[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022038651A1 - 光源装置およびプロジェクタ - Google Patents

光源装置およびプロジェクタ Download PDF

Info

Publication number
WO2022038651A1
WO2022038651A1 PCT/JP2020/030958 JP2020030958W WO2022038651A1 WO 2022038651 A1 WO2022038651 A1 WO 2022038651A1 JP 2020030958 W JP2020030958 W JP 2020030958W WO 2022038651 A1 WO2022038651 A1 WO 2022038651A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
holder
wheel
phosphor wheel
light source
Prior art date
Application number
PCT/JP2020/030958
Other languages
English (en)
French (fr)
Inventor
亮祐 川瀬
Original Assignee
シャープNecディスプレイソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープNecディスプレイソリューションズ株式会社 filed Critical シャープNecディスプレイソリューションズ株式会社
Priority to PCT/JP2020/030958 priority Critical patent/WO2022038651A1/ja
Priority to CN202090001210.1U priority patent/CN219872082U/zh
Publication of WO2022038651A1 publication Critical patent/WO2022038651A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/02Combinations of only two kinds of elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • F21V9/32Elements containing photoluminescent material distinct from or spaced from the light source characterised by the arrangement of the photoluminescent material
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details

Definitions

  • the present invention relates to a light source device and a projector.
  • a projector equipped with a dustproof structure is provided for the purpose of reducing maintenance work such as replacement and cleaning of the dustproof filter.
  • This type of projector includes, for example, a light source device having a dustproof structure in which a phosphor wheel, a lens, or the like is housed in a housing case.
  • the containment case comprises an opening for accommodating the phosphor wheel.
  • a lens holder holding a lens that collects excitation light on a phosphor wheel is fixed to the base (bottom surface) of the housing case.
  • the wheel holder holding the phosphor wheel is fixed to the storage case via a dustproof tube so as to close the opening.
  • Patent Document 1 describes a projector having a light source unit provided with a phosphor.
  • the light source unit is housed in the housing.
  • the housing is provided with a replacement opening for the light source unit. By inserting a light source unit, the opening can be closed.
  • the distance between the lens fixed to the base side and the phosphor wheel fixed to the opening side may deviate from the design value, and the optical efficiency may decrease.
  • the optical efficiency is represented by, for example, the conversion efficiency of excitation light and fluorescence (also referred to as quantum yield) or the ratio of the amount of fluorescence incident on the lens to the amount of fluorescence emitted by the phosphor wheel. Including efficiency and so on.
  • the distance between the lens and the phosphor wheel can be adjusted by inserting a shim between the wheel holder and the opening portion of the housing case.
  • a dustproof tube is interposed between the wheel holder and the opening portion of the storage case. Therefore, if a shim is inserted between the wheel holder and the opening portion of the storage case, the compressibility of the dustproof tube changes according to the thickness of the shim, and as a result, the dustproof performance may deteriorate.
  • An object of the present invention is to provide a light source device and a projector capable of solving the above problems, maintaining dustproof performance, and adjusting the distance between the lens and the phosphor wheel with high accuracy.
  • the light source device has a phosphor wheel that receives excitation light and emits fluorescence, and the excitation light is focused on the phosphor wheel, and the phosphor wheel is used.
  • a lens element to which the emitted fluorescence is incident, a wheel holder holding the phosphor wheel, a lens holder fixed to the wheel holder and holding the lens element, and the phosphor wheel and the lens element are accommodated. It has a storage case with an opening.
  • the wheel holder is fixed to the storage case via a dustproof elastic body so as to close the opening.
  • the lens holder can insert a shim for adjusting the distance between the lens element and the phosphor wheel.
  • a projector includes the light source device, an image forming unit that modulates the emission light of the light source device to form an image, and a projection lens that projects an image formed by the image forming unit. Have.
  • the present invention it is possible to maintain dustproof performance and adjust the distance between the lens and the phosphor wheel with high accuracy.
  • FIG. 6 It is a schematic diagram which shows the structure of the light source apparatus by 1st Embodiment of this invention. It is an external view of a projector. It is a perspective view of an optical engine mounted on a projector. It is a block diagram which shows typically the internal structure of the optical engine shown in FIG. It is a perspective view for demonstrating the whole structure of the light source apparatus by 2nd Embodiment of this invention. It is an exploded view of the assembly structure of a phosphor wheel, a lens and a housing case. It is a figure which shows the cross section of the assembly structure shown in FIG. 6 schematically. It is a figure for demonstrating the method of measuring the misalignment of a phosphor wheel.
  • FIG. 1 It is a figure for demonstrating the method of determining a shim adjustment amount. It is an exploded view of the assembly structure of a phosphor wheel, a lens and a housing case. It is sectional drawing of the assembly structure shown in FIG. It is an exploded view which shows the structure of the light source apparatus by the 3rd Embodiment of this invention. It is a perspective view of the wheel holder which held the phosphor wheel. It is a side view of the wheel holder which held the phosphor wheel. It is a front view of the wheel holder which held the phosphor wheel. It is a perspective view of the 1st holder part when viewed from the lens side.
  • FIG. 1 is a schematic diagram showing a configuration of a light source device according to the first embodiment of the present invention.
  • each component is schematically shown, and its shape and size may differ from the actual ones.
  • the light source device has a phosphor wheel 1, a lens element 2, a wheel holder 3, a lens holder 4, and a housing case 5 with an aperture.
  • the phosphor wheel 1 receives the excitation light and emits fluorescence.
  • the phosphor wheel 1 includes a rotating substrate that is rotated by a motor and is transparent to visible light. On one surface of the rotating substrate, for example, a fluorescent layer containing a phosphor that emits yellow fluorescence is formed along the circumferential direction.
  • a reflective member is provided between the fluorescent layer and the rotating substrate to reflect the fluorescence incident from the fluorescent layer toward the fluorescent layer. By forming the rotating substrate with a metal material, the reflective member can be omitted.
  • the lens element 2 is configured to collect the excitation light on the phosphor wheel 1 so that the fluorescence emitted by the phosphor wheel 1 is incident.
  • the lens element 2 is composed of two lenses 2a and 2b. However, the number of lenses constituting the lens element 2 is not limited to two.
  • the lens element 2 can also be composed of three or more lenses.
  • the wheel holder 3 holds the phosphor wheel 1. Specifically, the motor portion of the phosphor wheel 1 is fixed to the wheel holder 3.
  • the lens holder 4 holds the lens element 2 and is fixed to the wheel holder 3.
  • the housing case 5 houses the phosphor wheel 1 and the lens element 2.
  • the wheel holder 3 is fixed to the storage case 5 via a dustproof elastic body 6 so as to close the opening.
  • the aperture has a size into which the lens element 2 and the phosphor wheel 1 can be inserted.
  • the elastic body 6 may be, for example, a rubber member such as a dustproof tube.
  • the lens holder 4 can insert a shim 7 for adjusting the distance between the lens element 2 and the phosphor wheel 1.
  • the outer peripheral portion of the lens surface (lens surface of the lens 2a) on the phosphor wheel 1 side is a flat portion.
  • the lens holder 4 includes a receiving surface that receives a flat portion of the lens surface.
  • the shim 7 is inserted between the receiving surface and the flat portion.
  • the structure for inserting the shim 7 is not limited to the structure including the flat portion of the lens surface and the receiving surface of the lens holder 4.
  • the lens holder 4 may have any insertion structure as long as the distance between the lens element 2 and the phosphor wheel 1 can be adjusted by inserting the shim 7.
  • the following actions and effects are obtained.
  • a comparative example consider a light source device in which a lens holder is fixed to the base of a housing case and a wheel holder is fixed to an opening of the housing case.
  • the positional relationship between the lens and the phosphor wheel greatly affects the optical efficiency.
  • misalignment occurs due to member error (dimensional variation). Due to the misalignment in these assembly, it is difficult to arrange the phosphor wheel and the lens at the distance as designed.
  • the distance between the phosphor wheel and the lens deviates from the design value, for example, the spot diameter of the excitation light becomes smaller or larger than the predetermined value.
  • the spot diameter becomes small, the temperature of the phosphor rises, and as a result, the conversion efficiency (quantum yield) between the excitation light and the fluorescence decreases.
  • the light utilization efficiency which is the ratio of the amount of fluorescent light incident on the lens to the amount of fluorescent light emitted by the phosphor wheel, decreases.
  • the optical efficiency such as the conversion efficiency (quantum yield) of the excitation light and the fluorescence and the light utilization efficiency decreases.
  • the distance between the phosphor wheel and the lens can be adjusted by inserting a shim between the wheel holder and the opening portion of the housing case.
  • a wheel holder holding a phosphor wheel is attached to a measuring device, and the distance from the reference surface of the wheel holder to the wheel surface is measured while rotating the phosphor wheel. Then, the shim adjustment amount is determined from the difference between the measured value and the design dimension.
  • the accommodation case is interposed between the wheel holder and the lens holder, it is not possible to adjust the misalignment with high accuracy when the method of determining the shim adjustment amount based on the wheel holder is applied. Have difficulty.
  • the lens holder 4 is directly fixed not to the accommodation case 5 but to the wheel holder 3 which is a reference when determining the shim adjustment amount. Therefore, by applying the above-mentioned method for determining the shim adjustment amount and inserting the shim 7, the distance between the phosphor wheel 1 and the lens element 2 can be adjusted with high accuracy. Further, since the shim 7 is inserted into the lens holder 4, the compressibility of the elastic body 6 does not change. Therefore, the dustproof performance of the accommodation case 5 can be maintained.
  • the configuration of the light source device of the present embodiment described above is an example, and for example, the following modifications may be applied.
  • the lens holder 4 may include a tubular portion for accommodating the phosphor wheel 1. According to this configuration, when the phosphor wheel 1 is housed in the storage case 5, it is possible to prevent the phosphor wheel 1 from coming into contact with the opening and being damaged. Further, the lens holder 4 may have a first holder portion for holding the lens element 2 and a second holder portion fixed to the wheel holder 3 and to which the first holder portion is joined. In this case, the shim can be inserted into the joint portion between the first holder portion and the second holder portion. Further, the second holder portion may be composed of a tubular portion for accommodating the phosphor wheel.
  • the shim 7 may be composed of an annular metal sheet.
  • the lens element 2 is composed of a lens 2a and a lens 2b, and the lens holder 4 has a spacer that supports the surfaces of the first lens and the second lens facing each other, and the lens 2b is directed toward the lens 2a. It may have a presser plate to be urged.
  • the presser plate is, for example, a leaf spring, and stainless steel, spring steel, resin, or the like can be used.
  • the amount of deflection of the presser plate changes according to the thickness of the shim 7. Therefore, depending on the thickness of the shim 7, plastic deformation of the presser plate may occur.
  • the spacer may be made of an elastic member.
  • the assembly direction of the wheel holder 3 and the assembly direction of the lens holder 4 may be the same. Further, there is provided a projector having the above-mentioned light source device, an image forming unit that modulates the emission light of the light source device to form an image, and a projection lens that projects an image formed by the image forming unit. Is also good.
  • FIG. 2 is an external view of the projector.
  • FIG. 3 is a perspective view of an optical engine mounted on a projector.
  • FIG. 4 is a block diagram schematically showing the internal configuration of the optical engine shown in FIG.
  • FIG. 5 is a perspective view for explaining the overall configuration of the light source device according to the second embodiment of the present invention.
  • FIG. 6 is an exploded view of the assembly structure of the phosphor wheel, the lens, and the housing case.
  • FIG. 7 is a diagram schematically showing a cross section of the assembled structure shown in FIG.
  • the configurations of the light source device and the projector will be specifically described with reference to FIGS. 2 to 7.
  • the projector P includes a housing 90 that houses the optical engine 100.
  • the optical engine 100 includes a light source unit 50, an illumination unit 60, an imaging unit 70, and a projection lens 80.
  • FIG. 4 shows a detailed configuration of each part of the light source unit 50, the illumination unit 60, the image forming unit 70, and the projection lens 80.
  • the light source unit 50 includes a light source 51, lenses 52, 53, 55, 57, 58, a dichroic mirror 54, a reflective diffuser plate 56, and a phosphor wheel 20.
  • the phosphor wheel 20 and the lens 57 correspond to the phosphor wheel 1 and the lens element 2 shown in FIG. 1, respectively.
  • the light source 51 is composed of a plurality of blue lasers.
  • the lens 52 is composed of a collimating lens provided for each blue laser, and converts the output light of each blue laser into a substantially parallel luminous flux.
  • the lens 53 is composed of a plurality of lenses that convert the emitted light of the lens 52 into an appropriate luminous flux diameter.
  • the dichroic mirror 54 has first and second regions having different reflection transmission characteristics with respect to visible light.
  • the first region has a characteristic of transmitting blue light and reflecting light in a wavelength region other than blue
  • the second region has a characteristic of reflecting light in a wavelength region higher than the wavelength of blue.
  • the area of the second region is sufficiently smaller than that of the first region.
  • wavelength of blue means to include a wavelength of blue and a wavelength longer than the wavelength of blue.
  • the blue light emitted from the light source 51 is incident on the first and second regions of the dichroic mirror 54 via the lenses 52 and 53.
  • the blue light transmitted through the first region is incident on the phosphor wheel 20 via the lens 57.
  • the blue light reflected in the second region is incident on the reflective diffuser plate 56 via the lens 55.
  • the lenses 55 and 57 act as a condenser lens.
  • the reflective diffuser 56 diffuses and reflects the blue light incident from the lens 55.
  • the blue reflected light (diffused light) from the reflective diffuser plate 56 is incident on the dichroic mirror 54 via the lens 55.
  • the blue reflected light is incident on the first and second regions, most of the blue reflected light is transmitted through the first region because the area of the second region is sufficiently smaller than the area of the first region. do.
  • the phosphor wheel 20 the phosphor is excited by the blue light (excitation light) incident on the lens 57.
  • the excited fluorescent material emits yellow fluorescence.
  • the yellow fluorescence (diffused light) emitted by the phosphor is incident on the dichroic mirror 54 via the lens 57.
  • the yellow fluorescence is reflected in the direction of the lens 58 by the first and second regions. That is, the dichroic mirror 54 reflects a part of the blue light from the light source 51 in the direction of the reflective diffuser plate 56, and emits the rest in the direction of the phosphor wheel 20 as excitation light. Then, the dichroic mirror 54 emits colored light (B light + Y light), which is a combination of blue light from the reflective diffuser plate 56 and yellow fluorescence from the phosphor wheel 20, in the direction of the lens 54.
  • the colored light (B light + Y light) that has passed through the lens 54 is the output light of the light source unit 50.
  • Y light contains a green component and a red component.
  • the illumination unit 60 includes an integrator 61, a polarization beam splitter 62, field lenses 63-1 to 63-3, dichroic mirrors 64-1 and 64-2, mirrors 65-1 to 65-3, and relay lenses 66-1 and 66-.
  • the output light (B light + Y light) of the light source unit 50 is incident on the integrator 61.
  • the integrator 61 is a light equalizing element used to obtain a uniform illuminance distribution.
  • the integrator 61 has a first and second lens array in which a plurality of lenses are arranged in a matrix. The first and second lens arrays are arranged in parallel so that the lens planes of each other face outward. As the first and second lens arrays, for example, fly-eye lenses can be used.
  • the emitted light of the integrator 61 is incident on the polarizing beam splitter 62.
  • the polarization beam splitter 62 is a polarization conversion element that aligns the polarization direction of incident light with p-polarization or s-polarization.
  • the emission light (p-polarization or s-polarization) of the polarization beam splitter 62 is incident on the dichroic mirror 64-1 via the field lens 63-1.
  • the dichroic mirror 64-1 has a characteristic of reflecting light in the blue wavelength range of visible light and transmitting light in the other wavelength range.
  • the B light is reflected by the dichroic mirror 64-1, and the Y light is transmitted through the dichroic mirror 64-1.
  • the B light reflected by the dichroic mirror 64-1 passes through the field lens 63-2 and the mirror 65-1 in order and is incident on the imaging unit 70.
  • the Y light transmitted through the dichroic mirror 64-1 is incident on the dichroic mirror 64-2 via the field lens 63-2.
  • the dichroic mirror 64-2 has a characteristic of reflecting light having a wavelength lower than the green wavelength among visible light and transmitting light in other wavelength ranges.
  • the green component light (G light) is reflected by the dichroic mirror 64-2
  • the red component light (R light) is transmitted through the dichroic mirror 64-2.
  • the G light reflected by the dichroic mirror 64-2 is incident on the imaging unit 70.
  • the R light transmitted through the dichroic mirror 64-2 passes through the relay lens 66-1, the mirror 65-2, the relay lens 66-2, and the mirror 65-3 in this order, and is incident on the imaging unit 70.
  • the imaging unit 70 includes optical modulation element units 71R, 71G, 71B and a cross dichroic prism 72.
  • the optical modulation element portions 71R, 71G, and 71B all have the same configuration, and have a liquid crystal display device (LCD) and two polarizing plates provided on the incident surface side and the exit surface side of the LCD, respectively.
  • the illumination unit 60 outputs R light, G light, and B light, respectively, R light is incident on the optical modulator unit 71R, G light is incident on the optical modulator 71G, and B light is incident on the optical modulator 71B.
  • the optical modulation element unit 71R modulates the R light based on the red video signal to form a red image.
  • the optical modulation element unit 71G modulates the G light based on the green video signal to form a green image.
  • the optical modulation element unit 71B modulates blue light based on a blue video signal to form a blue image.
  • the cross dichroic prism 72 has a first to third entrance surface and an exit surface.
  • the optical modulation element 71R is arranged on the first incident surface side
  • the optical modulation element 71G is arranged on the second incident surface side
  • the optical modulation element 71B is arranged on the third incident surface side.
  • the red image light formed by the optical modulation element portion 71R is incident on the first incident surface
  • the green image light formed by the optical modulation element portion 71G is incident on the second incident surface to be photomodulated.
  • the blue image light formed by the element portion 71B is incident on the third incident surface. Then, image light including red image light, green image light, and blue image light is emitted from the exit surface.
  • the projection lens 80 is arranged on the exit surface side of the cross dichroic prism 72.
  • the image light emitted from the emission surface of the cross dichroic prism 72 is incident on the projection lens 80.
  • the projection lens 80 projects a red image, a green image, and a blue image formed by the optical modulation element portions 71R, 71G, and 71B.
  • the light source device of the present embodiment has a storage case 10 having a dustproof structure that houses each component of the light source unit 50.
  • the storage case 10 has a substantially rectangular parallelepiped shape and has an upper surface, a bottom surface, and first to fourth side surfaces.
  • the first side surface communicates with the lighting unit 60.
  • the second side surface is provided with an opening, and the wheel holder 21 is fixed to the second side surface via the dustproof tube 16a so as to close the opening.
  • the third side surface also has an opening, the sirocco fan 13 is attached so as to close the opening, and the sirocco fan cover 14 is fixed to the third side surface via the dustproof tube 16b.
  • a heat sink 15 for cooling the light source is fixed to the fourth side surface.
  • the upper surface is provided with an opening, and the light source cover 11 is fixed to the upper surface via the dustproof tube 16c so as to close the opening.
  • the bottom surface also has an opening, and the light source cover 12 is fixed to the bottom surface via the dustproof tube 16d so as to close the opening. Fins 12a and 12b are formed on the inner and outer surfaces of the light source cover 12, respectively.
  • the wheel holder 21 holds the phosphor wheel 20.
  • the lens holder 22 holds the lens 57.
  • the lens 57 collects the excitation light on the phosphor wheel, and the fluorescence emitted by the phosphor wheel is incident on the lens 57.
  • the lens holder 22 holding the lens 57 is fixed to the wheel holder 21.
  • the lens holder 22 includes a tubular portion that surrounds the phosphor wheel 20.
  • the lens holder 22 can insert the shim 23 into the portion that holds the lens 57.
  • the distance between the lens 57 and the phosphor wheel 20 can be adjusted with high accuracy according to the design value by using the shim 23. For example, as shown in FIG.
  • a wheel holder 21 holding the phosphor wheel 20 is attached to a measuring device (not shown), and the surface of the fluorescent layer of the phosphor wheel 20 is formed from the reference surface 21a while rotating the phosphor wheel 20.
  • the phosphor wheel 20 has variations in the assembly position in the optical axis direction, runout intersection (so-called surface runout), and the like. Therefore, the distance D1 is measured while rotating the phosphor wheel 20, and the average value thereof is obtained. Then, the adjustment amount of the shim 23 is determined based on the difference between the measured value (average value) of the distance D1 and the design dimension. By inserting a shim 23 having a thickness corresponding to this adjustment amount, it is possible to set the distance D2 between the lens 57 and the surface of the fluorescent layer of the phosphor wheel 20 as a design value as shown in FIG. Become.
  • FIG. 10 shows an exploded view of the assembled structure of the phosphor wheel 20, the lens 57, and the housing case 10-1
  • FIG. 11 schematically shows a cross section thereof.
  • the lens holder 22-1 holding the lens 57 is fixed to the bottom surface (base) of the housing case 10-1.
  • the storage case 10-1 basically has the same structure as the storage case 10.
  • the wheel holder 21-1 holding the phosphor wheel 20 is fixed to the second side surface of the storage case 10-1 via the dustproof tube 16a.
  • the lens holder 22 holding the lens 57 is directly attached to the wheel holder 22 as a reference when determining the shim adjustment amount. It is fixed to. Therefore, by applying the method of determining the shim adjustment amount as shown in FIG. 8 and inserting the shim 23, the distance between the phosphor wheel 20 and the lens 57 can be adjusted with high accuracy. Further, since the shim 23 is inserted into the lens holder 22, the compression rate of the dustproof tube 16a does not change. Therefore, the dustproof performance of the accommodation case 10 can be maintained.
  • the wheel holder 21-1 holding the phosphor wheel 20 is assembled in the optical axis direction (Z-axis direction), but the lens holder 22-1 holding the lens 57 is in the direction perpendicular to the optical axis direction. Assemble.
  • both the wheel holder 21 holding the phosphor wheel 20 and the lens holder 22 holding the lens 57 are assembled in the optical axis direction.
  • FIG. 12 is an exploded view showing the configuration of the light source device according to the third embodiment of the present invention.
  • the light source device according to the embodiment includes a wheel holder 21 for holding the phosphor wheel 20, a lens holder 22 for holding the lens 57, and a dustproof storage case 10. It is basically the same as that described in the second embodiment except that the structure of the lens holder 22 and the insertion structure of the shim 23 are different.
  • the lens 57 includes two lenses 57a and 57b.
  • the lens holder 22 has a first holder portion 22a, a second holder portion 22b, a spacer 22c, and a holding plate 22d.
  • FIGS. 13A, 13B and 13C show a perspective view, a side view and a front view of the wheel holder 21 holding the phosphor wheel 20, respectively.
  • the wheel holder 21 has a phosphor wheel receiving surface 21a for fixing the phosphor wheel 20 and a lens holder receiving surface 21b for fixing the lens holder 22.
  • the lens holder receiving surface 21b can be used as a reference when determining the shim adjustment amount.
  • the lens holder receiving surface 21b is provided on the lens holder receiving surface 21b.
  • FIG. 14A shows a perspective view of the first holder portion 22a when viewed from the lens 57 side.
  • the first holder portion 22a has a cylindrical shape, and has a lens receiving surface 22a-1 for holding the lens 57a on the inner wall portion of the tubular portion.
  • the lens 57a is a plano-convex lens, and the outer peripheral portion (flat portion) of the lens surface on the flat surface side abuts on the lens receiving surface 22a-1.
  • FIG. 14B shows a perspective view of the first holder portion 22a when viewed from the phosphor wheel 20 side.
  • the first holder portion 22a has a plurality of shim receiving surfaces 22a-2 on the outer peripheral portion of the tubular portion.
  • Each shim receiving surface 22a-2 is provided with a through hole.
  • the shim 23 is an annular metal sheet whose inner diameter is larger than the outer diameter of the cylinder portion of the first holder portion 22a.
  • the tubular portion of the first holder portion 22a can be inserted into the shim 23.
  • the shim 23 has a through hole in a portion that abuts on each shim receiving surface 22a-2.
  • the shim 23 is attached to the first holder portion 22a so that the through holes of the shims 23 and the through holes of the shim receiving surfaces 22a-2 coincide with each other.
  • FIG. 15A shows how the first holder portion 22a is assembled to the second holder portion 22b via the shim 23.
  • the second holder portion 22b is composed of a tubular portion capable of accommodating the phosphor wheel 20, and the holder joint surface 22b-1 and a plurality of shims are received on the lens 57 side portion of the tubular portion. It has a surface 22b-2.
  • Each shim receiving surface 22b-2 has a through hole and faces each shim receiving surface 22a-2 of the first holder portion 22a. The surface of the first holder portion 22a on the phosphor wheel 20 side is joined to the holder joining surface 22b-1.
  • the shim 23 is sandwiched between each shim receiving surface 22a-2 and the shim receiving surface 22b-2 so that the through holes match each other.
  • a female screw for screwing is formed in the through hole of the shim receiving surface 22b-2.
  • FIG. 15B shows how the phosphor wheel 20 and the second holder portion 22b are assembled to the wheel holder 21.
  • the motor portion of the phosphor wheel 20 is screwed to the phosphor wheel receiving surface 21a.
  • the second holder portion 22b is provided with a plurality of through holes 22b-3 on the surface that abuts on the lens holder receiving surface 21b.
  • the second holder portion 22b is screwed to the lens holder receiving surface 21b via the through holes 22b-3 so as to cover the phosphor wheel 20 fixed to the phosphor wheel receiving surface 21a.
  • 16A, 16B and 16C are views showing a state in which the phosphor wheel 20, the lens 57, the first holder portion 22a, the second holder portion 22b, the spacer 22c and the holding plate 22d are assembled, respectively. It is a perspective view, a side view, and a front view. ..
  • the first holder portion 22a holds the lens 57b facing the lens 57a.
  • the spacer 22c is provided between the lens 57a and the lens 57b.
  • the spacer 22c supports the surfaces of the lens 57a and the lens 57b facing each other.
  • the spacer 22c may be made of, for example, an elastic member.
  • the presser plate 22d acts to urge the lens 57b toward the lens 57a.
  • the presser plate 22d is, for example, a leaf spring, and stainless steel, spring steel, resin, or the like can be used.
  • the lenses 57a, 57b, the spacer 22c, and the holding plate 22d are screwed to the second holder portion 22b in a state of being assembled to the first holder portion 22a.
  • the phosphor wheel 20 is screwed to the phosphor wheel receiving surface 21a of the wheel holder 21.
  • the second holder portion 22b is screwed to the lens holder receiving surface 21b of the wheel holder 21.
  • the wheel holder 21 to which the lens 57, each member of the lens holder 22, and the phosphor wheel 20 are assembled is housed in the storage case 10.
  • the light source device of the present embodiment also has the same effect as that of the second embodiment.
  • the amount of deflection of the presser plate 22d changes according to the thickness of the shim 23. Therefore, depending on the thickness of the shim 23, the presser plate 22d may be plastically deformed.
  • the spacer 22c by forming the spacer 22c with an elastic member, it is possible to suppress the plastic deformation of the holding plate 22d.
  • FIG. 17 is a cross-sectional view showing a configuration of a light source device according to a fourth embodiment of the present invention.
  • the light source device of the present embodiment has basically the same configuration as that of the third embodiment except that the insertion position of the shim 23 is different.
  • the shim 23 is located between the surface of the first holder portion 22a on the phosphor wheel 20 side and the holder joint surface 22b-1 of the second holder portion 22b. Will be inserted into.
  • the distance between the phosphor wheel 20 and the lens 57 is adjusted with high accuracy by inserting the shim 23 between the first holder portion 22a and the second holder portion 22b. be able to.
  • the amount of deflection of the presser plate 22d does not change depending on the thickness of the shim 23, so that the presser plate 22d is plastically deformed. Can be prevented.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Projection Apparatus (AREA)

Abstract

防塵性能を維持し、かつ、レンズと蛍光体ホイールとの距離を高精度に調整することができる光源装置を提供する。光源装置は、励起光を受けて蛍光を射出する蛍光体ホイール(1)と、励起光を蛍光体ホイール上に集光し、蛍光体ホイールが射出した蛍光が入射するレンズ要素(2)と、蛍光体ホイールを保持するホイールホルダ(3)と、ホイールホルダに固定され、レンズ要素を保持するレンズホルダ(4)と、蛍光体ホイールおよびレンズ要素を収容する、開口を備えた収容ケース(5)と、を有する。ホイールホルダは、開口を塞ぐように防塵用の弾性体(6)を介して収容ケースに固定される。レンズホルダは、レンズ要素と蛍光体ホイールとの距離を調整するためのシム(7)を挿入可能である。

Description

光源装置およびプロジェクタ
 本発明は、光源装置およびプロジェクタに関する。
 防塵フィルタの交換や清掃などの保守作業を軽減することを目的に、防塵構造を備えたプロジェクタが提供されている。この種のプロジェクタは、例えば、蛍光体ホイールやレンズなどを収容ケース内に収容した防塵構造の光源装置を備える。収容ケースは、蛍光体ホイールを収容するための開口を備える。収容ケースのベース(底面)には、励起光を蛍光体ホイール上に集光するレンズを保持したレンズホルダが固定される。蛍光体ホイールを保持したホイールホルダが、開口を塞ぐように防塵チューブを介して収容ケースに固定される。
 関連技術として、特許文献1には、蛍光体を備えた光源ユニットを有するプロジェクタが記載されている。光源ユニットは、筐体内に収容される。筐体には、光源ユニットの交換用の開口部が設けられている。光源ユニットを挿入することで、開口部を塞ぐことができる。
特開2017-125891号公報
 しかしながら、上記防塵構造の光源装置において、ベース側に固定されたレンズと開口部側に固定された蛍光体ホイールとの距離を設計値通りにすることは困難である。このため、レンズと蛍光体ホイールの距離が設計値から外れて、光学効率が低下する場合がある。ここで、光学効率は、例えば、励起光と蛍光の変換効率(量子収率とも呼ぶ)や、蛍光体ホイールが射出した蛍光の光量に対するレンズに入射する蛍光の光量の比で表される光利用効率などを含む。
 なお、ホイールホルダと収容ケースの開口部分との間にシムを挿入することで、レンズと蛍光体ホイールとの距離を調整することができる。しかし、ホイールホルダと収容ケースの開口部分との間には、防塵チューブが介在している。このため、ホイールホルダと収容ケースの開口部分との間にシムを挿入すると、防塵チューブの圧縮率がシムの厚さに応じて変化してしまい、その結果、防塵性能が低下する場合がある。
 本発明の目的は、上記問題を解決し、防塵性能を維持し、かつ、レンズと蛍光体ホイールとの距離を高精度に調整することができる光源装置およびプロジェクタを提供することにある。
 上記目的を達成するため、本発明の一態様による光源装置は、励起光を受けて蛍光を射出する蛍光体ホイールと、前記励起光を前記蛍光体ホイール上に集光し、前記蛍光体ホイールが射出した前記蛍光が入射するレンズ要素と、前記蛍光体ホイールを保持するホイールホルダと、前記ホイールホルダに固定され、前記レンズ要素を保持するレンズホルダと、前記蛍光体ホイールおよびレンズ要素を収容する、開口を備えた収容ケースと、を有する。前記ホイールホルダは、前記開口を塞ぐように防塵用の弾性体を介して前記収容ケースに固定される。前記レンズホルダは、前記レンズ要素と前記蛍光体ホイールとの距離を調整するためのシムを挿入可能である。
 本発明の別の態様によるプロジェクタは、上記光源装置と、前記光源装置の射出光を変調して画像を形成する画像形成部と、前記画像形成部が形成した画像を投写する投写レンズと、を有する。
 本発明によれば、防塵性能を維持し、かつ、レンズと蛍光体ホイールとの距離を高精度に調整することができる。
本発明の第1の実施形態による光源装置の構成を示す模式図である。 プロジェクタの外観図である。 プロジェクタに搭載された光学エンジンの斜視図である。 図3に示す光学エンジンの内部構成を模式的に示すブロック図である。 本発明の第2の実施形態による光源装置の全体構成を説明するための斜視図である。 蛍光体ホイール、レンズおよび収容ケースの組み付け構造の分解図である。 図6に示す組み付け構造の断面を模式的示す図である。 蛍光体ホイールの位置ずれを測定する方法を説明するための図である。 シム調整量を決定する方法を説明するための図である。 蛍光体ホイール、レンズおよび収容ケースの組み付け構造の分解図である。 図10に示す組み付け構造の断面図である。 本発明の第3の実施形態による光源装置の構成を示す分解図である。 蛍光体ホイールを保持したホイールホルダの斜視図である。 蛍光体ホイールを保持したホイールホルダの側面図である。 蛍光体ホイールを保持したホイールホルダの正面図である。 レンズ側から見た場合の第1のホルダ部の斜視図である。 蛍光体ホイール側から見た場合の第1のホルダ部の斜視図である。 シムを介して第1のホルダ部を第2のホルダ部に組み付ける様子を示す模式図である。 蛍光体ホイール及び第2のホルダ部をホイールホルダに組み付ける様子を示す模式図である。 蛍光体ホイール、レンズ、第1のホルダ部、第2のホルダ部、スペーサ及び押え板を組み付けた状態を示す斜視図である。 蛍光体ホイール、レンズ、第1のホルダ部、第2のホルダ部、スペーサ及び押え板を組み付けた状態を示す側面図である。 蛍光体ホイール、レンズ、第1のホルダ部、第2のホルダ部、スペーサ及び押え板を組み付けた状態を示す正面図である。 本発明の第4の実施形態による光源装置の構成を示す断面図である。
 次に、本発明の実施形態について図面を参照して説明する。
 (第1の実施形態)
 図1は、本発明の第1の実施形態による光源装置の構成を示す模式図である。図1において、各構成要素は模式的に示されており、その形状及び大きさは実際とは異なる場合がある。
 図1を参照すると、光源装置は、蛍光体ホイール1、レンズ要素2、ホイールホルダ3、レンズホルダ4、及び、開口を備えた収容ケース5を有する。
 蛍光体ホイール1は、励起光を受けて蛍光を射出する。例えば、蛍光体ホイール1は、モータで回転する、可視光に対して透明な回転基板を備える。回転基板の一方の面には、例えば、黄色の蛍光を放出する蛍光体を含む蛍光層が周方向に沿って形成されている。蛍光層と回転基板との間には、蛍光層から入射した蛍光を蛍光層側に反射する反射部材が設けられている。なお、回転基板を金属材料で構成することで、反射部材を省くことができる。
 レンズ要素2は、励起光を蛍光体ホイール1上に集光し、蛍光体ホイール1が射出した蛍光が入射するように構成されている。ここでは、レンズ要素2は、2枚のレンズ2a、2bからなる。ただし、レンズ要素2を構成するレンズの枚数は、2枚に限定されない。3枚以上のレンズでレンズ要素2を構成することもできる。
 ホイールホルダ3は、蛍光体ホイール1を保持する。具体的には、蛍光体ホイール1のモータ部分がホイールホルダ3に固定される。レンズホルダ4は、レンズ要素2を保持し、ホイールホルダ3に固定される。収容ケース5は、蛍光体ホイール1およびレンズ要素2を収容する。ホイールホルダ3は、開口を塞ぐように防塵用の弾性体6を介して収容ケース5に固定される。ここで、開口は、レンズ要素2及び蛍光体ホイール1を挿入可能な大きさを有する。弾性体6は、例えば、防塵チューブ等のゴム部材であっても良い。
 レンズホルダ4は、レンズ要素2と蛍光体ホイール1との間の距離を調整するためのシム7を挿入可能である。例えば、蛍光体ホイール1側のレンズ面(レンズ2aのレンズ面)の外周部が平坦部とされている。レンズホルダ4は、レンズ面の平坦部を受ける受け面を備える。シム7は、受け面と平坦部との間に挿入される。なお、シム7を挿入するための構造は、レンズ面の平坦部とレンズホルダ4の受け面とからなる構造に限定されない。シム7を挿入してレンズ要素2と蛍光体ホイール1との距離を調整することができるのであれば、レンズホルダ4は、どのような挿入構造を備えても良い。
 本実施形態の光源装置によれば、以下のような作用効果を奏する。
 まず、比較例として、レンズホルダが収容ケースのベースに固定され、ホイールホルダが収容ケースの開口部に固定された光源装置を考える。レンズと蛍光体ホイールの位置関係が、光学効率に大きく影響する。比較例では、蛍光体ホイールとホイールホルダの組み付け、ホイールホルダと収容ケースの組み付け、及び、レンズホルダと収容ケースの組み付けで、それぞれ部材誤差(寸法ばらつき)のために位置ずれを生じる。これら組み付けでの位置ずれのために、蛍光体ホイールとレンズとを設計値通りの距離で配置することは困難である。
 蛍光体ホイールとレンズとの距離が設計値から外れると、例えば、励起光のスポット径が所定値よりも小さくなったり、大きくなったりする。スポット径が小さくなると、蛍光体の温度が上昇し、その結果、励起光と蛍光の変換効率(量子収率)が低下する。一方、スポット径が大きくなると、蛍光体ホイールが射出した蛍光の光量に対するレンズに入射する蛍光の光量の比である光利用効率が低下する。このように、蛍光体ホイールとレンズとの距離が設計値から外れると、励起光と蛍光の変換効率(量子収率)や光利用効率などの光学効率が低下する。
 なお、ホイールホルダと収容ケースの開口部分との間にシムを挿入することで、蛍光体ホイールとレンズとの距離を調整することができる。通常、蛍光体ホイールを保持したホイールホルダを測定装置に取り付けて、蛍光体ホイールを回転させながら、ホイールホルダの基準面からホイール面までの距離を測定する。そして、測定値と設計寸法との差からシム調整量を決定する。しかし、比較例では、ホイールホルダとレンズホルダとの間に収容ケースが介在するため、ホイールホルダを基準としてシム調整量を決定する手法を適用した場合に、位置ずれを高精度に調整することは困難である。
 加えて、ホイールホルダと収容ケースの開口部分との間には、防塵チューブが介在しているため、シムを挿入すると、防塵チューブの圧縮率がシムの厚さに応じて変化してしまい、その結果、防塵性能が低下する場合がある。
 これに対して、本実施形態の光源装置では、レンズホルダ4は、収容ケース5ではなく、シム調整量を決定する際の基準となるホイールホルダ3に直接に固定されている。このため、上記のシム調整量を決定する手法を適用し、シム7を挿入することで、蛍光体ホイール1とレンズ要素2との距離を高精度に調整することができる。
 また、シム7はレンズホルダ4に挿入されるため、弾性体6の圧縮率が変化することはない。よって、収容ケース5の防塵性能を維持することができる。
 なお、上述した本実施形態の光源装置の構成は一例であり、例えば、以下のような変形を適用しても良い。
 レンズホルダ4は、蛍光体ホイール1を収容する筒部を備えても良い。この構成によれば、蛍光体ホイール1を収容ケース5に収容する際に、蛍光体ホイール1が開口部と接触して破損することを防止することができる。
 また、レンズホルダ4は、レンズ要素2を保持する第1のホルダ部と、ホイールホルダ3に固定され、第1のホルダ部が接合される第2のホルダ部と、を有しても良い。この場合、第1のホルダ部と第2のホルダ部との接合部がシムを挿入可能とされる。さらに、第2のホルダ部は、蛍光体ホイールを収容する筒部から構成されても良い。
 さらに、シム7は円環状の金属シートから構成されても良い。
 さらに、レンズ要素2は、レンズ2aとレンズ2bからなり、レンズホルダ4が、第1のレンズと第2のレンズとの互いに対向する面を支持するスペーサと、レンズ2bをレンズ2a側の方向に付勢する押え板と、を有しても良い。押え板は、例えば、板バネであり、ステンレス、ばね鋼や樹脂などを用いることができる。シム7の厚さに応じて押え板のたわみ量が変化する。このため、シム7の厚さよっては、押え板の塑性変形が生じる場合がある。この押え板の塑性変形を抑制するために、スペーサを弾性部材で構成しても良い。
 さらに、ホイールホルダ3の組み付け方向とレンズホルダ4の組み付け方向とが同じであっても良い。
 また、上述した光源装置と、該光源装置の射出光を変調して画像を形成する画像形成部と、該画像形成部が形成した画像を投写する投写レンズと、を有する、プロジェクタが提供されても良い。
 (第2の実施形態)
 図2は、プロジェクタの外観図である。図3は、プロジェクタに搭載された光学エンジンの斜視図である。図4は、図3に示す光学エンジンの内部構成を模式的に示すブロック図である。図5は、本発明の第2の実施形態による光源装置の全体構成を説明するための斜視図である。図6は、蛍光体ホイール、レンズおよび収容ケースの組み付け構造の分解図である。図7は、図6に示す組み付け構造の断面を模式的示す図である。
 以下、図2~図7を参照して、光源装置及びプロジェクタの構成を具体的に説明する。
 図2及び図3に示すように、プロジェクタPは、光学エンジン100を収容した筐体90を備える。光学エンジン100は、光源部50、照明部60、結像部70及び投写レンズ80を有する。
 図4に、光源部50、照明部60、結像部70及び投写レンズ80の各部の詳細な構成を示す。光源部50は、光源51、レンズ52、53、55、57、58、ダイクロイックミラー54、反射型拡散板56及び蛍光体ホイール20を含む。蛍光体ホイール20及びレンズ57はそれぞれ、図1に示した蛍光体ホイール1及びレンズ要素2に対応する。
 光源51は、複数の青色レーザからなる。レンズ52は、青色レーザ毎に設けられたコリメートレンズからなり、各青色レーザの出力光を略平行光束に変換する。レンズ53は、レンズ52の出射光を適切な光束径に変換する複数のレンズからなる。
 ダイクロイックミラー54は、可視光に対する反射透過特性が異なる第1及び第2の領域を有する。第1の領域は、青色光を透過し、青色以外の波長域の光を反射する特性を有し、第2の領域は、青色の波長以上の波長域の光を反射する特性を有する。第1の領域に比べて、第2の領域の面積は十分に小さい。ここで、「青色の波長以上」とは、青色の波長と、青色の波長よりも長い波長とを含むことを意味する。
 光源51から出射した青色光は、レンズ52、53を介してダイクロイックミラー54の第1及び第2の領域に入射する。第1の領域を透過した青色光は、レンズ57を介して蛍光体ホイール20に入射する。第2の領域で反射された青色光は、レンズ55を介して反射型拡散板56に入射する。レンズ55、57は、集光レンズとして作用する。
 反射型拡散板56は、レンズ55から入射した青色光を拡散し、反射する。反射型拡散板56からの青色の反射光(拡散光)は、レンズ55を介してダイクロイックミラー54に入射する。青色の反射光は第1及び第2の領域に入射するが、第2の領域の面積は第1の領域の面積よりも十分に小さいため、青色の反射光のほとんどが第1の領域を透過する。
 蛍光体ホイール20では、レンズ57を介して入射した青色光(励起光)によって蛍光体が励起される。励起光された蛍光体は黄色蛍光を放出する。蛍光体が放出した黄色蛍光(拡散光)は、レンズ57を介してダイクロイックミラー54に入射する。黄色蛍光は、第1及び第2の領域によって、レンズ58の方向に反射される。
 すなわち、ダイクロイックミラー54は、光源51からの青色光の一部を反射型拡散板56の方向に反射し、残りを励起光として蛍光体ホイール20の方向に出射する。そして、ダイクロイックミラー54は、反射型拡散板56からの青色光と蛍光体ホイール20からの黄色蛍光とを合成した色光(B光+Y光)をレンズ54の方向に出射する。このレンズ54を通過した色光(B光+Y光)が、光源部50の出力光である。Y光は、緑色成分及び赤色成分を含む。
 照明部60は、インテグレータ61、偏光ビームスプリッタ62、フィールドレンズ63-1~63-3、ダイクロイックミラー64-1、64-2、ミラー65-1~65-3及びリレーレンズ66-1、66-2を有する。
 光源部50の出力光(B光+Y光)は、インテグレータ61に入射する。インテグレータ61は、均一な照度分布を得るために用いられる光均一化素子である。インテグレータ61は、複数のレンズがマトリクス状に配置された第1及び第2のレンズアレイを有する。第1及び第2のレンズアレイは、互いのレンズ面が外側を向くように平行に配置されている。第1及び第2のレンズアレイとして、例えば、フライアイレンズを用いることができる。インテグレータ61の出射光は、偏光ビームスプリッタ62に入射する。
 偏光ビームスプリッタ62は、入射光の偏光方向をp偏光又はs偏光に揃える偏光変換素子である。偏光ビームスプリッタ62の出射光(p偏光又はs偏光)は、フィールドレンズ63-1を介してダイクロイックミラー64-1に入射する。
 ダイクロイックミラー64-1は、可視光のうち青色の波長域の光を反射し、それ以外の波長域の光を透過する特性を有する。光源部50の出力光(B+Y)のうち、B光がダイクロイックミラー64-1で反射され、Y光がダイクロイックミラー64-1を透過する。ダイクロイックミラー64-1で反射されたB光は、フィールドレンズ63-2及びミラー65-1を順に通過して結像部70に入射する。ダイクロイックミラー64-1を透過したY光は、フィールドレンズ63-2を介してダイクロイックミラー64-2に入射する。
 ダイクロイックミラー64-2は、可視光のうち緑色の波長以下の光を反射し、それ以外の波長域の光を透過する特性を有する。ダイクロイックミラー64-1を透過したY光のうち、緑色成分の光(G光)はダイクロイックミラー64-2で反射され、赤色成分の光(R光)はダイクロイックミラー64-2を透過する。ダイクロイックミラー64-2で反射されたG光は、結像部70に入射する。ダイクロイックミラー64-2を透過したR光は、リレーレンズ66-1、ミラー65-2、リレーレンズ66-2、ミラー65-3を順に通過して結像部70に入射する。
 結像部70は、光変調素部71R、71G、71B及びクロスダイクロイックプリズム72を有する。光変調素部71R、71G、71Bはいずれも同じ構成であって、液晶表示デバイス(LCD)と、このLCDの入射面側及び出射面側にそれぞれ設けられた2枚の偏光板とを有する。
 照明部60がR光、G光及びB光をそれぞれ出力し、R光が光変調素部71Rに入射し、G光が光変調素部71Gに入射し、B光が光変調素部71Bに入射する。光変調素部71Rは、赤色映像信号に基づいてR光を変調して赤色画像を形成する。光変調素部71Gは、緑色映像信号に基づいてG光を変調して緑色画像を形成する。光変調素部71Bは、青色映像信号に基づいて青光を変調して青色画像を形成する。
 クロスダイクロイックプリズム72は、第1乃至第3の入射面と出射面とを有する。光変調素部71Rが第1の入射面側に配置され、光変調素部71Gが第2の入射面側に配置され、光変調素部71Bが第3の入射面側に配置されている。クロスダイクロイックプリズム72では、光変調素部71Rで形成した赤色画像光が第1の入射面に入射し、光変調素部71Gで形成した緑色画像光が第2の入射面に入射し、光変調素部71Bで形成した青色画像光が第3の入射面に入射する。そして、赤色画像光、緑色画像光及び青色画像光を含む画像光が出射面から出射される。
 投写レンズ80は、クロスダイクロイックプリズム72の出射面側に配置されている。クロスダイクロイックプリズム72の出射面から出射した画像光は、投写レンズ80に入射する。投写レンズ80は、光変調素部71R、71G、71Bで形成した赤色画像、緑色画像、青色画像を投写する。
 以上、プロジェクタPの各構成部の概略を説明した。
 次に、図5~図7を参照して、本実施形態の光源装置の構成を説明する。
 本実施形態の光源装置は、光源部50の各構成要素を収容した防塵構造の収容ケース10を有する。収容ケース10は、略直方体の形状であって、上面、底面及び第1乃至第4の側面を有する。
 図5に示すように、収容ケース10において、第1の側面は照明部60に連通している。第2の側面は開口を備え、該開口を塞ぐようにホイールホルダ21が防塵チューブ16aを介して第2の側面に固定されている。第3の側面も開口を備え、該開口を塞ぐようにシロッコファン13が取り付けられ、さらに、防塵チューブ16bを介してシロッコファンカバー14が第3の側面に固定されている。第4の側面には、光源冷却用のヒートシンク15が固定されている。上面は開口を備え、該開口を塞ぐように光源カバー11が防塵チューブ16cを介して上面に固定されている。底面も開口を備え、該開口を塞ぐように光源カバー12が防塵チューブ16dを介して底面に固定されている。光源カバー12の内面及び外面にはそれぞれフィン12a、12bが形成されている。
 図6及び図7に示すように、ホイールホルダ21が蛍光体ホイール20を保持する。レンズホルダ22が、レンズ57を保持する。レンズ57が励起光を蛍光体ホイール上に集光し、蛍光体ホイールが射出した蛍光がレンズ57に入射する。レンズ57を保持したレンズホルダ22は、ホイールホルダ21に固定される。レンズホルダ22は、蛍光体ホイール20を囲む筒状の部分を備える。レンズホルダ22は、レンズ57を保持する部分にシム23を挿入することができる。
 本実施形態の光源装置においても、シム23を用いてレンズ57と蛍光体ホイール20との距離を設計値通りに高精度に調整することができる。例えば、図8に示すように、蛍光体ホイール20を保持したホイールホルダ21を不図示の測定装置に取り付け、蛍光体ホイール20を回転させながら、基準面21aから蛍光体ホイール20の蛍光層の表面までの距離D1を測定する。通常、蛍光体ホイール20には、光軸方向における組み付け位置のばらつきや振れ交差(所謂、面振れ)などがある。このため、蛍光体ホイール20を回転させながら距離D1を測定し、その平均値を求める。そして、距離D1の測定値(平均値)と設計寸法との差に基づき、シム23の調整量を決定する。この調整量に対応する厚さを有するシム23を挿入することで、図9に示すように、レンズ57と蛍光体ホイール20の蛍光層の表面との距離D2を設計値とすることが可能となる。
 以下、本実施形態の光源装置の作用効果を具体的に説明する。
 比較例として、図10に、蛍光体ホイール20、レンズ57および収容ケース10-1の組み付け構造の分解図を示し、図11に、その断面を模式的示す。
 図10及び図11に示すように、比較例では、レンズ57を保持したレンズホルダ22-1は収容ケース10-1の底面(ベース)に固定される。収容ケース10-1は、基本的に収容ケース10と同様の構造を有する。蛍光体ホイール20を保持したホイールホルダ21-1は、防塵チューブ16aを介して収容ケース10-1の第2の側面に固定される。4枚のシム23-1を収容ケース10-1の第2の側面とホイールホルダ21-1との間に挿入することで、レンズ57と蛍光体ホイール20の間の距離を調整することができる。
 しかし、比較例の組み付け構造では、レンズ57と蛍光体ホイール20の間に収容ケース10-1が介在するため、図8に示したようなホイールホルダを基準としてシム調整量を決定する手法を適用した場合に、位置ずれを高精度に調整することは困難である。
 加えて、図11に示すように、ホイールホルダ21-1と収容ケース10-1との間には、防塵チューブ16aが介在しているため、シム23-1を挿入すると、防塵チューブ16aの圧縮率が変化してしまう。その結果、防塵性能が低下する。
 これに対して、本実施形態の光源装置では、図6及び図7に示したように、レンズ57を保持したレンズホルダ22は、シム調整量を決定する際の基準となるホイールホルダ22に直接に固定されている。このため、図8に示したようなシム調整量を決定する手法を適用し、シム23を挿入することで、蛍光体ホイール20とレンズ57との距離を高精度に調整することができる。
 また、シム23はレンズホルダ22に挿入されるため、防塵チューブ16aの圧縮率が変化することはない。よって、収容ケース10の防塵性能を維持することができる。
 加えて、比較例では、4枚のシム23-1を用いるのに対して、本実施形態の光源装置では、1枚のシム23を用いる。したがって、部品コストの低減や調整精度の向上を期待できる。
 さらに、比較例では、蛍光体ホイール20を保持したホイールホルダ21-1は光軸方向(Z軸方向)に組み付けるが、レンズ57を保持したレンズホルダ22-1は光軸方向に垂直な方向に組み付ける。これに対して、本実施形態の光源装置では、蛍光体ホイール20を保持したホイールホルダ21及びレンズ57を保持したレンズホルダ22はいずれも光軸方向に組み付ける。このように組み付け方向を光軸方向に一致させることで、シム23を用いた調整をさらに高精度なものとすることが可能になる。
 (第3の実施形態)
 図12は、本発明の第3の実施形態による光源装置の構成を示す分解図である。
 図12に示すように、実施形態による光源装置は、蛍光体ホイール20を保持するホイールホルダ21と、レンズ57を保持するレンズホルダ22と、防塵構造の収容ケース10と、を有する。レンズホルダ22の構造及びシム23の挿入構造が異なる以外は、第2の実施形態で説明したものと基本的に同じである。レンズ57は、2枚のレンズ57a、57bからなる。レンズホルダ22は、第1のホルダ部22a、第2のホルダ部22b、スペーサ22c及び押え板22dを有する。
 図13A、図13B及び図13Cに、蛍光体ホイール20を保持するホイールホルダ21の斜視図、側面図及び正面図をそれぞれ示す。図13A、図13B及び図13Cに示すように、ホイールホルダ21は、蛍光体ホイール20を固定するための蛍光体ホイール受け面21aと、レンズホルダ22を固定するためのレンズホルダ受け面21bとを有する。レンズホルダ受け面21bは、シム調整量を決定する際の基準とすることができる。レンズホルダ受け面21bは、レンズホルダ受け面21b上に設けられている。
 図14Aに、レンズ57側から見た場合の第1のホルダ部22aの斜視図を示す。図14Aに示すように、第1のホルダ部22aは、筒状のものであって、筒部の内壁部分に、レンズ57aを保持するレンズ受け面22a―1を有する。レンズ57aは平凸レンズであり、平面側のレンズ面の外周部分(平坦部分)がレンズ受け面22a―1に当接する。
 図14Bに、蛍光体ホイール20側から見た場合の第1のホルダ部22aの斜視図を示す。第1のホルダ部22aは、筒部の外周部に、複数のシム受け面22aー2を有する。各シム受け面22aー2は、貫通孔を備える。シム23は、環状の金属シートであって、その内径は第1のホルダ部22aの筒部の外径よりも大きい。第1のホルダ部22aの筒部をシム23に挿入することができる。シム23は、各シム受け面22aー2に当接する部分に貫通孔を有する。シム23の各貫通孔と各シム受け面22aー2の貫通孔とが互いに一致するように、シム23を第1のホルダ部22aに取り付ける。
 図15Aに、シム23を介して第1のホルダ部22aを第2のホルダ部22bに組み付ける様子を示す。図15Aに示すように、第2のホルダ部22bは、蛍光体ホイール20を収容可能な筒部からなり、該筒部のレンズ57側の部分に、ホルダ接合面22b-1および複数のシム受け面22b-2を有する。各シム受け面22b-2は、貫通孔を備えており、第1のホルダ部22aの各シム受け面22aー2と対向する。第1のホルダ部22aの蛍光体ホイール20側の面がホルダ接合面22b-1に接合される。互いの貫通孔が一致するように、各シム受け面22aー2とシム受け面22b-2とでシム23を挟み込む。例えば、シム受け面22b-2の貫通孔には、螺子止めのための雌螺子が形成されている。シム23を挟んだ状態で、各シム受け面22aー2と各シム受け面22b-2とを螺子止めすることで、第1のホルダ部22aを第2のホルダ部22bに固定することができる。
 図15Bに、蛍光体ホイール20及び第2のホルダ部22bをホイールホルダ21に組み付ける様子を示す。図15Bに示すように、蛍光体ホイール20のモータ部が蛍光体ホイール受け面21aに螺子止めされる。第2のホルダ部22bは、レンズホルダ受け面21bに当接する面に複数の貫通孔22b-3を備える。第2のホルダ部22bは、蛍光体ホイール受け面21aに固定された蛍光体ホイール20を覆うように、各貫通孔22b-3を介してレンズホルダ受け面21bに螺子止めされる。
 図16A、図16B及び図16Cは、蛍光体ホイール20、レンズ57、第1のホルダ部22a、第2のホルダ部22b、スペーサ22c及び押え板22dを組み付けた状態を示す図であって、それぞれ斜視図、側面図、正面図である。。
 図16A、図16B及び図16Cに示すように、第1のホルダ部22aは、レンズ57aと対向するレンズ57bを保持する。スペーサ22cは、レンズ57aとレンズ57bの間に設けられている。スペーサ22cは、レンズ57aとレンズ57bとの互いに対向する面を支持する。スペーサ22cは、例えば、弾性部材から構成されても良い。押え板22dは、レンズ57bをレンズ57a側の方向に付勢するように作用する。押え板22dは、例えば、板バネであり、ステンレス、ばね鋼や樹脂などを用いることができる
 再び、図12を参照する。レンズ57a、57b、スペーサ22c及び押え板22dを第1のホルダ部22aに組み付けた状態で第2のホルダ部22bに螺子止めする。蛍光体ホイール20をホイールホルダ21の蛍光体ホイール受け面21aに螺子止めする。さらに、第2のホルダ部22bをホイールホルダ21のレンズホルダ受け面21bに螺子止めする。こうしてレンズ57、レンズホルダ22の各部材及び蛍光体ホイール20を組み付けたホイールホルダ21を収容ケース10に収容する。
 本実施形態の光源装置においても、第2の実施形態と同様の作用効果を奏する。
 加えて、シム23の厚さに応じて押え板22dのたわみ量が変化する。このため、シム23の厚さよっては、押え板22dの塑性変形が生じる場合がある。本実施形態では、スペーサ22cを弾性部材で構成することで、押え板22dの塑性変形を抑制することができる。
 (第4の実施形態)
 図17は、本発明の第4の実施形態による光源装置の構成を示す断面図である。本実施形態の光源装置は、シム23の挿入位置が異なる以外は、第3の実施形態のものと基本的に同じ構成である。図17に示すように、本実施形態の光源装置では、シム23は、第1のホルダ部22aの蛍光体ホイール20側の面と第2のホルダ部22bのホルダ接合面22b-1との間に挿入される。
 本実施形態の光源装置によれば、第1のホルダ部22aと第2のホルダ部22bの間にシム23を挿入することで、蛍光体ホイール20とレンズ57との距離を高精度に調整することができる。このシム挿入構造によれば、第3の実施形態と同様の作用効果に加えて、シム23の厚さに応じて押え板22dのたわみ量が変化することはないので、押え板22dの塑性変形を防止することができる。
 1 蛍光体ホイール
 2 レンズ要素
 2a、2b レンズ
 3 ホイールホルダ
 4 レンズホルダ
 5 収容ケース
 6 弾性体
 7 シム

Claims (10)

  1.  励起光を受けて蛍光を射出する蛍光体ホイールと、
     前記励起光を前記蛍光体ホイール上に集光し、前記蛍光体ホイールが射出した前記蛍光が入射するレンズ要素と、
     前記蛍光体ホイールを保持するホイールホルダと、
     前記ホイールホルダに固定され、前記レンズ要素を保持するレンズホルダと、
     前記蛍光体ホイールおよびレンズ要素を収容する、開口を備えた収容ケースと、を有し、
     前記ホイールホルダは、前記開口を塞ぐように防塵用の弾性体を介して前記収容ケースに固定され、
     前記レンズホルダは、前記レンズ要素と前記蛍光体ホイールとの距離を調整するためのシムを挿入可能である、光源装置。
  2.  前記レンズ要素は、前記蛍光体ホイール側のレンズ面の外周部が平坦部とされており、
     前記レンズホルダは、前記レンズ面の前記平坦部を受ける受け面を備え、
     前記シムが、前記受け面と前記平坦部との間に挿入される、請求項1に記載の光源装置。
  3.  前記レンズホルダは、前記蛍光体ホイールを収容する筒部を備える、請求項1または2に記載の光源装置。
  4.  前記レンズホルダは、
     前記レンズ要素を保持する第1のホルダ部と、
     前記ホイールホルダに固定され、前記第1のホルダ部が接合される第2のホルダ部と、を有し、
     前記第1のホルダ部と前記第2のホルダ部との接合部が前記シムを挿入可能である、請求項1に記載の光源装置。
  5.  前記第2のホルダ部は、前記蛍光体ホイールを収容する筒部からなる、請求項4に記載の光源装置。
  6.  前記シムは円環状の金属シートからなる、請求項1ないし5のいずれか一項に記載の光源装置。
  7.  前記レンズ要素は、
      前記平坦部を備えた第1のレンズと、
      前記第1のレンズの前記蛍光体ホイール側とは反対側に、前記第1のレンズと対向するように配置された第2のレンズと、を有し、
     前記レンズホルダは、
      前記第1のレンズと前記第2のレンズとの互いに対向する面を支持するスペーサと、
      前記第2のレンズを前記第1のレンズ側の方向に付勢する押え板と、を有する、請求項1ないし6のいずれか一項に記載の光源装置。
  8.  前記スペーサが弾性部材からなる、請求項7に記載の光源装置。
  9.  前記ホイールホルダの組み付け方向と前記レンズホルダの組み付け方向とが同じである、請求項1ないし8のいずれか一項に記載の光源装置。
  10.  請求項1ないし9のいずれか一項に記載の光源装置と、
     前記光源装置の射出光を変調して画像を形成する画像形成部と、
     前記画像形成部が形成した画像を投写する投写レンズと、を有する、プロジェクタ。
PCT/JP2020/030958 2020-08-17 2020-08-17 光源装置およびプロジェクタ WO2022038651A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/030958 WO2022038651A1 (ja) 2020-08-17 2020-08-17 光源装置およびプロジェクタ
CN202090001210.1U CN219872082U (zh) 2020-08-17 2020-08-17 光源装置以及投影仪

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/030958 WO2022038651A1 (ja) 2020-08-17 2020-08-17 光源装置およびプロジェクタ

Publications (1)

Publication Number Publication Date
WO2022038651A1 true WO2022038651A1 (ja) 2022-02-24

Family

ID=80322939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/030958 WO2022038651A1 (ja) 2020-08-17 2020-08-17 光源装置およびプロジェクタ

Country Status (2)

Country Link
CN (1) CN219872082U (ja)
WO (1) WO2022038651A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008225407A (ja) * 2007-03-16 2008-09-25 Seiko Epson Corp プロジェクタ
JP2012002979A (ja) * 2010-06-16 2012-01-05 Panasonic Corp レンズ鏡筒、撮像装置および携帯端末装置
JP2014066972A (ja) * 2012-09-27 2014-04-17 Xacti Corp レンズユニット及びこれを具えた撮像装置
JP2016066061A (ja) * 2014-09-17 2016-04-28 パナソニックIpマネジメント株式会社 蛍光体ホイール装置、蛍光体ホイール装置収納筐体、および投写型映像表示装置
WO2017175467A1 (ja) * 2016-04-04 2017-10-12 ソニー株式会社 光源装置、及び画像表示装置
WO2019069563A1 (ja) * 2017-10-05 2019-04-11 ソニー株式会社 光源装置および投射型表示装置
JP2019061018A (ja) * 2017-09-26 2019-04-18 カシオ計算機株式会社 防塵ケース、光源装置及び投影装置
JP2020030314A (ja) * 2018-08-22 2020-02-27 マクセル株式会社 光源装置、プロジェクタ、及び照明装置
CN111025833A (zh) * 2019-12-20 2020-04-17 青岛海信激光显示股份有限公司 一种激光光源及激光投影设备

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008225407A (ja) * 2007-03-16 2008-09-25 Seiko Epson Corp プロジェクタ
JP2012002979A (ja) * 2010-06-16 2012-01-05 Panasonic Corp レンズ鏡筒、撮像装置および携帯端末装置
JP2014066972A (ja) * 2012-09-27 2014-04-17 Xacti Corp レンズユニット及びこれを具えた撮像装置
JP2016066061A (ja) * 2014-09-17 2016-04-28 パナソニックIpマネジメント株式会社 蛍光体ホイール装置、蛍光体ホイール装置収納筐体、および投写型映像表示装置
WO2017175467A1 (ja) * 2016-04-04 2017-10-12 ソニー株式会社 光源装置、及び画像表示装置
JP2019061018A (ja) * 2017-09-26 2019-04-18 カシオ計算機株式会社 防塵ケース、光源装置及び投影装置
WO2019069563A1 (ja) * 2017-10-05 2019-04-11 ソニー株式会社 光源装置および投射型表示装置
JP2020030314A (ja) * 2018-08-22 2020-02-27 マクセル株式会社 光源装置、プロジェクタ、及び照明装置
CN111025833A (zh) * 2019-12-20 2020-04-17 青岛海信激光显示股份有限公司 一种激光光源及激光投影设备

Also Published As

Publication number Publication date
CN219872082U (zh) 2023-10-20

Similar Documents

Publication Publication Date Title
JP5121771B2 (ja) 光源ユニット、及び画像表示装置
US8596795B2 (en) Projector
WO2017126422A1 (ja) 光源装置及びプロジェクター
WO2007002694A2 (en) Optical engine for projectors using led illumination
JP2010097178A (ja) 光源ユニット、及び画像表示装置
JP6540044B2 (ja) 投写光学装置およびプロジェクター
US10649324B2 (en) Illumination device and projector
US10185209B2 (en) Image projection apparatus and illumination optical system
US11543617B2 (en) Diffusion apparatus, optical apparatus, and projector
WO2022038651A1 (ja) 光源装置およびプロジェクタ
US7775667B2 (en) Optical device and projector
US11789346B2 (en) Light source device and projector
CN210573156U (zh) 照明系统及投影装置
CN113406847B (zh) 投影仪
US11503257B2 (en) Light source device and projection image display device
CN213423680U (zh) 减振板、光源装置、投影仪以及电子设备
CN112711169B (zh) 照明系统及投影装置
JP7230732B2 (ja) 光源装置およびプロジェクター
TWI712848B (zh) 固定式波長轉換裝置及應用其之投影機
JP4810864B2 (ja) プロジェクタ
CN116643442A (zh) 投影仪
JP2007249184A (ja) プロジェクタ
JP2011150109A (ja) 光変調装置固定枠、光学装置ユニット、及びプロジェクター
JPH10232447A (ja) ライトバルブ取り付け装置
JP2018132661A (ja) 光源装置、照明装置およびプロジェクター

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20950217

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202090001210.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20950217

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP