WO2022029871A1 - Optical fiber - Google Patents
Optical fiber Download PDFInfo
- Publication number
- WO2022029871A1 WO2022029871A1 PCT/JP2020/029774 JP2020029774W WO2022029871A1 WO 2022029871 A1 WO2022029871 A1 WO 2022029871A1 JP 2020029774 W JP2020029774 W JP 2020029774W WO 2022029871 A1 WO2022029871 A1 WO 2022029871A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical fiber
- cavities
- core
- cavity
- present disclosure
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/024—Optical fibres with cladding with or without a coating with polarisation maintaining properties
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/032—Optical fibres with cladding with or without a coating with non solid core or cladding
Definitions
- This disclosure relates to optical fiber.
- Non-Patent Document 1 In general optical components and optical transmission systems, stress-applied polarization-maintaining optical fibers (PANDA fibers) are used to connect components, devices, and the like while maintaining the polarization state. Further, a photonic crystal fiber using an asymmetric pore structure has also been reported in order to obtain a birefringence larger than that of a conventional polarization-retaining optical fiber such as a PANDA fiber.
- the control range of the birefringence index is limited in the general-purpose polarization-retaining optical fiber.
- the polarization-retaining optical fiber having a photonic crystal fiber structure has a complicated structure using a plurality of pore sizes, and there is a problem that its control and manufacture are extremely difficult.
- the object of the present disclosure is to make it possible to easily control the birefringence index and to realize a polarization-retaining optical fiber by a simple manufacturing process.
- the optical fiber according to the present disclosure is An optical fiber having a clad region and a core region having a higher refractive index than the clad region. It includes a set of cavities in which cavities are arranged symmetrically in a straight line passing through the center of the core region.
- the birefringence index can be easily controlled, and a polarization-retaining optical fiber can be realized by a simple manufacturing process.
- An example of the structure of the optical fiber according to the present disclosure is shown.
- An example of the AA'cross section is shown.
- An example of the AA'cross section is shown.
- An example of the AA'cross section is shown.
- An example of the AA'cross section is shown.
- An example of the AA'cross section is shown.
- An example of the AA'cross section is shown.
- An example of the relationship between the cavity position of the optical fiber and the birefringence index according to the present disclosure is shown.
- An example of the relationship between the cavity position and the loss of the optical fiber according to the present disclosure is shown.
- An example of the structure of the optical fiber according to the present disclosure is shown.
- FIG. 1 shows a structural example of the optical fiber according to the present disclosure.
- the optical fiber of the present disclosure is an optical fiber having a clad and a core having a higher refractive index than the clad, and as shown in FIG. 1, either in the region of the clad 12 or the region of the core 11 of the optical fiber, or Both have cavities 13 that are intermittently or continuously arranged in the longitudinal direction of the optical fiber.
- the cavity portion 13 can be arranged in the optical fiber at an arbitrary position and size by a processing technique such as laser processing using a femtosecond laser.
- FIG. 1 as an example of the cavity portion 13, a pair of cavity portions 13-1a and 13-1b, a pair of cavity portions 13-2a and 13-2b, a pair of cavity portions 13-3a and 13-3b, and a cavity portion 13
- a pair of -4a and 13-4b and a pair of cavities 13-5a and 13-5b are continuously arranged at equal intervals in the longitudinal direction of an optical fiber, but the present disclosure is not limited to this. ..
- the intervals between the pairs of the cavities 13 may be unequal and may be intermittently arranged.
- the distance between the cavities 13 in the longitudinal direction of the optical fiber can be arbitrarily set according to the control of polarization.
- a polarization-maintaining optical fiber it can be exemplified by about several hundred ⁇ m to several mm. ..
- FIG. 2A shows an example of the AA'cross section.
- the cavities 13-2a and 13-2b are arranged in at least one set symmetrically on a straight line passing through the center of the core 11. For example, the distance from the central axis of the core 11 to the center of the cavity 13-2a is equal to the distance from the center axis of the core 11 to the center of the cavity 13-2b. Further, the diameters of the cavities 13-2a and 13-2b are the same. The same applies to the other cavities 13-1a and 13-1b.
- the cavities 13-2a and 13-2b can be arranged at arbitrary positions in the core 11.
- the cavities 13-2a and 13-2b may be arranged in the clad 12.
- the cavity portions 13-2a and 13-2b may be arranged in the core 11.
- the cavity portions 13-2a and 13-2b may be arranged in both the core 11 and the clad 12.
- the shapes of the cavities 13-2a and 13-2b include arbitrary shapes that are point-symmetrical about the central axis of the core 11. For example, it may be an oval or an ellipse as shown in FIGS. 2D and 2E.
- the propagating light of the core 11 propagates while refracting the boundary between the core 11 and the clad 12. Therefore, the scattered light in the cavities 13-2a and 13-2b can be reduced by having an ellipse or an ellipse having a major axis in which the central axis of the core 11 is arranged in the extension line in the major axis direction. ..
- FIG. 3 shows the relationship between the cavity position of the optical fiber and the birefringence index according to the present disclosure.
- the horizontal axis is the normalized cavity position x / a in which the cavity position x is standardized by the core radius a, and the vertical axis is the effective refractive index difference ⁇ neff between orthogonal polarizations.
- the cavity position x is the distance from the central axis of the core 11 to the center of the cavity 13.
- FIG. 3 it can be seen that in the range of x / a of 0.6 to 2.1, ⁇ neff of 10-6 or more, which is larger than that of the conventional polarization-retaining optical fiber such as PANDA fiber, can be obtained.
- FIG. 4 shows the relationship between the cavity position and the loss of the optical fiber according to the present disclosure.
- X polarization, Y polarization orthogonal polarizations
- the loss increases as the cavity position approaches the center of the core 11. It can be seen that when x / a is 0.73 or more, the loss can be 1 dB / km or less.
- FIG. 1 shows an example in which a set of cavities 13-1a and 13-1b and a set of cavities 13-2a and 13-2b have the same arrangement and shape, but the optical fiber according to the present disclosure includes this. Not limited.
- the cavity 13 arranged in the clad 12 and the cavity 13 arranged in the core 11 may be alternately arranged in the longitudinal direction of the optical fiber.
- the shapes of the hollow portion 13 arranged in the clad 12 and the hollow portion 13 arranged in the core 11 may be different.
- the birefringence index can be easily controlled, and the polarization-maintaining optical fiber can be easily manufactured. Can be realized.
- This disclosure can be applied to the information and communication industry.
- Core 12 Clad 13, 13-1a, 13-1b, 13-2a, 13-2b, 13-3a, 13-3b, 13-4a, 13-4b, 13-5a, 13-5b: Cavity
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
Abstract
The purpose of the present disclosure is to make it possible to easily control a birefringence index, and implement a polarization maintaining optical fiber by a simple manufacturing process. The present disclosure provides an optical fiber that has a cladding region and a core region having a higher refractive index than that of the cladding region, and is provided with a pair of cavity parts, the cavity parts being symmetrically disposed with respect to a straight line passing through the center of the core region.
Description
本開示は、光ファイバに関する。
This disclosure relates to optical fiber.
光変調器を初めとする多くの光デバイスは、その動作特性や損失が入射偏波に大きく依存し、偏波状態の制御と保持のため、偏波保持光ファイバが広く用いられている(例えば非特許文献1参照。)。一般的な光部品、光伝送システムでは、偏波状態を維持したまま部品間、機器間等を接続するため、応力付与型の偏波保持光ファイバ(PANDAファイバ)が用いられている。またPANDAファイバ等の従来の偏波保持光ファイバより大きな複屈折率を得るため、非対称な空孔構造を用いたフォトニック結晶ファイバも報告されている。
In many optical devices such as optical modulators, their operating characteristics and losses largely depend on the incident polarization, and polarization-maintaining optical fibers are widely used to control and maintain the polarization state (for example,). See Non-Patent Document 1). In general optical components and optical transmission systems, stress-applied polarization-maintaining optical fibers (PANDA fibers) are used to connect components, devices, and the like while maintaining the polarization state. Further, a photonic crystal fiber using an asymmetric pore structure has also been reported in order to obtain a birefringence larger than that of a conventional polarization-retaining optical fiber such as a PANDA fiber.
しかしながら汎用的な偏波保持光ファイバでは複屈折率の制御範囲が限定的であるといった課題があった。またフォトニック結晶ファイバ構造の偏波保持光ファイバは、複数の空孔サイズを用いた複雑な構造となり、その制御や製造が極めて困難であるといった課題があった。
However, there is a problem that the control range of the birefringence index is limited in the general-purpose polarization-retaining optical fiber. Further, the polarization-retaining optical fiber having a photonic crystal fiber structure has a complicated structure using a plurality of pore sizes, and there is a problem that its control and manufacture are extremely difficult.
本開示は、複屈折率を容易に制御可能にし、簡単な製造プロセスで偏波保持光ファイバを実現可能にすることを目的とする。
The object of the present disclosure is to make it possible to easily control the birefringence index and to realize a polarization-retaining optical fiber by a simple manufacturing process.
本開示に係る光ファイバは、
クラッド領域と前記クラッド領域よりも屈折率の高いコア領域とを有する光ファイバであって、
前記コア領域の中心を通る直線に中心対称に空洞部が配置されている1組の空洞部を備える。 The optical fiber according to the present disclosure is
An optical fiber having a clad region and a core region having a higher refractive index than the clad region.
It includes a set of cavities in which cavities are arranged symmetrically in a straight line passing through the center of the core region.
クラッド領域と前記クラッド領域よりも屈折率の高いコア領域とを有する光ファイバであって、
前記コア領域の中心を通る直線に中心対称に空洞部が配置されている1組の空洞部を備える。 The optical fiber according to the present disclosure is
An optical fiber having a clad region and a core region having a higher refractive index than the clad region.
It includes a set of cavities in which cavities are arranged symmetrically in a straight line passing through the center of the core region.
本開示によれば、複屈折率を容易に制御可能にし、簡単な製造プロセスで偏波保持光ファイバを実現することができる。
According to the present disclosure, the birefringence index can be easily controlled, and a polarization-retaining optical fiber can be realized by a simple manufacturing process.
以下、本開示の実施形態について、図面を参照しながら詳細に説明する。なお、本開示は、以下に示す実施形態に限定されるものではない。これらの実施の例は例示に過ぎず、本開示は当業者の知識に基づいて種々の変更、改良を施した形態で実施することができる。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。
Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. The present disclosure is not limited to the embodiments shown below. Examples of these implementations are merely examples, and the present disclosure can be implemented in various modified and improved forms based on the knowledge of those skilled in the art. In addition, the components having the same reference numerals in the present specification and the drawings shall indicate the same components.
(実施形態例1)
図1に本開示に係る光ファイバの構造例を示す。本開示の光ファイバは、クラッドとクラッドよりも屈折率の高いコアを有する光ファイバであって、図1に示すように、光ファイバのクラッド12の領域もしくはコア11の領域内のいずれか、または両方に、光ファイバの長手方向に断続的もしくは連続的に配置された空洞部13を有する。光ファイバ中への空洞部13の配置は、フェムト秒レーザーを用いたレーザー加工などの加工技術により、任意の位置および大きさで配置することができる。 (Embodiment Example 1)
FIG. 1 shows a structural example of the optical fiber according to the present disclosure. The optical fiber of the present disclosure is an optical fiber having a clad and a core having a higher refractive index than the clad, and as shown in FIG. 1, either in the region of theclad 12 or the region of the core 11 of the optical fiber, or Both have cavities 13 that are intermittently or continuously arranged in the longitudinal direction of the optical fiber. The cavity portion 13 can be arranged in the optical fiber at an arbitrary position and size by a processing technique such as laser processing using a femtosecond laser.
図1に本開示に係る光ファイバの構造例を示す。本開示の光ファイバは、クラッドとクラッドよりも屈折率の高いコアを有する光ファイバであって、図1に示すように、光ファイバのクラッド12の領域もしくはコア11の領域内のいずれか、または両方に、光ファイバの長手方向に断続的もしくは連続的に配置された空洞部13を有する。光ファイバ中への空洞部13の配置は、フェムト秒レーザーを用いたレーザー加工などの加工技術により、任意の位置および大きさで配置することができる。 (Embodiment Example 1)
FIG. 1 shows a structural example of the optical fiber according to the present disclosure. The optical fiber of the present disclosure is an optical fiber having a clad and a core having a higher refractive index than the clad, and as shown in FIG. 1, either in the region of the
図1では、空洞部13の一例として、空洞部13-1a,13-1bのペア、空洞部13-2a,13-2bのペア、空洞部13-3a,13-3bのペア、空洞部13-4a,13-4bのペア、空洞部13-5a,13-5bのペア、が光ファイバの長手方向に等間隔で連続的に配置されている例を示すが、本開示はこれに限定されない。例えば、各空洞部13のペアの間隔は不等間隔であってもよく、断続的に配置されていてもよい。光ファイバの長手方向における空洞部13の間隔は偏波の制御に応じて任意に設定することが可能であり、例えば偏波保持光ファイバの場合でれば数百μm~数mm程度が例示できる。
In FIG. 1, as an example of the cavity portion 13, a pair of cavity portions 13-1a and 13-1b, a pair of cavity portions 13-2a and 13-2b, a pair of cavity portions 13-3a and 13-3b, and a cavity portion 13 An example is shown in which a pair of -4a and 13-4b and a pair of cavities 13-5a and 13-5b are continuously arranged at equal intervals in the longitudinal direction of an optical fiber, but the present disclosure is not limited to this. .. For example, the intervals between the pairs of the cavities 13 may be unequal and may be intermittently arranged. The distance between the cavities 13 in the longitudinal direction of the optical fiber can be arbitrarily set according to the control of polarization. For example, in the case of a polarization-maintaining optical fiber, it can be exemplified by about several hundred μm to several mm. ..
図2Aに、A-A’断面の一例を示す。空洞部13-2a及び13-2bは、コア11の中心を通る直線に、中心対称に少なくとも1組配置される。例えば、コア11の中心軸から空洞部13-2aの中心までの距離は、コア11の中心軸から空洞部13-2bの中心までの距離と等しい。また空洞部13-2a及び13-2bの径は等しい。他の空洞部13-1a及び13-1bなどについても同様である。
FIG. 2A shows an example of the AA'cross section. The cavities 13-2a and 13-2b are arranged in at least one set symmetrically on a straight line passing through the center of the core 11. For example, the distance from the central axis of the core 11 to the center of the cavity 13-2a is equal to the distance from the center axis of the core 11 to the center of the cavity 13-2b. Further, the diameters of the cavities 13-2a and 13-2b are the same. The same applies to the other cavities 13-1a and 13-1b.
空洞部13-2a及び13-2bは、コア11内の任意の位置に配置することができる。例えば、図2Aに示すように、空洞部13-2a及び13-2bがクラッド12に配置されていてもよい。また、図2Bに示すように、空洞部13-2a及び13-2bがコア11に配置されていてもよい。また、図2Cに示すように、空洞部13-2a及び13-2bがコア11及びクラッド12の両方に配置されていてもよい。
The cavities 13-2a and 13-2b can be arranged at arbitrary positions in the core 11. For example, as shown in FIG. 2A, the cavities 13-2a and 13-2b may be arranged in the clad 12. Further, as shown in FIG. 2B, the cavity portions 13-2a and 13-2b may be arranged in the core 11. Further, as shown in FIG. 2C, the cavity portions 13-2a and 13-2b may be arranged in both the core 11 and the clad 12.
空洞部13-2a及び13-2bの形状は、コア11の中心軸を中心とする点対称である任意の形状を含む。例えば、図2D及び図2Eに示すような長円又は楕円であってもよい。コア11の伝搬光は、コア11とクラッド12の境界を屈折しながら伝搬する。そのため、長軸方向の延長線にコア11の中心軸が配置されている長軸を有する長円又は楕円であることで、空洞部13-2a及び13-2bでの散乱光を減らすことができる。
The shapes of the cavities 13-2a and 13-2b include arbitrary shapes that are point-symmetrical about the central axis of the core 11. For example, it may be an oval or an ellipse as shown in FIGS. 2D and 2E. The propagating light of the core 11 propagates while refracting the boundary between the core 11 and the clad 12. Therefore, the scattered light in the cavities 13-2a and 13-2b can be reduced by having an ellipse or an ellipse having a major axis in which the central axis of the core 11 is arranged in the extension line in the major axis direction. ..
図3は本開示に係る光ファイバの空洞位置と複屈折率の関係を示す。横軸は空洞位置xをコア半径aで規格化した規格化空洞位置x/aであり、縦軸は直交する偏波間の実効屈折率差Δneffである。空洞位置xはコア11の中心軸から空洞部13の中心までの距離である。図3では、空洞直径1μmの空洞部13がコア半径a=4.5μmのコア11に配置されている光ファイバに、波長1550nmの光を伝搬させた例を示す。図3に示すようにx/aが0.6~2.1の範囲で、PANDAファイバ等の従来の偏波保持光ファイバよりも大きな10-6以上のΔneffが得られることがわかる。
FIG. 3 shows the relationship between the cavity position of the optical fiber and the birefringence index according to the present disclosure. The horizontal axis is the normalized cavity position x / a in which the cavity position x is standardized by the core radius a, and the vertical axis is the effective refractive index difference Δneff between orthogonal polarizations. The cavity position x is the distance from the central axis of the core 11 to the center of the cavity 13. FIG. 3 shows an example in which light having a wavelength of 1550 nm is propagated to an optical fiber in which a cavity portion 13 having a cavity diameter of 1 μm is arranged in a core 11 having a core radius a = 4.5 μm. As shown in FIG. 3, it can be seen that in the range of x / a of 0.6 to 2.1, Δneff of 10-6 or more, which is larger than that of the conventional polarization-retaining optical fiber such as PANDA fiber, can be obtained.
図4は、本開示に係る光ファイバの空洞位置と損失の関係を表す。図4では、空洞直径1μmの空洞部13がコア半径a=4.5μmのコア11に配置されている光ファイバに、波長1550nmの光を伝搬させた例を示す。直交する2つの偏波(X偏波、Y偏波)間で大きな損失差はなく、空洞位置がコア11の中心に近づくほど損失が増大する。x/aが0.73以上において、損失を1dB/km以下とすることができることがわかる。
FIG. 4 shows the relationship between the cavity position and the loss of the optical fiber according to the present disclosure. FIG. 4 shows an example in which light having a wavelength of 1550 nm is propagated to an optical fiber in which a cavity portion 13 having a cavity diameter of 1 μm is arranged in a core 11 having a core radius a = 4.5 μm. There is no large loss difference between two orthogonal polarizations (X polarization, Y polarization), and the loss increases as the cavity position approaches the center of the core 11. It can be seen that when x / a is 0.73 or more, the loss can be 1 dB / km or less.
図1では、1組の空洞部13-1a,13-1bと1組の空洞部13-2a,13-2bの配置及び形状が同じ例を示したが、本開示に係る光ファイバはこれに限定されない。例えば、図5に示すように、クラッド12に配置されている空洞部13と、コア11に配置されている空洞部13と、が光ファイバの長手方向に交互に配置されていてもよい。また、クラッド12に配置されている空洞部13とコア11に配置されている空洞部13の形状は異なっていてもよい。
FIG. 1 shows an example in which a set of cavities 13-1a and 13-1b and a set of cavities 13-2a and 13-2b have the same arrangement and shape, but the optical fiber according to the present disclosure includes this. Not limited. For example, as shown in FIG. 5, the cavity 13 arranged in the clad 12 and the cavity 13 arranged in the core 11 may be alternately arranged in the longitudinal direction of the optical fiber. Further, the shapes of the hollow portion 13 arranged in the clad 12 and the hollow portion 13 arranged in the core 11 may be different.
(本開示の効果)
光ファイバ中に少なくとも1組の空洞部を対称的に、かつ長手方向に断続的もしくは連続的に配置することによって、複屈折率を容易に制御可能にし、簡単な製造プロセスで偏波保持光ファイバを実現できる。 (Effect of this disclosure)
By arranging at least one set of cavities symmetrically and intermittently or continuously in the longitudinal direction in the optical fiber, the birefringence index can be easily controlled, and the polarization-maintaining optical fiber can be easily manufactured. Can be realized.
光ファイバ中に少なくとも1組の空洞部を対称的に、かつ長手方向に断続的もしくは連続的に配置することによって、複屈折率を容易に制御可能にし、簡単な製造プロセスで偏波保持光ファイバを実現できる。 (Effect of this disclosure)
By arranging at least one set of cavities symmetrically and intermittently or continuously in the longitudinal direction in the optical fiber, the birefringence index can be easily controlled, and the polarization-maintaining optical fiber can be easily manufactured. Can be realized.
本開示は情報通信産業に適用することができる。
This disclosure can be applied to the information and communication industry.
11:コア
12:クラッド
13、13-1a、13-1b、13-2a、13-2b、13-3a、13-3b、13-4a、13-4b、13-5a、13-5b:空洞部 11: Core 12: Clad 13, 13-1a, 13-1b, 13-2a, 13-2b, 13-3a, 13-3b, 13-4a, 13-4b, 13-5a, 13-5b: Cavity
12:クラッド
13、13-1a、13-1b、13-2a、13-2b、13-3a、13-3b、13-4a、13-4b、13-5a、13-5b:空洞部 11: Core 12: Clad 13, 13-1a, 13-1b, 13-2a, 13-2b, 13-3a, 13-3b, 13-4a, 13-4b, 13-5a, 13-5b: Cavity
Claims (5)
- クラッド領域と前記クラッド領域よりも屈折率の高いコア領域とを有する光ファイバであって、
前記コア領域の中心を通る直線に中心対称に空洞部が配置されている1組の空洞部を備える、
光ファイバ。 An optical fiber having a clad region and a core region having a higher refractive index than the clad region.
It comprises a set of cavities in which the cavities are arranged centrally symmetrically in a straight line passing through the center of the core region.
Optical fiber. - 前記1組の空洞部は、前記光ファイバの長手方向に断続的又は連続的に配置されている、
請求項1に記載の光ファイバ。 The set of cavities is arranged intermittently or continuously in the longitudinal direction of the optical fiber.
The optical fiber according to claim 1. - 前記空洞部の少なくともいずれかが、前記クラッド領域に配置されている、
請求項1又は2に記載の光ファイバ。 At least one of the cavities is located in the clad region.
The optical fiber according to claim 1 or 2. - 前記空洞部の少なくともいずれかが、前記コア領域に配置されている、
請求項1から3のいずれかに記載の光ファイバ。 At least one of the cavities is located in the core region.
The optical fiber according to any one of claims 1 to 3. - 前記コア領域の中心軸から前記空洞部の中心までの距離を前記コア領域の半径で規格化した規格化空洞位置は0.73以上である、
請求項4に記載の光ファイバ。 The normalized cavity position where the distance from the central axis of the core region to the center of the cavity is standardized by the radius of the core region is 0.73 or more.
The optical fiber according to claim 4.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/029774 WO2022029871A1 (en) | 2020-08-04 | 2020-08-04 | Optical fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/029774 WO2022029871A1 (en) | 2020-08-04 | 2020-08-04 | Optical fiber |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022029871A1 true WO2022029871A1 (en) | 2022-02-10 |
Family
ID=80117911
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/029774 WO2022029871A1 (en) | 2020-08-04 | 2020-08-04 | Optical fiber |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2022029871A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11514871B2 (en) | 2009-03-26 | 2022-11-29 | Semiconductor Energy Laboratory Co., Ltd. | Liquid crystal display device, driving method of the same, and electronic device including the same |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5627921A (en) * | 1993-10-14 | 1997-05-06 | Telefonaktiebolaget Lm Ericsson | Optical fiber for sensors including holes in cladding |
JP2006285234A (en) * | 2005-03-22 | 2006-10-19 | Matsushita Electric Ind Co Ltd | Multicore optical fiber with integral diffractive element machined by ultrafast laser direct writing |
US20070230861A1 (en) * | 2004-05-14 | 2007-10-04 | Igor Khrushchev | Laser Inscribed Structures |
JP2007532958A (en) * | 2004-04-16 | 2007-11-15 | ディ.ケイ. アンド イー.エル. マクフェイル エンタープライジーズ プロプライエタリー リミテッド | Optically active substrate with a cavity structure |
JP2014115328A (en) * | 2012-12-06 | 2014-06-26 | Hitachi Metals Ltd | Fiber bragg grating and method of manufacturing the same |
JP2016537659A (en) * | 2013-01-29 | 2016-12-01 | オーエフエス ファイテル,エルエルシー | Optical waveguide with built-in hologram |
JP2019531487A (en) * | 2016-08-10 | 2019-10-31 | フラウンホファー ゲセルシャフト ツール フェールデルンク ダー アンゲヴァンテン フォルシュンク エー.ファオ. | Method for determining bending and / or strain of an optical waveguide |
-
2020
- 2020-08-04 WO PCT/JP2020/029774 patent/WO2022029871A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5627921A (en) * | 1993-10-14 | 1997-05-06 | Telefonaktiebolaget Lm Ericsson | Optical fiber for sensors including holes in cladding |
JP2007532958A (en) * | 2004-04-16 | 2007-11-15 | ディ.ケイ. アンド イー.エル. マクフェイル エンタープライジーズ プロプライエタリー リミテッド | Optically active substrate with a cavity structure |
US20070230861A1 (en) * | 2004-05-14 | 2007-10-04 | Igor Khrushchev | Laser Inscribed Structures |
JP2006285234A (en) * | 2005-03-22 | 2006-10-19 | Matsushita Electric Ind Co Ltd | Multicore optical fiber with integral diffractive element machined by ultrafast laser direct writing |
JP2014115328A (en) * | 2012-12-06 | 2014-06-26 | Hitachi Metals Ltd | Fiber bragg grating and method of manufacturing the same |
JP2016537659A (en) * | 2013-01-29 | 2016-12-01 | オーエフエス ファイテル,エルエルシー | Optical waveguide with built-in hologram |
JP2019531487A (en) * | 2016-08-10 | 2019-10-31 | フラウンホファー ゲセルシャフト ツール フェールデルンク ダー アンゲヴァンテン フォルシュンク エー.ファオ. | Method for determining bending and / or strain of an optical waveguide |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11514871B2 (en) | 2009-03-26 | 2022-11-29 | Semiconductor Energy Laboratory Co., Ltd. | Liquid crystal display device, driving method of the same, and electronic device including the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9348086B2 (en) | Few-mode optical fibers | |
US6788865B2 (en) | Polarization maintaining optical fiber with improved polarization maintaining property | |
US6542681B2 (en) | Polarization preserving optical fibre | |
JP5307558B2 (en) | Multi-core photonic bandgap fiber with inter-core coupling | |
CN107783224B (en) | Hollow optical fiber with polarization maintaining function | |
JP3734733B2 (en) | Polarization-maintaining optical fiber and absolute single-polarization optical fiber | |
JP5876612B2 (en) | Fiber optic coupler for combining a signal beam with a non-circular light beam | |
US9529144B2 (en) | Multicore fiber | |
WO2017002460A1 (en) | Multi-core polarization maintaining fiber | |
JP6138481B2 (en) | Multi-core fiber | |
CN219245801U (en) | High-birefringence low-loss large negative dispersion photonic crystal fiber | |
JPWO2009034995A1 (en) | Holey fiber | |
US7903919B2 (en) | Holey fiber | |
WO2022029871A1 (en) | Optical fiber | |
JP3484165B2 (en) | Polarization-maintaining optical fiber | |
JP4137515B2 (en) | Dispersion-shifted optical fiber | |
JP2018060183A (en) | Polarization maintaining optical fiber with non-symmetric stress applying parts | |
US8422839B2 (en) | Optical fiber-type optical filter | |
CN112987177B (en) | Single-polarization single-mode photonic crystal planar waveguide array with ultra-large mode field | |
JP2013190589A (en) | Polarizer | |
CN109696724B (en) | Gradual change type photonic crystal polarization maintaining fiber | |
JPH01169407A (en) | Wavelength filter | |
WO2022172910A1 (en) | Polarization maintaining optical fiber and polarization maintaining optical fiber manufacturing method | |
WO2013175886A1 (en) | Holey fiber and method for manufacturing same | |
JP7400152B2 (en) | Optical fiber connection body and connection structure between the optical fiber connection body and optical device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20948666 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20948666 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |