WO2022030451A1 - 回転式アクチュエータ - Google Patents
回転式アクチュエータ Download PDFInfo
- Publication number
- WO2022030451A1 WO2022030451A1 PCT/JP2021/028632 JP2021028632W WO2022030451A1 WO 2022030451 A1 WO2022030451 A1 WO 2022030451A1 JP 2021028632 W JP2021028632 W JP 2021028632W WO 2022030451 A1 WO2022030451 A1 WO 2022030451A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gear
- rotary actuator
- output shaft
- housing
- sensor
- Prior art date
Links
- 230000009467 reduction Effects 0.000 claims description 32
- 238000001514 detection method Methods 0.000 claims description 17
- 230000007246 mechanism Effects 0.000 description 11
- 230000005540 biological transmission Effects 0.000 description 6
- 230000008859 change Effects 0.000 description 6
- 230000006866 deterioration Effects 0.000 description 6
- 239000011347 resin Substances 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 230000004308 accommodation Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000758 substrate Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H1/00—Toothed gearings for conveying rotary motion
- F16H1/02—Toothed gearings for conveying rotary motion without gears having orbital motion
- F16H1/04—Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members
- F16H1/06—Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members with parallel axes
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/10—Structural association with clutches, brakes, gears, pulleys or mechanical starters
- H02K7/116—Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
Definitions
- This disclosure relates to a rotary actuator.
- a rotary actuator that transmits the rotation of a motor using a gear.
- a worm gear is used to transmit the drive of a brushed DC motor.
- Patent Document 1 a magnet is built in the output shaft to detect the angle, but the detection accuracy tends to deteriorate due to the eccentric force of the output gear generated by vibration or the like and the variation in the tooth surface shape.
- An object of the present disclosure is to provide a rotary actuator capable of suppressing deterioration of detection accuracy of a sensor.
- the rotary actuator of the present disclosure includes a motor, a gear, a detected portion, and an absolute angle sensor.
- the gear constitutes an N-stage (N is an integer of 2 or more) reduction stages that transmit the rotation of the motor to the output shaft.
- the detected portion is provided in one of the gears.
- the absolute angle sensor detects a physical quantity that changes due to the rotation of the gear to be detected, which is the gear provided with the detected portion.
- the detection target gear is on the motor side of the final reduction gear, and the rotation range is within the range in which the absolute angle can be detected by the detection value of the absolute angle sensor. As a result, deterioration of the detection accuracy of the absolute angle sensor can be suppressed.
- FIG. 1 is a schematic configuration diagram showing a shift-by-wire system according to the first embodiment.
- FIG. 2 is a cross-sectional view showing a rotary actuator according to the first embodiment.
- FIG. 3 is a view taken in the direction III of FIG.
- FIG. 4 is an arrow view in the IV direction of FIG. 2.
- FIG. 5 is a perspective view showing the housing and the sensor cover according to the first embodiment.
- FIG. 6 is an exploded perspective view showing a rotary actuator according to the first embodiment.
- FIG. 7 is a perspective view showing a gear and a gear connection shaft according to the second embodiment.
- FIG. 8 is a plan view of the rotary actuator according to the third embodiment.
- FIG. 9 is a plan view showing a state in which the sensor cover of the rotary actuator according to the third embodiment is removed.
- FIG. 10 is a cross-sectional view taken along the line X-ABC-X of FIG.
- FIG. 11 is a plan view of the rotary actuator according to the fourth embodiment.
- FIG. 12 is a plan view showing a state in which the sensor cover of the rotary actuator according to the fourth embodiment is removed.
- FIG. 13 is a cross-sectional view taken along the line XIII-D-E-XIII of FIG.
- FIG. 2 is a sectional view taken along line II-O-II of FIG.
- the rotary actuator 40 of this embodiment is applied to the shift-by-wire system 1.
- the shift-by-wire system 1 includes a rotary actuator 40, a shift range switching mechanism 20, a parking lock mechanism 30, and the like.
- the rotary actuator 40 has a motor 50 (see FIG. 2), rotates by being supplied with electric power from a battery mounted on a vehicle (not shown), and functions as a drive source for the shift range switching mechanism 20. Details of the rotary actuator 40 will be described later.
- the shift range switching mechanism 20 has a detent plate 21, a detent spring 25, and the like, and transmits the rotational driving force output from the speed reducer 14 to the manual valve 28 and the parking lock mechanism 30.
- the detent plate 21 is fixed to the output shaft 15 and driven by the rotary actuator 40.
- the detent plate 21 is provided with a pin 24 that protrudes in parallel with the output shaft 15.
- the pin 24 is connected to the manual valve 28.
- the detent plate 21 is driven by the rotary actuator 40, so that the manual valve 28 reciprocates in the axial direction. That is, the shift range switching mechanism 20 converts the rotational motion of the rotary actuator 40 into a linear motion and transmits it to the manual valve 28.
- the manual valve 28 is provided on the valve body 29. When the manual valve 28 reciprocates in the axial direction, the hydraulic pressure supply path to the hydraulic clutch (not shown) is switched, and the engagement state of the hydraulic clutch is switched to change the shift range.
- the detent spring 25 is a plate-shaped member that can be elastically deformed, and a detent roller 26 is provided at the tip thereof.
- the detent spring 25 urges the detent roller 26 toward the center of rotation of the detent plate 21.
- the detent spring 25 is elastically deformed, and the detent roller 26 moves between the valleys.
- the parking lock mechanism 30 has a parking rod 31, a cone 32, a parking lock pole 33, a shaft portion 34, and a parking gear 35.
- the parking rod 31 is formed in a substantially L shape, and one end 311 side is fixed to the detent plate 21.
- a cone 32 is provided on the other end 312 side of the parking rod 31.
- the conical body 32 is formed so that the diameter is reduced toward the other end 312 side.
- the parking lock pole 33 is in contact with the conical surface of the conical body 32 and is provided so as to be swingable around the shaft portion 34.
- a convex portion 331 that can mesh with the parking gear 35 is provided.
- the parking lock pole 33 is pushed up and the convex portion 331 and the parking gear 35 mesh with each other.
- the conical body 32 moves in the direction of the arrow NotP, the meshing between the convex portion 331 and the parking gear 35 is released.
- the parking gear 35 is provided on an axle (not shown) so as to be able to mesh with the convex portion 331 of the parking lock pole 33.
- the rotation of the axle is restricted.
- the shift range is the NotP range, which is a range other than P
- the parking gear 35 is not locked by the parking lock pole 33, and the rotation of the axle is not hindered by the parking lock mechanism 30.
- the shift range is the P range
- the parking gear 35 is locked by the parking lock pole 33, and the rotation of the axle is restricted.
- the rotary actuator 40 includes a housing 41, a sensor cover 43, a gear cover 45, a motor 50, a motor gear 51, gears 52 to 54, a gear connection shaft 55, an output shaft gear 60, and a sensor magnet. It includes 65, a rotation angle sensor 68, and the like.
- the axial direction of the motor 50 is the vertical direction of the paper surface, the upper side of the paper surface is “one side”, and the lower side of the paper surface is “the other side”.
- the housing 41 is made of a metal such as aluminum, and is composed of a motor housing portion 411 and a gear housing portion 412.
- the motor housing portion 411 is formed in a substantially bottomed cylinder shape that opens on one side in the axial direction.
- the gear housing portion 412 is formed so as to project outward in the radial direction of the motor housing portion 411.
- the end face on one side of the gear housing portion 412 is formed substantially on the same plane as the end face on one side of the motor housing portion 411.
- the other end face of the gear housing portion 412 is located in the middle of the motor housing portion 411 in the axial direction. In other words, the motor housing portion 411 projects to the other side.
- an output shaft gear accommodating portion 413 accommodating the output shaft gear 60 is formed so as to project on the side opposite to the motor housing portion 411.
- the sensor cover 43 and the gear cover 45 are provided on both sides of the housing 41.
- the sensor cover 43 is provided on one side of the motor housing portion 411 and the gear housing portion 412, and is fixed to the housing 41 with screws 439.
- the sensor cover 43 is provided with a connector 435, and power is supplied to the rotary actuator 40 via the connector 435. In addition, signals are transmitted and received to and from the outside via the connector 435.
- the gear cover 45 is provided on the other side of the gear housing portion 412 and is fixed to the housing 41 with screws 459.
- the motor 50 is a DC motor with a brush, and has a magnet 501, a core 502, a coil 504, a motor shaft 505, a commutator 508, a brush (not shown), and the like.
- the magnet 501 is fixed to the inner peripheral side of the motor housing portion 411.
- the core 502 is provided inside the magnet 501 in the radial direction, and generates a rotational force when a current flows through the coil 504 that is wound.
- the motor shaft 505 is rotatably supported by bearings 506 and 507, and rotates integrally with the core 502.
- the commutator 508 passes the current supplied from the brush through the coil 504.
- the gears 51 to 54 and the output shaft gear 60 are both spur tooth gears.
- the motor gear 51 and gears 52 and 53 are arranged in a first gear chamber 415 that opens to one side of the housing 41.
- the gear 54 and the output shaft gear 60 are arranged in a second gear chamber 416 that opens on the other side of the housing 41.
- the first gear chamber 415 and the second gear chamber 416 communicate with each other through a shaft hole 417 through which the gear connecting shaft 55 is inserted.
- the motor gear 51, the gear 54, and the output shaft gear 60 are made of metal, and the gears 52 and 53 are made of resin.
- the material of the gear can be appropriately changed according to the required strength and the like. be. The same applies to the embodiments described later.
- the motor gear 51 is fixed to one side of the motor shaft 505 and rotates integrally with the motor shaft 505.
- the gear 52 has a large diameter portion 521 and a small diameter portion 522, and rotates integrally with the shaft 525.
- Flat teeth are formed on the radial outer side of the large diameter portion 521 and mesh with the motor gear 51.
- Flat teeth are formed on the radial outer side of the small diameter portion 522 and mesh with the gear 53.
- the shaft 525 is inserted into a shaft hole 414 formed in the housing 41 and is rotatably supported.
- the gear 53 has a tubular portion 531 and a gear portion 532.
- the gear portion 532 is formed so as to project outward in the radial direction of the tubular portion 531.
- the gear portion 532 is formed with flat teeth that mesh with the small diameter portion 522 of the gear 52.
- the gear portion 532 is formed in a range (for example, less than 180 °) in which the absolute angle can be detected by the rotation angle sensor 68.
- a shaft fixing member 535 is provided inside the tubular portion 531 in the radial direction.
- the shaft fixing member 535 is made of, for example, metal.
- the gear connection shaft 55 is rotatably supported by the housing 41 by bearings 56 and 57.
- the bearings 56 and 57 are ball bearings and are press-fitted into the shaft holes 417.
- gear connection shaft 55 is press-fitted into a shaft fixing member 535 provided radially inside the tubular portion 531 of the gear 53, and is fixed by, for example, rolling caulking.
- gear 53 is fixed to one side of the gear connection shaft 55.
- a gear 54 is fixed to the other side of the gear connection shaft 55 by bolts 549.
- the tubular portion 351 of the gear 53 and the gear 54 are coaxially connected by the gear connecting shaft 55 and rotate integrally.
- the gear 54 is formed to have substantially the same diameter as the tubular portion 531 and has flat teeth that mesh with the output shaft gear 60 on the entire circumference on the outer side in the radial direction.
- the output shaft gear 60 has an output shaft connecting portion 601 and a gear portion 602 formed in a substantially cylindrical shape.
- the output shaft connecting portion 601 is rotatably supported by the gear cover 45 by a bush 61 provided on the outer side in the radial direction.
- the output shaft 15 (see FIG. 1) is press-fitted and fixed inside the output shaft connection portion 601 in the radial direction, and rotates integrally.
- the bush 61 is press-fitted into the output shaft holding portion 455 of the gear cover 45.
- the gear portion 602 is formed so as to project radially outward of the output shaft connecting portion 601 and meshes with the gear 54.
- the meshing point between the motor gear 51 and the large diameter portion 521 of the gear 52 is the first-stage deceleration stage
- the meshing point between the small-diameter portion 522 of the gear 52 and the gear portion 532 of the gear 53 is the second-stage deceleration.
- the third deceleration stage is appropriately referred to as a final deceleration stage.
- the reduction ratio of the final reduction stage is set to 6 or less, so that the gears 53 and 54 The drive range is 180 ° or less.
- a second gear chamber 416 is formed on the gear cover 45 side of the housing 41.
- the second gear chamber 416 has a region in which the output shaft connecting portion 601 formed in a substantially circular shape is arranged, a movable region of the gear portion 602 formed in a substantially fan shape, and a substantially circular shape when viewed from the gear cover 45 side. It consists of a region in which the formed gear 54 is arranged.
- a shaft hole 417 is formed in the region where the gear 54 is arranged.
- the final stage accommodating chamber 451 is formed on the surface of the gear cover 45 on the housing 41 side.
- the final stage accommodating chamber 451 includes a movable region of the gear portion 602 formed in a substantially fan shape and a region in which the gear 54 formed in a substantially circular shape is arranged.
- the movable region of the gear portion 602 is formed in a shape that does not limit the drive of the output shaft gear 60 according to the drive range of the output shaft gear 60.
- the gear cover 45 is formed with an in-row male portion 452 that protrudes along the region where the gear 54 of the final stage accommodating chamber 451 is arranged.
- the inrow male portion 452 fits along the wall portion 418 on the region side where the gear 54 of the second gear chamber 416 of the housing 41 is arranged to form an inrow structure.
- the gear cover 45 is formed with a positioning pin 453 that fits into the positioning hole 419 formed in the housing 41. It is preferable that the positioning hole 419 and the positioning pin 453 are formed at a position separated from the inlay structure from the viewpoint of positioning accuracy, and in the present embodiment, the positioning hole 419 and the positioning pin 453 are formed on the output shaft connecting portion 601 side of the output shaft gear 60.
- the male portion 452 of the inrow structure is on the gear cover 45 side and the female portion is on the housing 41 side, but the opposite may be true. The same applies to the positioning hole and the positioning pin.
- the housing 41 and the gear cover 45 can be accurately positioned and assembled, so that the assembly accuracy of the output shaft gear 60 to the housing 41 can be improved.
- the gears 52, 53, the gear connection shaft 55, etc. are assembled from one side of the housing 41, and the gear 54, the output shaft gear 60, etc. are assembled from the other side of the housing 41.
- the length of the gear connection shaft 55 that connects the gear 53 and the gear 54 is adjusted according to the parts on the other side assembled via the rotary actuator 40 and the output shaft 15. can do. This makes it possible to improve the degree of freedom of mounting.
- the description of the sensor cover 43 and the like is omitted.
- a sensor magnet 65 is provided on the inside of the cylinder portion 531 of the gear 53 in the radial direction and on the sensor cover 43 side of the shaft fixing member 535.
- the sensor magnet 65 is formed, for example, in the shape of a narrow plate, and is provided on the opposite side of the rotation shaft of the gear 53. In other words, the sensor magnets 65 are provided at a distance of 180 °.
- the sensor magnet 65 is held by a magnet holding member 66 formed in an annular shape.
- the magnet holding member 66 is fixed to the tubular portion 531 by press fitting or the like.
- the rotation angle sensor 68 is held by a sensor holding portion 438 formed so as to project from the sensor cover 43.
- the rotation angle sensor 68 has a Hall IC for detecting a change in the magnetic field due to the rotation of the sensor magnet 65, and the sensor element is provided so as to be located at the center of the two sensor magnets 65.
- the rotation angle sensor 68 can detect the rotation position of the gear 53 as an absolute angle. .. Further, the absolute angle of the output shaft 15 can be calculated by the gear ratio conversion.
- the gear 53 provided with the sensor magnet 65 constitutes a deceleration stage one step before the final deceleration stage. Therefore, the transmission torque is smaller than that of the output shaft gear 60, and the eccentric force generated by variations in the shape of the gear tooth surface and vibration is small. Therefore, the sensor is compared with the case where the angle of the output shaft gear 60 is detected. Deterioration of accuracy can be suppressed.
- the sensor magnet 65 is arranged in the motor side space K1.
- the motor side space K1 is separated from the output shaft side space K2 by bearings 56 and 57.
- the wear debris generated in the final deceleration stage is suppressed from reaching the motor side space K1, so that deterioration of sensor accuracy can be suppressed.
- the output shaft 15 can be installed regardless of the shape of the sensor cover 43, so that the mountability can be improved. be.
- the rotary actuator 40 includes a motor 50, gears 51 to 54, 60, a sensor magnet 65, and a rotation angle sensor 68.
- the gears 51 to 54 and 60 are spur tooth gears constituting an N-stage (N is an integer of 2 or more) reduction stages that transmit the rotation of the motor 50 to the output shaft 15.
- the sensor magnet 65 is provided in one of the gears 51 to 54 and 60. In this embodiment, it is provided on the gear 53.
- the rotation angle sensor 68 detects a physical quantity that changes due to the rotation of the gear 54 provided with the sensor magnet 65. In the present embodiment, the rotation angle sensor 68 detects a change in the magnetic field due to the rotation of the gear 54.
- the gear 53 which is the gear to be detected, is on the motor 50 side of the final reduction gear, and the rotation range is within the range in which the absolute angle can be detected by the rotation angle sensor 68.
- the two sensor magnets 65 are provided at a distance of 180 °, and when the gear 53 rotates by 180 ° or more, the angle corresponding to the detected value is not uniquely determined. If the rotation range of the gear 53 is less than 180 °, it can be said that the angle corresponding to the detected value is uniquely determined and the absolute angle can be detected.
- the output shaft 15 can be appropriately driven with a relatively small motor torque. Further, it is possible to prevent the motor 50 from becoming larger than the required torque. Further, by detecting the absolute angle on the motor side of the final reduction stage where the transmission torque is relatively large, the variation in the gear tooth surface shape is compared with the case where the rotation angle of the output shaft gear 60 is directly detected. Eccentric force due to vibration or vibration is suppressed. As a result, deterioration of the detection accuracy can be prevented, and the drive of the output shaft 15 can be appropriately driven and controlled.
- the rotation angle sensor 68 is provided in the motor side space K1 which is a space separated from the output shaft side space K2 which is a space including the final stage accommodation chamber 451 in which the final deceleration stage is arranged. As a result, the wear debris generated in the final deceleration stage is less likely to reach the rotation angle sensor 68 side, and deterioration of the detection accuracy of the rotation angle sensor 68 can be suppressed.
- the gears include an output shaft gear 60 that rotates integrally with the output shaft 15, a gear 54 that is an Nth stage gear that meshes with the output shaft gear 60, and a (N-1) stage gear that rotates integrally with the gear 54.
- a gear 53 is included.
- the gear 54 and the gear 53 are connected by a gear connecting shaft 55.
- the shape of the gear cover 45 may be changed according to the configuration on the output shaft 15 side. Therefore, regardless of the configuration on the output shaft 15 side, the sensor cover 43 having a built-in rotation angle sensor 68, terminal, or the like can be used. It is not necessary to change the shape, and the sensor cover 43 can be shared. Further, by changing the length of the gear connection shaft 55 according to the shape of the mating component to be assembled with the rotary actuator 40, the allowance of the motor housing portion 411 with respect to the position of the output shaft 15 can be adjusted, and the mounting is free. The degree can be improved.
- the gear connection shaft 55 is rotatably supported by the housing 41 by bearings 56 and 57.
- the gear 53 is provided on one side of the housing 41, and the gear 54 is provided on the other side of the housing 41.
- the rotary actuator 40 further includes a sensor cover 43 and a gear cover 45.
- the sensor cover 43 is formed with a sensor holding portion 438 for holding the rotation angle sensor 68 so that the detection portion of the rotation angle sensor 68 is inside the radial direction of the gear 53.
- the rotation angle sensor 68 can be appropriately arranged at a position where the magnetic field of the sensor magnet 65 can be detected.
- the gear cover 45 holds the output shaft gear 60 rotatably.
- the rotary actuator 40 and the output shaft 15 can be appropriately connected according to the configuration on the output shaft 15 side without changing the configuration on the sensor cover 43 side.
- the gear cover 45 is formed with a final stage accommodating chamber 451 in which the gear 54 is arranged.
- the assembly accuracy of the housing 41 and the gear cover 45 is improved, and the positional accuracy of the output shaft 15, the output shaft gear 60, and the gears 54 and 53 is improved. Further, by assembling the output shaft 15, the output shaft gear 60 and the gear 54 with appropriate backlash secured, the meshing can be stabilized and the generation of wear debris can be suppressed.
- the second embodiment is shown in FIG.
- the gear 53 (not shown in FIG. 7) and the gear 74 constituting the final reduction stage are connected by a gear connection shaft 75.
- the gear connection shaft 75 has a shaft portion 751 and a head portion 755.
- a press-fitting recess 745 is formed in the gear 74, and the head portion 755 of the gear connecting shaft 75 is press-fitted.
- the press-fitting recess 745 is composed of flat surface portions 746 and 747 formed in parallel and curved surface portions 748 and 747 connecting the flat surface portions 746 and 747.
- the head portion 755 of the gear connection shaft 75 is formed with flat surface portions 765 and 757 corresponding to the flat surface portions 746 and 747 of the press-fitting recess 745.
- the gear 74 and the gear connecting shaft 75 are press-fitted and fixed by the so-called “two-sided width”.
- the load can be received on the surface, so that the gear connection shaft 75 when transmitting the torque input to the gear connection shaft 75 to the gear 74. It is possible to suppress the slippage of the gear. Further, a fixing member such as a bolt 549 can be omitted. Further, the width across flats may be provided at the connection point between the gear 53 and the gear connection shaft 75. In addition, “parallel” means that a deviation that can suppress the slip of the gear connection shaft 75 is allowed in the width across flats. Even with this configuration, the same effect as that of the above embodiment can be obtained.
- the third embodiment is shown in FIGS. 8 to 10.
- the rotary actuator 800 of the present embodiment includes a housing 801, a sensor cover 803, a motor 50, an umbrella tooth gear 810, gears 820, 830, 840, 850 and the like.
- the housing 801 is made of, for example, resin, and accommodates a motor 50, an umbrella tooth gear 810, a gear 820, 830, 840, 850, and the like.
- a sensor cover 803 is provided on the opening side of the housing 801.
- the sensor cover 803 is made of, for example, resin, and the connector 804 is integrally provided.
- a substrate (not shown) on which various control components are mounted is fixed to the sensor cover 803.
- the housing 801 side is referred to as the bottom side
- the sensor cover 803 side is referred to as the top side.
- 8 and 10 include the sensor cover 803, and FIG. 9 shows a state in which the sensor cover 803 is removed.
- FIG. 9 shows a cross-sectional line showing the cross-sectional position of FIG. 10 is shown in FIG. The same applies to the fourth embodiment.
- the motor 50 is placed horizontally so that the motor shaft 505 is substantially parallel to the bottom surface of the housing 801. As a result, the height of the rotary actuator 800 can be suppressed.
- One end of the motor shaft 505 is taken out of the motor case 509 and rotatably supported by the housing 801 by the bearing 802.
- An umbrella tooth gear 810 is provided on one end side of the motor shaft 505.
- the gears 820, 830, 840, and 850 are all provided in a direction in which the rotation axis is orthogonal to the motor shaft 505, and are rotatably supported by the housing 801 or the like.
- the gear 820 has an umbrella tooth portion 821 and a spur tooth portion 822, and is integrally formed of resin or the like.
- a shaft 825 is press-fitted into the gear 820.
- the umbrella tooth portion 821 meshes with the umbrella tooth gear 810 to reduce the rotation of the motor 50 and change the direction of the rotation axis.
- the flat tooth portion 822 is provided on the bottom side of the umbrella tooth portion 821.
- the gear 830 has a large diameter portion 831 and a small diameter portion 832, and is integrally formed of a resin or the like.
- a shaft 835 is press-fitted into the gear 830.
- the large diameter portion 831 is arranged so as to be on the bottom side of the small diameter portion 832, and the spur teeth that mesh with the spur tooth portion 822 of the gear 820 are formed on the outer side in the radial direction.
- On the radial outer side of the small diameter portion 832 flat teeth that mesh with the gear 840 are formed.
- the gear 840 has a fan-shaped portion 841 and a tubular portion 842, and is integrally formed of a resin or the like. On the radial outer side of the fan-shaped portion 841, flat teeth that mesh with the small diameter portion 832 of the gear 830 are formed.
- a shaft 845 is press-fitted into the cylinder portion 842.
- the shaft 845 is rotatably supported by the housing 801 by bearings 846.
- a magnet accommodating chamber 843 is formed on the top side of the tubular portion 842.
- the sensor magnet 65 and the magnet holding member 66 are housed in the magnet storage chamber 843.
- the rotation angle sensor 68 is held by a sensor holding portion 805 formed so as to project from the sensor cover 803, and is arranged at a position where a change in the magnetic field due to the rotation of the sensor magnet 65 can be detected.
- the rotation angle sensor 68 is connected to the substrate, and the detected value is used for various controls.
- the gear 850 is an output shaft gear, and has an output shaft connecting portion 851 formed in a cylindrical shape and a gear portion 852, and is integrally formed of metal or the like.
- the output shaft connection portion 851 is rotatably supported by the housing 801 by the bush 61.
- the gear portion 852 meshes with the spur teeth formed on the radial outer side of the tubular portion 842 of the gear 840.
- the configuration of the gear 850 is substantially the same as that of the output shaft gear 60 of the above embodiment.
- a filter 859 is provided on the top side of the output shaft connecting portion 851. The filter 859 is fixed to the sensor cover 803.
- the meshing portion between the cap tooth gear 810 and the captive tooth portion 821 of the gear 820 is the first deceleration stage, and the meshing portion between the spur tooth portion 822 of the gear 820 and the large diameter portion 831 of the gear 830 is. It is the second reduction stage, and the meshing point between the small diameter portion 832 of the gear 820 and the fan-shaped portion 841 of the gear 840 is the third reduction stage, and the meshing portion between the cylinder portion 842 of the gear 840 and the gear portion 852 of the gear 850.
- the sensor magnet 65 is provided on the gear 840 constituting the reduction stage of the (N-1) th stage. That is, in this embodiment, the gear 840 corresponds to the “detection target gear”.
- the reduction ratio of the final reduction stage is 6 or less, and the rotation range of the gear 840 provided with the sensor magnet 65 is less than 180 °. Therefore, the detection value of the rotation angle sensor 68.
- the absolute angle of the output shaft 15 can be calculated based on the above.
- the rotation angle sensor 68 is an absolute angle sensor that detects the absolute angle of the output shaft 15. Even with this configuration, the same effect as that of the above embodiment can be obtained.
- the fourth embodiment is shown in FIGS. 11 to 14.
- the rotary actuator 900 of the present embodiment includes a housing 801, a sensor cover 803, a motor 50, a worm 910, gears 920, 840, 850 and the like.
- the motor 50 is horizontally placed in the housing 801 as in the third embodiment.
- the worm 910 is provided outside the motor case 509 and radially outside the motor shaft 505, and rotates integrally with the motor shaft 505.
- the gear 920 has a worm wheel portion 921 and a spur tooth portion 922.
- a shaft 925 is press-fitted into the gear 920.
- the shaft 925 is provided in a direction orthogonal to the motor shaft 505 and is rotatably supported by the housing 801.
- the worm wheel portion 921 forms a worm gear by meshing with the worm 910, and changes the direction of the rotation shaft while decelerating the rotation of the motor 50.
- the spur tooth portion 922 is provided on the top side of the worm wheel portion 921 and meshes with the fan-shaped portion 841 of the gear 840.
- the configuration of the gear 840, the gear 850, and the like is the same as that of the third embodiment. Even with this configuration, the same effect as that of the above embodiment can be obtained.
- gears 51-54, output shaft gears 60, and gears 74, 810, 820, 830, 840, 850, 920, and worms 910 correspond to “gears” and gears 53, 840 "detect”.
- gears 54, 74, 850 correspond to "N stage gear”
- sensor magnet 65 corresponds to "detected part”
- rotation angle corresponds to the “absolute angle sensor”
- the final stage accommodation chamber 451 corresponds to the "accommodation chamber”
- the in-row male portion 452 corresponds to the "fitting portion”.
- the number of deceleration stages is 3 or 4 stages. In other embodiments, the number of reduction stages may be two or five or more.
- the detected portion may be provided in the gear on the motor side of the (N-1) stage where the absolute angle can be detected.
- the absolute angle sensor detects the magnetic field of the sensor magnet by the Hall IC.
- a magnetic sensor other than the Hall IC may be used as the absolute angle sensor, or a sensor other than the magnetic sensor may be used.
- the detection unit may be appropriately used according to the type of the absolute angle sensor.
- two ball bearings are provided as bearings for the gear connection shaft.
- the ball bearings may be 1 or 3 or more. Further, a bearing other than a ball bearing may be used.
- the motor is a DC motor with a brush. In other embodiments, the motor may be something other than a brushed DC motor.
- the detent plate is provided with two valleys. In other embodiments, the number of valleys is not limited to two and may be three or more. Further, the shift range switching mechanism, the parking lock mechanism, and the like may be different from those in the above embodiment.
- the rotary actuator is applied to the shift range switching system.
- the present invention is not limited to the shift range, and may be applied to a power transmission switching system that switches a power transmission state including switching of a drive source in a hybrid vehicle, for example.
- the rotary actuator may be applied to an in-vehicle system other than the shift range switching system or a drive system other than the in-vehicle drive system.
- the present disclosure is not limited to the above-described embodiment, and can be implemented in various forms without departing from the spirit of the present embodiment.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Mechanical Engineering (AREA)
- Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
- Gear Transmission (AREA)
- Gear-Shifting Mechanisms (AREA)
Abstract
回転式アクチュエータ(40、800、900)は、モータ(50)と、ギア(51~54、60、74、810、820、830、840、850、910、920)と、被検出部(65)と、絶対角センサ(68)と、を備える。ギアは、モータ(50)の回転を出力軸(15)に伝達するN段(Nは2以上の整数)の減速段を構成する。被検出部(65)は、ギアの1つに設けられる。絶対角センサ(68)は、被検出部(65)が設けられるギアである検出対象ギア(53、840)の回転により変化する物理量を検出する。検出対象ギア(53、840)は、最終減速段よりもモータ(50)側であって、回転範囲が絶対角センサ(68)により絶対角を検出可能な範囲内である。
Description
本出願は、2020年8月7日に出願された特許出願番号2020-135319号に基づくものであり、ここにその記載内容を援用する。
本開示は、回転式アクチュエータに関する。
従来、ギアを用いてモータの回転を伝達する回転式アクチュエータが知られている。例えば特許文献1では、ウォームギアを用いてブラシ付きDCモータの駆動を伝達している。
特許文献1では、出力軸部にマグネットを内蔵して角度検出を行っているが、振動等により発生する出力ギアの偏芯力や歯面形状のばらつき等により、検出精度が悪化しやすい。本開示の目的は、センサの検出精度劣化を抑制可能な回転式アクチュエータを提供することにある。
本開示の回転式アクチュエータは、モータと、ギアと、被検出部と、絶対角センサと、を備える。ギアは、モータの回転を出力軸に伝達するN段(Nは2以上の整数)の減速段を構成する。被検出部は、ギアの1つに設けられる。絶対角センサは、被検出部が設けられるギアである検出対象ギアの回転により変化する物理量を検出する。検出対象ギアは、最終減速段よりもモータ側であって、回転範囲が絶対角センサの検出値により絶対角を検出可能な範囲内である。これにより、絶対角センサの検出精度の劣化を抑制することができる。
本開示についての上記目的及びその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1実施形態によるシフトバイワイヤシステムを示す概略構成図であり、
図2は、第1実施形態による回転式アクチュエータを示す断面図であり、
図3は、図2のIII方向矢視図であり、
図4は、図2のIV方向矢視図であり、
図5は、第1実施形態によるハウジングおよびセンサカバーを示す斜視図であり、
図6は、第1実施形態による回転式アクチュエータを示す分解斜視図であり、
図7は、第2実施形態によるギアおよびギア接続シャフトを示す斜視図であり、
図8は、第3実施形態による回転式アクチュエータの平面図であり、
図9は、第3実施形態による回転式アクチュエータのセンサカバーを外した状態を示す平面図であり、
図10は、図9のX-A-B-C-X線の断面図であり、
図11は、第4実施形態による回転式アクチュエータの平面図であり、
図12は、第4実施形態による回転式アクチュエータのセンサカバーを外した状態を示す平面図であり、
図13は、図12のXIII-D-E-XIII線の断面図である。
以下、本開示による回転式アクチュエータを図面に基づいて説明する。以下、複数の実施形態において、実質的に同一の構成には同一の符号を付して説明を省略する。
(第1実施形態)
第1実施形態を図1~図6に示す。図2は、図4のII-O-II線断面図である。図1に示すように、本実施形態の回転式アクチュエータ40は、シフトバイワイヤシステム1に適用される。シフトバイワイヤシステム1は、回転式アクチュエータ40、シフトレンジ切替機構20、および、パーキングロック機構30等を備える。
第1実施形態を図1~図6に示す。図2は、図4のII-O-II線断面図である。図1に示すように、本実施形態の回転式アクチュエータ40は、シフトバイワイヤシステム1に適用される。シフトバイワイヤシステム1は、回転式アクチュエータ40、シフトレンジ切替機構20、および、パーキングロック機構30等を備える。
回転式アクチュエータ40は、モータ50(図2参照。)を有し、図示しない車両に搭載されるバッテリから電力が供給されることで回転し、シフトレンジ切替機構20の駆動源として機能する。回転式アクチュエータ40の詳細は後述する。
シフトレンジ切替機構20は、ディテントプレート21、および、ディテントスプリング25等を有し、減速機14から出力された回転駆動力を、マニュアルバルブ28、および、パーキングロック機構30へ伝達する。
ディテントプレート21は、出力軸15に固定され、回転式アクチュエータ40により駆動される。ディテントプレート21には、出力軸15と平行に突出するピン24が設けられる。ピン24は、マニュアルバルブ28と接続される。ディテントプレート21が回転式アクチュエータ40によって駆動されることで、マニュアルバルブ28は軸方向に往復移動する。すなわち、シフトレンジ切替機構20は、回転式アクチュエータ40の回転運動を直線運動に変換してマニュアルバルブ28に伝達する。マニュアルバルブ28は、バルブボディ29に設けられる。マニュアルバルブ28が軸方向に往復移動することで、図示しない油圧クラッチへの油圧供給路が切り替えられ、油圧クラッチの係合状態が切り替わることでシフトレンジが変更される。
ディテントプレート21のディテントスプリング25側には、2つの谷部22が設けられる。ディテントスプリング25は、弾性変形可能な板状部材であり、先端にディテントローラ26が設けられる。ディテントスプリング25は、ディテントローラ26をディテントプレート21の回動中心側に付勢する。ディテントプレート21に所定以上の回転力が加わると、ディテントスプリング25が弾性変形し、ディテントローラ26が谷部間を移動する。ディテントローラ26が谷部22のいずれかに嵌まり込むことで、ディテントプレート21の揺動が規制され、マニュアルバルブ28の軸方向位置、および、パーキングロック機構30の状態が決定され、シフトレンジが固定される。
パーキングロック機構30は、パーキングロッド31、円錐体32、パーキングロックポール33、軸部34、および、パーキングギア35を有する。パーキングロッド31は、略L字形状に形成され、一端311側がディテントプレート21に固定される。パーキングロッド31の他端312側には、円錐体32が設けられる。円錐体32は、他端312側にいくほど縮径するように形成される。ディテントローラ26がPレンジに対応する谷部211に嵌まり込む方向にディテントプレート21が回転すると、円錐体32が矢印Pの方向に移動する。
パーキングロックポール33は、円錐体32の円錐面と当接し、軸部34を中心に揺動可能に設けられる。パーキングロックポール33のパーキングギア35側には、パーキングギア35と噛み合い可能な凸部331が設けられる。ディテントプレート21の回転により、円錐体32が矢印P方向に移動すると、パーキングロックポール33が押し上げられ、凸部331とパーキングギア35とが噛み合う。一方、円錐体32が矢印NotP方向に移動すると、凸部331とパーキングギア35との噛み合いが解除される。
パーキングギア35は、図示しない車軸に設けられ、パーキングロックポール33の凸部331と噛み合い可能に設けられる。パーキングギア35と凸部331とが噛み合うと、車軸の回転が規制される。シフトレンジがP以外のレンジであるNotPレンジのとき、パーキングギア35はパーキングロックポール33によりロックされず、車軸の回転は、パーキングロック機構30により妨げられない。また、シフトレンジがPレンジのとき、パーキングギア35はパーキングロックポール33によってロックされ、車軸の回転が規制される。
図2~図6に示すように、回転式アクチュエータ40は、ハウジング41、センサカバー43、ギアカバー45、モータ50、モータギア51、ギア52~54、ギア接続シャフト55、出力軸ギア60、センサマグネット65、および、回転角センサ68等を備える。図2において、モータ50の軸方向を紙面上下方向とし、紙面上側を「一方側」、紙面下側を「他方側」とする。
ハウジング41は、例えばアルミ等の金属で形成され、モータハウジング部411、および、ギアハウジング部412から構成される。モータハウジング部411は、軸方向の一方側に開口する略有底筒状に形成される。ギアハウジング部412は、モータハウジング部411の径方向外側に突出して形成される。ギアハウジング部412の一方側の端面は、モータハウジング部411の一方側の端面と概ね同一平面上に形成されている。ギアハウジング部412の他方側の端面は、モータハウジング部411の軸方向の中間に位置している。換言すると、モータハウジング部411は、他方側に突出している。また、ギアハウジング部412には、出力軸ギア60を収容する出力軸ギア収容部413がモータハウジング部411とは反対側に突出して形成されている。
センサカバー43およびギアカバー45は、ハウジング41を挟んで両側に設けられる。センサカバー43は、モータハウジング部411およびギアハウジング部412の一方側に設けられて、ねじ439にてハウジング41に固定される。センサカバー43には、コネクタ435が設けられており、コネクタ435を経由して回転式アクチュエータ40に電力が供給される。また、コネクタ435を経由して外部と信号の送受信を行う。ギアカバー45は、ギアハウジング部412の他方側に設けられ、ねじ459にてハウジング41に固定される。
図2に示すように、モータ50は、ブラシ付きのDCモータであって、マグネット501、コア502、コイル504、モータシャフト505、コミュテータ508、および、図示しないブラシ等を有する。マグネット501は、モータハウジング部411の内周側に固定される。コア502は、マグネット501の径方向内側に設けられ、巻回されているコイル504に電流が流れると、回転力を発生する。モータシャフト505は、軸受506、507に回転可能に支持され、コア502と一体となって回転する。コミュテータ508は、ブラシから供給される電流をコイル504に流す。
ギア51~54および出力軸ギア60は、いずれも平歯ギアである。モータギア51およびギア52、53は、ハウジング41に一方側に開口する第1ギア室415に配置される。ギア54および出力軸ギア60は、ハウジング41の他方側に開口する第2ギア室416に配置される。第1ギア室415と第2ギア室416とは、ギア接続シャフト55が挿通される軸孔417で連通している。本実施形態では、モータギア51、ギア54および出力軸ギア60が金属で形成され、ギア52、53が樹脂で形成されているが、要求される強度等に応じ、ギアの素材は適宜変更可能である。後述の実施形態も同様である。
モータギア51は、モータシャフト505の一方側に固定され、モータシャフト505と一体に回転する。ギア52は、大径部521および小径部522を有し、シャフト525と一体に回転する。大径部521の径方向外側には平歯が形成され、モータギア51と噛み合う。小径部522の径方向外側には平歯が形成され、ギア53と噛み合う。シャフト525は、ハウジング41に形成される軸孔414に挿入され、回転可能に支持される。
ギア53は、筒部531、および、ギア部532を有する。ギア部532は、筒部531の径方向外側に突出して形成される。ギア部532には、ギア52の小径部522と噛み合う平歯が形成されている。ギア部532は、回転角センサ68にて絶対角を検出可能な範囲(例えば180°未満)に形成される。筒部531の径方向内側には、シャフト固定部材535が設けられる。シャフト固定部材535は、例えば金属で形成されている。
ギア接続シャフト55は、軸受56、57により、ハウジング41に回転可能に支持されている。本実施形態では、軸受56、57は、ボールベアリングであって、軸孔417に圧入されている。軸受を複数とすることで、ギア接続シャフト55の倒れを抑制することができる。また、ギア接続シャフト55の径方向のがたつきを抑制可能であるので、シャフトのたたき等による摩耗の発生を低減することができる。
ギア接続シャフト55の一方側は、ギア53の筒部531の径方向内側に設けられるシャフト固定部材535に圧入され、例えばローリングかしめ等にて固定される。これにより、ギア53がギア接続シャフト55の一方側に固定される。ギア接続シャフト55の他方側には、ボルト549によりギア54が固定される。これにより、ギア53の筒部351とギア54とは、ギア接続シャフト55により同軸に接続され、一体となって回転する。ギア54は、筒部531と略同径に形成され、径方向外側の全周に出力軸ギア60と噛み合う平歯が形成される。
図2、図5および図6に示すように、出力軸ギア60は、略筒状に形成される出力軸接続部601、および、ギア部602を有する。出力軸接続部601は、径方向外側に設けられるブッシュ61により、ギアカバー45に回転可能に支持される。出力軸接続部601の径方向内側には、出力軸15(図1参照)が圧入固定され、一体となって回転する。ブッシュ61は、ギアカバー45の出力軸保持部455に圧入されている。
ギア部602は、出力軸接続部601の径方向外側に突出して形成され、ギア54と噛み合う。本実施形態では、モータギア51とギア52の大径部521との噛み合い箇所が1段目減速段であり、ギア52の小径部522とギア53のギア部532との噛み合い箇所が2段目減速段であり、ギア54と出力軸ギア60のギア部602との噛み合い箇所が3段目減速段である。すなわち本実施形態では、減速段数N=3である。以下適宜、3段目減速段を、最終減速段という。
また、ディテント切替角度、および、寸法公差のばらつきを含め、出力軸15の必要切替角度範囲を最大で30°とすると、最終減速段の減速比を6以下とすることで、ギア53、54の駆動範囲が180°以下となる。
図5に示すように、ハウジング41のギアカバー45側には、第2ギア室416が形成されている。第2ギア室416は、ギアカバー45側から見て、略円形に形成される出力軸接続部601が配置される領域、略扇状に形成されるギア部602の可動領域、および、略円形に形成されるギア54が配置される領域からなる。ギア54が配置される領域には、軸孔417が形成されている。
ギアカバー45のハウジング41側の面には、最終段収容室451が形成される。最終段収容室451は、略扇状に形成されるギア部602の可動領域、および、略円形に形成されるギア54が配置される領域からなる。ギア部602の可動領域は、出力軸ギア60の駆動範囲に応じ、出力軸ギア60の駆動を制限しない形状に形成される。
ギアカバー45には、最終段収容室451のギア54が配置される領域に沿って突出するインロー雄部452が形成される。インロー雄部452は、ハウジング41の第2ギア室416のギア54が配置される領域側の壁部418に沿って嵌まり合い、インロー構造を構成する。
また、ギアカバー45には、ハウジング41に形成される位置決め穴419に嵌まり合う位置決めピン453が形成される。位置決め穴419および位置決めピン453は、インロー構造とは離間した箇所に形成することが位置決め精度の面から好ましく、本実施形態では、出力軸ギア60の出力軸接続部601側に形成されている。なお、本実施形態では、インロー構造におけるインロー雄部452がギアカバー45側、雌部がハウジング41側であるが、逆であってもよい。位置決め穴および位置決めピンについても同様である。
これにより、ハウジング41とギアカバー45とを精度よく位置決めして組み付け可能であるので、出力軸ギア60のハウジング41に対する組み付け精度を向上させることができる。
図6に示すように、ギア52、53およびギア接続シャフト55等がハウジング41の一方側から組み付けられ、ギア54および出力軸ギア60等がハウジング41の他方側から組み付けられる。ギア53とギア54とを接続するギア接続シャフト55の長さを変えることで、回転式アクチュエータ40と出力軸15を介して組み付けられる相手側の部品に応じ、モータハウジング部411の出代を調整することができる。これにより、搭載の自由度を向上させることができる。なお、図6では、センサカバー43等の記載を省略した。
図2に示すように、ギア53の筒部531の径方向内側であって、シャフト固定部材535よりもセンサカバー43側には、センサマグネット65が設けられる。センサマグネット65は、例えば幅狭の板状に形成され、ギア53の回転軸を挟んで反対側に設けられる。換言すると、センサマグネット65は、180°離間して設けられている。センサマグネット65は、円環状に形成されるマグネット保持部材66に保持されている。マグネット保持部材66は、筒部531に圧入等により固定される。
回転角センサ68は、センサカバー43から突出して形成されるセンサ保持部438に保持される。回転角センサ68は、センサマグネット65の回転による磁界の変化を検出するホールICを有し、センサ素子が2つのセンサマグネット65の中心に位置するように設けられる。本実施形態では、最終減速段の減速比が6以下であって、ギア53の回転範囲が180°未満であるので、回転角センサ68は、ギア53の回転位置を絶対角として検出可能である。また、ギア比換算により、出力軸15の絶対角を演算可能である。
センサマグネット65が設けられるギア53は、最終減速段より1段手前の減速段を構成している。そのため、出力軸ギア60と比較して伝達トルクが小さく、ギア歯面形状のばらつきや、振動等により発生する偏芯力が小さいため、出力軸ギア60の角度検出を行う場合と比較し、センサ精度の劣化を抑制することができる。
また、センサマグネット65は、モータ側空間K1に配置される。モータ側空間K1は、軸受56、57により、出力軸側空間K2とは離隔されている。これにより、最終減速段で発生する摩耗粉のモータ側空間K1への到達が抑制されるので、センサ精度の劣化を抑制することができる。さらにまた、最終減速段のギアセットをセンサカバー43とは反対側から組み付ける構成とすることで、センサカバー43の形状によらず、出力軸15を設置可能であるので、搭載性を向上可能である。
以上説明したように、回転式アクチュエータ40は、モータ50と、ギア51~54、60と、センサマグネット65と、回転角センサ68と、を備える。ギア51~54、60は、モータ50の回転を出力軸15に伝達するN段(Nは2以上の整数)の減速段を構成する平歯ギアである。センサマグネット65は、ギア51~54、60の1つに設けられる。本実施形態では、ギア53に設けられる。回転角センサ68は、センサマグネット65が設けられるギア54の回転により変化する物理量を検出する。本実施形態では、回転角センサ68は、ギア54の回転による磁界の変化を検出する。
検出対象ギアであるギア53は、最終減速段よりもモータ50側であって、回転範囲が回転角センサ68により絶対角を検出可能な範囲内である。本実施形態では、2つのセンサマグネット65が180°離間して設けられており、ギア53が180°以上回転すると、検出値に応じた角度が一義的に決まらない。ギア53の回転範囲が180°未満であれば、検出値に応じた角度が一義的に決まり、絶対角を検出可能である、といえる。
本実施形態では、モータ50の動力伝達に動力伝達効率の高い平歯ギアを用いているので、比較的小さいモータトルクにて、出力軸15を適切に駆動可能である。また、要求トルクに対してモータ50が大型化するのを防ぐことができる。また、伝達トルクが相対的に大きい最終減速段よりもモータ側にて絶対角を検出することで、出力軸ギア60の回転角を直接的に検出する場合と比較し、ギア歯面形状のばらつきや振動等による偏芯力が抑制される。これにより、検出精度の悪化を防ぐことができ、出力軸15の駆動を適切に駆動制御することができる。
ギア53は、(N-1)段目の変速段を構成している。また、出力軸15の回転範囲をα、回転角センサ68にて検出可能な角度範囲をβとすると、最終減速段の減速比が(β/α)以下である。本実施形態では、α=30°、β=180°であるので、最終減速段の減速比を6以下としている。これにより、回転角センサ68の検出値に基づき、出力軸15の絶対角を適切に演算することができる。
回転角センサ68は、最終減速段が配置される最終段収容室451を含む空間である出力軸側空間K2とは、離隔された空間であるモータ側空間K1に設けられている。これにより、最終減速段で発生する摩耗粉が回転角センサ68側に到達しにくくなり、回転角センサ68の検出精度の悪化を抑制することができる。
ギアには、出力軸15と一体に回転する出力軸ギア60、出力軸ギア60と噛み合うN段目ギアであるギア54、および、ギア54と一体に回転する(N-1)段目ギアであるギア53が含まれる。ギア54とギア53とは、ギア接続シャフト55で連結されている。
これにより、出力軸15側の構成に応じてギアカバー45の形状を変更すればよいので、出力軸15側の構成によらず、回転角センサ68やターミナル等が内蔵されているセンサカバー43の形状を変更する必要がなく、センサカバー43の共通化が可能である。また、回転式アクチュエータ40と組み付ける相手部品の形状に合わせてギア接続シャフト55の長さを変更することで、出力軸15の位置に対するモータハウジング部411の出代を調整可能であり、搭載の自由度を向上させることができる。
ギア接続シャフト55は、軸受56、57によりハウジング41に回転可能に支持されている。ギア53はハウジング41の一方側に設けられ、ギア54はハウジング41の他方側に設けられている。これにより、最終減速段が設けられる出力軸側空間K2と、回転角センサ68が設けられるモータ側空間K1とを適切に離隔することができる。
回転式アクチュエータ40は、センサカバー43およびギアカバー45をさらに備える。センサカバー43には、回転角センサ68の検出部がギア53の径方向内側となるように、回転角センサ68を保持するセンサ保持部438が形成されている。これにより、センサマグネット65の磁界を検出可能な箇所に回転角センサ68を適切に配置することができる。
また、ギアカバー45は、出力軸ギア60を回転可能に保持している。これにより、センサカバー43側の構成を変更することなく、出力軸15側の構成に応じ、回転式アクチュエータ40と出力軸15とを適切に接続することができる。
ギアカバー45には、ギア54が配置される最終段収容室451が形成されている。最終段収容室451の外縁には、ハウジング41と嵌まり合う嵌め合い部であるインロー雄部452が形成される。また、ギアカバー45またはハウジング41の一方には、他方に嵌まり合う位置決めピン453、インロー雄部452とは離間した箇所に形成される。これにより、ハウジング41とギアカバー45との組み付け精度が向上し、出力軸15、出力軸ギア60およびギア54、53の位置精度が向上する。また、出力軸15、出力軸ギア60およびギア54を適切なバックラッシュを確保して組み付けることで、噛み合いが安定し、摩耗粉の発生を抑制することができる。
(第2実施形態)
第2実施形態を図7に示す。本実施形態では、ギア53(図7中では不図示)と、最終減速段を構成するギア74とは、ギア接続シャフト75で接続される。ギア接続シャフト75は、軸部751および頭部755と有する。ギア74には、圧入凹部745が形成され、ギア接続シャフト75の頭部755が圧入される。圧入凹部745は、平行に形成される平面部746、747、および、平面部746、747を接続する曲面部748、749から構成される。また、ギア接続シャフト75の頭部755には、圧入凹部745の平面部746、747と対応する平面部756、757が形成される。これにより、ギア74とギア接続シャフト75とは、いわゆる「二面幅」により圧入固定される。
第2実施形態を図7に示す。本実施形態では、ギア53(図7中では不図示)と、最終減速段を構成するギア74とは、ギア接続シャフト75で接続される。ギア接続シャフト75は、軸部751および頭部755と有する。ギア74には、圧入凹部745が形成され、ギア接続シャフト75の頭部755が圧入される。圧入凹部745は、平行に形成される平面部746、747、および、平面部746、747を接続する曲面部748、749から構成される。また、ギア接続シャフト75の頭部755には、圧入凹部745の平面部746、747と対応する平面部756、757が形成される。これにより、ギア74とギア接続シャフト75とは、いわゆる「二面幅」により圧入固定される。
ギア接続シャフト55とギア54とを二面幅圧入で固定することで、荷重を面で受けることができるため、ギア接続シャフト75に入力されたトルクをギア74に伝達する際のギア接続シャフト75の滑りを抑制することができる。また、ボルト549のような固定部材を省略可能である。また、ギア53とギア接続シャフト75との接続箇所に二面幅を設けてもよい。なお、「平行」とは、二面幅にてギア接続シャフト75の滑りを抑制可能な程度のずれは許容される。このように構成しても上記実施形態と同様の効果を奏する。
(第3実施形態)
第3実施形態を図8~図10に示す。本実施形態の回転式アクチュエータ800は、ハウジング801、センサカバー803、モータ50、傘歯ギア810、および、ギア820、830、840、850等を備える。
第3実施形態を図8~図10に示す。本実施形態の回転式アクチュエータ800は、ハウジング801、センサカバー803、モータ50、傘歯ギア810、および、ギア820、830、840、850等を備える。
ハウジング801は、例えば樹脂等で形成され、モータ50、傘歯ギア810、ギア820、830、840、850等を収容する。ハウジング801の開口側には、センサカバー803が設けられる。
センサカバー803は、例えば樹脂等で形成され、コネクタ804が一体に設けられている。センサカバー803には、各種制御部品が実装される図示しない基板が固定される。以下、ハウジング801側を底部側、センサカバー803側を頂部側とする。なお、図8および図10はセンサカバー803を含み、図9はセンサカバー803を外した状態を示しているが、説明のため、図10の断面位置を示す断面線は図9に記載した。第4実施形態も同様である。
モータ50は、モータシャフト505がハウジング801の底面と略平行となるように、横置きされている。これにより、回転式アクチュエータ800の高さを抑えることができる。モータシャフト505の一端は、モータケース509から取り出され、ベアリング802によりハウジング801に回転可能に支持される。モータシャフト505の一端側には、傘歯ギア810が設けられている。
ギア820、830、840、850は、いずれも回転軸がモータシャフト505と直交する方向に設けられており、ハウジング801等に回転可能に支持されている。ギア820は、傘歯部821、および、平歯部822を有し、樹脂等で一体に形成されている。ギア820には、シャフト825が圧入されている。傘歯部821は、傘歯ギア810と噛み合い、モータ50の回転を減速しつつ、回転軸の方向を変換する。平歯部822は、傘歯部821の底部側に設けられている。
ギア830は、大径部831および小径部832を有し、樹脂等により一体に形成されている。ギア830には、シャフト835が圧入されている。大径部831は、小径部832の底部側となるように配置されており、ギア820の平歯部822と噛み合う平歯が径方向外側に形成されている。小径部832の径方向外側には、ギア840と噛み合う平歯が形成されている。
ギア840は、扇状部841および筒部842を有し、樹脂等により一体に形成されている。扇状部841の径方向外側には、ギア830の小径部832と噛み合う平歯が形成されている。
筒部842には、シャフト845が圧入されている。シャフト845は、ベアリング846によりハウジング801に回転可能に支持されている。筒部842の頂部側には、マグネット収容室843が形成されている。マグネット収容室843には、センサマグネット65およびマグネット保持部材66が収容される。回転角センサ68は、センサカバー803から突出して形成されるセンサ保持部805に保持され、センサマグネット65の回転による磁界の変化を検出可能な箇所に配置される。回転角センサ68は、基板と接続され、検出値は各種制御に用いられる。
ギア850は、出力軸ギアであって、筒状に形成される出力軸接続部851、および、ギア部852を有し、金属等により一体に形成されている。出力軸接続部851は、ブッシュ61にてハウジング801に回転可能に支持されている。ギア部852は、ギア840の筒部842の径方向外側に形成される平歯と噛み合う。ギア850の構成は、上記実施形態の出力軸ギア60と概ね同様である。出力軸接続部851の頂部側には、フィルタ859が設けられている。フィルタ859は、センサカバー803に固定される。
本実施形態では、傘歯ギア810とギア820の傘歯部821との噛み合い箇所が1段目減速段であり、ギア820の平歯部822とギア830の大径部831との噛み合い箇所が2段目減速段であり、ギア820の小径部832とギア840の扇状部841との噛み合い箇所が3段目減速段であり、ギア840の筒部842とギア850のギア部852との噛み合い箇所が4段目減速段である。すなわち本実施形態では、減速段数N=4であり、4段目減速段が最終減速段である。また、センサマグネット65は、(N-1)段目の減速段を構成するギア840に設けられている。すなわち本実施形態では、ギア840が「検出対象ギア」に対応する。
本実施形態では、上記実施形態と同様、最終減速段の減速比が6以下であって、センサマグネット65が設けられるギア840の回転範囲が180°未満であるので、回転角センサ68の検出値に基づき、出力軸15の絶対角を演算可能である。換言すると、回転角センサ68は、出力軸15の絶対角を検出する絶対角センサである。このように構成しても上記実施形態と同様の効果を奏する。
(第4実施形態)
第4実施形態を図11~図14に示す。本実施形態の回転式アクチュエータ900は、ハウジング801、センサカバー803、モータ50、ウォーム910、および、ギア920、840、850等を備える。
第4実施形態を図11~図14に示す。本実施形態の回転式アクチュエータ900は、ハウジング801、センサカバー803、モータ50、ウォーム910、および、ギア920、840、850等を備える。
モータ50は、第3実施形態と同様、ハウジング801に横置きされている。ウォーム910は、モータケース509の外側にて、モータシャフト505の径方向外側に設けられており、モータシャフト505と一体に回転する。
ギア920は、ウォームホイール部921、および、平歯部922を有する。ギア920には、シャフト925が圧入されている。シャフト925は、モータシャフト505と直交する方向に設けられており、ハウジング801に回転可能に支持されている。ウォームホイール部921は、ウォーム910と噛み合うことでウォームギアを構成し、モータ50の回転を減速しつつ、回転軸の方向を変換する。平歯部922は、ウォームホイール部921の頂部側に設けられており、ギア840の扇状部841と噛み合う。ギア840およびギア850等の構成は第3実施形態と同様である。このように構成しても上記実施形態と同様の効果を奏する。
実施形態では、ギア51~54、出力軸ギア60、および、ギア74、810、820、830、840、850、920、および、ウォーム910が「ギア」に対応し、ギア53、840が「検出対象ギア」および「(N-1)段目ギア」に対応し、ギア54、74、850が「N段目ギア」に対応し、センサマグネット65が「被検出部」に対応し、回転角センサ68が「絶対角センサ」に対応し、最終段収容室451が「収容室」に対応し、インロー雄部452が「嵌め合い部」に対応する。
(他の実施形態)
上記実施形態では、減速段数は3段または4段である。他の実施形態では、減速段数は、2段、または、5段以上であってもよい。減速段数が多い場合、被検出部を、絶対角を検出可能である(N-1)段目よりもモータ側のギアに設けてもよい。
上記実施形態では、減速段数は3段または4段である。他の実施形態では、減速段数は、2段、または、5段以上であってもよい。減速段数が多い場合、被検出部を、絶対角を検出可能である(N-1)段目よりもモータ側のギアに設けてもよい。
上記実施形態では、被検出部であるセンサマグネットは、180°離間して2つ設けられる。他の実施形態では、センサマグネットの配置や個数は異なっていてもよい。また、上記実施形態では、絶対角センサは、ホールICによりセンサマグネットの磁界を検出するものである。他の実施形態では、絶対角センサとしてホールIC以外の磁気センサを用いてもよいし、磁気センサ以外のものを用いてもよい。また、被検出部は、絶対角センサの種類に応じたものを適宜用いればよい。
上記実施形態では、ギア接続シャフトの軸受として2つのボールベアリングが設けられる。他の実施形態では、ボールベアリングは、1または3以上であってもよい。また、軸受としてボールベアリング以外のものを用いてもよい。
上記実施形態では、モータは、ブラシ付きDCモータである。他の実施形態では、モータは、ブラシ付きDCモータ以外のものであってもよい。上記実施形態では、ディテントプレートには2つの谷部が設けられる。他の実施形態では、谷部の数は2つに限らず、3以上であってもよい。また、シフトレンジ切替機構やパーキングロック機構等は、上記実施形態と異なっていてもよい。
また、上記実施形態では、回転式アクチュエータはシフトレンジ切替システムに適用される。他の実施形態では、シフトレンジに限らず、例えばハイブリッド車両における駆動源の切り替え等を含む動力伝達状態を切り替える動力伝達切替システムに適用してもよい。他の実施形態では、回転式アクチュエータをシフトレンジ切替システム以外の車載システム、または、車載以外の駆動システムに適用してもよい。以上、本開示は、上記実施形態になんら限定されるものではなく、その趣旨を逸脱しない範囲において種々の形態で実施可能である。
本開示は、実施形態に準拠して記述された。しかしながら、本開示は当該実施形態および構造に限定されるものではない。本開示は、様々な変形例および均等の範囲内の変形をも包含する。また、様々な組み合わせおよび形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせおよび形態も、本開示の範疇および思想範囲に入るものである。
Claims (10)
- モータ(50)と、
前記モータの回転を出力軸(15)に伝達するN段(Nは2以上の整数)の減速段を構成するギア(51~54、60、74、810、820、830、840、850、910、920)と、
前記ギアの1つに設けられる被検出部(65)と、
前記被検出部が設けられる前記ギアである検出対象ギア(53、840)の回転により変化する物理量を検出する絶対角センサ(68)と、
を備え、
前記検出対象ギアは、最終減速段よりも前記モータ側であって、回転範囲が前記絶対角センサの検出値により絶対角を検出可能な範囲内である回転式アクチュエータ。 - 前記検出対象ギアは、(N-1)段目の減速段を構成し、
前記出力軸の回転範囲をα、前記絶対角センサにて絶対角を検出可能な角度範囲をβとすると、最終減速段の減速比が、(β/α)以下である請求項1に記載の回転式アクチュエータ。 - 前記絶対角センサは、最終減速段が配置される空間とは離隔された箇所に設けられている請求項1または2に記載の回転式アクチュエータ。
- ハウジング(41、801)の一方側に設けられるセンサカバー(43、803)をさらに備え、
前記センサカバーには、前記絶対角センサの検出部が前記検出対象ギアの径方向内側となるように前記絶対角センサを保持するセンサ保持部(438、805)が形成されている請求項1~3のいずれか一項に記載の回転式アクチュエータ。 - 前記ギアには、前記出力軸と一体に回転する出力軸ギア(60)、前記出力軸ギアと噛み合うN段目ギア(54)、および、前記N段目ギアと一体に回転する(N-1)段目ギア(53)が含まれ、
前記N段目ギアと前記(N-1)段目ギアとは、ギア接続シャフト(55、75)で連結されている請求項3または4に記載の回転式アクチュエータ。 - 前記ギア接続シャフトは、軸受(56、57)によりハウジング(41)に回転可能に支持されており、
前記(N-1)段目ギアは、前記ハウジングの一方側に設けられ、
前記N段目ギアは、前記ハウジングの他方側に設けられている請求項5に記載の回転式アクチュエータ。 - 前記ハウジングの他方側に設けられるギアカバー(45)をさらに備え、
前記ギアカバーは、前記出力軸ギアを回転可能に保持している請求項6に記載の回転式アクチュエータ。 - 前記ギアカバーには、前記N段目ギアが配置される収容室(451)が形成されており、
前記収容室の外縁には、前記ハウジングと嵌まり合う嵌め合い部(452)が形成される請求項7に記載の回転式アクチュエータ。 - 前記ギアカバーまたは前記ハウジングの一方には、他方に嵌まり合う位置決めピン(453)が前記嵌め合い部とは離間した箇所に形成される請求項8に記載の回転式アクチュエータ。
- 前記N段目ギア(74)および前記(N-1)段目ギアの少なくとも一方と、前記ギア接続シャフト(75)とは、二面幅で固定される請求項5~9のいずれか一項に記載の回転式アクチュエータ。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020135319A JP2024001370A (ja) | 2020-08-07 | 2020-08-07 | 回転式アクチュエータ |
JP2020-135319 | 2020-08-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022030451A1 true WO2022030451A1 (ja) | 2022-02-10 |
Family
ID=80117975
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/028632 WO2022030451A1 (ja) | 2020-08-07 | 2021-08-02 | 回転式アクチュエータ |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2024001370A (ja) |
WO (1) | WO2022030451A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS3518217Y1 (ja) * | 1958-04-07 | 1960-08-03 | ||
JP2013130280A (ja) * | 2011-12-22 | 2013-07-04 | Aisin Seiki Co Ltd | シフト装置 |
JP2014084924A (ja) * | 2012-10-22 | 2014-05-12 | Nidec Sankyo Corp | ギアードモータ |
JP2020112048A (ja) * | 2019-01-09 | 2020-07-27 | 株式会社デンソー | アクチュエータ |
-
2020
- 2020-08-07 JP JP2020135319A patent/JP2024001370A/ja active Pending
-
2021
- 2021-08-02 WO PCT/JP2021/028632 patent/WO2022030451A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS3518217Y1 (ja) * | 1958-04-07 | 1960-08-03 | ||
JP2013130280A (ja) * | 2011-12-22 | 2013-07-04 | Aisin Seiki Co Ltd | シフト装置 |
JP2014084924A (ja) * | 2012-10-22 | 2014-05-12 | Nidec Sankyo Corp | ギアードモータ |
JP2020112048A (ja) * | 2019-01-09 | 2020-07-27 | 株式会社デンソー | アクチュエータ |
Also Published As
Publication number | Publication date |
---|---|
JP2024001370A (ja) | 2024-01-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109923767B (zh) | 电动致动器 | |
US7950301B2 (en) | Feed screw mechanism | |
US20120255385A1 (en) | Gear device and rotary actuator having the same | |
KR20060092103A (ko) | 감속장치부착 전동밸브 | |
JP2010159828A (ja) | 回転式アクチュエータおよびその製造方法 | |
CN111828553B (zh) | 旋转致动器 | |
JP2008164016A (ja) | 伸縮アクチュエータ | |
CN109891723B (zh) | 电动致动器 | |
US6516680B1 (en) | Power steering apparatus | |
JP2009173192A (ja) | 後輪操舵装置 | |
US11441676B2 (en) | Rotary actuator | |
JP2014035016A (ja) | 伝達比可変装置 | |
CN111828554B (zh) | 旋转致动器 | |
WO2018123564A1 (ja) | 電動アクチュエータ | |
WO2022030451A1 (ja) | 回転式アクチュエータ | |
JP2008290593A (ja) | 舵角比可変ステアリング装置 | |
WO2016017417A1 (ja) | シフトレンジ切替装置 | |
JP6752603B2 (ja) | 電動アクチュエータ | |
US20110139536A1 (en) | Hydrostatic drive for a steering system | |
JP2018194109A (ja) | 電動アクチュエータ | |
JP7205405B2 (ja) | 回転式アクチュエータ | |
JP2008095913A (ja) | 電動アクチュエータ | |
CN116638543B (zh) | 一种电机减速器一体化的变刚度关节驱动器 | |
CN221497970U (zh) | 制动驱动装置、制动器和车辆 | |
WO2018051873A1 (ja) | 電動アクチュエータ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21854615 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21854615 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |