WO2022030514A1 - Fuel cell system and power supply system - Google Patents
Fuel cell system and power supply system Download PDFInfo
- Publication number
- WO2022030514A1 WO2022030514A1 PCT/JP2021/028853 JP2021028853W WO2022030514A1 WO 2022030514 A1 WO2022030514 A1 WO 2022030514A1 JP 2021028853 W JP2021028853 W JP 2021028853W WO 2022030514 A1 WO2022030514 A1 WO 2022030514A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fuel cell
- power generation
- power
- storage device
- module
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/043—Processes for controlling fuel cells or fuel cell systems applied during specific periods
- H01M8/04302—Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/249—Grouping of fuel cells, e.g. stacking of fuel cells comprising two or more groupings of fuel cells, e.g. modular assemblies
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/28—Arrangements for balancing of the load in a network by storage of energy
- H02J3/32—Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02B90/10—Applications of fuel cells in buildings
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- An embodiment of the present invention relates to a fuel cell system and a power supply system.
- the fuel cell system is interconnected to the commercial system and the load of the consumer, and is equipped with a fuel cell and a power conditioner (hereinafter referred to as "PCS: Power Conditioning System”).
- PCS Power Conditioning System
- the PCS converts the power generated by the fuel cell from direct current to alternating current used for commercial grid and consumer loads.
- a fuel cell In order for a fuel cell to generate electricity, it needs to supply fuel and cooling water to the fuel cell, and the fuel cell system needs to be further equipped with auxiliary equipment for that purpose.
- the fuel cell system needs to be supplied with starting power, that is, auxiliary power, from outside the fuel cell system until power generation is started. Therefore, by providing the power storage device inside the fuel cell system, it is possible to secure the auxiliary machine power even when the commercial system fails and to start the fuel cell by starting the auxiliary machine. On the other hand, after the fuel cell starts power generation, it consumes a part of the power generated by itself, so that power supply from an external commercial system is no longer essential.
- an object of the present embodiment is to provide a fuel cell system in which the capacity of the power storage device is reduced and the increase in volume and cost thereof is suppressed, and a power supply system including such a fuel cell system.
- the fuel cell system is a fuel cell system including a plurality of fuel cell power generation modules in which starting power is supplied from a commercial system, and each of the plurality of fuel cell power generation modules uses the supplied fuel.
- a fuel cell for generating electricity by using the fuel cell is provided, and the plurality of fuel cell power generation modules are divided into a first module group and a second module group, and the fuel cell power generation included in the first module group is included.
- the module includes a power storage device that supplies the stored power as starting power when the commercial system fails, and the fuel cell power generation module included in the second module group includes the power storage device. Not prepared.
- FIG. 1 It is a block diagram which shows the whole structure of the fuel cell system which concerns on 4th Embodiment (power storage device unit AC system installation type). It is a figure which shows the flowchart explaining the processing content of the start processing of the fuel cell system which concerns on 4th Embodiment. It is a block diagram which shows the whole structure of the fuel cell system which concerns on 4th Embodiment (power storage device unit DC system installation type). It is a block diagram which shows the whole structure of the fuel cell system which concerns on 4th Embodiment (power storage device unit DC system and AC form both installation type). It is a block diagram which shows the whole structure of the fuel cell system which concerns on 4th Embodiment (power storage device installation type). FIG.
- FIG. 16 is a block diagram schematically showing the overall configuration of the fuel cell system 1 according to the fifth embodiment.
- FIG. 17 is a diagram showing details of the first fuel cell unit 120 and the second fuel cell unit 130 in the fuel cell system 1 according to the fifth embodiment.
- FIG. 18 is a block diagram schematically showing the overall configuration of the fuel cell system 1 according to the modified example of the fifth embodiment.
- FIG. 1 is a block diagram showing an overall configuration of the fuel cell system 1 according to the first embodiment.
- the fuel cell system 1 in the present embodiment includes a control device 10, a fuel cell power generation module 12 included in the first module group, and a fuel cell power generation module included in the second module group. It is equipped with 14. That is, in the present embodiment, the fuel cell system 1 has a module configuration divided into a plurality of fuel cell power generation modules 12 and 14, and the divided fuel cell power generation modules 12 and 14 each have one fuel cell. Functions as a system. For example, when the fuel cell system 1 has a rated capacity of 1 MW, one of the fuel cell power generation modules 12 and 14 has a rated capacity of 100 kW, and the fuel cell system 1 is composed of 10 modules. Will be done.
- the control device 10 performs necessary control for the fuel cell power generation modules 12 and 14.
- the control device 10 is realized by a computer that transmits commands to the fuel cell power generation modules 12 and 14, a communication unit that can communicate with the fuel cell power generation modules 12 and 14, and the like.
- the computer of the control device 10 further includes, for example, a processing storage unit that manages the power generation status of each of the fuel cell power generation modules 12 and 14 and stores the power generation status, and is appropriate based on the obtained power generation status.
- the command is transmitted to the fuel cell power generation modules 12 and 14.
- the control device 10 connects the control device 10 and the fuel cell power generation modules 12 and 14 via a communication unit by wire or wireless communication, and realizes a communication function between the two.
- the method of bonding is electrical, mechanical, or a means of combining them.
- the fuel cell power generation modules 12 and 14 are connected to a commercial system, and the electric power generated by the fuel cell power generation modules 12 and 14 is supplied to the load of the consumer via the commercial system. Further, when the fuel cell power generation modules 12 and 14 are started from a stopped state, the starting power is supplied to the fuel cell power generation modules 12 and 14 from the commercial system. Therefore, it is possible to supply starting power to the fuel cell power generation modules 12 and 14 included in the fuel cell system 1 and start them all at once.
- the fuel cell power generation module 12 which is the first module group, includes a module control device 20, an auxiliary device 22, a power storage device unit 24, a PCS 26, and a fuel cell 28.
- the fuel cell power generation module 14, which is the second module group includes a module control device 20, an auxiliary device 22, a PCS 26, and a fuel cell 28.
- the fuel cell power generation module 12 of the first module group includes the power storage device unit 24, and the fuel cell power generation module 14 of the second module group does not include the power storage device unit 24.
- the parts constituting the fuel cell power generation modules 12 and 14 are connected to each other in a form capable of supplying electric power from a commercial system.
- the fuel cell power generation module 12 of the first module group is one, and the fuel cell power generation module 14 of the second module group is one or more.
- the module control device 20 performs necessary control on the auxiliary device 22, the power storage device unit 24, the PCS 26, and the fuel cell 28.
- the module control device 20 performs necessary control on the auxiliary machine 22, the PCS 26, and the fuel cell 28 in its own fuel cell power generation module 14.
- the module control device 20 is realized by an auxiliary device 22, a power storage device unit 24, a computer that transmits commands to the PCS 26 and the fuel cell 28, a communication unit that can communicate with the control device 10, and the like.
- the computer of the module control device 20 further manages, for example, the activation status of the auxiliary device 22, the storage or power supply status of the power storage device unit 24, the current conversion status of the PCS 26, and the power generation status of the fuel cell 28, and manages various statuses thereof. It is equipped with a processing storage unit or the like for storing, and transmits the obtained situation to the control device 10 in a timely manner, or receives a necessary command from the control device 10 via a communication unit or the like.
- the module control device 20 connects the fuel cell power generation modules 12 and 14 and the control device 10 by wire or wireless communication via a communication unit, and the method of connecting the fuel cell power generation modules 12 and 14 is electrically, mechanically, or these are combined. Such as the means used.
- the auxiliary machine 22 supplies the fuel cell 28 with fuel necessary for the fuel cell 28 to generate electricity, such as hydrogen, air, and cooling water.
- the auxiliary machine 22 is realized by, for example, a blower, a pump, or the like.
- the auxiliary machine 22 may be supplied with the operating power source from the commercial system, or the power generated by the fuel cell 28 may be supplied. May be done.
- the fuel cell power generation modules 12 and 14 When the fuel cell power generation modules 12 and 14 are started from a stopped state, starting power is supplied from the commercial system. Therefore, when the commercial system is out of power, the starting power cannot be supplied to the auxiliary machine 22 of the fuel cell power generation module 14. On the other hand, the auxiliary power 22 of the fuel cell power generation module 12 can be supplied with starting power from the power storage device unit 24 even when the commercial system is out of power.
- the power storage device 24 unit provided in the fuel cell power generation module 12 is installed in the AC system of the fuel cell power generation module 12 and supplies starting power to the auxiliary machine 22 when the commercial system loses power.
- the power storage device unit 24 is realized by, for example, a storage battery.
- This storage battery can be composed of, for example, a lead storage battery, an alkaline storage battery, a lithium ion storage battery, or the like, and can be reused by storing the storage again after discharging.
- the power storage device unit 24 supplies at least the starting power to the auxiliary device 22, but the module control device 20 and the PCS 26 may also be supplied with the starting power as needed.
- the power storage device unit 24 can receive power from a commercial system and store power. Further, the power storage device unit 24 can receive and store power by receiving the power generated by the fuel cell 28.
- the power storage device unit 24 has a capacity required to cover the starting power for starting the fuel cell power generation module 12 from the stopped state.
- the capacity of the power storage device unit 24 is equal to or slightly larger than the capacity of the starting power required to start the fuel cell power generation module 12. This is because the storage device unit 24 having a capacity larger than necessary increases the weight and manufacturing cost of the power storage device unit 24 more than necessary.
- the PCS 26 converts the electric power generated by the fuel cell 28 from a direct current to an alternating current. Consumer loads, such as household power supplies and mechanical equipment, are usually used with alternating current. On the other hand, the electric power generated from the fuel cell 28 is usually a direct current. Therefore, when the electric power generated by the fuel cell power generation modules 12 and 14 is supplied to the load of the consumer via the commercial system, the electric power is supplied via the PCS 26.
- the system on the commercial system side of the PCS26 is referred to as an "AC system”
- the system on the fuel cell side of the PCS26 is referred to as a "DC system”.
- the power storage device unit 24 since the power storage device unit 24 is installed on the commercial system side of the PCS, it can be said that the power storage device unit 24 exists in the AC system, and is related to the present embodiment. It can be said that the fuel cell system 1 is a "power storage device unit AC system installation type".
- the fuel cell 28 receives fuel such as hydrogen and air, cooling water, and the like from the auxiliary machine 22 to generate electric power, and supplies electric power to the load of the consumer via the commercial system.
- the fuel cell 28 may generate electric power constantly to supply electric power, or may use a supply line independent of the commercial system in the event of a power failure of the commercial system. Electric power may be supplied to a specific load of the consumer.
- the fuel cell 28 is a device for generating electric energy by electrochemically reacting, for example, hydrogen with an oxidizing agent, for example, oxygen, and can be realized by, for example, a hydrogen-oxygen fuel cell.
- FIG. 2 is a diagram showing a flowchart illustrating a fuel cell system start-up process executed by the fuel cell system 1 according to the present embodiment.
- This fuel cell system start-up process is a process executed when the fuel cell system 1 in which the control device 10 is stopped is started in a situation where electric power cannot be supplied from the commercial system. That is, it is a process executed in order to sequentially start the stopped fuel cell power generation modules 12 and 14 without receiving the supply of starting power from the commercial system so that the fuel cell system 1 can generate power.
- the fuel cell system 1 uses the electric power stored in the power storage device unit 24 as the start-up power to generate fuel cells included in the first module group.
- Start the module 12 step S10.
- the control device 10 should start the fuel cell power generation module 12. Is transmitted to activate the fuel cell power generation module 12.
- the power storage device unit 24 receives a command from the control device 10 that the module control device 20 of the fuel cell power generation module 12 should start the fuel cell power generation module 12.
- the auxiliary machine 22 is activated by utilizing the electric power stored in the battery. After the auxiliary machine 22 is started, the auxiliary machine 22 supplies fuel, cooling water, and the like to the fuel cell 28 to start the fuel cell 28.
- the fuel cell power generation module 12 is started.
- control device 10 determines the fuel cell power generation module 14 to be activated from the fuel cell power generation modules 14 included in the second module group (step S12). In the present embodiment, the control device 10 selects any one of the fuel cell power generation modules 14 from the plurality of fuel cell power generation modules 14 included in the second module group.
- the fuel cell power generation module 14 included in the second module group does not have the power storage device unit 24, it is necessary to receive the start power from the outside in order to start the fuel cell. Therefore, where it is necessary to receive the start-up power from the commercial system, for example, in the event of a power failure, the start-up power cannot be supplied from the commercial system, so the first module is already in the power generation state.
- the fuel cell power generation module 14 can be started without receiving the starting power from the commercial system.
- control device 10 supplies starting power to start the fuel cell power generation module 14 determined in step S12 (step S14).
- the flow in which the fuel cell power generation module 14 is started after receiving the supply of starting power is the same as the flow in which the fuel cell power generation module 12 is started, and therefore is not described in detail here.
- the number of fuel cell power generation modules 14 included in the second module group activated in steps S12 and S14 is not limited to one, and a plurality of fuel cell power generation modules 14 may be activated at one time. You may do it. That is, when the power generated by the fuel cell power generation module 12 included in the first module group can cover the starting power of the auxiliary equipment 22 in the two or more fuel cell power generation modules 14 included in the second module group. , A plurality of fuel cell power generation modules 14 may be activated according to the electric power that can be supplied.
- control device 10 determines whether or not all the fuel cell power generation modules 12 and 14 included in the first and second module groups have been started (step S16). That is, it is determined whether or not all the fuel cell power generation modules 12 and 14 included in the fuel cell system 1 have been started.
- step S16: Yes When all the fuel cell power generation modules are activated (step S16: Yes), the fuel cell system activation process according to the present embodiment is completed. On the other hand, when all the fuel cell power generation modules have not been started (step S16: No), the control device 10 returns to step S12 and repeats the above-mentioned process until all the fuel cell power generation modules are started.
- step S14 When the fuel cell power generation module 12 is activated and becomes a power generation state, it is possible to adjust the number of the fuel cell power generation modules 14 to be activated in step S14 according to the capacity of the generated electric power. For example, if the two fuel cell power generation modules 14 can be started with the electric power supplied by one started fuel cell power generation module 12, it is determined in step S12 that the two fuel cell power generation modules 14 are started, and step S14 The two fuel cell power generation modules 14 may be started by.
- the supplied power is used as starting power to start two fuel cell power generation modules 14. It is also possible to do.
- the supplied power is used as starting power to start three fuel cell power generation modules 14. It is also possible to activate the four fuel cell power generation modules 14. That is, the number of the fuel cell power generation modules 14 to be started in step S14 can be arbitrarily set based on the power capacity generated by the fuel cell power generation modules 12 and 14 that have been started and are in the power generation state, and at least one. It can be regarded as starting the fuel cell power generation module 14.
- FIG. 3 is a block diagram showing the overall configuration of the fuel cell system 1 according to the first embodiment, and shows an example of a “power storage device unit DC system installation type”. That is, in the fuel cell power generation module 12, the power storage device unit 24 is installed on the fuel cell side of the PCS 26.
- the power supplied by the power storage device unit 24 is a direct current, but is converted into an alternating current in the PCS 26. AC current is supplied to the auxiliary machine 22.
- the fuel cell system start-up process executed by the fuel cell system 1 shown in FIG. 3 is the same as that of FIG. 2, and is not described in detail here.
- FIG. 4 is a block diagram showing the overall configuration of the fuel cell system according to the first embodiment, and shows an example of “a power storage device unit DC system and AC system both installed type”. That is, in the fuel cell power generation module 12, the power storage device unit 24 is installed on both the fuel cell side of the PCS 26 and the commercial system.
- the present embodiment is a modified example in which the fuel cell system 1 of FIG. 1 and the fuel cell system 1 of FIG. 3 are combined, and starting power is supplied to the auxiliary machine 22 from the two power storage device units 24. .. Further, in addition to this, since the fuel cell power generation module 12 includes two power storage device units 24, for example, even when either power storage device unit 24 cannot supply power to the auxiliary device 22. Since the other power storage device unit 24 can supply power to the auxiliary device 22, it is possible to provide redundancy in starting the fuel cell power generation module 12.
- the fuel cell power generation module 12 included in the first module group according to the present embodiment has a commercial system. It suffices to include at least one of the power storage device unit 24 connected to the connected line and the power storage device unit 24 connected to the output line of the fuel cell 28.
- the fuel cell system start-up process executed by the fuel cell system 1 according to the present embodiment according to the present embodiment is the same as that in FIG. 2, and is not described in detail here.
- the power storage device unit 24 is provided in the fuel cell power generation module 12 included in the first module group, and power cannot be supplied from the commercial system. Then, when it is necessary to start the stopped fuel cell system 1, it is decided to first start the fuel cell power generation module 12 by using the electric power stored in the power storage device unit 24. Therefore, the fuel cell power generation module 12 can be started with a smaller storage capacity than that of starting the entire fuel cell system 1. Then, the power generated by the started fuel cell power generation module 12 is used as the starting power to sequentially start the fuel cell power generation module 14 included in the second module group, and finally all the fuel cell power generation. Module 14 can also be started. Therefore, it is not necessary to provide a power storage device having a large storage capacity as in the conventional case, and the volume, weight, and cost of the power storage device to be installed can be suppressed.
- the fuel cell system 1 according to the second embodiment adds one new number of fuel cell power generation modules 12 belonging to the first module group to the fuel cell system 1 according to the first embodiment described above, and totals them.
- the time required to start the fuel cell system 1 is shortened, the redundancy and reliability of the fuel cell system 1 are further improved, and the fuel cell system 1 is started stably. I tried to do it.
- the parts different from the above-described first embodiment will be described.
- FIG. 5 is a block diagram showing the overall configuration of the fuel cell system according to the second embodiment.
- the fuel cell system 1 in the present embodiment includes a control device 10, two fuel cell power generation modules 12 belonging to the first module group, and a fuel cell power generation module belonging to the second module group. It is equipped with 14.
- the two fuel cell power generation modules 12 belonging to the first module group in the present embodiment can be independently started by themselves by using the electric power stored in each power storage device unit 24 as the starting electric power. ..
- the number of fuel cell power generation modules 12 belonging to the first module group is two, so that the total capacity of the starting power included in the first module group is about twice that of the first embodiment. Become.
- the fuel cell system start-up process shown in FIG. 6 is a process corresponding to the fuel cell system start-up process shown in FIG. 2 described above, but here, the difference is that the two fuel cell power generation modules 12 are started first. There is.
- Step S20 the control device 10 transmits a command regarding activation of the two fuel cell power generation modules 12.
- two fuel cell power generation modules 12 may be started at the same time, or may be started in order with a time lag, and one fuel cell power generation module 12 may be started. In the case of failure or the like, only one fuel cell power generation module 12 may be activated.
- control device 10 determines the fuel cell power generation module 14 to be activated from the fuel cell power generation modules 14 included in the second module group (step S22). In the present embodiment, the control device 10 selects any two fuel cell power generation modules 14 from the plurality of fuel cell power generation modules 14 included in the second module group.
- control device 10 supplies starting power to start the fuel cell power generation module 14 determined in step S22 (step S24). Then, the control device 10 determines whether or not all the fuel cell power generation modules 12 and 14 included in the first and second module groups have been started (step S26). The processing of these steps S24 and S26 is the same as the processing of steps S14 and S16 in the first embodiment described above.
- the number of the fuel cell power generation modules 14 to be activated in step S24 can be adjusted according to the capacity of the generated electric power. be. For example, if the three fuel cell power generation modules 14 can be started by the electric power supplied by the two started fuel cell power generation modules 12, it is determined in step S22 that the three fuel cell power generation modules 14 are started, and step S24 The three fuel cell power generation modules 14 may be activated by. On the other hand, if only one fuel cell power generation module 14 can be started with the power supplied by the two started fuel cell power generation modules 12, it is determined in step S22 that one fuel cell power generation module 14 is started, and the step is taken. One fuel cell power generation module 14 may be activated in S24.
- the first module group of the fuel cell system 1 includes a total of two fuel cell power generation modules 12, about twice as much electric power can be supplied to the second module group. It is expected that the time for starting all the fuel cell power generation modules 14 belonging to the second module group will be shorter than that in the first embodiment, and the fuel cell system 1 can be started earlier.
- FIG. 7 is a block diagram showing the overall configuration of the fuel cell system according to the second embodiment, and shows an example of the “power storage device unit DC system installation type”. That is, it is an embodiment in which the power storage device unit 24 is installed on the fuel cell side of the PCS 26, and corresponds to FIG. 3 in the above-mentioned first embodiment.
- the electric power supplied from the power storage device unit 24 to the auxiliary device 22 is via the PCS 26, so that the power supplied by the power storage device unit 24 is a direct current, but is converted into an alternating current in the PCS 26. Therefore, an alternating current is supplied to the auxiliary machine 22.
- the fuel cell system start-up process executed by the fuel cell system 1 shown in FIG. 7 is the same as that in FIG. 6, and is not described in detail here.
- FIG. 8 is a block diagram showing the overall configuration of the fuel cell system according to the second embodiment, and shows an example of “a power storage device unit DC system and AC system both installed type”. That is, in each fuel cell power generation module 12, the power storage device unit 24 is installed on both the fuel cell side of the PCS 26 and the commercial system, and corresponds to FIG. 4 in the above-mentioned first embodiment. ..
- the fuel cell system start-up process executed by the fuel cell system 1 according to the present embodiment according to the present embodiment is the same as that shown in FIG. 6, and is not described in detail here.
- the power storage device unit 24 is arranged in the DC system, but in the other fuel cell power generation module 12, it may be arranged in the AC system, or The reverse arrangement may be used.
- one fuel cell power generation module 12 includes only one power storage device unit 24, the other fuel cell power generation module 12 may include two power storage device units 24. Therefore, in the present embodiment, there is no particular limitation on the place where the power storage device unit 24 is arranged, and it can be deformed in any manner.
- the first module group is composed of two fuel cell power generation modules 12, but the first module group is composed of a plurality of fuel cell power generation modules 12 such as three or four. You may. By doing so, it is possible to further increase the redundancy when starting the fuel cell system 1 in a situation where the starting power cannot be supplied from the commercial system.
- the power supply system 2 is configured by additionally providing the emergency power storage device 16 as shown in FIG. 9 to the fuel cell system 1 according to the first embodiment and the second embodiment described above. Therefore, even when the fuel cell system 1 is inoperable, electric power can be supplied to the load of the consumer via the commercial system.
- the power supply system 2 according to the third embodiment will be described as a modification of the first embodiment, but the power supply system 2 according to the third embodiment may be realized by modifying the second embodiment. It is possible.
- FIG. 9 is a block diagram illustrating the overall configuration of the power supply system 2 according to the third embodiment.
- the power supply system 2 according to the third embodiment includes an emergency power storage device 16 outside the fuel cell system 1.
- the emergency power storage device 16 is connected to a commercial system that supplies power to the load of the consumer and supplies starting power to the fuel cell power generation modules 12 and 14.
- the emergency power storage device 16 supplies emergency power to the load of the consumer from the commercial system side when, for example, the power storage device unit 24 cannot supply power to the auxiliary device 22 due to a failure or the like.
- the emergency power storage device 16 is realized by, for example, a storage battery, may be a lead storage battery, an alkaline storage battery, a lithium ion storage battery, or the like, and may be reused by storing electricity again after discharging. ..
- the storage capacity of the emergency power storage device 16 may be larger than the storage capacity of the power storage device unit 24, assuming that emergency power is supplied to the loads of a plurality of consumers.
- FIG. 10 is a diagram showing a flowchart illustrating a power supply system activation process executed by the power supply system 2 according to the present embodiment.
- This power supply system activation process is a process executed when the control device 10 activates the power supply system 2.
- the control device 10 is a process executed by starting the fuel cell power generation module 12.
- the control device 10 determines whether or not the fuel cell system 1 can be operated (step S30).
- step S30 Yes
- the above-mentioned fuel cell system start-up process is started (step S32).
- the fuel cell system start-up process is as in steps S10 to S16 of FIG. 2 in the first embodiment, or steps S20 to S26 of FIG. 6 in the second embodiment.
- step 30: No when the fuel cell system 1 cannot be operated due to a failure of the fuel cell system 1 (step 30: No), power is supplied from the emergency power storage device 16 to the commercial system (step S34), and the consumer Secure the power of the load.
- the power stored in the emergency power storage device 16 can be transferred from the commercial system side. , Can supply the load of consumers. Therefore, even if the fuel cell system 1 is inoperable, it can serve as a power supply system 2 for supplying power to the consumer, and the fuel according to the first embodiment and the second embodiment can be used. The redundancy can be improved as compared with the battery system 1.
- the emergency power storage device 16 may be capable of supplying starting power to the auxiliary machine 22 of the fuel cell power generation module 12 to start the auxiliary machine 22 via a commercial system. As a result, it is possible to have higher redundancy in starting the fuel cell power generation module 12 and starting the fuel cell system 1, and it is possible to ensure the stability of starting the fuel cell system 1.
- the fuel cell power generation module 14 can be started if the start power is supplied from the outside to the auxiliary machine. May start the fuel cell system 1 by supplying starting power from the emergency power storage device 16 to the fuel cell power generation module 14 through a commercial system and starting the fuel cell system 1. It is not limited to being used only for loads.
- the fuel cell system 1 is illustrated as a "power storage device unit AC system installation type".
- the fuel cell system 1 of the power supply system 2 including the emergency power storage device 16 is a fuel cell system 1 of "power storage device unit DC system installation type" or "power storage device unit DC system and AC system both installation type”. You may be prepared. That is, the power supply system 2 according to the third embodiment can be applied to all the modified examples of the first embodiment and the modified examples of the second embodiment described above.
- the emergency power storage device 16 is shown outside the fuel cell system 1, but in reality, the emergency power storage device 16 may be physically separated from the fuel cell system 1. , It does not have to be physically separated, and the position of its installation is not limited.
- the fuel cell system 1 according to the fourth embodiment includes the fuel cell power generation module 12 belonging to the first module group in the fuel cell system 1 according to the first embodiment, the second embodiment, or the third embodiment described above.
- the fuel cell power generation module 14 belonging to the second module group is connected via a switch, and it is possible to supply starting power to the fuel cell power generation modules 12 and 14 without going through a commercial system.
- the fuel cell system 1 according to the fourth embodiment will be described as a modified example of the first embodiment, but the fuel cell system 1 according to the fourth embodiment is modified from the second embodiment or the third embodiment. It is also possible to realize.
- FIG. 11 is a block diagram showing the overall configuration of the fuel cell system according to the fourth embodiment.
- the fuel cell system 1 in the present embodiment includes a control device 10, a fuel cell power generation module 12 belonging to the first module group, and a fuel cell power generation module 14 belonging to the second module group. All fuel cell power generation modules 12 and 14 are connected to each other via a switch 30. In other words, the switch 30 selectively connects the power storage device unit 24 to any of the plurality of fuel cell power generation modules 12 and 14.
- the power of the power storage device unit 24 in the fuel cell power generation module 12 is any of the fuel cell power generation modules. It is possible to supply 14 by selecting the connection of the switch 30. Therefore, in the present embodiment, not only the fuel cell power generation module 12 included in the first module group including the power storage device unit 24 but also the fuel cell power generation included in the second module group not including the power storage device unit 24.
- the module 14 can also be a fuel cell power generation module that is first started by supplying starting power.
- the fuel cell power generation module 12 has a failure in a component other than the power storage device unit 24 (for example, an auxiliary device 22), but the power storage device unit 24 is not defective and power can be supplied.
- the fuel cell power generation module 14 By supplying starting power to the fuel cell power generation module 14 other than the fuel cell power generation module 12 in which the power storage device unit 24 is present, the fuel cell power generation module 14 to which the start power is supplied is started, and further other By activating the fuel cell power generation module 14, the activation of the fuel cell system 1 can be guaranteed.
- the control device 10 acquires operability information indicating whether or not there is a failure or whether or not operation is possible from each of the fuel cell power generation modules 12 and 14, and starts the control device 10.
- the fuel cell power generation modules 12 and 14 to be supplied with power can be determined. That is, the control device 10 determines the fuel cell power generation modules 12 and 14 to be started, including whether or not the fuel cell can actually be started, based on the operation availability information.
- FIG. 12 is a diagram showing a flowchart illustrating a fuel cell system start-up process executed by the fuel cell system 1 according to the present embodiment.
- This fuel cell system activation process is a process executed when the control device 10 activates the fuel cell system 1.
- the fuel cell power generation modules 12 and 14 to be supplied with the electric power stored in the power storage device unit 24 as the start-up power are determined (step S40).
- the fuel cell power generation module 12 included in the first module group can be determined as the fuel cell power generation module to be started first, or the fuel cell power generation module 14 included in the second module group can be determined. It can also be determined as the first fuel cell power generation module to start.
- control device 10 controls the switch 30 to connect the power storage device unit 24 to the determined fuel cell power generation module 12 or 14 (step S42). Then, the electric power stored in the power storage device unit 24 via the switch 30 is supplied as starting power to the connected fuel cell power generation module 12 or 14, and the fuel cell power generation module 12 or 14 is started (step S44). ..
- control device 10 determines the fuel cell power generation module to be started from the fuel cell power generation module 12 or the fuel cell power generation module 14 included in the first or second module group (step S46). Then, the electric power generated by the fuel cell power generation module 12 or 14 in the power generation state is supplied to the determined fuel cell power generation module 14 as starting power (step S48).
- the starting power it may be supplied from the commercial system side or may be supplied via the switch 30, and the method is not limited.
- control device 10 determines whether or not all the fuel cell power generation modules 12 and 14 included in the first and second module groups have been started (step S50).
- the fuel cell power generation modules 12 and 14 that cannot be started due to a failure or the like are all excluded from the judgment as to whether or not they have started.
- the battery system 1 can also be realized as a fuel cell system 1 of a "power storage device unit DC system and AC system both installed type" in which the power storage device unit 24 exists in both the AC system and the DC system as shown in FIG. Is.
- the fuel cell system activation process is the same as in FIG.
- the power storage device unit 24 does not necessarily have to be installed in the device of the fuel cell power generation module 12. That is, the power storage device unit 24 can be installed outside the fuel cell power generation module 12.
- FIG. 15 shows the internal configuration of the fuel cell system 1 in which the power storage device 18 is installed outside the fuel cell power generation module 12 instead of installing the power storage device unit 24 inside the fuel cell power generation module 12.
- the power storage device unit 24 installed in the fuel cell power generation module 12 is taken out to the outside of the fuel cell power generation module 12 and installed as the power storage device 18.
- the control device 10 acquires operability information indicating whether or not the fuel cell power generation modules 12 and 14 can be operated, and selects the operable fuel cell power generation modules 12 and 14 based on the operability information. do. Then, the switch 30 is controlled so that the starting power is supplied from the power storage device 18 to the selected fuel cell power generation modules 12 and 14.
- the fuel cell power generation module 12 can be started by the power storage device unit 24 suitable for the scale of the fuel cell power generation module 12, and the fuel cell system 1 as a whole can be started.
- the volume and weight of the power storage device unit 24 can be reduced as compared with the scale of the fuel cell system 1, and the cost can be reduced.
- FIG. 16 is a block diagram schematically showing the overall configuration of the fuel cell system 1 according to the fifth embodiment.
- the fuel cell system 1 of the present embodiment has a backup power supply 110, a first fuel cell unit 120 (small fuel cell unit), and a second fuel having a higher output than the first fuel cell unit 120. It is provided with a battery unit 130 (large fuel cell unit).
- the backup power supply 110 is, for example, an uninterruptible power supply (UPS) including a storage battery.
- the backup power source 110 may be an internal combustion engine generator or a small fuel cell.
- the first fuel cell unit 120 is a small fuel cell unit.
- the second fuel cell unit 130 is a large fuel cell unit and has a higher output than the first fuel cell unit 120.
- the backup power supply 110 and the first fuel cell unit 120 are provided outside the second fuel cell unit 130.
- the fuel cell system 1 includes a control unit 100.
- the control unit 100 controls the operation of each unit constituting the fuel cell system 1 in order to control the power generation operation of the fuel cell system 1.
- the control unit 100 includes an arithmetic unit (not shown) and a memory device (not shown), and the arithmetic unit performs arithmetic processing using a program stored in the memory device. , Control each part constituting the fuel cell system 1.
- the control unit 100 when the fuel cell system 1 is started when the system power supply is lost (when the start is executed at the time of power failure), the control unit 100 first uses the power supplied from the backup power supply 110 to generate the first fuel. Start the battery unit 120. Next, the control unit 100 activates the second fuel cell unit 130 by the electric power supplied from the activated first fuel cell unit 120.
- FIG. 17 is a diagram showing details of the first fuel cell unit 120 and the second fuel cell unit 130 in the fuel cell system 1 according to the embodiment.
- the first fuel cell unit 120 and the second fuel cell unit 130 include fuel cell stacks 180a to 180c.
- the number of the second fuel cell unit 130 is larger than that of the first fuel cell unit 120.
- the first fuel cell unit 120 includes, for example, one fuel cell stack 180a.
- the second fuel cell unit 130 includes, for example, two fuel cell stacks 180b and 180c.
- a fuel flow path L140, an oxidant flow path L150, and a cooling water flow path L160 are provided.
- the fuel flow path L140 is provided to supply fuel from the fuel supply source 140 to the first fuel cell unit 120 and the second fuel cell unit 130.
- the fuel flow path L140 is configured to supply fuel from the fuel supply source 140 to the second fuel cell unit 130 via the fuel sluice valve V140.
- the fuel flow path L140 is configured so that fuel is supplied from the fuel supply source 140 to the first fuel cell unit 120 without interposing the fuel sluice valve V140.
- the oxidant flow path L150 is provided to supply the oxidant from the oxidant supply source 150 to the first fuel cell unit 120 and the second fuel cell unit 130. Further, the oxidant flow path L150 is configured so that the oxidant is supplied from the oxidant supply source 150 to the first fuel cell unit 120 without interposing the oxidant sluice valve V150.
- the oxidant supply source 150 is composed of, for example, an air blower.
- the cooling water flow path L160 supplies cooling water from the cooling water pump 160 to the first fuel cell unit 120 and the second fuel cell unit 130, and the cooling water that has passed through the first fuel cell unit 120 and the second fuel cell unit 130 flows. It is configured to return to the cooling water pump 160.
- cooling water is supplied from the cooling water pump 160 to the second fuel cell unit 130 via the first cooling water sluice valve V160a, and the cooling water that has passed through the second fuel cell unit 130 is the first. 2 It is configured to return to the cooling water pump 160 via the cooling water sluice valve V160b.
- the fuel sluice valve V140 when activating one fuel cell stack 180a constituting the first fuel cell unit 120, the fuel sluice valve V140, the oxidant sluice valve V150, and the first cooling water sluice valve V160a are used. With the second cooling water sluice valve V160b closed, the power of the backup power source 110 is used to drive the oxidant supply source 150 and the cooling water pump 160.
- the second fuel cell unit 130 is started using the power supplied from the first fuel cell unit 120.
- the outputs of the oxidant supply source 150 and the cooling water pump 160 are increased by the electric power supplied from the first fuel cell unit 120.
- the first fuel cell unit 120 is configured to be started by the electric power supplied from the backup power source 110.
- the second fuel cell unit 130 which has a higher output than the first fuel cell unit 120, is configured to be activated by the electric power supplied from the activated first fuel cell unit 120. Therefore, in the present embodiment, the backup power supply 110 is sufficient as long as it can start the first fuel cell unit 120, so that it can be started when the power supply is lost with an inexpensive configuration.
- the backup power supply 110 and the first fuel cell unit 120 are provided outside the second fuel cell unit 130. Therefore, in the present embodiment, the function for starting in the event of a power failure can be easily added after the fuel cell system 1 is already installed.
- FIG. 18 is a block diagram schematically showing the overall configuration of the fuel cell system 1 according to the modified example of the fifth embodiment.
- the backup power supply 110 and the first fuel cell unit 120 may be provided inside the second fuel cell unit 130.
- the outer wall, ceiling, control device, and the like of the package members that are separately held can be shared, and there is an advantage that the number of parts is reduced.
- Fuel cell system 1 ... Fuel cell system, 2 ... Power supply system, 10 ... Control device, 12 ... Fuel cell power generation module included in the first module group, 14 ... Fuel cell power generation module included in the second module group, 16 ... Emergency Power storage device, 18 ... power storage device, 20 ... module control device, 22 ... auxiliary equipment, 24 ... power storage device unit, 26 ... PCS (power conditioner), 28 ... fuel cell, 30 ... switch, 110 ... backup power supply, 120 ... 1st fuel cell unit, 130 ... 2nd fuel cell unit, 140 ... fuel cell unit, 150 ... oxidant supply source, 160 ... cooling water pump, 180a ... fuel cell cell stack, 180b ... fuel cell cell stack, 180c ... Fuel cell stack, 100 ... control unit, L140 ...
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Fuel Cell (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Abstract
[Problem] To reduce the capacity and volume of a power storage device used in a fuel cell system. [Solution] The fuel cell system according to the present embodiment comprises a plurality of fuel cell power generation modules in which starting power is supplied from a commercial system. Each of the fuel cell power generation modules is provided with a fuel cell for generating power using supplied fuel. The plurality of fuel cell power generation modules are classified into a first module group and a second module group. The fuel cell power generation modules included in the first module group are provided with a power storage device that supplies stored electrical power as starting power if the commercial system stops, but the fuel cell power generation modules included in the second module group are not provided with the power storage device.
Description
本発明の実施形態は、燃料電池システム及び電力供給システムに関する。
An embodiment of the present invention relates to a fuel cell system and a power supply system.
燃料電池システムは、商用系統や需要家の負荷に系統連系されており、燃料電池、パワーコンディショナ(以下、「PCS:Power Conditioning System」という。)を備えている。PCSは燃料電池で発電された電力を直流電流から、商用系統及び需要家の負荷に用いられる交流電流に変換する。燃料電池が発電するには、燃料や冷却水をその燃料電池に供給する必要があり、燃料電池システムはそのための補機をさらに備える必要がある。
The fuel cell system is interconnected to the commercial system and the load of the consumer, and is equipped with a fuel cell and a power conditioner (hereinafter referred to as "PCS: Power Conditioning System"). The PCS converts the power generated by the fuel cell from direct current to alternating current used for commercial grid and consumer loads. In order for a fuel cell to generate electricity, it needs to supply fuel and cooling water to the fuel cell, and the fuel cell system needs to be further equipped with auxiliary equipment for that purpose.
燃料電池システムは、発電を開始するまで起動電力、すなわち補機動力を燃料電池システム外部から供給される必要がある。このため、蓄電装置をその燃料電池システム内部に備えることにより、商用系統が停電した場合においても補機動力を確保し、補機を起動させることで燃料電池を起動させることができる。その一方で、燃料電池が発電を開始した後は、自らが発電した電力の一部を自己消費することで、外部の商用系統からの電力供給は必須ではなくなる。
The fuel cell system needs to be supplied with starting power, that is, auxiliary power, from outside the fuel cell system until power generation is started. Therefore, by providing the power storage device inside the fuel cell system, it is possible to secure the auxiliary machine power even when the commercial system fails and to start the fuel cell by starting the auxiliary machine. On the other hand, after the fuel cell starts power generation, it consumes a part of the power generated by itself, so that power supply from an external commercial system is no longer essential.
しかし、燃料電池システムは、発電容量が大きいほど、そのための起動電力も大きくなり、起動電力を供給する蓄電装置の容量についても同様に大きくなる。そのため、蓄電装置の体積や重量が増加し、高コストとなる。
However, in the fuel cell system, the larger the power generation capacity, the larger the starting power for that purpose, and the larger the capacity of the power storage device that supplies the starting power. Therefore, the volume and weight of the power storage device increase, resulting in high cost.
そこで、本実施形態は、蓄電装置の容量を削減し、その体積やコストの増大を抑制した燃料電池システム、及び、そのような燃料電池システムを備える電力供給システムを提供することを目的とする。
Therefore, an object of the present embodiment is to provide a fuel cell system in which the capacity of the power storage device is reduced and the increase in volume and cost thereof is suppressed, and a power supply system including such a fuel cell system.
本実施形態に係る燃料電池システムは、起動電力が商用系統から供給される複数の燃料電池発電モジュールを備える燃料電池システムであって、前記複数の燃料電池発電モジュールのそれぞれは、供給された燃料を用いて発電を行う燃料電池を備えており、前記複数の燃料電池発電モジュールは、第1のモジュールグループと第2のモジュールグループとに区分され、前記第1のモジュールグループに含まれる前記燃料電池発電モジュールは、前記商用系統が停電した場合に、蓄えられた電力を起動電力として供給する蓄電装置を備えているが、前記第2のモジュールグループに含まれる前記燃料電池発電モジュールは、前記蓄電装置を備えていない。
The fuel cell system according to the present embodiment is a fuel cell system including a plurality of fuel cell power generation modules in which starting power is supplied from a commercial system, and each of the plurality of fuel cell power generation modules uses the supplied fuel. A fuel cell for generating electricity by using the fuel cell is provided, and the plurality of fuel cell power generation modules are divided into a first module group and a second module group, and the fuel cell power generation included in the first module group is included. The module includes a power storage device that supplies the stored power as starting power when the commercial system fails, and the fuel cell power generation module included in the second module group includes the power storage device. Not prepared.
以下、図面を参照しながら、燃料電池システムの実施形態について詳細に説明する。なお、以下の説明において、略同一の機能及び構成を有する構成要素については、同一符号を付し、重複説明は必要な場合にのみ行うこととする。
Hereinafter, the embodiment of the fuel cell system will be described in detail with reference to the drawings. In the following description, components having substantially the same function and configuration are designated by the same reference numerals, and duplicate explanations will be given only when necessary.
〔第1実施形態〕
図1は、第1実施形態に係る燃料電池システム1の全体構成を示すブロック図である。この図1に示すように、本実施形態における燃料電池システム1は、制御装置10と、第1のモジュールグループに含まれる燃料電池発電モジュール12と、第2のモジュールグループに含まれる燃料電池発電モジュール14を備えている。すなわち、本実施形態においては、燃料電池システム1は、複数の燃料電池発電モジュール12及び14に分割したモジュール構成となっており、分割した燃料電池発電モジュール12及び14は、それぞれがひとつの燃料電池システムとして機能する。例えば、定格容量が1MWの燃料電池システム1である場合、燃料電池発電モジュール12及び14のうちの1つのモジュールが100kWの定格容量を備えており、このモジュール10台で、燃料電池システム1が構成される。 [First Embodiment]
FIG. 1 is a block diagram showing an overall configuration of thefuel cell system 1 according to the first embodiment. As shown in FIG. 1, the fuel cell system 1 in the present embodiment includes a control device 10, a fuel cell power generation module 12 included in the first module group, and a fuel cell power generation module included in the second module group. It is equipped with 14. That is, in the present embodiment, the fuel cell system 1 has a module configuration divided into a plurality of fuel cell power generation modules 12 and 14, and the divided fuel cell power generation modules 12 and 14 each have one fuel cell. Functions as a system. For example, when the fuel cell system 1 has a rated capacity of 1 MW, one of the fuel cell power generation modules 12 and 14 has a rated capacity of 100 kW, and the fuel cell system 1 is composed of 10 modules. Will be done.
図1は、第1実施形態に係る燃料電池システム1の全体構成を示すブロック図である。この図1に示すように、本実施形態における燃料電池システム1は、制御装置10と、第1のモジュールグループに含まれる燃料電池発電モジュール12と、第2のモジュールグループに含まれる燃料電池発電モジュール14を備えている。すなわち、本実施形態においては、燃料電池システム1は、複数の燃料電池発電モジュール12及び14に分割したモジュール構成となっており、分割した燃料電池発電モジュール12及び14は、それぞれがひとつの燃料電池システムとして機能する。例えば、定格容量が1MWの燃料電池システム1である場合、燃料電池発電モジュール12及び14のうちの1つのモジュールが100kWの定格容量を備えており、このモジュール10台で、燃料電池システム1が構成される。 [First Embodiment]
FIG. 1 is a block diagram showing an overall configuration of the
制御装置10は、燃料電池発電モジュール12及び14に必要な制御を行う。例えば、制御装置10は、燃料電池発電モジュール12及び14へ指令を送信するコンピュータ、及び、それぞれの燃料電池発電モジュール12及び14と通信し得る通信部等によって実現される。制御装置10のコンピュータは、例えば、さらにそれぞれの燃料電池発電モジュール12及び14の発電状況を管理し、発電状況を記憶する処理記憶ユニット等を備えており、得られた発電状況に基づき、適切な指令を、燃料電池発電モジュール12及び14に対して送信する。また、制御装置10は、通信部を介して、有線や無線通信により、制御装置10と燃料電池発電モジュール12及び14を結合させ、両者の間の通信機能を実現する。その結合の方法は、電気的、機械的、又はこれらを結合した手段などである。
The control device 10 performs necessary control for the fuel cell power generation modules 12 and 14. For example, the control device 10 is realized by a computer that transmits commands to the fuel cell power generation modules 12 and 14, a communication unit that can communicate with the fuel cell power generation modules 12 and 14, and the like. The computer of the control device 10 further includes, for example, a processing storage unit that manages the power generation status of each of the fuel cell power generation modules 12 and 14 and stores the power generation status, and is appropriate based on the obtained power generation status. The command is transmitted to the fuel cell power generation modules 12 and 14. Further, the control device 10 connects the control device 10 and the fuel cell power generation modules 12 and 14 via a communication unit by wire or wireless communication, and realizes a communication function between the two. The method of bonding is electrical, mechanical, or a means of combining them.
燃料電池発電モジュール12及び14は、商用系統に接続されており、燃料電池発電モジュール12及び14が発電した電力は、商用系統を介して、需要家の負荷に供給される。また、燃料電池発電モジュール12及び14が停止している状態から起動させる場合には、起動電力が商用系統から燃料電池発電モジュール12及び14に供給される。このため、この燃料電池システム1が備える燃料電池発電モジュール12及び14に起動電力を供給して、一斉に起動させることが可能である。
The fuel cell power generation modules 12 and 14 are connected to a commercial system, and the electric power generated by the fuel cell power generation modules 12 and 14 is supplied to the load of the consumer via the commercial system. Further, when the fuel cell power generation modules 12 and 14 are started from a stopped state, the starting power is supplied to the fuel cell power generation modules 12 and 14 from the commercial system. Therefore, it is possible to supply starting power to the fuel cell power generation modules 12 and 14 included in the fuel cell system 1 and start them all at once.
第1のモジュールグループである、燃料電池発電モジュール12は、モジュール制御装置20と、補機22と、蓄電装置ユニット24と、PCS26と、燃料電池28とを備えている。一方、第2のモジュールグループである、燃料電池発電モジュール14は、モジュール制御装置20と、補機22と、PCS26と、燃料電池28とを備えている。言い換えると、第1のモジュールグループの燃料電池発電モジュール12は、蓄電装置ユニット24を備え、第2のモジュールグループの燃料電池発電モジュール14は、蓄電装置ユニット24を備えていない。そして、燃料電池発電モジュール12及び14を構成する各部は、商用系統からの電力供給が可能な形態にて互いに接続されている。
The fuel cell power generation module 12, which is the first module group, includes a module control device 20, an auxiliary device 22, a power storage device unit 24, a PCS 26, and a fuel cell 28. On the other hand, the fuel cell power generation module 14, which is the second module group, includes a module control device 20, an auxiliary device 22, a PCS 26, and a fuel cell 28. In other words, the fuel cell power generation module 12 of the first module group includes the power storage device unit 24, and the fuel cell power generation module 14 of the second module group does not include the power storage device unit 24. The parts constituting the fuel cell power generation modules 12 and 14 are connected to each other in a form capable of supplying electric power from a commercial system.
図1に示す燃料電池システム1においては、第1のモジュールグループの燃料電池発電モジュール12は1つであり、第2のモジュールグループの燃料電池発電モジュール14は1つ又は複数である。
In the fuel cell system 1 shown in FIG. 1, the fuel cell power generation module 12 of the first module group is one, and the fuel cell power generation module 14 of the second module group is one or more.
第1のモジュールグループの燃料電池発電モジュール12においては、モジュール制御装置20は、補機22と、蓄電装置ユニット24と、PCS26と、燃料電池28に対して、必要な制御を行う。第2のモジュールグループの燃料電池発電モジュール14においては、モジュール制御装置20は、自らの燃料電池発電モジュール14における、補機22と、PCS26と、燃料電池28に対して、必要な制御を行う。例えば、モジュール制御装置20は、補機22、蓄電装置ユニット24、PCS26及び燃料電池28へ指令を送信するコンピュータ、及び、制御装置10と通信し得る通信部等によって実現される。モジュール制御装置20のコンピュータは、例えば、さらに、補機22の起動状況、蓄電装置ユニット24の蓄電又は電力供給状況、PCS26の電流変換状況及び燃料電池28の発電状況を管理し、それら各種状況を記憶する処理記憶ユニット等を備えており、得られた状況を適時に制御装置10に送信したり、制御装置10から必要な指令について通信部等を介して受信したりする。モジュール制御装置20は、通信部を介して、有線や無線通信により、燃料電池発電モジュール12及び14と制御装置10をそれぞれ結合させ、その結合の方法は、電気的、機械的、又はこれらを結合した手段などである。
In the fuel cell power generation module 12 of the first module group, the module control device 20 performs necessary control on the auxiliary device 22, the power storage device unit 24, the PCS 26, and the fuel cell 28. In the fuel cell power generation module 14 of the second module group, the module control device 20 performs necessary control on the auxiliary machine 22, the PCS 26, and the fuel cell 28 in its own fuel cell power generation module 14. For example, the module control device 20 is realized by an auxiliary device 22, a power storage device unit 24, a computer that transmits commands to the PCS 26 and the fuel cell 28, a communication unit that can communicate with the control device 10, and the like. The computer of the module control device 20 further manages, for example, the activation status of the auxiliary device 22, the storage or power supply status of the power storage device unit 24, the current conversion status of the PCS 26, and the power generation status of the fuel cell 28, and manages various statuses thereof. It is equipped with a processing storage unit or the like for storing, and transmits the obtained situation to the control device 10 in a timely manner, or receives a necessary command from the control device 10 via a communication unit or the like. The module control device 20 connects the fuel cell power generation modules 12 and 14 and the control device 10 by wire or wireless communication via a communication unit, and the method of connecting the fuel cell power generation modules 12 and 14 is electrically, mechanically, or these are combined. Such as the means used.
補機22は、燃料電池28が発電するために必要な燃料、例えば水素や空気、及び冷却水等などを燃料電池28へ供給する。補機22は、例えば、ブロアやポンプ等によって実現される。この燃料電池発電モジュール12及び14が発電動作をしている場合には、補機22には、その動作電源が商用系統から供給されてもよいし、或いは、燃料電池28が発電した電力が供給されてもよい。
The auxiliary machine 22 supplies the fuel cell 28 with fuel necessary for the fuel cell 28 to generate electricity, such as hydrogen, air, and cooling water. The auxiliary machine 22 is realized by, for example, a blower, a pump, or the like. When the fuel cell power generation modules 12 and 14 are performing power generation operation, the auxiliary machine 22 may be supplied with the operating power source from the commercial system, or the power generated by the fuel cell 28 may be supplied. May be done.
この燃料電池発電モジュール12及び14が停止している状態から起動する場合には、商用系統から起動電力を供給する。このため、商用系統が停電している場合には、燃料電池発電モジュール14の補機22には起動電力を供給することができない。一方、燃料電池発電モジュール12の補機22には、商用系統が停電している場合でも、蓄電装置ユニット24から起動電力を供給することができる。
When the fuel cell power generation modules 12 and 14 are started from a stopped state, starting power is supplied from the commercial system. Therefore, when the commercial system is out of power, the starting power cannot be supplied to the auxiliary machine 22 of the fuel cell power generation module 14. On the other hand, the auxiliary power 22 of the fuel cell power generation module 12 can be supplied with starting power from the power storage device unit 24 even when the commercial system is out of power.
燃料電池発電モジュール12に設けられている蓄電装置24ユニットは、燃料電池発電モジュール12の交流系統に設置され、商用系統が停電した場合などに、補機22へ起動電力を供給する。蓄電装置ユニット24は、例えば、蓄電池によって実現される。この蓄電池は、例えば、鉛蓄電池、アルカリ蓄電池、リチウムイオン蓄電池などで構成することができ、放電後においては再び蓄電することによって再利用が可能である。また、この蓄電装置ユニット24は、少なくとも補機22に起動電力を供給するが、モジュール制御装置20やPCS26にも、必要に応じて、起動電力を供給するようにしてもよい。
The power storage device 24 unit provided in the fuel cell power generation module 12 is installed in the AC system of the fuel cell power generation module 12 and supplies starting power to the auxiliary machine 22 when the commercial system loses power. The power storage device unit 24 is realized by, for example, a storage battery. This storage battery can be composed of, for example, a lead storage battery, an alkaline storage battery, a lithium ion storage battery, or the like, and can be reused by storing the storage again after discharging. Further, the power storage device unit 24 supplies at least the starting power to the auxiliary device 22, but the module control device 20 and the PCS 26 may also be supplied with the starting power as needed.
例えば、蓄電装置ユニット24は、商用系統から電力の供給を受けて、蓄電することが可能である。また、蓄電装置ユニット24は、燃料電池28が発電した電力の供給を受けて、蓄電することが可能である。本実施形態においては、この蓄電装置ユニット24は、燃料電池発電モジュール12を停止状態から起動するための起動電力を賄うために必要な容量を有している。好ましくは、この蓄電装置ユニット24の容量は、燃料電池発電モジュール12を起動するために必要となる起動電力の容量と同等か、或いは、わずかに大きい程度の容量であることが望ましい。これは、必要以上の容量を蓄電装置ユニット24が備えることは、この蓄電装置ユニット24の重量や製造コストが必要以上に増大してしまうからである。
For example, the power storage device unit 24 can receive power from a commercial system and store power. Further, the power storage device unit 24 can receive and store power by receiving the power generated by the fuel cell 28. In the present embodiment, the power storage device unit 24 has a capacity required to cover the starting power for starting the fuel cell power generation module 12 from the stopped state. Preferably, the capacity of the power storage device unit 24 is equal to or slightly larger than the capacity of the starting power required to start the fuel cell power generation module 12. This is because the storage device unit 24 having a capacity larger than necessary increases the weight and manufacturing cost of the power storage device unit 24 more than necessary.
PCS26は、燃料電池28が発電した電力を直流電流から交流電流に変換する。需要家の負荷、例えば、家庭用電源や機械設備などが挙げられるが、それらは通常、交流電流が用いられる。一方で、燃料電池28から発電された電力は直流電流であることが通常である。そのため、燃料電池発電モジュール12及び14で発電された電力を、商用系統を介して需要家の負荷へ供給する場合、PCS26を介して供給する。本明細書において、商用系統及び燃料電池システム1を含めた電力系統において、PCS26よりも商用系統側の系統を「交流系統」、PCS26よりも燃料電池側を「直流系統」とよぶ。
The PCS 26 converts the electric power generated by the fuel cell 28 from a direct current to an alternating current. Consumer loads, such as household power supplies and mechanical equipment, are usually used with alternating current. On the other hand, the electric power generated from the fuel cell 28 is usually a direct current. Therefore, when the electric power generated by the fuel cell power generation modules 12 and 14 is supplied to the load of the consumer via the commercial system, the electric power is supplied via the PCS 26. In the present specification, in the power system including the commercial system and the fuel cell system 1, the system on the commercial system side of the PCS26 is referred to as an "AC system", and the system on the fuel cell side of the PCS26 is referred to as a "DC system".
したがって、図1に記載の実施形態においては、蓄電装置ユニット24はPCSよりも商用系統側に設置されているので、蓄電装置ユニット24は交流系統に存在するということができ、本実施形態に係る燃料電池システム1は、「蓄電装置ユニット交流系統設置型」であるということができる。
Therefore, in the embodiment shown in FIG. 1, since the power storage device unit 24 is installed on the commercial system side of the PCS, it can be said that the power storage device unit 24 exists in the AC system, and is related to the present embodiment. It can be said that the fuel cell system 1 is a "power storage device unit AC system installation type".
燃料電池28は、補機22から、水素や空気等の燃料や、冷却水の等供給を受けて発電し、商用系統を介して、需要家の負荷に電力を供給する。本実施形態においては、例えば、燃料電池28は、定常的に発電を行い電力の供給をするようにしてもよいし、或いは、商用系統の停電時において、商用系統とは独立した供給ラインにて需要家の特定負荷へ電力を供給するようにしてもよい。燃料電池28は、例えば水素などと、酸化剤、例えば酸素などとを電気化学的に反応させて、電気エネルギーを生成する装置であり、例えば水素酸素燃料電池などで実現することができる。
The fuel cell 28 receives fuel such as hydrogen and air, cooling water, and the like from the auxiliary machine 22 to generate electric power, and supplies electric power to the load of the consumer via the commercial system. In the present embodiment, for example, the fuel cell 28 may generate electric power constantly to supply electric power, or may use a supply line independent of the commercial system in the event of a power failure of the commercial system. Electric power may be supplied to a specific load of the consumer. The fuel cell 28 is a device for generating electric energy by electrochemically reacting, for example, hydrogen with an oxidizing agent, for example, oxygen, and can be realized by, for example, a hydrogen-oxygen fuel cell.
次に、本実施形態に係る燃料電池システム1で実行される各種の処理について詳細に説明する。図2は、本実施形態に係る燃料電池システム1で実行される燃料電池システム起動処理を説明するフローチャートを示す図である。この燃料電池システム起動処理は、商用系統から電力の供給を受けられない状況において、制御装置10が停止している燃料電池システム1を起動させる際に実行される処理である。すなわち、商用系統から起動電力の供給を受けることなく、停止している燃料電池発電モジュール12及び14を順次起動し、燃料電池システム1で発電が行えるようにするために実行される処理である。
Next, various processes executed in the fuel cell system 1 according to the present embodiment will be described in detail. FIG. 2 is a diagram showing a flowchart illustrating a fuel cell system start-up process executed by the fuel cell system 1 according to the present embodiment. This fuel cell system start-up process is a process executed when the fuel cell system 1 in which the control device 10 is stopped is started in a situation where electric power cannot be supplied from the commercial system. That is, it is a process executed in order to sequentially start the stopped fuel cell power generation modules 12 and 14 without receiving the supply of starting power from the commercial system so that the fuel cell system 1 can generate power.
この図2に示すように、この燃料電池システム起動処理においては、燃料電池システム1は、蓄電装置ユニット24に蓄えられた電力を起動電力として用いて、第1のモジュールグループに含まれる燃料電池発電モジュール12を起動する(ステップS10)。本実施形態においては、例えば、商用系統から起動電力の供給が受けられない状況下で、燃料電池システムを起動させる必要が生じた場合に、制御装置10が燃料電池発電モジュール12に起動すべき指令を送信することにより、燃料電池発電モジュール12を起動させる。
As shown in FIG. 2, in this fuel cell system start-up process, the fuel cell system 1 uses the electric power stored in the power storage device unit 24 as the start-up power to generate fuel cells included in the first module group. Start the module 12 (step S10). In the present embodiment, for example, when it becomes necessary to start the fuel cell system in a situation where the start power cannot be supplied from the commercial system, the control device 10 should start the fuel cell power generation module 12. Is transmitted to activate the fuel cell power generation module 12.
燃料電池発電モジュール12が起動するには、制御装置10から、燃料電池発電モジュール12のモジュール制御装置20が、燃料電池発電モジュール12を起動すべき旨の指令を受信したのちに、蓄電装置ユニット24に蓄えられた電力を活用して、補機22を起動させる。補機22が起動したのちに、補機22が燃料電池28に燃料及び冷却水等を供給し、燃料電池28を起動させる。燃料電池28が起動し、電力を商用系統や燃料電池発電モジュール14自体に電力供給が可能な状態になったならば、燃料電池発電モジュール12は起動したことになる。
In order for the fuel cell power generation module 12 to start, the power storage device unit 24 receives a command from the control device 10 that the module control device 20 of the fuel cell power generation module 12 should start the fuel cell power generation module 12. The auxiliary machine 22 is activated by utilizing the electric power stored in the battery. After the auxiliary machine 22 is started, the auxiliary machine 22 supplies fuel, cooling water, and the like to the fuel cell 28 to start the fuel cell 28. When the fuel cell 28 is started and the power can be supplied to the commercial system or the fuel cell power generation module 14 itself, the fuel cell power generation module 12 is started.
次に、制御装置10は、第2のモジュールグループに含まれる燃料電池発電モジュール14の中から、起動する燃料電池発電モジュール14を決定する(ステップS12)。本実施形態においては、制御装置10が、第2のモジュールグループに含まれる複数の燃料電池発電モジュール14の中から、いずれか1つの燃料電池発電モジュール14を選択することになる。
Next, the control device 10 determines the fuel cell power generation module 14 to be activated from the fuel cell power generation modules 14 included in the second module group (step S12). In the present embodiment, the control device 10 selects any one of the fuel cell power generation modules 14 from the plurality of fuel cell power generation modules 14 included in the second module group.
第2のモジュールグループに含まれる燃料電池発電モジュール14は、蓄電装置ユニット24を備えていないため、起動するためには外部から起動電力の供給を受ける必要がある。そのため、商用系統などから起動電力の供給を受ける必要があるところ、例えば、停電時などにおいては、商用系統から起動電力の供給を受けられないため、既に発電状態になっている、第1のモジュールグループに含まれる燃料電池発電モジュール12から起動電力の供給を受けることで、商用系統から起動電力の供給を受けることなく、燃料電池発電モジュール14は起動することができる。
Since the fuel cell power generation module 14 included in the second module group does not have the power storage device unit 24, it is necessary to receive the start power from the outside in order to start the fuel cell. Therefore, where it is necessary to receive the start-up power from the commercial system, for example, in the event of a power failure, the start-up power cannot be supplied from the commercial system, so the first module is already in the power generation state. By receiving the starting power from the fuel cell power generation module 12 included in the group, the fuel cell power generation module 14 can be started without receiving the starting power from the commercial system.
次に、制御装置10は、ステップS12において決定された燃料電池発電モジュール14について、起動電力を供給して起動する(ステップS14)。起動電力の供給を受けたのちの燃料電池発電モジュール14が起動する流れは、燃料電池発電モジュール12が起動する流れと同様であるため、ここでは詳述しない。
Next, the control device 10 supplies starting power to start the fuel cell power generation module 14 determined in step S12 (step S14). The flow in which the fuel cell power generation module 14 is started after receiving the supply of starting power is the same as the flow in which the fuel cell power generation module 12 is started, and therefore is not described in detail here.
なお、これらステップS12及びステップS14で起動する第2のモジュールグループに含まれる燃料電池発電モジュール14の数は、1つに限られるものではなく、一度に複数の燃料電池発電モジュール14を起動するようにしてもよい。すなわち、第1のモジュールグループに含まれる燃料電池発電モジュール12が発電した電力で、第2のモジュールグループに含まれる2つ以上の燃料電池発電モジュール14における補機22の起動電力を賄える場合には、その賄える電力に応じて、複数の燃料電池発電モジュール14を起動するようにしてもよい。
The number of fuel cell power generation modules 14 included in the second module group activated in steps S12 and S14 is not limited to one, and a plurality of fuel cell power generation modules 14 may be activated at one time. You may do it. That is, when the power generated by the fuel cell power generation module 12 included in the first module group can cover the starting power of the auxiliary equipment 22 in the two or more fuel cell power generation modules 14 included in the second module group. , A plurality of fuel cell power generation modules 14 may be activated according to the electric power that can be supplied.
次に、制御装置10は、第1及び第2のモジュールグループに含まれるすべての燃料電池発電モジュール12及び14が起動したか否かを判断する(ステップS16)。すなわち、この燃料電池システム1が備えるすべての燃料電池発電モジュール12及び14を起動したか否かを判断する。
Next, the control device 10 determines whether or not all the fuel cell power generation modules 12 and 14 included in the first and second module groups have been started (step S16). That is, it is determined whether or not all the fuel cell power generation modules 12 and 14 included in the fuel cell system 1 have been started.
すべての燃料電池発電モジュールが起動している場合(ステップS16:Yes)、本実施形態に係る燃料電池システム起動処理は終了する。一方、すべての燃料電池発電モジュールを起動していない場合(ステップS16:No)、制御装置10は、ステップS12に戻り、上述した処理を全ての燃料電池発電モジュールが起動するまで繰り返す。
When all the fuel cell power generation modules are activated (step S16: Yes), the fuel cell system activation process according to the present embodiment is completed. On the other hand, when all the fuel cell power generation modules have not been started (step S16: No), the control device 10 returns to step S12 and repeats the above-mentioned process until all the fuel cell power generation modules are started.
なお、燃料電池発電モジュール12が起動して発電状態となった場合、その発電された電力の容量に応じて、ステップS14で起動する燃料電池発電モジュール14の台数を調整することが可能である。例えば、起動された1つの燃料電池発電モジュール12が供給する電力で、2つの燃料電池発電モジュール14が起動できる場合には、ステップS12で2つの燃料電池発電モジュール14を起動すると決定し、ステップS14で2つの燃料電池発電モジュール14を起動するようにしてもよい。
When the fuel cell power generation module 12 is activated and becomes a power generation state, it is possible to adjust the number of the fuel cell power generation modules 14 to be activated in step S14 according to the capacity of the generated electric power. For example, if the two fuel cell power generation modules 14 can be started with the electric power supplied by one started fuel cell power generation module 12, it is determined in step S12 that the two fuel cell power generation modules 14 are started, and step S14 The two fuel cell power generation modules 14 may be started by.
また、例えば、1つの燃料電池発電モジュール12と1つの燃料電池発電モジュール14とが発電状態となっている場合には、その供給電力を起動電力として用いて、2つの燃料電池発電モジュール14を起動することも可能である。
Further, for example, when one fuel cell power generation module 12 and one fuel cell power generation module 14 are in a power generation state, the supplied power is used as starting power to start two fuel cell power generation modules 14. It is also possible to do.
一方、例えば、1つの燃料電池発電モジュール12と2つの燃料電池発電モジュール14とが発電状態となっている場合には、その供給電力を起動電力として用いて、3つの燃料電池発電モジュール14を起動することも可能であり、4つの燃料電池発電モジュール14を起動することも可能である。すなわち、起動されて発電状態となった燃料電池発電モジュール12及び14が発電する電力容量に基づいて、ステップS14で起動する燃料電池発電モジュール14の台数は、任意に設定可能であり、少なくとも1つの燃料電池発電モジュール14を起動すると捉えることができる。
On the other hand, for example, when one fuel cell power generation module 12 and two fuel cell power generation modules 14 are in a power generation state, the supplied power is used as starting power to start three fuel cell power generation modules 14. It is also possible to activate the four fuel cell power generation modules 14. That is, the number of the fuel cell power generation modules 14 to be started in step S14 can be arbitrarily set based on the power capacity generated by the fuel cell power generation modules 12 and 14 that have been started and are in the power generation state, and at least one. It can be regarded as starting the fuel cell power generation module 14.
次に、図3に基づいて、第1実施形態に係る燃料電池システム1の変形例を説明する。図3は、第1実施形態に係る燃料電池システム1の全体構成を示すブロック図であり、「蓄電装置ユニット直流系統設置型」の例を示している。すなわち、燃料電池発電モジュール12において、蓄電装置ユニット24がPCS26よりも燃料電池側に設置されている実施形態である。
Next, a modified example of the fuel cell system 1 according to the first embodiment will be described with reference to FIG. FIG. 3 is a block diagram showing the overall configuration of the fuel cell system 1 according to the first embodiment, and shows an example of a “power storage device unit DC system installation type”. That is, in the fuel cell power generation module 12, the power storage device unit 24 is installed on the fuel cell side of the PCS 26.
本実施形態に関しては、蓄電装置ユニット24から補機22へ供給される電力は、PCS26を介するため、蓄電装置ユニット24が供給する電力は直流電流であるが、PCS26において交流電流に変換されて、補機22には交流電流が供給される。
In the present embodiment, since the electric power supplied from the power storage device unit 24 to the auxiliary machine 22 is via the PCS 26, the power supplied by the power storage device unit 24 is a direct current, but is converted into an alternating current in the PCS 26. AC current is supplied to the auxiliary machine 22.
図3に示す燃料電池システム1で実行される燃料電池システム起動処理に関しては、図2と同様であることから、ここでは詳述しない。
The fuel cell system start-up process executed by the fuel cell system 1 shown in FIG. 3 is the same as that of FIG. 2, and is not described in detail here.
次に、図4に基づいて、第1実施形態に係る燃料電池システム1の別の変形例を説明する。図4は、第1実施形態に係る燃料電池システムの全体構成を示すブロック図であり、「蓄電装置ユニット直流系統及び交流系統両設置型」の例を示している。すなわち、燃料電池発電モジュール12において、蓄電装置ユニット24がPCS26の燃料電池側及び商用系統の両方に設置されている実施形態である。
Next, another modification of the fuel cell system 1 according to the first embodiment will be described with reference to FIG. FIG. 4 is a block diagram showing the overall configuration of the fuel cell system according to the first embodiment, and shows an example of “a power storage device unit DC system and AC system both installed type”. That is, in the fuel cell power generation module 12, the power storage device unit 24 is installed on both the fuel cell side of the PCS 26 and the commercial system.
本実施形態に関しては、上述した図1の燃料電池システム1と図3の燃料電池システム1とが組み合わさった変形例であり、2つの蓄電装置ユニット24から起動電力が補機22に供給される。また、これに加えて、2つの蓄電装置ユニット24を燃料電池発電モジュール12が備えることになるので、例えば、どちらかの蓄電装置ユニット24が補機22へ電力供給が不可能である場合にも、もう一方の蓄電装置ユニット24から補機22へ電力供給が可能であるため、燃料電池発電モジュール12の起動に関して冗長性を持たせることができる。
The present embodiment is a modified example in which the fuel cell system 1 of FIG. 1 and the fuel cell system 1 of FIG. 3 are combined, and starting power is supplied to the auxiliary machine 22 from the two power storage device units 24. .. Further, in addition to this, since the fuel cell power generation module 12 includes two power storage device units 24, for example, even when either power storage device unit 24 cannot supply power to the auxiliary device 22. Since the other power storage device unit 24 can supply power to the auxiliary device 22, it is possible to provide redundancy in starting the fuel cell power generation module 12.
換言すれば、上述した図1、図3及び図4の燃料電池システム1の構成から明らかなように、本実施形態に係る第1のモジュールグループに含まれる燃料電池発電モジュール12は、商用系統が接続されるラインに接続された蓄電装置ユニット24と、燃料電池28の出力ラインに接続された蓄電装置ユニット24とのうちの少なくとも一方を備えていればよい。
In other words, as is clear from the configuration of the fuel cell system 1 of FIGS. 1, 3 and 4 described above, the fuel cell power generation module 12 included in the first module group according to the present embodiment has a commercial system. It suffices to include at least one of the power storage device unit 24 connected to the connected line and the power storage device unit 24 connected to the output line of the fuel cell 28.
本実施形態に係る本実施形態に係る燃料電池システム1で実行される燃料電池システム起動処理に関しては、図2と同様であることから、ここでは詳述しない。
The fuel cell system start-up process executed by the fuel cell system 1 according to the present embodiment according to the present embodiment is the same as that in FIG. 2, and is not described in detail here.
以上のように、本実施形態に係る燃料電池システム1によれば、第1のモジュールグループに含まれる燃料電池発電モジュール12に蓄電装置ユニット24を設け、商用系統から電力の供給を受けられない状況で、停止している燃料電池システム1を起動しなければならない場合には、この蓄電装置ユニット24に蓄えられている電力を用いて、まず燃料電池発電モジュール12を起動することとした。このため、燃料電池システム1全体を起動するよりも、小さい蓄電容量で燃料電池発電モジュール12を起動させることができる。そして、起動された燃料電池発電モジュール12の発電した電力を、起動電力として用いて、順次、第2のモジュールグループに含まれる燃料電池発電モジュール14を起動させ、最終的にはすべての燃料電池発電モジュール14も起動させることができるようにした。このため、従来のように大きな蓄電容量の蓄電装置を設ける必要がなくなり、設置する蓄電装置の体積、重量、及びコストを抑えることができる。
As described above, according to the fuel cell system 1 according to the present embodiment, the power storage device unit 24 is provided in the fuel cell power generation module 12 included in the first module group, and power cannot be supplied from the commercial system. Then, when it is necessary to start the stopped fuel cell system 1, it is decided to first start the fuel cell power generation module 12 by using the electric power stored in the power storage device unit 24. Therefore, the fuel cell power generation module 12 can be started with a smaller storage capacity than that of starting the entire fuel cell system 1. Then, the power generated by the started fuel cell power generation module 12 is used as the starting power to sequentially start the fuel cell power generation module 14 included in the second module group, and finally all the fuel cell power generation. Module 14 can also be started. Therefore, it is not necessary to provide a power storage device having a large storage capacity as in the conventional case, and the volume, weight, and cost of the power storage device to be installed can be suppressed.
〔第2実施形態〕
第2実施形態に係る燃料電池システム1は、上述した第1実施形態に係る燃料電池システム1に、第1のモジュールグループに属する燃料電池発電モジュール12の数を新たなに1つ追加し、合計2つの燃料電池発電モジュール12を備えることにより、燃料電池システム1の起動に要する時間を短縮するとともに、より燃料電池システム1の冗長性や信頼性を向上させ、安定的に燃料電池システム1が起動するようにしたものである。以下、上述した第1実施形態と異なる部分を説明する。 [Second Embodiment]
Thefuel cell system 1 according to the second embodiment adds one new number of fuel cell power generation modules 12 belonging to the first module group to the fuel cell system 1 according to the first embodiment described above, and totals them. By providing the two fuel cell power generation modules 12, the time required to start the fuel cell system 1 is shortened, the redundancy and reliability of the fuel cell system 1 are further improved, and the fuel cell system 1 is started stably. I tried to do it. Hereinafter, the parts different from the above-described first embodiment will be described.
第2実施形態に係る燃料電池システム1は、上述した第1実施形態に係る燃料電池システム1に、第1のモジュールグループに属する燃料電池発電モジュール12の数を新たなに1つ追加し、合計2つの燃料電池発電モジュール12を備えることにより、燃料電池システム1の起動に要する時間を短縮するとともに、より燃料電池システム1の冗長性や信頼性を向上させ、安定的に燃料電池システム1が起動するようにしたものである。以下、上述した第1実施形態と異なる部分を説明する。 [Second Embodiment]
The
図5は、第2実施形態に係る燃料電池システムの全体構成を示すブロック図である。この図5に示すように、本実施形態における燃料電池システム1は、制御装置10と、第1のモジュールグループに属する2つの燃料電池発電モジュール12と、第2のモジュールグループに属する燃料電池発電モジュール14を備えている。
FIG. 5 is a block diagram showing the overall configuration of the fuel cell system according to the second embodiment. As shown in FIG. 5, the fuel cell system 1 in the present embodiment includes a control device 10, two fuel cell power generation modules 12 belonging to the first module group, and a fuel cell power generation module belonging to the second module group. It is equipped with 14.
本実施形態における第1のモジュールグループに属する2つの燃料電池発電モジュール12は、各々の蓄電装置ユニット24に蓄えられた電力を起動電力として用いることで、それぞれが独立して自ら起動することができる。本実施形態では、第1のモジュールグループに属する燃料電池発電モジュール12の数が2つになるため、第1のモジュールグループが備える起動電力の総容量は第1実施形態に比べて約2倍となる。
The two fuel cell power generation modules 12 belonging to the first module group in the present embodiment can be independently started by themselves by using the electric power stored in each power storage device unit 24 as the starting electric power. .. In the present embodiment, the number of fuel cell power generation modules 12 belonging to the first module group is two, so that the total capacity of the starting power included in the first module group is about twice that of the first embodiment. Become.
図5に記載の実施形態においては、蓄電装置ユニット24はPCSよりも商用系統側に設置されているので、蓄電装置ユニット24は交流系統に存在するということができ、本実施形態は、「蓄電装置ユニット交流系統設置型」の燃料電池システム1ということができる。
In the embodiment shown in FIG. 5, since the power storage device unit 24 is installed on the commercial system side of the PCS, it can be said that the power storage device unit 24 exists in the AC system. It can be said that the fuel cell system 1 of the "equipment unit AC system installation type".
次に、図6に基づいて、本実施形態に係る燃料電池システム1で実行される燃料電池システム起動処理を説明する。図6に示す燃料電池システム起動処理は、上述した図2に示す燃料電池システム起動処理に対応する処理であるが、ここでは、最初に2つの燃料電池発電モジュール12を起動させる点で相違している。
Next, the fuel cell system start-up process executed by the fuel cell system 1 according to the present embodiment will be described with reference to FIG. The fuel cell system start-up process shown in FIG. 6 is a process corresponding to the fuel cell system start-up process shown in FIG. 2 described above, but here, the difference is that the two fuel cell power generation modules 12 are started first. There is.
この図6に示すように、この燃料電池システム起動処理においては、蓄電装置ユニット24に蓄えられた電力を起動電力として用いて、第1のモジュールグループに含まれる燃料電池発電モジュール12を起動する(ステップS20)。本実施形態においては、上述の通り、燃料電池発電モジュール12が2つあるため、制御装置10は、2つの燃料電池発電モジュール12の起動に関する指令を送信する。
As shown in FIG. 6, in this fuel cell system start-up process, the electric power stored in the power storage device unit 24 is used as the start-up power to start the fuel cell power generation module 12 included in the first module group (). Step S20). In the present embodiment, as described above, since there are two fuel cell power generation modules 12, the control device 10 transmits a command regarding activation of the two fuel cell power generation modules 12.
上述の制御装置10が送信する指令であるが、例えば、2つの燃料電池発電モジュール12を同時に起動させてもよく、時間差を設けて順番に起動させてもよく、一方の燃料電池発電モジュール12が故障している場合などにおいては片方の燃料電池発電モジュール12だけを起動させてもよい。
Although it is a command transmitted by the control device 10 described above, for example, two fuel cell power generation modules 12 may be started at the same time, or may be started in order with a time lag, and one fuel cell power generation module 12 may be started. In the case of failure or the like, only one fuel cell power generation module 12 may be activated.
次に、制御装置10は、第2のモジュールグループに含まれる燃料電池発電モジュール14の中から、起動する燃料電池発電モジュール14を決定する(ステップS22)。本実施形態においては、制御装置10が、第2のモジュールグループに含まれる複数の燃料電池発電モジュール14の中から、いずれか2つの燃料電池発電モジュール14を選択する。
Next, the control device 10 determines the fuel cell power generation module 14 to be activated from the fuel cell power generation modules 14 included in the second module group (step S22). In the present embodiment, the control device 10 selects any two fuel cell power generation modules 14 from the plurality of fuel cell power generation modules 14 included in the second module group.
次に、制御装置10は、ステップS22において決定された燃料電池発電モジュール14について、起動電力を供給して起動する(ステップS24)。そして、制御装置10は、第1及び第2のモジュールグループに含まれるすべての燃料電池発電モジュール12及び14が起動したか否かを判断する(ステップS26)。これらステップS24及びステップS26の処理は、上述した第1実施形態におけるステップS14及びステップS16の処理と同様である。
Next, the control device 10 supplies starting power to start the fuel cell power generation module 14 determined in step S22 (step S24). Then, the control device 10 determines whether or not all the fuel cell power generation modules 12 and 14 included in the first and second module groups have been started (step S26). The processing of these steps S24 and S26 is the same as the processing of steps S14 and S16 in the first embodiment described above.
なお、2つの燃料電池発電モジュール12が起動して発電状態となった場合、その発電された電力の容量に応じて、ステップS24で起動する燃料電池発電モジュール14の台数を調整することが可能である。例えば、起動された2つの燃料電池発電モジュール12が供給する電力で、3つの燃料電池発電モジュール14が起動できる場合には、ステップS22で3つの燃料電池発電モジュール14を起動すると決定し、ステップS24で3つの燃料電池発電モジュール14を起動するようにしてもよい。一方で、起動された2つの燃料電池発電モジュール12が供給する電力で、1つの燃料電池発電モジュール14しか起動できない場合には、ステップS22で1つの燃料電池発電モジュール14を起動すると決定し、ステップS24で1つの燃料電池発電モジュール14を起動するようにしてもよい。
When the two fuel cell power generation modules 12 are activated and are in the power generation state, the number of the fuel cell power generation modules 14 to be activated in step S24 can be adjusted according to the capacity of the generated electric power. be. For example, if the three fuel cell power generation modules 14 can be started by the electric power supplied by the two started fuel cell power generation modules 12, it is determined in step S22 that the three fuel cell power generation modules 14 are started, and step S24 The three fuel cell power generation modules 14 may be activated by. On the other hand, if only one fuel cell power generation module 14 can be started with the power supplied by the two started fuel cell power generation modules 12, it is determined in step S22 that one fuel cell power generation module 14 is started, and the step is taken. One fuel cell power generation module 14 may be activated in S24.
上述の通り、本実施形態に係る燃料電池システム1の第1のモジュールグループは、合計2つの燃料電池発電モジュール12を備えているため約2倍の電力を第2のモジュールグループに供給できることから、第2のモジュールグループに属する全ての燃料電池発電モジュール14を起動させる時間が第1実施形態よりも短縮されることが期待され、より早期に燃料電池システム1が起動できる。
As described above, since the first module group of the fuel cell system 1 according to the present embodiment includes a total of two fuel cell power generation modules 12, about twice as much electric power can be supplied to the second module group. It is expected that the time for starting all the fuel cell power generation modules 14 belonging to the second module group will be shorter than that in the first embodiment, and the fuel cell system 1 can be started earlier.
次に、図7に基づいて、第2実施形態に係る燃料電池システム1の変形例を説明する。図7は、第2実施形態に係る燃料電池システムの全体構成を示すブロック図であり、「蓄電装置ユニット直流系統設置型」の例を示している。すなわち、蓄電装置ユニット24がPCS26よりも燃料電池側に設置されている実施形態であり、上述した第1実施形態における図3に対応している。
Next, a modified example of the fuel cell system 1 according to the second embodiment will be described with reference to FIG. 7. FIG. 7 is a block diagram showing the overall configuration of the fuel cell system according to the second embodiment, and shows an example of the “power storage device unit DC system installation type”. That is, it is an embodiment in which the power storage device unit 24 is installed on the fuel cell side of the PCS 26, and corresponds to FIG. 3 in the above-mentioned first embodiment.
第1実施形態と同様に、蓄電装置ユニット24から補機22へ供給される電力は、PCS26を介するため、蓄電装置ユニット24が供給する電力は直流電流であるが、PCS26において交流電流に変換されて、補機22には交流電流が供給される。
Similar to the first embodiment, the electric power supplied from the power storage device unit 24 to the auxiliary device 22 is via the PCS 26, so that the power supplied by the power storage device unit 24 is a direct current, but is converted into an alternating current in the PCS 26. Therefore, an alternating current is supplied to the auxiliary machine 22.
図7に示す燃料電池システム1で実行される燃料電池システム起動処理に関しては、図6と同様であることから、ここでは詳述しない。
The fuel cell system start-up process executed by the fuel cell system 1 shown in FIG. 7 is the same as that in FIG. 6, and is not described in detail here.
次に、図8に基づいて、第2実施形態に係る燃料電池システム1の別の変形例を説明する。図8は、第2実施形態に係る燃料電池システムの全体構成を示すブロック図であり、「蓄電装置ユニット直流系統及び交流系統両設置型」の例を示している。すなわち、各々の燃料電池発電モジュール12において、蓄電装置ユニット24がPCS26の燃料電池側及び商用系統の両方に設置されている実施形態であり、上述した第1実施形態における図4に対応している。
Next, another modification of the fuel cell system 1 according to the second embodiment will be described with reference to FIG. FIG. 8 is a block diagram showing the overall configuration of the fuel cell system according to the second embodiment, and shows an example of “a power storage device unit DC system and AC system both installed type”. That is, in each fuel cell power generation module 12, the power storage device unit 24 is installed on both the fuel cell side of the PCS 26 and the commercial system, and corresponds to FIG. 4 in the above-mentioned first embodiment. ..
上述した第1実施形態と同様に、例えば、同一の燃料電池発電モジュール12内における、どちらかの蓄電装置ユニット24が補機22へ電力供給が不可能である場合にも、もう一方の蓄電装置ユニット24から補機22へ電力供給が可能であるため、燃料電池発電モジュール12の起動に関して冗長性を持たせることができる。
Similar to the first embodiment described above, for example, even when one of the power storage device units 24 cannot supply power to the auxiliary device 22 in the same fuel cell power generation module 12, the other power storage device Since power can be supplied from the unit 24 to the auxiliary machine 22, it is possible to provide redundancy in starting the fuel cell power generation module 12.
本実施形態に係る本実施形態に係る燃料電池システム1で実行される燃料電池システム起動処理に関しては、図6と同様であることから、ここでは詳述しない。
The fuel cell system start-up process executed by the fuel cell system 1 according to the present embodiment according to the present embodiment is the same as that shown in FIG. 6, and is not described in detail here.
なお、第2実施形態においては、3つ類型について説明した。すなわち、「蓄電装置ユニット交流系統設置型」、「蓄電装置ユニット直流系統設置型」、及び「蓄電装置ユニット直流系統及び交流系統両設置型」の3類型である。その他にも、例えば、一方の燃料電池発電モジュール12においては、蓄電装置ユニット24が直流系統に配置されているが、もう一方の燃料電池発電モジュール12においては交流系統に配置されてもよく、又はその逆の配置でもよい。さらに、一方の燃料電池発電モジュール12は1つのみの蓄電装置ユニット24を備えているが、もう一方の燃料電池発電モジュール12は2つの蓄電装置ユニット24を備えていてもよい。そのため、本実施形態においては、蓄電装置ユニット24の配置する場所に特段の制限はなく、任意の態様で変形することが可能である。
In the second embodiment, three types have been described. That is, there are three types: "power storage device unit AC system installation type", "power storage device unit DC system installation type", and "power storage device unit DC system and AC system both installation type". In addition, for example, in one fuel cell power generation module 12, the power storage device unit 24 is arranged in the DC system, but in the other fuel cell power generation module 12, it may be arranged in the AC system, or The reverse arrangement may be used. Further, while one fuel cell power generation module 12 includes only one power storage device unit 24, the other fuel cell power generation module 12 may include two power storage device units 24. Therefore, in the present embodiment, there is no particular limitation on the place where the power storage device unit 24 is arranged, and it can be deformed in any manner.
また、第2実施形態においては、2つの燃料電池発電モジュール12で第1のモジュールグループを構成したが、3つ、4つ等の複数の燃料電池発電モジュール12で第1のモジュールグループを構成してもよい。このようにすることにより、商用系統から起動電力が供給できない状況で燃料電池システム1を起動する際の冗長性をより高めることができる。
Further, in the second embodiment, the first module group is composed of two fuel cell power generation modules 12, but the first module group is composed of a plurality of fuel cell power generation modules 12 such as three or four. You may. By doing so, it is possible to further increase the redundancy when starting the fuel cell system 1 in a situation where the starting power cannot be supplied from the commercial system.
〔第3実施形態〕
第3実施形態においては、上述した第1実施形態及び第2実施形態に係る燃料電池システム1に、図9に示すような非常用蓄電装置16を追加的に設けることにより電力供給システム2を構成して、燃料電池システム1が運転不能である場合にも、商用系統を介して、需要家の負荷に電力を供給できるようにしている。以下においては、第1実施形態の変形例として第3実施形態に係る電力供給システム2を説明するが、第2実施形態を変形して第3実施形態に係る電力供給システム2を実現することも可能である。 [Third Embodiment]
In the third embodiment, thepower supply system 2 is configured by additionally providing the emergency power storage device 16 as shown in FIG. 9 to the fuel cell system 1 according to the first embodiment and the second embodiment described above. Therefore, even when the fuel cell system 1 is inoperable, electric power can be supplied to the load of the consumer via the commercial system. In the following, the power supply system 2 according to the third embodiment will be described as a modification of the first embodiment, but the power supply system 2 according to the third embodiment may be realized by modifying the second embodiment. It is possible.
第3実施形態においては、上述した第1実施形態及び第2実施形態に係る燃料電池システム1に、図9に示すような非常用蓄電装置16を追加的に設けることにより電力供給システム2を構成して、燃料電池システム1が運転不能である場合にも、商用系統を介して、需要家の負荷に電力を供給できるようにしている。以下においては、第1実施形態の変形例として第3実施形態に係る電力供給システム2を説明するが、第2実施形態を変形して第3実施形態に係る電力供給システム2を実現することも可能である。 [Third Embodiment]
In the third embodiment, the
図9は、第3実施形態に係る電力供給システム2の全体構成を説明するブロック図である。この図9に示すように、第3実施形態に係る電力供給システム2は、燃料電池システム1の外部に非常用蓄電装置16を備えている。本実施形態においては、この非常用蓄電装置16は、需要家の負荷に電力を供給したり燃料電池発電モジュール12及び14に起動電力を供給したりする、商用系統に接続されている。
FIG. 9 is a block diagram illustrating the overall configuration of the power supply system 2 according to the third embodiment. As shown in FIG. 9, the power supply system 2 according to the third embodiment includes an emergency power storage device 16 outside the fuel cell system 1. In the present embodiment, the emergency power storage device 16 is connected to a commercial system that supplies power to the load of the consumer and supplies starting power to the fuel cell power generation modules 12 and 14.
非常用蓄電装置16は、例えば、蓄電装置ユニット24が故障などの原因により、補機22に電力を供給できない場合において、商用系統側から、需要家の負荷に非常用の電力を供給する。非常用蓄電装置16は、蓄電装置ユニット24と同様に、例えば、蓄電池によって実現され、鉛蓄電池、アルカリ蓄電池、リチウムイオン蓄電池などでよく、放電後においては再び蓄電することによって再利用できてもよい。非常用蓄電装置16の蓄電容量は、複数の需要家の負荷に非常用の電力を供給することを想定して、蓄電装置ユニット24の蓄電容量よりも、大きくてもよい。
The emergency power storage device 16 supplies emergency power to the load of the consumer from the commercial system side when, for example, the power storage device unit 24 cannot supply power to the auxiliary device 22 due to a failure or the like. Like the power storage device unit 24, the emergency power storage device 16 is realized by, for example, a storage battery, may be a lead storage battery, an alkaline storage battery, a lithium ion storage battery, or the like, and may be reused by storing electricity again after discharging. .. The storage capacity of the emergency power storage device 16 may be larger than the storage capacity of the power storage device unit 24, assuming that emergency power is supplied to the loads of a plurality of consumers.
次に、本実施形態に係る電力供給システム2で実行される各種の処理について詳細に説明する。図10は、本実施形態に係る電力供給システム2で実行される電力供給システム起動処理を説明するフローチャートを示す図である。この電力供給システム起動処理は、制御装置10が電力供給システム2を起動させる際に実行される処理である。本実施形態においては、例えば、電力供給システム2を起動させる際に、制御装置10が燃料電池発電モジュール12を起動させることにより実行される処理である。
Next, various processes executed by the power supply system 2 according to the present embodiment will be described in detail. FIG. 10 is a diagram showing a flowchart illustrating a power supply system activation process executed by the power supply system 2 according to the present embodiment. This power supply system activation process is a process executed when the control device 10 activates the power supply system 2. In the present embodiment, for example, when the power supply system 2 is started, the control device 10 is a process executed by starting the fuel cell power generation module 12.
この図10に示すように、この燃料電池システム起動処理においては、制御装置10が、燃料電池システム1が運転可能かどうかを判断する(ステップS30)。燃料電池システム1が運転可能な場合(ステップS30:Yes)は、上述した燃料電池システム起動処理を開始する(ステップS32)。燃料電池システム起動処理は、第1実施形態における図2のステップS10乃至ステップS16、又は、第2実施形態における図6のステップS20乃至ステップS26の通りである。
As shown in FIG. 10, in this fuel cell system start-up process, the control device 10 determines whether or not the fuel cell system 1 can be operated (step S30). When the fuel cell system 1 can be operated (step S30: Yes), the above-mentioned fuel cell system start-up process is started (step S32). The fuel cell system start-up process is as in steps S10 to S16 of FIG. 2 in the first embodiment, or steps S20 to S26 of FIG. 6 in the second embodiment.
一方で、燃料電池システム1の故障などの原因により、燃料電池システム1が運転可能でない場合(ステップ30:No)、非常用蓄電装置16から商用系統へ電力供給して(ステップS34)、需要家の負荷の電力を確保する。
On the other hand, when the fuel cell system 1 cannot be operated due to a failure of the fuel cell system 1 (step 30: No), power is supplied from the emergency power storage device 16 to the commercial system (step S34), and the consumer Secure the power of the load.
以上のように、本実施形態に係る電力供給システム2によれば、何らかの理由により燃料電池システム1が運転不能であっても、非常用蓄電装置16に蓄えられている電力を、商用系統側から、需要家の負荷に供給することができる。このため、燃料電池システム1が運転不能であっても、需要家に電力供給を行うための電力供給システム2としての役割を果たすことができ、第1実施形態及び第2実施形態に記載の燃料電池システム1よりも冗長性を向上させることができる。
As described above, according to the power supply system 2 according to the present embodiment, even if the fuel cell system 1 cannot be operated for some reason, the power stored in the emergency power storage device 16 can be transferred from the commercial system side. , Can supply the load of consumers. Therefore, even if the fuel cell system 1 is inoperable, it can serve as a power supply system 2 for supplying power to the consumer, and the fuel according to the first embodiment and the second embodiment can be used. The redundancy can be improved as compared with the battery system 1.
なお、非常用蓄電装置16は、商用系統を介して、燃料電池発電モジュール12の補機22に起動電力を供給して補機22を起動させることができるようにしてもよい。これにより、燃料電池発電モジュール12の起動及び燃料電池システム1の起動について、より高い冗長性を持たすことができ、燃料電池システム1の起動の安定性を担保することができる。
The emergency power storage device 16 may be capable of supplying starting power to the auxiliary machine 22 of the fuel cell power generation module 12 to start the auxiliary machine 22 via a commercial system. As a result, it is possible to have higher redundancy in starting the fuel cell power generation module 12 and starting the fuel cell system 1, and it is possible to ensure the stability of starting the fuel cell system 1.
また、例えば、燃料電池システム1における燃料電池発電モジュール12のみが起動不可能であって、燃料電池発電モジュール14は外部から補機への起動電力が供給されれば、起動が可能である場合については、非常用蓄電装置16から商用系統を通じて燃料電池発電モジュール14に起動電力の供給を行い起動させることで、燃料電池システム1を起動させてもよく、非常用蓄電装置16の電力は需要家の負荷のみに用いることに制限されない。
Further, for example, when only the fuel cell power generation module 12 in the fuel cell system 1 cannot be started, and the fuel cell power generation module 14 can be started if the start power is supplied from the outside to the auxiliary machine. May start the fuel cell system 1 by supplying starting power from the emergency power storage device 16 to the fuel cell power generation module 14 through a commercial system and starting the fuel cell system 1. It is not limited to being used only for loads.
図9においては、燃料電池システム1は「蓄電装置ユニット交流系統設置型」が図示されている。しかし、非常用蓄電装置16を備える電力供給システム2の燃料電池システム1は、「蓄電装置ユニット直流系統設置型」、又は「蓄電装置ユニット直流系統及び交流系統両設置型」の燃料電池システム1を備えるようにしてもよい。すなわち、第3実施形態に係る電力供給システム2は、上述した全ての第1実施形態の変形例及び第2実施形態の変形例にも適用が可能である。
In FIG. 9, the fuel cell system 1 is illustrated as a "power storage device unit AC system installation type". However, the fuel cell system 1 of the power supply system 2 including the emergency power storage device 16 is a fuel cell system 1 of "power storage device unit DC system installation type" or "power storage device unit DC system and AC system both installation type". You may be prepared. That is, the power supply system 2 according to the third embodiment can be applied to all the modified examples of the first embodiment and the modified examples of the second embodiment described above.
また、図9においては、非常用蓄電装置16は、燃料電池システム1の外部に図示されているが、実際には、非常用蓄電装置16は燃料電池システム1に物理的に分離されていても、物理的に分離されていなくてもよく、その設置の位置については制限されない。
Further, in FIG. 9, the emergency power storage device 16 is shown outside the fuel cell system 1, but in reality, the emergency power storage device 16 may be physically separated from the fuel cell system 1. , It does not have to be physically separated, and the position of its installation is not limited.
〔第4実施形態〕
第4実施形態に係る燃料電池システム1は、上述した第1実施形態、第2実施形態又は第3実施形態に係る燃料電池システム1において、第1のモジュールグループに属する燃料電池発電モジュール12と、第2のモジュールグループに属する燃料電池発電モジュール14とをスイッチを介して接続し、商用系統を介さずとも各燃料電池発電モジュール12及び14に起動電力の供給を可能としている。以下においては、第1実施形態の変形例として第4実施形態に係る燃料電池システム1を説明するが、第2実施形態又は第3実施形態を変形して第4実施形態に係る燃料電池システム1を実現することも可能である。 [Fourth Embodiment]
Thefuel cell system 1 according to the fourth embodiment includes the fuel cell power generation module 12 belonging to the first module group in the fuel cell system 1 according to the first embodiment, the second embodiment, or the third embodiment described above. The fuel cell power generation module 14 belonging to the second module group is connected via a switch, and it is possible to supply starting power to the fuel cell power generation modules 12 and 14 without going through a commercial system. Hereinafter, the fuel cell system 1 according to the fourth embodiment will be described as a modified example of the first embodiment, but the fuel cell system 1 according to the fourth embodiment is modified from the second embodiment or the third embodiment. It is also possible to realize.
第4実施形態に係る燃料電池システム1は、上述した第1実施形態、第2実施形態又は第3実施形態に係る燃料電池システム1において、第1のモジュールグループに属する燃料電池発電モジュール12と、第2のモジュールグループに属する燃料電池発電モジュール14とをスイッチを介して接続し、商用系統を介さずとも各燃料電池発電モジュール12及び14に起動電力の供給を可能としている。以下においては、第1実施形態の変形例として第4実施形態に係る燃料電池システム1を説明するが、第2実施形態又は第3実施形態を変形して第4実施形態に係る燃料電池システム1を実現することも可能である。 [Fourth Embodiment]
The
図11は、第4実施形態に係る燃料電池システムの全体構成を示すブロック図である。この図11に示すように、本実施形態における燃料電池システム1は、制御装置10と、第1のモジュールグループに属する燃料電池発電モジュール12と、第2のモジュールグループに属する燃料電池発電モジュール14とを備え、全ての燃料電池発電モジュール12及び14がスイッチ30を介して互いに接続されている。換言すれば、スイッチ30は、蓄電装置ユニット24を、複数の燃料電池発電モジュール12及び14のいずれかに択一的に接続する。
FIG. 11 is a block diagram showing the overall configuration of the fuel cell system according to the fourth embodiment. As shown in FIG. 11, the fuel cell system 1 in the present embodiment includes a control device 10, a fuel cell power generation module 12 belonging to the first module group, and a fuel cell power generation module 14 belonging to the second module group. All fuel cell power generation modules 12 and 14 are connected to each other via a switch 30. In other words, the switch 30 selectively connects the power storage device unit 24 to any of the plurality of fuel cell power generation modules 12 and 14.
図11で示すように、本実施形態においては、全ての燃料電池発電モジュール12及び14が互いに接続されているため、燃料電池発電モジュール12における蓄電装置ユニット24の電力が、いずれの燃料電池発電モジュール14にもスイッチ30の接続を選択することで供給が可能となる。したがって、本実施形態においては、蓄電装置ユニット24を備える第1のモジュールグループに含まれる燃料電池発電モジュール12だけでなく、蓄電装置ユニット24を備えていない第2のモジュールグループに含まれる燃料電池発電モジュール14も、起動電力を供給して、最初に起動される燃料電池発電モジュールとすることができる。
As shown in FIG. 11, in the present embodiment, since all the fuel cell power generation modules 12 and 14 are connected to each other, the power of the power storage device unit 24 in the fuel cell power generation module 12 is any of the fuel cell power generation modules. It is possible to supply 14 by selecting the connection of the switch 30. Therefore, in the present embodiment, not only the fuel cell power generation module 12 included in the first module group including the power storage device unit 24 but also the fuel cell power generation included in the second module group not including the power storage device unit 24. The module 14 can also be a fuel cell power generation module that is first started by supplying starting power.
そのため、燃料電池発電モジュール12において蓄電装置ユニット24以外の構成要素(例えば、補機22など)に故障がありつつも、蓄電装置ユニット24には不備はなく、電力の供給が可能な場合には、当該蓄電装置ユニット24が存在する燃料電池発電モジュール12以外の燃料電池発電モジュール14に起動電力を供給することで、その起動電力の供給を受けた燃料電池発電モジュール14が起動し、さらに他の燃料電池発電モジュール14を起動させることにより、燃料電池システム1の起動を担保することができる。
Therefore, if the fuel cell power generation module 12 has a failure in a component other than the power storage device unit 24 (for example, an auxiliary device 22), but the power storage device unit 24 is not defective and power can be supplied. By supplying starting power to the fuel cell power generation module 14 other than the fuel cell power generation module 12 in which the power storage device unit 24 is present, the fuel cell power generation module 14 to which the start power is supplied is started, and further other By activating the fuel cell power generation module 14, the activation of the fuel cell system 1 can be guaranteed.
このため、本実施形態においては、制御装置10は、燃料電池発電モジュール12及び14のそれぞれから、故障があるか、或いは、運転が可能であるか否かを示す運転可否情報を取得し、起動電力を供給すべき燃料電池発電モジュール12及び14を決定できるようにしている。すなわち、制御装置10は、運転可否情報に基づいて、実際に起動が可能であるか否かを含めて、起動する燃料電池発電モジュール12及び14を決定する。
Therefore, in the present embodiment, the control device 10 acquires operability information indicating whether or not there is a failure or whether or not operation is possible from each of the fuel cell power generation modules 12 and 14, and starts the control device 10. The fuel cell power generation modules 12 and 14 to be supplied with power can be determined. That is, the control device 10 determines the fuel cell power generation modules 12 and 14 to be started, including whether or not the fuel cell can actually be started, based on the operation availability information.
次に、本実施形態に係る燃料電池システム1で実行される各種の処理について詳細に説明する。図12は、本実施形態に係る燃料電池システム1で実行される燃料電池システム起動処理を説明するフローチャートを示す図である。この燃料電池システム起動処理は、制御装置10が燃料電池システム1を起動させる際に実行される処理である。
Next, various processes executed in the fuel cell system 1 according to the present embodiment will be described in detail. FIG. 12 is a diagram showing a flowchart illustrating a fuel cell system start-up process executed by the fuel cell system 1 according to the present embodiment. This fuel cell system activation process is a process executed when the control device 10 activates the fuel cell system 1.
この図12に示すように、この燃料電池システム起動処理においては、蓄電装置ユニット24に蓄えられた電力を起動電力として供給される、燃料電池発電モジュール12及び14を決定する(ステップS40)。本実施形態においては、第1のモジュールグループに含まれる燃料電池発電モジュール12を最初に起動する燃料電池発電モジュールとして決定することもできるし、第2のモジュールグループに含まれる燃料電池発電モジュール14を最初に起動する燃料電池発電モジュールとして決定することもできる。
As shown in FIG. 12, in this fuel cell system start-up process, the fuel cell power generation modules 12 and 14 to be supplied with the electric power stored in the power storage device unit 24 as the start-up power are determined (step S40). In the present embodiment, the fuel cell power generation module 12 included in the first module group can be determined as the fuel cell power generation module to be started first, or the fuel cell power generation module 14 included in the second module group can be determined. It can also be determined as the first fuel cell power generation module to start.
次に、制御装置10は、スイッチ30を制御して、決定された燃料電池発電モジュール12又は14に蓄電装置ユニット24を接続する(ステップS42)。そして、スイッチ30を介して蓄電装置ユニット24に蓄えられた電力が、接続された燃料電池発電モジュール12又は14に起動電力として供給され、当該燃料電池発電モジュール12又は14が起動する(ステップS44)。
Next, the control device 10 controls the switch 30 to connect the power storage device unit 24 to the determined fuel cell power generation module 12 or 14 (step S42). Then, the electric power stored in the power storage device unit 24 via the switch 30 is supplied as starting power to the connected fuel cell power generation module 12 or 14, and the fuel cell power generation module 12 or 14 is started (step S44). ..
次に、制御装置10は、第1又は第2のモジュールグループに含まれる燃料電池発電モジュール12又は燃料電池発電モジュール14の中から、起動する燃料電池発電モジュールを決定する(ステップS46)。そして、発電状態となっている燃料電池発電モジュール12又は14が発電する電力を、決定された燃料電池発電モジュール14へ起動電力として供給する(ステップS48)。起動電力を供給する場合、商用系統側がら供給してもよく、スイッチ30を介してもよく、その方法は限定されない。
Next, the control device 10 determines the fuel cell power generation module to be started from the fuel cell power generation module 12 or the fuel cell power generation module 14 included in the first or second module group (step S46). Then, the electric power generated by the fuel cell power generation module 12 or 14 in the power generation state is supplied to the determined fuel cell power generation module 14 as starting power (step S48). When the starting power is supplied, it may be supplied from the commercial system side or may be supplied via the switch 30, and the method is not limited.
次に、制御装置10は、第1及び第2のモジュールグループに含まれるすべての燃料電池発電モジュール12及び14が起動したか否かを判断する(ステップS50)。ここでは、故障等で起動できないとされた燃料電池発電モジュール12及び14は、すべて起動したか否かの判断からは除外される。
Next, the control device 10 determines whether or not all the fuel cell power generation modules 12 and 14 included in the first and second module groups have been started (step S50). Here, the fuel cell power generation modules 12 and 14 that cannot be started due to a failure or the like are all excluded from the judgment as to whether or not they have started.
本実施形態の燃料電池システム1においても、上述した第1実施形態と同様に、図13に示すような、蓄電装置ユニット24が直流系統側に存在する「蓄電装置ユニット直流系統設置型」の燃料電池システム1としても、図14に示すような、蓄電装置ユニット24が交流系統及び直流系統の両方に存在する「蓄電装置ユニット直流系統及び交流系統両設置型」の燃料電池システム1としても実現可能である。また、その燃料電池システム起動処理は図12と同様である。
Also in the fuel cell system 1 of the present embodiment, as in the first embodiment described above, as shown in FIG. 13, the fuel cell of the “power storage device unit DC system installation type” in which the power storage device unit 24 exists on the DC system side. The battery system 1 can also be realized as a fuel cell system 1 of a "power storage device unit DC system and AC system both installed type" in which the power storage device unit 24 exists in both the AC system and the DC system as shown in FIG. Is. The fuel cell system activation process is the same as in FIG.
なお、本実施形態においては、蓄電装置ユニット24は、必ずしも燃料電池発電モジュール12の装置内に設置されている必要は無い。すなわち、蓄電装置ユニット24を、燃料電池発電モジュール12の外部に設置することも可能である。
In the present embodiment, the power storage device unit 24 does not necessarily have to be installed in the device of the fuel cell power generation module 12. That is, the power storage device unit 24 can be installed outside the fuel cell power generation module 12.
図15は、蓄電装置ユニット24を燃料電池発電モジュール12の内部に設置する代わりに、燃料電池発電モジュール12の外部に蓄電装置18を設置した燃料電池システム1の内部構成を示している。この図15に示す変形例においては、燃料電池発電モジュール12に設置された蓄電装置ユニット24を燃料電池発電モジュール12の外部へ取り出し、蓄電装置18として設置されている。この場合は、制御装置10は燃料電池発電モジュール12及び14に関して運転可能か否かを示す運転可否情報を取得し、この運転可否情報に基づいて、運転可能な燃料電池発電モジュール12及び14を選択する。そして、選択された燃料電池発電モジュール12及び14に、起動電力が蓄電装置18から供給されるように、スイッチ30を制御する。
FIG. 15 shows the internal configuration of the fuel cell system 1 in which the power storage device 18 is installed outside the fuel cell power generation module 12 instead of installing the power storage device unit 24 inside the fuel cell power generation module 12. In the modified example shown in FIG. 15, the power storage device unit 24 installed in the fuel cell power generation module 12 is taken out to the outside of the fuel cell power generation module 12 and installed as the power storage device 18. In this case, the control device 10 acquires operability information indicating whether or not the fuel cell power generation modules 12 and 14 can be operated, and selects the operable fuel cell power generation modules 12 and 14 based on the operability information. do. Then, the switch 30 is controlled so that the starting power is supplied from the power storage device 18 to the selected fuel cell power generation modules 12 and 14.
以上のように、本実施形態に係る燃料電池システム1によれば、燃料電池発電モジュール12の規模に見合った蓄電装置ユニット24により、燃料電池発電モジュール12が起動でき、燃料電池システム1全体の起動をすることができ、燃料電池システム1の規模に比して、蓄電装置ユニット24の体積や重量の抑えることができ、コスト削減などを図ることができる。
As described above, according to the fuel cell system 1 according to the present embodiment, the fuel cell power generation module 12 can be started by the power storage device unit 24 suitable for the scale of the fuel cell power generation module 12, and the fuel cell system 1 as a whole can be started. The volume and weight of the power storage device unit 24 can be reduced as compared with the scale of the fuel cell system 1, and the cost can be reduced.
〔第5実施形態〕
[A]構成
図16は、第5実施形態に係る燃料電池システム1の全体構成を模式的に示すブロック図である。 [Fifth Embodiment]
[A] Configuration FIG. 16 is a block diagram schematically showing the overall configuration of thefuel cell system 1 according to the fifth embodiment.
[A]構成
図16は、第5実施形態に係る燃料電池システム1の全体構成を模式的に示すブロック図である。 [Fifth Embodiment]
[A] Configuration FIG. 16 is a block diagram schematically showing the overall configuration of the
図16に示すように、本実施形態の燃料電池システム1は、バックアップ電源110と、第1燃料電池部120(小型燃料電池部)と、第1燃料電池部120よりも出力が高い第2燃料電池部130(大型燃料電池部)とを備える。
As shown in FIG. 16, the fuel cell system 1 of the present embodiment has a backup power supply 110, a first fuel cell unit 120 (small fuel cell unit), and a second fuel having a higher output than the first fuel cell unit 120. It is provided with a battery unit 130 (large fuel cell unit).
バックアップ電源110は、たとえば、蓄電池を含む無停電電源装置(UPS)である。この他に、バックアップ電源110は、内燃機関発電機や小型の燃料電池であってもよい。第1燃料電池部120は、小型の燃料電池部である。第2燃料電池部130は、大型の燃料電池部であって、第1燃料電池部120よりも出力が高い。ここでは、バックアップ電源110および第1燃料電池部120は、第2燃料電池部130の外部に設けられている。
The backup power supply 110 is, for example, an uninterruptible power supply (UPS) including a storage battery. In addition, the backup power source 110 may be an internal combustion engine generator or a small fuel cell. The first fuel cell unit 120 is a small fuel cell unit. The second fuel cell unit 130 is a large fuel cell unit and has a higher output than the first fuel cell unit 120. Here, the backup power supply 110 and the first fuel cell unit 120 are provided outside the second fuel cell unit 130.
この他に、燃料電池システム1は、制御部100を備える。制御部100は、燃料電池システム1の発電運転を制御するために、燃料電池システム1を構成する各部の動作を制御する。図示を省略しているが、制御部100は、演算器(図示省略)とメモリ装置(図示省略)とを含み、メモリ装置が記憶しているプログラムを用いて演算器が演算処理を行うことによって、燃料電池システム1を構成する各部の制御を行う。
In addition to this, the fuel cell system 1 includes a control unit 100. The control unit 100 controls the operation of each unit constituting the fuel cell system 1 in order to control the power generation operation of the fuel cell system 1. Although not shown, the control unit 100 includes an arithmetic unit (not shown) and a memory device (not shown), and the arithmetic unit performs arithmetic processing using a program stored in the memory device. , Control each part constituting the fuel cell system 1.
本実施形態では、系統電源が消失したときに燃料電池システム1について起動する際(停電時起動の実行時)には、制御部100は、まず、バックアップ電源110から供給される電力によって第1燃料電池部120を起動する。つぎに、制御部100は、起動された第1燃料電池部120から供給される電力によって第2燃料電池部130を起動する。
In the present embodiment, when the fuel cell system 1 is started when the system power supply is lost (when the start is executed at the time of power failure), the control unit 100 first uses the power supplied from the backup power supply 110 to generate the first fuel. Start the battery unit 120. Next, the control unit 100 activates the second fuel cell unit 130 by the electric power supplied from the activated first fuel cell unit 120.
[B]詳細構成
上記の燃料電池システム1の具体例について説明する。 [B] Detailed Configuration A specific example of the abovefuel cell system 1 will be described.
上記の燃料電池システム1の具体例について説明する。 [B] Detailed Configuration A specific example of the above
図17は、実施形態に係る燃料電池システム1において、第1燃料電池部120および第2燃料電池部130の詳細を示す図である。
FIG. 17 is a diagram showing details of the first fuel cell unit 120 and the second fuel cell unit 130 in the fuel cell system 1 according to the embodiment.
図17に示すように、第1燃料電池部120および第2燃料電池部130は、燃料電池セルスタック180a~180cを含む。燃料電池セルスタック180a~180cは、第2燃料電池部130の方が第1燃料電池部120よりも数が多い。ここでは、第1燃料電池部120は、たとえば、1つの燃料電池セルスタック180aを含む。これに対して、第2燃料電池部130は、たとえば、2つの燃料電池セルスタック180b,180cを含む。
As shown in FIG. 17, the first fuel cell unit 120 and the second fuel cell unit 130 include fuel cell stacks 180a to 180c. In the fuel cell stacks 180a to 180c, the number of the second fuel cell unit 130 is larger than that of the first fuel cell unit 120. Here, the first fuel cell unit 120 includes, for example, one fuel cell stack 180a. On the other hand, the second fuel cell unit 130 includes, for example, two fuel cell stacks 180b and 180c.
図17に示すように、燃料電池システム1においては、燃料流路L140と酸化剤流路L150と冷却水流路L160とが設けられている。
As shown in FIG. 17, in the fuel cell system 1, a fuel flow path L140, an oxidant flow path L150, and a cooling water flow path L160 are provided.
燃料流路L140は、燃料供給源140から第1燃料電池部120および第2燃料電池部130へ燃料を供給するために設けられている。ここでは、燃料流路L140は、燃料供給源140から燃料仕切弁V140を介して第2燃料電池部130へ燃料が供給されるように構成されている。また、燃料流路L140は、燃料仕切弁V140を介在せずに燃料供給源140から第1燃料電池部120へ燃料が供給されるようには構成されている。
The fuel flow path L140 is provided to supply fuel from the fuel supply source 140 to the first fuel cell unit 120 and the second fuel cell unit 130. Here, the fuel flow path L140 is configured to supply fuel from the fuel supply source 140 to the second fuel cell unit 130 via the fuel sluice valve V140. Further, the fuel flow path L140 is configured so that fuel is supplied from the fuel supply source 140 to the first fuel cell unit 120 without interposing the fuel sluice valve V140.
酸化剤流路L150は、酸化剤供給源150から第1燃料電池部120および第2燃料電池部130へ酸化剤を供給するために設けられている。また、酸化剤流路L150は、酸化剤仕切弁V150を介在せずに酸化剤供給源150から第1燃料電池部120へ酸化剤が供給されるようには構成されている。酸化剤供給源150は、たとえば、空気ブロアで構成されている。
The oxidant flow path L150 is provided to supply the oxidant from the oxidant supply source 150 to the first fuel cell unit 120 and the second fuel cell unit 130. Further, the oxidant flow path L150 is configured so that the oxidant is supplied from the oxidant supply source 150 to the first fuel cell unit 120 without interposing the oxidant sluice valve V150. The oxidant supply source 150 is composed of, for example, an air blower.
冷却水流路L160は、冷却水ポンプ160から第1燃料電池部120および第2燃料電池部130へ冷却水を供給し、第1燃料電池部120および第2燃料電池部130を通過した冷却水が冷却水ポンプ160に戻るように構成されている。ここでは、冷却水流路L160は、冷却水ポンプ160から第1冷却水仕切弁V160aを介して第2燃料電池部130へ冷却水が供給され、第2燃料電池部130を通過した冷却水が第2冷却水仕切弁V160bを介して冷却水ポンプ160に戻るように構成されている。
The cooling water flow path L160 supplies cooling water from the cooling water pump 160 to the first fuel cell unit 120 and the second fuel cell unit 130, and the cooling water that has passed through the first fuel cell unit 120 and the second fuel cell unit 130 flows. It is configured to return to the cooling water pump 160. Here, in the cooling water flow path L160, cooling water is supplied from the cooling water pump 160 to the second fuel cell unit 130 via the first cooling water sluice valve V160a, and the cooling water that has passed through the second fuel cell unit 130 is the first. 2 It is configured to return to the cooling water pump 160 via the cooling water sluice valve V160b.
図17に示す具体例において、第1燃料電池部120を構成する1つの燃料電池セルスタック180aを起動させる際には、燃料仕切弁V140と酸化剤仕切弁V150と第1冷却水仕切弁V160aと第2冷却水仕切弁V160bとを閉めた状態で、バックアップ電源110の電力を用いて酸化剤供給源150および冷却水ポンプ160を駆動する。
In the specific example shown in FIG. 17, when activating one fuel cell stack 180a constituting the first fuel cell unit 120, the fuel sluice valve V140, the oxidant sluice valve V150, and the first cooling water sluice valve V160a are used. With the second cooling water sluice valve V160b closed, the power of the backup power source 110 is used to drive the oxidant supply source 150 and the cooling water pump 160.
つぎに、第2燃料電池部130を構成する2つの燃料電池セルスタック180b,180cを起動させる際には、燃料仕切弁V140と酸化剤仕切弁V150と第1冷却水仕切弁V160aと第2冷却水仕切弁V160bとを開けた状態で、第1燃料電池部120から供給される電力を用いて第2燃料電池部130の起動を行う。ここでは、第1燃料電池部120から供給される電力によって、酸化剤供給源150と冷却水ポンプ160の出力を上げる。
Next, when activating the two fuel cell stacks 180b and 180c constituting the second fuel cell unit 130, the fuel sluice valve V140, the oxidant sluice valve V150, the first cooling water sluice valve V160a, and the second cooling With the water sluice valve V160b open, the second fuel cell unit 130 is started using the power supplied from the first fuel cell unit 120. Here, the outputs of the oxidant supply source 150 and the cooling water pump 160 are increased by the electric power supplied from the first fuel cell unit 120.
[C]作用・効果
以上のように、本実施形態の燃料電池システム1では、第1燃料電池部120は、バックアップ電源110から供給される電力によって起動するように構成されている。そして、第1燃料電池部120よりも出力が高い第2燃料電池部130は、起動された第1燃料電池部120から供給される電力によって起動するように構成されている。このため、本実施形態において、バックアップ電源110は、第1燃料電池部120を起動可能なものであれば十分であるので、安価な構成で電源消失時の起動を実行できる。 [C] Action / Effect As described above, in thefuel cell system 1 of the present embodiment, the first fuel cell unit 120 is configured to be started by the electric power supplied from the backup power source 110. The second fuel cell unit 130, which has a higher output than the first fuel cell unit 120, is configured to be activated by the electric power supplied from the activated first fuel cell unit 120. Therefore, in the present embodiment, the backup power supply 110 is sufficient as long as it can start the first fuel cell unit 120, so that it can be started when the power supply is lost with an inexpensive configuration.
以上のように、本実施形態の燃料電池システム1では、第1燃料電池部120は、バックアップ電源110から供給される電力によって起動するように構成されている。そして、第1燃料電池部120よりも出力が高い第2燃料電池部130は、起動された第1燃料電池部120から供給される電力によって起動するように構成されている。このため、本実施形態において、バックアップ電源110は、第1燃料電池部120を起動可能なものであれば十分であるので、安価な構成で電源消失時の起動を実行できる。 [C] Action / Effect As described above, in the
また、上記の第5実施形態では、バックアップ電源110および第1燃料電池部120は、第2燃料電池部130の外部に設けられている。このため、本実施形態では、停電時に起動するための機能を、燃料電池システム1を既設した後に容易に付加することができる。
Further, in the above-mentioned fifth embodiment, the backup power supply 110 and the first fuel cell unit 120 are provided outside the second fuel cell unit 130. Therefore, in the present embodiment, the function for starting in the event of a power failure can be easily added after the fuel cell system 1 is already installed.
[D]変形例
上記の第5実施形態では、バックアップ電源110および第1燃料電池部120が、第2燃料電池部130の外部に設けられている場合について説明したが、これに限らない。 [D] Modification Example In the fifth embodiment described above, the case where thebackup power supply 110 and the first fuel cell unit 120 are provided outside the second fuel cell unit 130 has been described, but the present invention is not limited to this.
上記の第5実施形態では、バックアップ電源110および第1燃料電池部120が、第2燃料電池部130の外部に設けられている場合について説明したが、これに限らない。 [D] Modification Example In the fifth embodiment described above, the case where the
図18は、第5実施形態の変形例に係る燃料電池システム1の全体構成を模式的に示すブロック図である。
FIG. 18 is a block diagram schematically showing the overall configuration of the fuel cell system 1 according to the modified example of the fifth embodiment.
図18に示すように、バックアップ電源110および第1燃料電池部120は、第2燃料電池部130の内部に設けられていてもよい。この場合には、別々に有していたパッケージ部材の外壁や天井や制御装置などを共用でき、部品点数が減るメリットが有る。
As shown in FIG. 18, the backup power supply 110 and the first fuel cell unit 120 may be provided inside the second fuel cell unit 130. In this case, the outer wall, ceiling, control device, and the like of the package members that are separately held can be shared, and there is an advantage that the number of parts is reduced.
以上、いくつかの実施形態を説明したが、これらの実施形態は、例としてのみ提示したものであり、発明の範囲を限定することを意図したものではない。本明細書で説明した新規な装置および方法は、その他の様々な形態で実施することができる。また、本明細書で説明した装置および方法の形態に対し、発明の要旨を逸脱しない範囲内で、種々の省略、置換、変更を行うことができる。添付の特許請求の範囲およびこれに均等な範囲は、発明の範囲や要旨に含まれるこのような形態や変形例を含むように意図されている。
Although some embodiments have been described above, these embodiments are presented only as examples and are not intended to limit the scope of the invention. The novel devices and methods described herein can be implemented in a variety of other forms. In addition, various omissions, substitutions, and changes can be made to the forms of the apparatus and method described in the present specification without departing from the gist of the invention. The appended claims and their equivalent scope are intended to include such forms and variations contained in the scope and gist of the invention.
1…燃料電池システム、2…電力供給システム、10…制御装置、12…第1のモジュールグループに含まれる燃料電池発電モジュール、14…第2のモジュールグループに含まれる燃料電池発電モジュール、16…非常用蓄電装置、18…蓄電装置、20…モジュール制御装置、22…補機、24…蓄電装置ユニット、26…PCS(パワーコンディショナ)、28…燃料電池、30…スイッチ、110…バックアップ電源、120…第1燃料電池部、130…第2燃料電池部、140…燃料供給源、150…酸化剤供給源、160…冷却水ポンプ、180a…燃料電池セルスタック、180b…燃料電池セルスタック、180c…燃料電池セルスタック、100…制御部、L140…燃料流路、L150…酸化剤流路、L160…冷却水流路、V140…燃料仕切弁、V150…酸化剤仕切弁、V160a…第1冷却水仕切弁、V160b…第2冷却水仕切弁
1 ... Fuel cell system, 2 ... Power supply system, 10 ... Control device, 12 ... Fuel cell power generation module included in the first module group, 14 ... Fuel cell power generation module included in the second module group, 16 ... Emergency Power storage device, 18 ... power storage device, 20 ... module control device, 22 ... auxiliary equipment, 24 ... power storage device unit, 26 ... PCS (power conditioner), 28 ... fuel cell, 30 ... switch, 110 ... backup power supply, 120 ... 1st fuel cell unit, 130 ... 2nd fuel cell unit, 140 ... fuel cell unit, 150 ... oxidant supply source, 160 ... cooling water pump, 180a ... fuel cell cell stack, 180b ... fuel cell cell stack, 180c ... Fuel cell stack, 100 ... control unit, L140 ... fuel flow path, L150 ... oxidant flow path, L160 ... cooling water flow path, V140 ... fuel sluice valve, V150 ... oxidant sluice valve, V160a ... first cooling water sluice valve , V160b ... Second cooling water sluice valve
Claims (9)
- 起動電力が商用系統から供給される複数の燃料電池発電モジュールを備える燃料電池システムであって、
前記複数の燃料電池発電モジュールのそれぞれは、供給された燃料を用いて発電を行う燃料電池を備えており、
前記複数の燃料電池発電モジュールは、第1のモジュールグループと第2のモジュールグループとに区分され、前記第1のモジュールグループに含まれる前記燃料電池発電モジュールは、前記商用系統が停電した場合に、蓄えられた電力を起動電力として供給する蓄電装置を備えているが、前記第2のモジュールグループに含まれる前記燃料電池発電モジュールは、前記蓄電装置を備えていない、
燃料電池システム。 A fuel cell system equipped with multiple fuel cell power generation modules in which starting power is supplied from a commercial system.
Each of the plurality of fuel cell power generation modules includes a fuel cell that generates power using the supplied fuel.
The plurality of fuel cell power generation modules are divided into a first module group and a second module group, and the fuel cell power generation module included in the first module group is used when the commercial system fails. The fuel cell power generation module included in the second module group is provided with a power storage device that supplies the stored power as starting power, but the fuel cell power generation module is not provided with the power storage device.
Fuel cell system. - 前記第1のモジュールグループに含まれる前記燃料電池発電モジュールにおける前記蓄電装置は、前記燃料電池発電モジュールの商用系統が接続されるラインに接続された第1の蓄電装置ユニットと、前記燃料電池発電モジュールの前記燃料電池の出力ラインに接続された第2の蓄電装置ユニットとのうちの少なくとも一方を備える、請求項1に記載の燃料電池システム。 The power storage device in the fuel cell power generation module included in the first module group includes a first power storage device unit connected to a line to which a commercial system of the fuel cell power generation module is connected, and the fuel cell power generation module. The fuel cell system according to claim 1, further comprising at least one of a second power storage device unit connected to the output line of the fuel cell.
- 前記複数の燃料電池発電モジュールの起動を制御する制御装置をさらに備えており、
前記制御装置は、前記第1のモジュールグループに含まれる前記燃料電池発電モジュールが起動されて発電状態となった場合に、この燃料電池発電モジュールが発電した電力を起動電力として用いて、前記第2のモジュールグループに含まれる少なくとも1つの燃料電池発電モジュールを起動する、請求項1又は請求項2に記載の燃料電池システム。 It is further equipped with a control device for controlling the activation of the plurality of fuel cell power generation modules.
When the fuel cell power generation module included in the first module group is activated and becomes a power generation state, the control device uses the power generated by the fuel cell power generation module as the start power, and the second. The fuel cell system according to claim 1 or 2, wherein at least one fuel cell power generation module included in the module group is activated. - 前記第1のモジュールグループに含まれる燃料電池発電モジュールは、1つであり、
前記制御装置は、前記第1のモジュールグループに含まれる前記燃料電池発電モジュールが発電した電力を起動電力として用いて、前記第2のモジュールグループに含まれる前記燃料電池発電モジュールのうちの1つ又は複数を起動する、請求項3に記載の燃料電池システム。 The fuel cell power generation module included in the first module group is one.
The control device uses the power generated by the fuel cell power generation module included in the first module group as starting power, and is one of the fuel cell power generation modules included in the second module group or. The fuel cell system according to claim 3, wherein a plurality of fuel cells are activated. - 前記第1のモジュールグループに含まれる燃料電池発電モジュールは、複数であり、
前記制御装置は、前記第1のモジュールグループに含まれる複数の燃料電池発電モジュールが起動されて発電状態となった場合に、
前記第1のモジュールグループに含まれる複数の燃料電池発電モジュールが発電した電力を起動電力として用いて、前記第2のモジュールグループに含まれる前記燃料電池発電モジュールのうちの1つ又は複数の燃料電池発電モジュールを起動する、
請求項3に記載の燃料電池システム。 There are a plurality of fuel cell power generation modules included in the first module group, and there are a plurality of fuel cell power generation modules.
The control device is used when a plurality of fuel cell power generation modules included in the first module group are activated to enter a power generation state.
One or more fuel cells of the fuel cell power generation modules included in the second module group, using the power generated by the plurality of fuel cell power generation modules included in the first module group as starting power. Start the power generation module,
The fuel cell system according to claim 3. - 前記複数の燃料電池発電モジュールのそれぞれは、前記燃料電池に燃料を供給する補機をさらに備えており、
前記第1のモジュールグループに含まれる前記燃料電池発電モジュールにおける前記蓄電装置は、起動電力を少なくとも前記補機に供給して前記補機を起動し、前記補機から燃料を前記燃料電池に供給する、請求項1乃至請求項5のいずれかに記載の燃料電池システム。 Each of the plurality of fuel cell power generation modules further includes an auxiliary machine for supplying fuel to the fuel cell.
The power storage device in the fuel cell power generation module included in the first module group supplies at least starting power to the auxiliary machine to start the auxiliary machine, and supplies fuel from the auxiliary machine to the fuel cell. , The fuel cell system according to any one of claims 1 to 5. - 前記蓄電装置は、1つ分の燃料電池発電モジュールの起動電力を賄うために必要な容量の蓄電池を備える、請求項1乃至請求項6のいずれかに記載の燃料電池システム。 The fuel cell system according to any one of claims 1 to 6, wherein the power storage device includes a storage battery having a capacity required to cover the starting power of one fuel cell power generation module.
- 請求項1乃至請求項7のいずれかに記載された燃料電池システムと、
前記燃料電池システムに前記起動電力を供給する前記商用系統に接続されて、前記燃料電池システムが運転不能である場合に、蓄えられた電力を非常用電力として需要家に供給する非常用蓄電装置と、
を備える電力供給システム。 The fuel cell system according to any one of claims 1 to 7.
An emergency power storage device that is connected to the commercial system that supplies the starting power to the fuel cell system and supplies the stored power as emergency power to the consumer when the fuel cell system is inoperable. ,
Power supply system with. - 前記蓄電装置を、前記複数の燃料電池発電モジュールのいずれかに択一的に接続するスイッチをさらに備えており、
前記制御装置は、前記複数の燃料電池発電モジュールの運転可否情報に基づいて、前記スイッチを制御して、前記蓄電装置を接続する燃料電池発電モジュールを選択する、
請求項3乃至請求項5のいずれかに記載の燃料電池システム。 Further, a switch for selectively connecting the power storage device to any one of the plurality of fuel cell power generation modules is provided.
The control device controls the switch based on the operability information of the plurality of fuel cell power generation modules to select the fuel cell power generation module to which the power storage device is connected.
The fuel cell system according to any one of claims 3 to 5.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202180029397.5A CN115428202A (en) | 2020-08-04 | 2021-08-03 | Fuel cell system and power supply system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-132665 | 2020-08-04 | ||
JP2020132665A JP7516154B2 (en) | 2020-08-04 | 2020-08-04 | Fuel cell system and power supply system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022030514A1 true WO2022030514A1 (en) | 2022-02-10 |
Family
ID=80117475
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/028853 WO2022030514A1 (en) | 2020-08-04 | 2021-08-03 | Fuel cell system and power supply system |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7516154B2 (en) |
CN (1) | CN115428202A (en) |
WO (1) | WO2022030514A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022154725A (en) * | 2021-03-30 | 2022-10-13 | 本田技研工業株式会社 | Fuel cell system and control method at startup of fuel cell system |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7513137B1 (en) | 2023-02-16 | 2024-07-09 | 富士電機株式会社 | Power generation system and method for controlling power generation system |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015146258A (en) * | 2014-02-03 | 2015-08-13 | 京セラ株式会社 | fuel cell system |
JP2016152659A (en) * | 2015-02-16 | 2016-08-22 | 静岡ガス株式会社 | Power generation control system, power generation system, residence system, program, power generation controller and power generation control method |
JP2017060316A (en) * | 2015-09-17 | 2017-03-23 | 積水化学工業株式会社 | Power management system and power management method |
JP2017126441A (en) * | 2016-01-13 | 2017-07-20 | パナソニックIpマネジメント株式会社 | Integrity control method, integrity control device, program and power control system |
WO2017135180A1 (en) * | 2016-02-03 | 2017-08-10 | パナソニックIpマネジメント株式会社 | Fuel cell assembly system and operating method therefor |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111032418A (en) * | 2017-08-14 | 2020-04-17 | 日产自动车株式会社 | Power supply system and method for operating the same |
-
2020
- 2020-08-04 JP JP2020132665A patent/JP7516154B2/en active Active
-
2021
- 2021-08-03 CN CN202180029397.5A patent/CN115428202A/en active Pending
- 2021-08-03 WO PCT/JP2021/028853 patent/WO2022030514A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015146258A (en) * | 2014-02-03 | 2015-08-13 | 京セラ株式会社 | fuel cell system |
JP2016152659A (en) * | 2015-02-16 | 2016-08-22 | 静岡ガス株式会社 | Power generation control system, power generation system, residence system, program, power generation controller and power generation control method |
JP2017060316A (en) * | 2015-09-17 | 2017-03-23 | 積水化学工業株式会社 | Power management system and power management method |
JP2017126441A (en) * | 2016-01-13 | 2017-07-20 | パナソニックIpマネジメント株式会社 | Integrity control method, integrity control device, program and power control system |
WO2017135180A1 (en) * | 2016-02-03 | 2017-08-10 | パナソニックIpマネジメント株式会社 | Fuel cell assembly system and operating method therefor |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022154725A (en) * | 2021-03-30 | 2022-10-13 | 本田技研工業株式会社 | Fuel cell system and control method at startup of fuel cell system |
JP7325472B2 (en) | 2021-03-30 | 2023-08-14 | 本田技研工業株式会社 | FUEL CELL SYSTEM AND CONTROL METHOD AT STARTUP OF FUEL CELL SYSTEM |
US11769891B2 (en) | 2021-03-30 | 2023-09-26 | Honda Motor Co., Ltd. | Fuel cell system and control method at time of starting-up fuel cell system |
Also Published As
Publication number | Publication date |
---|---|
JP2022029358A (en) | 2022-02-17 |
CN115428202A (en) | 2022-12-02 |
JP7516154B2 (en) | 2024-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022030514A1 (en) | Fuel cell system and power supply system | |
US6787259B2 (en) | Secondary power source for use in a back-up power system | |
US7053502B2 (en) | Power supply with uninterruptible function | |
US10203735B2 (en) | Systems and methods for providing fuel cell power to a data center | |
US11355955B2 (en) | Hybrid DC power installation for data center load | |
US8837179B2 (en) | Alternating current power supply device and method of controlling same | |
US7648784B2 (en) | Method and apparatus for controlling a fuel cell system having a variable number of parallel-connected modules | |
WO2018100761A1 (en) | Load test system | |
US11387476B2 (en) | Fault tolerant electrical architecture for fuel cell systems | |
CN111404399B (en) | Power supply system | |
JP2007525139A (en) | Fuel cell power storage enhancement in response to AC system transients | |
WO2017135180A1 (en) | Fuel cell assembly system and operating method therefor | |
KR20230011356A (en) | How a fuel cell works using a bidirectional inverter | |
JP2004178877A (en) | Fuel cell system | |
JP3924180B2 (en) | Fuel cell system | |
CN114424419A (en) | Energy storage system and power supply method of battery management system | |
CN212231161U (en) | Power supply, power supply system and data center | |
TWI685179B (en) | power supply system | |
WO2016121389A1 (en) | Electrical power supply device, electrical power supply system, and electrical power supply method | |
KR20180099279A (en) | Energy storage system including energy storage device | |
CN111463469A (en) | Modular fuel cell standby power supply | |
JP7513137B1 (en) | Power generation system and method for controlling power generation system | |
US11888190B2 (en) | Fuel cell system having dynamic power distribution | |
CN220964337U (en) | Power supply system | |
JP2020114042A (en) | Fuel cell vehicle and method for controlling the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21853206 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21853206 Country of ref document: EP Kind code of ref document: A1 |