WO2022149361A1 - Input device capable of providing tree-dimensional tactile information - Google Patents
Input device capable of providing tree-dimensional tactile information Download PDFInfo
- Publication number
- WO2022149361A1 WO2022149361A1 PCT/JP2021/042674 JP2021042674W WO2022149361A1 WO 2022149361 A1 WO2022149361 A1 WO 2022149361A1 JP 2021042674 W JP2021042674 W JP 2021042674W WO 2022149361 A1 WO2022149361 A1 WO 2022149361A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- user
- input device
- virtual space
- actuator
- tactile feedback
- Prior art date
Links
- 229910001285 shape-memory alloy Inorganic materials 0.000 description 23
- 238000004088 simulation Methods 0.000 description 20
- 238000004364 calculation method Methods 0.000 description 13
- 238000000034 method Methods 0.000 description 13
- 238000005516 engineering process Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 7
- 239000002184 metal Substances 0.000 description 6
- 238000001356 surgical procedure Methods 0.000 description 6
- 238000006073 displacement reaction Methods 0.000 description 5
- 230000035939 shock Effects 0.000 description 5
- 230000009471 action Effects 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 230000035807 sensation Effects 0.000 description 4
- 239000002470 thermal conductor Substances 0.000 description 4
- 239000004020 conductor Substances 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 230000003190 augmentative effect Effects 0.000 description 2
- 239000011162 core material Substances 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 1
- 206010044565 Tremor Diseases 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000015541 sensory perception of touch Effects 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63F—CARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
- A63F13/00—Video games, i.e. games using an electronically generated display having two or more dimensions
- A63F13/25—Output arrangements for video game devices
- A63F13/28—Output arrangements for video game devices responding to control signals received from the game device for affecting ambient conditions, e.g. for vibrating players' seats, activating scent dispensers or affecting temperature or light
- A63F13/285—Generating tactile feedback signals via the game input device, e.g. force feedback
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
Definitions
- the present invention relates to an input device capable of providing three-dimensional tactile information, and more particularly to an input device capable of providing three-dimensional tactile information equipped with a plurality of actuators that give tactile feedback to the human body.
- pressure-sensitive input devices such as touch panels have been adopted in a wide range of fields as interfaces for users to operate devices due to the advantage of being able to operate intuitively.
- movement to replace touch panels is spreading to devices that have conventionally used physical buttons and keyboards.
- An electronic device equipped with a touch panel may be equipped with a haptic actuator (hereinafter, also simply referred to as "actuator”) that gives tactile feedback (haptic feedback) to the human body in combination with the touch panel.
- a haptic actuator hereinafter, also simply referred to as "actuator”
- the haptic actuator is the housing or touch of the electronic device.
- Haptic actuators generally use electric power as a drive source, and can be roughly divided into impact drive type and vibration drive type according to the nature of motion.
- Typical examples of the impact drive type include SIA (Shape memory alloy Impact Actuator) using a shape memory alloy and a piezoelectric actuator using a piezo element.
- the impact-driven actuator includes a moving component capable of shocking movement, and gives a transient impact to the touch screen or housing of an electronic device by hitting or interlocking the moving component.
- vibration-driven actuators include ERM (Eccentric Rotating Mass) type actuators that use eccentric motors, and linear resonance type actuators (LRA: Linear Resnonant Actuator) that vibrate the mover by passing an alternating current through a coil in a magnetic field. Can be mentioned.
- the vibration-driven type gives a vibration of a constant amplitude to the vibrating body for the required time.
- Patent Document 1 International Publication No. 2012/023605
- a horizontal (or planar direction) or vertical direction front-back direction or Disclosed are shock-driven actuators that enable shocking movements (impact movements) in the thickness direction and rotational or straight-ahead movements based on repeated shocking movements.
- the impact-driven actuator insulating heat conductors of various shapes are provided so as to be in contact with the wire-shaped shape memory alloy arranged in a predetermined wiring state as effectively as possible, and the insulating heat conduction is provided.
- the temperature of the wire-shaped shape memory alloy can be lowered quickly, and it can be repeated in a relatively short time. It is possible to realize a momentary operation that is possible, and it is possible to realize a highly practical impact-driven actuator.
- Patent Document 2 Japanese Unexamined Patent Publication No. 2012-203895 discloses a touch panel device in which a piezoelectric vibration element is mounted on an upper portion and a lower portion of the smartphone under a glass substrate of the smartphone. Since the piezoelectric vibration elements are provided in two places, by controlling the amplitude and phase of the signal input to each, it is possible to induce a strong amplitude in a specific place in the plane of the protective panel 22, and a finger or the like can be used. It is possible to selectively vibrate the touched part.
- Patent Document 3 Japanese Patent Laid-Open No. 2020-515891 discloses a system and a method for training and collaborative work in a virtual environment, whereby a plurality of people in remote locations are in the same virtual space. Above, collaborative work such as surgery can be performed.
- Patent Document 4 Japanese Unexamined Patent Publication No. 2017-143978 discloses a game system designed so that a gallery can appreciate the state of game play from the outside while considering safety.
- a two-dimensional display means such as a television, a smartphone, or a computer display displays a virtual space constructed in three dimensions
- a user uses an input device such as a remote control, a touch panel, a game controller, a mouse, or a keyboard.
- an input device such as a remote control, a touch panel, a game controller, a mouse, or a keyboard.
- There is a technique for realizing movements such as movement of a viewpoint and movement of a character or an object in the virtual space by inputting an operation.
- changes due to user input or some event are usually displayed to the user by some display means, and by looking at it, the user can grasp the changes in the virtual space. It is desired to provide information other than visual information to the user in order to more intuitively convey the event in the virtual space to the user and further enhance the sense of presence.
- the tactile sensation corresponding to the contact can be fed back to the user to enhance the sense of presence and to the user. It is preferable because it can also alert you to react quickly to it.
- the present invention has been completed in view of the above points, and in one embodiment, it is possible to provide tactile feedback that can enhance the sense of presence in an input device capable of inputting a user's operation in a simulated virtual space.
- the subject is to provide an input device.
- An input device that can input user operations in a simulated virtual space. It comprises a plurality of actuators configured to provide haptic feedback to the input device.
- the plurality of actuators are input devices arranged so as to be able to jointly generate the tactile feedback in a three-dimensional direction.
- the plurality of actuators consist of three actuators.
- Each actuator can generate the tactile feedback by vibrating or displacing in one direction, and the directions in which each actuator vibrates or displaces are arranged so as to be orthogonal to each other in [1].
- FIG. 1A It is a figure which shows the operation method of the touch panel in one Embodiment of this invention. It is a figure which shows the application example of the embodiment of FIG. 1A. It is a figure which shows another application example of the embodiment of FIG. 1A. It is a figure which shows an example of the VR game system which includes the VR controller in one Embodiment of this invention. It is a block diagram which shows the operation method of the VR controller in one Embodiment of this invention. It is a figure which shows the example which gives 3D tactile feedback corresponding to the operation in the game of a user in one Embodiment of this invention. It is a figure which shows the example which gives 3D tactile feedback corresponding to the operation in the game of a user in one Embodiment of this invention.
- the present invention is, in one embodiment, an input device capable of inputting user operations in a simulated virtual space. It comprises a plurality of actuators configured to provide haptic feedback to the input device.
- the plurality of actuators provide an input device that is arranged in cooperation with each other so as to generate the tactile feedback in a three-dimensional direction.
- the means for realizing it is not particularly limited, but it can be realized by utilizing XR technology such as VR technology, AR technology, MR technology and SR technology. Is.
- VR is an abbreviation for "Virtual Reality”. Translated as “virtual reality” in Japanese. It is a technology that allows you to create a virtual world that resembles reality on a computer and experience the feeling of being there.
- AR is an abbreviation for "Augmented Reality”. Translated as “augmented reality” in Japanese. While VR (virtual reality) is “another virtual space”, AR adds digital information created by CG (Computer Graphics) to the real world. In other words, it is a technology that reflects (extends) virtual reality in the real world. Unlike VR, which is mainly based on the world of “virtual space”, AR is mainly based on the "real world”.
- MR is an abbreviation for "Mixed Reality". Translated as “mixed reality” in Japanese. It is a technology that allows you to experience the virtual world by superimposing it on the real world.
- the subject is a virtual world (digital space). Reflect real-world information in the virtual world through cameras and the like. Since the information in the real world can be fixed in the virtual world, multiple people in the same MR space can obtain the information and have the same experience at the same time.
- SR is an abbreviation for "Substitutional Reality". Translated as “substitutional reality” in Japanese.
- a display such as a head-mounted display
- the illusion that the events that occurred in the past are real events is created. Can be caused.
- XR is an abbreviation for "X Reality”. It is a term used as a general term for the VR, AR, MR, and SR technologies described above, rather than the terms that refer to the individual technologies themselves, such as VR and AR described above.
- the content of the user's operation in the simulated virtual space is not particularly limited, but for example, the movement of the viewpoint, the movement of a specific character or object, the trigger of a specific event, and the change of the attribute related to the virtual space. And so on.
- the type of input device is not particularly limited as long as the user's operation can be input, but for example, in addition to conventional general-purpose input devices such as a mouse, keyboard, touch panel, and game controller, a VR controller, an AR controller, and the like. Can be mentioned.
- a tracking function a function for quickly recognizing the position / rotation of the input device for the input device is installed.
- the input device of the present invention is equipped with a plurality of actuators configured to provide haptic feedback, and the plurality of actuators are arranged so as to be able to jointly generate haptic feedback in a three-dimensional direction.
- the present invention can include any actuator that produces various tactile feedback effects. Both a shock-driven actuator and a vibration-driven actuator can be used for the present invention, but a shock-driven actuator that is relatively simple in operation and whose kinematic characteristics can be easily specified is preferable.
- the tactile feedback system described later will be described by taking an impact-driven actuator as an example, but it goes without saying that the tactile feedback system can also be applied to a vibration-driven actuator.
- the actuator in one embodiment of the present invention is made of a coil, a moving component (for example, a metal core material) and a spring.
- the coil is wound around the metal (where both the coil and the metal component may be referred to as "solenoids") and when the coil creates a magnetic field (eg, when a current flows between the coil terminals). )
- the metal moves.
- the movement of the metal can have an impact on the electronic device.
- the spring may then be used to return the moving metal or other core material to a stationary position when the current is removed from the coil.
- the impact-driven actuator in another embodiment has a wire-shaped shape memory alloy that contracts when energized and heated, and an insulating heat conduction that contacts the wire-shaped shape memory alloy and releases heat generated by the wire-shaped shape memory alloy. It is configured to include a body (moving component).
- the insulating thermal conductor in contact with the wire-shaped shape memory alloy is momentarily pressed and displaced. .. Displacement of the insulating thermal conductor can cause a shock to the electronic device.
- the impact-driven actuator in another embodiment has a wire-shaped shape memory alloy that contracts when energized and heated, and an insulating heat conduction that contacts the wire-shaped shape memory alloy and releases heat generated by the wire-shaped shape memory alloy. It is configured to include a body stator (fixing component) and a mover (moving component).
- a body stator fixing component
- a mover moving component
- the heat generated in the wire-shaped shape memory alloy is rapidly dissipated by the heat conduction action of the insulating heat conductor, and as a result, the wire-shaped shape memory alloy immediately returns to the original length state (extended state). In this way, the wire-shaped shape memory alloy can be momentarily shrunk at relatively short time intervals.
- stator To prevent the position of the stator from changing, fix it to the parts of the electronic device with, for example, double-sided tape or adhesive, and attach the moving parts of the electronic device (housing, touch screen, etc.) to the mover to drive the impact. It is possible to bring an impact to an electronic device by sandwiching a mold actuator and holding down a part that operates with an elastic part such as a spring that returns them.
- the shapes of the stator and the mover are not particularly limited as long as the above functions can be realized, and can be appropriately selected from a disk shape, a wavy shape, a columnar shape, and the like.
- each actuator In order for each actuator to generate tactile feedback in the three-dimensional direction, it is necessary to control the orientation of each actuator in the input device. For example, if tactile feedback can be generated by vibrating or displacing each actuator in one direction, by arranging each actuator so that the directions of vibration or displacement of each actuator are orthogonal to each other, 3 It is possible to generate tactile feedback in any direction in the dimension.
- the operation / stationary of each actuator can be determined.
- the strength of the motion, vibration or displacement in the direction of the vector sum of the vector representing the movement amount in the X-axis direction, the vector representing the movement amount in the Y-axis direction, and the vector representing the movement amount in the Z-axis direction. Can be generated, and the user can sense the tactile feedback from or in the direction.
- the direction of the tactile feedback perceived by the user is the direction of the vector sum of vibrations or displacements by each actuator, it is not necessary to arrange the plurality of actuators in exactly orthogonal directions, and the tactile sensation is cooperatively performed in the three-dimensional direction.
- the feedback may be arranged in a direction in which it can be generated.
- the plurality of actuators may be arranged in the vicinity of the input device, but it is not always necessary, and the plurality of actuators may be arranged at locations separated from each other depending on the shape and internal structure of the input device.
- actuators there are three or more actuators in order to generate tactile feedback in the three-dimensional direction.
- the number of actuators can be, for example, 7 or less, for example, 6 or less, for example, 5 or less. It can be, for example, 4 or less.
- the direction of the tactile feedback is the user in the simulated virtual space. It is preferable that it corresponds to the direction of the operation by the user or the operation with respect to the user. By “corresponding”, when an action of the user or an action for the user occurs in the real space, the tactile feedback is generated in the same direction as the tactile sense to be sensed by the user.
- the movement by the user includes the movement of the character or object that the user controls in the virtual space, and the tactile feedback corresponding to the movement is typically generated when the character or object comes into contact with another character or object. Including impact or recoil.
- the motion for the user includes the motion received by the character or object that the user steers in the virtual space, and the tactile feedback corresponding to the motion is typically when the character or object is touched by another character or object. Includes impact or feedback generated in.
- the input device is a touch panel device.
- the driving method of the touch panel 10 is not limited, and any known driving method such as a pressure-sensitive method, a capacitance method, and a resistance film method can be adopted. It is possible to place a display device that displays the simulated virtual space under the touch panel, but it is possible to place a display device that displays the simulated virtual space independently of the touch panel. Is.
- the driving method of the display device is not limited, and a display device using an organic EL or the like can be used in addition to the liquid crystal display device.
- FIG. 1A is a diagram showing a method of operating a touch panel according to an embodiment of the present invention.
- a display device 12 is arranged below the touch panel 10, and a simulated virtual space is displayed. Further, in close contact with the touch panel, the three actuators 14 are arranged so that their vibration directions are in the X-axis direction, the Y-axis direction, and the Z-axis direction (the actuator 14 in the Z-axis direction is not shown).
- Arrows relating to the X-axis, Y-axis, and Z-axis at the bottom of FIG. 1A are time axes indicating changes in the operation of the respective actuators 14 over time.
- the upper point in FIG. 1A indicates the time point corresponding to the operation of each lower actuator 14, the dotted line indicates the movement of the viewpoint in the virtual space, and the solid line indicates the movement of the user's finger.
- the X-axis direction actuator 14 and the Y-axis direction actuator 14 are activated to generate tactile feedback in the direction of the vector sum of the vector in the X-axis direction and the vector in the Y-axis direction.
- Guide the user's finger to the upper right In this example, by moving the user's finger to the upper right, the operation at the point in the virtual space to the right of the point currently being operated by the user (that is, the point to the right on the depth side in the virtual space). Is possible.
- the viewpoint in the virtual space can also move in the upper right direction in conjunction with it.
- This guidance is provided, for example, when the object to be operated by the user is on the depth side in the virtual space, or when the system determines that the user needs to operate on the depth side in the virtual space in order to progress the game or the like. It is possible to be executed. Therefore, in addition to the operation of the X-axis direction actuator 14 and the Y-axis direction actuator 14, it is also possible to add the operation of the actuator in the Z-axis direction to inform the user that the guidance is to the depth side. Further, when the actuator 14 reaches the depth side of the virtual space through the guidance in the X-axis direction, the Z-axis direction actuator 14 is strongly driven in the depth direction to notify the user that the user has reached the depth side of the virtual space. Further, when the destination point on the depth side of the virtual space is reached through the guidance in the X-axis direction and the lower right direction, the Z-axis direction actuator 14 is strongly driven in the depth direction to notify the user that the destination point has been reached.
- FIG. 1B in a shooting game, when a user aims at a distant target, when the user aims at a target near the target (here, the left front), the target is on the right front. In order to show the user and fine-tune the aim, the user is guided to the upper right.
- the user operates the table to prevent the ball on the table from falling from the table.
- the table is rectangular, with one side of the long side facing the user's left front and the other side facing the user's right back.
- the game system guides the user's finger toward the upper right of the screen in order to adjust the orientation of the table, and when the user's finger moves toward the upper right of the screen accordingly, the table returns to the horizontal position or the front right side moves. Tilt and stop the movement of the ball.
- the tactile feedback in the Z-axis direction can more intuitively convey to the user the movement in the depth direction in the three-dimensional virtual space displayed on the two-dimensional display device 12. ..
- the Z-axis direction actuator 14 may be driven only when it reaches a specific point on the depth side of the virtual space, for example, so that the vibration becomes stronger (or weaker) as it advances to the depth side of the virtual space. It is also possible to provide continuously changing tactile feedback.
- the input device is a game operation receiving means in a virtual space.
- the operation receiving means is a VR controller, which is held and used by the user.
- the VR controller can be equipped with, for example, a gyro sensor or an acceleration sensor, and can detect the movement of the user's hand holding the VR controller.
- the VR controller is equipped with a plurality of actuators arranged so as to be able to generate tactile feedback in the three-dimensional direction in cooperation with each other.
- FIG. 2 is a diagram showing an example of a VR game system including a VR controller.
- a user In order to play a VR game, a user usually wears a VR headset or VR goggles and operates using a VR controller that can move in three dimensions with both hands or one hand.
- the VR headset detects the position of the user in the real space and sends the position information to the simulation system.
- the game server in the simulation system or the game server installed independently of the simulation system calculates the position coordinates in the virtual space based on the position coordinates in the user's real space, and outputs the corresponding video to the VR headset. do. While the game progresses, the position and rotation of the VR controller are tracked and reflected in the simulation system in real time.
- the simulation system determines that tactile feedback to the user is necessary, such as when the user performs a predetermined operation using the VR controller, or when a specific event occurs in the game system, the simulation system uses the VR controller. Send instructions to generate tactile feedback in a particular direction.
- the arithmetic unit (not shown) mounted on the VR controller is based on the instruction.
- the direction and strength (load direction) at which tactile feedback should be generated For example, when a character operated by a user touches a wall in a simulated virtual space, the direction and intensity of the impact to be received by the user are calculated based on the location of the contact and the speed at the time of contact. Further, based on the calculated direction and strength, it is calculated how strong each actuator should be vibrated (vibration force calculation). Each actuator is driven based on the calculation result of the vibration force.
- the number of actuators actually driven may be the minimum number that can realize the direction and strength of the feedback, or may be larger than that.
- the load direction calculation and the vibration force calculation may be performed by an arithmetic unit mounted in the VR controller, or may be calculated in the simulation system. When calculated in the simulation system, the drive signal of each actuator is sent directly to each actuator.
- FIGS. 4A to 4C show an example of giving three-dimensional tactile feedback corresponding to the user's movement in the game.
- the user controls a virtual character in the game and uses a VR controller to move the sword.
- the VR controller is equipped with three actuators, and the arrows relating to the X-axis, Y-axis, and Z-axis are time axes indicating changes in the operation of each actuator over time.
- the character in the game stabs the sword accordingly.
- the tip of the sword hits the target, the direction and strength at which the repulsive force should be generated are calculated based on the direction and speed of the movement of the sword.
- the actuator is driven based on the calculation result.
- the actuator in the X-axis direction is driven downward to feed back the downward repulsion to the user (FIG. 4A).
- the input device is an operation receiving means for driving a vehicle simulated in a virtual space.
- the operation receiving means is a steering wheel for driving simulation.
- the handle is equipped with a plurality of actuators configured to provide tactile feedback along its circumferential direction, and the plurality of actuators can cooperate to generate tactile feedback in a three-dimensional direction.
- FIG. 5 is a diagram showing an example of a car driving simulator.
- the simulated virtual space is displayed on the monitor, and specifically, the inside and outside of the vehicle as seen from the driver's seat are displayed.
- the simulation system calculates how the vehicle moves depending on the direction of the steering wheel, and also calculates the direction and strength of the force that the steering wheel should receive due to the movement of the vehicle, and based on the calculated result.
- the actuator is driven. At the same time, the movement of the vehicle is reflected on the monitor.
- the simulation system is based on the situation of the car operated by the player in the simulation (collision, riding, running on uneven road, etc.) and where in the car. , Sends information about how much magnitude / orientation force or impact is applied to the data receiver of the handle.
- the arithmetic unit mounted on the handle calculates the direction and strength (load direction) at which tactile feedback should be generated. For example, when a user-operated vehicle comes into contact with another vehicle in a simulated virtual space, the direction and intensity of the impact that the handle should receive is calculated based on the location of the contact and the speed at the time of contact.
- each actuator is driven based on the calculation result of the vibration force.
- the number of actuators actually driven may be the minimum number that can realize the direction and strength of the feedback, or may be larger than that.
- the load direction calculation and the vibration force calculation may be performed by an arithmetic unit mounted in the handle, or may be calculated in the simulation system. When calculated in the simulation system, the drive signal of each actuator is sent directly to each actuator.
- FIG. 7A and 7B show an example of providing three-dimensional tactile feedback in response to a simulated vehicle driving motion.
- the figure shows how the vehicle rides on the curb on the left side of the road.
- the user holds the steering wheel to steer a virtual vehicle.
- Three actuators are mounted, and the arrows relating to the X-axis, Y-axis, and Z-axis are time axes indicating changes in the operation of each actuator over time.
- the actuator in the X-axis direction is driven to the right and feeds back the impact to the right to the user (FIG. 7A).
- the actuator in the Z-axis direction is also driven upward to a certain extent (FIG. 7A).
- the actuator in the Y-axis direction is driven backwards to feed back the backward impact to the user (FIG. 7B).
- the actuator in the Z-axis direction is also driven upward to a certain extent (FIG. 7B).
- the input device is a surgical operation receiving means simulated in a virtual space.
- the operating receiving means is a controller for moving the surgical instrument.
- the shape of the controller can vary widely depending on the shape of the corresponding surgical instrument. For example, it can have a shape similar to a scalpel, a sessi, a pistol, nippers, and the like.
- the controller is equipped with a plurality of actuators configured to provide haptic feedback, and the plurality of actuators can cooperate to generate haptic feedback in a three-dimensional direction.
- Surgery simulated in virtual space can also be linked to actual surgery to realize remote surgery.
- FIG. 8 is a diagram showing an example of a surgical operation simulator.
- the monitor displays a simulated virtual space, specifically what the doctor is doing during surgery.
- the simulation system calculates the direction and strength of the force that the surgical instrument should receive in the movement of the surgical instrument, and the actuator is driven based on the calculated result.
- the movement of the surgical instrument is reflected on the monitor.
- the simulation system transmits information about the force or impact applied to the human or animal undergoing surgery from the information in the simulation to the data receiving unit of the surgical instrument.
- the arithmetic unit (not shown) mounted on the surgical instrument calculates the direction and strength (load direction) at which tactile feedback should be generated. For example, when a user-operated surgical instrument comes into contact with a tissue of a human body in a simulated virtual space, the direction and intensity of the impact that the surgical instrument should receive are calculated based on the hardness of the tissue and the speed at the time of contact. .. Further, based on the calculated direction and strength, it is calculated how strong each actuator should be vibrated (vibration force calculation).
- Each actuator is driven based on the calculation result of the vibration force.
- the number of actuators actually driven may be the minimum number that can realize the direction and strength of the feedback, or may be larger than that.
- the load direction calculation and the vibration force calculation may be performed by an arithmetic unit mounted in the surgical instrument, or may be calculated in the simulation system. When calculated in the simulation system, the drive signal of each actuator is sent directly to each actuator.
- FIG. 10 shows an example of providing three-dimensional tactile feedback in response to a simulated surgical movement.
- the illustration shows a state in which a surgical instrument having a shape similar to a nipper moves while sandwiching an object (tissue).
- the user moves a surgical instrument to perform a virtual operation.
- Three actuators are mounted on the surgical instrument, and the arrows relating to the X-axis, Y-axis, and Z-axis at the bottom of the drawing are time axes indicating changes in the operation of each actuator over time.
- the actuator in the Z-axis direction is driven downward and feeds back the downward resistance to the user. Further, when the object is pulled upward and then sideways, the direction of the resistance becomes sideways, and the actuator in the Y-axis direction is driven sideways to feed back the tactile sensation of the resistance. Further, although not shown in the drawing, when the surgical instrument is moved toward the front side or the depth direction of the paper surface, the actuator in the X-axis direction is driven laterally correspondingly to feed back the tactile sensation of resistance.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Human Computer Interaction (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- User Interface Of Digital Computer (AREA)
- Position Input By Displaying (AREA)
Abstract
Provided is an input device to which an operation of a user in a simulated virtual space can be input, the input device being capable of providing tactile feedback that can enhance a sense of presence. This input device to which an operation of a user in a simulated virtual space can be input comprises a plurality of actuators configured to provide tactile feedback to the input device, wherein the plurality of actuators are disposed so as to generate the tactile feedback in three-dimensional directions in cooperation with one another.
Description
本発明は、3次元の触覚情報を提供可能な入力装置に関し、特に、人体に触覚フィードバックを付与するアクチュエータを複数搭載した、3次元の触覚情報を提供可能な入力装置に関する。
The present invention relates to an input device capable of providing three-dimensional tactile information, and more particularly to an input device capable of providing three-dimensional tactile information equipped with a plurality of actuators that give tactile feedback to the human body.
近年、タッチパネルなどの感圧入力装置は直感的な操作が可能になるという利点により、使用者が機器を操作する際のインターフェースとして幅広い分野に採用されている。また、従来、物理的なボタンやキーボードが用いられていた機器にも、タッチパネルへ置き換える動きが広がっている。
In recent years, pressure-sensitive input devices such as touch panels have been adopted in a wide range of fields as interfaces for users to operate devices due to the advantage of being able to operate intuitively. In addition, the movement to replace touch panels is spreading to devices that have conventionally used physical buttons and keyboards.
タッチパネルを搭載した電子機器は、人体に触覚フィードバック(ハプティク・フィードバック)を付与するハプティク・アクチュエータ(以下、単に「アクチュエータ」と称することもある。)をタッチパネルと組み合わせて搭載することがある。ユーザの身体の部位(例えば、手指)若しくはユーザが操作する物体が電子機器の入力部に触れたとき、あるいはシステムが特定のイベントを生成したとき、ハプティク・アクチュエータは、電子機器の筐体やタッチスクリーンなどの構成部品に運動を発生させる。ユーザは、電子機器に接触した身体の部位で振動を知覚したり、音として知覚したりすることで、直感的かつ容易に電子機器を操作し、又は情報を受け取ることができる。
An electronic device equipped with a touch panel may be equipped with a haptic actuator (hereinafter, also simply referred to as "actuator") that gives tactile feedback (haptic feedback) to the human body in combination with the touch panel. When a part of the user's body (eg, a finger) or an object operated by the user touches the input of an electronic device, or when the system generates a specific event, the haptic actuator is the housing or touch of the electronic device. Generate motion in components such as screens. The user can intuitively and easily operate the electronic device or receive information by perceiving the vibration at the part of the body that comes into contact with the electronic device or perceiving it as a sound.
ハプティク・アクチュエータは、一般的に駆動源に電力を使用しており、運動の性質から衝撃駆動型と振動駆動型に大別することができる。衝撃駆動型は代表例として、形状記憶合金を利用するSIA(Shape memory alloy Impact Actuator)やピエゾ素子を利用した圧電アクチュエータを挙げることができる。衝撃駆動型アクチュエータは、衝撃的な動きが可能な動作部品を含み、電子機器のタッチスクリーンや筐体に対し、動作部品が打撃し、又は連動させることで一過性の衝撃を与える。振動駆動型アクチュエータは代表例として偏心モータを利用するERM(Eccentric Rotating Mass)型アクチュエータ、磁界中のコイルに交流電流を流して可動子を振動させるリニア共振型アクチュエータ(LRA:Linear Resonant Actuator)などを挙げることができる。振動駆動型は振動体に必要な時間だけ一定の振幅の振動を与える。
Haptic actuators generally use electric power as a drive source, and can be roughly divided into impact drive type and vibration drive type according to the nature of motion. Typical examples of the impact drive type include SIA (Shape memory alloy Impact Actuator) using a shape memory alloy and a piezoelectric actuator using a piezo element. The impact-driven actuator includes a moving component capable of shocking movement, and gives a transient impact to the touch screen or housing of an electronic device by hitting or interlocking the moving component. Typical examples of vibration-driven actuators include ERM (Eccentric Rotating Mass) type actuators that use eccentric motors, and linear resonance type actuators (LRA: Linear Resnonant Actuator) that vibrate the mover by passing an alternating current through a coil in a magnetic field. Can be mentioned. The vibration-driven type gives a vibration of a constant amplitude to the vibrating body for the required time.
例えば、特許文献1(国際公開第2012/023605号)には、ワイヤー状形態を有する形状記憶合金の長さ方向の伸縮変化を利用して水平方向(または平面方向)または上下方向(前後方向または厚み方向)の衝撃的な動き(衝撃動作)、および当該衝撃動作の繰り返しに基づく回転動作または直進動作を可能にする衝撃駆動型アクチュエータが開示されている。当該衝撃駆動型アクチュエータによれば、所定の配線状態で配置されるワイヤー状形状記憶合金に対して各種形状の絶縁性熱伝導体を可能な限り有効に接触させるように設け、この絶縁性熱伝導体によってワイヤー状形状記憶合金でパルス的通電時に生じた熱を迅速に放散させて逃がすようにしたため、ワイヤー状形状記憶合金の低温化を迅速に行うことができ、比較的に短い時間で繰り返すことが可能な瞬間的動作を実現することができ、実用性の高い衝撃駆動型アクチュエータを実現することができる。
For example, in Patent Document 1 (International Publication No. 2012/023605), a horizontal (or planar direction) or vertical direction (front-back direction or Disclosed are shock-driven actuators that enable shocking movements (impact movements) in the thickness direction and rotational or straight-ahead movements based on repeated shocking movements. According to the impact-driven actuator, insulating heat conductors of various shapes are provided so as to be in contact with the wire-shaped shape memory alloy arranged in a predetermined wiring state as effectively as possible, and the insulating heat conduction is provided. Since the heat generated by the wire-shaped shape memory alloy during pulse energization is quickly dissipated and released by the body, the temperature of the wire-shaped shape memory alloy can be lowered quickly, and it can be repeated in a relatively short time. It is possible to realize a momentary operation that is possible, and it is possible to realize a highly practical impact-driven actuator.
また、ユーザのタッチパネルにおける操作やタッチパネルの表示内容などに応じて、多種多様な触覚フィードバックパターンを提供できるように、触覚フィードバック発生機構を複数搭載することがある。例えば、特許文献2(特開2012-203895号公報)には、スマートフォンのガラス基板の下に、当該スマートフォンの上部及び下部にそれぞれ圧電振動素子を搭載したタッチパネル装置が開示されている。圧電振動素子を2ヶ所に設けたので、各々に入力される信号の振幅や位相を制御することにより、保護パネル22の面内の特定の場所に強い振幅を誘起することができ、指などが触れている部分を選択的に振動させることが可能となる。
In addition, a plurality of tactile feedback generation mechanisms may be installed so that a wide variety of tactile feedback patterns can be provided according to the operation on the user's touch panel and the display contents of the touch panel. For example, Patent Document 2 (Japanese Unexamined Patent Publication No. 2012-203895) discloses a touch panel device in which a piezoelectric vibration element is mounted on an upper portion and a lower portion of the smartphone under a glass substrate of the smartphone. Since the piezoelectric vibration elements are provided in two places, by controlling the amplitude and phase of the signal input to each, it is possible to induce a strong amplitude in a specific place in the plane of the protective panel 22, and a finger or the like can be used. It is possible to selectively vibrate the touched part.
さらに近年、教育訓練や、エンタテインメントなどの目的のために、シミュレートされた仮想空間において、ユーザが特定のキャラクターや物体を操作することができるシステムが複数の技術分野において提案されている。例えば、特許文献3(特表2020-515891号公報)は、仮想環境における訓練および共同作業のためのシステムおよび方法が開示されており、これにより、離れた場所にいる複数人が同一の仮想空間上において、手術などの共同作業を行うことができる。
Furthermore, in recent years, systems that allow users to operate specific characters and objects in a simulated virtual space have been proposed in multiple technical fields for the purposes of education and training, entertainment, and the like. For example, Patent Document 3 (Japanese Patent Laid-Open No. 2020-515891) discloses a system and a method for training and collaborative work in a virtual environment, whereby a plurality of people in remote locations are in the same virtual space. Above, collaborative work such as surgery can be performed.
また、業務用のゲームシステムの中には、VR(ヴァーチャルリアリティ:Virtual Reality)技術を用いたゲーム、いわゆるVRゲームがプレイできるようにデザインされたものが現れるようになった。例えば、特許文献4(特開2017-143978号公報)は、安全に配慮しつつギャラリーがゲームプレイの様子を外から鑑賞することができるようにデザインされたゲームシステムが開示されている。
In addition, some business-use game systems are designed so that games using VR (Virtual Reality) technology, so-called VR games, can be played. For example, Patent Document 4 (Japanese Unexamined Patent Publication No. 2017-143978) discloses a game system designed so that a gallery can appreciate the state of game play from the outside while considering safety.
外科手術用システムや、業務用ゲームシステムなどの高度なシステムのみならず、近年、ユーザの利便性やエンタテインメント性などの目的のために、シミュレートされた仮想空間の利用がますます広がっている。例えば、テレビ、スマートフォン、コンピュータディスプレイなどの2次元の表示手段に、3次元に構築された仮想空間を表示させ、それに対しユーザは、リモコン、タッチパネル、ゲームコントローラ、マウス、キーボードなどの入力装置を介して操作を入力することにより、当該仮想空間における視点の移動、キャラクターや物体の移動などの動作を実現する技術が存在する。
In recent years, the use of simulated virtual spaces has been expanding more and more for the purpose of user convenience and entertainment, as well as advanced systems such as surgical systems and arcade game systems. For example, a two-dimensional display means such as a television, a smartphone, or a computer display displays a virtual space constructed in three dimensions, whereas a user uses an input device such as a remote control, a touch panel, a game controller, a mouse, or a keyboard. There is a technique for realizing movements such as movement of a viewpoint and movement of a character or an object in the virtual space by inputting an operation.
シミュレートされた仮想空間において、ユーザによる入力、あるいは何らかのイベントによる変化は、通常何らかの表示手段によりユーザに表示され、それを見ることによりユーザが仮想空間における変化を把握することが可能であるが、仮想空間における出来事をより直感的にユーザに伝え、さらに臨場感を高めるために、視覚情報以外の情報をユーザに提供することが望まれている。
In a simulated virtual space, changes due to user input or some event are usually displayed to the user by some display means, and by looking at it, the user can grasp the changes in the virtual space. It is desired to provide information other than visual information to the user in order to more intuitively convey the event in the virtual space to the user and further enhance the sense of presence.
例えば、コンピュータディスプレイなどの2次元の表示装置において3次元の仮想空間を表示する場合、表示面から奥行方向又は手前方向への視点の移動が必要になる場合があるが、視点の移動を誘導するため、又は視点の移動の開始/終了をユーザに知らせるため、視覚情報だけでなく触覚情報をユーザに提供することが望ましい。
For example, when displaying a three-dimensional virtual space on a two-dimensional display device such as a computer display, it may be necessary to move the viewpoint from the display surface to the depth direction or the front direction, but the movement of the viewpoint is guided. Therefore, it is desirable to provide the user with tactile information as well as visual information in order to notify the user of the start / end of the movement of the viewpoint.
また、仮想空間内において、ユーザが操作するキャラクターや物体が他のキャラクターや物体と接触した場合、当該接触に対応する触感をユーザにフィードバックすることで、臨場感を高めることができ、またユーザに対し素早く反応するように注意喚起することもできるので、好ましい。
In addition, when a character or object operated by the user comes into contact with another character or object in the virtual space, the tactile sensation corresponding to the contact can be fed back to the user to enhance the sense of presence and to the user. It is preferable because it can also alert you to react quickly to it.
本発明は上記の点に鑑み完成されたものであり、一実施形態において、シミュレートされた仮想空間におけるユーザの操作を入力可能な入力装置において、臨場感を高めることができる触覚フィードバックを提供できる入力装置を提供することを課題とする。
The present invention has been completed in view of the above points, and in one embodiment, it is possible to provide tactile feedback that can enhance the sense of presence in an input device capable of inputting a user's operation in a simulated virtual space. The subject is to provide an input device.
本発明者らが鋭意検討した結果、シミュレートされた仮想空間のほとんどが3次元であることに着目し、それに対応する触覚フィードバックを与えることが可能な構成を見出し、本発明の完成に至った。以下、本発明の一部の実施形態を例示する。
[1]
シミュレートされた仮想空間におけるユーザの操作を入力可能な入力装置であって、
前記入力装置に対して触覚フィードバックを与えるように構成された複数のアクチュエータを備え、
前記複数のアクチュエータは、協同して3次元方向に前記触覚フィードバックを発生できるように配置されている
入力装置。
[2]
前記複数のアクチュエータは3つのアクチュエータからなり、
それぞれのアクチュエータは、一方向において振動又は変位することにより前記触覚フィードバックを発生することができ、かつ、それぞれのアクチュエータが振動又は変位する方向は、互いに直交するように配置される、[1]に記載の入力装置。
[3]
前記触覚フィードバックの方向は、前記仮想空間におけるユーザによる動作又はユーザに対する動作の方向に対応するものである、[1]又は[2]に記載の入力装置。
[4]
タッチパネル装置である、[1]~[3]のいずれか1項に記載の入力装置。
[5]
仮想空間上におけるゲームの操作受付手段である、[1]~[3]のいずれか1項に記載の入力装置。
[6]
仮想空間上にシミュレートされた自動車運転の操作受付手段である、[1]~[3]のいずれか1項に記載の入力装置。
[7]
仮想空間上にシミュレートされた外科手術の操作受付手段である、[1]~[3]のいずれか1項に記載の入力装置。 As a result of diligent studies by the present inventors, we focused on the fact that most of the simulated virtual space is three-dimensional, and found a configuration capable of giving tactile feedback corresponding to it, leading to the completion of the present invention. .. Hereinafter, some embodiments of the present invention will be illustrated.
[1]
An input device that can input user operations in a simulated virtual space.
It comprises a plurality of actuators configured to provide haptic feedback to the input device.
The plurality of actuators are input devices arranged so as to be able to jointly generate the tactile feedback in a three-dimensional direction.
[2]
The plurality of actuators consist of three actuators.
Each actuator can generate the tactile feedback by vibrating or displacing in one direction, and the directions in which each actuator vibrates or displaces are arranged so as to be orthogonal to each other in [1]. The input device described.
[3]
The input device according to [1] or [2], wherein the direction of the tactile feedback corresponds to the direction of the operation by the user or the operation with respect to the user in the virtual space.
[4]
The input device according to any one of [1] to [3], which is a touch panel device.
[5]
The input device according to any one of [1] to [3], which is a means for receiving game operations in a virtual space.
[6]
The input device according to any one of [1] to [3], which is an operation receiving means for driving a car simulated in a virtual space.
[7]
The input device according to any one of [1] to [3], which is an operation receiving means for a surgical operation simulated on a virtual space.
[1]
シミュレートされた仮想空間におけるユーザの操作を入力可能な入力装置であって、
前記入力装置に対して触覚フィードバックを与えるように構成された複数のアクチュエータを備え、
前記複数のアクチュエータは、協同して3次元方向に前記触覚フィードバックを発生できるように配置されている
入力装置。
[2]
前記複数のアクチュエータは3つのアクチュエータからなり、
それぞれのアクチュエータは、一方向において振動又は変位することにより前記触覚フィードバックを発生することができ、かつ、それぞれのアクチュエータが振動又は変位する方向は、互いに直交するように配置される、[1]に記載の入力装置。
[3]
前記触覚フィードバックの方向は、前記仮想空間におけるユーザによる動作又はユーザに対する動作の方向に対応するものである、[1]又は[2]に記載の入力装置。
[4]
タッチパネル装置である、[1]~[3]のいずれか1項に記載の入力装置。
[5]
仮想空間上におけるゲームの操作受付手段である、[1]~[3]のいずれか1項に記載の入力装置。
[6]
仮想空間上にシミュレートされた自動車運転の操作受付手段である、[1]~[3]のいずれか1項に記載の入力装置。
[7]
仮想空間上にシミュレートされた外科手術の操作受付手段である、[1]~[3]のいずれか1項に記載の入力装置。 As a result of diligent studies by the present inventors, we focused on the fact that most of the simulated virtual space is three-dimensional, and found a configuration capable of giving tactile feedback corresponding to it, leading to the completion of the present invention. .. Hereinafter, some embodiments of the present invention will be illustrated.
[1]
An input device that can input user operations in a simulated virtual space.
It comprises a plurality of actuators configured to provide haptic feedback to the input device.
The plurality of actuators are input devices arranged so as to be able to jointly generate the tactile feedback in a three-dimensional direction.
[2]
The plurality of actuators consist of three actuators.
Each actuator can generate the tactile feedback by vibrating or displacing in one direction, and the directions in which each actuator vibrates or displaces are arranged so as to be orthogonal to each other in [1]. The input device described.
[3]
The input device according to [1] or [2], wherein the direction of the tactile feedback corresponds to the direction of the operation by the user or the operation with respect to the user in the virtual space.
[4]
The input device according to any one of [1] to [3], which is a touch panel device.
[5]
The input device according to any one of [1] to [3], which is a means for receiving game operations in a virtual space.
[6]
The input device according to any one of [1] to [3], which is an operation receiving means for driving a car simulated in a virtual space.
[7]
The input device according to any one of [1] to [3], which is an operation receiving means for a surgical operation simulated on a virtual space.
本発明によれば、シミュレートされた仮想空間におけるユーザの操作を入力可能な入力装置において、臨場感を高めることができる触覚フィードバックを提供できる。
According to the present invention, it is possible to provide tactile feedback that can enhance the sense of presence in an input device capable of inputting a user's operation in a simulated virtual space.
次に、本発明の実施形態について、図面を参照しながら詳細に説明する。本発明は以下の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、適宜設計の変更、改良等が加えられることが理解されるべきである。
Next, an embodiment of the present invention will be described in detail with reference to the drawings. It is understood that the present invention is not limited to the following embodiments, and design changes, improvements, etc. may be appropriately made based on ordinary knowledge of those skilled in the art without departing from the spirit of the present invention. Should be.
本発明は、一実施形態において、シミュレートされた仮想空間におけるユーザの操作を入力可能な入力装置であって、
前記入力装置に対して触覚フィードバックを与えるように構成された複数のアクチュエータを備え、
前記複数のアクチュエータは、協同して3次元方向に前記触覚フィードバックを発生できるように配置されている
入力装置を提供する。 The present invention is, in one embodiment, an input device capable of inputting user operations in a simulated virtual space.
It comprises a plurality of actuators configured to provide haptic feedback to the input device.
The plurality of actuators provide an input device that is arranged in cooperation with each other so as to generate the tactile feedback in a three-dimensional direction.
前記入力装置に対して触覚フィードバックを与えるように構成された複数のアクチュエータを備え、
前記複数のアクチュエータは、協同して3次元方向に前記触覚フィードバックを発生できるように配置されている
入力装置を提供する。 The present invention is, in one embodiment, an input device capable of inputting user operations in a simulated virtual space.
It comprises a plurality of actuators configured to provide haptic feedback to the input device.
The plurality of actuators provide an input device that is arranged in cooperation with each other so as to generate the tactile feedback in a three-dimensional direction.
(1.シミュレートされた仮想空間)
シミュレートされた仮想空間は3次元のものであれば、その実現手段は特に限定されないが、例えばVR技術、AR技術、MR技術及びSR技術などのXR技術を活用することにより実現することが可能である。 (1. Simulated virtual space)
As long as the simulated virtual space is three-dimensional, the means for realizing it is not particularly limited, but it can be realized by utilizing XR technology such as VR technology, AR technology, MR technology and SR technology. Is.
シミュレートされた仮想空間は3次元のものであれば、その実現手段は特に限定されないが、例えばVR技術、AR技術、MR技術及びSR技術などのXR技術を活用することにより実現することが可能である。 (1. Simulated virtual space)
As long as the simulated virtual space is three-dimensional, the means for realizing it is not particularly limited, but it can be realized by utilizing XR technology such as VR technology, AR technology, MR technology and SR technology. Is.
ここで、VRとは、「Virtual Reality」の略である。日本語では「仮想現実」と訳されている。コンピュータ上で現実に似せた仮想世界を作り出し、あたかもそこにいるかの様な感覚を体験することができる技術である。
Here, VR is an abbreviation for "Virtual Reality". Translated as "virtual reality" in Japanese. It is a technology that allows you to create a virtual world that resembles reality on a computer and experience the feeling of being there.
また、ARとは、「Augmented Reality」の略である。日本語では「拡張現実」と訳されている。VR(仮想現実)は「別の仮想空間」であるのに対し、ARは現実世界にCG(Computer Graphics)などで作るデジタル情報を加えるものである。つまり、現実世界に仮想現実を反映(拡張)させる技術である。「仮想空間」の世界が主体となるVRと異なり、ARはあくまで「現実世界が主体」となる。
Also, AR is an abbreviation for "Augmented Reality". Translated as "augmented reality" in Japanese. While VR (virtual reality) is "another virtual space", AR adds digital information created by CG (Computer Graphics) to the real world. In other words, it is a technology that reflects (extends) virtual reality in the real world. Unlike VR, which is mainly based on the world of "virtual space", AR is mainly based on the "real world".
また、MRとは、「Mixed Reality」の略である。日本語では「複合現実」と訳されている。仮想世界を現実世界に重ね合わせて体験できる技術である。MRの場合は、前記ARとは逆に、主体は仮想世界(デジタル空間)となる。現実世界の情報を、カメラなどを通して仮想世界に反映させる。仮想世界に現実世界の情報を固定できるため、同じMR空間にいる複数の人間が、同時にその情報を得たり、同じ体験をすることができる。
Also, MR is an abbreviation for "Mixed Reality". Translated as "mixed reality" in Japanese. It is a technology that allows you to experience the virtual world by superimposing it on the real world. In the case of MR, contrary to the AR, the subject is a virtual world (digital space). Reflect real-world information in the virtual world through cameras and the like. Since the information in the real world can be fixed in the virtual world, multiple people in the same MR space can obtain the information and have the same experience at the same time.
また、SRとは、「Substitutional Reality」の略である。日本語では「代替現実」と訳されている。ヘッドマウントディスプレイ等の表示器を用いて、現実世界の映像に事前に撮影してあった過去の映像を映し出すことで、過去に起きた出来事が、あたかも現実の出来事であるかのような錯覚を生じさせることができる。
SR is an abbreviation for "Substitutional Reality". Translated as "substitutional reality" in Japanese. By projecting the past images that were shot in advance on the images in the real world using a display such as a head-mounted display, the illusion that the events that occurred in the past are real events is created. Can be caused.
また、XRとは、「X Reality(クロスリアリティ)」の略である。前記のVRやARのように個々の技術そのものを指す用語ではなく、上記で説明したVR、AR、MR及びSR技術の総称として利用されている用語である。
Also, XR is an abbreviation for "X Reality". It is a term used as a general term for the VR, AR, MR, and SR technologies described above, rather than the terms that refer to the individual technologies themselves, such as VR and AR described above.
シミュレートされた仮想空間におけるユーザの操作の内容は特に限定されないが、例えは視点の移動、特定のキャラクターや物体の移動などの動作、特定のイベントの引き起こし、当該仮想空間に関連する属性の変更などが考えられる。
The content of the user's operation in the simulated virtual space is not particularly limited, but for example, the movement of the viewpoint, the movement of a specific character or object, the trigger of a specific event, and the change of the attribute related to the virtual space. And so on.
(2.入力装置)
入力装置は、上記ユーザの操作を入力可能であれば特に種類は限定されないが、例えばマウス、キーボード、タッチパネル、ゲームコントローラなどの従来から汎用される入力装置のほか、VR用コントローラ、ARコントローラ、などを挙げることができる。VR用コントローラなどの3次元に操作することが可能な入力装置の場合、当該入力装置に対するトラッキング機能(入力装置の位置・回転を素早く認識する機能)が搭載されていることが好ましい。 (2. Input device)
The type of input device is not particularly limited as long as the user's operation can be input, but for example, in addition to conventional general-purpose input devices such as a mouse, keyboard, touch panel, and game controller, a VR controller, an AR controller, and the like. Can be mentioned. In the case of an input device that can be operated three-dimensionally, such as a VR controller, it is preferable that a tracking function (a function for quickly recognizing the position / rotation of the input device) for the input device is installed.
入力装置は、上記ユーザの操作を入力可能であれば特に種類は限定されないが、例えばマウス、キーボード、タッチパネル、ゲームコントローラなどの従来から汎用される入力装置のほか、VR用コントローラ、ARコントローラ、などを挙げることができる。VR用コントローラなどの3次元に操作することが可能な入力装置の場合、当該入力装置に対するトラッキング機能(入力装置の位置・回転を素早く認識する機能)が搭載されていることが好ましい。 (2. Input device)
The type of input device is not particularly limited as long as the user's operation can be input, but for example, in addition to conventional general-purpose input devices such as a mouse, keyboard, touch panel, and game controller, a VR controller, an AR controller, and the like. Can be mentioned. In the case of an input device that can be operated three-dimensionally, such as a VR controller, it is preferable that a tracking function (a function for quickly recognizing the position / rotation of the input device) for the input device is installed.
本発明の入力装置の各具体的実施態様は後述する。
Each specific embodiment of the input device of the present invention will be described later.
(3.アクチュエータ)
本発明の入力装置には、触覚フィードバックを与えるように構成された複数のアクチュエータが搭載され、当該複数のアクチュエータは、協同して3次元方向に触覚フィードバックを発生できるように配置されている。 (3. Actuator)
The input device of the present invention is equipped with a plurality of actuators configured to provide haptic feedback, and the plurality of actuators are arranged so as to be able to jointly generate haptic feedback in a three-dimensional direction.
本発明の入力装置には、触覚フィードバックを与えるように構成された複数のアクチュエータが搭載され、当該複数のアクチュエータは、協同して3次元方向に触覚フィードバックを発生できるように配置されている。 (3. Actuator)
The input device of the present invention is equipped with a plurality of actuators configured to provide haptic feedback, and the plurality of actuators are arranged so as to be able to jointly generate haptic feedback in a three-dimensional direction.
本発明は、さまざまな触覚フィードバック効果を生成する、任意のアクチュエータを備えることができる。衝撃駆動型のアクチュエータや、振動駆動型のアクチュエータのいずれも、本発明のために用いることができるが、動作が比較的単純で運動力学特性を特定しやすい衝撃駆動型アクチュエータが好ましい。後述の触覚フィードバックシステムは、衝撃駆動型アクチュエータを例として説明するが、振動駆動型アクチュエータにも適用できることは言うまでもない。
The present invention can include any actuator that produces various tactile feedback effects. Both a shock-driven actuator and a vibration-driven actuator can be used for the present invention, but a shock-driven actuator that is relatively simple in operation and whose kinematic characteristics can be easily specified is preferable. The tactile feedback system described later will be described by taking an impact-driven actuator as an example, but it goes without saying that the tactile feedback system can also be applied to a vibration-driven actuator.
例えば、本発明の一実施形態におけるアクチュエータはコイル、動作部品(例えば金属芯材)及びバネから作られている。コイルは金属の周りに巻きつけられ、(ここで、コイルと金属の部品の両者は「ソレノイド」と称してよい)かつ、コイルが磁界を生成するとき(例えば、電流がコイル端子間を流れる時)金属は移動する。当該金属の移動は電子機器に衝撃をもたらし得る。バネは次いで、電流がコイルから除去されるとき移動金属または他の芯材を静止位置に戻すように用いてよい。
For example, the actuator in one embodiment of the present invention is made of a coil, a moving component (for example, a metal core material) and a spring. The coil is wound around the metal (where both the coil and the metal component may be referred to as "solenoids") and when the coil creates a magnetic field (eg, when a current flows between the coil terminals). ) The metal moves. The movement of the metal can have an impact on the electronic device. The spring may then be used to return the moving metal or other core material to a stationary position when the current is removed from the coil.
あるいは、別の実施形態における衝撃駆動型アクチュエータは、通電加熱で収縮するワイヤー状形状記憶合金と、このワイヤー状形状記憶合金に接触し当該ワイヤー状形状記憶合金で生じた熱を逃がす絶縁性熱伝導体(動作部品)と、を備えるように構成される。駆動回路により、当該ワイヤー状形状記憶合金に対して瞬間的に通電を行い、ワイヤー状形状記憶合金を瞬間的に収縮させると、それに接触する絶縁性熱伝導体が瞬間的に押圧されて変位する。当該絶縁性熱伝導体の変位は電子機器に衝撃をもたらし得る。そして、絶縁性熱伝導体による熱伝導作用によってワイヤー状形状記憶合金で生じた熱が急速に放熱され、その結果、ワイヤー状形状記憶合金は直ぐに元の長さ状態(伸長状態)に戻る。こうして、ワイヤー状形状記憶合金において、相対的に短い時間間隔での瞬間的な収縮を行うことが可能となる。このようなアクチュエータの詳細は国際公開第2012/023605号に開示されている。
Alternatively, the impact-driven actuator in another embodiment has a wire-shaped shape memory alloy that contracts when energized and heated, and an insulating heat conduction that contacts the wire-shaped shape memory alloy and releases heat generated by the wire-shaped shape memory alloy. It is configured to include a body (moving component). When the wire-shaped shape memory alloy is momentarily energized by the drive circuit and the wire-shaped shape memory alloy is momentarily contracted, the insulating thermal conductor in contact with the wire-shaped shape memory alloy is momentarily pressed and displaced. .. Displacement of the insulating thermal conductor can cause a shock to the electronic device. Then, the heat generated in the wire-shaped shape memory alloy is rapidly dissipated by the heat conduction action of the insulating heat conductor, and as a result, the wire-shaped shape memory alloy immediately returns to the original length state (extended state). In this way, the wire-shaped shape memory alloy can be momentarily shrunk at relatively short time intervals. Details of such actuators are disclosed in International Publication No. 2012/023605.
あるいは、別の実施形態における衝撃駆動型アクチュエータは、通電加熱で収縮するワイヤー状形状記憶合金と、このワイヤー状形状記憶合金に接触し当該ワイヤー状形状記憶合金で生じた熱を逃がす絶縁性熱伝導体の固定子(固定部品)及び移動子(動作部品)と、を備えるように構成される。駆動回路により、当該ワイヤー状形状記憶合金に対して瞬間的に通電を行い、ワイヤー状形状記憶合金を瞬間的に収縮させると、それに接触する絶縁性熱伝導体の移動子が瞬間的に押圧されて変位する。当該絶縁性熱伝導体の移動子の変位は電子機器に衝撃をもたらし得る。そして、絶縁性熱伝導体による熱伝導作用によってワイヤー状形状記憶合金で生じた熱が急速に放熱され、その結果、ワイヤー状形状記憶合金は直ぐに元の長さ状態(伸長状態)に戻る。こうして、ワイヤー状形状記憶合金において、相対的に短い時間間隔での瞬間的な収縮を行うことが可能となる。
Alternatively, the impact-driven actuator in another embodiment has a wire-shaped shape memory alloy that contracts when energized and heated, and an insulating heat conduction that contacts the wire-shaped shape memory alloy and releases heat generated by the wire-shaped shape memory alloy. It is configured to include a body stator (fixing component) and a mover (moving component). When the wire-shaped shape memory alloy is momentarily energized by the drive circuit and the wire-shaped shape memory alloy is momentarily contracted, the mover of the insulating thermal conductor in contact with the wire-shaped shape memory alloy is momentarily pressed. And displace. Displacement of the mover of the insulating thermal conductor can cause a shock to the electronic device. Then, the heat generated in the wire-shaped shape memory alloy is rapidly dissipated by the heat conduction action of the insulating heat conductor, and as a result, the wire-shaped shape memory alloy immediately returns to the original length state (extended state). In this way, the wire-shaped shape memory alloy can be momentarily shrunk at relatively short time intervals.
固定子の位置を変更させないように、電子機器の部品に、例えば両面テープや接着剤などで固定し、移動子に電子機器の動作する部品(筐体やタッチスクリーンなど)を密着させ、衝撃駆動型アクチュエータを挟み込み、それらを元に戻すスプリングなどの弾性を持った部品で動作する部品を抑え込むことで電子機器に衝撃をもたらすことが可能となる。固定子と移動子の形状は、上記機能を実現できれば特に限定されず、円盤状、波状、柱状など、適宜選択することができる。
To prevent the position of the stator from changing, fix it to the parts of the electronic device with, for example, double-sided tape or adhesive, and attach the moving parts of the electronic device (housing, touch screen, etc.) to the mover to drive the impact. It is possible to bring an impact to an electronic device by sandwiching a mold actuator and holding down a part that operates with an elastic part such as a spring that returns them. The shapes of the stator and the mover are not particularly limited as long as the above functions can be realized, and can be appropriately selected from a disk shape, a wavy shape, a columnar shape, and the like.
各アクチュエータが3次元方向に触覚フィードバックを発生させるためには、入力装置における各アクチュエータの向きを制御する必要がある。例えば、それぞれのアクチュエータが一方向において振動又は変位することにより触覚フィードバックを発生することができる場合、それぞれのアクチュエータが振動又は変位する方向が互いに直交するように、各アクチュエータを配置することで、3次元において任意の方向に対して触覚フィードバックを発生することが可能である。
In order for each actuator to generate tactile feedback in the three-dimensional direction, it is necessary to control the orientation of each actuator in the input device. For example, if tactile feedback can be generated by vibrating or displacing each actuator in one direction, by arranging each actuator so that the directions of vibration or displacement of each actuator are orthogonal to each other, 3 It is possible to generate tactile feedback in any direction in the dimension.
例えば、(X,Y,Z)3次元座標軸において、それぞれX軸方向、Y軸方向、及びZ軸方向において振動又は変位するアクチュエータを1つずつ配置することにより、それぞれのアクチュエータの動作・静止、及び動作の強度を調整することにより、X軸方向の移動量を表すベクトル、Y軸方向の移動量を表すベクトル、及びZ軸方向の移動量を表すベクトルのベクトル和の方向に、振動又は変位を発生させることができ、ユーザにおいて当該方向から、又は当該方向へ触覚フィードバックを感知させることが可能である。
For example, by arranging one actuator that vibrates or displaces in the X-axis direction, the Y-axis direction, and the Z-axis direction in the (X, Y, Z) three-dimensional coordinate axes, the operation / stationary of each actuator can be determined. And by adjusting the strength of the motion, vibration or displacement in the direction of the vector sum of the vector representing the movement amount in the X-axis direction, the vector representing the movement amount in the Y-axis direction, and the vector representing the movement amount in the Z-axis direction. Can be generated, and the user can sense the tactile feedback from or in the direction.
ユーザにおいて感知する触覚フィードバックの方向は、各アクチュエータによる振動又は変位のベクトル和の方向であるので、複数のアクチュエータは、厳密に直交する方向に配置する必要はなく、協同して3次元方向に触覚フィードバックを発生可能な方向に配置すればよい。また、複数のアクチュエータは、入力装置において、近傍に配置してもよいが、必ずしもその必要はなく、入力装置の形状や内部構造に応じて、互いに離れた場所に配置してもよい。
Since the direction of the tactile feedback perceived by the user is the direction of the vector sum of vibrations or displacements by each actuator, it is not necessary to arrange the plurality of actuators in exactly orthogonal directions, and the tactile sensation is cooperatively performed in the three-dimensional direction. The feedback may be arranged in a direction in which it can be generated. Further, the plurality of actuators may be arranged in the vicinity of the input device, but it is not always necessary, and the plurality of actuators may be arranged at locations separated from each other depending on the shape and internal structure of the input device.
3次元方向の触覚フィードバックを発生させるために、アクチュエータは、3つ以上あることが好ましい。アクチュエータの数の上限は特にないが、入力装置の小型化や生産コストの観点から、例えば7つ以下とすることができ、例えば6つ以下とすることができ、例えば5つ以下とすることができ、例えば4つ以下とすることができる。
It is preferable that there are three or more actuators in order to generate tactile feedback in the three-dimensional direction. There is no particular upper limit on the number of actuators, but from the viewpoint of miniaturization of the input device and production cost, it can be, for example, 7 or less, for example, 6 or less, for example, 5 or less. It can be, for example, 4 or less.
シミュレートされた仮想空間における出来事をより直感的にユーザに伝えるために、又は臨場感を高めるために、又はユーザの反応を促すために、触覚フィードバックの方向は、シミュレートされた仮想空間におけるユーザによる動作又はユーザに対する動作の方向に対応するものであることが好ましい。「対応する」とは、当該ユーザの動作又はユーザに対する動作が現実空間に発生した場合、ユーザが感知すべき触覚の方向と同一の方向に、触覚フィードバックが発生することを意味する。
To more intuitively convey events in the simulated virtual space to the user, or to enhance the immersive feeling, or to encourage the user's reaction, the direction of the tactile feedback is the user in the simulated virtual space. It is preferable that it corresponds to the direction of the operation by the user or the operation with respect to the user. By "corresponding", when an action of the user or an action for the user occurs in the real space, the tactile feedback is generated in the same direction as the tactile sense to be sensed by the user.
ユーザによる動作は、ユーザが当該仮想空間において操縦するキャラクター又は物体の動作を含み、当該動作に対応する触覚フィードバックは、典型的には当該キャラクター又は物体が他のキャラクター又は物体に接触する際に発生する衝撃又は反動を含む。ユーザに対する動作は、ユーザが当該仮想空間において操縦するキャラクター又は物体が受ける動作を含み、当該動作に対応する触覚フィードバックは、典型的には当該キャラクター又は物体が他のキャラクター又は物体から接触された際に発生する衝撃又は反動を含む。
The movement by the user includes the movement of the character or object that the user controls in the virtual space, and the tactile feedback corresponding to the movement is typically generated when the character or object comes into contact with another character or object. Including impact or recoil. The motion for the user includes the motion received by the character or object that the user steers in the virtual space, and the tactile feedback corresponding to the motion is typically when the character or object is touched by another character or object. Includes impact or feedback generated in.
(4.第1実施形態)
本発明の一実施形態において、入力装置は、タッチパネル装置である。タッチパネル10の駆動方法は限定されず、感圧式や静電容量方式、抵抗膜方式など、既知のいずれかの駆動方法を採用することができる。タッチパネルの下には、シミュレートされた仮想空間を表示する表示装置を配置することが可能であるが、タッチパネルとは独立に、シミュレートされた仮想空間を表示する表示装置を配置することが可能である。表示装置についても、その駆動方法は限定されず、液晶表示装置のほか、有機ELを用いた表示装置等が利用可能である。 (4. First Embodiment)
In one embodiment of the invention, the input device is a touch panel device. The driving method of the touch panel 10 is not limited, and any known driving method such as a pressure-sensitive method, a capacitance method, and a resistance film method can be adopted. It is possible to place a display device that displays the simulated virtual space under the touch panel, but it is possible to place a display device that displays the simulated virtual space independently of the touch panel. Is. The driving method of the display device is not limited, and a display device using an organic EL or the like can be used in addition to the liquid crystal display device.
本発明の一実施形態において、入力装置は、タッチパネル装置である。タッチパネル10の駆動方法は限定されず、感圧式や静電容量方式、抵抗膜方式など、既知のいずれかの駆動方法を採用することができる。タッチパネルの下には、シミュレートされた仮想空間を表示する表示装置を配置することが可能であるが、タッチパネルとは独立に、シミュレートされた仮想空間を表示する表示装置を配置することが可能である。表示装置についても、その駆動方法は限定されず、液晶表示装置のほか、有機ELを用いた表示装置等が利用可能である。 (4. First Embodiment)
In one embodiment of the invention, the input device is a touch panel device. The driving method of the touch panel 10 is not limited, and any known driving method such as a pressure-sensitive method, a capacitance method, and a resistance film method can be adopted. It is possible to place a display device that displays the simulated virtual space under the touch panel, but it is possible to place a display device that displays the simulated virtual space independently of the touch panel. Is. The driving method of the display device is not limited, and a display device using an organic EL or the like can be used in addition to the liquid crystal display device.
図1Aは本発明の一実施形態におけるタッチパネルの作動方法を示す図である。タッチパネル10の下に、表示装置12が配置されており、シミュレートされた仮想空間が表示されている。また当該タッチパネルに密接して、3つのアクチュエータ14は、それぞれの振動方向がX軸方向、Y軸方向、Z軸方向になるように配置されている(Z軸方向のアクチュエータ14は未図示)。図1A下方の、X軸、Y軸、及びZ軸に関する矢印は、それぞれのアクチュエータ14の動作の経時変化を示す時間軸である。図1A上方の点は、下方の各アクチュエータ14の動作に対応する時点を示し、点線は仮想空間内における視点の移動を示し、実線はユーザの指の動きを示す。
FIG. 1A is a diagram showing a method of operating a touch panel according to an embodiment of the present invention. A display device 12 is arranged below the touch panel 10, and a simulated virtual space is displayed. Further, in close contact with the touch panel, the three actuators 14 are arranged so that their vibration directions are in the X-axis direction, the Y-axis direction, and the Z-axis direction (the actuator 14 in the Z-axis direction is not shown). Arrows relating to the X-axis, Y-axis, and Z-axis at the bottom of FIG. 1A are time axes indicating changes in the operation of the respective actuators 14 over time. The upper point in FIG. 1A indicates the time point corresponding to the operation of each lower actuator 14, the dotted line indicates the movement of the viewpoint in the virtual space, and the solid line indicates the movement of the user's finger.
まず、ユーザの指がタッチパネル10に触れると、X軸方向アクチュエータ14及びY軸方向アクチュエータ14が作動し、X軸方向のベクトルとY軸方向のベクトルのベクトル和の方向への触覚フィードバックを発生させ、ユーザの指を右上向きに誘導する。この例において、ユーザの指が右上向きに移動することにより、仮想空間内において、現在ユーザが操作している地点より右前方の地点(すなわち、仮想空間内の奥行側右方向の地点)における操作が可能となる。ユーザの指が右上方向に移動すると、仮想空間における視点も、それに連動して右上向きに変動することが可能である。この誘導は、例えばユーザの操作の目的となる物体が仮想空間内の奥行側にある場合、又はゲームなどの進行上ユーザが仮想空間内の奥行側において操作する必要があるとシステムが判断した場合に、実行されることが可能である。そのため、X軸方向アクチュエータ14及びY軸方向アクチュエータ14の動作に加えて、Z軸方向のアクチュエータの動作を追加して、奥行側への誘導であることをユーザに知らせることも可能である。さらにX軸方向の誘導を経て、仮想空間の奥行側に到達すると、Z軸方向アクチュエータ14が奥行方向に強く駆動し、ユーザに対し仮想空間の奥行側に到達したことを知らせる。さらにX軸方向、右下向き方向の誘導を経て、仮想空間の奥行側の目的地点に到達すると、Z軸方向アクチュエータ14が奥行方向に強く駆動し、ユーザに対し目的地点に到達したことを知らせる。
First, when the user's finger touches the touch panel 10, the X-axis direction actuator 14 and the Y-axis direction actuator 14 are activated to generate tactile feedback in the direction of the vector sum of the vector in the X-axis direction and the vector in the Y-axis direction. , Guide the user's finger to the upper right. In this example, by moving the user's finger to the upper right, the operation at the point in the virtual space to the right of the point currently being operated by the user (that is, the point to the right on the depth side in the virtual space). Is possible. When the user's finger moves in the upper right direction, the viewpoint in the virtual space can also move in the upper right direction in conjunction with it. This guidance is provided, for example, when the object to be operated by the user is on the depth side in the virtual space, or when the system determines that the user needs to operate on the depth side in the virtual space in order to progress the game or the like. It is possible to be executed. Therefore, in addition to the operation of the X-axis direction actuator 14 and the Y-axis direction actuator 14, it is also possible to add the operation of the actuator in the Z-axis direction to inform the user that the guidance is to the depth side. Further, when the actuator 14 reaches the depth side of the virtual space through the guidance in the X-axis direction, the Z-axis direction actuator 14 is strongly driven in the depth direction to notify the user that the user has reached the depth side of the virtual space. Further, when the destination point on the depth side of the virtual space is reached through the guidance in the X-axis direction and the lower right direction, the Z-axis direction actuator 14 is strongly driven in the depth direction to notify the user that the destination point has been reached.
例えば、図1Bに示されるように、シューティングゲームにおいて、ユーザが遠方の標的を狙う場合、当該標的の近く(ここでは左前方)にユーザが照準を合わせた場合、標的が右前方にあることをユーザに示し照準を微調整させるために、ユーザに対して、右上向きの誘導が実行される。
For example, as shown in FIG. 1B, in a shooting game, when a user aims at a distant target, when the user aims at a target near the target (here, the left front), the target is on the right front. In order to show the user and fine-tune the aim, the user is guided to the upper right.
あるいは、例えば、図1Cに示されるように、バランス操作ゲームにおいて、ユーザが台を操作して、台の上にあるボールが台から落ちないようにする。台は長方形のものであり、長辺の一方側がユーザの左手前方向に、反対側がユーザの右奥方向にあるほうに配置されている。ユーザが台の手前側に指を置くと、それに対応して台が手前側に傾き、ボールが落ちようとする。そこでゲームシステムは、台の向きを調整させるために、ユーザの指を画面の右上方向に誘導し、それに従ってユーザの指が画面の右上方向に移動すると、台が水平を取り戻し、又は右前方側が傾き、ボールの動きを止める。
Alternatively, for example, as shown in FIG. 1C, in the balance operation game, the user operates the table to prevent the ball on the table from falling from the table. The table is rectangular, with one side of the long side facing the user's left front and the other side facing the user's right back. When the user puts his finger on the front side of the table, the table tilts toward the front side correspondingly and the ball tries to fall. Therefore, the game system guides the user's finger toward the upper right of the screen in order to adjust the orientation of the table, and when the user's finger moves toward the upper right of the screen accordingly, the table returns to the horizontal position or the front right side moves. Tilt and stop the movement of the ball.
このように、Z軸方向(画面表示の奥行方向)の触覚フィードバックにより、二次元の表示装置12に表示される3次元の仮想空間における奥行方向の移動をより直感的にユーザに伝えることができる。
In this way, the tactile feedback in the Z-axis direction (depth direction of the screen display) can more intuitively convey to the user the movement in the depth direction in the three-dimensional virtual space displayed on the two-dimensional display device 12. ..
また、Z軸方向アクチュエータ14は、仮想空間の奥行側の特定地点に到達した時にのみ駆動してもよく、例えば仮想空間奥行側に進むにつれて振動が強くなるように(又は弱くなるように)、連続的に変化する触覚フィードバックを提供することも可能である。
Further, the Z-axis direction actuator 14 may be driven only when it reaches a specific point on the depth side of the virtual space, for example, so that the vibration becomes stronger (or weaker) as it advances to the depth side of the virtual space. It is also possible to provide continuously changing tactile feedback.
(5.第2実施形態)
本発明の別の一実施形態において、入力装置は、仮想空間上におけるゲームの操作受付手段である。典型的には、操作受付手段は、VR用コントローラであり、ユーザが手に把持して使用する。VR用コントローラは、例えばジャイロセンサや加速度センサを搭載することが可能であり、VR用コントローラを把持したユーザの手の動きを検出することが可能となっている。VR用コントローラには、協同して3次元方向に触覚フィードバックを発生できるように配置された、複数のアクチュエータが搭載される。 (5. Second Embodiment)
In another embodiment of the present invention, the input device is a game operation receiving means in a virtual space. Typically, the operation receiving means is a VR controller, which is held and used by the user. The VR controller can be equipped with, for example, a gyro sensor or an acceleration sensor, and can detect the movement of the user's hand holding the VR controller. The VR controller is equipped with a plurality of actuators arranged so as to be able to generate tactile feedback in the three-dimensional direction in cooperation with each other.
本発明の別の一実施形態において、入力装置は、仮想空間上におけるゲームの操作受付手段である。典型的には、操作受付手段は、VR用コントローラであり、ユーザが手に把持して使用する。VR用コントローラは、例えばジャイロセンサや加速度センサを搭載することが可能であり、VR用コントローラを把持したユーザの手の動きを検出することが可能となっている。VR用コントローラには、協同して3次元方向に触覚フィードバックを発生できるように配置された、複数のアクチュエータが搭載される。 (5. Second Embodiment)
In another embodiment of the present invention, the input device is a game operation receiving means in a virtual space. Typically, the operation receiving means is a VR controller, which is held and used by the user. The VR controller can be equipped with, for example, a gyro sensor or an acceleration sensor, and can detect the movement of the user's hand holding the VR controller. The VR controller is equipped with a plurality of actuators arranged so as to be able to generate tactile feedback in the three-dimensional direction in cooperation with each other.
図2はVR用コントローラを含むVRゲームシステムの一例を示す図である。VRゲームを行うためには、ユーザは通常VRヘッドセット又はVRゴーグルを装着し、両手又は片手に、3次元に移動することができるVR用コントローラを使用して操作する。VRヘッドセットは、ユーザの現実空間における位置を検知し、位置情報をシミュレーションシステムに送信する。シミュレーションシステム内のゲームサーバー、又はシミュレーションシステムと独立に設置されるゲームサーバーは、ユーザの現実空間における位置座標に基づいて、仮想空間における位置座標を計算し、それに対応する映像をVRヘッドセットに出力する。ゲームが進行する間、VR用コントローラの位置・回転動作などがトラッキングされ、リアルタイムにシミュレーションシステムに反映される。ユーザがVR用コントローラを用いて所定の操作をした場合、又はゲームシステム内において特定のイベントが発生した場合など、ユーザに対する触覚フィードバックが必要とシミュレーションシステムが判断した場合、シミュレーションシステムはVR用コントローラに指示を送り、特定の方向への触覚フィードバックを発生させる。
FIG. 2 is a diagram showing an example of a VR game system including a VR controller. In order to play a VR game, a user usually wears a VR headset or VR goggles and operates using a VR controller that can move in three dimensions with both hands or one hand. The VR headset detects the position of the user in the real space and sends the position information to the simulation system. The game server in the simulation system or the game server installed independently of the simulation system calculates the position coordinates in the virtual space based on the position coordinates in the user's real space, and outputs the corresponding video to the VR headset. do. While the game progresses, the position and rotation of the VR controller are tracked and reflected in the simulation system in real time. When the simulation system determines that tactile feedback to the user is necessary, such as when the user performs a predetermined operation using the VR controller, or when a specific event occurs in the game system, the simulation system uses the VR controller. Send instructions to generate tactile feedback in a particular direction.
より具体的には、図3に示されるように、VR用コントローラのデータ受信部がシミュレーションシステムから指示を受けると、当該指示に基づき、VR用コントローラに搭載される演算装置(未図示)は、触覚フィードバックを発生させるべき向き及び強度(荷重向き)を計算する。例えば、シミュレートされた仮想空間においてユーザが操作するキャラクターが壁に接触する場合、当該接触の場所及び接触時の速度に基づき、ユーザが受けるべき衝撃の向き及び強度を計算する。さらに、算出された向き及び強度に基づき、各アクチュエータをどの程度の強さで振動させるべきかが算出される(振動力計算)。振動力の計算結果に基づき、各アクチュエータが駆動される。実際に駆動させるアクチュエータの数は、当該フィードバックの向き及び強度を実現できる最低限度の個数でもよく、それより多くてもよい。なお、荷重向き計算及び振動力計算は、VR用コントローラ内に搭載される演算装置によって行ってもよく、シミュレーションシステム内において計算されてもよい。シミュレーションシステム内において計算された場合、各アクチュエータの駆動信号は直接に各アクチュエータに送信される。
More specifically, as shown in FIG. 3, when the data receiving unit of the VR controller receives an instruction from the simulation system, the arithmetic unit (not shown) mounted on the VR controller is based on the instruction. Calculate the direction and strength (load direction) at which tactile feedback should be generated. For example, when a character operated by a user touches a wall in a simulated virtual space, the direction and intensity of the impact to be received by the user are calculated based on the location of the contact and the speed at the time of contact. Further, based on the calculated direction and strength, it is calculated how strong each actuator should be vibrated (vibration force calculation). Each actuator is driven based on the calculation result of the vibration force. The number of actuators actually driven may be the minimum number that can realize the direction and strength of the feedback, or may be larger than that. The load direction calculation and the vibration force calculation may be performed by an arithmetic unit mounted in the VR controller, or may be calculated in the simulation system. When calculated in the simulation system, the drive signal of each actuator is sent directly to each actuator.
図4A~図4Cは、ユーザのゲーム内における動作に対応して3次元の触覚フィードバックを与える例を示す。図示の実施形態では、ユーザはゲーム内において仮想のキャラクターを操縦し、VR用コントローラを用いて剣を動かす。VR用コントローラには、3つのアクチュエータが搭載されており、X軸、Y軸、及びZ軸に関する矢印は、それぞれのアクチュエータの動作の経時変化を示す時間軸である。ユーザがコントローラを突き刺すと、ゲーム内のキャラクターがそれに応じて、剣を突き刺す。剣先が標的に当たると、剣の動きの方向や速度などに基づき、反発力が発生すべき向き及び強度が計算される。計算結果に基づいて、アクチュエータが駆動される。図示の実施形態では、X軸方向のアクチュエータが下向きに駆動し、下向きの反発をユーザにフィードバックする(図4A)。
FIGS. 4A to 4C show an example of giving three-dimensional tactile feedback corresponding to the user's movement in the game. In the illustrated embodiment, the user controls a virtual character in the game and uses a VR controller to move the sword. The VR controller is equipped with three actuators, and the arrows relating to the X-axis, Y-axis, and Z-axis are time axes indicating changes in the operation of each actuator over time. When the user stabs the controller, the character in the game stabs the sword accordingly. When the tip of the sword hits the target, the direction and strength at which the repulsive force should be generated are calculated based on the direction and speed of the movement of the sword. The actuator is driven based on the calculation result. In the illustrated embodiment, the actuator in the X-axis direction is driven downward to feed back the downward repulsion to the user (FIG. 4A).
次に、仮想のキャラクターが持つ剣の剣先が標的に突き刺さっていくと、反発力が強くなるため、X軸方向のアクチュエータの下向き方向の振動が強くなり、反発力が強くなったことをユーザにフィードバックする(図4B)。さらに、剣が標的に突き刺さった状態で仮想のキャラクターの動作が止まると、力を抜いた後の不安定さを表現するために、X軸方向のアクチュエータだけでなく、Y軸方向及びZ軸方向のアクチュエータも同時に駆動され、手が震える状態をフィードバックする(図4C)。なお、図4A~図4Cそれぞれの左側に示される矢印は、ユーザがVR用コントローラから感知する触覚フィードバックの向きを示す。
Next, when the tip of the sword of the virtual character pierces the target, the repulsive force becomes stronger, so the downward vibration of the actuator in the X-axis direction becomes stronger, and the user is informed that the repulsive force becomes stronger. Give feedback (Fig. 4B). Furthermore, when the movement of the virtual character stops with the sword stuck in the target, in order to express the instability after releasing the force, not only the actuator in the X-axis direction but also the Y-axis direction and the Z-axis direction The actuator of is also driven at the same time, and feeds back the state in which the hand trembles (Fig. 4C). The arrows shown on the left side of each of FIGS. 4A to 4C indicate the direction of the tactile feedback that the user senses from the VR controller.
(6.第3実施形態)
本発明の別の一実施形態において、入力装置は、仮想空間上にシミュレートされた自動車運転の操作受付手段である。典型的には、操作受付手段は、運転シミュレーション用のハンドルである。ハンドルには、その円周方向に沿って、触覚フィードバックを与えるように構成された複数のアクチュエータが搭載され、複数のアクチュエータは、協同して3次元方向に触覚フィードバックを発生できる。 (6. Third Embodiment)
In another embodiment of the present invention, the input device is an operation receiving means for driving a vehicle simulated in a virtual space. Typically, the operation receiving means is a steering wheel for driving simulation. The handle is equipped with a plurality of actuators configured to provide tactile feedback along its circumferential direction, and the plurality of actuators can cooperate to generate tactile feedback in a three-dimensional direction.
本発明の別の一実施形態において、入力装置は、仮想空間上にシミュレートされた自動車運転の操作受付手段である。典型的には、操作受付手段は、運転シミュレーション用のハンドルである。ハンドルには、その円周方向に沿って、触覚フィードバックを与えるように構成された複数のアクチュエータが搭載され、複数のアクチュエータは、協同して3次元方向に触覚フィードバックを発生できる。 (6. Third Embodiment)
In another embodiment of the present invention, the input device is an operation receiving means for driving a vehicle simulated in a virtual space. Typically, the operation receiving means is a steering wheel for driving simulation. The handle is equipped with a plurality of actuators configured to provide tactile feedback along its circumferential direction, and the plurality of actuators can cooperate to generate tactile feedback in a three-dimensional direction.
図5は自動車運転シミュレータの一例を示す図である。モニタには、シミュレートされた仮想空間が表示され、具体的には運転席から見える車内及び車外の様子が表示される。ユーザがハンドルを回すと、シミュレーションシステムはハンドルの向きによって車両がどのように動くかを計算し、さらに当該車両の動きによりハンドルが受けるべき力の向き及び強度を計算し、計算された結果に基づきアクチュエータが駆動される。同時に、車両の動きがモニタに反映される。
FIG. 5 is a diagram showing an example of a car driving simulator. The simulated virtual space is displayed on the monitor, and specifically, the inside and outside of the vehicle as seen from the driver's seat are displayed. When the user turns the steering wheel, the simulation system calculates how the vehicle moves depending on the direction of the steering wheel, and also calculates the direction and strength of the force that the steering wheel should receive due to the movement of the vehicle, and based on the calculated result. The actuator is driven. At the same time, the movement of the vehicle is reflected on the monitor.
より具体的には、図6に示されるように、シミュレーションシステムは、シミュレーション内でプレイヤーが操作する車の状況(ぶつかった、乗り上げた、でこぼこした道を走っている等)に基づき、車のどこに、どのくらいの大きさ・向きの力や衝撃が加わるかに関する情報をハンドルのデータ受信部に送信する。次に、これらの情報に基づき、ハンドルに搭載される演算装置(未図示)は、触覚フィードバックを発生させるべき向き及び強度(荷重向き)を計算する。例えば、シミュレートされた仮想空間においてユーザが操作する車両が他の車両に接触した場合、当該接触の場所及び接触時の速度に基づき、ハンドルが受けるべき衝撃の向き及び強度を計算する。さらに、算出された向き及び強度に基づき、各アクチュエータをどの程度の強さで振動させるべきかが算出される(振動力計算)。振動力の計算結果に基づき、各アクチュエータが駆動される。実際に駆動させるアクチュエータの数は、当該フィードバックの向き及び強度を実現できる最低限度の個数でもよく、それより多くてもよい。なお、荷重向き計算及び振動力計算は、ハンドル内に搭載される演算装置によって行ってもよく、シミュレーションシステム内において計算されてもよい。シミュレーションシステム内において計算された場合、各アクチュエータの駆動信号は直接に各アクチュエータに送信される。
More specifically, as shown in FIG. 6, the simulation system is based on the situation of the car operated by the player in the simulation (collision, riding, running on uneven road, etc.) and where in the car. , Sends information about how much magnitude / orientation force or impact is applied to the data receiver of the handle. Next, based on this information, the arithmetic unit (not shown) mounted on the handle calculates the direction and strength (load direction) at which tactile feedback should be generated. For example, when a user-operated vehicle comes into contact with another vehicle in a simulated virtual space, the direction and intensity of the impact that the handle should receive is calculated based on the location of the contact and the speed at the time of contact. Further, based on the calculated direction and strength, it is calculated how strong each actuator should be vibrated (vibration force calculation). Each actuator is driven based on the calculation result of the vibration force. The number of actuators actually driven may be the minimum number that can realize the direction and strength of the feedback, or may be larger than that. The load direction calculation and the vibration force calculation may be performed by an arithmetic unit mounted in the handle, or may be calculated in the simulation system. When calculated in the simulation system, the drive signal of each actuator is sent directly to each actuator.
図7A及び図7Bは、シミュレートされた自動車運転の動作に対応して3次元の触覚フィードバックを与える例を示す。図示では、車両は道路左側の縁石に乗り上げた時の様子が示される。図示の実施形態では、シミュレートされた自動車運転において、ユーザがハンドルを握って仮想の車両を操縦する。3つのアクチュエータが搭載されており、X軸、Y軸、及びZ軸に関する矢印は、それぞれのアクチュエータの動作の経時変化を示す時間軸である。ユーザが操縦する仮想の車両が仮想空間内において、左前輪から縁石に乗り上げると、車両が左から衝撃を受けるので、運転手目線では、右向きの衝撃を受ける。図示の実施形態では、X軸方向のアクチュエータが右向きに駆動し、右向きの衝撃をユーザにフィードバックする(図7A)。また、車両が縁石に乗り上げたことにより下から突き上げられる衝撃もあり、それに対応してZ軸方向のアクチュエータも一定程度上向きに駆動する(図7A)。
7A and 7B show an example of providing three-dimensional tactile feedback in response to a simulated vehicle driving motion. The figure shows how the vehicle rides on the curb on the left side of the road. In the illustrated embodiment, in simulated vehicle driving, the user holds the steering wheel to steer a virtual vehicle. Three actuators are mounted, and the arrows relating to the X-axis, Y-axis, and Z-axis are time axes indicating changes in the operation of each actuator over time. When a virtual vehicle operated by the user rides on the curb from the left front wheel in the virtual space, the vehicle receives an impact from the left, and therefore, from the driver's point of view, the impact is directed to the right. In the illustrated embodiment, the actuator in the X-axis direction is driven to the right and feeds back the impact to the right to the user (FIG. 7A). In addition, there is also an impact that the vehicle is pushed up from below by riding on the curb, and in response to this, the actuator in the Z-axis direction is also driven upward to a certain extent (FIG. 7A).
次いで、車両がさらに進み左後輪も縁石に乗り上げると、縁石による阻害により車両の速度が一時的に低下するので、運転手目線では、後ろ向きの衝撃を受ける。図示の実施形態では、Y軸方向のアクチュエータが後ろ向きに駆動し、後ろ向きの衝撃をユーザにフィードバックする(図7B)。また、車両が縁石に乗り上げたことにより下から突き上げられる衝撃もあり、それに対応してZ軸方向のアクチュエータも一定程度上向きに駆動する(図7B)。
Next, when the vehicle advances further and the left rear wheel also rides on the curb, the speed of the vehicle temporarily decreases due to the obstruction by the curb, so from the driver's point of view, it receives a backward impact. In the illustrated embodiment, the actuator in the Y-axis direction is driven backwards to feed back the backward impact to the user (FIG. 7B). In addition, there is also an impact that the vehicle is pushed up from below by riding on the curb, and in response to this, the actuator in the Z-axis direction is also driven upward to a certain extent (FIG. 7B).
なお、各車輪が縁石に乗り上げた時点でそれぞれ衝撃が発生するため、車両が全体的に縁石に乗り上げるまで4回の衝撃が発生し、それに伴ってアクチュエータが4回駆動される。本実施形態では、左前輪及び左後輪が乗り上げた時の駆動状態のみを示し、それ以外を省略する。
Since an impact is generated when each wheel rides on the curb, four impacts are generated until the vehicle rides on the curb as a whole, and the actuator is driven four times accordingly. In the present embodiment, only the driving state when the left front wheel and the left rear wheel get on is shown, and the others are omitted.
(7.第4実施形態)
本発明の別の一実施形態において、入力装置は、仮想空間上にシミュレートされた外科手術の操作受付手段である。典型的には、操作受付手段は、手術器具を動かすためのコントローラである。コントローラの形状は、対応する手術器具の形状によって多種多様であり得る。例えば、メス、セッシ、ピストル、ニッパーなどに類似する形状であり得る。コントローラには、触覚フィードバックを与えるように構成された複数のアクチュエータが搭載され、複数のアクチュエータは、協同して3次元方向に触覚フィードバックを発生できる。仮想空間上にシミュレートされた外科手術は、実際の外科手術とリンク付けて、遠隔の外科手術を実現することも可能である。 (7. Fourth Embodiment)
In another embodiment of the invention, the input device is a surgical operation receiving means simulated in a virtual space. Typically, the operating receiving means is a controller for moving the surgical instrument. The shape of the controller can vary widely depending on the shape of the corresponding surgical instrument. For example, it can have a shape similar to a scalpel, a sessi, a pistol, nippers, and the like. The controller is equipped with a plurality of actuators configured to provide haptic feedback, and the plurality of actuators can cooperate to generate haptic feedback in a three-dimensional direction. Surgery simulated in virtual space can also be linked to actual surgery to realize remote surgery.
本発明の別の一実施形態において、入力装置は、仮想空間上にシミュレートされた外科手術の操作受付手段である。典型的には、操作受付手段は、手術器具を動かすためのコントローラである。コントローラの形状は、対応する手術器具の形状によって多種多様であり得る。例えば、メス、セッシ、ピストル、ニッパーなどに類似する形状であり得る。コントローラには、触覚フィードバックを与えるように構成された複数のアクチュエータが搭載され、複数のアクチュエータは、協同して3次元方向に触覚フィードバックを発生できる。仮想空間上にシミュレートされた外科手術は、実際の外科手術とリンク付けて、遠隔の外科手術を実現することも可能である。 (7. Fourth Embodiment)
In another embodiment of the invention, the input device is a surgical operation receiving means simulated in a virtual space. Typically, the operating receiving means is a controller for moving the surgical instrument. The shape of the controller can vary widely depending on the shape of the corresponding surgical instrument. For example, it can have a shape similar to a scalpel, a sessi, a pistol, nippers, and the like. The controller is equipped with a plurality of actuators configured to provide haptic feedback, and the plurality of actuators can cooperate to generate haptic feedback in a three-dimensional direction. Surgery simulated in virtual space can also be linked to actual surgery to realize remote surgery.
図8は外科手術シミュレータの一例を示す図である。モニタには、シミュレートされた仮想空間が表示され、具体的には医師が手術する際の様子が表示される。ユーザが手術器具(コントローラ)を動かすと、シミュレーションシステムは当該手術器具の動きに手術器具が受けるべき力の向き及び強度を計算し、計算された結果に基づきアクチュエータが駆動される。同時に、手術器具の動きがモニタに反映される。
FIG. 8 is a diagram showing an example of a surgical operation simulator. The monitor displays a simulated virtual space, specifically what the doctor is doing during surgery. When the user moves the surgical instrument (controller), the simulation system calculates the direction and strength of the force that the surgical instrument should receive in the movement of the surgical instrument, and the actuator is driven based on the calculated result. At the same time, the movement of the surgical instrument is reflected on the monitor.
より具体的には、図9に示されるように、シミュレーションシステムは、シミュレーション内の情報から手術を受けるヒト又は動物にかかる力や衝撃についての情報を手術器具のデータ受信部に送信する。次に、これらの情報に基づき、手術器具に搭載される演算装置(未図示)は、触覚フィードバックを発生させるべき向き及び強度(荷重向き)を計算する。例えば、シミュレートされた仮想空間においてユーザが操作する手術器具が人体の組織に接触した場合、当該組織の硬さ及び接触時の速度に基づき、手術器具が受けるべき衝撃の向き及び強度を計算する。さらに、算出された向き及び強度に基づき、各アクチュエータをどの程度の強さで振動させるべきかが算出される(振動力計算)。振動力の計算結果に基づき、各アクチュエータが駆動される。実際に駆動させるアクチュエータの数は、当該フィードバックの向き及び強度を実現できる最低限度の個数でもよく、それより多くてもよい。なお、荷重向き計算及び振動力計算は、手術器具内に搭載される演算装置によって行ってもよく、シミュレーションシステム内において計算されてもよい。シミュレーションシステム内において計算された場合、各アクチュエータの駆動信号は直接に各アクチュエータに送信される。
More specifically, as shown in FIG. 9, the simulation system transmits information about the force or impact applied to the human or animal undergoing surgery from the information in the simulation to the data receiving unit of the surgical instrument. Next, based on this information, the arithmetic unit (not shown) mounted on the surgical instrument calculates the direction and strength (load direction) at which tactile feedback should be generated. For example, when a user-operated surgical instrument comes into contact with a tissue of a human body in a simulated virtual space, the direction and intensity of the impact that the surgical instrument should receive are calculated based on the hardness of the tissue and the speed at the time of contact. .. Further, based on the calculated direction and strength, it is calculated how strong each actuator should be vibrated (vibration force calculation). Each actuator is driven based on the calculation result of the vibration force. The number of actuators actually driven may be the minimum number that can realize the direction and strength of the feedback, or may be larger than that. The load direction calculation and the vibration force calculation may be performed by an arithmetic unit mounted in the surgical instrument, or may be calculated in the simulation system. When calculated in the simulation system, the drive signal of each actuator is sent directly to each actuator.
図10は、シミュレートされた外科手術の動作に対応して3次元の触覚フィードバックを与える例を示す。図示では、ニッパーに類似する形状の手術器具が対象物(組織)を挟んで動かす時の様子が示される。図示の実施形態では、シミュレートされた外科手術において、ユーザが手術器具を動かして仮想の手術を行う。手術器具には3つのアクチュエータが搭載されており、図面下方のX軸、Y軸、及びZ軸に関する矢印は、それぞれのアクチュエータの動作の経時変化を示す時間軸である。ユーザが操縦する手術器具が仮想空間内において、対象物を挟んで上向きにひくと、下向きの抵抗を受ける。図示の実施形態では、Z軸方向のアクチュエータが下向きに駆動し、下向きの抵抗をユーザにフィードバックする。また、対象物を上向きに引いた後に横向きに引くと、抵抗の方向が横向きになり、それに対応してY軸方向のアクチュエータが横向き駆動して抵抗の触覚をフィードバックする。さらに、図面では示されていないが、紙面の手前方向又は奥行方向に向かって手術器具を動かすと、それに対応してX軸方向のアクチュエータが横向き駆動して抵抗の触覚をフィードバックする。
FIG. 10 shows an example of providing three-dimensional tactile feedback in response to a simulated surgical movement. The illustration shows a state in which a surgical instrument having a shape similar to a nipper moves while sandwiching an object (tissue). In the illustrated embodiment, in a simulated surgical operation, the user moves a surgical instrument to perform a virtual operation. Three actuators are mounted on the surgical instrument, and the arrows relating to the X-axis, Y-axis, and Z-axis at the bottom of the drawing are time axes indicating changes in the operation of each actuator over time. When a surgical instrument operated by a user pulls upward while sandwiching an object in a virtual space, it receives downward resistance. In the illustrated embodiment, the actuator in the Z-axis direction is driven downward and feeds back the downward resistance to the user. Further, when the object is pulled upward and then sideways, the direction of the resistance becomes sideways, and the actuator in the Y-axis direction is driven sideways to feed back the tactile sensation of the resistance. Further, although not shown in the drawing, when the surgical instrument is moved toward the front side or the depth direction of the paper surface, the actuator in the X-axis direction is driven laterally correspondingly to feed back the tactile sensation of resistance.
上記各実施形態の説明は、本発明の一部の好ましい実施形態の説明に過ぎず、シミュレートされた仮想空間におけるユーザの操作が必要とされるあらゆる場面において、本発明を適用することが可能である。
The description of each of the above embodiments is merely a description of a preferred embodiment of the present invention, and the present invention can be applied to any situation in which user operation is required in a simulated virtual space. Is.
Claims (7)
- シミュレートされた仮想空間におけるユーザの操作を入力可能な入力装置であって、
前記入力装置に対して触覚フィードバックを与えるように構成された複数のアクチュエータを備え、
前記複数のアクチュエータは、協同して3次元方向に前記触覚フィードバックを発生できるように配置されている
入力装置。 An input device that can input user operations in a simulated virtual space.
It comprises a plurality of actuators configured to provide haptic feedback to the input device.
The plurality of actuators are input devices arranged so as to be able to jointly generate the tactile feedback in a three-dimensional direction. - 前記複数のアクチュエータは3つのアクチュエータからなり、
それぞれのアクチュエータは、一方向において振動又は変位することにより前記触覚フィードバックを発生することができ、かつ、それぞれのアクチュエータが振動又は変位する方向は、互いに直交するように配置される、請求項1に記載の入力装置。 The plurality of actuators consist of three actuators.
According to claim 1, each actuator can generate the tactile feedback by vibrating or displacing in one direction, and the directions in which the respective actuators vibrate or displace are arranged so as to be orthogonal to each other. The input device described. - 前記触覚フィードバックの方向は、前記仮想空間におけるユーザによる動作又はユーザに対する動作の方向に対応するものである、請求項1又は2に記載の入力装置。 The input device according to claim 1 or 2, wherein the direction of the tactile feedback corresponds to the direction of the operation by the user or the operation with respect to the user in the virtual space.
- タッチパネル装置である、請求項1~3のいずれか1項に記載の入力装置。 The input device according to any one of claims 1 to 3, which is a touch panel device.
- 仮想空間上におけるゲームの操作受付手段である、請求項1~3のいずれか1項に記載の入力装置。 The input device according to any one of claims 1 to 3, which is a means for receiving game operations in a virtual space.
- 仮想空間上にシミュレートされた自動車運転の操作受付手段である、請求項1~3のいずれか1項に記載の入力装置。 The input device according to any one of claims 1 to 3, which is an operation receiving means for driving a car simulated in a virtual space.
- 仮想空間上にシミュレートされた外科手術の操作受付手段である、請求項1~3のいずれか1項に記載の入力装置。 The input device according to any one of claims 1 to 3, which is a means for receiving an operation of a surgical operation simulated on a virtual space.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021000583A JP2022105939A (en) | 2021-01-05 | 2021-01-05 | Input device capable of providing three-dimensional tactile information |
JP2021-000583 | 2021-01-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022149361A1 true WO2022149361A1 (en) | 2022-07-14 |
Family
ID=82357401
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/042674 WO2022149361A1 (en) | 2021-01-05 | 2021-11-19 | Input device capable of providing tree-dimensional tactile information |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2022105939A (en) |
WO (1) | WO2022149361A1 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017215977A (en) * | 2010-01-07 | 2017-12-07 | クゥアルコム・インコーポレイテッドQualcomm Incorporated | Simulation of three-dimensional movement using haptic actuators |
-
2021
- 2021-01-05 JP JP2021000583A patent/JP2022105939A/en active Pending
- 2021-11-19 WO PCT/JP2021/042674 patent/WO2022149361A1/en active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017215977A (en) * | 2010-01-07 | 2017-12-07 | クゥアルコム・インコーポレイテッドQualcomm Incorporated | Simulation of three-dimensional movement using haptic actuators |
Also Published As
Publication number | Publication date |
---|---|
JP2022105939A (en) | 2022-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10564730B2 (en) | Non-collocated haptic cues in immersive environments | |
KR200258353Y1 (en) | Haptic feedback for touchpads and other touch controls | |
JP4860625B2 (en) | Haptic feedback for simulating buttons and scrolling motion on touch input devices | |
US9134797B2 (en) | Systems and methods for providing haptic feedback to touch-sensitive input devices | |
KR200257172Y1 (en) | Tactile Mouse Device | |
US10509468B2 (en) | Providing fingertip tactile feedback from virtual objects | |
JP3069791U (en) | Mouse and positioning device | |
US8259066B2 (en) | Impact force feedback device and interactive system using the same | |
EP2778855B1 (en) | User interface device | |
JP6264287B2 (en) | Tactile sensation presentation device, information terminal, haptic presentation method, and program | |
JP2008257295A (en) | Method for presenting tactile stimulus | |
US10698490B2 (en) | Haptic feedback device, method and system | |
CN109240487B (en) | Immersive system, control method, and non-transitory computer readable medium | |
EP3470960A1 (en) | Haptic effects with multiple peripheral devices | |
WO2022149361A1 (en) | Input device capable of providing tree-dimensional tactile information | |
JP2022105942A (en) | Input device for operation in simulated virtual space | |
JP2014142869A (en) | Information processor, information processing method, program and recording medium | |
JP3084433U (en) | Tactile mouse device | |
WO2011056104A1 (en) | Game control device | |
WO2004053636A2 (en) | Human-computer interfaces incorporating haptics and path-based interaction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21916655 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21916655 Country of ref document: EP Kind code of ref document: A1 |