WO2022021726A1 - 一种基于pmu的电力系统状态估计性能评价方法 - Google Patents
一种基于pmu的电力系统状态估计性能评价方法 Download PDFInfo
- Publication number
- WO2022021726A1 WO2022021726A1 PCT/CN2020/134406 CN2020134406W WO2022021726A1 WO 2022021726 A1 WO2022021726 A1 WO 2022021726A1 CN 2020134406 W CN2020134406 W CN 2020134406W WO 2022021726 A1 WO2022021726 A1 WO 2022021726A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power system
- state estimation
- pmu
- performance evaluation
- value
- Prior art date
Links
- 238000011156 evaluation Methods 0.000 title claims abstract description 26
- 238000005259 measurement Methods 0.000 claims abstract description 45
- 238000013145 classification model Methods 0.000 claims abstract description 23
- 238000004088 simulation Methods 0.000 claims abstract description 18
- 238000000034 method Methods 0.000 claims abstract description 15
- 238000012549 training Methods 0.000 claims abstract description 15
- 238000010606 normalization Methods 0.000 claims abstract description 4
- 238000004364 calculation method Methods 0.000 claims description 15
- 239000011159 matrix material Substances 0.000 claims description 5
- 238000003062 neural network model Methods 0.000 claims description 3
- 238000012545 processing Methods 0.000 claims description 2
- 238000005516 engineering process Methods 0.000 abstract description 3
- 230000006870 function Effects 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 2
- 238000010801 machine learning Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
- G06Q10/063—Operations research, analysis or management
- G06Q10/0639—Performance analysis of employees; Performance analysis of enterprise or organisation operations
- G06Q10/06393—Score-carding, benchmarking or key performance indicator [KPI] analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/06—Energy or water supply
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/381—Dispersed generators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2203/00—Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
- H02J2203/20—Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2300/00—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
- H02J2300/20—The dispersed energy generation being of renewable origin
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/70—Smart grids as climate change mitigation technology in the energy generation sector
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S10/00—Systems supporting electrical power generation, transmission or distribution
- Y04S10/22—Flexible AC transmission systems [FACTS] or power factor or reactive power compensating or correcting units
Definitions
- the invention relates to a power system state estimation performance evaluation technology, in particular to a PMU-based power system state estimation performance evaluation method.
- the power system state estimation performance evaluation method is a key technology for power system operation and control. It can measure key information such as the accuracy of the state estimation result. An accurate and reasonable state estimation result can ensure the correct operation and control of the power system.
- the linear state estimation based on phasor measurement unit (PMU) can better reflect the current state of the system.
- PMU error is a key issue that affects the accuracy of linear state estimation. In practical research, it is usually considered that the PMU error obeys a Gaussian distribution.
- the main indicator for evaluating the performance of state estimation is the pass rate ⁇ , which is defined as:
- m is the measurement quantity
- ri is the measurement residual of the measurement point i
- ⁇ i is the threshold
- the purpose of the present invention is to provide a PMU-based power system state estimation performance evaluation method in order to overcome the above-mentioned defects in the prior art, which has high accuracy, simple and convenient operation, and saves manpower.
- a PMU-based power system state estimation performance evaluation method specifically:
- the measurement values S m of n 2 observation objects are actually measured by the n 2 PMUs of the power system, and the observation objects include one or more of voltage amplitude, voltage phase angle, current amplitude and current phase angle, Obtain the state estimation value S se of each S m through state estimation, input the n 2 groups of S m and S se correspondingly to the n 2 groups of trained classification models, and use the S m and S se given by the n 2 classification models to divide Standard, correspondingly obtain n 2 marked values ⁇ m , calculate the state estimation performance evaluation index ⁇ , and the calculation formula is:
- p mi and ⁇ mi are the ith classification accuracy p m and the ith label value ⁇ m respectively, and the calculation formula of p m is:
- n r and n f are the number of correct classifications and the number of incorrect classifications after the classification model is trained;
- E(X) is the expectation of X
- var(X) is the variance of X
- x j is the jth measurement error in X.
- K is the Gaussian kernel function
- h is the kernel density estimation window width
- x j is the jth observation data in X
- n 1 is the number of samples of X
- the present invention has the following beneficial effects:
- the present invention obtains the error characteristics of the PMU measurement data through the power system simulation platform, then superimposes the error characteristics on the true value of the observation object, theoretically calculates the measurement value of the observation object, and forms the training data of the classification model, and finally at a new time
- the object measurement values and corresponding state estimates of each node of the power system are obtained on the cross-section, and several groups of classification models are input and trained.
- the state estimation performance evaluation index ⁇ is calculated, and the topology analysis is carried out in combination with the power system simulation platform and machine learning training. It solves the problem of the unknowability of the real state of the power system, and the evaluation results are more objective and accurate. At the same time, it does not require a large number of on-site measured data of the power system, which is easy to operate, saves manpower and material resources, and reduces costs;
- FIG. 1 is a flow chart of the method of the present invention.
- a PMU-based power system state estimation performance evaluation method as shown in Figure 1, is as follows:
- each monitoring node is equipped with a PMU.
- the measurement error data set X of the observation object is obtained through the PMU of the power system simulation platform, and the data set is normalized and calculated.
- Probability Density Function of X Including the distribution characteristics of PMU measurement error, the true value S t of n 2 groups of observation objects is obtained through the power system simulation platform, and the true value S t of n 2 groups of observation objects is obtained by stacking S t and Theoretically obtain n 2 groups of S m , obtain the state estimated value S se of each S m through state estimation, and judge whether each group of S t , S m and S se satisfies the judgment formula, and if so, the corresponding mark value with a value of 1 is generated ⁇ m , otherwise ⁇ m with a value of 0 is generated, and the judgment formula is as follows:
- Si m , Si t and Si se are respectively S m , S t and S se of the i-th node;
- n 2 groups of S t , S m , S se and ⁇ m are used as training data to perform SVM training, and the training kernel function is a Gaussian kernel function, corresponding to n 2 A trained SVM model;
- n 2 PMUs of the power system actually measure the measured value S m of n 2 observation objects, and the observation objects are voltage amplitude and voltage phase angle, that is, S m includes the measured value of voltage amplitude and voltage
- the phase angle measurement value obtain the state estimated value S se of each S m through state estimation, input the n 2 groups of S m and S se correspondingly to the n 2 groups of trained classification models, and use the S given by the n 2 classification models.
- the division criteria of m and S se correspond to n 2 marked values ⁇ m , and the state estimation performance evaluation index ⁇ is calculated.
- the calculation formula is:
- p mi and ⁇ mi are the ith classification accuracy p m and the ith label value ⁇ m respectively, and the calculation formula of p m is:
- n r and n f are the number of correct classifications and the number of incorrect classifications after the classification model is trained;
- the calculation process of the state estimation is an optimization solution process based on the weighted least squares method, and the calculation formula is as follows:
- H is the measurement equation, establishing the relationship between S m and S t , w is the measurement error, W is the weight matrix, which is a diagonal sparse matrix, and the diagonal elements are the reciprocal of the corresponding measurement error variance.
- the acquisition process of the measurement error dataset X is:
- E(X) is the expectation of X
- var(X) is the variance of X
- x j is the jth measurement error in X.
- K is the Gaussian kernel function
- h is the kernel density estimation window width
- x j is the jth observation data in X
- n 1 is the number of samples of X
- ⁇ is the standard deviation of X
- R is the interquartile range of X
- N is the number of observations in X. If the value of h is too large, or decrease precision, if the value of h is too small, it will cause The fluctuation is large and discontinuous, and the error is large.
- This embodiment proposes a PMU-based power system state estimation performance evaluation method.
- the error characteristics of the PMU measurement data are obtained through the power system simulation platform, and then the error characteristics are superimposed on the true value of the observation object, and the measurement of the observation object is theoretically calculated. value, constitute the training data of the SVM model, and finally obtain the object measurement value and the corresponding state estimation value of each node of the power system on the new time section, and input and train several groups of SVM models, and finally calculate the state estimation performance evaluation index ⁇ , does not require a large amount of on-site measured data of the power system, combined with the power system simulation platform and machine learning training for topology analysis, the evaluation results are more objective and accurate.
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Human Resources & Organizations (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Economics (AREA)
- General Physics & Mathematics (AREA)
- Strategic Management (AREA)
- Development Economics (AREA)
- Tourism & Hospitality (AREA)
- Evolutionary Computation (AREA)
- Evolutionary Biology (AREA)
- Power Engineering (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Educational Administration (AREA)
- Artificial Intelligence (AREA)
- Entrepreneurship & Innovation (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Marketing (AREA)
- General Business, Economics & Management (AREA)
- General Engineering & Computer Science (AREA)
- Quality & Reliability (AREA)
- Operations Research (AREA)
- Game Theory and Decision Science (AREA)
- Public Health (AREA)
- Water Supply & Treatment (AREA)
- General Health & Medical Sciences (AREA)
- Primary Health Care (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Abstract
Description
Claims (10)
- 一种基于PMU的电力系统状态估计性能评价方法,其特征在于,具体为:通过电力系统的n 2个PMU实际测得n 2个观测对象测量值S m,通过状态估计获取各个S m的状态估计值S se,将n 2组S m和S se分别对应输入n 2组训练好的分类模型,对应得到n 2个标记值α m,计算状态估计性能评价指标λ,计算公式为:其中,p mi和α mi分别为第i个分类准确度p m和第i个标记值α m,所述的p m的计算公式为:其中,n r和n f分别为分类模型完成训练后的分类正确数量和分类错误数量;其中,所述的n 2组分类模型的训练过程为:通过电力系统仿真平台的PMU获取观测对象的测量误差数据集X,并对X进行归一化处理,并计算X的概率密度函数 通过电力系统仿真平台获取n 2组观测对象真值S t,通过叠加S t和 理论求得n 2组S m,通过状态估计获取各个S m的状态估计值S se,判断每组S t、S m和S se是否满足判断公式,若满足则对应生成值为1的标记值α m,否则生成值为0的α m,所述的判断公式如下:|Si m-Si t|>|Si se-Si t|其中Si m、Si t和Si se分别为第i组S m、第i组S t和第i组S se;利用n 2组S t、S m、S se和α m进行分类模型训练,对应获得n 2个分类模型。
- 根据权利要求3所述的一种基于PMU的电力系统状态估计性能评价方法,其特征在于,所述的K为高斯核函数。
- 根据权利要求1所述的一种基于PMU的电力系统状态估计性能评价方法,其特征在于,所述的观测对象包括电压幅值、电压相角、电流幅值和电流相角中的一种或多种。
- 根据权利要求1所述的一种基于PMU的电力系统状态估计性能评价方法,其特征在于,训练所述分类模型的核函数为高斯核函数。
- 根据权利要求1所述的一种基于PMU的电力系统状态估计性能评价方法,其特征在于,所述的测量误差数据集X的获取过程为:通过电力系统仿真平台的PMU测得观测对象观测值S m,通过电力系统仿真平台查询观测对象真值S t,通过计算S m和S t的差值求得测量误差,由若干组测量误构成X。
- 根据权利要求1所述的一种基于PMU的电力系统状态估计性能评价方法,其特征在于,所述的分类模型包括SVM模型、二叉树模型或神经网络模型。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2020327340A AU2020327340B2 (en) | 2020-07-29 | 2020-12-08 | Method for evaluating state estimation performance of power system based on PMU |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010746249.2 | 2020-07-29 | ||
CN202010746249.2A CN111900731B (zh) | 2020-07-29 | 2020-07-29 | 一种基于pmu的电力系统状态估计性能评价方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022021726A1 true WO2022021726A1 (zh) | 2022-02-03 |
Family
ID=73182638
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/134406 WO2022021726A1 (zh) | 2020-07-29 | 2020-12-08 | 一种基于pmu的电力系统状态估计性能评价方法 |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN111900731B (zh) |
AU (1) | AU2020327340B2 (zh) |
WO (1) | WO2022021726A1 (zh) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110705887A (zh) * | 2019-10-10 | 2020-01-17 | 国网湖北省电力有限公司计量中心 | 一种基于神经网络模型的低压台区运行状态综合评价方法 |
CN115379551A (zh) * | 2022-08-19 | 2022-11-22 | 合肥联信电源有限公司 | 一种应用于储能式应急电源的时钟校准方法 |
CN115480204A (zh) * | 2022-09-29 | 2022-12-16 | 武汉格蓝若智能技术有限公司 | 基于大数据推演的电流互感器运行误差在线评估优化方法 |
CN115859690A (zh) * | 2023-02-15 | 2023-03-28 | 西安热工研究院有限公司 | 一种设备电磁威胁的多等级qmu评估方法及系统 |
CN115906353A (zh) * | 2022-11-17 | 2023-04-04 | 国网上海市电力公司 | 一种基于节点评估的配电网pmu优化配置方法 |
CN116840765A (zh) * | 2023-08-31 | 2023-10-03 | 武汉格蓝若智能技术股份有限公司 | 一种基于多元时序分析的电压互感器误差状态评估方法 |
CN117039893A (zh) * | 2023-10-09 | 2023-11-10 | 国网天津市电力公司电力科学研究院 | 配电网状态确定方法、装置及电子设备 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111900731B (zh) * | 2020-07-29 | 2021-10-08 | 国网上海市电力公司 | 一种基于pmu的电力系统状态估计性能评价方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101615213A (zh) * | 2009-07-21 | 2009-12-30 | 清华大学 | 基于扩展不确定度的电力系统状态估计结果评价方法 |
CN108182257A (zh) * | 2017-12-29 | 2018-06-19 | 东北电力大学 | 一种基于区域密度统计方法优化的gsa不良数据检测与辨识方法 |
CN110490378A (zh) * | 2019-08-07 | 2019-11-22 | 中国南方电网有限责任公司 | 基于云scada大数据的电网状态估计精度的计算方法 |
CN110543720A (zh) * | 2019-09-03 | 2019-12-06 | 北京交通大学 | 基于sdae-elm伪量测模型的状态估计方法 |
CN110942109A (zh) * | 2019-12-17 | 2020-03-31 | 浙江大学 | 一种基于机器学习的pmu防御虚假数据注入攻击方法 |
US10635519B1 (en) * | 2017-11-30 | 2020-04-28 | Uptake Technologies, Inc. | Systems and methods for detecting and remedying software anomalies |
CN111221811A (zh) * | 2020-02-15 | 2020-06-02 | 光一科技股份有限公司 | 一种基于集抄系统的低压配电网络线路参数估计方法 |
CN111900731A (zh) * | 2020-07-29 | 2020-11-06 | 国网上海市电力公司 | 一种基于pmu的电力系统状态估计性能评价方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9217775B2 (en) * | 2010-06-07 | 2015-12-22 | Abb Research Ltd. | Systems and methods for characterizing fault clearing devices |
GB201314611D0 (en) * | 2013-08-15 | 2013-10-02 | Univ The Of Birmingham | Power system control |
CN103489009B (zh) * | 2013-09-17 | 2016-08-17 | 北方信息控制集团有限公司 | 基于自适应修正神经网络的模式识别方法 |
CN104866714A (zh) * | 2015-05-14 | 2015-08-26 | 同济大学 | 一种电力系统自适应核密度抗差状态估计方法 |
-
2020
- 2020-07-29 CN CN202010746249.2A patent/CN111900731B/zh active Active
- 2020-12-08 AU AU2020327340A patent/AU2020327340B2/en active Active
- 2020-12-08 WO PCT/CN2020/134406 patent/WO2022021726A1/zh active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101615213A (zh) * | 2009-07-21 | 2009-12-30 | 清华大学 | 基于扩展不确定度的电力系统状态估计结果评价方法 |
US10635519B1 (en) * | 2017-11-30 | 2020-04-28 | Uptake Technologies, Inc. | Systems and methods for detecting and remedying software anomalies |
CN108182257A (zh) * | 2017-12-29 | 2018-06-19 | 东北电力大学 | 一种基于区域密度统计方法优化的gsa不良数据检测与辨识方法 |
CN110490378A (zh) * | 2019-08-07 | 2019-11-22 | 中国南方电网有限责任公司 | 基于云scada大数据的电网状态估计精度的计算方法 |
CN110543720A (zh) * | 2019-09-03 | 2019-12-06 | 北京交通大学 | 基于sdae-elm伪量测模型的状态估计方法 |
CN110942109A (zh) * | 2019-12-17 | 2020-03-31 | 浙江大学 | 一种基于机器学习的pmu防御虚假数据注入攻击方法 |
CN111221811A (zh) * | 2020-02-15 | 2020-06-02 | 光一科技股份有限公司 | 一种基于集抄系统的低压配电网络线路参数估计方法 |
CN111900731A (zh) * | 2020-07-29 | 2020-11-06 | 国网上海市电力公司 | 一种基于pmu的电力系统状态估计性能评价方法 |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110705887A (zh) * | 2019-10-10 | 2020-01-17 | 国网湖北省电力有限公司计量中心 | 一种基于神经网络模型的低压台区运行状态综合评价方法 |
CN115379551A (zh) * | 2022-08-19 | 2022-11-22 | 合肥联信电源有限公司 | 一种应用于储能式应急电源的时钟校准方法 |
CN115379551B (zh) * | 2022-08-19 | 2024-05-17 | 合肥联信电源有限公司 | 一种应用于储能式应急电源的时钟校准方法 |
CN115480204A (zh) * | 2022-09-29 | 2022-12-16 | 武汉格蓝若智能技术有限公司 | 基于大数据推演的电流互感器运行误差在线评估优化方法 |
CN115906353A (zh) * | 2022-11-17 | 2023-04-04 | 国网上海市电力公司 | 一种基于节点评估的配电网pmu优化配置方法 |
CN115906353B (zh) * | 2022-11-17 | 2023-08-08 | 国网上海市电力公司 | 一种基于节点评估的配电网pmu优化配置方法 |
CN115859690A (zh) * | 2023-02-15 | 2023-03-28 | 西安热工研究院有限公司 | 一种设备电磁威胁的多等级qmu评估方法及系统 |
CN116840765A (zh) * | 2023-08-31 | 2023-10-03 | 武汉格蓝若智能技术股份有限公司 | 一种基于多元时序分析的电压互感器误差状态评估方法 |
CN116840765B (zh) * | 2023-08-31 | 2023-11-07 | 武汉格蓝若智能技术股份有限公司 | 一种基于多元时序分析的电压互感器误差状态评估方法 |
CN117039893A (zh) * | 2023-10-09 | 2023-11-10 | 国网天津市电力公司电力科学研究院 | 配电网状态确定方法、装置及电子设备 |
CN117039893B (zh) * | 2023-10-09 | 2024-01-26 | 国网天津市电力公司电力科学研究院 | 配电网状态确定方法、装置及电子设备 |
Also Published As
Publication number | Publication date |
---|---|
CN111900731B (zh) | 2021-10-08 |
AU2020327340A1 (en) | 2022-02-17 |
AU2020327340B2 (en) | 2022-03-24 |
CN111900731A (zh) | 2020-11-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022021726A1 (zh) | 一种基于pmu的电力系统状态估计性能评价方法 | |
CN109308571B (zh) | 配电线路线变关系检测方法 | |
CN110417011B (zh) | 一种基于互信息与迭代随机森林的在线动态安全评估方法 | |
CN113126019B (zh) | 一种智能电表误差远程估计方法、系统、终端和存储介质 | |
CN109088407B (zh) | 基于深度信念网络伪量测建模的配电网状态估计方法 | |
CN103245881A (zh) | 一种基于潮流分布特征的配电网故障分析方法及装置 | |
CN111628494B (zh) | 一种基于逻辑回归法的低压配电网拓扑识别方法及系统 | |
CN108336739A (zh) | 一种基于rbf神经网络的概率潮流在线计算方法 | |
Minli et al. | Research on the application of artificial neural networks in tender offer for construction projects | |
CN112149873A (zh) | 一种基于深度学习的低压台区线损合理区间预测方法 | |
CN109711435A (zh) | 一种基于遗传算法的支持向量机在线电压稳定性监测方法 | |
CN116148753A (zh) | 一种智能电能表运行误差监测系统 | |
CN113612237A (zh) | 一种在海上风电场中定位谐振诱发的次同步振荡源的方法 | |
CN116432123A (zh) | 一种基于cart决策树算法的电能表故障预警方法 | |
CN114662989A (zh) | 电力系统的暂态稳定自适应评估方法及装置 | |
CN110674984A (zh) | 一种基于Tri-Training-Lasso-BP网络的静态电压稳定裕度预测方法 | |
CN106372440B (zh) | 一种并行计算的配电网自适应抗差状态估计方法及装置 | |
CN104021315A (zh) | 基于bp神经网络的电厂厂用电率计算方法 | |
CN107204616B (zh) | 基于自适应稀疏伪谱法的电力系统随机状态估计方法 | |
CN116702629B (zh) | 一种具备可迁移能力的电力系统暂态稳定评估方法 | |
CN109684749B (zh) | 一种考虑运行特性的光伏电站等值建模方法 | |
CN106684854B (zh) | 一种基于节点等效的有源配电网电压越限风险分析方法 | |
CN109362049A (zh) | 基于混合信息加权一致的平方根容积滤波方法 | |
Jiang et al. | Discharge estimation based on machine learning | |
Miao et al. | A Transformer District Line Loss Calculation Method Based on Data Mining and Machine Learning |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2020327340 Country of ref document: AU Date of ref document: 20201208 Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20947622 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20947622 Country of ref document: EP Kind code of ref document: A1 |