[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022024657A1 - Voltage detection device - Google Patents

Voltage detection device Download PDF

Info

Publication number
WO2022024657A1
WO2022024657A1 PCT/JP2021/024978 JP2021024978W WO2022024657A1 WO 2022024657 A1 WO2022024657 A1 WO 2022024657A1 JP 2021024978 W JP2021024978 W JP 2021024978W WO 2022024657 A1 WO2022024657 A1 WO 2022024657A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
input
potential
input terminal
circuit
Prior art date
Application number
PCT/JP2021/024978
Other languages
French (fr)
Japanese (ja)
Inventor
朝道 溝口
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112021004039.1T priority Critical patent/DE112021004039T5/en
Publication of WO2022024657A1 publication Critical patent/WO2022024657A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16533Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application
    • G01R19/16538Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies
    • G01R19/16542Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies for batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/04Voltage dividers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This disclosure relates to a voltage detection device that performs voltage detection.
  • a power supply system in which the function group is divided into a plurality of systems (systems) and the total voltage (voltage between terminals) of the in-vehicle assembled battery is selectively applied to each system by a system relay. ing.
  • the total voltage applied to the selected system (hereinafter referred to as applied voltage) is detected.
  • applied voltage the total voltage applied to the selected system
  • the monitoring IC that detects each voltage of the battery cells constituting the assembled battery integrates the differential amplifier circuit and the AD conversion device in the monitoring IC, and calibrates or corrects the total error. It is known that the detection accuracy is good because it is suppressed. Therefore, next, it has been considered to divert this monitoring IC to detect each applied voltage.
  • Japanese Unexamined Patent Publication No. 2013-162639 Japanese Unexamined Patent Publication No. 2009-236711 Japanese Patent No. 5783197
  • this monitoring IC has been developed specifically for measuring the voltage of each battery cell connected in series. Specifically, it is assumed that a voltage (input signal) is applied to each input channel of the monitoring IC in order of the magnitude of the potential, and it is assumed that the voltage of the same potential is input. Not. Therefore, when the monitoring IC detects a plurality of applied voltages having the same potential, the current wraps around through the protection diodes provided inside and outside the monitoring IC, the value fluctuates, and the detection accuracy deteriorates. Has occurred.
  • the present disclosure has been made in view of the above circumstances, and its main purpose is to provide a voltage detection device capable of accurately detecting a plurality of applied voltages.
  • the means for solving the above problems is applied to a power supply system including a storage battery and a plurality of systems connected in parallel to the storage battery and to which a voltage between terminals of the storage battery is applied.
  • the voltage detection device is provided with a first voltage dividing circuit that divides the applied voltage of each system and a plurality of input channels, and two inputs input from the first voltage dividing circuit via the input channel.
  • Each of the input channels includes a detection circuit that detects the applied voltage applied to each system based on the potential difference of the signal, and a potential stabilization circuit that outputs a signal to the detection circuit.
  • the potential order of the input signals is preset in each of the input terminals, and the first voltage dividing circuit divides the applied voltage of the system by two different voltage dividing ratios.
  • the voltage division voltage is configured to be output as the input signal to the input terminal of the input channel associated with the system, and each voltage division ratio in the first voltage division circuit is set to each input terminal. Different values are set stepwise for each of the output destination input terminals so that the input signals are in the order corresponding to the potential order, and the first system among the plurality of systems is used.
  • the high-potential side input terminal of the associated input channel and the input terminal to which an input signal having a higher potential than the high-potential side input terminal in the potential order is input which is the second of the plurality of systems.
  • a withstand voltage securing channel which is a plurality of input channels to which the input signal from the first voltage dividing circuit is not input.
  • the potential stabilization circuit has the potential of the input signal input to the high potential side input terminal associated with the first system with respect to any input terminal of the withstand voltage securing channel, and the first.
  • a signal having a potential between the potential of the input signal input to the low potential side input terminal associated with the system of 2 and the potential of the input signal is output as the input signal.
  • each voltage dividing ratio in the first voltage dividing circuit has a value that is stepwise different for each input terminal to be output so that the input signals input to each input terminal are in the order corresponding to the potential order. It is set. As a result, even if the applied voltage of each system is substantially the same, the input signal input to each input terminal can be gradually increased by the first voltage dividing circuit. Therefore, it is possible to prevent the generation of wraparound current and detect the voltage with high accuracy.
  • the input terminal on the high potential side of the input channel associated with the first system and the input terminal on which an input signal having a higher potential than the input terminal on the high potential side in the order of potential is input.
  • a withstand voltage securing channel which is a plurality of input channels to which an input signal from the first voltage dividing circuit is not input, is provided between the input channel on the low potential side of the input channel associated with the second system.
  • the potential stabilizing circuit of the above means obtains a signal that is a potential between the potential of the input signal input to the high potential side input terminal and the potential of the input signal input to the low potential side input terminal. It is output as an input signal to any of the input terminals of the withstand voltage securing channel.
  • FIG. 1 is a circuit diagram showing an outline of a power supply system.
  • FIG. 2 is a circuit diagram showing an outline of the monitoring IC.
  • FIG. 3 is a circuit diagram showing an outline of a conventional monitoring IC.
  • FIG. 4 is a circuit diagram showing a wraparound current.
  • FIG. 5 is a circuit diagram showing a current flow.
  • FIG. 6 is a circuit diagram showing a current flow.
  • FIG. 7 is a circuit diagram showing a current flow.
  • FIG. 8 is a circuit diagram showing a current flow.
  • FIG. 9 is a circuit diagram showing a current flow.
  • FIG. 1 is a circuit diagram showing an outline of a power supply system.
  • FIG. 2 is a circuit diagram showing an outline of the monitoring IC.
  • FIG. 3 is a circuit diagram showing an outline of a conventional monitoring IC.
  • FIG. 4 is a circuit diagram showing a wraparound current.
  • FIG. 5 is a circuit diagram showing a current flow.
  • FIG. 6 is
  • FIG. 10 is a circuit diagram showing a comparative example of a power supply system.
  • FIG. 11 is a diagram showing the relationship between the input signal (input voltage) to the monitoring IC and the voltage between the terminals of the assembled battery in the comparative example.
  • FIG. 12 is a circuit diagram showing a comparative example of a power supply system.
  • FIG. 13 is a diagram showing the relationship between the input signal (input voltage) to the monitoring IC and the voltage between the terminals of the assembled battery in the comparative example.
  • 14A is a diagram showing a time transition of an input signal
  • FIG. 14B is a diagram showing a time transition of a potential difference.
  • 15A is a diagram showing a time transition of an input signal, and FIG.
  • 15B is a diagram showing a time transition of a potential difference.
  • 16A is a diagram showing a time transition of an input signal
  • FIG. 16B is a diagram showing a time transition of a potential difference.
  • FIG. 17 is a circuit diagram showing a current flow.
  • the power supply system applied to a vehicle such as an electric vehicle includes an assembled battery 10 as a storage battery, a plurality of systems 21 and 22 configured by grouping functional groups, an assembled battery 10 and each system.
  • the device 30 is provided.
  • the assembled battery 10 is a series connection of a plurality of battery cells, and the voltage between the terminals between the positive electrode side terminal 10a and the negative electrode side terminal 10b of the assembled battery 10 is, for example, a high voltage of 100 V or more.
  • the assembled battery 10 serves as a power source for an electric load such as a rotary machine (motor generator), and stores electric power generated by regenerative control of the motor generator.
  • a lithium ion secondary battery is used as the battery cell.
  • Each system 21 and 22 is connected in parallel to the assembled battery 10, and the voltage between the terminals of the assembled battery 10 is applied to each.
  • Examples of the systems 21 and 22 include a drive system including an inverter and a motor, a charging system including a power generation device, and the like.
  • the system 21 corresponds to the first system
  • the system 22 corresponds to the second system.
  • Power supply paths 23 and 24 are provided for each system 21 and 22.
  • the power supply paths 23 and 24 include positive electrode side power supply paths 23a and 24a connected to the positive electrode side terminal 10a of the assembled battery 10 and negative electrode side power supply paths 23b and 24b connected to the negative electrode side terminal 10b of the assembled battery 10. Is included.
  • the positive electrode side power supply path 11a is connected to the positive electrode side terminal 10a of the assembled battery 10
  • the negative electrode side power supply path 11b is connected to the negative electrode side terminal 10b of the assembled battery 10.
  • Each power supply path 11, 23, 24 is composed of, for example, a bus bar or the like.
  • Relay switches SN1, SP1, SN2, SP2 are provided for each system 21 and 22.
  • the relay switches SN1, SP1, SN2, and SP2 switch between the relay switches SP1 and SP2 on the positive electrode side for switching the energization and de-energization of the positive electrode side power supply paths 23a and 24a and the energization and de-energization of the negative electrode side power supply paths 23b and 24b.
  • the relay switches SN1 and SN2 on the negative electrode side are included.
  • the relay switches SN1 and SP1 When the relay switches SN1 and SP1 are turned off, the power supply between the system 21 and the assembled battery 10 is cut off, and when the relay switches SN1 and SP1 are turned on, the space between the system 21 and the assembled battery 10 is cut off. Is energized. Similarly, when the relay switches SN2 and SP2 are turned off, the energization between the system 22 and the assembled battery 10 is cut off, and when the relay switches SN2 and SP2 are turned on, the system 22 and the assembled battery 10 are turned on. The space between and is energized.
  • resistors R61 and R62 of about several M ⁇ are connected in parallel to the relay switches SN1 and SN2 on the negative electrode side, respectively. These resistances R61 and R62 correspond to the connection circuit 70.
  • the voltage detection device 30 is a first voltage divider circuit 40 that divides the voltage between the terminals of the assembled battery 10 and the applied voltage of each system 21 and 22 at two different voltage divider ratios, and an input channel from the first voltage divider circuit 40. Separately from the monitoring IC 50 as a detection circuit that detects the applied voltage based on the difference between the two voltage dividers (input signals) input via CH1, CH3, and CH6, and the first voltage divider circuit 40. A second voltage dividing circuit 60 for dividing the voltage between terminals of the assembled battery 10 and a potential stabilizing circuit 80 are provided.
  • the first voltage divider circuit 40 includes a first series connection body composed of a switch SW0 and resistors R10, R20, R30, a second series connection body composed of a switch SW1 and resistors R11, R21, R31, and a switch SW2. And a third series connector composed of resistors R12, R22, R32.
  • the first series connection body is provided between the positive electrode side power supply path 11a and the negative electrode side power supply path 11b, and is connected in series from the positive electrode side power supply path 11a in the order of switch SW0, resistor R10, resistor R20, and resistor R30. It is connected.
  • the connection point P11 between the resistance R20 and the resistance R30 is connected to the low potential side input terminal S1 of the input channel CH1 of the monitoring IC50, and the connection point P12 between the resistance R10 and the resistance R20 is the monitoring IC50. It is connected to the high potential side input terminal V1 of the input channel CH1.
  • the low potential side input terminal Sx of the input channel CHx (“x” is an integer of 1 to 6, the same applies hereinafter) may be simply referred to as an input terminal Sx.
  • the high potential side input terminal Vx of the input channel CHx may be simply referred to as an input terminal Vx.
  • the voltage between the terminals is divided by the first voltage dividing ratio (R30 / (R10 + R20 + R30)) and input to the input terminal S1.
  • the voltage between the terminals is divided by the second voltage dividing ratio ((R30 + R20) / (R10 + R20 + R30)) and input to the input terminal V1.
  • the voltage divider voltage obtained by dividing the terminal voltage by the first voltage divider ratio is referred to as the voltage divider voltage DS1
  • the voltage divider voltage obtained by dividing the terminal voltage by the second voltage divider ratio is referred to as the voltage divider voltage. It may be indicated as DV1.
  • a protection element or a filter is provided between the electric path between the connection point P11 and the input terminal S1 and the electric path between the connection point P12 and the input terminal V1.
  • a Zener diode D11 is provided that allows the flow of current from the low potential side input terminal S1 side to the input terminal V1 side and limits the applied voltage between the input terminal V1 and the input terminal S1.
  • the second series connection body is provided between the positive electrode side power supply path 23a and the negative electrode side power supply path 23b of the system 21, and the switch SW1, the resistor R11, the resistor R21, and the resistor R31 are in this order from the positive electrode side power supply path 23a. It is connected in series with.
  • the connection point P13 between the resistance R21 and the resistance R31 is connected to the low potential side input terminal S3 of the input channel CH3 of the monitoring IC50, and the connection point P14 between the resistance R11 and the resistance R21 is the monitoring IC50. It is connected to the high potential side input terminal V3 of the input channel CH3.
  • the voltage applied to the system 21 is divided by the third voltage dividing ratio (R31 / (R11 + R21 + R31)) and input to the input terminal S3.
  • the voltage applied to the system 21 is divided by the fourth voltage dividing ratio ((R31 + R21) / (R11 + R21 + R31)) and input to the input terminal V3. ..
  • the voltage applied to the system 21 is the potential difference (voltage) actually generated between the positive electrode side power supply path 23a and the negative electrode side power supply path 23b due to the application of the voltage between the terminals of the assembled battery 10. That is. Further, the voltage divider voltage obtained by dividing the voltage applied to the system 21 by the third voltage divider ratio is referred to as the voltage divider voltage DS3, and the voltage applied to the system 21 is divided by the fourth voltage divider ratio. The voltage may be referred to as a voltage divider voltage DV3.
  • a protection element or a filter is provided between the electric path between the connection point P13 and the input terminal S3 and the electric path between the connection point P14 and the input terminal V3.
  • a Zener diode D13 is provided that allows the flow of current from the input terminal S3 side to the input terminal V3 side and limits the applied voltage between the input terminal V3 and the input terminal S3.
  • the third series connection body is provided between the positive electrode side power supply path 24a and the negative electrode side power supply path 24b of the system 22, and the switch SW2, the resistor R12, the resistor R22, and the resistor R32 are in this order from the positive electrode side power supply path 24a. It is connected in series with.
  • the connection point P15 between the resistance R22 and the resistance R32 is connected to the low potential side input terminal S6 of the input channel CH6 of the monitoring IC50, and the connection point P16 between the resistance R12 and the resistance R22 is the monitoring IC50. It is connected to the high potential side input terminal V6 of the input channel CH6.
  • the voltage applied to the system 22 is divided by the fifth voltage dividing ratio (R32 / (R12 + R22 + R32)) and input to the input terminal S6.
  • the voltage applied to the system 22 is divided by the sixth voltage dividing ratio ((R32 + R22) / (R12 + R22 + R32)) and input to the input terminal V6. ..
  • the voltage applied to the system 22 is the potential difference (voltage) actually generated between the positive electrode side power supply path 24a and the negative electrode side power supply path 24b due to the application of the voltage between the terminals of the assembled battery 10. That is. Further, the voltage divider voltage obtained by dividing the voltage applied to the system 22 by the fifth voltage divider ratio is referred to as the voltage divider voltage DS6, and the voltage applied to the system 22 is divided by the sixth voltage divider ratio. The voltage may be referred to as a voltage divider voltage DV6.
  • a protective element or a filter is provided between the electric path between the connection point P15 and the input terminal S6 and the electric path between the connection point P16 and the input terminal V6.
  • a Zener diode D16 is provided that allows the flow of current from the input terminal S6 side to the input terminal V6 side and limits the applied voltage between the input terminal V6 and the input terminal S6.
  • the monitoring IC50 uses one having at least six input channels CH1 to CH6.
  • the input channel CH beyond that including the input channel CH6 has the input terminal short-circuited and is not used for the voltage detection this time. Therefore, in the following description, the range of input channels CH1 to CH6 will be described.
  • Each input channel CH1 to CH6 has a pair of input terminals (pin terminals) S1 to S6 and V1 to V6, respectively.
  • the pair of input terminals S1 to S6 and V1 to V6 have high potential side input terminals V1 to V6 and low potential side input terminals S1 to S6.
  • the input channels CH1 to CH6 are arranged in order from the one with the smallest number, that is, in the order of CH1 ⁇ CH2 ⁇ ... ⁇ CH6. Further, in each input channel CH1 to CH6, the low potential side input terminals S1 to S6 ⁇ the high potential side input terminals V1 to V6 are arranged in this order. Therefore, the input terminals S1 to S6 and V1 to V6 are arranged in the order of S1 ⁇ V1 ⁇ S2 ⁇ V2 ⁇ ... ⁇ S6 ⁇ V6.
  • the monitoring IC 50 includes a multiplexer 51, a differential amplifier circuit 52, an AD converter 53, and semiconductor switches SW51 to SW56 such as MOSFETs.
  • the input terminals S1 to S6 and V1 to V6 are connected to the differential amplifier circuit 52 via the multiplexer 51.
  • each input terminal V1 to V6 is connected to the non-inverting input terminal side of the differential amplifier circuit 52 via the multiplexer 51, and each input terminal S1 to S6 is connected to the differential amplifier circuit 52 via the multiplexer 51.
  • the inverting input terminal side of is connected.
  • the multiplexer 51 outputs the voltage input to the input terminals S1 to S6 and V1 to V6 of the input channels CH1 to CH6 selected from the input channels CH1 to CH6 to the differential amplifier circuit 52.
  • the differential amplifier circuit 52 detects the voltage (potential difference) between the non-inverting input terminal and the inverting input terminal and outputs it as an analog signal to the AD converter 53.
  • the AD converter 53 converts the analog signal into a digital signal and outputs it to the arithmetic unit 54 included in the monitoring IC 50.
  • the arithmetic unit 54 calculates the voltage between the terminals of the assembled battery 10 and the voltage applied to each system 21 and 22 based on the input potential difference (digital signal).
  • the arithmetic unit 54 has a first voltage divider ratio (R30 / (R10 + R20 + R30)), a second voltage divider ratio ((R30 + R20) / (R10 + R20 + R30)) of the first voltage divider circuit 40 to the voltage between terminals, and
  • the voltage between terminals is calculated based on the potential difference between the voltage divider voltage DS1 and the voltage divider voltage DV1.
  • the differential amplifier circuit 52 and the AD converter 53 are integrated in the monitoring IC 50, and the total error is suppressed by calibration or correction. Therefore, the voltage between terminals can be calculated accurately.
  • the arithmetic unit 54 has a third voltage divider ratio (R31 / (R11 + R21 + R31)), a fourth voltage divider ratio ((R31 + R21) / (R11 + R21 + R31)) of the first voltage divider circuit 40 with respect to the voltage applied to the system 21.
  • the voltage applied to the system 21 is calculated based on the potential difference between the voltage dividing voltage DS3 and the voltage dividing voltage DV3. The same applies to the calculation of the voltage applied to the system 22. It is not necessary to provide the arithmetic unit 54 in the monitoring IC 50, and the arithmetic unit 54 may be provided in the external device.
  • the semiconductor switches SW51 to SW56 are provided so as to be able to switch between energization and energization cutoff between adjacent input terminals S1 to S6, respectively.
  • the semiconductor switch SW51 is provided between the input terminal S1 and the input terminal S2, and is configured to be able to switch between energization and energization cutoff between the terminals.
  • diodes D51 to D56 are connected in parallel to the semiconductor switches SW51 to SW56, respectively.
  • the diodes D51 to D56 may be parasitic diodes of the semiconductor switches SW51 to SW56.
  • Each diode D51 is arranged so as to allow current to flow from the input terminal S1 having a small number to the input terminal S2 having a large number. The same applies to the diodes D52 to D56.
  • the arithmetic unit 54 is configured to be able to control the switching of the semiconductor switches SW51 to SW56 and the selection of the input channels CH1 to CH6 by the multiplexer 51 in addition to the above-mentioned arithmetic.
  • the switch SW3, the resistor R42, and the resistor R52 are connected in series in this order between the positive electrode side power supply path 11a and the negative electrode side power supply path 11b. Further, one end of the series connection body of the resistance R41, the resistance R55 and the resistance R51 is connected between the switch SW3 and the resistance R42 so as to be in parallel with the resistance R42 and the resistance R52, and the other end is the negative electrode side power supply path. It is connected to 11b.
  • connection point P21 between the resistor R55 and the resistor R51 is connected to the connection point P13 between the resistor R21 and the resistor R31 of the first voltage dividing circuit 40 via the diode D1.
  • the diode D1 is connected so as to allow the flow of current from the side of the second voltage divider circuit 60 to the side of the first voltage divider circuit 40. That is, when the switch SW3 is turned on, the voltage between the terminals of the assembled battery 10 is divided by the seventh voltage dividing ratio (R51 / (R41 + R55 + R51)) based on the resistors R41, R55, R51, and is connected via the diode D1. It is configured to be applicable to the point P13.
  • the voltage divider voltage obtained by dividing the voltage between the terminals by the seventh voltage divider ratio may be referred to as a voltage divider voltage DS3min.
  • the voltage dividing voltage DS3min is an input signal input to the input terminal S3 when the energization of the system 21 is cut off.
  • connection point P22 between the resistor R42 and the resistor R52 is connected to the connection point P15 between the resistor R22 and the resistor R32 of the first voltage dividing circuit 40 via the diode D2.
  • the diode D2 is connected so as to allow the flow of current from the side of the second voltage divider circuit 60 to the side of the first voltage divider circuit 40. That is, when the switch SW3 is turned on, the voltage between the terminals of the assembled battery 10 is divided by the eighth voltage dividing ratio (R52 / (R42 + R52)) based on the resistors R42 and R52, and the connection point P15 is divided via the diode D2. It is configured to be applicable to.
  • the voltage divider voltage obtained by dividing the voltage between the terminals by the eighth voltage divider ratio may be referred to as a voltage divider voltage DS6min.
  • the voltage dividing voltage DS6min is an input signal input to the input terminal S6 when the energization of the system 22 is cut off.
  • the potential stabilization circuit 80 is composed of a series connector of a resistor R53 and a resistor R54, one end of which is connected to the second voltage dividing circuit 60 and the other end of which is connected to the input terminal V3. More specifically, one end of the potential stabilization circuit 80 is connected between the resistance R41 and the resistance R55 in the second voltage divider circuit 60, and the other end is the resistance R11 and the resistance R21 of the first voltage divider circuit 40. It is connected to the connection point P14 between. Further, the connection point P17 between the resistance R53 and the resistance R54 is connected to the input terminal S5 of the input channel CH5 of the monitoring IC50.
  • the monitoring IC50 is originally used to detect the voltage of each battery cell C11 to C15 constituting the assembled battery.
  • the semiconductor switches SW51 to SW55 are provided for equalization discharge of the battery cells C11 to C15. That is, the monitoring IC50 has been developed on the premise of detecting the voltage of the battery cells C11 to C15 connected in series. Therefore, for example, the circuit configuration is set on the premise that the potential is gradually increased for each of the input channels CH1 to CH5. Specifically, the potential input in the order of input terminal S1 ⁇ input terminal V1, S2 ⁇ input terminal V2, S3 ⁇ input terminal V3, S4 ⁇ input terminal V4, S5 ⁇ input terminal V5 gradually increases. Is assumed.
  • the voltage between the terminals of the assembled battery 10 and the applied voltage of the systems 21 and 22 are set to each input channel via a voltage dividing circuit.
  • CH1, CH3, CH5 there are the following problems. That is, when the voltages input to the input channels CH1, CH3, and CH5 are substantially the same, the diodes D11 to D15 provided outside the monitoring IC50, or the monitoring IC50, as shown by the broken line arrow shown in FIG. A wraparound current may be generated via the diodes D51 to D56 of the semiconductor switches SW51 to SW56 inside.
  • a wraparound current may be generated inside the monitoring IC50.
  • the applied voltage of any of the systems 21 and 22 becomes zero by turning off the relay switches SN1, SP1, SN2 and SP2, a wraparound current is similarly generated inside the monitoring IC50. there is a possibility. This causes a problem that a voltage detection error occurs.
  • the monitoring IC 50 is provided with a plurality of input channels CH1 to CH6, and the potential order of the input signals is preset in the input terminals S1 to S6 and V1 to V6 of the input channels CH1 to CH6. ing.
  • the potential order is the order of the potentials of the input signals in which an unintended wraparound current is prevented between the input channels CH1 and CH6, at least inside the monitoring IC50.
  • the unintended wraparound current is, for example, a current flowing through the diodes D51 to D56 and the like.
  • the potential order of the input signals is in the order of input terminal S1 ⁇ input terminal V1, S2 ⁇ input terminal V2, S3 ⁇ input terminal V3, S4 ⁇ input terminal V4, S5 ⁇ input terminal V5, S6 ⁇ input terminal V6.
  • the potential order is determined so that the potential increases stepwise for each of the input channels CH1 to CH6.
  • the potential order does not have to be reversed, and for example, input signals having the same potential may be input at the input terminals V3 and S4 and the input terminal V4. This is because even in such a case, an unintended wraparound current is prevented.
  • the first voltage dividing circuit 40 divides the voltage between the terminals of the assembled battery 10 at two different voltage dividing ratios, and outputs the voltage to the input terminals S1 and V1 of the input channel CH1 associated with the assembled battery 10, respectively.
  • the first voltage divider circuit 40 divides the voltage applied to the system 21 by two different voltage dividing ratios when the relay switches SP1 and SN1 are turned on, and the input channel CH3 associated with the system 21 Is output to each of the input terminals S3 and V3.
  • the first voltage divider circuit 40 divides the voltage applied to the system 22 by two different voltage dividing ratios when the relay switches SP2 and SN2 are turned on, and the input channel CH6 associated with the system 22 is used. Output to the input terminals S6 and V6 of.
  • the first voltage dividing circuit 40 divides the voltage for each input terminal S1, V1, S3, V3, S6, V6 of the input channels CH1, CH3, CH6 at a stepwise different voltage dividing ratio, and outputs the voltage. I try to do it. More specifically, the potential of the input signal (voltage dividing voltage) to be input is gradually increased in the order of input terminal S1 ⁇ input terminal V1 ⁇ input terminal S3 ⁇ input terminal V3 ⁇ input terminal S6 ⁇ input terminal V6. Each voltage dividing ratio of the first voltage dividing circuit 40 is set.
  • the second voltage divider ratio of the voltage divider voltage DV1 that can be input to the high potential side input terminal V1 of the input channel CH1 is the low potential side input terminal of the input channel CH1.
  • the voltage dividing voltage that can be input to S1 is set to be larger than the first voltage dividing ratio of DS1.
  • the fourth voltage division ratio is set to be one step larger than the third voltage division ratio, and the sixth voltage division ratio is set to be larger than the fifth voltage division ratio. ..
  • the voltage division ratio is set stepwise so that a potential difference of more than a predetermined value is generated. That is, in the first voltage divider circuit 40, the third voltage divider ratio of the voltage divider voltage DS3 that can be input to the low potential side input terminal S3 of the input channel CH3 can be input to the high potential side input terminal V1 of the input channel CH1.
  • the voltage dividing voltage is set to be larger than the second voltage dividing ratio of DV1.
  • the fifth voltage division ratio is set to be larger than the fourth voltage division ratio.
  • the first voltage dividing ratio, the third voltage dividing ratio, and the fifth voltage dividing ratio in the first voltage dividing circuit 40 are voltage drops calculated based on the current amounts and impedances of the negative electrode side power supply paths 11b, 23b, and 24b. It is set in consideration of the amount.
  • the maximum drop amounts N0max, N1max, and N2max from the circuit reference (ground terminal N0) of the monitoring IC50 are calculated from the impedance with the current amounts of the negative electrode side power supply paths 11b, 23b, and 24b, respectively.
  • the first voltage dividing ratio is set so that the maximum drop amount N0max ⁇ voltage dividing voltage DS1.
  • the third voltage dividing ratio is set so that the maximum drop amount N1max ⁇ voltage dividing voltage DS3.
  • the fifth voltage dividing ratio is set so that the maximum drop amount N2max ⁇ voltage dividing voltage DS6.
  • the second voltage dividing circuit 60 is configured to divide the voltage between terminals at a stepwise different voltage dividing ratio for each of the systems 21 and 22.
  • the seventh voltage divider ratio (R51 / (R41 + R55 + R51)) of the voltage divider DS3 min is smaller than the third voltage divider ratio (R31 / (R11 + R21 + R31)) of the voltage divider DS3, and the first voltage divider circuit.
  • it is set larger than the second voltage dividing ratio ((R30 + R20) / (R10 + R20 + R30)) which is one step smaller than the third voltage dividing ratio.
  • the eighth voltage dividing ratio (R52 / (R42 + R52)) of the voltage dividing voltage DS6min is smaller than the fifth voltage dividing ratio (R32 / (R12 + R22 + R32)) of the voltage dividing voltage DS6, and the first voltage dividing circuit 40 Is set larger than the fourth voltage dividing ratio ((R31 + R21) / (R11 + R21 + R31)), which is one step smaller than the fifth voltage dividing ratio.
  • the second voltage dividing circuit 60 is set for the systems 21 and 22 in the presence of the systems 21 and 22 in which the energization with the assembled battery 10 is cut off by the relay switches SN1, SP1, SN2 and SP2.
  • the voltage dividing voltages DS3min and DS6min are configured to be output to the low potential side input terminals S3 and S6 of the input channels CH3 and CH6.
  • connection point P21 between the resistor R55 and the resistor R51 is connected to the connection point P13 between the resistor R21 and the resistor R31 of the first voltage dividing circuit 40 via the diode D1. Therefore, when the applied voltage of the system 21 becomes zero, the second voltage divider circuit 60 also has the voltage divider voltage DS3 zero, so that the voltage divider voltage DS3min is output to the input terminal S3 via the diode D1. It will be. At that time, the voltage dividing voltage DS3min is also input to the input terminals V3, S4, and V4 via the diodes D13 and D53.
  • the voltage dividing voltage DS3min is input via the diode D1
  • the voltage actually input to the input terminals S3, V3, S4, and V4 is the voltage dividing voltage DS3min in consideration of the forward voltage drop due to the diode D1.
  • the voltage drop is Vf.
  • the voltage is small enough not to affect the disclosure. Therefore, for convenience of explanation, the voltage drop Vf among the voltages input to the input terminals S3, V3, S4, and V4 is described below. The description of is omitted.
  • connection point P22 between the resistor R42 and the resistor R52 is connected to the connection point P15 between the resistor R22 and the resistor R32 of the first voltage dividing circuit 40 via the diode D2. Therefore, when the applied voltage of the system 22 becomes zero, the second voltage dividing circuit 60 outputs the voltage dividing voltage DS6min to the input terminal S6 via the diode D2. At that time, the voltage dividing voltage DS6min is also input to the input terminal V6 via the diodes D16 and D56.
  • the voltage actually input to the input terminals S6 and V6 is the voltage dividing voltage DS6min-voltage drop Vf in consideration of the voltage drop due to the diode D2. ing.
  • the description of the voltage drop Vf among the voltages input to the input terminals S6 and V6 is omitted below for convenience of explanation. do.
  • the second voltage divider circuit 60 divides the voltage between terminals with respect to the input channels CH3 and CH6 associated with the systems 21 and 22 in which the energization with the assembled battery 10 is cut off. DS3min and DS6min are output as input signals.
  • the seventh voltage dividing ratio in the second voltage dividing circuit 60 is such that the input signals input to the input terminal S3 of the input channel CH3 to be output are in the order corresponding to the potential order. It is set to be equal to or less than the third voltage dividing ratio set by the first voltage dividing circuit 40 in order to generate an input signal to the input terminal S3. That is, the seventh voltage division ratio is larger than the second voltage division ratio and equal to or less than the third voltage division ratio.
  • the eighth voltage dividing ratio in the second voltage dividing circuit 60 is a voltage dividing ratio such that the input signals input to the input terminal S6 of the input channel CH6 as the output destination are in the order corresponding to the order of potential. It is set to be equal to or less than the fifth voltage dividing ratio set in the first voltage dividing circuit 40 in order to generate an input signal to the input terminal S6. That is, the eighth voltage division ratio is larger than the fourth voltage division ratio and equal to or less than the fifth voltage division ratio.
  • FIG. 5 is a diagram showing the operation of the voltage detection device 30 and the current flow when the relay switches SN1, SP1, SN2, and SP2 are turned on.
  • the broken line indicates the current flow.
  • a voltage divider voltage DS1 in which the voltage between the terminals is divided by the first voltage divider ratio is input to the input terminal S1.
  • the voltage dividing voltage DV1 in which the voltage between the terminals is divided by the second voltage dividing ratio is input to the input terminal V1.
  • the voltage divider DS3, in which the voltage applied to the system 21 is divided by the third voltage divider ratio, is input to the input terminal S3.
  • the voltage divider voltage DV3, in which the voltage applied to the system 21 is divided by the fourth voltage divider ratio, is input to the input terminal V3.
  • a voltage divider DS6 in which the voltage applied to the system 22 is divided by the fifth voltage divider ratio is input to the input terminal S6.
  • the voltage dividing voltage DV6 in which the voltage applied to the system 22 is divided by the sixth voltage dividing ratio is input to the input terminal V6.
  • the magnitude relationship of each voltage dividing voltage is DS1 ⁇ DV1 ⁇ DS3 ⁇ DV3 ⁇ DS6 ⁇ DV6.
  • the potential of the input signal (voltage division voltage) that is input stepwise in the order of input terminal S1 ⁇ input terminal V1 ⁇ input terminal S3 ⁇ input terminal V3 ⁇ input terminal S6 ⁇ input terminal V6 increases. That is, the order is according to the potential order of the input signals. Therefore, it is possible to prevent the current from wrapping around through the diodes D11, D13, D16, D51, D53, and D56.
  • the monitoring IC 50 can accurately detect the voltage between the terminals based on the two voltage dividing voltages DS1 and DV1 input to the input terminals S1 and V1. Similarly, the monitoring IC 50 can accurately detect the voltage applied to the system 21 based on the two voltage dividing voltages DS3 and DV3 input to the input terminals S3 and V3. The voltage applied to the system 22 can be detected with high accuracy as well.
  • the seventh voltage dividing ratio in the second voltage dividing circuit 60 is smaller than the third voltage dividing ratio in the first voltage dividing circuit 40, and the voltage between terminals and the voltage applied to the system 21 are almost the same. Therefore, the voltage dividing voltage DS3min obtained by dividing the voltage between terminals at the seventh voltage dividing ratio is smaller than the voltage dividing voltage DS3 obtained by dividing the voltage applied to the system 21 at the third voltage dividing ratio. Therefore, the voltage dividing voltage DS3min from the second voltage dividing circuit 60 is not input to the input terminal S3 (the voltage dividing voltage DS3min does not appear as an input signal), and the voltage dividing voltage DS3 from the first voltage dividing circuit 40 is used. , Is input to the input terminal S3.
  • the eighth voltage dividing ratio in the second voltage dividing circuit 60 is smaller than the fifth voltage dividing ratio in the first voltage dividing circuit 40, and the voltage between terminals and the voltage applied to the system 22 are almost the same. Therefore, the voltage dividing voltage DS6min obtained by dividing the voltage between terminals at the eighth voltage dividing ratio is smaller than the voltage dividing voltage DS6 obtained by dividing the voltage applied to the system 22 at the fifth voltage dividing ratio. Therefore, the voltage dividing voltage DS6min from the second voltage dividing circuit 60 is not input to the input terminal S6 (the voltage dividing voltage DS6min does not appear as an input signal), and the voltage dividing voltage DS6 from the first voltage dividing circuit 40 is used. , Is input to the input terminal S6.
  • FIG. 6 is a diagram showing the operation of the voltage detection device 30 and the current flow when the relay switches SN1 and SP1 are turned off and the relay switches SN2 and SP2 are turned on.
  • the broken line indicates the current in the first voltage divider circuit 40.
  • the current in the second voltage dividing circuit 60 is shown by the alternate long and short dash line.
  • a voltage divider voltage DS1 in which the voltage between the terminals is divided by the first voltage divider ratio is input to the input terminal S1.
  • the voltage dividing voltage DV1 in which the voltage between the terminals is divided by the second voltage dividing ratio is input to the input terminal V1.
  • a voltage divider DS6 in which the voltage applied to the system 22 is divided by the fifth voltage divider ratio is input to the input terminal S6.
  • the voltage dividing voltage DV6 in which the voltage applied to the system 22 is divided by the sixth voltage dividing ratio is input to the input terminal V6.
  • the applied voltage to the system 21 is 0V. Therefore, the voltage dividing voltage from the first voltage dividing circuit 40 to the input terminal S3 is also 0V. Since the voltage divider DS3min by the second voltage divider circuit 60 is higher than 0V, as shown by the one-point chain line, the positive electrode side terminal 10a of the assembled battery 10 ⁇ switch SW3 ⁇ resistor R41 ⁇ resistor R55 ⁇ diode D1 ⁇ resistor. A current flows through the path of R31 ⁇ resistor R61 ⁇ negative electrode side terminal 10b of the assembled battery 10.
  • the voltage divider voltage DS3min in which the voltage between the terminals is divided by the seventh voltage divider ratio is input to the input terminal S3.
  • the voltage dividing voltage DS3min is input to the input terminals V3, S4, and V4 via the resistor R21 and the like.
  • the magnitude relationship of each voltage dividing voltage is DS1 ⁇ DV1 ⁇ DS3min ⁇ DS6 ⁇ DV6.
  • the voltage dividing voltage that is input stepwise in the order of input terminal S1 ⁇ input terminal V1 ⁇ input terminal S3, V3, S4, V4 ⁇ input terminal S6 ⁇ input terminal V6 increases. That is, the input signal is input according to the potential order. Therefore, it is possible to prevent the current from wrapping around through the diodes D11, D13, D16, D51, D53, D56 and the like. Therefore, the monitoring IC 50 can accurately detect the voltage between terminals and the voltage applied to the system 22.
  • FIG. 7 is a diagram showing the operation of the voltage detection device 30 and the current flow when the relay switches SN2 and SP2 are turned off and the relay switches SN1 and SP1 are turned on.
  • the broken line indicates the current in the first voltage divider circuit 40.
  • the current in the second voltage dividing circuit 60 is shown by the alternate long and short dash line.
  • a voltage divider voltage DS1 in which the voltage between the terminals is divided by the first voltage divider ratio is input to the input terminal S1.
  • the voltage dividing voltage DV1 in which the voltage between the terminals is divided by the second voltage dividing ratio is input to the input terminal V1.
  • the voltage divider DS3, in which the voltage applied to the system 21 is divided by the third voltage divider ratio, is input to the input terminal S3.
  • the voltage divider voltage DV3, in which the voltage applied to the system 21 is divided by the fourth voltage divider ratio, is input to the input terminal V3.
  • the voltage between the terminals S6 and V6 of the input terminals S6 and V6 is divided by the eighth voltage division ratio for the same reason as described in FIG.
  • the divided voltage division voltage DS6min is input.
  • the magnitude relationship of each voltage dividing voltage is DS1 ⁇ DV1 ⁇ DS3 ⁇ DV3 ⁇ DS6min.
  • the potential of the voltage dividing voltage that is input stepwise in the order of input terminal S1 ⁇ input terminal V1 ⁇ input terminal S3 ⁇ input terminal V3 ⁇ input terminals S6 and V6 increases. That is, the input signal is input according to the potential order. Therefore, it is possible to prevent the current from wrapping around through the diodes D11, D13, D16, D51, D53, D56 and the like. Therefore, the monitoring IC 50 can accurately detect the voltage between terminals and the voltage applied to the system 22.
  • FIG. 8 is a diagram showing the operation of the voltage detection device 30 and the current flow when the relay switches SN1, SP1, SN2, and SP2 are turned on and the switch SW0 is stuck off (cannot be turned on).
  • the broken line indicates the current flow.
  • the voltage dividing voltage DS3 in which the voltage applied to the system 21 is divided by the third voltage dividing ratio is input to the input terminal S3.
  • the voltage divider voltage DV3, in which the voltage applied to the system 21 is divided by the fourth voltage divider ratio, is input to the input terminal V3.
  • a voltage divider DS6 in which the voltage applied to the system 22 is divided by the fifth voltage divider ratio is input to the input terminal S6.
  • the voltage dividing voltage DV6 in which the voltage applied to the system 22 is divided by the sixth voltage dividing ratio is input to the input terminal V6.
  • the switch SW0 cannot be turned on, the input terminals S1 and V1 have the same potential as the negative electrode side power supply path 11b, that is, 0V.
  • the voltage dividing voltage that is input stepwise in the order of input terminal S1, V1 ⁇ input terminal S3 ⁇ input terminal V3 ⁇ input terminal S6 ⁇ input terminal V6 increases. That is, the input signal is input according to the potential order. Therefore, it is possible to prevent the current from wrapping around through the diodes D11, D13, D16, D51, D53, and D56. Therefore, the monitoring IC 50 can accurately detect the voltage applied to the systems 21 and 22. Further, the monitoring IC 50 can detect a failure of the switch SW0.
  • FIG. 9 is a diagram showing the operation of the voltage detection device 30 and the current flow when the relay switches SN1, SP1, SN2, and SP2 are turned off.
  • the current in the second voltage dividing circuit 60 is shown by the alternate long and short dash line.
  • a voltage divider voltage DS1 in which the voltage between the terminals is divided by the first voltage divider ratio is input to the input terminal S1.
  • the voltage dividing voltage DV1 in which the voltage between the terminals is divided by the second voltage dividing ratio is input to the input terminal V1.
  • the voltage between the terminals S3, V3, S4 and V4 has a seventh voltage for the same reason as described above.
  • the voltage dividing voltage DS3min divided by the voltage dividing ratio is input.
  • the voltage dividing voltage DS6min in which the voltage between the terminals is divided by the eighth voltage dividing ratio is input to the input terminals S6 and V6.
  • the magnitude relationship of each voltage dividing voltage is DS1 ⁇ DV1 ⁇ DS3min ⁇ DS6min.
  • the voltage dividing voltage that is input stepwise in the order of input terminal S1 ⁇ input terminal V1 ⁇ input terminal S3, V3, S4, V4 ⁇ input terminal S6, V6 increases. That is, the input signal is input according to the potential order. Therefore, it is possible to prevent the current from wrapping around through the diodes D11, D13, D16, D51, D53, D56 and the like. Therefore, the monitoring IC 50 can accurately detect the voltage between terminals.
  • the monitoring IC 50 can accurately detect the voltage between terminals and the applied voltage.
  • the monitoring IC 50 has a withstand voltage. Specifically, when a potential difference of a predetermined value or more occurs between the input channels CH1 to CH6, the semiconductor switches SW51 to SW56 and the like fail.
  • the withstand voltage of each input channel CH1 to CH6 is predetermined by the withstand voltage of a circuit element provided between each input channel CH1 to CH6 such as semiconductor switches SW51 to SW56.
  • the first voltage dividing circuit 40 and the second voltage dividing circuit 60 are set to the input terminals S1 to S6 so as to be within the withstand voltage range of each input channel CH1 to CH6 (so that a large potential difference does not occur). It is necessary to input an appropriate input signal (voltage dividing voltage) for each of V1 to V6.
  • the potential difference may increase and exceed the withstand voltage range depending on the on / off state of the relay switches SN1, SP1, SN2, SP2.
  • the potential stabilization circuit 80 does not exist, the input channel CH5 is associated with the system 22, and the voltage dividing voltages DS6 and DV6 are connected to the input terminals S5 and V5. It has the same configuration as the voltage detection device 30 of FIG. 1 except that it is input.
  • the input channel CH5 since the input channel CH5 is associated with the system 22, the input channel CH5 associated with the system 22 and the input channel CH3 associated with the system 21 are separated from each other. Only the input channel CH4 will be present.
  • each voltage dividing voltage is as shown in FIG. 11A.
  • the horizontal axis is the magnitude of the voltage between terminals of the assembled battery 10
  • the vertical axis is the potential of the input signal (monitoring IC input voltage).
  • the potential differences of the input signals that differ by one in the potential order can be set within the range of withstand voltage.
  • the withstand voltage of the potential difference DV6-DS6, the potential difference DS6-DV3, the potential difference DV3-DS3, the potential difference DS3-DV1, and the potential difference DV1-DS1 are respectively. Can be within the range of.
  • each voltage dividing voltage is as shown in FIG. 11 (b).
  • the input signal input to the input terminals V5 and S5 has a voltage dividing voltage of DS6min, but the potential difference DS6min-DV3 has a smaller difference than the potential difference DS6-DV3. Can be within range.
  • each voltage dividing voltage is as shown in FIG. 11 (c).
  • the input signal input to the input terminals V3 and S3 has a voltage dividing voltage of DS3min. Therefore, the potential difference applied to the input channel CH4 changes from the potential difference DS6-DV3 to the potential difference DS6-DS3min, and the potential difference becomes large.
  • each voltage dividing voltage is as shown in FIG. 11 (d).
  • the input signal input to the input terminals V3 and S3 has a voltage dividing voltage DS3min
  • the input signal input to the input terminals V5 and S5 has a voltage dividing voltage DS6min. Therefore, the potential difference applied to the input channel CH4 changes from the potential difference DS6-DV3 to the potential difference DS6min-DS3min, and the potential difference becomes large.
  • the relay switches SN1 and SP1 are turned off, the potential difference of the input signal increases, and depending on the magnitude of the voltage between the terminals of the assembled battery 10, the withstand voltage of the monitoring IC 50 may be exceeded.
  • the resistances of the first voltage dividing circuit 40 and the second voltage dividing circuit 60 are all increased, and the voltage dividing voltage itself applied to the monitoring IC 50 is decreased. It is conceivable to reduce the potential difference.
  • this method has a problem that the dynamic range of voltage detection becomes small, the influence of an error becomes large, and the detection accuracy deteriorates.
  • a Zener diode D14 is provided between the input terminal S5 and the input terminal V3, and when a potential difference of a predetermined value or more occurs, it is shown by a broken line.
  • a method of suppressing the potential difference by passing a current from the input terminal S5 to the input terminal V3 can be considered.
  • a wraparound current from the input channel CH5 to the input channel CH3 is allowed to be generated, and the detection accuracy of the applied voltage of the system 22 is deteriorated.
  • the voltage division ratio is adjusted without changing the circuit configuration, and each potential difference of the potential difference DS6-DS6min, the potential difference DS6min-DV3, the potential difference DS3-DS3min, and the potential difference DS3min-DV1. It is conceivable to make it as small as possible. In this case, as shown in FIG. 13B, even if the relay switches SN1 and SP1 are turned off and the potential difference DS6-DV3 becomes the potential difference DS6-DS3min (or the potential difference DS6min-DS3min), the potential difference is not increased. Can be.
  • the potential difference DS6-DS6min the potential difference DS6min-DV3, the potential difference DS3-DS3min, and the potential difference DS3min-DV1 as much as possible, the potentials of DV1 ⁇ DS3min ⁇ DS3 and DV3 ⁇ DS6min ⁇ DS6 are affected by the circuit tolerance. It is difficult to maintain the order.
  • the input terminal V3 of the input channel CH3 associated with the system 21 and the input of the input channel CH6 associated with the system 22 A plurality of input channels CH4 and CH5 from which the input signal from the first voltage dividing circuit 40 is not input are provided between the terminal S6 and the input channels CH4 and CH5 as read-abandoned channels (channels for ensuring withstand voltage). That is, the range of withstand voltage is simply increased by setting a plurality of input channels between the input terminals where the potential difference becomes large and increasing the number of intervening circuit elements. That is, it is not used for voltage detection, and is provided with an input channel for ensuring withstand voltage against a large potential difference.
  • the following problems may occur with the first device alone. That is, there is a problem that a uniform potential difference does not always occur in each input channel CH4 and CH5 due to a difference (bias) in the characteristics of circuit elements such as impedance and resistance in each input channel CH4 and CH5. That is, even if the potential difference between the input terminal V3 and the input terminal S6 is within the range of the total withstand voltage between the input channels CH4 and CH5, the potential difference is within the range of the withstand voltage of each of the input channels CH4 and CH5. It did not always occur evenly. That is, the potential difference applied to the input channel CH4 and the potential difference applied to the input channel CH5 are significantly different, and may exceed the withstand voltage of one of the input channels.
  • a potential stabilization circuit 80 is provided as a second device.
  • the potential stabilization circuit 80 is between the potential of the input signal input to the input terminal V3 and the potential of the input signal input to the input terminal S6 with respect to the input terminal S5 of the input channel CH5 which is the read-off channel.
  • the signal that becomes the potential of is output as an input signal.
  • the potential difference between the input terminal S5 and the input terminal S6 and the potential difference between the input terminal S5 and the input terminal V3 are within the withstand voltage range of the monitoring IC 50, respectively.
  • the second voltage divider circuit 60 divides the voltage between terminals by the resistors R41, R55, and R51, and generates a voltage divider voltage DS6_2 between the resistors R41 and R55.
  • the voltage divider ratio of the second voltage divider circuit 60 is set so that the voltage divider voltage DS6_2 has a voltage similar to that of the voltage divider voltage DS6 input to the input terminal S6. That is, the voltage between the terminals is divided at the same voltage dividing ratio as the fifth voltage dividing ratio in the first voltage dividing circuit 40 to generate the divided voltage DS6_2.
  • the potential stabilization circuit 80 is a series connection body of the resistances R53 and R54, and one end thereof is connected to the connection point between the resistances R41 and R55.
  • the voltage divider voltage DS6_2 is applied (input) to the potential stabilization circuit 80 from one end thereof.
  • the other end of the potential stabilization circuit 80 is connected to the connection point P14 between the resistance R11 and the resistance R21 of the first voltage dividing circuit 40. That is, the other end of the potential stabilization circuit 80 is equivalent to being connected to the input terminal V3. Therefore, when the system 21 is energized, the voltage dividing voltage DV3 is applied to the other end of the potential stabilization circuit 80. Therefore, when the system 21 is energized, the potential stabilizing circuit 80 applies a voltage between the voltage dividing voltage DS6_2 and the voltage dividing voltage DV3 to the input terminal S5. At this time, the potential of the input signal input to the input terminal S5 is set by the voltage dividing voltage DS6_2, the voltage dividing voltage DV3, and the resistors R53 and R54.
  • the voltage dividing voltage DS3min is input to the other end of the potential stabilization circuit 80 via the resistor R21. Therefore, the potential stabilization circuit 80 applies a voltage between the voltage dividing voltage DS6_2 and the voltage dividing voltage DS3min to the input terminal S5 when the energization to the system 21 is cut off.
  • the voltage dividing voltage DS3min is also an input signal input to the input terminal V3. At this time, the potential of the input signal input to the input terminal S5 is set by the voltage dividing voltage DS6_2, the voltage dividing voltage DS3min, and the resistors R21, R53, and R54.
  • the potential difference between the input terminal S5 and the input terminal S6 is within the withstand voltage range between the input terminal S5 and the input terminal S6, and the input terminal S5
  • the potential difference between the input terminal V3 and the input terminal V3 is set to be within the range of the withstand voltage between the input terminal S5 and the input terminal V3. That is, the resistances R53 and R54 of the potential stabilization circuit 80 are set so that each potential difference is within the range of the withstand voltage of the input channel CH5 and within the range of the withstand voltage of the input channel CH4.
  • the potential stabilization circuit 80 As a result, in the potential stabilization circuit 80, the potential difference between the input terminal S5 and the input terminal S6 and the potential difference between the input terminal S5 and the input terminal V3 are within the withstand voltage range of the monitoring IC 50, respectively. A voltage is generated and output to the input terminal S5 as an input signal.
  • the voltage input from the potential stabilizing circuit 80 to the input terminal S5 when the power to the system 21 is energized is referred to as a voltage DS5_1, and is input to the input terminal S5 from the potential stabilizing circuit 80 when the energization to the system 21 is cut off.
  • the voltage is referred to as voltage DS5_2.
  • FIG. 14A shows the potential (monitoring IC input voltage) of each input signal when the relay switches SN1 and SP1 are turned off at the time point T1 from the state where the relay switches SN1, SP1, SN2 and SP2 are all turned on. It is a figure which shows the time transition.
  • FIG. 14 (b) is a diagram showing the time transition of the potential difference in FIG. 14 (a).
  • the voltage dividing voltage DS1 is input to the input terminal S1 and the voltage dividing voltage DS1 is input to the input terminals V1, S2 and V2.
  • the voltage divider voltage DV1 is input.
  • the voltage dividing voltage DS3 is input to the input terminal S3, and the voltage dividing voltage DV3 is input to the input terminals V3, S4, and V4.
  • the voltage DS5_1 is input to the input terminals S5 and V5.
  • the voltage dividing voltage DS6 is input to the input terminal S6, and the voltage dividing voltage DV6 is input to the input terminal V6.
  • each input signal is DS1 ⁇ DV1 ⁇ DS3 ⁇ DV3 ⁇ DS5_1 ⁇ DS6 ⁇ DV6.
  • the input signals are input to the input terminals in the order corresponding to the potential order.
  • the potential difference DV6-DS6, the potential difference DS6-DS5_1, the potential difference DS5_1-DV3, the potential difference DV3-DS3, the potential difference DS3-DV1, and the potential difference DV1-DS1 are also within the withstand voltage range. There is.
  • the magnitude relationship of each input signal is DS1 ⁇ DV1 ⁇ DS3min ⁇ DS5_1 ⁇ DS6 ⁇ DV6.
  • the input signals are input to the input terminals in the order corresponding to the potential order.
  • the potential difference DV6-DS6, the potential difference DS6-DS5_2, the potential difference DS5_2-DS3min, the potential difference DS3min-DV1, and the potential difference DV1-DS1 are also within the withstand voltage range.
  • the input signal input to the input terminal V3 drops from the voltage dividing voltage DV3 to the voltage dividing voltage DS3min, and in accordance with this, the input signal input from the potential stabilizing circuit 80 to the input terminal S5 The potential also drops from the voltage DS5_1 to the voltage DS5_1. Therefore, it is possible to suppress the expansion of the potential difference.
  • FIG. 15A shows the potential (monitoring IC input voltage) of each input signal when the relay switches SN2 and SP2 are turned off at the time point T2 from the state where the relay switches SN1, SP1, SN2 and SP2 are all turned on. It is a figure which shows the time transition.
  • FIG. 15B is a diagram showing the time transition of the potential difference in FIG. 15A. As shown in FIG. 15A, it is the same as in FIG. 14 up to the time point T2, so the description thereof will be omitted.
  • the potential difference DV6-DS6, the potential difference DS6min-DS5_1, the potential difference DS5_1-DV3, the potential difference DV3-DS3, the potential difference DS3-DV1, and the potential difference DV1-DS1 are also within the withstand voltage range.
  • FIG. 16A shows the potential (monitoring) of each input signal when the relay switches SN1, SP1, SN2, and SP2 are all turned off at the time point T3 from the state where the relay switches SN1, SP1, SN2, and SP2 are all turned on. It is a figure which shows the time transition of (IC input voltage).
  • 16 (b) is a diagram showing the time transition of the potential difference in FIG. 16 (a). As shown in FIG. 16A, up to the time point T3 is the same as in FIG. 14, so the description thereof will be omitted.
  • the input signal of the input terminals S3, V3, S4, and V4 becomes the voltage dividing voltage DS3min. Further, the input signals of the input terminals S5 and V5 have a voltage DS5_2. Further, the input signals of the input terminals S6 and V6 have a voltage dividing voltage of DS6min.
  • the magnitude relationship of each input signal is DS1 ⁇ DV1 ⁇ DS3min ⁇ DS5_2 ⁇ DS6min.
  • the input signals are input to the input terminals in the order corresponding to the potential order.
  • the potential difference DS6min-DS5_2, the potential difference DS5_2-DS3min, the potential difference DS3min-DV1, and the potential difference DV1-DS1 are also within the withstand voltage range.
  • the input signal input to the input terminal V3 drops from the voltage dividing voltage DV3 to the voltage dividing voltage DS3min, and in accordance with this, the input signal input from the potential stabilizing circuit 80 to the input terminal S5 The potential also drops from the voltage DS5_1 to the voltage DS5_1. Therefore, it is possible to suppress the expansion of the potential difference.
  • the input terminals S1, V1, S3, V3, S6, and V6 have different voltage dividing ratios (first voltage dividing ratio to sixth voltage dividing ratio) stepwise according to the potential order.
  • the voltage or the applied voltage of the systems 21 and 22 is divided and output. That is, each voltage dividing ratio in the first voltage dividing circuit 40 is the input terminals S1 and V1 that are output destinations so that the input signals input to the input terminals S1 to S6 and V1 to V6 are in the order corresponding to the potential order.
  • S3, V3, S6, V6 are set to different values in stages.
  • a read-off channel which is a plurality of input channels CH4 and CH5 in which the input signal from the first voltage dividing circuit 40 is not input. (Securing channel) is provided.
  • the range of withstand voltage can be increased as compared with the case where the read / discard channel is not provided between the input terminal V3 and the input terminal S6, or when there is only one read / discard channel.
  • the input terminal V3 is a high potential side input terminal of the input channel CH3 associated with the system 21.
  • the input terminal S6 is an input terminal to which an input signal having a higher potential than the input terminal V3 is input in the order of potential, and is a low potential side input terminal of the input channel associated with the system 22.
  • the potential stabilization circuit 80 outputs a signal that is a potential between the potential of the input signal input to the input terminal V3 and the potential of the input signal input to the input terminal S6 to the input terminal S5 as an input signal. do.
  • the input terminal S5 is one of the input terminals belonging to the read-through channel.
  • the input channels CH4 and CH5 which are the read-off channels, are used for impedance and the like. Even if there is a bias, it is possible to control the potential difference in each of the input channels CH4 and CH5 so as to be within the range of withstand voltage.
  • the second voltage divider circuit 60 When the energization of the systems 21 and 22 is cut off, the second voltage divider circuit 60 outputs the divided voltage DS3min and DS6min to the input channels CH3 and CH6 associated with the systems 21 and 22 whose energization is cut off. do. More specifically, in the second voltage dividing circuit 60, when the energization to the systems 21 and 22 is cut off, the input terminals S3 and CH6 of the input channels CH3 and CH6 associated with the systems 21 and 22 whose energization is cut off Input the voltage dividing voltages DS3min and DS6min to S6. Along with this, the voltage dividing voltages DS3min and DS6min are input from the input terminals S3 and S6 to the input terminals V3, S4, V4 and V6 via the diodes D53 and D56, respectively.
  • the second voltage divider circuit 60 divides the voltage between the terminals at stepwise different voltage divider ratios (seventh voltage divider ratio and eighth voltage divider ratio) for each of the systems 21 and 22. More specifically, the voltage dividing ratio (seventh voltage dividing ratio and the eighth voltage dividing ratio) in the second voltage dividing circuit 60 is an input signal input to the input terminals S3 and S6 of the input channels CH3 and CH6 to be output destinations (7th voltage dividing ratio and the eighth voltage dividing ratio).
  • the voltage dividing ratio is such that DS3min, DS6min) are in the order corresponding to the order of potential, and is set by the first voltage dividing circuit 40 in order to generate an input signal (DS3, DS6) to the input terminals S3 and S6. It is a voltage dividing ratio equal to or less than the voltage dividing ratio (third voltage dividing ratio, fifth voltage dividing ratio).
  • the seventh voltage dividing ratio by the second voltage dividing circuit 60 is smaller than the third voltage dividing ratio by the first voltage dividing circuit 40, and is one step smaller than the third voltage dividing ratio. It is set larger than the voltage dividing ratio of 2.
  • the magnitude relationship of the voltage dividing voltage becomes DV1 ⁇ DS3min ⁇ DS3. Therefore, as shown in FIG. 6, the voltage dividing voltage DS3min is input to the input terminals S3 and V3 only when the relay switches SN1 and SP1 are turned off. Further, in this case, since the voltage dividing voltage DS3min input to the input terminal S3 is larger than the voltage dividing voltage DV1 input to the input terminal V1, a wraparound current from the input terminal V1 to the input terminal S3 is generated.
  • DS3min ⁇ DS6 and the voltage dividing voltage DS6 input to the input terminal S6 is larger than the voltage dividing voltage DS3min input to the input terminals S3 and V3, the voltage divided voltage DS6 input from the input terminals S3 and V3 to the input terminal S6. It is possible to prevent the generation of wraparound current. That is, it is possible to prevent the wraparound current from the input channel CH3 to the input channel CH6 from being generated.
  • the wraparound current can be prevented even when the relay switches SN2 and SP2 are turned off. Further, since DS3min ⁇ DS6min, as shown in FIG. 9, even when all the relay switches SN1, SP1, SN2, and SP2 are off, the current wraps around from the input channel CH1 to the input channels CH3 and CH6. Can be prevented.
  • the potential stabilization circuit 80 lowers the potential of the input signal to the monitoring IC 50 when the energization to the system 21 is cut off. That is, the potential stabilization circuit 80 lowers the voltage DS5_1 from the voltage DS5_1. As a result, even if the input signal input to the input terminal V3 is reduced from the voltage dividing voltage DV3 to the voltage dividing voltage DS3min by the second voltage dividing circuit 60, it is possible to suppress the expansion of the potential difference by following the voltage dividing circuit 60.
  • one end of the potential stabilization circuit 80 was connected to the second voltage dividing circuit 60, and the other end was connected to the input terminal V3. Further, the connection point P17 of the resistors R53 and R54 was connected to the input terminal S5 of the monitoring IC50. That is, the current path is independent between the potential stabilization circuit 80 and the input channel CH6. Therefore, it is possible to prevent a wraparound current from being generated from the input channel CH6 via the potential stabilization circuit 80. Therefore, the detection accuracy of the applied voltage can be improved.
  • the second voltage divider circuit 60 divides the voltage between the terminals of the assembled battery 10 by the voltage divider ratio for generating the input signal having the input channel CH6 associated with the system 22 as the output destination, that is, the voltage divider voltage DS6.
  • the voltage dividing voltage DS6_2 generated by pressure is output to one end of the potential stabilizing circuit 80.
  • the potential stabilization circuit 80 generates the voltage DS5_1 and the voltage DS5_2 based on the voltage divider DS6_2 and the voltage divider DV3 (or the voltage divider DS3min). Therefore, it is not necessary to input the voltage dividing voltage DS6 from the first voltage dividing circuit 40, and it is possible to prevent the wraparound current from the input channel CH6 from being generated.
  • the input terminal S5 to which the input signal from the potential stabilization circuit 80 is input is a system rather than the side of the input channel CH3 associated with the system 21 in the order of potential among the input channels CH4 and CH5 which are read-down channels. It is an input terminal of the input channel CH5 set on the side of the input channel CH6 associated with 22. That is, the input terminal S5 is set closer to the input terminal S6 than the input terminal V3.
  • the withstand voltage range can be increased by one input channel as compared with the case where the input signal from the potential stabilization circuit 80 is input to the input terminals S4 and V4 near the input terminal V3. ..
  • the input signal input to the input terminal V3 may drop from the voltage dividing voltage DV3 to the voltage dividing voltage DS3min and the potential difference may increase, it can be an effective measure for ensuring the withstand voltage.
  • the third voltage dividing ratio and the fifth voltage dividing ratio in the first voltage dividing circuit 40 are set in consideration of the amount of voltage drop. Specifically, the third voltage dividing ratio is set so that the maximum drop amount N1max ⁇ voltage dividing voltage DS3, and the fifth voltage dividing ratio is set so that the maximum drop amount N2max ⁇ voltage dividing voltage DS6. ing. As a result, even if a voltage drop occurs, no negative voltage is generated, and the voltage dividing voltage input to each input terminal S1, V1, S3, V3, S6, V6 can be gradually increased, resulting in wraparound. The current can be prevented.
  • the first voltage divider circuit 40 divides the voltage between terminals by two different voltage divider ratios
  • the monitoring IC 50 has two voltage dividers DS1 via the input channel CH1 set for the assembled battery 10.
  • DV1 is input, and the voltage between terminals is detected based on the difference between the divided voltages DS1 and DV1. Therefore, the applied voltage and the circuit for detecting the voltage between terminals can be shared. Further, as shown in FIG. 8, it is possible to detect the off sticking of the switch SW0.
  • the withstand voltage can be reduced and the size can be reduced. Further, since the differential amplifier circuit 52 and the AD converter 53 are integrated inside the monitoring IC 50 and the arithmetic unit 54 corrects the error, the detection accuracy can be improved. Further, since the monitoring IC50 used for voltage detection of the battery cell of the assembled battery can be adopted as it is, the development cost can be suppressed.
  • the first division pressure ratio to the sixth division pressure ratio are set in stages. Further, the seventh pressure division ratio is set between the second pressure division ratio and the third pressure division ratio, and the eighth pressure division ratio is between the fourth pressure division ratio and the fifth pressure division ratio. Is set to. Further, the voltage DS5_1 output from the potential stabilization circuit 80 is a potential (voltage) between the voltage divider voltage DV3 and the voltage divider voltage DS6_1. Further, the voltage DS5_2 output from the potential stabilizing circuit 80 is a potential (voltage) between the voltage dividing voltage DS3min and the voltage dividing voltage DS6_2. Further, the voltage dividing voltage DS6_2 has substantially the same potential as the voltage dividing voltage DS6.
  • the monitoring IC 50 does not have to detect the voltage between the terminals of the assembled battery 10.
  • the number of discarded channels is two, but it may be three or more.
  • the number of systems that detect the applied voltage may be arbitrarily changed.
  • the high potential side input terminal of the input channel associated with the first system and the input signal having a higher potential than the high potential side input terminal in the potential order are input. It is desirable that a plurality of read-through channels are set between the input terminal and the low potential side input terminal of the input channel associated with the second system.
  • the potential stabilization circuit 80 receives the potential of the input signal input to the high potential side input terminal and the input signal input to the low potential side input terminal to any of the input terminals belonging to the read-off channel. It is desirable to output an input signal that becomes a potential between the potential.
  • the voltage between the terminals of the assembled battery 10 is detected in the input channel CH1, but the input channel for detecting the voltage between the terminals may be changed.
  • the second voltage divider circuit 60 generated the voltage divider voltage DS6_2 using the resistors R41, R55, and R51, but a voltage divider circuit (series connection of resistors) was provided in parallel with the resistors R42 and R52. Thereby, the voltage dividing voltage DS6_2 may be generated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Secondary Cells (AREA)

Abstract

A voltage detection device (30) comprises a first voltage divider circuit (40), a detection circuit (50), and an electric potential stabilization circuit (80). The first voltage divider circuit divides, at two different voltage division ratios, a voltage applied to a system and outputs the divided voltages to input terminals. The voltage division ratios in the first voltage divider circuit are set to have values that differ in a stepwise manner for respective input terminals, which are output destinations, so that input signals to be input to the input terminals are in the order corresponding to the electric potential order. Withstand voltage securing channels which are a plurality of input channels (CH4, CH5) are provided between a high potential side input terminal (V3) and a low potential side input terminal (S6). The electric potential stabilization circuit outputs, to any of input terminals included in the withstand voltage securing channels, a signal having an electric potential between the electric potential of an input signal which is input into the high potential side input terminal and the electric potential of an input signal which is input into the low potential side input terminal.

Description

電圧検出装置Voltage detector 関連出願の相互参照Cross-reference of related applications
 本出願は、2020年7月28日に出願された日本出願番号2020-127393号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Application No. 2020-127393 filed on July 28, 2020, and the contents of the description are incorporated herein by reference.
 本開示は、電圧検出を行う電圧検出装置に関するものである。 This disclosure relates to a voltage detection device that performs voltage detection.
 近年、電動車両では、機能群を複数の系統(システム)に分け、車載組電池の総電圧(端子間電圧)をシステムリレーにて、システムごとに選択的に印加するような電源システムが構成されている。このような電源システムでは、選択先のシステムにおいて適切に電圧が印加されているか否か等を検知するため、選択先のシステムに印加された総電圧(以下、印加電圧と示す)をそれぞれ検出する必要がある。その際、コスト面から共通回路にて検出可能にすることが望ましく、また、車載組電池の総電圧は、数100Vという高電圧となることが一般的であるので、印加電圧を分圧して検出することが望ましい。 In recent years, in electric vehicles, a power supply system has been configured in which the function group is divided into a plurality of systems (systems) and the total voltage (voltage between terminals) of the in-vehicle assembled battery is selectively applied to each system by a system relay. ing. In such a power supply system, in order to detect whether or not a voltage is appropriately applied in the selected system, the total voltage applied to the selected system (hereinafter referred to as applied voltage) is detected. There is a need. At that time, it is desirable to enable detection by a common circuit from the viewpoint of cost, and since the total voltage of the in-vehicle assembled battery is generally as high as several hundreds of volts, the applied voltage is divided and detected. It is desirable to do.
 そこで、特許文献1に示すような、分圧回路に印加電圧を分圧して検出する方法や、特許文献2に示すような、差動増幅回路を介して分圧電圧を測定する方法を採用することが想定されていた。 Therefore, a method of dividing and detecting the voltage applied to the voltage dividing circuit as shown in Patent Document 1 and a method of measuring the divided voltage via a differential amplifier circuit as shown in Patent Document 2 are adopted. Was supposed.
 しかしながら、特許文献1の方法では、選択先の回路ごとに印加電圧の検出基準となるバスバーに流れる電流量が異なり、各バスバーにおける電位が異なる。そして、共通回路で分圧電圧を検出する場合、いずれかのバスバーを基準とすることとなるため、検出精度が悪化するという問題が生じた。また、特許文献2の方法では、各バスバーにおける電位が異なるという問題は解消されるが、分圧回路の抵抗誤差に加え、差動増幅回路のゲイン誤差が重複し、検出精度が悪いという問題が生じた。このため、特許文献1,2に示す方法をそのまま採用することはできなかった。 However, in the method of Patent Document 1, the amount of current flowing through the bus bar, which is the detection reference of the applied voltage, is different for each selected circuit, and the potential in each bus bar is different. Then, when the voltage divider voltage is detected by the common circuit, one of the bus bars is used as a reference, which causes a problem that the detection accuracy deteriorates. Further, the method of Patent Document 2 solves the problem that the potentials in each bus bar are different, but in addition to the resistance error of the voltage dividing circuit, the gain error of the differential amplifier circuit overlaps and the detection accuracy is poor. occured. Therefore, the methods shown in Patent Documents 1 and 2 cannot be adopted as they are.
 ところで、特許文献3に示すような、組電池を構成する電池セルの各電圧を検出する監視ICは、差動増幅回路とAD変換機器を監視IC内で一体化し、トータル誤差を校正や補正により抑制しているため、検出精度が良いことが知られている。そこで、次に、この監視ICを流用して、各印加電圧を検出することが考えられていた。 By the way, as shown in Patent Document 3, the monitoring IC that detects each voltage of the battery cells constituting the assembled battery integrates the differential amplifier circuit and the AD conversion device in the monitoring IC, and calibrates or corrects the total error. It is known that the detection accuracy is good because it is suppressed. Therefore, next, it has been considered to divert this monitoring IC to detect each applied voltage.
特開2013-162639号公報Japanese Unexamined Patent Publication No. 2013-162639 特開2009-236711号公報Japanese Unexamined Patent Publication No. 2009-236711 特許第5783197号公報Japanese Patent No. 5783197
 ところが、この監視ICは、直列接続された各電池セルの電圧を測定することに特化して開発されている。具体的には、監視ICの各入力チャネルには、電位の大小が順番となって電圧(入力信号)が印加されることを想定しており、同電位の電圧が入力されることを想定していない。このため、監視ICに、同電位となる複数の印加電圧を検出させると、監視ICの内外に設けられた保護ダイオード等を介して電流が回り込み、値が変動し、検出精度が悪化するという問題が生じた。 However, this monitoring IC has been developed specifically for measuring the voltage of each battery cell connected in series. Specifically, it is assumed that a voltage (input signal) is applied to each input channel of the monitoring IC in order of the magnitude of the potential, and it is assumed that the voltage of the same potential is input. Not. Therefore, when the monitoring IC detects a plurality of applied voltages having the same potential, the current wraps around through the protection diodes provided inside and outside the monitoring IC, the value fluctuates, and the detection accuracy deteriorates. Has occurred.
 本開示は、上記事情に鑑みてなされたものであり、その主たる目的は、複数の印加電圧を精度よく検出することができる電圧検出装置を提供することにある。 The present disclosure has been made in view of the above circumstances, and its main purpose is to provide a voltage detection device capable of accurately detecting a plurality of applied voltages.
 上記課題を解決するための手段は、蓄電池と、前記蓄電池に対して並列に接続され、前記蓄電池の端子間電圧がそれぞれ印加される複数のシステムと、を備えた電源システムに対して適用される電圧検出装置において、前記各システムの印加電圧を分圧する第1分圧回路と、複数の入力チャネルが設けられており、前記入力チャネルを介して前記第1分圧回路から入力された2つの入力信号の電位差に基づいて、前記各システムに印加された印加電圧をそれぞれ検出する検出回路と、前記検出回路に対して信号を出力する電位安定化回路と、を備え、前記各入力チャネルは、それぞれ1対の入力端子を有し、前記各入力端子には、入力信号の電位順が予め設定されており、前記第1分圧回路は、前記システムの印加電圧を2つの異なる分圧比で分圧し、分圧電圧を前記入力信号として当該システムに対応付けられた前記入力チャネルの入力端子にそれぞれ出力するように構成されており、前記第1分圧回路における各分圧比は、前記各入力端子に入力される入力信号が前記電位順に応じた順番となるように、出力先となる前記各入力端子ごとに、段階的に異なる値が設定されており、前記複数のシステムのうち第1のシステムに対応付けられた入力チャネルの高電位側入力端子と、前記電位順において前記高電位側入力端子よりも高電位の入力信号が入力される入力端子であって、前記複数のシステムのうち第2のシステムに対応付けられた入力チャネルの低電位側入力端子との間には、前記第1分圧回路からの入力信号が入力されない複数の入力チャネルである耐圧確保用チャネルが設けられており、前記電位安定化回路は、前記耐圧確保用チャネルが有するいずれかの入力端子に対して、前記第1のシステムに対応付けられた前記高電位側入力端子に入力される入力信号の電位と、前記第2のシステムに対応付けられた前記低電位側入力端子に入力される入力信号の電位との間の電位となる信号を前記入力信号として出力する。 The means for solving the above problems is applied to a power supply system including a storage battery and a plurality of systems connected in parallel to the storage battery and to which a voltage between terminals of the storage battery is applied. The voltage detection device is provided with a first voltage dividing circuit that divides the applied voltage of each system and a plurality of input channels, and two inputs input from the first voltage dividing circuit via the input channel. Each of the input channels includes a detection circuit that detects the applied voltage applied to each system based on the potential difference of the signal, and a potential stabilization circuit that outputs a signal to the detection circuit. It has a pair of input terminals, the potential order of the input signals is preset in each of the input terminals, and the first voltage dividing circuit divides the applied voltage of the system by two different voltage dividing ratios. , The voltage division voltage is configured to be output as the input signal to the input terminal of the input channel associated with the system, and each voltage division ratio in the first voltage division circuit is set to each input terminal. Different values are set stepwise for each of the output destination input terminals so that the input signals are in the order corresponding to the potential order, and the first system among the plurality of systems is used. The high-potential side input terminal of the associated input channel and the input terminal to which an input signal having a higher potential than the high-potential side input terminal in the potential order is input, which is the second of the plurality of systems. Between the low potential side input terminal of the input channel associated with the system, a withstand voltage securing channel, which is a plurality of input channels to which the input signal from the first voltage dividing circuit is not input, is provided. The potential stabilization circuit has the potential of the input signal input to the high potential side input terminal associated with the first system with respect to any input terminal of the withstand voltage securing channel, and the first. A signal having a potential between the potential of the input signal input to the low potential side input terminal associated with the system of 2 and the potential of the input signal is output as the input signal.
 上記手段では、第1分圧回路における各分圧比は、各入力端子に入力される入力信号が電位順に応じた順番となるように、出力先となる入力端子ごとに、段階的に異なる値が設定されている。これにより、各システムの印加電圧がほぼ同じであっても第1分圧回路によって、各入力端子に入力される入力信号を段階的に高くすることが可能となる。したがって、回り込み電流の発生を防止し、精度よく電圧を検出することができる。 In the above means, each voltage dividing ratio in the first voltage dividing circuit has a value that is stepwise different for each input terminal to be output so that the input signals input to each input terminal are in the order corresponding to the potential order. It is set. As a result, even if the applied voltage of each system is substantially the same, the input signal input to each input terminal can be gradually increased by the first voltage dividing circuit. Therefore, it is possible to prevent the generation of wraparound current and detect the voltage with high accuracy.
 ところで、このように入力信号を段階的に高くする場合において、組電池からの通電が遮断されて、いずれかのシステムの印加電圧がゼロになったとき、入力端子間の電位差が検出回路の耐圧の範囲を超えて大きくなる虞がある。 By the way, when the input signal is gradually increased in this way, when the energization from the assembled battery is cut off and the applied voltage of any system becomes zero, the potential difference between the input terminals is the withstand voltage of the detection circuit. There is a risk that it will grow beyond the range of.
 そこで、上記手段では、第1のシステムに対応付けられた入力チャネルの高電位側入力端子と、電位順において前記高電位側入力端子よりも高電位の入力信号が入力される入力端子であって、第2のシステムに対応付けられた入力チャネルの低電位側入力端子との間には、第1分圧回路からの入力信号が入力されない複数の入力チャネルである耐圧確保用チャネルが設けられている。これにより、耐圧確保用チャネルが設けられていない場合、又は耐圧確保用チャネルが1つだけの場合に比較して、耐圧の範囲を大きくして、入力端子の間で入力信号の電位差が大きくなったとしても、故障を抑制することができる。 Therefore, in the above means, the input terminal on the high potential side of the input channel associated with the first system and the input terminal on which an input signal having a higher potential than the input terminal on the high potential side in the order of potential is input. , A withstand voltage securing channel, which is a plurality of input channels to which an input signal from the first voltage dividing circuit is not input, is provided between the input channel on the low potential side of the input channel associated with the second system. There is. As a result, the range of withstand voltage is increased and the potential difference of the input signal between the input terminals is increased as compared with the case where the withstand voltage securing channel is not provided or when there is only one withstand voltage securing channel. Even so, the failure can be suppressed.
 さらに、上記手段の電位安定化回路は、前記高電位側入力端子に入力される入力信号の電位と、前記低電位側入力端子に入力される入力信号の電位との間の電位となる信号を入力信号として耐圧確保用チャネルが有するいずれかの入力端子に出力する。これにより、耐圧確保用チャネルである複数の入力チャネルにおいて、インピーダンス等に偏りがあったとしても、耐圧確保用チャネルである各入力チャネルにおける電位差を耐圧の範囲内となるように制御することが可能となる。 Further, the potential stabilizing circuit of the above means obtains a signal that is a potential between the potential of the input signal input to the high potential side input terminal and the potential of the input signal input to the low potential side input terminal. It is output as an input signal to any of the input terminals of the withstand voltage securing channel. As a result, even if there is a bias in impedance or the like in a plurality of input channels that are channels for ensuring withstand voltage, it is possible to control the potential difference in each input channel that is for ensuring withstand voltage within the range of withstand voltage. It becomes.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、電源システムの概略を示す回路図であり、 図2は、監視ICの概略を示す回路図であり、 図3は、従来の監視ICの概略を示す回路図であり、 図4は、回り込み電流を示す回路図であり、 図5は、電流の流れを示す回路図であり、 図6は、電流の流れを示す回路図であり、 図7は、電流の流れを示す回路図であり、 図8は、電流の流れを示す回路図であり、 図9は、電流の流れを示す回路図であり、 図10は、電源システムの比較例を示す回路図であり、 図11は、比較例における監視ICへの入力信号(入力電圧)と組電池の端子間電圧との関係を示す図であり、 図12は、電源システムの比較例を示す回路図であり、 図13は、比較例における監視ICへの入力信号(入力電圧)と組電池の端子間電圧との関係を示す図であり、 図14は、(a)は、入力信号の時間遷移を示す図、(b)は、電位差の時間遷移を示す図であり、 図15は、(a)は、入力信号の時間遷移を示す図、(b)は、電位差の時間遷移を示す図であり、 図16は、(a)は、入力信号の時間遷移を示す図、(b)は、電位差の時間遷移を示す図であり、 図17は、電流の流れを示す回路図である。
The above objectives and other objectives, features and advantages of the present disclosure will be further clarified by the following detailed description with reference to the accompanying drawings. The drawing is
FIG. 1 is a circuit diagram showing an outline of a power supply system. FIG. 2 is a circuit diagram showing an outline of the monitoring IC. FIG. 3 is a circuit diagram showing an outline of a conventional monitoring IC. FIG. 4 is a circuit diagram showing a wraparound current. FIG. 5 is a circuit diagram showing a current flow. FIG. 6 is a circuit diagram showing a current flow. FIG. 7 is a circuit diagram showing a current flow. FIG. 8 is a circuit diagram showing a current flow. FIG. 9 is a circuit diagram showing a current flow. FIG. 10 is a circuit diagram showing a comparative example of a power supply system. FIG. 11 is a diagram showing the relationship between the input signal (input voltage) to the monitoring IC and the voltage between the terminals of the assembled battery in the comparative example. FIG. 12 is a circuit diagram showing a comparative example of a power supply system. FIG. 13 is a diagram showing the relationship between the input signal (input voltage) to the monitoring IC and the voltage between the terminals of the assembled battery in the comparative example. 14A is a diagram showing a time transition of an input signal, and FIG. 14B is a diagram showing a time transition of a potential difference. 15A is a diagram showing a time transition of an input signal, and FIG. 15B is a diagram showing a time transition of a potential difference. 16A is a diagram showing a time transition of an input signal, and FIG. 16B is a diagram showing a time transition of a potential difference. FIG. 17 is a circuit diagram showing a current flow.
 以下、本開示にかかる「電圧検出装置」を具体化した各実施形態について、図面を参照しつつ説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付しており、同一符号の部分についてはその説明を援用する。また、各実施形態及び変形例の説明において、明示している構成の組み合わせだけでなく、特に組み合わせに支障が生じなければ、各実施形態及び変形例を組み合わせることも可能である。 Hereinafter, each embodiment that embodies the "voltage detection device" according to the present disclosure will be described with reference to the drawings. In each of the following embodiments, the parts that are the same or equal to each other are designated by the same reference numerals, and the description thereof will be used for the parts having the same reference numerals. Further, in the description of each embodiment and the modified example, not only the combination of the configurations specified clearly but also each embodiment and the modified example can be combined as long as the combination does not cause any trouble.
 図1に示すように、電気自動車等の車両に適用される電源システムは、蓄電池としての組電池10と、機能群をまとめて構成された複数のシステム21,22と、組電池10と各システム21,22との間における電源経路23,24の通電及び通電遮断をそれぞれ切り替えるシステムスイッチ部としてのリレースイッチSN1,SP1,SN2,SP2と、各システム21,22への印加電圧を検出する電圧検出装置30と、を備える。 As shown in FIG. 1, the power supply system applied to a vehicle such as an electric vehicle includes an assembled battery 10 as a storage battery, a plurality of systems 21 and 22 configured by grouping functional groups, an assembled battery 10 and each system. Relay switches SN1, SP1, SN2, SP2 as system switch units that switch between energization and de-energization of the power supply paths 23 and 24 between 21 and 22, and voltage detection that detects the voltage applied to each system 21 and 22 The device 30 is provided.
 組電池10は、複数の電池セルの直列接続体であり、組電池10の正極側端子10aと負極側端子10bとの間における端子間電圧が例えば100V以上の高電圧となる。組電池10は、回転機(モータジェネレータ)などの電気負荷の電源となったり、モータジェネレータの回生制御によって生成される電力を貯蔵したりする。なお、本実施形態では、電池セルとして、リチウムイオン2次電池を用いている。 The assembled battery 10 is a series connection of a plurality of battery cells, and the voltage between the terminals between the positive electrode side terminal 10a and the negative electrode side terminal 10b of the assembled battery 10 is, for example, a high voltage of 100 V or more. The assembled battery 10 serves as a power source for an electric load such as a rotary machine (motor generator), and stores electric power generated by regenerative control of the motor generator. In this embodiment, a lithium ion secondary battery is used as the battery cell.
 各システム21,22は、組電池10に対して並列に接続され、組電池10の端子間電圧がそれぞれ印加される。各システム21,22としては、例えば、インバータやモータからなる駆動系のシステムや、発電装置などからなる充電系のシステムなどがある。システム21が第1のシステムに相当し、システム22が第2のシステムに相当する。 Each system 21 and 22 is connected in parallel to the assembled battery 10, and the voltage between the terminals of the assembled battery 10 is applied to each. Examples of the systems 21 and 22 include a drive system including an inverter and a motor, a charging system including a power generation device, and the like. The system 21 corresponds to the first system, and the system 22 corresponds to the second system.
 電源経路23,24は、各システム21,22ごとに設けられている。電源経路23,24には、組電池10の正極側端子10aに接続される正極側電源経路23a,24aと、組電池10の負極側端子10bに接続される負極側電源経路23b,24bと、が含まれる。 Power supply paths 23 and 24 are provided for each system 21 and 22. The power supply paths 23 and 24 include positive electrode side power supply paths 23a and 24a connected to the positive electrode side terminal 10a of the assembled battery 10 and negative electrode side power supply paths 23b and 24b connected to the negative electrode side terminal 10b of the assembled battery 10. Is included.
 また、組電池10の正極側端子10aには、正極側電源経路11aが接続されており、組電池10の負極側端子10bには、負極側電源経路11bが接続されている。各電源経路11,23,24は、例えば、バスバーなどにより構成される。 Further, the positive electrode side power supply path 11a is connected to the positive electrode side terminal 10a of the assembled battery 10, and the negative electrode side power supply path 11b is connected to the negative electrode side terminal 10b of the assembled battery 10. Each power supply path 11, 23, 24 is composed of, for example, a bus bar or the like.
 リレースイッチSN1,SP1,SN2,SP2は、各システム21,22ごとに設けられている。リレースイッチSN1,SP1,SN2,SP2には、正極側電源経路23a,24aの通電及び通電遮断を切り替える正極側のリレースイッチSP1,SP2と、負極側電源経路23b,24bの通電及び通電遮断を切り替える負極側のリレースイッチSN1,SN2と、が含まれる。 Relay switches SN1, SP1, SN2, SP2 are provided for each system 21 and 22. The relay switches SN1, SP1, SN2, and SP2 switch between the relay switches SP1 and SP2 on the positive electrode side for switching the energization and de-energization of the positive electrode side power supply paths 23a and 24a and the energization and de-energization of the negative electrode side power supply paths 23b and 24b. The relay switches SN1 and SN2 on the negative electrode side are included.
 リレースイッチSN1,SP1がオフ状態となることにより、システム21と組電池10との間が通電遮断状態となり、リレースイッチSN1,SP1がオン状態となることにより、システム21と組電池10との間が通電状態となる。同様に、リレースイッチSN2,SP2がオフ状態となることにより、システム22と組電池10との間が通電遮断状態となり、リレースイッチSN2,SP2がオン状態となることにより、システム22と組電池10との間が通電状態となる。 When the relay switches SN1 and SP1 are turned off, the power supply between the system 21 and the assembled battery 10 is cut off, and when the relay switches SN1 and SP1 are turned on, the space between the system 21 and the assembled battery 10 is cut off. Is energized. Similarly, when the relay switches SN2 and SP2 are turned off, the energization between the system 22 and the assembled battery 10 is cut off, and when the relay switches SN2 and SP2 are turned on, the system 22 and the assembled battery 10 are turned on. The space between and is energized.
 また、負極側のリレースイッチSN1,SN2には、それぞれ数MΩ程度の抵抗R61,R62が並列接続されている。これらの抵抗R61,R62が接続回路70に相当する。 Further, resistors R61 and R62 of about several MΩ are connected in parallel to the relay switches SN1 and SN2 on the negative electrode side, respectively. These resistances R61 and R62 correspond to the connection circuit 70.
 電圧検出装置30は、組電池10の端子間電圧と、各システム21,22の印加電圧をそれぞれ2つの異なる分圧比で分圧する第1分圧回路40と、第1分圧回路40から入力チャネルCH1,CH3,CH6を介して入力された2つの分圧電圧(入力信号)の差分に基づいて、印加電圧をそれぞれ検出する検出回路としての監視IC50と、第1分圧回路40とは別に、組電池10の端子間電圧を分圧する第2分圧回路60と、電位安定化回路80と、を備える。 The voltage detection device 30 is a first voltage divider circuit 40 that divides the voltage between the terminals of the assembled battery 10 and the applied voltage of each system 21 and 22 at two different voltage divider ratios, and an input channel from the first voltage divider circuit 40. Separately from the monitoring IC 50 as a detection circuit that detects the applied voltage based on the difference between the two voltage dividers (input signals) input via CH1, CH3, and CH6, and the first voltage divider circuit 40. A second voltage dividing circuit 60 for dividing the voltage between terminals of the assembled battery 10 and a potential stabilizing circuit 80 are provided.
 第1分圧回路40は、スイッチSW0と抵抗R10,R20,R30から構成される第1直列接続体と、スイッチSW1と抵抗R11,R21,R31から構成される第2直列接続体と、スイッチSW2と抵抗R12,R22,R32から構成される第3直列接続体と、を有する。 The first voltage divider circuit 40 includes a first series connection body composed of a switch SW0 and resistors R10, R20, R30, a second series connection body composed of a switch SW1 and resistors R11, R21, R31, and a switch SW2. And a third series connector composed of resistors R12, R22, R32.
 第1直列接続体は、正極側電源経路11aと負極側電源経路11bとの間に設けられており、正極側電源経路11aから、スイッチSW0、抵抗R10、抵抗R20、抵抗R30の順番で直列に接続されている。そして、抵抗R20と抵抗R30との間の接続点P11は、監視IC50の入力チャネルCH1の低電位側入力端子S1と接続され、抵抗R10と抵抗R20との間の接続点P12は、監視IC50の入力チャネルCH1の高電位側入力端子V1と接続されている。 The first series connection body is provided between the positive electrode side power supply path 11a and the negative electrode side power supply path 11b, and is connected in series from the positive electrode side power supply path 11a in the order of switch SW0, resistor R10, resistor R20, and resistor R30. It is connected. The connection point P11 between the resistance R20 and the resistance R30 is connected to the low potential side input terminal S1 of the input channel CH1 of the monitoring IC50, and the connection point P12 between the resistance R10 and the resistance R20 is the monitoring IC50. It is connected to the high potential side input terminal V1 of the input channel CH1.
 なお、以下では、入力チャネルCHx(「x」は、1~6の整数、以下同じ)の低電位側入力端子Sxを、単に入力端子Sxと示す場合がある。同様に、入力チャネルCHxの高電位側入力端子Vxを、単に入力端子Vxと示す場合がある。 In the following, the low potential side input terminal Sx of the input channel CHx (“x” is an integer of 1 to 6, the same applies hereinafter) may be simply referred to as an input terminal Sx. Similarly, the high potential side input terminal Vx of the input channel CHx may be simply referred to as an input terminal Vx.
 これにより、スイッチSW0がオンされた場合、端子間電圧が第1の分圧比(R30/(R10+R20+R30))で分圧されて、入力端子S1に入力される。また、スイッチSW0がオンされた場合、端子間電圧が第2の分圧比((R30+R20)/(R10+R20+R30))で分圧されて、入力端子V1に入力される。なお、端子間電圧が第1の分圧比により分圧された分圧電圧を、分圧電圧DS1と示し、端子間電圧が第2の分圧比により分圧された分圧電圧を、分圧電圧DV1と示す場合がある。 As a result, when the switch SW0 is turned on, the voltage between the terminals is divided by the first voltage dividing ratio (R30 / (R10 + R20 + R30)) and input to the input terminal S1. When the switch SW0 is turned on, the voltage between the terminals is divided by the second voltage dividing ratio ((R30 + R20) / (R10 + R20 + R30)) and input to the input terminal V1. The voltage divider voltage obtained by dividing the terminal voltage by the first voltage divider ratio is referred to as the voltage divider voltage DS1, and the voltage divider voltage obtained by dividing the terminal voltage by the second voltage divider ratio is referred to as the voltage divider voltage. It may be indicated as DV1.
 また、接続点P11と入力端子S1との間の電気経路と、接続点P12と入力端子V1との間の電気経路との間には、図2等に示すように、保護素子やフィルタが設けられている。例えば、低電位側入力端子S1の側から入力端子V1の側への電流の流れを許可し、入力端子V1と入力端子S1との間の印加電圧を制限するツェナーダイオードD11が設けられている。 Further, as shown in FIG. 2, a protection element or a filter is provided between the electric path between the connection point P11 and the input terminal S1 and the electric path between the connection point P12 and the input terminal V1. Has been done. For example, a Zener diode D11 is provided that allows the flow of current from the low potential side input terminal S1 side to the input terminal V1 side and limits the applied voltage between the input terminal V1 and the input terminal S1.
 第2直列接続体は、システム21の正極側電源経路23aと負極側電源経路23bとの間に設けられており、正極側電源経路23aから、スイッチSW1、抵抗R11、抵抗R21、抵抗R31の順番で直列に接続されている。そして、抵抗R21と抵抗R31との間の接続点P13は、監視IC50の入力チャネルCH3の低電位側入力端子S3と接続され、抵抗R11と抵抗R21との間の接続点P14は、監視IC50の入力チャネルCH3の高電位側入力端子V3と接続されている。 The second series connection body is provided between the positive electrode side power supply path 23a and the negative electrode side power supply path 23b of the system 21, and the switch SW1, the resistor R11, the resistor R21, and the resistor R31 are in this order from the positive electrode side power supply path 23a. It is connected in series with. The connection point P13 between the resistance R21 and the resistance R31 is connected to the low potential side input terminal S3 of the input channel CH3 of the monitoring IC50, and the connection point P14 between the resistance R11 and the resistance R21 is the monitoring IC50. It is connected to the high potential side input terminal V3 of the input channel CH3.
 これにより、リレースイッチSN1,SP1及びスイッチSW1がオンされた場合、システム21への印加電圧が第3の分圧比(R31/(R11+R21+R31))で分圧されて、入力端子S3に入力される。また、リレースイッチSN1,SP1及びスイッチSW1がオンされた場合、システム21への印加電圧が第4の分圧比((R31+R21)/(R11+R21+R31))で分圧されて、入力端子V3に入力される。 As a result, when the relay switches SN1 and SP1 and the switch SW1 are turned on, the voltage applied to the system 21 is divided by the third voltage dividing ratio (R31 / (R11 + R21 + R31)) and input to the input terminal S3. When the relay switches SN1 and SP1 and the switch SW1 are turned on, the voltage applied to the system 21 is divided by the fourth voltage dividing ratio ((R31 + R21) / (R11 + R21 + R31)) and input to the input terminal V3. ..
 なお、システム21への印加電圧とは、組電池10の端子間電圧が印加されることにより、正極側電源経路23aと負極側電源経路23bとの間において実際に生じている電位差(電圧)のことである。また、システム21への印加電圧が第3の分圧比により分圧された分圧電圧を、分圧電圧DS3と示し、システム21への印加電圧が第4の分圧比により分圧された分圧電圧を、分圧電圧DV3と示す場合がある。 The voltage applied to the system 21 is the potential difference (voltage) actually generated between the positive electrode side power supply path 23a and the negative electrode side power supply path 23b due to the application of the voltage between the terminals of the assembled battery 10. That is. Further, the voltage divider voltage obtained by dividing the voltage applied to the system 21 by the third voltage divider ratio is referred to as the voltage divider voltage DS3, and the voltage applied to the system 21 is divided by the fourth voltage divider ratio. The voltage may be referred to as a voltage divider voltage DV3.
 また、接続点P13と入力端子S3との間の電気経路と、接続点P14と入力端子V3との間の電気経路との間には、図2等に示すように、保護素子やフィルタが設けられている。例えば、入力端子S3の側から入力端子V3の側への電流の流れを許可し、入力端子V3と入力端子S3との間の印加電圧を制限するツェナーダイオードD13が設けられている。 Further, as shown in FIG. 2, a protection element or a filter is provided between the electric path between the connection point P13 and the input terminal S3 and the electric path between the connection point P14 and the input terminal V3. Has been done. For example, a Zener diode D13 is provided that allows the flow of current from the input terminal S3 side to the input terminal V3 side and limits the applied voltage between the input terminal V3 and the input terminal S3.
 第3直列接続体は、システム22の正極側電源経路24aと負極側電源経路24bとの間に設けられており、正極側電源経路24aから、スイッチSW2、抵抗R12、抵抗R22、抵抗R32の順番で直列に接続されている。そして、抵抗R22と抵抗R32との間の接続点P15は、監視IC50の入力チャネルCH6の低電位側入力端子S6と接続され、抵抗R12と抵抗R22との間の接続点P16は、監視IC50の入力チャネルCH6の高電位側入力端子V6と接続されている。 The third series connection body is provided between the positive electrode side power supply path 24a and the negative electrode side power supply path 24b of the system 22, and the switch SW2, the resistor R12, the resistor R22, and the resistor R32 are in this order from the positive electrode side power supply path 24a. It is connected in series with. The connection point P15 between the resistance R22 and the resistance R32 is connected to the low potential side input terminal S6 of the input channel CH6 of the monitoring IC50, and the connection point P16 between the resistance R12 and the resistance R22 is the monitoring IC50. It is connected to the high potential side input terminal V6 of the input channel CH6.
 これにより、リレースイッチSN2,SP2及びスイッチSW2がオンされた場合、システム22への印加電圧が第5の分圧比(R32/(R12+R22+R32))で分圧されて、入力端子S6に入力される。また、リレースイッチSN2,SP2及びスイッチSW2がオンされた場合、システム22への印加電圧が第6の分圧比((R32+R22)/(R12+R22+R32))で分圧されて、入力端子V6に入力される。 As a result, when the relay switches SN2 and SP2 and the switch SW2 are turned on, the voltage applied to the system 22 is divided by the fifth voltage dividing ratio (R32 / (R12 + R22 + R32)) and input to the input terminal S6. When the relay switches SN2 and SP2 and the switch SW2 are turned on, the voltage applied to the system 22 is divided by the sixth voltage dividing ratio ((R32 + R22) / (R12 + R22 + R32)) and input to the input terminal V6. ..
 なお、システム22への印加電圧とは、組電池10の端子間電圧が印加されることにより、正極側電源経路24aと負極側電源経路24bとの間において実際に生じている電位差(電圧)のことである。また、システム22への印加電圧が第5の分圧比により分圧された分圧電圧を、分圧電圧DS6と示し、システム22への印加電圧が第6の分圧比により分圧された分圧電圧を、分圧電圧DV6と示す場合がある。 The voltage applied to the system 22 is the potential difference (voltage) actually generated between the positive electrode side power supply path 24a and the negative electrode side power supply path 24b due to the application of the voltage between the terminals of the assembled battery 10. That is. Further, the voltage divider voltage obtained by dividing the voltage applied to the system 22 by the fifth voltage divider ratio is referred to as the voltage divider voltage DS6, and the voltage applied to the system 22 is divided by the sixth voltage divider ratio. The voltage may be referred to as a voltage divider voltage DV6.
 また、接続点P15と入力端子S6との間の電気経路と、接続点P16と入力端子V6との間の電気経路との間には、図2等に示すように、保護素子やフィルタが設けられている。例えば、入力端子S6の側から入力端子V6の側への電流の流れを許可し、入力端子V6と入力端子S6との間の印加電圧を制限するツェナーダイオードD16が設けられている。 Further, as shown in FIG. 2, a protective element or a filter is provided between the electric path between the connection point P15 and the input terminal S6 and the electric path between the connection point P16 and the input terminal V6. Has been done. For example, a Zener diode D16 is provided that allows the flow of current from the input terminal S6 side to the input terminal V6 side and limits the applied voltage between the input terminal V6 and the input terminal S6.
 監視IC50は、図2に示すように、少なくとも6つの入力チャネルCH1~CH6を備えるものを使用している。しかしながら、入力チャネルCH6を含んだそれ以上の入力チャネルCHは、入力端子を短絡処理しており、今回の電圧検出には利用していない。このため、以下の説明では入力チャネルCH1~CH6の範囲で記載する。各入力チャネルCH1~CH6は、それぞれ1対の入力端子(ピン端子)S1~S6,V1~V6を有する。1対の入力端子S1~S6,V1~V6には、高電位側入力端子V1~V6と、低電位側入力端子S1~S6が存在する。入力チャネルCH1~CH6は、番号の小さいものから順番に、すなわち、CH1→CH2→・・・→CH6の順番で整列して配置されている。また、各入力チャネルCH1~CH6において、低電位側入力端子S1~S6→高電位側入力端子V1~V6の順番で配列されている。したがって、入力端子S1~S6,V1~V6は、S1→V1→S2→V2→・・・→S6→V6の順番で整列して配置されている。 As shown in FIG. 2, the monitoring IC50 uses one having at least six input channels CH1 to CH6. However, the input channel CH beyond that including the input channel CH6 has the input terminal short-circuited and is not used for the voltage detection this time. Therefore, in the following description, the range of input channels CH1 to CH6 will be described. Each input channel CH1 to CH6 has a pair of input terminals (pin terminals) S1 to S6 and V1 to V6, respectively. The pair of input terminals S1 to S6 and V1 to V6 have high potential side input terminals V1 to V6 and low potential side input terminals S1 to S6. The input channels CH1 to CH6 are arranged in order from the one with the smallest number, that is, in the order of CH1 → CH2 → ... → CH6. Further, in each input channel CH1 to CH6, the low potential side input terminals S1 to S6 → the high potential side input terminals V1 to V6 are arranged in this order. Therefore, the input terminals S1 to S6 and V1 to V6 are arranged in the order of S1 → V1 → S2 → V2 → ... → S6 → V6.
 そして、監視IC50は、マルチプレクサ51と、差動増幅回路52と、AD変換器53と、MOSFET等の半導体スイッチSW51~SW56と、を備えている。各入力端子S1~S6,V1~V6は、マルチプレクサ51を介して差動増幅回路52に接続されている。具体的には、各入力端子V1~V6は、マルチプレクサ51を介して差動増幅回路52の非反転入力端子側が接続され、各入力端子S1~S6は、マルチプレクサ51を介して差動増幅回路52の反転入力端子側が接続されている。 The monitoring IC 50 includes a multiplexer 51, a differential amplifier circuit 52, an AD converter 53, and semiconductor switches SW51 to SW56 such as MOSFETs. The input terminals S1 to S6 and V1 to V6 are connected to the differential amplifier circuit 52 via the multiplexer 51. Specifically, each input terminal V1 to V6 is connected to the non-inverting input terminal side of the differential amplifier circuit 52 via the multiplexer 51, and each input terminal S1 to S6 is connected to the differential amplifier circuit 52 via the multiplexer 51. The inverting input terminal side of is connected.
 マルチプレクサ51は、各入力チャネルCH1~CH6の中から選択した入力チャネルCH1~CH6の入力端子S1~S6,V1~V6に入力されている電圧を、差動増幅回路52に出力する。 The multiplexer 51 outputs the voltage input to the input terminals S1 to S6 and V1 to V6 of the input channels CH1 to CH6 selected from the input channels CH1 to CH6 to the differential amplifier circuit 52.
 差動増幅回路52は、非反転入力端子と反転入力端子との間の電圧(電位差)を検出してアナログ信号としてAD変換器53に出力する。AD変換器53は、アナログ信号をデジタル信号に変換し、監視IC50が備える演算装置54に出力する。演算装置54は、入力した電位差(デジタル信号)に基づいて、組電池10の端子間電圧や、各システム21,22への印加電圧を算出する。 The differential amplifier circuit 52 detects the voltage (potential difference) between the non-inverting input terminal and the inverting input terminal and outputs it as an analog signal to the AD converter 53. The AD converter 53 converts the analog signal into a digital signal and outputs it to the arithmetic unit 54 included in the monitoring IC 50. The arithmetic unit 54 calculates the voltage between the terminals of the assembled battery 10 and the voltage applied to each system 21 and 22 based on the input potential difference (digital signal).
 具体的には、演算装置54は、端子間電圧に対する第1分圧回路40の第1の分圧比(R30/(R10+R20+R30))、第2の分圧比((R30+R20)/(R10+R20+R30))、及び分圧電圧DS1と分圧電圧DV1との電位差に基づいて、端子間電圧を算出する。なお、本実施形態の監視IC50は、差動増幅回路52とAD変換器53を監視IC50内で一体化し、トータル誤差を校正や補正により抑制する。このため、端子間電圧を精度よく算出することができる。 Specifically, the arithmetic unit 54 has a first voltage divider ratio (R30 / (R10 + R20 + R30)), a second voltage divider ratio ((R30 + R20) / (R10 + R20 + R30)) of the first voltage divider circuit 40 to the voltage between terminals, and The voltage between terminals is calculated based on the potential difference between the voltage divider voltage DS1 and the voltage divider voltage DV1. In the monitoring IC 50 of the present embodiment, the differential amplifier circuit 52 and the AD converter 53 are integrated in the monitoring IC 50, and the total error is suppressed by calibration or correction. Therefore, the voltage between terminals can be calculated accurately.
 同様に、演算装置54は、システム21への印加電圧に対する第1分圧回路40の第3の分圧比(R31/(R11+R21+R31))、第4の分圧比((R31+R21)/(R11+R21+R31))、及び分圧電圧DS3と分圧電圧DV3との電位差に基づいて、システム21への印加電圧を算出する。システム22への印加電圧の算出も同様である。なお、監視IC50に演算装置54を設ける必要はなく、外部装置に演算装置54を設けてもよい。 Similarly, the arithmetic unit 54 has a third voltage divider ratio (R31 / (R11 + R21 + R31)), a fourth voltage divider ratio ((R31 + R21) / (R11 + R21 + R31)) of the first voltage divider circuit 40 with respect to the voltage applied to the system 21. And the voltage applied to the system 21 is calculated based on the potential difference between the voltage dividing voltage DS3 and the voltage dividing voltage DV3. The same applies to the calculation of the voltage applied to the system 22. It is not necessary to provide the arithmetic unit 54 in the monitoring IC 50, and the arithmetic unit 54 may be provided in the external device.
 半導体スイッチSW51~SW56は、それぞれ隣り合う入力端子S1~S6との間で通電及び通電遮断を切り替える可能に設けられている。例えば、半導体スイッチSW51は、入力端子S1と入力端子S2との間に設けられ、それらの端子間を通電及び通電遮断を切り替え可能に構成されている。半導体スイッチSW52~SW56も同様である。 The semiconductor switches SW51 to SW56 are provided so as to be able to switch between energization and energization cutoff between adjacent input terminals S1 to S6, respectively. For example, the semiconductor switch SW51 is provided between the input terminal S1 and the input terminal S2, and is configured to be able to switch between energization and energization cutoff between the terminals. The same applies to the semiconductor switches SW52 to SW56.
 また、半導体スイッチSW51~SW56には、それぞれダイオードD51~D56が並列に接続されている。ダイオードD51~D56は、半導体スイッチSW51~SW56の寄生ダイオードであってもよい。各ダイオードD51は、番号が小さい入力端子S1から番号の大きい入力端子S2の側への電流の流れを許可するように配置されている。ダイオードD52~D56も同様である。 Further, diodes D51 to D56 are connected in parallel to the semiconductor switches SW51 to SW56, respectively. The diodes D51 to D56 may be parasitic diodes of the semiconductor switches SW51 to SW56. Each diode D51 is arranged so as to allow current to flow from the input terminal S1 having a small number to the input terminal S2 having a large number. The same applies to the diodes D52 to D56.
 演算装置54は、上述した演算以外に、半導体スイッチSW51~SW56の切り替えや、マルチプレクサ51による入力チャネルCH1~CH6の選択を制御可能に構成されている。 The arithmetic unit 54 is configured to be able to control the switching of the semiconductor switches SW51 to SW56 and the selection of the input channels CH1 to CH6 by the multiplexer 51 in addition to the above-mentioned arithmetic.
 図1に示すように、第2分圧回路60は、正極側電源経路11aと負極側電源経路11bとの間で、スイッチSW3、抵抗R42及び抵抗R52が、この順番で直列接続されている。また、抵抗R41、抵抗R55及び抵抗R51の直列接続体が、抵抗R42及び抵抗R52と並列となるように、その一端がスイッチSW3と抵抗R42との間に接続され、他端が負極側電源経路11bに接続されている。 As shown in FIG. 1, in the second voltage dividing circuit 60, the switch SW3, the resistor R42, and the resistor R52 are connected in series in this order between the positive electrode side power supply path 11a and the negative electrode side power supply path 11b. Further, one end of the series connection body of the resistance R41, the resistance R55 and the resistance R51 is connected between the switch SW3 and the resistance R42 so as to be in parallel with the resistance R42 and the resistance R52, and the other end is the negative electrode side power supply path. It is connected to 11b.
 抵抗R55と抵抗R51との間の接続点P21は、ダイオードD1を介して第1分圧回路40の抵抗R21と抵抗R31との間の接続点P13に接続されている。ダイオードD1は、第2分圧回路60の側から第1分圧回路40の側への電流の流れを許可するように接続されている。すなわち、スイッチSW3がオンされている場合、組電池10の端子間電圧が抵抗R41,R55,R51に基づく第7の分圧比(R51/(R41+R55+R51))により分圧され、ダイオードD1を介して接続点P13に印加可能に構成されている。なお、端子間電圧が第7の分圧比により分圧された分圧電圧を、分圧電圧DS3minと示す場合がある。分圧電圧DS3minは、システム21への通電遮断時に、入力端子S3に入力される入力信号となる。 The connection point P21 between the resistor R55 and the resistor R51 is connected to the connection point P13 between the resistor R21 and the resistor R31 of the first voltage dividing circuit 40 via the diode D1. The diode D1 is connected so as to allow the flow of current from the side of the second voltage divider circuit 60 to the side of the first voltage divider circuit 40. That is, when the switch SW3 is turned on, the voltage between the terminals of the assembled battery 10 is divided by the seventh voltage dividing ratio (R51 / (R41 + R55 + R51)) based on the resistors R41, R55, R51, and is connected via the diode D1. It is configured to be applicable to the point P13. The voltage divider voltage obtained by dividing the voltage between the terminals by the seventh voltage divider ratio may be referred to as a voltage divider voltage DS3min. The voltage dividing voltage DS3min is an input signal input to the input terminal S3 when the energization of the system 21 is cut off.
 抵抗R42と抵抗R52との間の接続点P22は、ダイオードD2を介して第1分圧回路40の抵抗R22と抵抗R32との間の接続点P15に接続されている。ダイオードD2は、第2分圧回路60の側から第1分圧回路40の側への電流の流れを許可するように接続されている。すなわち、スイッチSW3がオンされている場合、組電池10の端子間電圧が抵抗R42,R52に基づく第8の分圧比(R52/(R42+R52))により分圧され、ダイオードD2を介して接続点P15に印加可能に構成されている。なお、端子間電圧が第8の分圧比により分圧された分圧電圧を、分圧電圧DS6minと示す場合がある。分圧電圧DS6minは、システム22への通電遮断時に、入力端子S6に入力される入力信号となる。 The connection point P22 between the resistor R42 and the resistor R52 is connected to the connection point P15 between the resistor R22 and the resistor R32 of the first voltage dividing circuit 40 via the diode D2. The diode D2 is connected so as to allow the flow of current from the side of the second voltage divider circuit 60 to the side of the first voltage divider circuit 40. That is, when the switch SW3 is turned on, the voltage between the terminals of the assembled battery 10 is divided by the eighth voltage dividing ratio (R52 / (R42 + R52)) based on the resistors R42 and R52, and the connection point P15 is divided via the diode D2. It is configured to be applicable to. The voltage divider voltage obtained by dividing the voltage between the terminals by the eighth voltage divider ratio may be referred to as a voltage divider voltage DS6min. The voltage dividing voltage DS6min is an input signal input to the input terminal S6 when the energization of the system 22 is cut off.
 電位安定化回路80は、抵抗R53及び抵抗R54の直列接続体により構成されており、その一端が、第2分圧回路60に接続され、他端が、入力端子V3に接続されている。より詳しく説明すると、電位安定化回路80は、その一端が、第2分圧回路60における抵抗R41と抵抗R55の間に接続され、他端が第1分圧回路40の抵抗R11と抵抗R21との間の接続点P14に接続されている。また、抵抗R53と抵抗R54との間の接続点P17は、監視IC50の入力チャネルCH5の入力端子S5に接続されている。 The potential stabilization circuit 80 is composed of a series connector of a resistor R53 and a resistor R54, one end of which is connected to the second voltage dividing circuit 60 and the other end of which is connected to the input terminal V3. More specifically, one end of the potential stabilization circuit 80 is connected between the resistance R41 and the resistance R55 in the second voltage divider circuit 60, and the other end is the resistance R11 and the resistance R21 of the first voltage divider circuit 40. It is connected to the connection point P14 between. Further, the connection point P17 between the resistance R53 and the resistance R54 is connected to the input terminal S5 of the input channel CH5 of the monitoring IC50.
 ところで、監視IC50は、本来、図3に示すように、組電池を構成する各電池セルC11~C15の電圧を検出するために利用されるものである。なお、半導体スイッチSW51~SW55は、各電池セルC11~C15の均等化放電のために設けられているものである。つまり、監視IC50は、直列接続された電池セルC11~C15の電圧検出を前提に開発されている。このため、例えば、入力チャネルCH1~CH5ごとに電位が段階的に高くなることを前提に回路構成が設定されている。具体的には、入力端子S1→入力端子V1,S2→入力端子V2,S3→入力端子V3,S4→入力端子V4,S5→入力端子V5の順番で入力される電位が段階的に大きくなることを前提としている。 By the way, as shown in FIG. 3, the monitoring IC50 is originally used to detect the voltage of each battery cell C11 to C15 constituting the assembled battery. The semiconductor switches SW51 to SW55 are provided for equalization discharge of the battery cells C11 to C15. That is, the monitoring IC50 has been developed on the premise of detecting the voltage of the battery cells C11 to C15 connected in series. Therefore, for example, the circuit configuration is set on the premise that the potential is gradually increased for each of the input channels CH1 to CH5. Specifically, the potential input in the order of input terminal S1 → input terminal V1, S2 → input terminal V2, S3 → input terminal V3, S4 → input terminal V4, S5 → input terminal V5 gradually increases. Is assumed.
 したがって、同電位の電圧を検出させようとする場合、例えば、図4に示すように、組電池10の端子間電圧及びシステム21,22の印加電圧を、分圧回路を介して、各入力チャネルCH1,CH3,CH5に入力した場合、次のような問題がある。すなわち、各入力チャネルCH1,CH3,CH5に入力される電圧がほぼ同じである場合、図4に示す破線の矢印に示すように、監視IC50の外部に設けられたダイオードD11~D15、又は監視IC50の内部の半導体スイッチSW51~SW56のダイオードD51~D56を介して、回り込み電流が発生する可能性がある。 Therefore, when trying to detect a voltage having the same potential, for example, as shown in FIG. 4, the voltage between the terminals of the assembled battery 10 and the applied voltage of the systems 21 and 22 are set to each input channel via a voltage dividing circuit. When inputting to CH1, CH3, CH5, there are the following problems. That is, when the voltages input to the input channels CH1, CH3, and CH5 are substantially the same, the diodes D11 to D15 provided outside the monitoring IC50, or the monitoring IC50, as shown by the broken line arrow shown in FIG. A wraparound current may be generated via the diodes D51 to D56 of the semiconductor switches SW51 to SW56 inside.
 また、入力チャネルCH1への入力電圧が、入力チャネルCH3,CH5への入力電圧よりも大きい場合、監視IC50の内部で、回り込み電流が発生する可能性がある。また、リレースイッチSN1,SP1,SN2,SP2がオフされることにより、各システム21,22のいずれかの印加電圧がゼロとなった場合も、監視IC50の内部で、同様に回り込み電流が発生する可能性がある。これにより、電圧の検出誤差が生じるという問題がある。 Further, when the input voltage to the input channel CH1 is larger than the input voltage to the input channels CH3 and CH5, a wraparound current may be generated inside the monitoring IC50. Further, even when the applied voltage of any of the systems 21 and 22 becomes zero by turning off the relay switches SN1, SP1, SN2 and SP2, a wraparound current is similarly generated inside the monitoring IC50. there is a possibility. This causes a problem that a voltage detection error occurs.
 そこで、第1分圧回路40及び第2分圧回路60を設け、各分圧比を次に説明するように設定している。以下、詳しく説明する。前述したように監視IC50には、複数の入力チャネルCH1~CH6が設けられており、入力チャネルCH1~CH6の各入力端子S1~S6,V1~V6には、入力信号の電位順が予め設定されている。電位順とは、少なくとも監視IC50の内部において、入力チャネルCH1~CH6の間で、意図しない回り込み電流が防止される入力信号の電位の順番のことである。意図しない回り込み電流とは、例えば、ダイオードD51~D56等を介して流れる電流のことである。 Therefore, a first voltage dividing circuit 40 and a second voltage dividing circuit 60 are provided, and each voltage dividing ratio is set as described below. Hereinafter, it will be described in detail. As described above, the monitoring IC 50 is provided with a plurality of input channels CH1 to CH6, and the potential order of the input signals is preset in the input terminals S1 to S6 and V1 to V6 of the input channels CH1 to CH6. ing. The potential order is the order of the potentials of the input signals in which an unintended wraparound current is prevented between the input channels CH1 and CH6, at least inside the monitoring IC50. The unintended wraparound current is, for example, a current flowing through the diodes D51 to D56 and the like.
 本実施形態では、入力端子S1→入力端子V1,S2→入力端子V2,S3→入力端子V3,S4→入力端子V4,S5→入力端子V5,S6→入力端子V6の順番で入力信号の電位順が定められている。つまり、入力チャネルCH1~CH6ごとに電位が段階的に高くなるように、電位順が定められている。電位順は、順番が逆転しなければよく、例えば、入力端子V3,S4及び入力端子V4で同じ電位の入力信号が入力されてもよい。このような場合でも、意図しない回り込み電流が防止されるからである。 In this embodiment, the potential order of the input signals is in the order of input terminal S1 → input terminal V1, S2 → input terminal V2, S3 → input terminal V3, S4 → input terminal V4, S5 → input terminal V5, S6 → input terminal V6. Is stipulated. That is, the potential order is determined so that the potential increases stepwise for each of the input channels CH1 to CH6. The potential order does not have to be reversed, and for example, input signals having the same potential may be input at the input terminals V3 and S4 and the input terminal V4. This is because even in such a case, an unintended wraparound current is prevented.
 そして、図1、図2に示すように、組電池10、システム21、22に対して、それぞれ入力チャネルCH1,CH3,CH6が対応付けられている。第1分圧回路40は、組電池10の端子間電圧を2つの異なる分圧比で分圧し、組電池10に対応付けられた入力チャネルCH1の入力端子S1,V1にそれぞれ出力する。同様に、第1分圧回路40は、リレースイッチSP1,SN1がオンされているとき、システム21への印加電圧を2つの異なる分圧比で分圧し、当該システム21に対応付けられた入力チャネルCH3の入力端子S3,V3にそれぞれ出力する。同様に、第1分圧回路40は、リレースイッチSP2,SN2がオンされているとき、システム22への印加電圧を2つの異なる分圧比で分圧し、当該システム22に対応付けられた入力チャネルCH6の入力端子S6,V6にそれぞれ出力する。 Then, as shown in FIGS. 1 and 2, the input channels CH1, CH3, and CH6 are associated with the assembled battery 10, the system 21, and 22, respectively. The first voltage dividing circuit 40 divides the voltage between the terminals of the assembled battery 10 at two different voltage dividing ratios, and outputs the voltage to the input terminals S1 and V1 of the input channel CH1 associated with the assembled battery 10, respectively. Similarly, the first voltage divider circuit 40 divides the voltage applied to the system 21 by two different voltage dividing ratios when the relay switches SP1 and SN1 are turned on, and the input channel CH3 associated with the system 21 Is output to each of the input terminals S3 and V3. Similarly, the first voltage divider circuit 40 divides the voltage applied to the system 22 by two different voltage dividing ratios when the relay switches SP2 and SN2 are turned on, and the input channel CH6 associated with the system 22 is used. Output to the input terminals S6 and V6 of.
 そして、第1分圧回路40は、前記入力チャネルCH1,CH3,CH6の各入力端子S1,V1,S3,V3,S6,V6ごとに、段階的に異なる分圧比で電圧を分圧して、出力するようにしている。より詳しくは、入力端子S1→入力端子V1→入力端子S3→入力端子V3→入力端子S6→入力端子V6の順番で、入力される入力信号(分圧電圧)の電位が段階的に高くなるように、第1分圧回路40の各分圧比が設定されている。 Then, the first voltage dividing circuit 40 divides the voltage for each input terminal S1, V1, S3, V3, S6, V6 of the input channels CH1, CH3, CH6 at a stepwise different voltage dividing ratio, and outputs the voltage. I try to do it. More specifically, the potential of the input signal (voltage dividing voltage) to be input is gradually increased in the order of input terminal S1 → input terminal V1 → input terminal S3 → input terminal V3 → input terminal S6 → input terminal V6. Each voltage dividing ratio of the first voltage dividing circuit 40 is set.
 具体的に説明すると、第1分圧回路40において、入力チャネルCH1の高電位側入力端子V1に入力されうる分圧電圧DV1の第2の分圧比は、当該入力チャネルCH1の低電位側入力端子S1に入力されうる分圧電圧DS1の第1の分圧比よりも大きく設定されている。入力チャネルCH3,CH5も同様に、第4の分圧比は、第3の分圧比よりも1段階大きく設定されており、第6の分圧比は、第5の分圧比よりも大きく設定されている。 Specifically, in the first voltage divider circuit 40, the second voltage divider ratio of the voltage divider voltage DV1 that can be input to the high potential side input terminal V1 of the input channel CH1 is the low potential side input terminal of the input channel CH1. The voltage dividing voltage that can be input to S1 is set to be larger than the first voltage dividing ratio of DS1. Similarly, in the input channels CH3 and CH5, the fourth voltage division ratio is set to be one step larger than the third voltage division ratio, and the sixth voltage division ratio is set to be larger than the fifth voltage division ratio. ..
 また、電圧検出に利用される入力チャネルCH1,CH3,CH6のうち、電位順において異なる順位となる入力チャネルCH1と入力チャネルCH3との間、及び入力チャネルCH3と入力チャネルCH6との間で、予め決められた値以上の電位差が生じるように、段階的に分圧比が設定されている。すなわち、第1分圧回路40において、入力チャネルCH3の低電位側入力端子S3に入力されうる分圧電圧DS3の第3の分圧比は、入力チャネルCH1の高電位側入力端子V1に入力されうる分圧電圧DV1の第2の分圧比よりも大きく設定されている。第5の分圧比も同様に、第4の分圧比よりも大きく設定されている。 Further, among the input channels CH1, CH3, and CH6 used for voltage detection, between the input channel CH1 and the input channel CH3 having different ranks in the potential order, and between the input channel CH3 and the input channel CH6 in advance. The voltage division ratio is set stepwise so that a potential difference of more than a predetermined value is generated. That is, in the first voltage divider circuit 40, the third voltage divider ratio of the voltage divider voltage DS3 that can be input to the low potential side input terminal S3 of the input channel CH3 can be input to the high potential side input terminal V1 of the input channel CH1. The voltage dividing voltage is set to be larger than the second voltage dividing ratio of DV1. Similarly, the fifth voltage division ratio is set to be larger than the fourth voltage division ratio.
 すなわち、第1の分圧比(R30/(R10+R20+R30))<第2の分圧比(R(30+R20)/(R10+R20+R30))<第3の分圧比(R31/(R11+R21+R31))<第4の分圧比((R31+R21)/(R11+R21+R31))<第5の分圧比(R32/(R12+R22+R32))<第6の分圧比((R32+R22)/(R12+R22+R32))となるように各分圧比が段階的に設定されている。そして、各分圧比が段階的に設定されるように、各抵抗R10,R20,R30,R11,R21,R31,R12,R22,R32の値が設定されている。 That is, the first pressure division ratio (R30 / (R10 + R20 + R30)) <second pressure division ratio (R (30 + R20) / (R10 + R20 + R30)) <third pressure division ratio (R31 / (R11 + R21 + R31)) <fourth pressure division ratio ( (R31 + R21) / (R11 + R21 + R31)) <Fifth voltage division ratio (R32 / (R12 + R22 + R32)) <Sixth voltage division ratio ((R32 + R22) / (R12 + R22 + R32)) There is. Then, the values of the resistors R10, R20, R30, R11, R21, R31, R12, R22, and R32 are set so that the voltage division ratios are set stepwise.
 また、各負極側電源経路11b,23b,24bに流れる電流によっては、電圧降下が生じる。例えば、組電池10を充電する場合、充電電流により、電圧降下が生じる。そこで、第1分圧回路40における第1の分圧比、第3の分圧比及び第5の分圧比は、負極側電源経路11b,23b,24bの電流量及びインピーダンスに基づいて算出される電圧降下量を考慮して設定されている。 Further, a voltage drop occurs depending on the current flowing in each negative electrode side power supply path 11b, 23b, 24b. For example, when charging the assembled battery 10, a voltage drop occurs due to the charging current. Therefore, the first voltage dividing ratio, the third voltage dividing ratio, and the fifth voltage dividing ratio in the first voltage dividing circuit 40 are voltage drops calculated based on the current amounts and impedances of the negative electrode side power supply paths 11b, 23b, and 24b. It is set in consideration of the amount.
 具体的には、負極側電源経路11b,23b,24bの電流量とのインピーダンスから、監視IC50の回路基準(グランド端子N0)からの最大降下量N0max、N1max、N2maxをそれぞれ算出する。そして、最大降下量N0max<分圧電圧DS1、となるように第1の分圧比が設定されている。同様に、最大降下量N1max<分圧電圧DS3、となるように第3の分圧比が設定されている。同様に、最大降下量N2max<分圧電圧DS6、となるように第5の分圧比が設定されている。 Specifically, the maximum drop amounts N0max, N1max, and N2max from the circuit reference (ground terminal N0) of the monitoring IC50 are calculated from the impedance with the current amounts of the negative electrode side power supply paths 11b, 23b, and 24b, respectively. Then, the first voltage dividing ratio is set so that the maximum drop amount N0max <voltage dividing voltage DS1. Similarly, the third voltage dividing ratio is set so that the maximum drop amount N1max <voltage dividing voltage DS3. Similarly, the fifth voltage dividing ratio is set so that the maximum drop amount N2max <voltage dividing voltage DS6.
 また、第2分圧回路60は、各システム21,22ごとに、段階的に異なる分圧比で端子間電圧を分圧するように構成されている。詳しくは、分圧電圧DS3minの第7の分圧比(R51/(R41+R55+R51))は、分圧電圧DS3の第3の分圧比(R31/(R11+R21+R31))よりも小さく、かつ、第1分圧回路40において当該第3の分圧比よりも1段階小さい第2の分圧比((R30+R20)/(R10+R20+R30))に比較して大きく設定されている。 Further, the second voltage dividing circuit 60 is configured to divide the voltage between terminals at a stepwise different voltage dividing ratio for each of the systems 21 and 22. Specifically, the seventh voltage divider ratio (R51 / (R41 + R55 + R51)) of the voltage divider DS3 min is smaller than the third voltage divider ratio (R31 / (R11 + R21 + R31)) of the voltage divider DS3, and the first voltage divider circuit. In 40, it is set larger than the second voltage dividing ratio ((R30 + R20) / (R10 + R20 + R30)) which is one step smaller than the third voltage dividing ratio.
 また、分圧電圧DS6minの第8の分圧比(R52/(R42+R52))は、分圧電圧DS6の第5の分圧比(R32/(R12+R22+R32))よりも小さく、かつ、第1分圧回路40において当該第5の分圧比よりも1段階小さい第4の分圧比((R31+R21)/(R11+R21+R31))に比較して大きく設定されている。 Further, the eighth voltage dividing ratio (R52 / (R42 + R52)) of the voltage dividing voltage DS6min is smaller than the fifth voltage dividing ratio (R32 / (R12 + R22 + R32)) of the voltage dividing voltage DS6, and the first voltage dividing circuit 40 Is set larger than the fourth voltage dividing ratio ((R31 + R21) / (R11 + R21 + R31)), which is one step smaller than the fifth voltage dividing ratio.
 そして、第2分圧回路60は、リレースイッチSN1,SP1,SN2,SP2により組電池10との通電が遮断されたシステム21,22が存在する場合、当該システム21,22に対して設定されている入力チャネルCH3,CH6の低電位側入力端子S3,S6に分圧電圧DS3min,DS6minを出力するように構成されている。 Then, the second voltage dividing circuit 60 is set for the systems 21 and 22 in the presence of the systems 21 and 22 in which the energization with the assembled battery 10 is cut off by the relay switches SN1, SP1, SN2 and SP2. The voltage dividing voltages DS3min and DS6min are configured to be output to the low potential side input terminals S3 and S6 of the input channels CH3 and CH6.
 具体的には、抵抗R55と抵抗R51との間の接続点P21を、ダイオードD1を介して第1分圧回路40の抵抗R21と抵抗R31との間の接続点P13に接続している。このため、第2分圧回路60は、システム21の印加電圧がゼロとなった場合、分圧電圧DS3もゼロとなるため、ダイオードD1を介して、分圧電圧DS3minを入力端子S3に出力することとなる。その際、ダイオードD13,D53を介して、分圧電圧DS3minが、入力端子V3,S4,V4にも入力されることとなる。 Specifically, the connection point P21 between the resistor R55 and the resistor R51 is connected to the connection point P13 between the resistor R21 and the resistor R31 of the first voltage dividing circuit 40 via the diode D1. Therefore, when the applied voltage of the system 21 becomes zero, the second voltage divider circuit 60 also has the voltage divider voltage DS3 zero, so that the voltage divider voltage DS3min is output to the input terminal S3 via the diode D1. It will be. At that time, the voltage dividing voltage DS3min is also input to the input terminals V3, S4, and V4 via the diodes D13 and D53.
 なお、ダイオードD1を介して分圧電圧DS3minが入力されるため、ダイオードD1による順方向電圧降下を考慮すると、入力端子S3,V3,S4,V4に実際に入力される電圧は、分圧電圧DS3min-電圧降下Vfとなっている。ただし、本実施形態においては、開示に影響を与えない程度に小さいものであるため、説明の都合上、以下では、入力端子S3,V3,S4,V4に入力される電圧のうち、電圧降下Vfの記載を省略する。 Since the voltage dividing voltage DS3min is input via the diode D1, the voltage actually input to the input terminals S3, V3, S4, and V4 is the voltage dividing voltage DS3min in consideration of the forward voltage drop due to the diode D1. -The voltage drop is Vf. However, in the present embodiment, the voltage is small enough not to affect the disclosure. Therefore, for convenience of explanation, the voltage drop Vf among the voltages input to the input terminals S3, V3, S4, and V4 is described below. The description of is omitted.
 同様に、抵抗R42と抵抗R52との間の接続点P22を、ダイオードD2を介して第1分圧回路40の抵抗R22と抵抗R32との間の接続点P15に接続している。このため、第2分圧回路60は、システム22の印加電圧がゼロとなった場合、ダイオードD2を介して、分圧電圧DS6minを入力端子S6に出力することとなる。その際、ダイオードD16,D56を介して、分圧電圧DS6minが、入力端子V6にも入力されることとなる。 Similarly, the connection point P22 between the resistor R42 and the resistor R52 is connected to the connection point P15 between the resistor R22 and the resistor R32 of the first voltage dividing circuit 40 via the diode D2. Therefore, when the applied voltage of the system 22 becomes zero, the second voltage dividing circuit 60 outputs the voltage dividing voltage DS6min to the input terminal S6 via the diode D2. At that time, the voltage dividing voltage DS6min is also input to the input terminal V6 via the diodes D16 and D56.
 なお、ダイオードD2を介して分圧電圧DS6minが入力されるため、ダイオードD2による電圧降下を考慮すると、入力端子S6,V6に実際に入力される電圧は、分圧電圧DS6min-電圧降下Vfとなっている。ただし、本実施形態においては、開示に影響を与えない程度に小さいものであるため、説明の都合上、以下では、入力端子S6,V6に入力される電圧のうち、電圧降下Vfの記載を省略する。 Since the voltage dividing voltage DS6min is input via the diode D2, the voltage actually input to the input terminals S6 and V6 is the voltage dividing voltage DS6min-voltage drop Vf in consideration of the voltage drop due to the diode D2. ing. However, in the present embodiment, since it is small enough not to affect the disclosure, the description of the voltage drop Vf among the voltages input to the input terminals S6 and V6 is omitted below for convenience of explanation. do.
 以上により、第2分圧回路60は、組電池10との通電が遮断されたシステム21,22に対応付けられている入力チャネルCH3,CH6に対して、端子間電圧を分圧した分圧電圧DS3min,DS6minを入力信号として出力するものである。そして、第2分圧回路60における第7の分圧比は、出力先となる入力チャネルCH3の入力端子S3に入力される入力信号が電位順に応じた順番となるような分圧比であって、当該入力端子S3への入力信号を生成するために第1分圧回路40にて設定された第3の分圧比以下のとされている。つまり、第7の分圧比は、第2の分圧比よりも大きく、第3の分圧比以下となっている。 As described above, the second voltage divider circuit 60 divides the voltage between terminals with respect to the input channels CH3 and CH6 associated with the systems 21 and 22 in which the energization with the assembled battery 10 is cut off. DS3min and DS6min are output as input signals. The seventh voltage dividing ratio in the second voltage dividing circuit 60 is such that the input signals input to the input terminal S3 of the input channel CH3 to be output are in the order corresponding to the potential order. It is set to be equal to or less than the third voltage dividing ratio set by the first voltage dividing circuit 40 in order to generate an input signal to the input terminal S3. That is, the seventh voltage division ratio is larger than the second voltage division ratio and equal to or less than the third voltage division ratio.
 同様に、第2分圧回路60における第8の分圧比は、出力先となる入力チャネルCH6の入力端子S6に入力される入力信号が電位順に応じた順番となるような分圧比であって、当該入力端子S6への入力信号を生成するために第1分圧回路40にて設定された第5の分圧比以下のとされている。つまり、第8の分圧比は、第4の分圧比よりも大きく、第5の分圧比以下となっている。 Similarly, the eighth voltage dividing ratio in the second voltage dividing circuit 60 is a voltage dividing ratio such that the input signals input to the input terminal S6 of the input channel CH6 as the output destination are in the order corresponding to the order of potential. It is set to be equal to or less than the fifth voltage dividing ratio set in the first voltage dividing circuit 40 in order to generate an input signal to the input terminal S6. That is, the eighth voltage division ratio is larger than the fourth voltage division ratio and equal to or less than the fifth voltage division ratio.
 次に、図5~図9に基づいて電圧検出装置30の作用について説明する。図5は、リレースイッチSN1,SP1,SN2,SP2がオンされた場合における電圧検出装置30の動作、及び電流の流れを示す図である。図5では、破線により、電流の流れを示す。 Next, the operation of the voltage detection device 30 will be described with reference to FIGS. 5 to 9. FIG. 5 is a diagram showing the operation of the voltage detection device 30 and the current flow when the relay switches SN1, SP1, SN2, and SP2 are turned on. In FIG. 5, the broken line indicates the current flow.
 図5に示すように、入力端子S1には、端子間電圧が第1の分圧比により分圧された分圧電圧DS1が入力される。入力端子V1には、端子間電圧が第2の分圧比により分圧された分圧電圧DV1が入力される。入力端子S3には、システム21への印加電圧が第3の分圧比により分圧された分圧電圧DS3が入力される。入力端子V3には、システム21への印加電圧が第4の分圧比により分圧された分圧電圧DV3が入力される。入力端子S6には、システム22への印加電圧が第5の分圧比により分圧された分圧電圧DS6が入力される。入力端子V6には、システム22への印加電圧が第6の分圧比により分圧された分圧電圧DV6が入力される。そして、各分圧電圧の大小関係は、DS1<DV1<DS3<DV3<DS6<DV6となっている。 As shown in FIG. 5, a voltage divider voltage DS1 in which the voltage between the terminals is divided by the first voltage divider ratio is input to the input terminal S1. The voltage dividing voltage DV1 in which the voltage between the terminals is divided by the second voltage dividing ratio is input to the input terminal V1. The voltage divider DS3, in which the voltage applied to the system 21 is divided by the third voltage divider ratio, is input to the input terminal S3. The voltage divider voltage DV3, in which the voltage applied to the system 21 is divided by the fourth voltage divider ratio, is input to the input terminal V3. A voltage divider DS6 in which the voltage applied to the system 22 is divided by the fifth voltage divider ratio is input to the input terminal S6. The voltage dividing voltage DV6 in which the voltage applied to the system 22 is divided by the sixth voltage dividing ratio is input to the input terminal V6. The magnitude relationship of each voltage dividing voltage is DS1 <DV1 <DS3 <DV3 <DS6 <DV6.
 これにより、入力端子S1→入力端子V1→入力端子S3→入力端子V3→入力端子S6→入力端子V6の順番で段階的に入力される入力信号(分圧電圧)の電位が高くなる。すなわち、入力信号の電位順に応じた順番となる。このため、ダイオードD11,D13,D16,D51,D53,D56を介して電流が回り込むことを防止できる。 As a result, the potential of the input signal (voltage division voltage) that is input stepwise in the order of input terminal S1 → input terminal V1 → input terminal S3 → input terminal V3 → input terminal S6 → input terminal V6 increases. That is, the order is according to the potential order of the input signals. Therefore, it is possible to prevent the current from wrapping around through the diodes D11, D13, D16, D51, D53, and D56.
 したがって、監視IC50は、入力端子S1,V1に入力された2つの分圧電圧DS1,DV1に基づいて、端子間電圧を精度よく検出することができる。同様に、監視IC50は、入力端子S3,V3に入力された2つの分圧電圧DS3,DV3に基づいて、システム21への印加電圧を精度よく検出することができる。システム22への印加電圧も同様に精度よく検出できる。 Therefore, the monitoring IC 50 can accurately detect the voltage between the terminals based on the two voltage dividing voltages DS1 and DV1 input to the input terminals S1 and V1. Similarly, the monitoring IC 50 can accurately detect the voltage applied to the system 21 based on the two voltage dividing voltages DS3 and DV3 input to the input terminals S3 and V3. The voltage applied to the system 22 can be detected with high accuracy as well.
 なお、第2分圧回路60における第7の分圧比は、第1分圧回路40の第3の分圧比よりも小さく、端子間電圧とシステム21への印加電圧は、ほぼ同等である。このため、端子間電圧を第7の分圧比で分圧した分圧電圧DS3minは、システム21への印加電圧を第3の分圧比で分圧した分圧電圧DS3よりも小さくなる。このため、第2分圧回路60からの分圧電圧DS3minは、入力端子S3に入力されず(分圧電圧DS3minが入力信号として現れず)、第1分圧回路40からの分圧電圧DS3が、入力端子S3に入力される。 The seventh voltage dividing ratio in the second voltage dividing circuit 60 is smaller than the third voltage dividing ratio in the first voltage dividing circuit 40, and the voltage between terminals and the voltage applied to the system 21 are almost the same. Therefore, the voltage dividing voltage DS3min obtained by dividing the voltage between terminals at the seventh voltage dividing ratio is smaller than the voltage dividing voltage DS3 obtained by dividing the voltage applied to the system 21 at the third voltage dividing ratio. Therefore, the voltage dividing voltage DS3min from the second voltage dividing circuit 60 is not input to the input terminal S3 (the voltage dividing voltage DS3min does not appear as an input signal), and the voltage dividing voltage DS3 from the first voltage dividing circuit 40 is used. , Is input to the input terminal S3.
 同様に、第2分圧回路60における第8の分圧比は、第1分圧回路40の第5の分圧比よりも小さく、端子間電圧とシステム22への印加電圧は、ほぼ同等である。このため、端子間電圧を第8の分圧比で分圧した分圧電圧DS6minは、システム22への印加電圧を第5の分圧比で分圧した分圧電圧DS6よりも小さくなる。このため、第2分圧回路60からの分圧電圧DS6minは、入力端子S6に入力されず(分圧電圧DS6minが入力信号として現れず)、第1分圧回路40からの分圧電圧DS6が、入力端子S6に入力される。 Similarly, the eighth voltage dividing ratio in the second voltage dividing circuit 60 is smaller than the fifth voltage dividing ratio in the first voltage dividing circuit 40, and the voltage between terminals and the voltage applied to the system 22 are almost the same. Therefore, the voltage dividing voltage DS6min obtained by dividing the voltage between terminals at the eighth voltage dividing ratio is smaller than the voltage dividing voltage DS6 obtained by dividing the voltage applied to the system 22 at the fifth voltage dividing ratio. Therefore, the voltage dividing voltage DS6min from the second voltage dividing circuit 60 is not input to the input terminal S6 (the voltage dividing voltage DS6min does not appear as an input signal), and the voltage dividing voltage DS6 from the first voltage dividing circuit 40 is used. , Is input to the input terminal S6.
 図6は、リレースイッチSN1,SP1がオフされ、リレースイッチSN2,SP2がオンされた場合における電圧検出装置30の動作、及び電流の流れを示す図である。図6では、破線により、第1分圧回路40における電流を示す。また、一点鎖線により、第2分圧回路60における電流を示す。 FIG. 6 is a diagram showing the operation of the voltage detection device 30 and the current flow when the relay switches SN1 and SP1 are turned off and the relay switches SN2 and SP2 are turned on. In FIG. 6, the broken line indicates the current in the first voltage divider circuit 40. Further, the current in the second voltage dividing circuit 60 is shown by the alternate long and short dash line.
 図6に示すように、入力端子S1には、端子間電圧が第1の分圧比により分圧された分圧電圧DS1が入力される。入力端子V1には、端子間電圧が第2の分圧比により分圧された分圧電圧DV1が入力される。入力端子S6には、システム22への印加電圧が第5の分圧比により分圧された分圧電圧DS6が入力される。入力端子V6には、システム22への印加電圧が第6の分圧比により分圧された分圧電圧DV6が入力される。 As shown in FIG. 6, a voltage divider voltage DS1 in which the voltage between the terminals is divided by the first voltage divider ratio is input to the input terminal S1. The voltage dividing voltage DV1 in which the voltage between the terminals is divided by the second voltage dividing ratio is input to the input terminal V1. A voltage divider DS6 in which the voltage applied to the system 22 is divided by the fifth voltage divider ratio is input to the input terminal S6. The voltage dividing voltage DV6 in which the voltage applied to the system 22 is divided by the sixth voltage dividing ratio is input to the input terminal V6.
 一方、前提により組電池10からシステム21への通電は遮断されているため、システム21への印加電圧は0Vである。よって、第1分圧回路40から入力端子S3への分圧電圧も0Vである。そして、第2分圧回路60による分圧電圧DS3minは、0Vよりも高いので、一点鎖線に示すように、組電池10の正極側端子10a→スイッチSW3→抵抗R41→抵抗R55→ダイオードD1→抵抗R31→抵抗R61→組電池10の負極側端子10bの経路に電流が流れる。 On the other hand, since the energization from the assembled battery 10 to the system 21 is cut off by the premise, the applied voltage to the system 21 is 0V. Therefore, the voltage dividing voltage from the first voltage dividing circuit 40 to the input terminal S3 is also 0V. Since the voltage divider DS3min by the second voltage divider circuit 60 is higher than 0V, as shown by the one-point chain line, the positive electrode side terminal 10a of the assembled battery 10 → switch SW3 → resistor R41 → resistor R55 → diode D1 → resistor. A current flows through the path of R31 → resistor R61 → negative electrode side terminal 10b of the assembled battery 10.
 これにより入力端子S3には、端子間電圧が第7の分圧比により分圧された分圧電圧DS3minが入力される。入力端子V3,S4,V4には、抵抗R21等を介して、分圧電圧DS3minが入力される。そして、各分圧電圧の大小関係は、DS1<DV1<DS3min<DS6<DV6となっている。 As a result, the voltage divider voltage DS3min in which the voltage between the terminals is divided by the seventh voltage divider ratio is input to the input terminal S3. The voltage dividing voltage DS3min is input to the input terminals V3, S4, and V4 via the resistor R21 and the like. The magnitude relationship of each voltage dividing voltage is DS1 <DV1 <DS3min <DS6 <DV6.
 これにより、入力端子S1→入力端子V1→入力端子S3,V3,S4,V4→入力端子S6→入力端子V6の順番で段階的に入力される分圧電圧が高くなる。すなわち、電位順に従って入力信号が入力される。このため、ダイオードD11,D13,D16,D51,D53,D56等を介して電流が回り込むことを防止できる。したがって、監視IC50は、端子間電圧及びシステム22への印加電圧を精度よく検出することができる。 As a result, the voltage dividing voltage that is input stepwise in the order of input terminal S1 → input terminal V1 → input terminal S3, V3, S4, V4 → input terminal S6 → input terminal V6 increases. That is, the input signal is input according to the potential order. Therefore, it is possible to prevent the current from wrapping around through the diodes D11, D13, D16, D51, D53, D56 and the like. Therefore, the monitoring IC 50 can accurately detect the voltage between terminals and the voltage applied to the system 22.
 図7は、リレースイッチSN2,SP2がオフされ、リレースイッチSN1,SP1がオンされた場合における電圧検出装置30の動作、及び電流の流れを示す図である。図7では、破線により、第1分圧回路40における電流を示す。また、一点鎖線により、第2分圧回路60における電流を示す。 FIG. 7 is a diagram showing the operation of the voltage detection device 30 and the current flow when the relay switches SN2 and SP2 are turned off and the relay switches SN1 and SP1 are turned on. In FIG. 7, the broken line indicates the current in the first voltage divider circuit 40. Further, the current in the second voltage dividing circuit 60 is shown by the alternate long and short dash line.
 図7に示すように、入力端子S1には、端子間電圧が第1の分圧比により分圧された分圧電圧DS1が入力される。入力端子V1には、端子間電圧が第2の分圧比により分圧された分圧電圧DV1が入力される。入力端子S3には、システム21への印加電圧が第3の分圧比により分圧された分圧電圧DS3が入力される。入力端子V3には、システム21への印加電圧が第4の分圧比により分圧された分圧電圧DV3が入力される。 As shown in FIG. 7, a voltage divider voltage DS1 in which the voltage between the terminals is divided by the first voltage divider ratio is input to the input terminal S1. The voltage dividing voltage DV1 in which the voltage between the terminals is divided by the second voltage dividing ratio is input to the input terminal V1. The voltage divider DS3, in which the voltage applied to the system 21 is divided by the third voltage divider ratio, is input to the input terminal S3. The voltage divider voltage DV3, in which the voltage applied to the system 21 is divided by the fourth voltage divider ratio, is input to the input terminal V3.
 一方、前提により組電池10からシステム22への通電は遮断されているため、図6において説明した理由と同様の理由で、入力端子S6,V6には、端子間電圧が第8の分圧比により分圧された分圧電圧DS6minが入力される。そして、各分圧電圧の大小関係は、DS1<DV1<DS3<DV3<DS6minとなっている。 On the other hand, since the energization from the assembled battery 10 to the system 22 is cut off by the premise, the voltage between the terminals S6 and V6 of the input terminals S6 and V6 is divided by the eighth voltage division ratio for the same reason as described in FIG. The divided voltage division voltage DS6min is input. The magnitude relationship of each voltage dividing voltage is DS1 <DV1 <DS3 <DV3 <DS6min.
 これにより、入力端子S1→入力端子V1→入力端子S3→入力端子V3→入力端子S6,V6の順番で段階的に入力される分圧電圧の電位が高くなる。すなわち、電位順に従って入力信号が入力される。このため、ダイオードD11,D13,D16,D51,D53,D56等を介して電流が回り込むことを防止できる。したがって、監視IC50は、端子間電圧及びシステム22への印加電圧を精度よく検出することができる。 As a result, the potential of the voltage dividing voltage that is input stepwise in the order of input terminal S1 → input terminal V1 → input terminal S3 → input terminal V3 → input terminals S6 and V6 increases. That is, the input signal is input according to the potential order. Therefore, it is possible to prevent the current from wrapping around through the diodes D11, D13, D16, D51, D53, D56 and the like. Therefore, the monitoring IC 50 can accurately detect the voltage between terminals and the voltage applied to the system 22.
 図8は、リレースイッチSN1,SP1,SN2,SP2がオンされ、スイッチSW0がオフ固着(オンできない)した場合における電圧検出装置30の動作、及び電流の流れを示す図である。図8では、破線により、電流の流れを示す。 FIG. 8 is a diagram showing the operation of the voltage detection device 30 and the current flow when the relay switches SN1, SP1, SN2, and SP2 are turned on and the switch SW0 is stuck off (cannot be turned on). In FIG. 8, the broken line indicates the current flow.
 図8に示すように、入力端子S3には、システム21への印加電圧が第3の分圧比により分圧された分圧電圧DS3が入力される。入力端子V3には、システム21への印加電圧が第4の分圧比により分圧された分圧電圧DV3が入力される。入力端子S6には、システム22への印加電圧が第5の分圧比により分圧された分圧電圧DS6が入力される。入力端子V6には、システム22への印加電圧が第6の分圧比により分圧された分圧電圧DV6が入力される。一方、スイッチSW0は、オンできないため、入力端子S1、V1は、負極側電源経路11bと同電位、すなわち、0Vとなる。 As shown in FIG. 8, the voltage dividing voltage DS3 in which the voltage applied to the system 21 is divided by the third voltage dividing ratio is input to the input terminal S3. The voltage divider voltage DV3, in which the voltage applied to the system 21 is divided by the fourth voltage divider ratio, is input to the input terminal V3. A voltage divider DS6 in which the voltage applied to the system 22 is divided by the fifth voltage divider ratio is input to the input terminal S6. The voltage dividing voltage DV6 in which the voltage applied to the system 22 is divided by the sixth voltage dividing ratio is input to the input terminal V6. On the other hand, since the switch SW0 cannot be turned on, the input terminals S1 and V1 have the same potential as the negative electrode side power supply path 11b, that is, 0V.
 これにより、入力端子S1,V1→入力端子S3→入力端子V3→入力端子S6→入力端子V6の順番で段階的に入力される分圧電圧が高くなる。すなわち、電位順に従って入力信号が入力される。このため、ダイオードD11,D13,D16,D51,D53,D56を介して電流が回り込むことを防止できる。したがって、監視IC50は、システム21,22への印加電圧を精度よく検出することができる。また、監視IC50は、スイッチSW0の故障を検知することができる。 As a result, the voltage dividing voltage that is input stepwise in the order of input terminal S1, V1 → input terminal S3 → input terminal V3 → input terminal S6 → input terminal V6 increases. That is, the input signal is input according to the potential order. Therefore, it is possible to prevent the current from wrapping around through the diodes D11, D13, D16, D51, D53, and D56. Therefore, the monitoring IC 50 can accurately detect the voltage applied to the systems 21 and 22. Further, the monitoring IC 50 can detect a failure of the switch SW0.
 図9は、リレースイッチSN1,SP1,SN2,SP2がオフされた場合における電圧検出装置30の動作、及び電流の流れを示す図である。図9では、一点鎖線により、第2分圧回路60における電流を示す。 FIG. 9 is a diagram showing the operation of the voltage detection device 30 and the current flow when the relay switches SN1, SP1, SN2, and SP2 are turned off. In FIG. 9, the current in the second voltage dividing circuit 60 is shown by the alternate long and short dash line.
 図9に示すように、入力端子S1には、端子間電圧が第1の分圧比により分圧された分圧電圧DS1が入力される。入力端子V1には、端子間電圧が第2の分圧比により分圧された分圧電圧DV1が入力される。 As shown in FIG. 9, a voltage divider voltage DS1 in which the voltage between the terminals is divided by the first voltage divider ratio is input to the input terminal S1. The voltage dividing voltage DV1 in which the voltage between the terminals is divided by the second voltage dividing ratio is input to the input terminal V1.
 一方、前提により組電池10からシステム21,22への通電は遮断されているため、上述した理由と同様の理由で、入力端子S3,V3,S4,V4には、端子間電圧が第7の分圧比により分圧された分圧電圧DS3minが入力される。また、入力端子S6,V6には、端子間電圧が第8の分圧比により分圧された分圧電圧DS6minが入力される。そして、各分圧電圧の大小関係は、DS1<DV1<DS3min<DS6minとなっている。 On the other hand, since the energization from the assembled battery 10 to the systems 21 and 22 is cut off by the premise, the voltage between the terminals S3, V3, S4 and V4 has a seventh voltage for the same reason as described above. The voltage dividing voltage DS3min divided by the voltage dividing ratio is input. Further, the voltage dividing voltage DS6min in which the voltage between the terminals is divided by the eighth voltage dividing ratio is input to the input terminals S6 and V6. The magnitude relationship of each voltage dividing voltage is DS1 <DV1 <DS3min <DS6min.
 これにより、入力端子S1→入力端子V1→入力端子S3,V3,S4,V4→入力端子S6,V6の順番で段階的に入力される分圧電圧が高くなる。すなわち、電位順に従って入力信号が入力される。このため、ダイオードD11,D13,D16,D51,D53,D56等を介して電流が回り込むことを防止できる。したがって、監視IC50は、端子間電圧を精度よく検出することができる。 As a result, the voltage dividing voltage that is input stepwise in the order of input terminal S1 → input terminal V1 → input terminal S3, V3, S4, V4 → input terminal S6, V6 increases. That is, the input signal is input according to the potential order. Therefore, it is possible to prevent the current from wrapping around through the diodes D11, D13, D16, D51, D53, D56 and the like. Therefore, the monitoring IC 50 can accurately detect the voltage between terminals.
 以上のように、電圧検出装置30が作用するため、監視IC50は、端子間電圧及び印加電圧を精度よく検出することができる。 As described above, since the voltage detection device 30 operates, the monitoring IC 50 can accurately detect the voltage between terminals and the applied voltage.
 ところで、監視IC50には、耐圧が定められている。具体的には、各入力チャネルCH1~CH6の間で、所定以上の電位差が生じると、半導体スイッチSW51~SW56等が故障する。各入力チャネルCH1~CH6の耐圧は、半導体スイッチSW51~SW56等、各入力チャネルCH1~CH6の間に設けられる回路素子の耐圧などにより予め定めされている。 By the way, the monitoring IC 50 has a withstand voltage. Specifically, when a potential difference of a predetermined value or more occurs between the input channels CH1 to CH6, the semiconductor switches SW51 to SW56 and the like fail. The withstand voltage of each input channel CH1 to CH6 is predetermined by the withstand voltage of a circuit element provided between each input channel CH1 to CH6 such as semiconductor switches SW51 to SW56.
 このため、各入力チャネルCH1~CH6の耐圧の範囲内となるように(大きな電位差が生じないように)、第1分圧回路40及び第2分圧回路60は、各入力端子S1~S6,V1~V6に対してそれぞれ適切な入力信号(分圧電圧)を入力する必要がある。しかしながら、図10の比較例に示すような電圧検出装置30では、リレースイッチSN1,SP1,SN2,SP2のオンオフの状態によっては、電位差が拡大し、耐圧の範囲を超えてしまう場合がある。 Therefore, the first voltage dividing circuit 40 and the second voltage dividing circuit 60 are set to the input terminals S1 to S6 so as to be within the withstand voltage range of each input channel CH1 to CH6 (so that a large potential difference does not occur). It is necessary to input an appropriate input signal (voltage dividing voltage) for each of V1 to V6. However, in the voltage detection device 30 as shown in the comparative example of FIG. 10, the potential difference may increase and exceed the withstand voltage range depending on the on / off state of the relay switches SN1, SP1, SN2, SP2.
 なお、図10の比較例に示す電圧検出装置30は、電位安定化回路80が存在しないこと、及びシステム22に入力チャネルCH5が対応付けられ、分圧電圧DS6,DV6が入力端子S5,V5に入力されることを除いて、図1の電圧検出装置30と同様の構成を有している。図10の比較例では、システム22に入力チャネルCH5が対応付けられていることにより、システム22に対応付けられた入力チャネルCH5と、システム21に対応付けられた入力チャネルCH3との間には、入力チャネルCH4のみが存在することとなる。 In the voltage detection device 30 shown in the comparative example of FIG. 10, the potential stabilization circuit 80 does not exist, the input channel CH5 is associated with the system 22, and the voltage dividing voltages DS6 and DV6 are connected to the input terminals S5 and V5. It has the same configuration as the voltage detection device 30 of FIG. 1 except that it is input. In the comparative example of FIG. 10, since the input channel CH5 is associated with the system 22, the input channel CH5 associated with the system 22 and the input channel CH3 associated with the system 21 are separated from each other. Only the input channel CH4 will be present.
 耐圧の範囲を超えてしまう状況について詳しく説明する。例えば、比較例に示す電圧検出装置30では、リレースイッチSN1,SP1,SN2,SP2がオンされた場合、各分圧電圧は、図11(a)に示すようになる。図11において横軸は、組電池10の端子間電圧の大きさであり、縦軸が入力信号の電位(監視IC入力電圧)である。この場合、第1分圧回路40における分圧比を適切に設定することにより、電位順において1つ違いとなる入力信号の電位差をそれぞれ耐圧の範囲内とすることができる。 Explain in detail the situation where the pressure resistance range is exceeded. For example, in the voltage detection device 30 shown in the comparative example, when the relay switches SN1, SP1, SN2, and SP2 are turned on, each voltage dividing voltage is as shown in FIG. 11A. In FIG. 11, the horizontal axis is the magnitude of the voltage between terminals of the assembled battery 10, and the vertical axis is the potential of the input signal (monitoring IC input voltage). In this case, by appropriately setting the voltage dividing ratio in the first voltage dividing circuit 40, the potential differences of the input signals that differ by one in the potential order can be set within the range of withstand voltage.
 具体的には、第1分圧回路40における分圧比を適切に設定することにより、電位差DV6-DS6、電位差DS6-DV3、電位差DV3-DS3、電位差DS3-DV1、電位差DV1-DS1を、それぞれ耐圧の範囲内とすることができる。 Specifically, by appropriately setting the voltage dividing ratio in the first voltage dividing circuit 40, the withstand voltage of the potential difference DV6-DS6, the potential difference DS6-DV3, the potential difference DV3-DS3, the potential difference DS3-DV1, and the potential difference DV1-DS1 are respectively. Can be within the range of.
 また、リレースイッチSN2,SP2がオフされ、リレースイッチSN1,SP1がオンされた場合、各分圧電圧は、図11(b)に示すようになる。この場合において入力端子V5,S5に入力される入力信号は、分圧電圧DS6minとなるが、電位差DS6min-DV3は、電位差DS6-DV3に比較して、差が小さくなるため、同様に、耐圧の範囲内とすることができる。 Further, when the relay switches SN2 and SP2 are turned off and the relay switches SN1 and SP1 are turned on, each voltage dividing voltage is as shown in FIG. 11 (b). In this case, the input signal input to the input terminals V5 and S5 has a voltage dividing voltage of DS6min, but the potential difference DS6min-DV3 has a smaller difference than the potential difference DS6-DV3. Can be within range.
 一方、リレースイッチSN1,SP1がオフされ、リレースイッチSN2,SP2がオンされた場合、各分圧電圧は、図11(c)に示すようになる。この場合において入力端子V3,S3に入力される入力信号は、分圧電圧DS3minとなる。このため、入力チャネルCH4にかかる電位差が、電位差DS6-DV3から、電位差DS6-DS3minとなり、電位差が大きくなる。 On the other hand, when the relay switches SN1 and SP1 are turned off and the relay switches SN2 and SP2 are turned on, each voltage dividing voltage is as shown in FIG. 11 (c). In this case, the input signal input to the input terminals V3 and S3 has a voltage dividing voltage of DS3min. Therefore, the potential difference applied to the input channel CH4 changes from the potential difference DS6-DV3 to the potential difference DS6-DS3min, and the potential difference becomes large.
 同様に、リレースイッチSN1,SP1,SN2,SP2が全てオフされた場合、各分圧電圧は、図11(d)に示すようになる。この場合において入力端子V3,S3に入力される入力信号は、分圧電圧DS3minとなり、入力端子V5,S5に入力される入力信号は、分圧電圧DS6minとなる。このため、入力チャネルCH4にかかる電位差が、電位差DS6-DV3から、電位差DS6min-DS3minとなり、電位差が大きくなる。 Similarly, when all the relay switches SN1, SP1, SN2, and SP2 are turned off, each voltage dividing voltage is as shown in FIG. 11 (d). In this case, the input signal input to the input terminals V3 and S3 has a voltage dividing voltage DS3min, and the input signal input to the input terminals V5 and S5 has a voltage dividing voltage DS6min. Therefore, the potential difference applied to the input channel CH4 changes from the potential difference DS6-DV3 to the potential difference DS6min-DS3min, and the potential difference becomes large.
 以上のように、リレースイッチSN1,SP1がオフされた場合、入力信号の電位差が拡大し、組電池10の端子間電圧の大きさによっては、監視IC50の耐圧を越えてしまう虞がある。 As described above, when the relay switches SN1 and SP1 are turned off, the potential difference of the input signal increases, and depending on the magnitude of the voltage between the terminals of the assembled battery 10, the withstand voltage of the monitoring IC 50 may be exceeded.
 これを回避するための第1の方法として、第1分圧回路40及び第2分圧回路60の各抵抗をすべて大きくし、監視IC50への印加される各分圧電圧そのものを小さくして、電位差を小さくすることが考えられる。しかしながら、この方法では、電圧検出のダイナミックレンジが小さくなって誤差の影響が大きくなり、検出精度が悪化するという問題がある。 As a first method for avoiding this, the resistances of the first voltage dividing circuit 40 and the second voltage dividing circuit 60 are all increased, and the voltage dividing voltage itself applied to the monitoring IC 50 is decreased. It is conceivable to reduce the potential difference. However, this method has a problem that the dynamic range of voltage detection becomes small, the influence of an error becomes large, and the detection accuracy deteriorates.
 また、第2の方法として、図12に示すように、入力端子S5と入力端子V3との間にツェナーダイオードD14を設けて、所定値以上の電位差が生じた場合には、破線で示すように、入力端子S5から入力端子V3へ電流を流すことにより、電位差を抑制する方法が考えられる。しかしながら、この方法では、入力チャネルCH5から入力チャネルCH3への回り込み電流が発生することを許容し、システム22の印加電圧の検出精度が悪化することとなる。 Further, as a second method, as shown in FIG. 12, a Zener diode D14 is provided between the input terminal S5 and the input terminal V3, and when a potential difference of a predetermined value or more occurs, it is shown by a broken line. , A method of suppressing the potential difference by passing a current from the input terminal S5 to the input terminal V3 can be considered. However, in this method, a wraparound current from the input channel CH5 to the input channel CH3 is allowed to be generated, and the detection accuracy of the applied voltage of the system 22 is deteriorated.
 また、第3の方法として、回路構成は変えずに、図13に示すように、分圧比を調整し、電位差DS6-DS6min、電位差DS6min-DV3、電位差DS3-DS3min、電位差DS3min-DV1の各電位差を限りなく小さくすることが考えられる。この場合、図13(b)に示すように、リレースイッチSN1,SP1がオフされて、電位差DS6-DV3から、電位差DS6-DS3min(又は電位差DS6min-DS3min)となっても、電位差を大きくしないようにすることができる。 Further, as a third method, as shown in FIG. 13, the voltage division ratio is adjusted without changing the circuit configuration, and each potential difference of the potential difference DS6-DS6min, the potential difference DS6min-DV3, the potential difference DS3-DS3min, and the potential difference DS3min-DV1. It is conceivable to make it as small as possible. In this case, as shown in FIG. 13B, even if the relay switches SN1 and SP1 are turned off and the potential difference DS6-DV3 becomes the potential difference DS6-DS3min (or the potential difference DS6min-DS3min), the potential difference is not increased. Can be.
 しかしながら、電位差DS6-DS6min、電位差DS6min-DV3、電位差DS3-DS3min、電位差DS3min-DV1の各電位差を限りなく小さくするため、回路公差の影響により、DV1<DS3min<DS3やDV3<DS6min<DS6という電位順を維持することが困難となっている。 However, in order to reduce the potential differences of the potential difference DS6-DS6min, the potential difference DS6min-DV3, the potential difference DS3-DS3min, and the potential difference DS3min-DV1 as much as possible, the potentials of DV1 <DS3min <DS3 and DV3 <DS6min <DS6 are affected by the circuit tolerance. It is difficult to maintain the order.
 そこで、本実施形態では、図1に示すように、第1の工夫として、システム21に対応付けられている入力チャネルCH3の入力端子V3と、システム22に対応付けられている入力チャネルCH6の入力端子S6との間に、第1分圧回路40からの入力信号が入力されない複数の入力チャネルCH4,CH5を読み捨てチャネル(耐圧確保用チャネル)として設けている。すなわち、電位差が大きくなる入力端子の間に、複数の入力チャネルを設定し、介在する回路素子数を増やすことによって、単純に耐圧の範囲を大きくしている。つまり、電圧検出のためには用いられず、大きな電位差に対する耐圧を確保するための入力チャネルが設けられている。 Therefore, in the present embodiment, as shown in FIG. 1, as a first device, the input terminal V3 of the input channel CH3 associated with the system 21 and the input of the input channel CH6 associated with the system 22 A plurality of input channels CH4 and CH5 from which the input signal from the first voltage dividing circuit 40 is not input are provided between the terminal S6 and the input channels CH4 and CH5 as read-abandoned channels (channels for ensuring withstand voltage). That is, the range of withstand voltage is simply increased by setting a plurality of input channels between the input terminals where the potential difference becomes large and increasing the number of intervening circuit elements. That is, it is not used for voltage detection, and is provided with an input channel for ensuring withstand voltage against a large potential difference.
 しかしながら、第1の工夫だけでは、次のような問題が生じる場合がある。すなわち、各入力チャネルCH4,CH5におけるインピーダンスや抵抗など、回路素子の特性の違い(偏り)により、各入力チャネルCH4,CH5に均等の電位差が生じるとは限らないという問題がある。つまり、入力端子V3と入力端子S6間における電位差が入力チャネルCH4,CH5の間における総耐圧の範囲内となっても、各入力チャネルCH4,CH5のそれぞれの耐圧の範囲内となるように電位差が均等に生じるとは限らなかった。すなわち、入力チャネルCH4に印加される電位差と、入力チャネルCH5に印加される電位差が大きく異なり、一方の入力チャネルの耐圧を超えてしまう場合があった。 However, the following problems may occur with the first device alone. That is, there is a problem that a uniform potential difference does not always occur in each input channel CH4 and CH5 due to a difference (bias) in the characteristics of circuit elements such as impedance and resistance in each input channel CH4 and CH5. That is, even if the potential difference between the input terminal V3 and the input terminal S6 is within the range of the total withstand voltage between the input channels CH4 and CH5, the potential difference is within the range of the withstand voltage of each of the input channels CH4 and CH5. It did not always occur evenly. That is, the potential difference applied to the input channel CH4 and the potential difference applied to the input channel CH5 are significantly different, and may exceed the withstand voltage of one of the input channels.
 そこで、本実施形態では、図1に示すように第2の工夫として、電位安定化回路80を設けている。この電位安定化回路80は、読み捨てチャネルとなる入力チャネルCH5の入力端子S5に対して、入力端子V3に入力される入力信号の電位と、入力端子S6に入力される入力信号の電位との間の電位となる信号を入力信号として出力するものである。その際、電位安定化回路80は、入力端子S5と入力端子S6との間における電位差、及び入力端子S5と入力端子V3との間における電位差が、それぞれ監視IC50の耐圧の範囲内となるように、入力端子S5に所定の入力信号を出力する。 Therefore, in the present embodiment, as shown in FIG. 1, a potential stabilization circuit 80 is provided as a second device. The potential stabilization circuit 80 is between the potential of the input signal input to the input terminal V3 and the potential of the input signal input to the input terminal S6 with respect to the input terminal S5 of the input channel CH5 which is the read-off channel. The signal that becomes the potential of is output as an input signal. At that time, in the potential stabilization circuit 80, the potential difference between the input terminal S5 and the input terminal S6 and the potential difference between the input terminal S5 and the input terminal V3 are within the withstand voltage range of the monitoring IC 50, respectively. , Outputs a predetermined input signal to the input terminal S5.
 詳しく説明すると、第2分圧回路60は、抵抗R41,R55,R51により端子間電圧を分圧して、抵抗R41と抵抗R55との間に分圧電圧DS6_2を生成する。分圧電圧DS6_2は、入力端子S6に入力される分圧電圧DS6と同程度の電圧となるように、第2分圧回路60の分圧比が設定されている。つまり、第1分圧回路40における第5の分圧比と同じ分圧比で端子間電圧を分圧して、分圧電圧DS6_2を生成する。 More specifically, the second voltage divider circuit 60 divides the voltage between terminals by the resistors R41, R55, and R51, and generates a voltage divider voltage DS6_2 between the resistors R41 and R55. The voltage divider ratio of the second voltage divider circuit 60 is set so that the voltage divider voltage DS6_2 has a voltage similar to that of the voltage divider voltage DS6 input to the input terminal S6. That is, the voltage between the terminals is divided at the same voltage dividing ratio as the fifth voltage dividing ratio in the first voltage dividing circuit 40 to generate the divided voltage DS6_2.
 そして、前述したように、電位安定化回路80は、抵抗R53,R54の直列接続体であり、その一端は、抵抗R41,R55の間の接続点に接続されている。電位安定化回路80は、その一端から分圧電圧DS6_2が印加(入力)されることとなる。 And, as described above, the potential stabilization circuit 80 is a series connection body of the resistances R53 and R54, and one end thereof is connected to the connection point between the resistances R41 and R55. The voltage divider voltage DS6_2 is applied (input) to the potential stabilization circuit 80 from one end thereof.
 一方、電位安定化回路80の他端は、第1分圧回路40の抵抗R11と抵抗R21との間の接続点P14に接続されている。つまり、電位安定化回路80の他端は、入力端子V3に接続されているに等しい。このため、システム21へ通電されている場合、電位安定化回路80の他端には、分圧電圧DV3が印加されることとなる。したがって、電位安定化回路80は、システム21へ通電されている場合、分圧電圧DS6_2と分圧電圧DV3との間の電圧を、入力端子S5に印加することとなる。このとき、入力端子S5に入力される入力信号の電位は、分圧電圧DS6_2と、分圧電圧DV3と、抵抗R53,R54により設定されることとなる。 On the other hand, the other end of the potential stabilization circuit 80 is connected to the connection point P14 between the resistance R11 and the resistance R21 of the first voltage dividing circuit 40. That is, the other end of the potential stabilization circuit 80 is equivalent to being connected to the input terminal V3. Therefore, when the system 21 is energized, the voltage dividing voltage DV3 is applied to the other end of the potential stabilization circuit 80. Therefore, when the system 21 is energized, the potential stabilizing circuit 80 applies a voltage between the voltage dividing voltage DS6_2 and the voltage dividing voltage DV3 to the input terminal S5. At this time, the potential of the input signal input to the input terminal S5 is set by the voltage dividing voltage DS6_2, the voltage dividing voltage DV3, and the resistors R53 and R54.
 また、システム21への通電が遮断されている場合、電位安定化回路80の他端は、抵抗R21を介して分圧電圧DS3minが入力される。したがって、電位安定化回路80は、システム21への通電が遮断されている場合、分圧電圧DS6_2と分圧電圧DS3minとの間の電圧を、入力端子S5に印加することとなる。なお、システム21への通電が遮断されている場合、分圧電圧DS3minは、入力端子V3に入力される入力信号でもある。このとき、入力端子S5に入力される入力信号の電位は、分圧電圧DS6_2と、分圧電圧DS3minと、抵抗R21,R53,R54により設定されることとなる。 Further, when the energization to the system 21 is cut off, the voltage dividing voltage DS3min is input to the other end of the potential stabilization circuit 80 via the resistor R21. Therefore, the potential stabilization circuit 80 applies a voltage between the voltage dividing voltage DS6_2 and the voltage dividing voltage DS3min to the input terminal S5 when the energization to the system 21 is cut off. When the energization to the system 21 is cut off, the voltage dividing voltage DS3min is also an input signal input to the input terminal V3. At this time, the potential of the input signal input to the input terminal S5 is set by the voltage dividing voltage DS6_2, the voltage dividing voltage DS3min, and the resistors R21, R53, and R54.
 そして、電位安定化回路80の抵抗R53,R54は、入力端子S5と入力端子S6との間における電位差が、入力端子S5と入力端子S6との間における耐圧の範囲内となり、かつ、入力端子S5と入力端子V3との間における電位差が、入力端子S5と入力端子V3との間における耐圧の範囲内となるように、設定されている。つまり、電位安定化回路80の抵抗R53,R54は、各電位差が、入力チャネルCH5における耐圧の範囲内となり、かつ、入力チャネルCH4における耐圧の範囲内となるように、設定されている。 In the resistors R53 and R54 of the potential stabilization circuit 80, the potential difference between the input terminal S5 and the input terminal S6 is within the withstand voltage range between the input terminal S5 and the input terminal S6, and the input terminal S5 The potential difference between the input terminal V3 and the input terminal V3 is set to be within the range of the withstand voltage between the input terminal S5 and the input terminal V3. That is, the resistances R53 and R54 of the potential stabilization circuit 80 are set so that each potential difference is within the range of the withstand voltage of the input channel CH5 and within the range of the withstand voltage of the input channel CH4.
 これにより、電位安定化回路80は、入力端子S5と入力端子S6との間における電位差、及び入力端子S5と入力端子V3との間における電位差が、それぞれ監視IC50の耐圧の範囲内となるような電圧を生成し、入力信号として入力端子S5に出力することとなる。以下、システム21への通電時に、電位安定化回路80から入力端子S5に入力される電圧を、電圧DS5_1と示し、システム21への通電遮断時に、電位安定化回路80から入力端子S5に入力される電圧を、電圧DS5_2と示す。 As a result, in the potential stabilization circuit 80, the potential difference between the input terminal S5 and the input terminal S6 and the potential difference between the input terminal S5 and the input terminal V3 are within the withstand voltage range of the monitoring IC 50, respectively. A voltage is generated and output to the input terminal S5 as an input signal. Hereinafter, the voltage input from the potential stabilizing circuit 80 to the input terminal S5 when the power to the system 21 is energized is referred to as a voltage DS5_1, and is input to the input terminal S5 from the potential stabilizing circuit 80 when the energization to the system 21 is cut off. The voltage is referred to as voltage DS5_2.
 次に、このように電位安定化回路80を設けたことによる作用について説明する。図14(a)は、リレースイッチSN1,SP1,SN2,SP2が全てオンされた状態から時点T1において、リレースイッチSN1,SP1がオフされた場合における各入力信号の電位(監視IC入力電圧)の時間遷移を示す図である。図14(b)は、図14(a)における電位差の時間遷移を示す図である。 Next, the operation of providing the potential stabilization circuit 80 in this way will be described. FIG. 14A shows the potential (monitoring IC input voltage) of each input signal when the relay switches SN1 and SP1 are turned off at the time point T1 from the state where the relay switches SN1, SP1, SN2 and SP2 are all turned on. It is a figure which shows the time transition. FIG. 14 (b) is a diagram showing the time transition of the potential difference in FIG. 14 (a).
 図14(a)に示すように、リレースイッチSN1,SP1,SN2,SP2が全てオンされている場合、入力端子S1には、分圧電圧DS1が入力され、入力端子V1,S2,V2には、分圧電圧DV1が入力される。入力端子S3には、分圧電圧DS3が入力され、入力端子V3,S4,V4には、分圧電圧DV3が入力される。また、入力端子S5,V5には、電圧DS5_1が入力される。入力端子S6には、分圧電圧DS6が入力され、入力端子V6には、分圧電圧DV6が入力される。 As shown in FIG. 14A, when all the relay switches SN1, SP1, SN2 and SP2 are turned on, the voltage dividing voltage DS1 is input to the input terminal S1 and the voltage dividing voltage DS1 is input to the input terminals V1, S2 and V2. , The voltage divider voltage DV1 is input. The voltage dividing voltage DS3 is input to the input terminal S3, and the voltage dividing voltage DV3 is input to the input terminals V3, S4, and V4. Further, the voltage DS5_1 is input to the input terminals S5 and V5. The voltage dividing voltage DS6 is input to the input terminal S6, and the voltage dividing voltage DV6 is input to the input terminal V6.
 そして、各入力信号の大小関係は、DS1<DV1<DS3<DV3<DS5_1<DS6<DV6となっている。これにより、電位順に応じた順番で入力信号が入力端子に入力されることとなる。また、図14(b)に示すように、電位差DV6-DS6、電位差DS6-DS5_1、電位差DS5_1-DV3、電位差DV3-DS3、電位差DS3-DV1、電位差DV1-DS1もそれぞれ耐圧の範囲内となっている。 The magnitude relationship of each input signal is DS1 <DV1 <DS3 <DV3 <DS5_1 <DS6 <DV6. As a result, the input signals are input to the input terminals in the order corresponding to the potential order. Further, as shown in FIG. 14B, the potential difference DV6-DS6, the potential difference DS6-DS5_1, the potential difference DS5_1-DV3, the potential difference DV3-DS3, the potential difference DS3-DV1, and the potential difference DV1-DS1 are also within the withstand voltage range. There is.
 図14(a)において、時点T1を経過し、リレースイッチSN1,SP1がオフされると、入力端子S3,V3,S4,V4の入力信号は、分圧電圧DS3minとなる。また、入力端子S5,V5の入力信号は、電圧DS5_2となる。 In FIG. 14A, when the time point T1 has passed and the relay switches SN1 and SP1 are turned off, the input signals of the input terminals S3, V3, S4 and V4 become the voltage dividing voltage DS3min. Further, the input signals of the input terminals S5 and V5 have a voltage DS5_2.
 この場合において、各入力信号の大小関係は、DS1<DV1<DS3min<DS5_2<DS6<DV6となっている。これにより、電位順に応じた順番で入力信号が入力端子に入力されることとなる。また、図14(b)に示すように、電位差DV6-DS6、電位差DS6-DS5_2、電位差DS5_2-DS3min、電位差DS3min-DV1、電位差DV1-DS1もそれぞれ耐圧の範囲内となる。 In this case, the magnitude relationship of each input signal is DS1 <DV1 <DS3min <DS5_1 <DS6 <DV6. As a result, the input signals are input to the input terminals in the order corresponding to the potential order. Further, as shown in FIG. 14B, the potential difference DV6-DS6, the potential difference DS6-DS5_2, the potential difference DS5_2-DS3min, the potential difference DS3min-DV1, and the potential difference DV1-DS1 are also within the withstand voltage range.
 特に、入力端子V3に入力される入力信号は、分圧電圧DV3から分圧電圧DS3minに低下することとなるが、それに合わせて、電位安定化回路80から入力端子S5に入力される入力信号の電位も電圧DS5_1から電圧DS5_2に低下する。このため、電位差が拡大することを抑制することができる。 In particular, the input signal input to the input terminal V3 drops from the voltage dividing voltage DV3 to the voltage dividing voltage DS3min, and in accordance with this, the input signal input from the potential stabilizing circuit 80 to the input terminal S5 The potential also drops from the voltage DS5_1 to the voltage DS5_1. Therefore, it is possible to suppress the expansion of the potential difference.
 次に、図15に基づいて説明する。図15(a)は、リレースイッチSN1,SP1,SN2,SP2が全てオンされた状態から時点T2において、リレースイッチSN2,SP2がオフされた場合における各入力信号の電位(監視IC入力電圧)の時間遷移を示す図である。図15(b)は、図15(a)における電位差の時間遷移を示す図である。なお、図15(a)に示すように、時点T2までは、図14と同じであるため、説明を省略する。 Next, a description will be given based on FIG. FIG. 15A shows the potential (monitoring IC input voltage) of each input signal when the relay switches SN2 and SP2 are turned off at the time point T2 from the state where the relay switches SN1, SP1, SN2 and SP2 are all turned on. It is a figure which shows the time transition. FIG. 15B is a diagram showing the time transition of the potential difference in FIG. 15A. As shown in FIG. 15A, it is the same as in FIG. 14 up to the time point T2, so the description thereof will be omitted.
 図15(a)において、時点T2を経過し、リレースイッチSN2,SP2がオフされると、入力端子S6,V6の入力信号は、分圧電圧DS6minとなる。この場合において、各入力信号の大小関係は、DS1<DV1<DS3<DV3<DS5_1<DS6minとなっている。これにより、電位順に応じた順番で入力信号が入力端子に入力されることとなる。また、図15(b)に示すように、電位差DV6-DS6、電位差DS6min-DS5_1、電位差DS5_1-DV3、電位差DV3-DS3、電位差DS3-DV1、電位差DV1-DS1もそれぞれ耐圧の範囲内となる。 In FIG. 15A, when the time point T2 has passed and the relay switches SN2 and SP2 are turned off, the input signal of the input terminals S6 and V6 becomes the voltage dividing voltage DS6min. In this case, the magnitude relationship of each input signal is DS1 <DV1 <DS3 <DV3 <DS5-1 <DS6min. As a result, the input signals are input to the input terminals in the order corresponding to the potential order. Further, as shown in FIG. 15B, the potential difference DV6-DS6, the potential difference DS6min-DS5_1, the potential difference DS5_1-DV3, the potential difference DV3-DS3, the potential difference DS3-DV1, and the potential difference DV1-DS1 are also within the withstand voltage range.
 次に、図16に基づいて説明する。図16(a)は、リレースイッチSN1,SP1,SN2,SP2が全てオンされた状態から時点T3において、リレースイッチSN1,SP1,SN2,SP2が全てオフされた場合における各入力信号の電位(監視IC入力電圧)の時間遷移を示す図である。図16(b)は、図16(a)における電位差の時間遷移を示す図である。なお、図16(a)に示すように、時点T3までは、図14と同じであるため、説明を省略する。 Next, a description will be given based on FIG. FIG. 16A shows the potential (monitoring) of each input signal when the relay switches SN1, SP1, SN2, and SP2 are all turned off at the time point T3 from the state where the relay switches SN1, SP1, SN2, and SP2 are all turned on. It is a figure which shows the time transition of (IC input voltage). 16 (b) is a diagram showing the time transition of the potential difference in FIG. 16 (a). As shown in FIG. 16A, up to the time point T3 is the same as in FIG. 14, so the description thereof will be omitted.
 図16(a)において、時点T3を経過し、リレースイッチSN1,SP1,SN2,SP2が全てオフされると、入力端子S3,V3,S4,V4の入力信号は、分圧電圧DS3minとなる。また、入力端子S5,V5の入力信号は、電圧DS5_2となる。また、入力端子S6,V6の入力信号は、分圧電圧DS6minとなる。 In FIG. 16A, when the time point T3 has passed and all the relay switches SN1, SP1, SN2, and SP2 are turned off, the input signal of the input terminals S3, V3, S4, and V4 becomes the voltage dividing voltage DS3min. Further, the input signals of the input terminals S5 and V5 have a voltage DS5_2. Further, the input signals of the input terminals S6 and V6 have a voltage dividing voltage of DS6min.
 この場合において、各入力信号の大小関係は、DS1<DV1<DS3min<DS5_2<DS6minとなっている。これにより、電位順に応じた順番で入力信号が入力端子に入力されることとなる。また、図16(b)に示すように、電位差DS6min-DS5_2、電位差DS5_2-DS3min、電位差DS3min-DV1、電位差DV1-DS1もそれぞれ耐圧の範囲内となる。 In this case, the magnitude relationship of each input signal is DS1 <DV1 <DS3min <DS5_2 <DS6min. As a result, the input signals are input to the input terminals in the order corresponding to the potential order. Further, as shown in FIG. 16B, the potential difference DS6min-DS5_2, the potential difference DS5_2-DS3min, the potential difference DS3min-DV1, and the potential difference DV1-DS1 are also within the withstand voltage range.
 特に、入力端子V3に入力される入力信号は、分圧電圧DV3から分圧電圧DS3minに低下することとなるが、それに合わせて、電位安定化回路80から入力端子S5に入力される入力信号の電位も電圧DS5_1から電圧DS5_2に低下する。このため、電位差が拡大することを抑制することができる。 In particular, the input signal input to the input terminal V3 drops from the voltage dividing voltage DV3 to the voltage dividing voltage DS3min, and in accordance with this, the input signal input from the potential stabilizing circuit 80 to the input terminal S5 The potential also drops from the voltage DS5_1 to the voltage DS5_1. Therefore, it is possible to suppress the expansion of the potential difference.
 第1実施形態の構成によれば、次のような効果を得ることができる。 According to the configuration of the first embodiment, the following effects can be obtained.
 第1分圧回路40は、入力端子S1,V1,S3,V3,S6,V6ごとに、電位順に応じて段階的に異なる分圧比(第1の分圧比~第6の分圧比)で端子間電圧又はシステム21,22の印加電圧を分圧して、出力している。つまり、第1分圧回路40における各分圧比は、各入力端子S1~S6,V1~V6に入力される入力信号が電位順に応じた順番となるように、出力先となる入力端子S1,V1,S3,V3,S6,V6ごとに、段階的に異なる値が設定されている。これにより、端子間電圧、及び各システム21,22の印加電圧がほぼ同じであっても第1分圧回路40によって、各入力端子S1~S6,V1~V6に入力される分圧電圧を段階的に高くすることが可能となる。したがって、回り込み電流の発生を防止し、精度よく電圧を検出することができる。 In the first voltage dividing circuit 40, the input terminals S1, V1, S3, V3, S6, and V6 have different voltage dividing ratios (first voltage dividing ratio to sixth voltage dividing ratio) stepwise according to the potential order. The voltage or the applied voltage of the systems 21 and 22 is divided and output. That is, each voltage dividing ratio in the first voltage dividing circuit 40 is the input terminals S1 and V1 that are output destinations so that the input signals input to the input terminals S1 to S6 and V1 to V6 are in the order corresponding to the potential order. , S3, V3, S6, V6 are set to different values in stages. As a result, even if the voltage between the terminals and the applied voltage of each system 21 and 22 are almost the same, the voltage dividing voltage input to each input terminal S1 to S6 and V1 to V6 by the first voltage dividing circuit 40 is stepped. It is possible to increase the voltage. Therefore, it is possible to prevent the generation of wraparound current and detect the voltage with high accuracy.
 また、入力チャネルCH3の入力端子V3と、入力チャネルCH6の入力端子S6との間には、第1分圧回路40からの入力信号が入力されない複数の入力チャネルCH4,CH5である読み捨てチャネル(耐圧確保用チャネル)が設けられている。これにより、入力端子V3と入力端子S6との間において、読み捨てチャネルが設けられていない場合、又は読み捨てチャネルが1つだけの場合に比較して、耐圧の範囲を大きくすることができる。 Further, between the input terminal V3 of the input channel CH3 and the input terminal S6 of the input channel CH6, a read-off channel (withstand voltage) which is a plurality of input channels CH4 and CH5 in which the input signal from the first voltage dividing circuit 40 is not input. (Securing channel) is provided. As a result, the range of withstand voltage can be increased as compared with the case where the read / discard channel is not provided between the input terminal V3 and the input terminal S6, or when there is only one read / discard channel.
 なお、入力端子V3は、システム21に対応付けられた入力チャネルCH3の高電位側入力端子である。また、入力端子S6は、電位順において入力端子V3よりも高電位の入力信号が入力される入力端子であって、システム22に対応付けられた入力チャネルの低電位側入力端子である。 The input terminal V3 is a high potential side input terminal of the input channel CH3 associated with the system 21. Further, the input terminal S6 is an input terminal to which an input signal having a higher potential than the input terminal V3 is input in the order of potential, and is a low potential side input terminal of the input channel associated with the system 22.
 また、電位安定化回路80は、入力端子V3に入力される入力信号の電位と、入力端子S6に入力される入力信号の電位との間の電位となる信号を入力信号として入力端子S5に出力する。なお、入力端子S5は、読み捨てチャネルに属する入力端子のうちの1つである。 Further, the potential stabilization circuit 80 outputs a signal that is a potential between the potential of the input signal input to the input terminal V3 and the potential of the input signal input to the input terminal S6 to the input terminal S5 as an input signal. do. The input terminal S5 is one of the input terminals belonging to the read-through channel.
 入力端子V3の入力信号の電位と、入力端子S6の入力信号の電位との間の電位となる信号を入力端子S5に入力することにより、読み捨てチャネルである入力チャネルCH4,CH5において、インピーダンス等に偏りがあったとしても、各入力チャネルCH4,CH5における電位差を耐圧の範囲内となるように制御することが可能となる。 By inputting a signal that is a potential between the potential of the input signal of the input terminal V3 and the potential of the input signal of the input terminal S6 to the input terminal S5, the input channels CH4 and CH5, which are the read-off channels, are used for impedance and the like. Even if there is a bias, it is possible to control the potential difference in each of the input channels CH4 and CH5 so as to be within the range of withstand voltage.
 第2分圧回路60は、システム21,22への通電が遮断された場合、通電が遮断されたシステム21,22に対応付けられている入力チャネルCH3,CH6に分圧電圧DS3min,DS6minを出力する。より詳しくは、第2分圧回路60は、システム21,22への通電が遮断された場合、通電が遮断されたシステム21,22に対応付けられている入力チャネルCH3,CH6の入力端子S3,S6に分圧電圧DS3min,DS6minを入力する。これに伴い、入力端子S3,S6からダイオードD53、D56等を介して入力端子V3,S4,V4,V6に分圧電圧DS3min,DS6minがそれぞれ入力される。 When the energization of the systems 21 and 22 is cut off, the second voltage divider circuit 60 outputs the divided voltage DS3min and DS6min to the input channels CH3 and CH6 associated with the systems 21 and 22 whose energization is cut off. do. More specifically, in the second voltage dividing circuit 60, when the energization to the systems 21 and 22 is cut off, the input terminals S3 and CH6 of the input channels CH3 and CH6 associated with the systems 21 and 22 whose energization is cut off Input the voltage dividing voltages DS3min and DS6min to S6. Along with this, the voltage dividing voltages DS3min and DS6min are input from the input terminals S3 and S6 to the input terminals V3, S4, V4 and V6 via the diodes D53 and D56, respectively.
 そして、第2分圧回路60は、システム21,22ごとに、段階的に異なる分圧比(第7の分圧比及び第8の分圧比)で端子間電圧を分圧する。より詳しくは、第2分圧回路60における分圧比(第7の分圧比及び第8の分圧比)は、出力先となる入力チャネルCH3,CH6の入力端子S3,S6に入力される入力信号(DS3min,DS6min)が電位順に応じた順番となるような分圧比であって、当該入力端子S3,S6への入力信号(DS3,DS6)を生成するために第1分圧回路40にて設定された分圧比(第3の分圧比、第5の分圧比)以下の分圧比である。 Then, the second voltage divider circuit 60 divides the voltage between the terminals at stepwise different voltage divider ratios (seventh voltage divider ratio and eighth voltage divider ratio) for each of the systems 21 and 22. More specifically, the voltage dividing ratio (seventh voltage dividing ratio and the eighth voltage dividing ratio) in the second voltage dividing circuit 60 is an input signal input to the input terminals S3 and S6 of the input channels CH3 and CH6 to be output destinations (7th voltage dividing ratio and the eighth voltage dividing ratio). The voltage dividing ratio is such that DS3min, DS6min) are in the order corresponding to the order of potential, and is set by the first voltage dividing circuit 40 in order to generate an input signal (DS3, DS6) to the input terminals S3 and S6. It is a voltage dividing ratio equal to or less than the voltage dividing ratio (third voltage dividing ratio, fifth voltage dividing ratio).
 具体的には、第2分圧回路60による第7の分圧比は、第1分圧回路40による第3の分圧比に比較して小さく、かつ、第3の分圧比よりも1段階小さい第2の分圧比に比較して大きく設定されている。これにより、分圧電圧の大小関係は、DV1<DS3min<DS3となる。このため、図6に示すように、リレースイッチSN1,SP1がオフとなったときのみ、入力端子S3,V3に分圧電圧DS3minが入力される。また、この場合に、入力端子V1に入力される分圧電圧DV1よりも、入力端子S3に入力される分圧電圧DS3minのほうが大きくなるため、入力端子V1から入力端子S3への回り込み電流が発生することを防止できる。また、DS3min<DS6となり、入力端子S3,V3に入力される分圧電圧DS3minよりも、入力端子S6に入力される分圧電圧DS6のほうが大きくなるため、入力端子S3,V3から入力端子S6への回り込み電流が発生することを防止できる。つまり、入力チャネルCH3から入力チャネルCH6への回り込み電流が発生することを防止できる。 Specifically, the seventh voltage dividing ratio by the second voltage dividing circuit 60 is smaller than the third voltage dividing ratio by the first voltage dividing circuit 40, and is one step smaller than the third voltage dividing ratio. It is set larger than the voltage dividing ratio of 2. As a result, the magnitude relationship of the voltage dividing voltage becomes DV1 <DS3min <DS3. Therefore, as shown in FIG. 6, the voltage dividing voltage DS3min is input to the input terminals S3 and V3 only when the relay switches SN1 and SP1 are turned off. Further, in this case, since the voltage dividing voltage DS3min input to the input terminal S3 is larger than the voltage dividing voltage DV1 input to the input terminal V1, a wraparound current from the input terminal V1 to the input terminal S3 is generated. Can be prevented from doing so. Further, since DS3min <DS6 and the voltage dividing voltage DS6 input to the input terminal S6 is larger than the voltage dividing voltage DS3min input to the input terminals S3 and V3, the voltage divided voltage DS6 input from the input terminals S3 and V3 to the input terminal S6. It is possible to prevent the generation of wraparound current. That is, it is possible to prevent the wraparound current from the input channel CH3 to the input channel CH6 from being generated.
 同様に、図7に示すように、リレースイッチSN2,SP2がオフとなった場合にも、回り込み電流を防止できる。また、DS3min<DS6minであるため、図9に示すように、リレースイッチSN1,SP1,SN2,SP2が全てオフの場合であっても、入力チャネルCH1から入力チャネルCH3,CH6へ電流が回り込むことを防止することができる。 Similarly, as shown in FIG. 7, the wraparound current can be prevented even when the relay switches SN2 and SP2 are turned off. Further, since DS3min <DS6min, as shown in FIG. 9, even when all the relay switches SN1, SP1, SN2, and SP2 are off, the current wraps around from the input channel CH1 to the input channels CH3 and CH6. Can be prevented.
 そして、電位安定化回路80は、システム21への通電が遮断された場合、監視IC50への入力信号の電位を低下させる。つまり、電位安定化回路80は、電圧DS5_1から電圧DS5_2に低下させる。これにより、第2分圧回路60によって、入力端子V3に入力される入力信号が分圧電圧DV3から分圧電圧DS3minに低下したとしても、それに追随させて電位差が拡大することを抑制できる。 Then, the potential stabilization circuit 80 lowers the potential of the input signal to the monitoring IC 50 when the energization to the system 21 is cut off. That is, the potential stabilization circuit 80 lowers the voltage DS5_1 from the voltage DS5_1. As a result, even if the input signal input to the input terminal V3 is reduced from the voltage dividing voltage DV3 to the voltage dividing voltage DS3min by the second voltage dividing circuit 60, it is possible to suppress the expansion of the potential difference by following the voltage dividing circuit 60.
 ところで、図17の破線で示す抵抗素子のように、電位安定化回路80の一端を、入力チャネルCH6の入力端子S6に接続し、他端を、入力端子V3に接続した場合、二点鎖線に示すように、入力チャネルCH6から電位安定化回路80を介して回り込み電流が発生し、印加電圧の検出精度が低下することとなる。 By the way, like the resistance element shown by the broken line in FIG. 17, when one end of the potential stabilization circuit 80 is connected to the input terminal S6 of the input channel CH6 and the other end is connected to the input terminal V3, it becomes a two-dot chain wire. As shown, a wraparound current is generated from the input channel CH6 via the potential stabilization circuit 80, and the detection accuracy of the applied voltage is lowered.
 そこで、電位安定化回路80の一端を、第2分圧回路60に接続し、他端を、入力端子V3に接続した。また、抵抗R53,R54の接続点P17を、監視IC50の入力端子S5に接続した。つまり、電位安定化回路80と、入力チャネルCH6との間で、電流経路が独立している。このため、入力チャネルCH6から、電位安定化回路80を介して、回り込み電流が発生することを防止することができる。したがって、印加電圧の検出精度を向上させることができる。 Therefore, one end of the potential stabilization circuit 80 was connected to the second voltage dividing circuit 60, and the other end was connected to the input terminal V3. Further, the connection point P17 of the resistors R53 and R54 was connected to the input terminal S5 of the monitoring IC50. That is, the current path is independent between the potential stabilization circuit 80 and the input channel CH6. Therefore, it is possible to prevent a wraparound current from being generated from the input channel CH6 via the potential stabilization circuit 80. Therefore, the detection accuracy of the applied voltage can be improved.
 第2分圧回路60は、システム22に対応付けられた入力チャネルCH6を出力先とする入力信号、すなわち分圧電圧DS6を生成するための分圧比にて、組電池10の端子間電圧を分圧して生成した分圧電圧DS6_2を電位安定化回路80の一端に対して出力している。そして、電位安定化回路80は、分圧電圧DS6_2と、分圧電圧DV3(又は分圧電圧DS3min)に基づいて、電圧DS5_1及び電圧DS5_2を生成する。このため、第1分圧回路40から分圧電圧DS6を入力する必要がなくなり、入力チャネルCH6からの回り込み電流が発生することを防止できる。 The second voltage divider circuit 60 divides the voltage between the terminals of the assembled battery 10 by the voltage divider ratio for generating the input signal having the input channel CH6 associated with the system 22 as the output destination, that is, the voltage divider voltage DS6. The voltage dividing voltage DS6_2 generated by pressure is output to one end of the potential stabilizing circuit 80. Then, the potential stabilization circuit 80 generates the voltage DS5_1 and the voltage DS5_2 based on the voltage divider DS6_2 and the voltage divider DV3 (or the voltage divider DS3min). Therefore, it is not necessary to input the voltage dividing voltage DS6 from the first voltage dividing circuit 40, and it is possible to prevent the wraparound current from the input channel CH6 from being generated.
 電位安定化回路80からの入力信号が入力される入力端子S5は、読み捨てチャネルである入力チャネルCH4,CH5のうち、電位順にておいてシステム21に対応付けられた入力チャネルCH3の側よりもシステム22に対応付けられた入力チャネルCH6の側に設定されている入力チャネルCH5の入力端子である。つまり、入力端子S5は、入力端子V3よりも入力端子S6の近くに設定されている。 The input terminal S5 to which the input signal from the potential stabilization circuit 80 is input is a system rather than the side of the input channel CH3 associated with the system 21 in the order of potential among the input channels CH4 and CH5 which are read-down channels. It is an input terminal of the input channel CH5 set on the side of the input channel CH6 associated with 22. That is, the input terminal S5 is set closer to the input terminal S6 than the input terminal V3.
 これにより、入力端子V3の側に近い入力端子S4,V4に電位安定化回路80からの入力信号が入力される場合に比較して、入力チャネル1つ分、耐圧の範囲を大きくすることができる。特に、入力端子V3に入力される入力信号が、分圧電圧DV3から分圧電圧DS3minに低下し、電位差が拡大する場合があるため、耐圧を確保するために、有効な対策となりうる。 As a result, the withstand voltage range can be increased by one input channel as compared with the case where the input signal from the potential stabilization circuit 80 is input to the input terminals S4 and V4 near the input terminal V3. .. In particular, since the input signal input to the input terminal V3 may drop from the voltage dividing voltage DV3 to the voltage dividing voltage DS3min and the potential difference may increase, it can be an effective measure for ensuring the withstand voltage.
 第1分圧回路40における第3の分圧比及び第5の分圧比は、電圧降下量を考慮して設定されている。具体的には、最大降下量N1max<分圧電圧DS3となるように第3の分圧比が設定されており、最大降下量N2max<分圧電圧DS6となるように第5の分圧比が設定されている。これにより、電圧降下が生じたとしても、負電圧が生じず、各入力端子S1,V1,S3,V3,S6,V6に入力される分圧電圧を段階的に高くすることが可能となり、回り込み電流を防止できる。 The third voltage dividing ratio and the fifth voltage dividing ratio in the first voltage dividing circuit 40 are set in consideration of the amount of voltage drop. Specifically, the third voltage dividing ratio is set so that the maximum drop amount N1max <voltage dividing voltage DS3, and the fifth voltage dividing ratio is set so that the maximum drop amount N2max <voltage dividing voltage DS6. ing. As a result, even if a voltage drop occurs, no negative voltage is generated, and the voltage dividing voltage input to each input terminal S1, V1, S3, V3, S6, V6 can be gradually increased, resulting in wraparound. The current can be prevented.
 また、第1分圧回路40は、端子間電圧を2つの異なる分圧比で分圧し、監視IC50は、組電池10に対して設定された入力チャネルCH1を介して、2つの分圧電圧DS1,DV1を入力し、それらの分圧電圧DS1,DV1の差分に基づいて、端子間電圧を検出する。このため、印加電圧と、端子間電圧を検出する回路を共通化することができる。また、図8に示すように、スイッチSW0のオフ固着を検出することができる。 Further, the first voltage divider circuit 40 divides the voltage between terminals by two different voltage divider ratios, and the monitoring IC 50 has two voltage dividers DS1 via the input channel CH1 set for the assembled battery 10. DV1 is input, and the voltage between terminals is detected based on the difference between the divided voltages DS1 and DV1. Therefore, the applied voltage and the circuit for detecting the voltage between terminals can be shared. Further, as shown in FIG. 8, it is possible to detect the off sticking of the switch SW0.
 監視IC50には、分圧電圧が入力されるため、耐圧を小さくすることができ、小型化できる。また、監視IC50の内部において、差動増幅回路52及びAD変換器53を一体化し、演算装置54は、誤差を補正しているため、検出精度を向上させることができる。また、組電池の電池セルの電圧検出に利用される監視IC50をそのまま採用することができるため、開発コストを抑えることができる。 Since the voltage dividing voltage is input to the monitoring IC 50, the withstand voltage can be reduced and the size can be reduced. Further, since the differential amplifier circuit 52 and the AD converter 53 are integrated inside the monitoring IC 50 and the arithmetic unit 54 corrects the error, the detection accuracy can be improved. Further, since the monitoring IC50 used for voltage detection of the battery cell of the assembled battery can be adopted as it is, the development cost can be suppressed.
 第1の分圧比~第6の分圧比は、段階的に設定されている。また、第7の分圧比は、第2の分圧比と第3の分圧比との間に設定されており、第8の分圧比は、第4の分圧比と第5の分圧比との間に設定されている。また、電位安定化回路80から出力される電圧DS5_1は、分圧電圧DV3と分圧電圧DS6_2との間の電位(電圧)である。また、電位安定化回路80から出力される電圧DS5_2は、分圧電圧DS3minと分圧電圧DS6_2との間の電位(電圧)である。また、分圧電圧DS6_2は、分圧電圧DS6とほぼ同じ電位である。 The first division pressure ratio to the sixth division pressure ratio are set in stages. Further, the seventh pressure division ratio is set between the second pressure division ratio and the third pressure division ratio, and the eighth pressure division ratio is between the fourth pressure division ratio and the fifth pressure division ratio. Is set to. Further, the voltage DS5_1 output from the potential stabilization circuit 80 is a potential (voltage) between the voltage divider voltage DV3 and the voltage divider voltage DS6_1. Further, the voltage DS5_2 output from the potential stabilizing circuit 80 is a potential (voltage) between the voltage dividing voltage DS3min and the voltage dividing voltage DS6_2. Further, the voltage dividing voltage DS6_2 has substantially the same potential as the voltage dividing voltage DS6.
 これにより、図14~図16に示すように、リレースイッチSN1,SP1,SN2,SP2がどのようにオンオフされても、各入力端子に入力される入力信号は段階的に電位が高くなる。このため、回り込み電流が発生することを確実に防止し、検出精度の悪化を抑制できる。 As a result, as shown in FIGS. 14 to 16, the potential of the input signal input to each input terminal gradually increases regardless of how the relay switches SN1, SP1, SN2, and SP2 are turned on and off. Therefore, it is possible to surely prevent the generation of wraparound current and suppress the deterioration of the detection accuracy.
 (実施形態の変形例)
 上記実施形態の構成を、次のように変更してもよい。以下、上記実施形態で説明した構成に対する相違部分について説明する。
(Modified example of the embodiment)
The configuration of the above embodiment may be changed as follows. Hereinafter, the differences from the configurations described in the above embodiment will be described.
 ・上記実施形態において、監視IC50は、組電池10の端子間電圧を検出しなくてもよい。 -In the above embodiment, the monitoring IC 50 does not have to detect the voltage between the terminals of the assembled battery 10.
 ・上記実施形態において、読み捨てチャネルの数を2つとしたが、3つ以上としてもよい。 -In the above embodiment, the number of discarded channels is two, but it may be three or more.
 ・上記実施形態において、印加電圧を検出するシステムの数を任意に変更してもよい。この場合、システム21,22と同様に、第1のシステムに対応付けられた入力チャネルの高電位側入力端子と、電位順において当該高電位側入力端子よりも高電位の入力信号が入力される入力端子であって、第2のシステムに対応付けられた入力チャネルの低電位側入力端子との間には、複数の読み捨てチャネルが設定されることが望ましい。 -In the above embodiment, the number of systems that detect the applied voltage may be arbitrarily changed. In this case, similarly to the systems 21 and 22, the high potential side input terminal of the input channel associated with the first system and the input signal having a higher potential than the high potential side input terminal in the potential order are input. It is desirable that a plurality of read-through channels are set between the input terminal and the low potential side input terminal of the input channel associated with the second system.
 そして、電位安定化回路80は、読み捨てチャネルに属する入力端子のうちいずれかに、前記高電位側入力端子に入力される入力信号の電位と、前記低電位側入力端子に入力される入力信号の電位との間の電位となる入力信号を出力することが望ましい。 Then, the potential stabilization circuit 80 receives the potential of the input signal input to the high potential side input terminal and the input signal input to the low potential side input terminal to any of the input terminals belonging to the read-off channel. It is desirable to output an input signal that becomes a potential between the potential.
 ・上記実施形態において、入力チャネルCH1において、組電池10の端子間電圧を検出したが、端子間電圧を検出させる入力チャネルを変更してもよい。 -In the above embodiment, the voltage between the terminals of the assembled battery 10 is detected in the input channel CH1, but the input channel for detecting the voltage between the terminals may be changed.
 ・第2分圧回路60は、抵抗R41,R55,R51を利用して、分圧電圧DS6_2を生成したが、抵抗R42,R52と平行に分圧回路(抵抗の直列接続体)を設けて、それにより分圧電圧DS6_2を生成してもよい。 The second voltage divider circuit 60 generated the voltage divider voltage DS6_2 using the resistors R41, R55, and R51, but a voltage divider circuit (series connection of resistors) was provided in parallel with the resistors R42 and R52. Thereby, the voltage dividing voltage DS6_2 may be generated.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described in accordance with the examples, it is understood that the present disclosure is not limited to the examples and structures. The present disclosure also includes various variations and variations within a uniform range. In addition, various combinations and forms, as well as other combinations and forms that include only one element, more, or less, are within the scope and scope of the present disclosure.

Claims (6)

  1.  蓄電池(10)と、前記蓄電池に対して並列に接続され、前記蓄電池の端子間電圧がそれぞれ印加される複数のシステム(21,22)と、を備えた電源システムに対して適用される電圧検出装置(30)において、
     前記各システムの印加電圧を分圧する第1分圧回路(40)と、
     複数の入力チャネル(CH1~CH6)が設けられており、前記入力チャネルを介して前記第1分圧回路から入力された2つの入力信号の電位差に基づいて、前記各システムに印加された印加電圧をそれぞれ検出する検出回路(50)と、
     前記検出回路に対して信号を出力する電位安定化回路(80)と、を備え、
     前記各入力チャネルは、それぞれ1対の入力端子(S1~S6,V1~V6)を有し、前記各入力端子には、入力信号の電位順が予め設定されており、
     前記第1分圧回路は、前記システムの印加電圧を2つの異なる分圧比で分圧し、分圧電圧を前記入力信号として当該システムに対応付けられた前記入力チャネルの入力端子にそれぞれ出力するように構成されており、
     前記第1分圧回路における各分圧比は、前記各入力端子に入力される入力信号が前記電位順に応じた順番となるように、出力先となる前記各入力端子ごとに、段階的に異なる値が設定されており、
     前記複数のシステムのうち第1のシステム(21)に対応付けられた入力チャネルの高電位側入力端子(V3)と、前記電位順において前記高電位側入力端子よりも高電位の入力信号が入力される入力端子であって、前記複数のシステムのうち第2のシステム(22)に対応付けられた入力チャネルの低電位側入力端子(S6)との間には、前記第1分圧回路からの入力信号が入力されない複数の入力チャネル(CH4,CH5)である耐圧確保用チャネルが設けられており、
     前記電位安定化回路は、前記耐圧確保用チャネルが有するいずれかの入力端子に対して、前記第1のシステムに対応付けられた前記高電位側入力端子に入力される入力信号の電位と、前記第2のシステムに対応付けられた前記低電位側入力端子に入力される入力信号の電位との間の電位となる信号を前記入力信号として出力する電圧検出装置。
    Voltage detection applied to a power supply system comprising a storage battery (10) and a plurality of systems (21, 22) connected in parallel to the storage battery and to which a voltage between the terminals of the storage battery is applied, respectively. In the device (30)
    The first voltage divider circuit (40) that divides the applied voltage of each system and
    A plurality of input channels (CH1 to CH6) are provided, and the applied voltage applied to each of the systems is based on the potential difference between the two input signals input from the first voltage divider circuit via the input channels. The detection circuit (50) that detects each of
    A potential stabilizing circuit (80) that outputs a signal to the detection circuit is provided.
    Each of the input channels has a pair of input terminals (S1 to S6, V1 to V6), and the potential order of the input signals is preset in each of the input terminals.
    The first voltage divider circuit divides the applied voltage of the system by two different voltage dividing ratios, and outputs the voltage divided voltage as the input signal to the input terminal of the input channel associated with the system. It is composed and
    Each voltage dividing ratio in the first voltage dividing circuit is a value that is stepwise different for each of the input terminals to be output destinations so that the input signals input to the input terminals are in the order corresponding to the potential order. Is set,
    Among the plurality of systems, the high potential side input terminal (V3) of the input channel associated with the first system (21) and the input signal having a higher potential than the high potential side input terminal in the potential order are input. From the first voltage dividing circuit, the input terminal is connected to the low potential side input terminal (S6) of the input channel associated with the second system (22) among the plurality of systems. A withstand voltage securing channel, which is a plurality of input channels (CH4, CH5) in which the input signal of the above is not input, is provided.
    The potential stabilization circuit has the potential of an input signal input to the high potential side input terminal associated with the first system with respect to any input terminal of the withstand voltage securing channel, and the potential of the input signal. A voltage detection device that outputs a signal having a potential between the potential of the input signal input to the low potential side input terminal associated with the second system as the input signal.
  2.  前記蓄電池との通電が遮断された前記システムに対応付けられている前記入力チャネルに対して、前記蓄電池の前記端子間電圧を分圧した分圧電圧を前記入力信号として出力する第2分圧回路(60)を備え、
     前記第2分圧回路における分圧比は、出力先となる前記入力チャネルの前記低電位側入力端子に入力される入力信号が前記電位順に応じた順番となるような分圧比であって、当該低電位側入力端子への入力信号を生成するために前記第1分圧回路にて設定された分圧比以下の分圧比である請求項1に記載の電圧検出装置。
    A second voltage divider circuit that outputs a voltage divider obtained by dividing the voltage between the terminals of the storage battery as an input signal to the input channel associated with the system in which the energization with the storage battery is cut off. With (60)
    The voltage division ratio in the second voltage division circuit is a voltage division ratio such that the input signals input to the low potential side input terminal of the input channel to be output are in the order corresponding to the potential order, and the low voltage ratio. The voltage detection device according to claim 1, wherein the voltage division ratio is equal to or less than the voltage division ratio set in the first voltage division circuit for generating an input signal to the potential side input terminal.
  3.  前記電位安定化回路は、前記第1のシステムへの通電が遮断された場合、前記検出回路への入力信号の電位を低下させる請求項2に記載の電圧検出装置。 The voltage detection device according to claim 2, wherein the potential stabilizing circuit reduces the potential of an input signal to the detection circuit when the energization of the first system is cut off.
  4.  前記電位安定化回路は、複数の抵抗素子が直列に接続されて構成されており、
     その一端は、前記第2分圧回路に接続され、
     前記複数の抵抗素子間の接続点は、前記検出回路の入力端子に接続され、
     他端は、前記第1のシステムの高電位側入力端子に接続されている請求項3に記載の電圧検出装置。
    The potential stabilization circuit is configured by connecting a plurality of resistance elements in series.
    One end thereof is connected to the second voltage divider circuit.
    The connection point between the plurality of resistance elements is connected to the input terminal of the detection circuit.
    The voltage detection device according to claim 3, wherein the other end is connected to the high potential side input terminal of the first system.
  5.  前記第2分圧回路は、前記第2のシステムに対応付けられた前記入力チャネルの低電位側入力端子を出力先とする入力信号を生成するための分圧比にて、前記蓄電池の端子間電圧を分圧して、前記電位安定化回路の一端に対して出力する請求項4に記載の電圧検出装置。 The second voltage divider circuit is a voltage divider ratio for generating an input signal whose output destination is the low potential side input terminal of the input channel associated with the second system, and is a voltage between terminals of the storage battery. The voltage detection device according to claim 4, wherein the voltage is divided and output to one end of the potential stabilization circuit.
  6.  前記電位安定化回路からの入力信号が入力される入力端子は、前記耐圧確保用チャネルに属する入力端子のうち、前記電位順において前記第1のシステムに対応付けられた入力チャネルの入力端子の側よりも前記第2のシステムに対応付けられた入力チャネルの入力端子の側に設定されている請求項2~5のうちいずれか1項に記載の電圧検出装置。 The input terminal to which the input signal from the potential stabilization circuit is input is the side of the input terminal of the input channel associated with the first system in the potential order among the input terminals belonging to the withstand voltage securing channel. The voltage detection device according to any one of claims 2 to 5, which is set on the side of the input terminal of the input channel associated with the second system.
PCT/JP2021/024978 2020-07-28 2021-07-01 Voltage detection device WO2022024657A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112021004039.1T DE112021004039T5 (en) 2020-07-28 2021-07-01 voltage sensing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-127393 2020-07-28
JP2020127393A JP7310747B2 (en) 2020-07-28 2020-07-28 voltage detector

Publications (1)

Publication Number Publication Date
WO2022024657A1 true WO2022024657A1 (en) 2022-02-03

Family

ID=80037332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/024978 WO2022024657A1 (en) 2020-07-28 2021-07-01 Voltage detection device

Country Status (3)

Country Link
JP (1) JP7310747B2 (en)
DE (1) DE112021004039T5 (en)
WO (1) WO2022024657A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0847251A (en) * 1994-07-29 1996-02-16 Internatl Business Mach Corp <Ibm> Switching regulator,information processor and its control method
JP2000193694A (en) * 1998-10-20 2000-07-14 Denso Corp Voltage detecting device of battery set
JP2009207311A (en) * 2008-02-28 2009-09-10 Sanyo Electric Co Ltd Vehicular power supply unit
JP2010523966A (en) * 2007-04-03 2010-07-15 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Battery voltage monitoring system
WO2013094214A1 (en) * 2011-12-21 2013-06-27 トヨタ自動車株式会社 Monitor system and vehicle
US20130162259A1 (en) * 2011-12-21 2013-06-27 Analog Devices, Inc. Reference reuse in high voltage stack monitoring
WO2020241548A1 (en) * 2019-05-31 2020-12-03 株式会社Gsユアサ Voltage measurement circuit and power storage device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4649489B2 (en) 2008-03-27 2011-03-09 株式会社日立製作所 Total battery voltage detection circuit
JP5704085B2 (en) 2012-02-06 2015-04-22 株式会社デンソー Power control device
JP5783197B2 (en) 2013-03-04 2015-09-24 株式会社デンソー Voltage detection device for battery pack
JP2020127393A (en) 2019-02-12 2020-08-27 清水建設株式会社 Construction method for planting base

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0847251A (en) * 1994-07-29 1996-02-16 Internatl Business Mach Corp <Ibm> Switching regulator,information processor and its control method
JP2000193694A (en) * 1998-10-20 2000-07-14 Denso Corp Voltage detecting device of battery set
JP2010523966A (en) * 2007-04-03 2010-07-15 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Battery voltage monitoring system
JP2009207311A (en) * 2008-02-28 2009-09-10 Sanyo Electric Co Ltd Vehicular power supply unit
WO2013094214A1 (en) * 2011-12-21 2013-06-27 トヨタ自動車株式会社 Monitor system and vehicle
US20130162259A1 (en) * 2011-12-21 2013-06-27 Analog Devices, Inc. Reference reuse in high voltage stack monitoring
WO2020241548A1 (en) * 2019-05-31 2020-12-03 株式会社Gsユアサ Voltage measurement circuit and power storage device

Also Published As

Publication number Publication date
JP2022024673A (en) 2022-02-09
JP7310747B2 (en) 2023-07-19
DE112021004039T5 (en) 2023-05-17

Similar Documents

Publication Publication Date Title
US8487629B2 (en) Battery system, electric vehicle, and battery control apparatus
JP5353914B2 (en) Battery voltage monitoring device
JP4589888B2 (en) Battery voltage measurement circuit and battery ECU
US10215810B2 (en) Battery monitoring system
US20160329616A1 (en) Semiconductor circuit and semiconductor device
US9550423B2 (en) Interlock switching circuit for protecting an electrical on-board power supply
US11506718B2 (en) Battery monitoring device
WO2017199534A1 (en) Battery pack monitoring system
US9620967B2 (en) Autonomous battery balancing
WO2017203620A1 (en) Burst light receiver
CN111819750B (en) Control device, control method, and computer-readable storage medium
US10712426B2 (en) Fault tolerant digital input receiver circuit
US10778015B2 (en) Voltage detection apparatus
WO2022024657A1 (en) Voltage detection device
US20100268492A1 (en) Battery cell voltage measurement device
US11079439B2 (en) Protection circuit for battery monitoring device, and battery monitoring device
WO2021200033A1 (en) Voltage detection device
JP4583219B2 (en) Power supply for vehicle
JP6919628B2 (en) Current detection circuit and power supply
JP6948572B2 (en) In-vehicle voltage detection circuit
JP5989171B1 (en) CURRENT DETECTION CIRCUIT AND ELECTRIC CONTROL DEVICE FOR VEHICLE HAVING THE CIRCUIT
JP2017225049A (en) Semiconductor physical quantity sensor device
US20230253964A1 (en) Circuits for inverters and pull-up/pull-down circuits
CN112881787B (en) Low-input-impedance high-voltage circuit for voltage test and implementation method
WO2024009468A1 (en) Disconnection detection device and battery monitoring device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21851103

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21851103

Country of ref document: EP

Kind code of ref document: A1