは、青色画素10Bが形成されている画素領域251をGND電位に接続するのに用いられる。 In the blue pixel 10B, for example, a P-type impurity region 25B having a triangular planar shape is arranged so as to connect to the insulating film 20e and the insulating film 20c. The P-type impurity region 25B is used to connect the pixel region 251 on which the blue pixel 10B is formed to the GND potential.
 赤色画素10R、緑色画素10G1、10G2、および青色画素10Bはそれぞれ、光電変換素子(フォトダイオード)PDと、転送トランジスタTGと、フローティングディフュージョンFDと、を備えている。そして、赤色画素10R以外の画素の領域に、画素トランジスタが配置されている。なお、本明細書では、選択トランジスタSEL、リセットトランジスタRST、および増幅トランジスタAMPを総称して画素トランジスタと呼ぶ。例えば、緑色画素10G1の領域には、リセットトランジスタRSTが配置され、緑色画素10G1の領域には、選択トランジスタSELが配置され、青色画素10Bの領域には増幅トランジスタAMPが配置されている。しかし、本実施形態では、赤色画素10Rの領域には画素トランジスタは配置されていない。 The red pixel 10R, the green pixel 10G1, 10G2, and the blue pixel 10B each include a photoelectric conversion element (photodiode) PD, a transfer transistor TG, and a floating diffusion FD, respectively. A pixel transistor is arranged in a pixel region other than the red pixel 10R. In this specification, the selection transistor SEL, the reset transistor RST, and the amplification transistor AMP are collectively referred to as a pixel transistor. For example, the reset transistor RST is arranged in the area of the green pixel 10G1, the selection transistor SEL is arranged in the area of the green pixel 10G1, and the amplification transistor AMP is arranged in the area of the blue pixel 10B. However, in the present embodiment, the pixel transistor is not arranged in the region of the red pixel 10R.
 画素群を図2に示す切断線A-Aで切断した断面を図3Aに示し、図2に示す切断線B-Bで切断した断面を図3Bに示す。赤色画素10R、緑色画素10G1,10G2、青色画素10Bはそれぞれ、半導体領域12に光電変換素子PDが形成されている。赤色画素10Rは光電変換素子PD上に赤色フィルタ14Rが設けられ、この赤色フィルタ14Rの上方にマイクロレンズ18が設けられている。緑色画素10G2は光電変換素子PD上に緑色フィルタ14Gが設けられ、この緑色フィルタ14Gの上方にマイクロレンズ18が設けられている(図3A)。緑色画素10G1は光電変換素子PD上に緑色フィルタ14Gが設けられ、この緑色フィルタ14Gの上方にマイクロレンズ18が設けられている。青色画素10Bは光電変換素子PD上に青色フィルタ14Bが設けられ、この青色フィルタ14Bの上方にマイクロレンズ18が設けられている(図3B)。緑色画素10G2の光電変換素子PDの下方には絶縁膜21を介してセットトランジスタSELが設けられている(図3A)。緑色画素10G1の光電変換素子PDの下方には絶縁膜21を介してリセットトランジスタRSTが設けられ、青色画素10Bの光電変換素子PDの下方には絶縁膜21を介して増幅トランジスタAMPが設けられている(図3B)。 FIG. 3A shows a cross section of the pixel group cut along the cutting line AA shown in FIG. 2, and FIG. 3B shows a cross section cut along the cutting line BB shown in FIG. The red pixel 10R, the green pixels 10G1, 10G2, and the blue pixel 10B each have a photoelectric conversion element PD formed in the semiconductor region 12. The red pixel 10R is provided with a red filter 14R on the photoelectric conversion element PD, and a microlens 18 is provided above the red filter 14R. The green pixel 10G2 is provided with a green filter 14G on the photoelectric conversion element PD, and a microlens 18 is provided above the green filter 14G (FIG. 3A). The green pixel 10G1 is provided with a green filter 14G on the photoelectric conversion element PD, and a microlens 18 is provided above the green filter 14G. The blue pixel 10B is provided with a blue filter 14B on the photoelectric conversion element PD, and a microlens 18 is provided above the blue filter 14B (FIG. 3B). A set transistor SEL is provided below the photoelectric conversion element PD of the green pixel 10G2 via an insulating film 21 (FIG. 3A). A reset transistor RST is provided below the photoelectric conversion element PD of the green pixel 10G1 via an insulating film 21, and an amplification transistor AMP is provided below the photoelectric conversion element PD of the blue pixel 10B via an insulating film 21. (Fig. 3B).
 このように、本実施形態によれば、赤色画素10Rの領域には画素トランジスタが設けられていないため、光電変換素子PDの深い位置で光電変換された信号電荷が画素トランジスタに吸収されず、画素群における量子効率の低下を抑制することができる。また、緑色画素10G1、10G2および青色画素10Bの光電変換素子PDの下方に絶縁膜21を介して画素トランジスタSEL、RST、AMPがそれぞれ配置されるので、画素トランジスタのサイズを大きくすることができる。 As described above, according to the present embodiment, since the pixel transistor is not provided in the region of the red pixel 10R, the signal charge photoelectrically converted at the deep position of the photoelectric conversion element PD is not absorbed by the pixel transistor, and the pixel. It is possible to suppress the decrease in quantum efficiency in the group. Further, since the pixel transistors SEL, RST, and AMP are respectively arranged below the photoelectric conversion element PD of the green pixels 10G1 and 10G2 and the blue pixel 10B via the insulating film 21, the size of the pixel transistor can be increased.
 この図2に示す画素群の回路図を図4に示す。この回路図に示す各素子に関する配線は図2において太い実線で示す。これらの配線は、主に絶縁膜20b上に配置される(図2)。図4から分かるように、色画素10R、10G1、10G2、10Bにおいて、それぞれの光電変換素子FDは転送トランジスタTGを介してフローティングディフュージョンFDに接続されている。このフローティングディフュージョンFDはリセットトランジスタRSTを介して電源VDDに接続されているとともに、増幅トランジスタAMPのゲートに接続されている。この増幅トランジスタAMPはドレインが電源VDDに接続され、ドレインが選択トランジスタSELのソースに接続されている。すなわち、増幅トランジスタAMPはソースフォロアアンプとなる。 The circuit diagram of the pixel group shown in FIG. 2 is shown in FIG. The wiring for each element shown in this circuit diagram is shown by a thick solid line in FIG. These wirings are mainly arranged on the insulating film 20b (FIG. 2). As can be seen from FIG. 4, in the color pixels 10R, 10G1, 10G2, and 10B, each photoelectric conversion element FD is connected to the floating diffusion FD via the transfer transistor TG. This floating diffusion FD is connected to the power supply VDD via the reset transistor RST and is also connected to the gate of the amplification transistor AMP. In this amplification transistor AMP, the drain is connected to the power supply VDD and the drain is connected to the source of the selection transistor SEL. That is, the amplification transistor AMP becomes a source follower amplifier.
 このように構成された画素における読み出し動作は以下のようになる。露光が終了した段階で、光電変換素子PDには信号電荷が集積されており、フローティングディフュージョンFDには、露光期間中に蓄積された雑音電荷がある。このとき、選択された行の画素のリセットトランジスタRSTのゲートにリセットパルスが印加されることによって、フローティングディフュージョンFDから雑音電荷が排出されるとともにフローティングディフュージョンFDが電位VDDにリセットされる。さらに選択トランジスタSELのゲートに行選択パルスが印加されると、ソースフォロアアンプAMPが導通状態になり、リセットされたフローティングディフュージョンFDの電位がソースフォロアアンプAMPから出力される。続いて選択された行の画素の転送トランジスタに垂直駆動部254(図1)から読み出しパルスが印加され、光電変換素子PDの信号電荷がフローティングディフュージョンFDに転送されてフローティングディフュージョンFDの電位が低下する。続いて、信号電荷が蓄積されたフローティングディフュージョンFDの電位がソースフォロアアンプAMPから出力される。次にステップで、リセット出力と信号電荷による出力との差分が例えば相関二重サンプリングで得られる。最後のステップで、フローティングディフュージョンFD内の信号電荷をリセットして読み出し動作が完了する。 The reading operation for the pixels configured in this way is as follows. At the stage when the exposure is completed, the signal charge is accumulated in the photoelectric conversion element PD, and the floating diffusion FD has the noise charge accumulated during the exposure period. At this time, by applying a reset pulse to the gate of the reset transistor RST of the pixel in the selected row, the noise charge is discharged from the floating diffusion FD and the floating diffusion FD is reset to the potential VDD. Further, when a row selection pulse is applied to the gate of the selection transistor SEL, the source follower amplifier AMP becomes conductive, and the reset floating diffusion FD potential is output from the source follower amplifier AMP. Subsequently, a read pulse is applied from the vertical drive unit 254 (FIG. 1) to the transfer transistor of the pixel of the selected row, the signal charge of the photoelectric conversion element PD is transferred to the floating diffusion FD, and the potential of the floating diffusion FD decreases. .. Subsequently, the potential of the floating diffusion FD in which the signal charge is accumulated is output from the source follower amplifier AMP. Then, in the step, the difference between the reset output and the output due to the signal charge is obtained, for example, by correlated double sampling. In the final step, the signal charge in the floating diffusion FD is reset to complete the read operation.
 以上説明したように、本実施形態によれば、赤色画素10R以外の色画素10G1、10G2、10Bの領域に画素トランジスタを設けた構成を備えているので、量子効率の低下を抑制することができる。また、画素群における画素トランジスタのサイズを大きくすることができる。 As described above, according to the present embodiment, since the pixel transistors are provided in the regions of the color pixels 10G1, 10G2, and 10B other than the red pixel 10R, the decrease in quantum efficiency can be suppressed. .. In addition, the size of the pixel transistor in the pixel group can be increased.
(第2実施形態)
 第2実施形態による撮像装置について図5を参照して説明する。図5は第2実施形態の撮像装置の画素配列および選択トランジスタの配線を表側からみた平面図である。
(Second Embodiment)
The image pickup apparatus according to the second embodiment will be described with reference to FIG. FIG. 5 is a plan view of the pixel arrangement of the image pickup apparatus of the second embodiment and the wiring of the selection transistor as viewed from the front side.
 この第2実施形態の撮像装置は、図2に示す第1実施形態の撮像装置とは、画素群内の色画素の配列は同じであるが、画素トランジスタの配置および配線が異なっている構成を有している。すなわち、この第2実施形態の撮像装置は、列方向に配列された2つの画素群10,10に対して、画素トランジスタを共有した構成を有している。2つの画素群10,10の各色画素は絶縁膜20によって分離されている。 The image pickup device of the second embodiment has the same arrangement of color pixels in the pixel group as the image pickup device of the first embodiment shown in FIG. 2, but the arrangement and wiring of the pixel transistors are different. Have. That is, the image pickup apparatus of the second embodiment has a configuration in which a pixel transistor is shared with respect to two pixel groups 10 1 and 102 arranged in the column direction. Each color pixel of the two pixel groups 10 1 and 10 2 is separated by the insulating film 20.
 1段目の画素群10の青色画素10Bの領域に増幅トランジスタAMPと、選択トランジスタSELを配置し、2段目の画素群10の青色画素10Bの領域にリセットトランジスタRSTおよびダミートランジスタDMYを配置した構成を有している。ダミートランジスタDMYは、選択トランジスタSEL、増幅トランジスタAMP、およびリセットトランジスタRSTと同じ構造を有しているが、配線されずトランジスタとして機能しない。このように配置された画素群101、102の回路図を図6に示す。この回路図の各素子に関する配線は図5において太い実線で示す。これらの配線は主に、赤色画素10Rと緑色画素10G1との間の絶縁膜および緑色画素10G2と青色画素10Bとの間の絶縁膜上に配置される。 The amplification transistor AMP and the selection transistor SEL are arranged in the region of the blue pixel 10B of the first -stage pixel group 101, and the reset transistor RST and the dummy transistor DMY are arranged in the region of the blue pixel 10B of the second -stage pixel group 102. It has an arranged configuration. The dummy transistor DMY has the same structure as the selection transistor SEL, the amplification transistor AMP, and the reset transistor RST, but is not wired and does not function as a transistor. The circuit diagram of the pixel groups 101 and 102 arranged in this way is shown in FIG. The wiring for each element in this circuit diagram is shown by a thick solid line in FIG. These wirings are mainly arranged on the insulating film between the red pixel 10R and the green pixel 10G1 and the insulating film between the green pixel 10G2 and the blue pixel 10B.
 このように構成された第2実施形態によれば、赤色画素10Rの領域に画素トランジスタが配置されないので、量子効率の低下を抑制することができる。 According to the second embodiment configured in this way, since the pixel transistor is not arranged in the region of the red pixel 10R, it is possible to suppress the decrease in quantum efficiency.
 (第1変形例)
 第1変形例による撮像装置について図7および図8を参照して説明する。図7は、第1変形例の撮像装置の画素配列および選択トランジスタの配線を表側からみた平面図であり、図8はこの第1変形例の画素群における回路図である。
(First modification)
The image pickup apparatus according to the first modification will be described with reference to FIGS. 7 and 8. FIG. 7 is a plan view of the pixel arrangement of the image pickup apparatus of the first modification and the wiring of the selection transistor as viewed from the front side, and FIG. 8 is a circuit diagram of the pixel group of the first modification.
 この第1変形例の撮像装置は、図5に示す第2実施形態の撮像装置において、画素群10の青色画素10Bの領域に配列されたダミートランジスタDMYを増幅トランジスタAMP2に置き換えた構成を備えている。なお、図5に示す画素群10の青色画素10Bの領域に配列された増幅トランジスタAMPは増幅トランジスタAMP1となり、増幅トランジスタAMP1と増幅トランジスタAMP2はゲートが共通でかつ並列に接続される(図7、図8)。このような構成にすることにより、増幅トランジスタの相互コンダクタンスGmを増大することができる。 The image pickup apparatus of this first modification has a configuration in which the dummy transistor DMY arranged in the region of the blue pixel 10B of the pixel group 102 is replaced with the amplification transistor AMP2 in the image pickup apparatus of the second embodiment shown in FIG. ing. The amplification transistor AMP arranged in the region of the blue pixel 10B of the pixel group 101 shown in FIG. 5 becomes the amplification transistor AMP1, and the amplification transistor AMP1 and the amplification transistor AMP2 have a common gate and are connected in parallel (FIG. 7). , FIG. 8). With such a configuration, the transconductance Gm of the amplification transistor can be increased.
 この第1変形例によれば、第2実施形態と同様に、赤色画素10Rの領域に画素トランジスタが配置されないので、量子効率の低下を抑制することができる。 According to this first modification, since the pixel transistor is not arranged in the region of the red pixel 10R as in the second embodiment, the decrease in quantum efficiency can be suppressed.
 (第2変形例)
 第2変形例による撮像装置について図9および図10を参照して説明する。図9は、第2変形例の撮像装置の画素配列および選択トランジスタの配線を表側からみた平面図であり、図10はこの第2変形例の画素群における回路図である。
(Second modification)
The image pickup apparatus according to the second modification will be described with reference to FIGS. 9 and 10. FIG. 9 is a plan view of the pixel arrangement of the image pickup apparatus of the second modification and the wiring of the selection transistor as viewed from the front side, and FIG. 10 is a circuit diagram of the pixel group of the second modification.
 この第2変形例の撮像装置は、図5に示す第2実施形態の撮像装置において、画素群10の青色画素10Bの領域に配列されたダミートランジスタDMYを変換効率切換スイッチFDGに置き換える(図9)。図9では示されていないが、更に副フローティングディフュージョンSub-FDは容量付加部とも云われる。変換効率切換スイッチFDGは、リセットトランジスタRSTとフローティングディフュージョンFDとの間に直列に配置される。副フローティングディフュージョンSub-FDは、リセットトランジスタRSTと変換効率切換スイッチFDGとの接続ノードと、接地ノードとの間に配置される(図10)。このように構成したことにより、光電変換の変換効率を切り換えることができる。変換効率切換スイッチFDGは、画素の変換効率が低モードの時に使用される。この変換効率切換スイッチFDGがオンの際は、リセットトランジスタRSTを含む寄生容量が副フローティングディフュージョンSub-FDに付加されるため、後述する図11に示す並列接続の場合に比べて大幅に変換効率を下げることができる。 In the image pickup device of the second embodiment shown in FIG. 5, the image pickup device of this second modification replaces the dummy transistor DMY arranged in the region of the blue pixel 10B of the pixel group 102 with the conversion efficiency changeover switch FDG (FIG. 5). 9). Although not shown in FIG. 9, the sub-floating diffusion Sub-FD is also referred to as a capacitance addition section. The conversion efficiency selector switch FDG is arranged in series between the reset transistor RST and the floating diffusion FD. The sub-floating diffusion Sub-FD is arranged between the connection node of the reset transistor RST and the conversion efficiency selector switch FDG and the ground node (FIG. 10). With this configuration, the conversion efficiency of photoelectric conversion can be switched. The conversion efficiency selector switch FDG is used when the conversion efficiency of the pixels is in the low mode. When this conversion efficiency selector switch FDG is on, a parasitic capacitance including the reset transistor RST is added to the sub-floating diffusion Sub-FD, so that the conversion efficiency is significantly improved as compared with the case of parallel connection shown in FIG. 11 described later. Can be lowered.
 この第2変形例によれば、第2実施形態と同様に、赤色画素10Rの領域に画素トランジスタが配置されないので、量子効率の低下を抑制することができる。 According to this second modification, since the pixel transistor is not arranged in the region of the red pixel 10R as in the second embodiment, the decrease in quantum efficiency can be suppressed.
 (第3変形例)
 第3変形例による撮像装置について図11を参照して説明する。図11は、第3変形例の撮像装置の画素群における回路図である。この第3変形例は、第2変形例の撮像装置において、変換効率切換スイッチFDGおよび副フローティングディフージョンSub-FDの接続が異なっている以外は同じ構成を備えている。
(Third modification example)
The image pickup apparatus according to the third modification will be described with reference to FIG. FIG. 11 is a circuit diagram of the pixel group of the image pickup apparatus of the third modification. This third modification has the same configuration in the image pickup apparatus of the second modification except that the connection of the conversion efficiency selector switch FDG and the sub-floating diffusion Sub-FD is different.
 この第3変形例においては、変換効率切換スイッチFDGおよび副フローティングディフュージョンSub-FDがフローティングディフュージョンFDと並列に接続されている。このように構成したことにより、変換効率の切り換え機能を有することになる。 In this third modification, the conversion efficiency selector switch FDG and the sub-floating diffusion Sub-FD are connected in parallel with the floating diffusion FD. With this configuration, it has a conversion efficiency switching function.
 この第3変形例によれば、第2実施形態と同様に、赤色画素10Rの領域に画素トランジスタが配置されないので、量子効率の低下を抑制することができる。 According to this third modification, since the pixel transistor is not arranged in the region of the red pixel 10R as in the second embodiment, the decrease in quantum efficiency can be suppressed.
(第3実施形態)
 第3実施形態による撮像装置について図12を参照して説明する。図12は、第3実施形態の撮像装置の画素群を表側から見た平面図である。この第3実施形態の撮像装置は、図5に示す第2実施形態の撮像装置において、1段目の画素群10の赤色画素10R、緑色画素10G1、10G2、青色画素10Bは、フローティングディフュージョンFDを物理的に共有している。ここで、物理的に共有するとは、フローティングディフュージョンFDに直接接続していてもよいし、配線を介して接続していてもよいことを意味する。この共有化されたフローティングディフュージョンFDは、画素群10の赤色画素10R、緑色画素10G1、10G2、および青色画素10Bが共通に接する半導体領域12を含む領域に配置される(例えば、後述する第4実施形態の図14および図15参照)。このフローティングディフュージョンFDは、赤色画素10R、緑色画素10G1、10G2、および青色画素10Bのそれぞれの転送ゲートTGに接続される。なお、この第3実施形態においては、トレンチは半導体領域を貫通しないように設けられている。
(Third Embodiment)
The image pickup apparatus according to the third embodiment will be described with reference to FIG. FIG. 12 is a plan view of the pixel group of the image pickup apparatus of the third embodiment as viewed from the front side. The image pickup apparatus of the third embodiment is the image pickup apparatus of the second embodiment shown in FIG. Is physically shared. Here, physically sharing means that it may be directly connected to the floating diffusion FD or may be connected via wiring. The shared floating diffusion FD is arranged in a region including a semiconductor region 12 in which the red pixel 10R, the green pixels 10G1, 10G2, and the blue pixel 10B of the pixel group 10 1 are in common contact (for example, a fourth described later). 14 and 15 of the embodiments). The floating diffusion FD is connected to each transfer gate TG of the red pixel 10R, the green pixel 10G1, 10G2, and the blue pixel 10B. In this third embodiment, the trench is provided so as not to penetrate the semiconductor region.
 また、2段目の画素群10の赤色画素10R、緑色画素10G1、10G2、青色画素10BのフローティングディフュージョンFDが共有化されている。この共有化されたフローティングディフュージョンFDは、画素群10の赤色画素10R、緑色画素10G1、10G2、および青色画素10Bが共通に接続する半導体部を含む領域に配置される(例えば、後述する第4実施形態の図14および図15参照)。このフローティングディフュージョンFDは、赤色画素10R、緑色画素10G1、10G2、および青色画素10Bのそれぞれの転送ゲートTGに接続される。 Further, the floating diffusion FD of the red pixel 10R, the green pixels 10G1, 10G2, and the blue pixel 10B of the second -stage pixel group 102 is shared. The shared floating diffusion FD is arranged in a region including a semiconductor portion to which the red pixel 10R, the green pixels 10G1 , 10G2, and the blue pixel 10B of the pixel group 102 are commonly connected (for example, a fourth described later). 14 and 15 of the embodiments). The floating diffusion FD is connected to each transfer gate TG of the red pixel 10R, the green pixel 10G1, 10G2, and the blue pixel 10B.
 そして、第3実施形態においては、増幅トランジスタAMPおよび選択トランジスタSELは、図5に示す第2実施形態と異なり、1段目の画素群10の青色画素10Bと2段目の画素群10の緑色画素10G1との間の絶縁膜20A上に配置される。絶縁膜20Aは、1段目の画素群10の青色画素10Bを含む領域に含まれるとともに2段目の画素群10の緑色画素10G1を含む領域に含まれる。すなわち、増幅トランジスタAMPおよび選択トランジスタSELは、1段目の画素群10の青色画素10Bを含む領域と2段目の画素群10の緑色画素10G1を含む領域に配置される。また、リセットトランジスタRSTおよびダミートランジスタDMYは、図5に示す第2実施形態と異なり、2段目の画素群10の青色画素10Bと図に示さない3段目の画素群の緑色画素との間の絶縁膜20B上に配置される。すなわち、行方向に配置された青色画素10Bの絶縁膜のうち、画素群10の緑色画素10G1から遠い位置の絶縁膜20B上に配置される。絶縁膜20Bは、2段目の画素群10の青色画素10Bを含む領域に含まれるので、リセットトランジスタRSTおよびダミートランジスタDMYは、2段目の画素群10の青色画素10Bを含む領域に配置される。 Then, in the third embodiment, unlike the second embodiment shown in FIG. 5, the amplification transistor AMP and the selection transistor SEL have the blue pixel 10B of the first -stage pixel group 101 and the second -stage pixel group 102. It is arranged on the insulating film 20A between the green pixel 10G1 and the green pixel 10G1. The insulating film 20A is included in the region including the blue pixel 10B of the first -stage pixel group 101 and is included in the region including the green pixel 10G1 of the second -stage pixel group 102. That is, the amplification transistor AMP and the selection transistor SEL are arranged in the region including the blue pixel 10B of the first -stage pixel group 101 and the region including the green pixel 10G1 of the second -stage pixel group 102. Further, unlike the second embodiment shown in FIG. 5, the reset transistor RST and the dummy transistor DMY have a blue pixel 10B of the second -stage pixel group 101 and a green pixel of the third-stage pixel group not shown in the figure. It is arranged on the insulating film 20B between them. That is, among the insulating films of the blue pixels 10B arranged in the row direction, they are arranged on the insulating film 20B at a position far from the green pixels 10G1 of the pixel group 101. Since the insulating film 20B is included in the region including the blue pixel 10B of the second -stage pixel group 101, the reset transistor RST and the dummy transistor DMY are included in the region including the blue pixel 10B of the second -stage pixel group 101. Be placed.
 1段目の画素群10および2段目画素群10の共有化されたフローティングディフュージョンFDはそれぞれ、増幅トランジスタAMPのゲートおよびリセットトランジスタRSTのドレインに配線(図12において太い実線で示す)で接続される。 The shared floating diffusion FDs of the first-stage pixel group 10 1 and the second-stage pixel group 10 2 are wired to the gate of the amplification transistor AMP and the drain of the reset transistor RST, respectively (indicated by a thick solid line in FIG. 12). Be connected.
 このように構成された第3実施形態によれば、第2実施形態と同様に、赤色画素10Rの領域に画素トランジスタが配置されないので、量子効率の低下を抑制することができる。 According to the third embodiment configured as described above, since the pixel transistor is not arranged in the region of the red pixel 10R as in the second embodiment, the decrease in quantum efficiency can be suppressed.
 (第1変形例)
 第3実施形態の第1変形例による撮像装置について図13を参照して説明する。図13は、第1変形例の撮像装置の画素群を表側から見た平面図である。この第1変形例の撮像装置は、図12に示す第3実施形態と異なり、増幅トランジスタAMP、選択トランジスタSEL、リセットトランジスタRST、およびダミートランジスタDMYは、列方向(縦方向)の絶縁膜上に配置される。
(First modification)
The image pickup apparatus according to the first modification of the third embodiment will be described with reference to FIG. FIG. 13 is a plan view of the pixel group of the image pickup apparatus of the first modification as viewed from the front side. Unlike the third embodiment shown in FIG. 12, the image pickup apparatus of this first modification has the amplification transistor AMP, the selection transistor SEL, the reset transistor RST, and the dummy transistor DMY on the insulating film in the column direction (longitudinal direction). Be placed.
 図13に示すように、増幅トランジスタAMPおよび選択トランジスタSELは、画素群10の青色画素10Bの列方向(縦方向)の絶縁膜のうち画素群10の緑色画素10G2から遠い側の絶縁膜20C上に配置される。すなわち、増幅トランジスタAMPおよび選択トランジスタSELは、画素群10の青色画素10Bを含む領域に配置される。また、リセットトランジスタRSTおよびダミートランジスタDMYは、画素群10の青色画素10Bの列方向(縦方向)の絶縁膜のうち画素群10の緑色画素10G2から遠い側の絶縁膜20D上に配置される。すなわち、リセットトランジスタRSTおよびダミートランジスタDMYは、画素群10の青色画素10Bを含む領域に配置される。 As shown in FIG. 13, the amplification transistor AMP and the selection transistor SEL are the insulating film on the side far from the green pixel 10G2 of the pixel group 101 among the insulating films in the column direction (vertical direction) of the blue pixel 10B of the pixel group 101. It is placed on 20C. That is, the amplification transistor AMP and the selection transistor SEL are arranged in the region including the blue pixel 10B of the pixel group 101 . Further, the reset transistor RST and the dummy transistor DMY are arranged on the insulating film 20D on the side far from the green pixel 10G2 of the pixel group 102 among the insulating films in the column direction (vertical direction) of the blue pixel 10B of the pixel group 102. To. That is, the reset transistor RST and the dummy transistor DMY are arranged in the region including the blue pixel 10B of the pixel group 102.
 この第1変形例においても、1段目の画素群10および2段目画素群10の共有化されたフローティングディフュージョンFDはそれぞれ、増幅トランジスタAMPのゲートおよびリセットトランジスタRSTのドレインに配線(図13において太い実線で示す)で接続される。 Also in this first modification, the shared floating diffusion FDs of the first-stage pixel group 10 1 and the second -stage pixel group 102 are wired to the gate of the amplification transistor AMP and the drain of the reset transistor RST, respectively (FIG. 13 is connected by a thick solid line).
 このように構成された第1変形例によれば、第3実施形態と同様に、赤色画素10Rの領域に画素トランジスタが配置されないので、量子効率の低下を抑制することができる。 According to the first modification configured as described above, since the pixel transistor is not arranged in the region of the red pixel 10R as in the third embodiment, the decrease in quantum efficiency can be suppressed.
(第4実施形態)
 第4実施形態による撮像装置について図14、図15を参照して説明する。図14は、第4実施形態の撮像装置の画素群10を表側から見た平面図である。図15は、図14に示す切断線X-Xで切断した断面図である。第1実施形態と異なり、この画素群10を構成する赤色画素10R、緑色画素10G1、緑色画素10G2、および青色画素10BのフローティングディフュージョンFDは共有化される。すなわち、フローティングディフュージョンFDは、画素群10の赤色画素10R、緑色画素10G1、10G2、および青色画素10Bが共通に接続する半導体領域12を含む領域に配置される。なお、画素群10の赤色画素10R、緑色画素10G1、10G2、および青色画素10Bは、絶縁膜20によって覆われている。
(Fourth Embodiment)
The image pickup apparatus according to the fourth embodiment will be described with reference to FIGS. 14 and 15. FIG. 14 is a plan view of the pixel group 10 of the image pickup apparatus of the fourth embodiment as viewed from the front side. FIG. 15 is a cross-sectional view taken along the cutting line XX shown in FIG. Unlike the first embodiment, the floating diffusion FD of the red pixel 10R, the green pixel 10G1, the green pixel 10G2, and the blue pixel 10B constituting the pixel group 10 is shared. That is, the floating diffusion FD is arranged in a region including a semiconductor region 12 to which the red pixels 10R, the green pixels 10G1, 10G2, and the blue pixels 10B of the pixel group 10 are commonly connected. The red pixel 10R, the green pixels 10G1, 10G2, and the blue pixel 10B of the pixel group 10 are covered with the insulating film 20.
 また、本実施形態においては、画素群10の画素トランジスタである、増幅トランジスタ、リセットトランジスタRSL、選択トランジスタSELは、青色画素10Bと、画素群10の同じ列でかつ下方で隣接する図示しない画素群の緑色画素との間の絶縁膜上に配置される。すなわち、増幅トランジスタ、リセットトランジスタRSL、選択トランジスタSELは、青色画素10Bを含む領域に配置される。 Further, in the present embodiment, the amplification transistor, the reset transistor RSL, and the selection transistor SEL, which are the pixel transistors of the pixel group 10, are the same row as the blue pixel 10B and adjacent to each other in the lower pixel group (not shown). It is placed on an insulating film between the green pixels of the. That is, the amplification transistor, the reset transistor RSL, and the selection transistor SEL are arranged in the region including the blue pixel 10B.
 共有化されたフローティングディフュージョンFD増幅トランジスタのゲートおよびリセットトランジスタRSTのドレインに配線(図14において太い実線で示す)によって接続される。 It is connected to the gate of the shared floating diffusion FD amplification transistor and the drain of the reset transistor RST by wiring (indicated by a thick solid line in FIG. 14).
 なお、第1実施形態と同様に、緑色画素10G1には、絶縁膜20eおよび絶縁膜20cに接続するように平面形状が三角形の例えばP型不純物領域25G1が配置されている。赤色画素10Rには、絶縁膜20eおよび絶縁膜20aに接続するように平面形状が三角形状の例えばP型不純物領域25Rが配置されている。緑色画素10G2には、絶縁膜20eおよび絶縁膜20aに接続するように平面形状が三角形の例えばP型不純物領域25G2が配置されている。青色画素10Bには、絶縁膜20eおよび絶縁膜20cに接続するように平面形状が三角形の例えばP型不純物領域25Bが配置されている。 Similar to the first embodiment, the green pixel 10G1 is provided with, for example, a P-type impurity region 25G1 having a triangular planar shape so as to be connected to the insulating film 20e and the insulating film 20c. In the red pixel 10R, for example, a P-type impurity region 25R having a triangular planar shape is arranged so as to connect to the insulating film 20e and the insulating film 20a. In the green pixel 10G2, for example, a P-type impurity region 25G2 having a triangular planar shape is arranged so as to connect to the insulating film 20e and the insulating film 20a. In the blue pixel 10B, for example, a P-type impurity region 25B having a triangular planar shape is arranged so as to connect to the insulating film 20e and the insulating film 20c.
 図15に示すように、画素群10の赤色画素10Rの光電変換素子PDの上方には赤色フィルタ14Rが配置され、この赤色フィルタ14Rの上方にはマイクロレンズ18が配置される。また、青色画素10Bの光電変換素子PDの上方には青色フィルタ14Bが配置され、この青色フィルタ14Bの上方にはマイクロレンズ18が配置される。なお、ず15では示していないが、緑色画素10G1、10G2の光電変換素子PDの上方には緑色フィルタが配置され、この緑色フィルタの上方にはマイクロレンズが配置される。 As shown in FIG. 15, a red filter 14R is arranged above the photoelectric conversion element PD of the red pixel 10R of the pixel group 10, and a microlens 18 is arranged above the red filter 14R. Further, a blue filter 14B is arranged above the photoelectric conversion element PD of the blue pixel 10B, and a microlens 18 is arranged above the blue filter 14B. Although not shown in No. 15, a green filter is arranged above the photoelectric conversion element PD of the green pixels 10G1 and 10G2, and a microlens is arranged above the green filter.
 この第4実施形態における画素群10の回路図は、図4に示す第1実施形態の回路図と同じになる。 The circuit diagram of the pixel group 10 in the fourth embodiment is the same as the circuit diagram of the first embodiment shown in FIG.
 このように構成された第4実施形態によれば、第1実施形態と同様に赤色画素10Rの領域に画素トランジスタが配置されないので、量子効率の低下を抑制することができる。 According to the fourth embodiment configured in this way, since the pixel transistor is not arranged in the region of the red pixel 10R as in the first embodiment, the decrease in quantum efficiency can be suppressed.
(第5実施形態)
 第5実施形態による撮像装置について図16および図17を参照して説明する。図16は、第5実施形態の撮像装置の画素群を表側から見た平面図である。図17は図16に示す切断線Y-Yで切断した断面図である。この第5実施形態の撮像装置は、図14に示す第4実施形態の撮像装置と異なり、赤色画素10R、緑色画素10G1、緑色画素10G2、青色画素10Bのそれぞれの半導体領域12にフローティングディフージョンFDが設けられている。すなわち、本実施形態においては、図17に示す断面図に、図16に示す第4実施形態と異なり、フローティングディフージョンFDが表示されていない。
(Fifth Embodiment)
The image pickup apparatus according to the fifth embodiment will be described with reference to FIGS. 16 and 17. FIG. 16 is a plan view of the pixel group of the image pickup apparatus of the fifth embodiment as viewed from the front side. FIG. 17 is a cross-sectional view taken along the cutting line YY shown in FIG. The image pickup apparatus of the fifth embodiment is different from the image pickup apparatus of the fourth embodiment shown in FIG. 14, and is a floating diffusion FD in each semiconductor region 12 of the red pixel 10R, the green pixel 10G1, the green pixel 10G2, and the blue pixel 10B. Is provided. That is, in the present embodiment, unlike the fourth embodiment shown in FIG. 16, the floating diffusion FD is not displayed in the cross-sectional view shown in FIG.
 更に、本実施形態では、青色画素10Bの領域に、リセットトランジスタRST、増幅トランジスタ10AMP、選択トランジスタSELが設けられている。これらのトランジスタは図16に示すように横方向(行方向)に沿って配置されている。なお、リセットトランジスタRST、増幅トランジスタ10AMP、選択トランジスタSELを縦方向(列方向)に配置する場合は、図13に示すように、青色画素10Bの緑色画素10G2から遠い列方向に配置された絶縁膜上に配置すればよい。赤色画素10R、緑色画素10G1、緑色画素10G2、青色画素10BのそれぞれのフローティングディフージョンFDは、増幅トランジスタAMPのゲートに接続されるとともにリセットトランジスタRSTのソースに接続される。この第5実施形態における画素群の回路図は、図4に示す回路図と同じになる。 Further, in the present embodiment, the reset transistor RST, the amplification transistor 10AMP, and the selection transistor SEL are provided in the region of the blue pixel 10B. These transistors are arranged along the lateral direction (row direction) as shown in FIG. When the reset transistor RST, the amplification transistor 10AMP, and the selection transistor SEL are arranged in the vertical direction (column direction), as shown in FIG. 13, the insulating film arranged in the column direction far from the green pixel 10G2 of the blue pixel 10B. Just place it on top. The floating diffusion FDs of the red pixel 10R, the green pixel 10G1, the green pixel 10G2, and the blue pixel 10B are connected to the gate of the amplification transistor AMP and connected to the source of the reset transistor RST. The circuit diagram of the pixel group in the fifth embodiment is the same as the circuit diagram shown in FIG.
 このように構成された第5実施形態によれば、画素トランジスタAMP、RST、SELが青色画素の領域に配置され、第1実施形態と同様に赤色画素10Rの領域に画素トランジスタが配置されないので、量子効率の低下を抑制することができる。 According to the fifth embodiment configured in this way, the pixel transistors AMP, RST, and SEL are arranged in the region of the blue pixel, and the pixel transistor is not arranged in the region of the red pixel 10R as in the first embodiment. It is possible to suppress a decrease in quantum efficiency.
(第6実施形態)
 第6実施形態による撮像装置について図18乃至図20を参照して説明する。図18は、第6実施形態の撮像装置の画素群10を表側から見た平面図である。図19Aは図18に示す切断線A-Aで切断した断面図であり、図19Bは図18に示す切断線B-Bで切断した断面図である。図20は、第6実施形態の画素群を示す回路図である。
(Sixth Embodiment)
The image pickup apparatus according to the sixth embodiment will be described with reference to FIGS. 18 to 20. FIG. 18 is a plan view of the pixel group 10 of the image pickup apparatus of the sixth embodiment as viewed from the front side. 19A is a cross-sectional view taken along the cutting line AA shown in FIG. 18, and FIG. 19B is a cross-sectional view taken along the cutting line BB shown in FIG. FIG. 20 is a circuit diagram showing a pixel group of the sixth embodiment.
 第6実施形態における画素群10は、図2に示す第1実施形態の画素群10と同じ配列を備えている。緑色画素10Gと青色画素10Bとの間のトレンチは半導体領域を貫通していない。しかし、それ以外は赤色画素10R、緑色画素10G1、10G2、および青色画素10Bはそれぞれ、絶縁膜20によって裏面側から表面側まで分離されている。このため、各画素の光電変換素子PDは、画素の半導体領域12を全て使用することが可能となり、画素の実効面積を大きくすることができ、特性を向上させることができる。なお、緑色画素10G2は、IR画素、すなわち赤色と緑色が混合された画素に置き換えてもよい。 The pixel group 10 in the sixth embodiment has the same arrangement as the pixel group 10 in the first embodiment shown in FIG. The trench between the green pixel 10G and the blue pixel 10B does not penetrate the semiconductor region. However, other than that, the red pixels 10R, the green pixels 10G1, 10G2, and the blue pixels 10B are each separated from the back surface side to the front surface side by the insulating film 20. Therefore, the photoelectric conversion element PD of each pixel can use the entire semiconductor region 12 of the pixel, the effective area of the pixel can be increased, and the characteristics can be improved. The green pixel 10G2 may be replaced with an IR pixel, that is, a pixel in which red and green are mixed.
 画素群10のリセットトランジスタRSTが緑色画素10G1と青色画素10Bを分離する絶縁膜20上に配置される。また、画素群10の増幅トランジスタAMPおよび選択トランジスタSELが青色画素10Bの行方向(横方向)に配置された絶縁膜20のうち、緑色画素10G1から遠い位置にある絶縁膜20上に配置される。 The reset transistor RST of the pixel group 10 is arranged on the insulating film 20 that separates the green pixel 10G1 and the blue pixel 10B. Further, the amplification transistor AMP and the selection transistor SEL of the pixel group 10 are arranged on the insulating film 20 located far from the green pixel 10G1 among the insulating films 20 arranged in the row direction (horizontal direction) of the blue pixel 10B. ..
 この第6実施形態における画素群10は図20に示すように、リセットトランジスタRSTのソースがフローティングディフュージョンFDに接続され、ドレインが電位VDDに接続される。また、増幅トランジスタAMPと選択トランジスタSELは直列に接続され、増幅トランジスタAMPのゲートがフローティングディフュージョンFDに接続される。この第6実施形態における画素群10の回路図は、フローティングディフュージョンFDを共有していない点を除けば、図4に示す第1実施形態の回路図と同じになる。この第6実施形態も第1実施形態と同様に、赤色画素の領域に画素トランジスタが配置されないので、量子効率の低下を抑制することができる。 As shown in FIG. 20, in the pixel group 10 in the sixth embodiment, the source of the reset transistor RST is connected to the floating diffusion FD, and the drain is connected to the potential VDD. Further, the amplification transistor AMP and the selection transistor SEL are connected in series, and the gate of the amplification transistor AMP is connected to the floating diffusion FD. The circuit diagram of the pixel group 10 in the sixth embodiment is the same as the circuit diagram of the first embodiment shown in FIG. 4, except that the floating diffusion FD is not shared. Similar to the first embodiment, in this sixth embodiment, since the pixel transistor is not arranged in the region of the red pixel, the decrease in quantum efficiency can be suppressed.
 (応用例)
 本開示に係る技術は、様々な製品へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット、建設機械、農業機械(トラクター)などのいずれかの種類の移動体に搭載される装置として実現されてもよい。
(Application example)
The technique according to the present disclosure can be applied to various products. For example, the technology according to the present disclosure is any kind of movement such as an automobile, an electric vehicle, a hybrid electric vehicle, a motorcycle, a bicycle, a personal mobility, an airplane, a drone, a ship, a robot, a construction machine, and an agricultural machine (tractor). It may be realized as a device mounted on the body.
 図21は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システム7000の概略的な構成例を示すブロック図である。車両制御システム7000は、通信ネットワーク7010を介して接続された複数の電子制御ユニットを備える。図21に示した例では、車両制御システム7000は、駆動系制御ユニット7100、ボディ系制御ユニット7200、バッテリ制御ユニット7300、車外情報検出ユニット7400、車内情報検出ユニット7500、及び統合制御ユニット7600を備える。これらの複数の制御ユニットを接続する通信ネットワーク7010は、例えば、CAN(Controller Area Network)、LIN(Local Interconnect Network)、LAN(Local Area Network)又はFlexRay(登録商標)等の任意の規格に準拠した車載通信ネットワークであってよい。 FIG. 21 is a block diagram showing a schematic configuration example of a vehicle control system 7000, which is an example of a mobile control system to which the technique according to the present disclosure can be applied. The vehicle control system 7000 includes a plurality of electronic control units connected via a communication network 7010. In the example shown in FIG. 21, the vehicle control system 7000 includes a drive system control unit 7100, a body system control unit 7200, a battery control unit 7300, an outside information detection unit 7400, an in-vehicle information detection unit 7500, and an integrated control unit 7600. .. The communication network 7010 connecting these multiple control units conforms to any standard such as CAN (Controller Area Network), LIN (Local Interconnect Network), LAN (Local Area Network) or FlexRay (registered trademark). It may be an in-vehicle communication network.
 各制御ユニットは、各種プログラムにしたがって演算処理を行うマイクロコンピュータと、マイクロコンピュータにより実行されるプログラム又は各種演算に用いられるパラメータ等を記憶する記憶部と、各種制御対象の装置を駆動する駆動回路とを備える。各制御ユニットは、通信ネットワーク7010を介して他の制御ユニットとの間で通信を行うためのネットワークI/Fを備えるとともに、車内外の装置又はセンサ等との間で、有線通信又は無線通信により通信を行うための通信I/Fを備える。図21では、統合制御ユニット7600の機能構成として、マイクロコンピュータ7610、汎用通信I/F7620、専用通信I/F7630、測位部7640、ビーコン受信部7650、車内機器I/F7660、音声画像出力部7670、車載ネットワークI/F7680及び記憶部7690が図示されている。他の制御ユニットも同様に、マイクロコンピュータ、通信I/F及び記憶部等を備える。 Each control unit includes a microcomputer that performs arithmetic processing according to various programs, a storage unit that stores programs executed by the microcomputer or parameters used for various arithmetic, and a drive circuit that drives various controlled devices. To prepare for. Each control unit is provided with a network I / F for communicating with other control units via the communication network 7010, and is connected to devices or sensors inside and outside the vehicle by wired communication or wireless communication. A communication I / F for performing communication is provided. In FIG. 21, the functional configuration of the integrated control unit 7600 includes a microcomputer 7610, a general-purpose communication I / F7620, a dedicated communication I / F7630, a positioning unit 7640, a beacon receiving unit 7650, an in-vehicle device I / F7660, and an audio image output unit 7670. The vehicle-mounted network I / F 7680 and the storage unit 7690 are illustrated. Other control units also include a microcomputer, a communication I / F, a storage unit, and the like.
 駆動系制御ユニット7100は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット7100は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。駆動系制御ユニット7100は、ABS(Antilock Brake System)又はESC(Electronic Stability Control)等の制御装置としての機能を有してもよい。 The drive system control unit 7100 controls the operation of the device related to the drive system of the vehicle according to various programs. For example, the drive system control unit 7100 has a driving force generator for generating a driving force of a vehicle such as an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting the driving force to the wheels, and a steering angle of the vehicle. It functions as a control device such as a steering mechanism for adjusting and a braking device for generating braking force of the vehicle. The drive system control unit 7100 may have a function as a control device such as ABS (Antilock Brake System) or ESC (Electronic Stability Control).
 駆動系制御ユニット7100には、車両状態検出部7110が接続される。車両状態検出部7110には、例えば、車体の軸回転運動の角速度を検出するジャイロセンサ、車両の加速度を検出する加速度センサ、あるいは、アクセルペダルの操作量、ブレーキペダルの操作量、ステアリングホイールの操舵角、エンジン回転数又は車輪の回転速度等を検出するためのセンサのうちの少なくとも一つが含まれる。駆動系制御ユニット7100は、車両状態検出部7110から入力される信号を用いて演算処理を行い、内燃機関、駆動用モータ、電動パワーステアリング装置又はブレーキ装置等を制御する。 The vehicle state detection unit 7110 is connected to the drive system control unit 7100. The vehicle state detection unit 7110 may include, for example, a gyro sensor that detects the angular speed of the axial rotation motion of the vehicle body, an acceleration sensor that detects the acceleration of the vehicle, an accelerator pedal operation amount, a brake pedal operation amount, or steering wheel steering. It includes at least one of sensors for detecting angles, engine speeds, wheel speeds, and the like. The drive system control unit 7100 performs arithmetic processing using a signal input from the vehicle state detection unit 7110, and controls an internal combustion engine, a drive motor, an electric power steering device, a brake device, and the like.
 ボディ系制御ユニット7200は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット7200は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット7200には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット7200は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。 The body system control unit 7200 controls the operation of various devices mounted on the vehicle body according to various programs. For example, the body system control unit 7200 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as headlamps, back lamps, brake lamps, turn signals or fog lamps. In this case, a radio wave transmitted from a portable device that substitutes for a key or signals of various switches may be input to the body system control unit 7200. The body system control unit 7200 receives inputs of these radio waves or signals and controls a vehicle door lock device, a power window device, a lamp, and the like.
 バッテリ制御ユニット7300は、各種プログラムにしたがって駆動用モータの電力供給源である二次電池7310を制御する。例えば、バッテリ制御ユニット7300には、二次電池7310を備えたバッテリ装置から、バッテリ温度、バッテリ出力電圧又はバッテリの残存容量等の情報が入力される。バッテリ制御ユニット7300は、これらの信号を用いて演算処理を行い、二次電池7310の温度調節制御又はバッテリ装置に備えられた冷却装置等の制御を行う。 The battery control unit 7300 controls the secondary battery 7310, which is the power supply source of the drive motor, according to various programs. For example, information such as the battery temperature, the battery output voltage, or the remaining capacity of the battery is input to the battery control unit 7300 from the battery device including the secondary battery 7310. The battery control unit 7300 performs arithmetic processing using these signals, and controls the temperature control of the secondary battery 7310 or the cooling device provided in the battery device.
 車外情報検出ユニット7400は、車両制御システム7000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット7400には、撮像部7410及び車外情報検出部7420のうちの少なくとも一方が接続される。撮像部7410には、ToF(Time Of Flight)カメラ、ステレオカメラ、単眼カメラ、赤外線カメラ及びその他のカメラのうちの少なくとも一つが含まれる。車外情報検出部7420には、例えば、現在の天候又は気象を検出するための環境センサ、あるいは、車両制御システム7000を搭載した車両の周囲の他の車両、障害物又は歩行者等を検出するための周囲情報検出センサのうちの少なくとも一つが含まれる。 The outside information detection unit 7400 detects information outside the vehicle equipped with the vehicle control system 7000. For example, at least one of the image pickup unit 7410 and the vehicle exterior information detection unit 7420 is connected to the vehicle exterior information detection unit 7400. The image pickup unit 7410 includes at least one of a ToF (Time Of Flight) camera, a stereo camera, a monocular camera, an infrared camera, and other cameras. The vehicle outside information detection unit 7420 is used, for example, to detect the current weather or an environment sensor for detecting the weather, or other vehicles, obstacles, pedestrians, etc. around the vehicle equipped with the vehicle control system 7000. At least one of the ambient information detection sensors is included.
 環境センサは、例えば、雨天を検出する雨滴センサ、霧を検出する霧センサ、日照度合いを検出する日照センサ、及び降雪を検出する雪センサのうちの少なくとも一つであってよい。周囲情報検出センサは、超音波センサ、レーダ装置及びLIDAR(Light Detection and Ranging、Laser Imaging Detection and Ranging)装置のうちの少なくとも一つであってよい。これらの撮像部7410及び車外情報検出部7420は、それぞれ独立したセンサないし装置として備えられてもよいし、複数のセンサないし装置が統合された装置として備えられてもよい。 The environment sensor may be, for example, at least one of a raindrop sensor that detects rainy weather, a fog sensor that detects fog, a sunshine sensor that detects the degree of sunshine, and a snow sensor that detects snowfall. The ambient information detection sensor may be at least one of an ultrasonic sensor, a radar device, and a LIDAR (Light Detection and Ranging, Laser Imaging Detection and Ranging) device. The image pickup unit 7410 and the vehicle exterior information detection unit 7420 may be provided as independent sensors or devices, or may be provided as a device in which a plurality of sensors or devices are integrated.
 ここで、図22は、撮像部7410及び車外情報検出部7420の設置位置の例を示す。撮像部7910,7912,7914,7916,7918は、例えば、車両7900のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部のうちの少なくとも一つの位置に設けられる。フロントノーズに備えられる撮像部7910及び車室内のフロントガラスの上部に備えられる撮像部7918は、主として車両7900の前方の画像を取得する。サイドミラーに備えられる撮像部7912,7914は、主として車両7900の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部7916は、主として車両7900の後方の画像を取得する。車室内のフロントガラスの上部に備えられる撮像部7918は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。 Here, FIG. 22 shows an example of the installation position of the image pickup unit 7410 and the vehicle exterior information detection unit 7420. The image pickup unit 7910, 7912, 7914, 7916, 7918 are provided, for example, at at least one of the front nose, side mirror, rear bumper, back door, and upper part of the windshield of the vehicle interior of the vehicle 7900. The image pickup unit 7910 provided in the front nose and the image pickup section 7918 provided in the upper part of the windshield in the vehicle interior mainly acquire an image in front of the vehicle 7900. The image pickup units 7912 and 7914 provided in the side mirrors mainly acquire images of the side of the vehicle 7900. The image pickup unit 7916 provided in the rear bumper or the back door mainly acquires an image of the rear of the vehicle 7900. The image pickup unit 7918 provided on the upper part of the windshield in the vehicle interior is mainly used for detecting a preceding vehicle, a pedestrian, an obstacle, a traffic light, a traffic sign, a lane, or the like.
 なお、図22には、それぞれの撮像部7910,7912,7914,7916の撮影範囲の一例が示されている。撮像範囲aは、フロントノーズに設けられた撮像部7910の撮像範囲を示し、撮像範囲b,cは、それぞれサイドミラーに設けられた撮像部7912,7914の撮像範囲を示し、撮像範囲dは、リアバンパ又はバックドアに設けられた撮像部7916の撮像範囲を示す。例えば、撮像部7910,7912,7914,7916で撮像された画像データが重ね合わせられることにより、車両7900を上方から見た俯瞰画像が得られる。 Note that FIG. 22 shows an example of the shooting range of each of the imaging units 7910, 7912, 7914, 7916. The imaging range a indicates the imaging range of the imaging unit 7910 provided on the front nose, the imaging ranges b and c indicate the imaging range of the imaging units 7912 and 7914 provided on the side mirrors, respectively, and the imaging range d indicates the imaging range d. The imaging range of the imaging unit 7916 provided on the rear bumper or the back door is shown. For example, by superimposing the image data captured by the image pickup units 7910, 7912, 7914, 7916, a bird's-eye view image of the vehicle 7900 as viewed from above can be obtained.
 車両7900のフロント、リア、サイド、コーナ及び車室内のフロントガラスの上部に設けられる車外情報検出部7920,7922,7924,7926,7928,7930は、例えば超音波センサ又はレーダ装置であってよい。車両7900のフロントノーズ、リアバンパ、バックドア及び車室内のフロントガラスの上部に設けられる車外情報検出部7920,7926,7930は、例えばLIDAR装置であってよい。これらの車外情報検出部7920~7930は、主として先行車両、歩行者又は障害物等の検出に用いられる。 The vehicle exterior information detection unit 7920, 7922, 7924, 7926, 7928, 7930 provided on the front, rear, side, corner and the upper part of the windshield in the vehicle interior of the vehicle 7900 may be, for example, an ultrasonic sensor or a radar device. The vehicle exterior information detection units 7920, 7926, 7930 provided on the front nose, rear bumper, back door, and upper part of the windshield in the vehicle interior of the vehicle 7900 may be, for example, a lidar device. These out-of-vehicle information detection units 7920 to 7930 are mainly used for detecting a preceding vehicle, a pedestrian, an obstacle, or the like.
 図21に戻って説明を続ける。車外情報検出ユニット7400は、撮像部7410に車外の画像を撮像させるとともに、撮像された画像データを受信する。また、車外情報検出ユニット7400は、接続されている車外情報検出部7420から検出情報を受信する。車外情報検出部7420が超音波センサ、レーダ装置又はLIDAR装置である場合には、車外情報検出ユニット7400は、超音波又は電磁波等を発信させるとともに、受信された反射波の情報を受信する。車外情報検出ユニット7400は、受信した情報に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。車外情報検出ユニット7400は、受信した情報に基づいて、降雨、霧又は路面状況等を認識する環境認識処理を行ってもよい。車外情報検出ユニット7400は、受信した情報に基づいて、車外の物体までの距離を算出してもよい。 Return to FIG. 21 and continue the explanation. The vehicle outside information detection unit 7400 causes the image pickup unit 7410 to capture an image of the outside of the vehicle and receives the captured image data. Further, the vehicle outside information detection unit 7400 receives the detection information from the connected vehicle outside information detection unit 7420. When the vehicle exterior information detection unit 7420 is an ultrasonic sensor, a radar device, or a lidar device, the vehicle exterior information detection unit 7400 transmits ultrasonic waves, electromagnetic waves, or the like, and receives received reflected wave information. The out-of-vehicle information detection unit 7400 may perform object detection processing or distance detection processing such as a person, a vehicle, an obstacle, a sign, or a character on the road surface based on the received information. The out-of-vehicle information detection unit 7400 may perform an environment recognition process for recognizing rainfall, fog, road surface conditions, etc. based on the received information. The out-of-vehicle information detection unit 7400 may calculate the distance to an object outside the vehicle based on the received information.
 また、車外情報検出ユニット7400は、受信した画像データに基づいて、人、車、障害物、標識又は路面上の文字等を認識する画像認識処理又は距離検出処理を行ってもよい。車外情報検出ユニット7400は、受信した画像データに対して歪補正又は位置合わせ等の処理を行うとともに、異なる撮像部7410により撮像された画像データを合成して、俯瞰画像又はパノラマ画像を生成してもよい。車外情報検出ユニット7400は、異なる撮像部7410により撮像された画像データを用いて、視点変換処理を行ってもよい。 Further, the vehicle outside information detection unit 7400 may perform image recognition processing or distance detection processing for recognizing a person, a vehicle, an obstacle, a sign, a character on the road surface, or the like based on the received image data. The vehicle outside information detection unit 7400 performs processing such as distortion correction or alignment on the received image data, and synthesizes the image data captured by different image pickup units 7410 to generate a bird's-eye view image or a panoramic image. May be good. The vehicle exterior information detection unit 7400 may perform the viewpoint conversion process using the image data captured by different image pickup units 7410.
 車内情報検出ユニット7500は、車内の情報を検出する。車内情報検出ユニット7500には、例えば、運転者の状態を検出する運転者状態検出部7510が接続される。運転者状態検出部7510は、運転者を撮像するカメラ、運転者の生体情報を検出する生体センサ又は車室内の音声を集音するマイク等を含んでもよい。生体センサは、例えば、座面又はステアリングホイール等に設けられ、座席に座った搭乗者又はステアリングホイールを握る運転者の生体情報を検出する。車内情報検出ユニット7500は、運転者状態検出部7510から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。車内情報検出ユニット7500は、集音された音声信号に対してノイズキャンセリング処理等の処理を行ってもよい。 The in-vehicle information detection unit 7500 detects the in-vehicle information. For example, a driver state detection unit 7510 that detects a driver's state is connected to the in-vehicle information detection unit 7500. The driver state detection unit 7510 may include a camera that captures the driver, a biosensor that detects the driver's biological information, a microphone that collects sound in the vehicle interior, and the like. The biosensor is provided on, for example, on the seat surface or the steering wheel, and detects the biometric information of the passenger sitting on the seat or the driver holding the steering wheel. The in-vehicle information detection unit 7500 may calculate the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 7510, and may determine whether the driver is asleep. You may. The in-vehicle information detection unit 7500 may perform processing such as noise canceling processing on the collected voice signal.
 統合制御ユニット7600は、各種プログラムにしたがって車両制御システム7000内の動作全般を制御する。統合制御ユニット7600には、入力部7800が接続されている。入力部7800は、例えば、タッチパネル、ボタン、マイクロフォン、スイッチ又はレバー等、搭乗者によって入力操作され得る装置によって実現される。統合制御ユニット7600には、マイクロフォンにより入力される音声を音声認識することにより得たデータが入力されてもよい。入力部7800は、例えば、赤外線又はその他の電波を利用したリモートコントロール装置であってもよいし、車両制御システム7000の操作に対応した携帯電話又はPDA(Personal Digital Assistant)等の外部接続機器であってもよい。入力部7800は、例えばカメラであってもよく、その場合搭乗者はジェスチャにより情報を入力することができる。あるいは、搭乗者が装着したウェアラブル装置の動きを検出することで得られたデータが入力されてもよい。さらに、入力部7800は、例えば、上記の入力部7800を用いて搭乗者等により入力された情報に基づいて入力信号を生成し、統合制御ユニット7600に出力する入力制御回路などを含んでもよい。搭乗者等は、この入力部7800を操作することにより、車両制御システム7000に対して各種のデータを入力したり処理動作を指示したりする。 The integrated control unit 7600 controls the overall operation in the vehicle control system 7000 according to various programs. An input unit 7800 is connected to the integrated control unit 7600. The input unit 7800 is realized by a device that can be input-operated by the occupant, such as a touch panel, a button, a microphone, a switch, or a lever. Data obtained by recognizing the voice input by the microphone may be input to the integrated control unit 7600. The input unit 7800 may be, for example, a remote control device using infrared rays or other radio waves, or an external connection device such as a mobile phone or a PDA (Personal Digital Assistant) corresponding to the operation of the vehicle control system 7000. You may. The input unit 7800 may be, for example, a camera, in which case the passenger can input information by gesture. Alternatively, data obtained by detecting the movement of the wearable device worn by the passenger may be input. Further, the input unit 7800 may include, for example, an input control circuit that generates an input signal based on the information input by the passenger or the like using the input unit 7800 and outputs the input signal to the integrated control unit 7600. By operating the input unit 7800, the passenger or the like inputs various data to the vehicle control system 7000 and instructs the processing operation.
 記憶部7690は、マイクロコンピュータにより実行される各種プログラムを記憶するROM(Read Only Memory)、及び各種パラメータ、演算結果又はセンサ値等を記憶するRAM(Random Access Memory)を含んでいてもよい。また、記憶部7690は、HDD(Hard Disc Drive)等の磁気記憶デバイス、半導体記憶デバイス、光記憶デバイス又は光磁気記憶デバイス等によって実現してもよい。 The storage unit 7690 may include a ROM (Read Only Memory) for storing various programs executed by the microcomputer, and a RAM (Random Access Memory) for storing various parameters, calculation results, sensor values, and the like. Further, the storage unit 7690 may be realized by a magnetic storage device such as an HDD (Hard Disc Drive), a semiconductor storage device, an optical storage device, an optical magnetic storage device, or the like.
 汎用通信I/F7620は、外部環境7750に存在する様々な機器との間の通信を仲介する汎用的な通信I/Fである。汎用通信I/F7620は、GSM(登録商標)(Global System of Mobile communications)、WiMAX(登録商標)、LTE(登録商標)(Long Term Evolution)若しくはLTE-A(LTE-Advanced)などのセルラー通信プロトコル、又は無線LAN(Wi-Fi(登録商標)ともいう)、Bluetooth(登録商標)などのその他の無線通信プロトコルを実装してよい。汎用通信I/F7620は、例えば、基地局又はアクセスポイントを介して、外部ネットワーク(例えば、インターネット、クラウドネットワーク又は事業者固有のネットワーク)上に存在する機器(例えば、アプリケーションサーバ又は制御サーバ)へ接続してもよい。また、汎用通信I/F7620は、例えばP2P(Peer To Peer)技術を用いて、車両の近傍に存在する端末(例えば、運転者、歩行者若しくは店舗の端末、又はMTC(Machine Type Communication)端末)と接続してもよい。 The general-purpose communication I / F 7620 is a general-purpose communication I / F that mediates communication with various devices existing in the external environment 7750. General-purpose communication I / F7620 is a cellular communication protocol such as GSM (registered trademark) (Global System of Mobile communications), WiMAX (registered trademark), LTE (registered trademark) (Long Term Evolution) or LTE-A (LTE-Advanced). , Or other wireless communication protocols such as wireless LAN (also referred to as Wi-Fi®), Bluetooth® may be implemented. The general-purpose communication I / F7620 connects to a device (for example, an application server or a control server) existing on an external network (for example, the Internet, a cloud network, or a business-specific network) via a base station or an access point, for example. You may. Further, the general-purpose communication I / F7620 uses, for example, P2P (Peer To Peer) technology, and is a terminal existing in the vicinity of the vehicle (for example, a driver, a pedestrian or a store terminal, or an MTC (Machine Type Communication) terminal). May be connected with.
 専用通信I/F7630は、車両における使用を目的として策定された通信プロトコルをサポートする通信I/Fである。専用通信I/F7630は、例えば、下位レイヤのIEEE802.11pと上位レイヤのIEEE1609との組合せであるWAVE(Wireless Access in Vehicle Environment)、DSRC(Dedicated Short Range Communications)、又はセルラー通信プロトコルといった標準プロトコルを実装してよい。専用通信I/F7630は、典型的には、車車間(Vehicle to Vehicle)通信、路車間(Vehicle to Infrastructure)通信、車両と家との間(Vehicle to Home)の通信及び歩車間(Vehicle to Pedestrian)通信のうちの1つ以上を含む概念であるV2X通信を遂行する。 The dedicated communication I / F 7630 is a communication I / F that supports a communication protocol formulated for use in a vehicle. The dedicated communication I / F7630 uses a standard protocol such as WAVE (Wireless Access in Vehicle Environment), DSRC (Dedicated Short Range Communications), which is a combination of the lower layer IEEE802.11p and the upper layer IEEE1609, or a cellular communication protocol. May be implemented. Dedicated communication I / F7630 is typically vehicle-to-vehicle (Vehicle to Vehicle) communication, road-to-vehicle (Vehicle to Infrastructure) communication, vehicle-to-house (Vehicle to Home) communication, and pedestrian-to-vehicle (Vehicle to Pedestrian) communication. ) Carry out V2X communication, a concept that includes one or more of the communications.
 測位部7640は、例えば、GNSS(Global Navigation Satellite System)衛星からのGNSS信号(例えば、GPS(Global Positioning System)衛星からのGPS信号)を受信して測位を実行し、車両の緯度、経度及び高度を含む位置情報を生成する。なお、測位部7640は、無線アクセスポイントとの信号の交換により現在位置を特定してもよく、又は測位機能を有する携帯電話、PHS若しくはスマートフォンといった端末から位置情報を取得してもよい。 The positioning unit 7640 receives, for example, a GNSS signal from a GNSS (Global Navigation Satellite System) satellite (for example, a GPS signal from a GPS (Global Positioning System) satellite), executes positioning, and executes positioning, and the latitude, longitude, and altitude of the vehicle. Generate location information including. The positioning unit 7640 may specify the current position by exchanging signals with the wireless access point, or may acquire position information from a terminal such as a mobile phone, PHS, or smartphone having a positioning function.
 ビーコン受信部7650は、例えば、道路上に設置された無線局等から発信される電波あるいは電磁波を受信し、現在位置、渋滞、通行止め又は所要時間等の情報を取得する。なお、ビーコン受信部7650の機能は、上述した専用通信I/F7630に含まれてもよい。 The beacon receiving unit 7650 receives radio waves or electromagnetic waves transmitted from a radio station or the like installed on the road, and acquires information such as the current position, traffic jam, road closure, or required time. The function of the beacon receiving unit 7650 may be included in the above-mentioned dedicated communication I / F 7630.
 車内機器I/F7660は、マイクロコンピュータ7610と車内に存在する様々な車内機器7760との間の接続を仲介する通信インタフェースである。車内機器I/F7660は、無線LAN、Bluetooth(登録商標)、NFC(Near Field Communication)又はWUSB(Wireless USB)といった無線通信プロトコルを用いて無線接続を確立してもよい。また、車内機器I/F7660は、図示しない接続端子(及び、必要であればケーブル)を介して、USB(Universal Serial Bus)、HDMI(登録商標)(High-Definition Multimedia Interface、又はMHL(Mobile High-definition Link)等の有線接続を確立してもよい。車内機器7760は、例えば、搭乗者が有するモバイル機器若しくはウェアラブル機器、又は車両に搬入され若しくは取り付けられる情報機器のうちの少なくとも1つを含んでいてもよい。また、車内機器7760は、任意の目的地までの経路探索を行うナビゲーション装置を含んでいてもよい。車内機器I/F7660は、これらの車内機器7760との間で、制御信号又はデータ信号を交換する。 The in-vehicle device I / F 7660 is a communication interface that mediates the connection between the microcomputer 7610 and various in-vehicle devices 7760 existing in the vehicle. The in-vehicle device I / F7660 may establish a wireless connection using a wireless communication protocol such as wireless LAN, Bluetooth (registered trademark), NFC (Near Field Communication) or WUSB (Wireless USB). In addition, the in-vehicle device I / F7660 is via a connection terminal (and a cable if necessary) (not shown), USB (Universal Serial Bus), HDMI (registered trademark) (High-Definition Multimedia Interface, or MHL (Mobile High)). -Definition Link) and other wired connections may be established. The in-vehicle device 7760 includes, for example, at least one of a passenger's mobile device or wearable device, or an information device carried in or attached to the vehicle. Further, the in-vehicle device 7760 may include a navigation device for searching a route to an arbitrary destination. The in-vehicle device I / F 7660 may be a control signal to and from these in-vehicle devices 7760. Or exchange the data signal.
 車載ネットワークI/F7680は、マイクロコンピュータ7610と通信ネットワーク7010との間の通信を仲介するインタフェースである。車載ネットワークI/F7680は、通信ネットワーク7010によりサポートされる所定のプロトコルに則して、信号等を送受信する。 The in-vehicle network I / F7680 is an interface that mediates communication between the microcomputer 7610 and the communication network 7010. The vehicle-mounted network I / F7680 transmits / receives signals and the like according to a predetermined protocol supported by the communication network 7010.
 統合制御ユニット7600のマイクロコンピュータ7610は、汎用通信I/F7620、専用通信I/F7630、測位部7640、ビーコン受信部7650、車内機器I/F7660及び車載ネットワークI/F7680のうちの少なくとも一つを介して取得される情報に基づき、各種プログラムにしたがって、車両制御システム7000を制御する。例えば、マイクロコンピュータ7610は、取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット7100に対して制御指令を出力してもよい。例えば、マイクロコンピュータ7610は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行ってもよい。また、マイクロコンピュータ7610は、取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行ってもよい。 The microcomputer 7610 of the integrated control unit 7600 is via at least one of general-purpose communication I / F7620, dedicated communication I / F7630, positioning unit 7640, beacon receiving unit 7650, in-vehicle device I / F7660, and in-vehicle network I / F7680. The vehicle control system 7000 is controlled according to various programs based on the information acquired. For example, the microcomputer 7610 calculates the control target value of the driving force generator, the steering mechanism, or the braking device based on the acquired information inside and outside the vehicle, and outputs a control command to the drive system control unit 7100. May be good. For example, the microcomputer 7610 realizes ADAS (Advanced Driver Assistance System) functions including vehicle collision avoidance or impact mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, vehicle lane deviation warning, and the like. Cooperative control may be performed for the purpose of. In addition, the microcomputer 7610 automatically travels autonomously without relying on the driver's operation by controlling the driving force generator, steering mechanism, braking device, etc. based on the acquired information on the surroundings of the vehicle. Coordinated control may be performed for the purpose of driving or the like.
 マイクロコンピュータ7610は、汎用通信I/F7620、専用通信I/F7630、測位部7640、ビーコン受信部7650、車内機器I/F7660及び車載ネットワークI/F7680のうちの少なくとも一つを介して取得される情報に基づき、車両と周辺の構造物や人物等の物体との間の3次元距離情報を生成し、車両の現在位置の周辺情報を含むローカル地図情報を作成してもよい。また、マイクロコンピュータ7610は、取得される情報に基づき、車両の衝突、歩行者等の近接又は通行止めの道路への進入等の危険を予測し、警告用信号を生成してもよい。警告用信号は、例えば、警告音を発生させたり、警告ランプを点灯させたりするための信号であってよい。 The microcomputer 7610 has information acquired via at least one of general-purpose communication I / F7620, dedicated communication I / F7630, positioning unit 7640, beacon receiving unit 7650, in-vehicle device I / F7660, and in-vehicle network I / F7680. Based on the above, three-dimensional distance information between the vehicle and an object such as a surrounding structure or a person may be generated, and local map information including the peripheral information of the current position of the vehicle may be created. Further, the microcomputer 7610 may predict the danger of a vehicle collision, a pedestrian or the like approaching or entering a closed road, and generate a warning signal based on the acquired information. The warning signal may be, for example, a signal for generating a warning sound or lighting a warning lamp.
 音声画像出力部7670は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図21の例では、出力装置として、オーディオスピーカ7710、表示部7720及びインストルメントパネル7730が例示されている。表示部7720は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。表示部7720は、AR(Augmented Reality)表示機能を有していてもよい。出力装置は、これらの装置以外の、ヘッドホン、搭乗者が装着する眼鏡型ディスプレイ等のウェアラブルデバイス、プロジェクタ又はランプ等の他の装置であってもよい。出力装置が表示装置の場合、表示装置は、マイクロコンピュータ7610が行った各種処理により得られた結果又は他の制御ユニットから受信された情報を、テキスト、イメージ、表、グラフ等、様々な形式で視覚的に表示する。また、出力装置が音声出力装置の場合、音声出力装置は、再生された音声データ又は音響データ等からなるオーディオ信号をアナログ信号に変換して聴覚的に出力する。 The audio image output unit 7670 transmits an output signal of at least one of audio and image to an output device capable of visually or audibly notifying information to the passenger or the outside of the vehicle. In the example of FIG. 21, an audio speaker 7710, a display unit 7720, and an instrument panel 7730 are exemplified as output devices. The display unit 7720 may include, for example, at least one of an onboard display and a head-up display. The display unit 7720 may have an AR (Augmented Reality) display function. The output device may be other devices such as headphones, wearable devices such as eyeglass-type displays worn by passengers, projectors or lamps other than these devices. When the output device is a display device, the display device displays the results obtained by various processes performed by the microcomputer 7610 or the information received from other control units in various formats such as texts, images, tables, and graphs. Display visually. When the output device is an audio output device, the audio output device converts an audio signal composed of reproduced audio data, acoustic data, or the like into an analog signal and outputs the audio signal audibly.
 なお、図21に示した例において、通信ネットワーク7010を介して接続された少なくとも二つの制御ユニットが一つの制御ユニットとして一体化されてもよい。あるいは、個々の制御ユニットが、複数の制御ユニットにより構成されてもよい。さらに、車両制御システム7000が、図示されていない別の制御ユニットを備えてもよい。また、上記の説明において、いずれかの制御ユニットが担う機能の一部又は全部を、他の制御ユニットに持たせてもよい。つまり、通信ネットワーク7010を介して情報の送受信がされるようになっていれば、所定の演算処理が、いずれかの制御ユニットで行われるようになってもよい。同様に、いずれかの制御ユニットに接続されているセンサ又は装置が、他の制御ユニットに接続されるとともに、複数の制御ユニットが、通信ネットワーク7010を介して相互に検出情報を送受信してもよい。 In the example shown in FIG. 21, at least two control units connected via the communication network 7010 may be integrated as one control unit. Alternatively, each control unit may be composed of a plurality of control units. Further, the vehicle control system 7000 may include another control unit (not shown). Further, in the above description, the other control unit may have a part or all of the functions carried out by any of the control units. That is, as long as information is transmitted and received via the communication network 7010, predetermined arithmetic processing may be performed by any of the control units. Similarly, a sensor or device connected to any control unit may be connected to another control unit, and a plurality of control units may send and receive detection information to and from each other via the communication network 7010. ..
 なお、図21に示す撮像部7410または図22に示す撮像部7910~7916として第1乃至第6実施形態の撮像装置を用いることができる。 The image pickup apparatus of the first to sixth embodiments can be used as the image pickup unit 7410 shown in FIG. 21 or the image pickup units 7910 to 7916 shown in FIG. 22.
 以上、添付図面を参照して本開示の実施形態をについて詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかである。これらについても、当然に本開示の技術的範囲に属するものと了解される。 Although the embodiments of the present disclosure have been described in detail with reference to the accompanying drawings, the technical scope of the present disclosure is not limited to such examples. It is clear that a person having ordinary knowledge in the technical field of the present disclosure can come up with various modifications or modifications within the scope of the technical ideas described in the claims. These are, of course, understood to belong to the technical scope of the present disclosure.
 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記効果とともに、または上記効果に代えて、本明細書の記載から当業者に明らかな他の効果を奏し得る。 Further, the effects described in the present specification are merely explanatory or exemplary and are not limited. That is, the techniques according to the present disclosure may exert other effects apparent to those skilled in the art from the description herein, in addition to or in place of the above effects.
 なお、以下のような構成も本開示の技術的範囲に属する。
(1) 第1の波長帯の光を光電変換する第1画素、第2の波長帯の光を光電変換する第2画素、および第3の波長帯の光を光電変換する第3画素を含む画素群を単位としてマトリクス状に配置された画素アレイ部と、前記画素群に対応して設けられ、対応する画素群の前記第1画素を除く少なくとも1つの画素を含む領域内に配置される画素トランジスタと、を備えた撮像装置。
(2) 前記第1乃至第3の波長帯はそれぞれ、赤色、緑色、青色の光に対応した波長帯であり、前記第1乃至第3画素はそれぞれ赤色画素、緑色画素、青色画素である(1)に記載の撮像装置。
(3) 前記画素トランジスタは、リセットトランジスタと、増幅トランジスタと、選択トランジスタと、を含む(1)記載の撮像装置。
(4) 前記画素トランジスタは、対応する画素群の前記第1画素及び前記第2画素を除く前記第3画素の領域内に配置された(1)乃至(3)のいずれかに記載の撮像装置。
(5) 前記画素群は、この画素群に含まれる複数の画素が共有するフローティングディフュージョンを備えた(1)乃至(4)のいずれかに記載の撮像装置。
(6) 前記画素トランジスタは、前記青色画素の領域内および前記緑色画素の領域内に配置された(2)記載の撮像装置。
(7) 前記画素トランジスタは、前記青色画素の領域と前記緑色画素の領域との間に配置された(2)記載の撮像装置。
(8) 前記画素群に含まれる画素同士を分離する、画素境界に沿って画素の深さ方向に延びる画素分離部を備えた(1)乃至(7)記載の撮像装置。
(9) 前記画素群は、第1方向に隣接する2つの画素と、前記第1方向に交差する第2方向に隣接する2つの画素とを含み、これら4つの画素は、前記赤色画素、前記緑色画素、および前記青色画素を含む(2)記載の撮像装置。
(10) 前記4つの画素は、2つの前記緑色画素を含む(9)記載の撮像装置。
(11) 前記第1方向又は前記第2方向に隣接して配置される2つの前記画素群にて、一つの前記画素トランジスタを共有し、前記一つの画素トランジスタの第1部分は、前記2つの画素群のうち一方に配置され、前記一つの画素トランジスタの第2部分は、前記2つの画素群のうち他方に配置された(9)記載の撮像装置。
(12) 前記第1部分は、前記2つの画素群のうち一方の前記青色画素の領域内に配置され、前記第2部分は、前記2つの画素群のうち他方の前記青色画素の領域内に配置された(11)記載の撮像装置。
(13) 前記2つの画素群は、前記第2方向に隣接して配置されており、前記第1部分は、前記2つの画素群の間で、かつ前記第1方向に延びる領域に沿って配置され、前記第2部分は、前記2つの画素群のうち他方の前記第2方向の端部で、かつ前記第1方向に延びる領域に沿って配置された(12)記載の撮像装置。
(14) 前記2つの画素群は、前記第2方向に隣接して配置されており、前記第1部分は、前記2つの画素群のうち一方の前記第1方向の端部で、かつ前記第2方向に延びる領域に沿って配置され、前記第2部分は、前記2つの画素群のうち他方の前記第1方向の端部で、かつ前記第2方向に延びる領域に沿って配置された(12)記載の撮像装置。
(15) 前記画素トランジスタはリセットトランジスタと、増幅トランジスタと、選択トランジスタと、を含み、前記増幅トランジスタおよび前記選択トランジスタは、前記2つの画素群のうち一方の前記青色画素を含む領域に配置され、前記リセットトランジスタは、前記2つの画素群のうち他方の前記青色画素を含む領域に配置された(11)記載の撮像装置。
(16) 前記画素トランジスタはリセットトランジスタと、増幅トランジスタと、選択トランジスタと、を含み、前記増幅トランジスタは、前記第1部分および前記第2部分の双方に配置された(11)記載の撮像装置。
(17) 前記画素トランジスタは、光電変換の変換効率を切り換える変換効率切換トランジスタを含み、前記変換効率切換トランジスタは、前記2つの画素群のうち一方又は他方の前記青色画素の領域に配置された(15)記載の撮像装置。
(18) 前記2つの画素群のうち一方に含まれる複数の画素が共有する第1フローティングディフュージョンと、前記2つの画素群のうち他方に含まれる複数の画素が共有する第2フローティングディフュージョンと、を備えた(11)記載撮像装置。
(19) 前記2つの画素群に含まれる第1画素群および第2画素群に含まれる複数の画素同士を分離する、画素境界に沿って画素の深さ方向に延びる画素分離部を備えた(11)記載の撮像装置。(20) 撮像装置と、前記撮像装置で撮像された画素信号に基づいて信号処理を行う信号処理部と、を備え、前記撮像装置は、第1の波長帯の光を光電変換する第1画素、第2の波長帯の光を光電変換する第2画素、および第3の波長帯の光を光電変換する第3画素を含む画素群を単位としてマトリクス状に配置された画素アレイ部と、
 前記画素群に対応して設けられ、対応する画素群の前記第1画素を除く少なくとも1つの画素を含む領域内に配置される画素トランジスタと、を備えた、電子機器。
The following configurations also belong to the technical scope of the present disclosure.
(1) Includes a first pixel that photoelectrically converts light in the first wavelength band, a second pixel that photoelectrically converts light in the second wavelength band, and a third pixel that photoelectrically converts light in the third wavelength band. A pixel array unit arranged in a matrix with a pixel group as a unit, and a pixel provided corresponding to the pixel group and arranged in a region including at least one pixel excluding the first pixel of the corresponding pixel group. An image pickup device equipped with a transistor.
(2) The first to third wavelength bands are wavelength bands corresponding to red, green, and blue light, respectively, and the first to third pixels are red pixels, green pixels, and blue pixels, respectively (). The image pickup apparatus according to 1).
(3) The image pickup apparatus according to (1), wherein the pixel transistor includes a reset transistor, an amplification transistor, and a selection transistor.
(4) The image pickup apparatus according to any one of (1) to (3), wherein the pixel transistor is arranged in the region of the third pixel excluding the first pixel and the second pixel of the corresponding pixel group. ..
(5) The image pickup apparatus according to any one of (1) to (4), wherein the pixel group includes a floating diffusion shared by a plurality of pixels included in the pixel group.
(6) The image pickup apparatus according to (2), wherein the pixel transistor is arranged in the region of the blue pixel and the region of the green pixel.
(7) The image pickup apparatus according to (2), wherein the pixel transistor is arranged between the blue pixel region and the green pixel region.
(8) The image pickup apparatus according to (1) to (7), comprising a pixel separating portion extending in the depth direction of the pixels along a pixel boundary for separating the pixels included in the pixel group.
(9) The pixel group includes two pixels adjacent to each other in the first direction and two pixels adjacent to each other in the second direction intersecting the first direction, and these four pixels are the red pixel, the said. The image pickup apparatus according to (2), which includes a green pixel and the blue pixel.
(10) The image pickup apparatus according to (9), wherein the four pixels include two green pixels.
(11) One pixel transistor is shared by the two pixel groups arranged adjacent to the first direction or the second direction, and the first portion of the one pixel transistor is the two. The image pickup apparatus according to (9), wherein the second portion of the one pixel transistor is arranged on one of the pixel groups and is arranged on the other of the two pixel groups.
(12) The first portion is arranged in the region of the blue pixel of one of the two pixel groups, and the second portion is arranged in the region of the blue pixel of the other of the two pixel groups. The imaging apparatus according to (11), which is arranged.
(13) The two pixel groups are arranged adjacent to the second direction, and the first portion is arranged between the two pixel groups and along the region extending in the first direction. The image pickup apparatus according to (12), wherein the second portion is arranged at the end of the other of the two pixel groups in the second direction and along a region extending in the first direction.
(14) The two pixel groups are arranged adjacent to each other in the second direction, and the first portion is an end portion of one of the two pixel groups in the first direction and the first portion. Arranged along a region extending in two directions, the second portion was arranged at the other end of the two pixel groups in the first direction and along the region extending in the second direction (). 12) The imaging device according to the above.
(15) The pixel transistor includes a reset transistor, an amplification transistor, and a selection transistor, and the amplification transistor and the selection transistor are arranged in a region including the blue pixel of one of the two pixel groups. The image pickup apparatus according to (11), wherein the reset transistor is arranged in a region of the two pixel groups including the other blue pixel.
(16) The image pickup apparatus according to (11), wherein the pixel transistor includes a reset transistor, an amplification transistor, and a selection transistor, and the amplification transistor is arranged in both the first portion and the second portion.
(17) The pixel transistor includes a conversion efficiency switching transistor that switches the conversion efficiency of photoelectric conversion, and the conversion efficiency switching transistor is arranged in the region of the blue pixel of one or the other of the two pixel groups (17). 15) The imaging device according to the above.
(18) A first floating diffusion shared by a plurality of pixels included in one of the two pixel groups and a second floating diffusion shared by a plurality of pixels included in the other of the two pixel groups. The image pickup apparatus according to (11).
(19) A pixel separation portion extending in the depth direction of the pixels along the pixel boundary is provided to separate the first pixel group included in the two pixel groups and the plurality of pixels included in the second pixel group (19). 11) The imaging device according to the above. (20) A first pixel that includes an image pickup device and a signal processing unit that performs signal processing based on the pixel signal captured by the image pickup device, and the image pickup device photoelectrically converts light in the first wavelength band. , A pixel array unit arranged in a matrix with a pixel group including a second pixel for photoelectric conversion of light in the second wavelength band and a third pixel for photoelectric conversion of light in the third wavelength band as a unit.
An electronic device including a pixel transistor provided corresponding to the pixel group and arranged in a region including at least one pixel excluding the first pixel of the corresponding pixel group.
 10,10,10・・画素群、10R・・・赤色画素、10G1・・・緑色画素、10G2・・・緑色画素、10B・・・青色画素、12・・・半導体領域、14R・・・赤色フィルタ、14B・・・青色フィルタ、14G・・・緑色フィルタ、18・・・マイクロレンズ、20,20a~20f・・・絶縁膜、25R,25G1,25G2、25B・・・P型不純物領域、FD・・・フローティングディフージョン、PD・・・光電変換素子(フォトダイオード)、TG・・・転送ゲート、AMP,AMP1,AMP2・・・増幅トランジスタ、RST・・・リセットトランジスタ、SEL・・・選択トランジスタ、DMY・・・ダミートランジスタ、FDG・・・変換効率切換スイッチ、Sub-FD・・・副フローティングディフュージョン、250・・・撮像装置、251・・・画素領域、252・・・画素駆動線、253・・・垂直信号線、254・・・垂直駆動部、255・・・カラム処理部、256・・・水平駆動部、257・・・システム制御部、258・・・信号処理部、259・・・メモリ部、7000・・・車両制御システム、7010・・・通信ネットワーク、7100・・・駆動系制御ユニット、7110・・・車両状態検出部、7200・・・ボディ系制御ユニット、7300・・・バッテリ制御ユニット、7310・・・二次電池、7400・・・車外情報検出ユニット、7410・・・撮像部、7420・・・車内情報検出部、7500・・・車内情報検出ユニット、7510・・・運転者状態検出部、7600・・・統合制御ユニット、7610・・・マイクロコンピュータ、7620・・・汎用通信I/F、7630・・・専用通信I/F、7640・・・測位部、7650・・・ビーコン受信部、7660・・・車内機器I/F、7670・・・音声画像出力部、7680・・・車載ネットワークI/F、7690・・・記憶部、7710・・・オーディオスピーカ、7720・・・表示部、7730・・・インストルメントパネル、7750・・・外部環境、7760・・・車内機器、7800・・・入力部、7900・・・車両、7910~7916・・・撮像部、7920~7930・・・車外情報検出部 10, 10 1 , 10 2 ... Pixel group, 10R ... Red pixel, 10G1 ... Green pixel, 10G2 ... Green pixel, 10B ... Blue pixel, 12 ... Semiconductor area, 14R ... -Red filter, 14B ... Blue filter, 14G ... Green filter, 18 ... Microlens, 20, 20a to 20f ... Insulation film, 25R, 25G1, 25G2, 25B ... P-type impurity region , FD ... Floating diffusion, PD ... Photoelectric conversion element (photo diode), TG ... Transfer gate, AMP, AMP1, AMP2 ... Amplification transistor, RST ... Reset transistor, SEL ... Selective transistor, DMY ... Dummy transistor, FDG ... Conversion efficiency selector switch, Sub-FD ... Sub-floating diffusion, 250 ... Image pickup device, 251 ... Pixel area, 252 ... Pixel drive line , 253 ... Vertical signal line, 254 ... Vertical drive unit, 255 ... Column processing unit, 256 ... Horizontal drive unit, 257 ... System control unit, 258 ... Signal processing unit, 259 ... Memory unit, 7000 ... Vehicle control system, 7010 ... Communication network, 7100 ... Drive system control unit, 7110 ... Vehicle state detection unit, 7200 ... Body system control unit, 7300 ...・ ・ Battery control unit, 7310 ・ ・ ・ Secondary battery, 7400 ・ ・ ・ Vehicle outside information detection unit, 7410 ・ ・ ・ Imaging unit, 7420 ・ ・ ・ Vehicle interior information detection unit, 7500 ・ ・ ・ Vehicle interior information detection unit, 7510 ・・ ・ Driver status detection unit, 7600 ・ ・ ・ Integrated control unit, 7610 ・ ・ ・ Microcomputer, 7620 ・ ・ ・ General-purpose communication I / F, 7630 ・ ・ ・ Dedicated communication I / F, 7640 ・ ・ ・ Positioning unit, 7650 ... Beacon receiver, 7660 ... In-vehicle device I / F, 7670 ... Audio image output unit, 7680 ... In-vehicle network I / F, 7690 ... Storage unit, 7710 ... Audio speaker , 7720 ... Display unit, 7730 ... Instrument panel, 7750 ... External environment, 7760 ... Vehicle interior equipment, 7800 ... Input unit, 7900 ... Vehicle, 7910-7916 ... Imaging Department, 7920-7930 ... External information detection unit

Claims (20)

  1.  第1の波長帯の光を光電変換する第1画素、第2の波長帯の光を光電変換する第2画素、および第3の波長帯の光を光電変換する第3画素を含む画素群を単位としてマトリクス状に配置された画素アレイ部と、
     前記画素群に対応して設けられ、対応する画素群の前記第1画素を除く少なくとも1つの画素を含む領域内に配置される画素トランジスタと、
     を備えた撮像装置。
    A pixel group including a first pixel that photoelectrically converts light in the first wavelength band, a second pixel that photoelectrically converts light in the second wavelength band, and a third pixel that photoelectrically converts light in the third wavelength band. Pixel array unit arranged in a matrix as a unit,
    A pixel transistor provided corresponding to the pixel group and arranged in a region including at least one pixel excluding the first pixel of the corresponding pixel group.
    An image pickup device equipped with.
  2.  前記第1乃至第3の波長帯はそれぞれ、赤色、緑色、青色の光に対応した波長帯であり、前記第1乃至第3画素はそれぞれ赤色画素、緑色画素、青色画素である請求項1に記載の撮像装置。 The first to third wavelength bands correspond to red, green, and blue light, respectively, and the first to third pixels are red pixels, green pixels, and blue pixels, respectively, according to claim 1. The imaging device described.
  3.  前記画素トランジスタは、リセットトランジスタと、増幅トランジスタと、選択トランジスタと、を含む請求項1記載の撮像装置。 The image pickup apparatus according to claim 1, wherein the pixel transistor includes a reset transistor, an amplification transistor, and a selection transistor.
  4.  前記画素トランジスタは、対応する画素群の前記第1画素及び前記第2画素を除く前記第3画素の領域内に配置された請求項1記載の撮像装置。 The image pickup apparatus according to claim 1, wherein the pixel transistor is arranged in a region of the third pixel excluding the first pixel and the second pixel of the corresponding pixel group.
  5.  前記画素群は、この画素群に含まれる複数の画素が共有するフローティングディフュージョンを備えた請求項1記載の撮像装置。 The image pickup apparatus according to claim 1, wherein the pixel group includes a floating diffusion shared by a plurality of pixels included in the pixel group.
  6.  前記画素トランジスタは、前記青色画素の領域内および前記緑色画素の領域内に配置された請求項2記載の撮像装置。 The image pickup apparatus according to claim 2, wherein the pixel transistor is arranged in the area of the blue pixel and the area of the green pixel.
  7.  前記画素トランジスタは、前記青色画素の領域と前記緑色画素の領域との間に配置された請求項2記載の撮像装置。 The image pickup apparatus according to claim 2, wherein the pixel transistor is arranged between the blue pixel region and the green pixel region.
  8.  前記画素群に含まれる画素同士を分離する、画素境界に沿って画素の深さ方向に延びる画素分離部を備えた請求項1記載の撮像装置。 The image pickup apparatus according to claim 1, further comprising a pixel separation portion extending in the depth direction of the pixels along the pixel boundary to separate the pixels included in the pixel group.
  9.  前記画素群は、第1方向に隣接する2つの画素と、前記第1方向に交差する第2方向に隣接する2つの画素とを含み、これら4つの画素は、前記赤色画素、前記緑色画素、および前記青色画素を含む請求項2記載の撮像装置。 The pixel group includes two pixels adjacent to each other in the first direction and two pixels adjacent to each other in the second direction intersecting the first direction, and these four pixels are the red pixel, the green pixel, and the like. The image pickup apparatus according to claim 2, further comprising the blue pixel.
  10.  前記4つの画素は、2つの前記緑色画素を含む請求項9記載の撮像装置。 The imaging device according to claim 9, wherein the four pixels include the two green pixels.
  11.  前記第1方向又は前記第2方向に隣接して配置される2つの前記画素群にて、一つの前記画素トランジスタを共有し、
     前記一つの画素トランジスタの第1部分は、前記2つの画素群のうち一方に配置され、
     前記一つの画素トランジスタの第2部分は、前記2つの画素群のうち他方に配置された請求項9記載の撮像装置。
    One pixel transistor is shared by two pixel groups arranged adjacent to each other in the first direction or the second direction.
    The first portion of the one pixel transistor is arranged in one of the two pixel groups.
    The image pickup apparatus according to claim 9, wherein the second portion of the one pixel transistor is arranged on the other side of the two pixel groups.
  12.  前記第1部分は、前記2つの画素群のうち一方の前記青色画素の領域内に配置され、
     前記第2部分は、前記2つの画素群のうち他方の前記青色画素の領域内に配置された請求項11記載の撮像装置。
    The first portion is arranged in the area of the blue pixel of one of the two pixel groups.
    The imaging device according to claim 11, wherein the second portion is arranged in the region of the blue pixel of the other of the two pixel groups.
  13.  前記2つの画素群は、前記第2方向に隣接して配置されており、
     前記第1部分は、前記2つの画素群の間で、かつ前記第1方向に延びる領域に沿って配置され、
     前記第2部分は、前記2つの画素群のうち他方の前記第2方向の端部で、かつ前記第1方向に延びる領域に沿って配置された請求項12記載の撮像装置。
    The two pixel groups are arranged adjacent to each other in the second direction.
    The first portion is arranged between the two pixel groups and along the region extending in the first direction.
    12. The image pickup apparatus according to claim 12, wherein the second portion is arranged at the end of the other of the two pixel groups in the second direction and along a region extending in the first direction.
  14.  前記2つの画素群は、前記第2方向に隣接して配置されており、
     前記第1部分は、前記2つの画素群のうち一方の前記第1方向の端部で、かつ前記第2方向に延びる領域に沿って配置され、
     前記第2部分は、前記2つの画素群のうち他方の前記第1方向の端部で、かつ前記第2方向に延びる領域に沿って配置された請求項12記載の撮像装置。
    The two pixel groups are arranged adjacent to each other in the second direction.
    The first portion is arranged at the end of one of the two pixel groups in the first direction and along the region extending in the second direction.
    12. The image pickup apparatus according to claim 12, wherein the second portion is arranged at the end of the other of the two pixel groups in the first direction and along a region extending in the second direction.
  15.  前記画素トランジスタはリセットトランジスタと、増幅トランジスタと、選択トランジスタと、を含み、
     前記増幅トランジスタおよび前記選択トランジスタは、前記2つの画素群のうち一方の前記青色画素を含む領域に配置され、
     前記リセットトランジスタは、前記2つの画素群のうち他方の前記青色画素を含む領域に配置された請求項11記載の撮像装置。
    The pixel transistor includes a reset transistor, an amplification transistor, and a selection transistor.
    The amplification transistor and the selection transistor are arranged in a region including the blue pixel of one of the two pixel groups.
    The imaging device according to claim 11, wherein the reset transistor is arranged in a region including the blue pixel of the other of the two pixel groups.
  16.  前記画素トランジスタはリセットトランジスタと、増幅トランジスタと、選択トランジスタと、を含み、
     前記増幅トランジスタは、前記第1部分および前記第2部分の双方に配置された請求項11記載の撮像装置。
    The pixel transistor includes a reset transistor, an amplification transistor, and a selection transistor.
    The image pickup apparatus according to claim 11, wherein the amplification transistor is arranged in both the first portion and the second portion.
  17.  前記画素トランジスタは、光電変換の変換効率を切り換える変換効率切換トランジスタを含み、
     前記変換効率切換トランジスタは、前記2つの画素群のうち一方又は他方の前記青色画素の領域に配置された請求項15記載の撮像装置。
    The pixel transistor includes a conversion efficiency switching transistor that switches the conversion efficiency of photoelectric conversion.
    The image pickup apparatus according to claim 15, wherein the conversion efficiency switching transistor is arranged in the region of the blue pixel of one or the other of the two pixel groups.
  18.  前記2つの画素群のうち一方に含まれる複数の画素が共有する第1フローティングディフュージョンと、
     前記2つの画素群のうち他方に含まれる複数の画素が共有する第2フローティングディフュージョンと、を備えた請求項11記載撮像装置。
    A first floating diffusion shared by a plurality of pixels included in one of the two pixel groups,
    11. The imaging apparatus according to claim 11, further comprising a second floating diffusion shared by a plurality of pixels included in the other of the two pixel groups.
  19.  前記2つの画素群に含まれる第1画素群および第2画素群に含まれる複数の画素同士を分離する、画素境界に沿って画素の深さ方向に延びる画素分離部を備えた請求項11記載の撮像装置。 11. The 11. Imaging device.
  20.  撮像装置と、
     前記撮像装置で撮像された画素信号に基づいて信号処理を行う信号処理部と、を備え、
     前記撮像装置は、
     第1の波長帯の光を光電変換する第1画素、第2の波長帯の光を光電変換する第2画素、および第3の波長帯の光を光電変換する第3画素を含む画素群を単位としてマトリクス状に配置された画素アレイ部と、
     前記画素群に対応して設けられ、対応する画素群の前記第1画素を除く少なくとも1つの画素を含む領域内に配置される画素トランジスタと、
     を備えた電子機器。
    Imaging device and
    A signal processing unit that performs signal processing based on a pixel signal captured by the image pickup device is provided.
    The image pickup device
    A pixel group including a first pixel that photoelectrically converts light in the first wavelength band, a second pixel that photoelectrically converts light in the second wavelength band, and a third pixel that photoelectrically converts light in the third wavelength band. Pixel array unit arranged in a matrix as a unit,
    A pixel transistor provided corresponding to the pixel group and arranged in a region including at least one pixel excluding the first pixel of the corresponding pixel group.
    Electronic equipment equipped with.
PCT/JP2021/048905 2021-01-08 2021-12-28 Imaging device and electronic apparatus WO2022149556A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-001996 2021-01-08
JP2021001996A JP2022107201A (en) 2021-01-08 2021-01-08 Imaging device and electronic apparatus

Publications (1)

Publication Number Publication Date
WO2022149556A1 true WO2022149556A1 (en) 2022-07-14

Family

ID=82357987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/048905 WO2022149556A1 (en) 2021-01-08 2021-12-28 Imaging device and electronic apparatus

Country Status (2)

Country Link
JP (1) JP2022107201A (en)
WO (1) WO2022149556A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008172580A (en) * 2007-01-12 2008-07-24 Toshiba Corp Solid-state imaging element, and solid-state imaging apparatus
JP2013062789A (en) * 2011-08-22 2013-04-04 Sony Corp Solid-state imaging device, and electronic equipment
JP2015012303A (en) * 2013-06-26 2015-01-19 ソニー株式会社 Solid-state imaging device and electronic apparatus
JP2016005068A (en) * 2014-06-16 2016-01-12 ソニー株式会社 Solid-state imaging device and electronic apparatus
JP2016021479A (en) * 2014-07-14 2016-02-04 ソニー株式会社 Solid-state image sensor, manufacturing method and electronic apparatus
JP2016152322A (en) * 2015-02-18 2016-08-22 株式会社東芝 Solid state image sensor
WO2017130723A1 (en) * 2016-01-27 2017-08-03 ソニー株式会社 Solid-state image capture element and electronic device
WO2020012824A1 (en) * 2018-07-13 2020-01-16 ソニーセミコンダクタソリューションズ株式会社 Solid-state imaging element and electronic device
WO2020262559A1 (en) * 2019-06-26 2020-12-30 ソニーセミコンダクタソリューションズ株式会社 Imaging device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008172580A (en) * 2007-01-12 2008-07-24 Toshiba Corp Solid-state imaging element, and solid-state imaging apparatus
JP2013062789A (en) * 2011-08-22 2013-04-04 Sony Corp Solid-state imaging device, and electronic equipment
JP2015012303A (en) * 2013-06-26 2015-01-19 ソニー株式会社 Solid-state imaging device and electronic apparatus
JP2016005068A (en) * 2014-06-16 2016-01-12 ソニー株式会社 Solid-state imaging device and electronic apparatus
JP2016021479A (en) * 2014-07-14 2016-02-04 ソニー株式会社 Solid-state image sensor, manufacturing method and electronic apparatus
JP2016152322A (en) * 2015-02-18 2016-08-22 株式会社東芝 Solid state image sensor
WO2017130723A1 (en) * 2016-01-27 2017-08-03 ソニー株式会社 Solid-state image capture element and electronic device
WO2020012824A1 (en) * 2018-07-13 2020-01-16 ソニーセミコンダクタソリューションズ株式会社 Solid-state imaging element and electronic device
WO2020262559A1 (en) * 2019-06-26 2020-12-30 ソニーセミコンダクタソリューションズ株式会社 Imaging device

Also Published As

Publication number Publication date
JP2022107201A (en) 2022-07-21

Similar Documents

Publication Publication Date Title
WO2019188123A1 (en) Imaging device and image processing system
KR102607473B1 (en) Solid-state imaging device, method for manufacturing solid-state imaging device, and electronic device
US11895398B2 (en) Imaging device and imaging system
US20230047180A1 (en) Imaging device and imaging method
WO2019073726A1 (en) Solid-state imaging element, method for driving solid-state imaging element, and electronic device
CN113647089A (en) Imaging system
JP7488195B2 (en) Imaging device and electronic device
WO2022102471A1 (en) Imaging element and imaging device
WO2022054617A1 (en) Solid-state imaging device and electronic apparatus
WO2022149556A1 (en) Imaging device and electronic apparatus
WO2022209256A1 (en) Imaging element, imaging device, and method for manufacturing imaging element
WO2022124092A1 (en) Solid-state imaging element, imaging device, and method for controlling solid-state imaging unit
WO2022102549A1 (en) Solid-state imaging device
WO2022186040A1 (en) Image capturing device, method for driving same, and electronic appliance
WO2024075492A1 (en) Solid-state imaging device, and comparison device
WO2024038828A1 (en) Light detection device
US20240080587A1 (en) Solid-state imaging device and electronic instrument
JPWO2020158321A1 (en) Light receiving element, solid-state image sensor and ranging device
WO2024070740A1 (en) Solid-state imaging device, comparator and electronic equipment
WO2024057471A1 (en) Photoelectric conversion element, solid-state imaging element, and ranging system
WO2023248346A1 (en) Imaging device
US20240323561A1 (en) Image processing device, image processing method, and image processing system
WO2024048292A1 (en) Light detection element , imaging device, and vehicle control system
WO2023248855A1 (en) Light detection device and electronic apparatus
WO2024106169A1 (en) Photodetection element and electronic apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21917776

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18245900

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21917776

Country of ref document: EP

Kind code of ref document: A1