[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022019422A1 - 차축이 지지하는 하중을 측정하는 차량용 하중 측정장치 및 그 방법 - Google Patents

차축이 지지하는 하중을 측정하는 차량용 하중 측정장치 및 그 방법 Download PDF

Info

Publication number
WO2022019422A1
WO2022019422A1 PCT/KR2021/001365 KR2021001365W WO2022019422A1 WO 2022019422 A1 WO2022019422 A1 WO 2022019422A1 KR 2021001365 W KR2021001365 W KR 2021001365W WO 2022019422 A1 WO2022019422 A1 WO 2022019422A1
Authority
WO
WIPO (PCT)
Prior art keywords
axle
load
measuring
adjacent
variable
Prior art date
Application number
PCT/KR2021/001365
Other languages
English (en)
French (fr)
Inventor
김창율
구광민
김성태
허필원
Original Assignee
주식회사 오토비젼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 오토비젼 filed Critical 주식회사 오토비젼
Publication of WO2022019422A1 publication Critical patent/WO2022019422A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G19/00Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups
    • G01G19/08Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for incorporation in vehicles
    • G01G19/10Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for incorporation in vehicles having fluid weight-sensitive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G19/00Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups
    • G01G19/02Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for weighing wheeled or rolling bodies, e.g. vehicles

Definitions

  • the present invention is an apparatus installed in a finished vehicle, and a device and method for measuring the load on the axle by measuring the amount of fine deformation when the axle between two points of the axle is tensioned while the axle of a freight vehicle with a variable axle is deformed by the load load. is about
  • variable shaft is a type of axle mainly used for medium-sized trucks. It is not a fixed axle to the chassis, but an axle that can be lowered and raised as needed. It is used as a method to solve the overload problem.
  • the variable shaft is lowered and raised by the operation of Lift Air Bellows and Load Air Bellows. Air bellows are also called 'air spring' or 'air bag'. When the lift air bellows expands to a predetermined air pressure, the variable shaft rises. Conversely, when the load air bellows expands, the variable shaft descends to divide and support the loaded load.
  • the lift air bellows 401 and the load air bellows 401 operate by a pneumatic circuit, and may be directly controlled by a driver or may be controlled automatically.
  • Measuring the load acting on the axle is necessary for various reasons, but it is also essential for controlling the variable axle, and various methods have been proposed.
  • the methods involve various vehicle components placed on the path through which the load of the load is transmitted to the ground.
  • the pressure between the leaf spring and the tire changes, the distance between the frame and the axle changes due to the deformation of the leaf spring, and the concentrated load and the spring and The load generated at the axle joint area changes, and the load load can be measured by measuring the change.
  • Korean Patent Application Laid-Open No. 10-2009-0073976 proposes a method of calculating a load by measuring the inclination of a suspension spring by a loaded load
  • Korean Patent Application Laid-Open No. 10-1999-0004089 discloses a chassis and a spring How to install a load cell in the connection part is presented.
  • the change due to the load load is not linear because a large amount of deformation can cause a lot of hysteresis between the load and the deformation amount.
  • the leaf spring also has a hysteresis phenomenon due to friction, and when there is a stopper, a large measurement error occurs because deformation no longer occurs under a load of a certain size or more.
  • the device for recognizing the deflection of the freight vehicle spring is generally large in size, so it is not easy to install it under the chassis, and it is difficult to guarantee durability because it is recognized by a mechanical method.
  • the method of directly installing the load cell on the spring also requires an expensive, large-capacity load cell, and it is difficult to guarantee durability against vibration and shock.
  • the axle or axle housing
  • the axle has the highest rigidity and the least amount of deformation, and is slightly bent in the order of micrometers ( ⁇ m). Therefore, the hysteresis phenomenon is very small in the characteristic curve between the load and the amount of deformation in the lateral direction of the axle housing for the load of the load, and the deformation amount is not saturated in the elastic deformation section within at least 130% of the design allowable load of the axle, and the can be approximated Therefore, if you measure the amount of slight deformation of the axle housing, you can calculate a very accurate load.
  • the axle is deformed by the vertical (gravity direction) force and the horizontal force. Since the deformation due to the horizontal force is negligible compared to the vertical force, the axle can be said to be bent by the vertical force, and although it is a very small change, it has the characteristic of changing linearly with the load load.
  • the vertical force acting on the axle of a freight vehicle equipped with a multi-plate spring suspension is the payload.
  • the load (W) of the vehicle is transmitted to the axle through the plate spring coupling part, the straight tube axle is slightly bent, so that the upper part of the axle is compressed and the lower part is tensioned in micrometers.
  • the vertical deformation of the driving axle is about 200 micrometers, and the deformation of the axle is linear in proportion to the loaded load. If it is possible to measure the amount of micro-deformation occurring on the axle while loading cargo or driving a vehicle, the load applied to the axle can be measured from the relationship between the load and the amount of deformation.
  • Korean Patent Laid-Open Publication No. 10-2019-0080183 discloses a method of measuring the deformation of an axle using a strain gauge.
  • the strain gauge is a very fine and sensitive sensor, it must be fixed to the axle in a sufficiently stable state. Therefore, since it is very difficult to directly install the strain gauge in a vehicle that has already been manufactured and operated, the design of the axle itself needs to be changed so that the strain gauge can be installed. This is because the shape of the axle is not suitable for attaching the sensor, and there is a risk that the axle may be damaged during the sensor installation process.
  • Korean Patent Application Laid-Open No. 10-2019-0080183 proposes a special type of axle for attaching a sensor.
  • German Patent Publication DE 10 2004 019 624 B3 (December 22, 2005) proposes a method for calculating a load with an axle load sensor.
  • a method for measuring the strain in the spring element is presented.
  • German Patent Publication DE 10 2004 019 624 B3 (Axle Load Measuring Device for Axles with Pneumatic and Mechanical Suspension)
  • An object of the present invention is to provide an apparatus for measuring the load on the axle by measuring the amount of fine deformation when the axle between two points of the axle is stretched while the axle of a freight vehicle equipped with a variable axle is deformed by the load load.
  • Another object of the present invention is to propose a method of obtaining the proportionality constant K of the first-order linear approximation between the vehicle load and the minute deformation of the axle in calculating the vehicle load as a method of measuring the amount of change in the axle.
  • the present invention provides a load measuring method of an axle load measuring device.
  • the method of the present invention comprises the steps of changing a variable shaft load of a variable shaft in a tolerance state, changing an adjacent shaft load supported by an adjacent shaft adjacent to the variable shaft, and measuring an amount of axle deformation by a measuring terminal installed on the adjacent shaft in which the load is changed;
  • a calculation unit calculates the variable shaft load using a pneumatic sensor installed on the variable shaft air bellows, reads the axle deformation amount from the measurement terminal, and calculates the proportional constant K between the axle deformation amount and the change amount of the adjacent axle load and calculating using the equation of
  • L2 is the distance between the front axle and the adjacent axle in a tolerance state
  • L4 is the distance between the front axle and the variable axle
  • ⁇ X is the axle deformation amount
  • ⁇ Wa is the change amount of the variable axle load
  • the axle deformation amount is determined by the load on the adjacent axle It is possible to measure the size of the deformation caused by bending.
  • the method of the present invention may further include repeating the step of measuring the axle strain amount n times while repeatedly changing the variable shaft load.
  • the calculator calculates the proportionality constant K based on the results of the n pairs of the variable axle load and the axle deformation obtained for each n-th repeating step.
  • the measuring method of the present invention may further include calculating, by the calculator, an adjacent axial load in a state in which the load is loaded.
  • the calculator calculates the adjacent axle load by multiplying the proportional constant K by the axle deformation amount measured by the measuring terminal in a state in which the vehicle is loaded, and then adding the tolerance load of the adjacent axle.
  • the The method may further include calculating, by a calculation unit, a proportionality constant Ka using the first measuring terminal in a tolerance state and calculating a proportionality constant Kb using the second measuring terminal.
  • the calculating of the adjacent axial load may include a value obtained by multiplying an axle deformation amount provided by the first measuring terminal by the proportional constant Ka and a value obtained by multiplying an axle deformation amount provided by the second measuring terminal by the proportional constant Kb
  • the adjacent shaft load is calculated by adding the tolerance load of the adjacent shaft to the average of .
  • the measuring terminal may measure the magnitude of tension in the axial direction when the axle is bent by a load.
  • the measurement terminal may include a first fixing part having one end fixed to one point of the axle, a second fixing part having one end fixed to another point of the axle, and spaced apart from the axle under the axle. It may include a measuring part connected between the first fixing part and the second fixing part in a state to measure the magnitude of the tension of the axle in the axial direction.
  • the present invention also extends to a vehicle load measuring device.
  • the load measuring device of the present invention includes a pneumatic sensor installed on an air bellows of a variable shaft, and a measuring terminal installed on an adjacent shaft adjacent to the variable shaft (an axle capable of measuring a size among deformations occurring when the adjacent shaft is bent by a load) measuring one of the deformation amounts) and a calculation unit for calculating the proportionality constant K.
  • the calculation unit calculates the variable shaft load using the pneumatic sensor in the tolerance state, reads the axle strain amount from the measurement terminal, and calculates the proportional constant K between the axle strain amount and the change amount of the adjacent shaft load using the above formula to calculate
  • the load measuring apparatus of the present invention can measure a minute amount of deformation when the axle of a freight vehicle equipped with a variable axle is deformed by a load load and tension between two points of the axle is made.
  • the proportional constant K between the deformation amount of the axle and the axle load can be obtained in a simple way. If it is a vehicle of the same type, the proportional constant corresponding to the slope of the first-order linear approximation formula between the vehicle load and the amount of micro-deformation of the axle will be similar. The proportional constant K for each vehicle can be obtained.
  • the upper structure may be changed while the freight vehicle is changed to a special vehicle (wing body, tank lorry, forklift, etc.), and the changed upper structure affects the stiffness of the axle. Therefore, the load characteristic curve may be different compared to the amount of axle deformation after structural change. Even in this case, by applying the present invention, it is possible to easily obtain and correct the proportional constant K between the amount of deformation caused by the change of the vehicle's upper structure and the load.
  • 1 is a view showing the change of the axle of the freight vehicle due to the loading load
  • FIG. 2 is a block diagram of an axle load measuring device for a vehicle according to the present invention.
  • FIG. 5 is a view showing a measurement terminal according to an embodiment of the present invention.
  • FIG. 6 is a view showing a state in which the measurement terminal of FIG. 5 is installed on the axle.
  • the vehicle load measuring apparatus 200 of the present invention includes a variable shaft 201 installed in a vehicle, a variable shaft controller 203 for controlling the variable shaft 201 , an air pressure sensor 205 , and at least one of measuring terminals 207a, 207b, and 207c and a calculation unit 210 .
  • the variable axis 201 is controlled by the variable axis controller 203 .
  • the variable shaft 201 may be any conventional one, and as long as the magnitude of the load supported by the variable shaft 201 can be controlled in a plurality of steps according to the control of the variable shaft controller 203, either a manual control method or an automatic No matter the control method.
  • the air pressure sensor 205 measures the air pressure of the air bellows ( FIGS. 4 and 401 ) of the variable shaft 201 and provides it to the calculation unit 210 , and the calculation unit 210 is the air pressure sensor 205 of the The load supported by the variable shaft 201 is calculated from the measured value.
  • the measurement terminals 207a, 207b, and 207c have the same configuration except that their installation positions are different.
  • the individual measurement terminals 207a, 207b, and 207c are denoted as 'measuring terminal 207' and described as a representative, except when used separately.
  • the measurement terminal 207 is installed on the axle 10 of the vehicle and measures the amount of deformation occurring in the axle 10 when a load is applied to the axle 10 .
  • the amount of deformation of the axle to be measured may be any as long as it can measure the amount of deformation that occurs when the axle 10 is bent by a load.
  • the distance between the two points P1 and P2 of the lower part of the axle 10 directly reflects the bending deformation of the axle 10 and is a measurement target.
  • the deformation in the vertical direction may be measured or the degree of compression of the upper part of the axle 10 may be measured.
  • a conventionally known load cell or strain gauge may be used to measure the amount of deformation of the axle 10 .
  • a specific example of the measurement terminal 207 will be separately described below.
  • the measurement terminal 207 provides the measurement value to the calculator 210 .
  • Communication between the measurement terminal 207 and the calculation unit 210 may use a CAN (controller area network) widely used as a vehicle communication means, or may use other conventional communication means.
  • CAN controller area network
  • the measuring terminal 207 For auto-calibration for calculating the proportional constant K of the measuring terminal 207, the measuring terminal 207 must be installed on the adjacent shaft 11 of the variable shaft 201. For example, if the variable shaft 201 is installed behind the rear shaft as in FIG. 3 , the adjacent shaft 11 becomes the rear shaft, and the measuring terminal 207 should be installed on the rear shaft.
  • identification number 11 is described and denoted as 'adjacent axis' or 'rear axis'.
  • the measurement terminal 207 may be installed on any axis among several axes of the vehicle, may be installed on each axis, or may be installed on the same axis in plurality. If the load on the front axle 15 of the vehicle is to be measured, it must be installed on the front axle 15 . In consideration of this point, when the measuring terminal 207 is installed on any one of several axles of the vehicle, it is preferable to install it on the adjacent shaft 11 adjacent to the variable shaft 201 .
  • the calculator 210 is connected to the air pressure sensor 205 and the measurement terminal 207, and performs auto-calibration to calculate the proportional constant K used for calculating the load of the vehicle using the variable shaft control, and the axle 10 of the vehicle. ) is used to calculate the vehicle's load.
  • the calculator 210 may be connected to the variable axis controller 203 to directly control the variable axis 201 through the variable axis controller 203 , but this is not essential. If the user directly controls the variable shaft controller 203 , the calculator 210 controls the variable shaft by checking the air pressure of the air bellows of the variable shaft 201 using the air pressure sensor 205 . You can check the status.
  • W is the load supported by the axle
  • X 0 is the distance between two points on the axle (P1, P2) before bending deformation occurs
  • X is the two points of the axle when bending deformation occurs due to the load (P1, P2)
  • K is a proportional constant between the load (W) supported by the axle and the deformation (XX 0 ) of the axle, which can be regarded as the elastic modulus of the axle. If the proportional constant K is known, the load supported by the corresponding axle can be calculated from the amount of deformation of the axle measured by the measurement terminal 207 .
  • the present invention proposes a method of obtaining the proportional constant K through variable shaft control without applying a mathematical method through analysis of the complex shape and structure of the axle housing, which is referred to as 'auto calibration' in the present invention.
  • variable shaft 201 has a variable shaft load depending on the air pressure of the air bellows 401 . Since the variable shaft 201 is usually installed adjacent to a specific axle (mostly the rear axle) of the vehicle, if the variable shaft load is changed by controlling the variable shaft 201, the load on the adjacent shaft 11 adjacent to the variable shaft 201 is also change linearly.
  • the adjacent shaft 11 is shown as the rear shaft adjacent to the variable shaft 201 .
  • the adjacent axial load Wr can be calculated as in Equation 2 below.
  • Wr is the load on the adjacent axle
  • L1 is the distance between the front axle 15 and the center of gravity of the vehicle in an empty state
  • L2 is the distance between the front axle 15 and the adjacent axle 11 in the empty vehicle
  • L3 is the adjacent axle (11) is the distance between the variable shaft 201
  • Wf is the front shaft load
  • Wa the variable shaft load
  • We the tolerance is the vehicle's load.
  • Equation 2 since We, L1, and L2 are constants, it can be seen that the adjacent axial load Wr is inversely proportional to the variable axial load Wa by (L4/L2).
  • L1, L2, and L4 in Equation 2 can be obtained by direct measurement.
  • the variable shaft load (Wa) is generated by the air pressure (Wb) generated in the air bellows (401).
  • the variable shaft load (Wa) can be obtained through the chart (force versus air pressure) provided by the air bellows 401 manufacturer.
  • the variable shaft load Wa may be obtained from the air pressure Wb of the air bellows 401 .
  • Equation (2) When changing the variable axial load (Wa), the change in the adjacent axial load (Wr), which is an adjacent axis, may be calculated through Equation (2). At this time, since the center of gravity of the vehicle hardly changes, the following Equation 3 can be obtained from Equation 2.
  • ⁇ Wr is the amount of change of the adjacent axial load Wr
  • ⁇ Wa is the amount of change of the variable axial load Wa.
  • Equation 3 As the variable axial load Wa increases, the adjacent axial load Wr decreases, and conversely, the adjacent axial load Wr increases linearly as the variable axial load Wa decreases. Since the adjacent axial load (Wr) also changes when the variable axial load (Wa) is changed, Equations (1) and (3) are used to obtain the measured value ( ⁇ X) of the measuring terminal 207 while changing the variable axial load (Wa). Therefore, the proportionality constant K can be obtained as in Equation 4 below. ⁇ X is the amount of deformation of the axle.
  • the calculator 210 measures the amount of change in the load on the adjacent axle and the deformation amount of the axle based on Equations 2 to 4 above, and calculates a proportional constant K.
  • the adjacent shaft 11 is the rear shaft with reference to FIG. 3
  • the measurement terminal 207 for auto-calibration should be installed in the rear shaft, which is the adjacent shaft 11 .
  • the calculator 210 checks the 'initial variable shaft load' state. According to an embodiment, the calculator 210 initially descends the variable shaft 201 through the variable shaft controller 203 based on the air pressure Wb of the air bellows 401 measured by the air pressure sensor 205 . It is possible to create a variable-axis load or to check the initial variable-axis load state through the user's direct control.
  • the initial variable shaft load can be set arbitrarily, but it should be the same as or less than the load on the adjacent shaft (eg, rear axle) in the tolerance state in which the variable shaft does not operate. This is because, if the initial variable shaft load exceeds the adjacent shaft load in the tolerance state, the adjacent shaft load becomes zero (0) and is lifted, and correlation cannot be obtained.
  • the adjacent axial load or the initial variable axial load in the tolerance state may be preset in the calculator 210 as an initial set value.
  • the calculator 210 While repeatedly reducing the variable axial load (Wa) over the nth order, it is provided to the calculator 210, which calculates the variable axial load (Wa) by using the pneumatic sensor 205 and the measurement terminal Reference numeral 207 measures the amount of deformation of the axle whenever the variable shaft load Wa decreases and provides it to the calculator 210 .
  • n is a natural number where n>0.
  • the calculator 210 may control the variable shaft load Wa based on the air pressure Wb of the air bellows 401 measured by the air pressure sensor 205 while controlling the variable shaft controller 203 . .
  • variable shaft load (Wa) is first reduced by 300kg, the adjacent shaft load (Wr) is 300x(L4/L4/ L2) increases. If the variable shaft load Wa is reduced by 400 kg again, the adjacent shaft load Wr increases by 400x (L4/L2). Third, if the variable shaft load (Wa) is reduced by 500 kg, the adjacent shaft load (Wr) is increased by 500x (L4/L2).
  • variable shaft load Wa the magnitude of the decrease (increase of the adjacent shaft load) of the variable shaft load Wa in each step may be the same, it is preferable that they are different from each other.
  • variable shaft load (Wa) is decreased to a larger value, but on the contrary, it is okay to decrease it to a smaller size.
  • the calculation unit 210 obtains the amount of change in the variable axle load and the amount of axle deformation measured by the measurement terminal ( ) for each adjustment of the variable axle load over the nth order (steps S403 to S407), and obtains the change amount of the variable axle load and the axle Calculate the proportionality constant K by applying the deformation amount result of Equation 4 to Equation 4.
  • the amount of change in the adjacent shaft load can be obtained through Equation (3).
  • the (L4/L2) value is 1.2
  • the change amount ( ⁇ Wr) of the load on the adjacent axle and the amount of deformation of the axle measured at that time are as shown in Table 1 below.
  • Axle Deformation (distance, ⁇ m)
  • S403 -(-300 x 1.2) 360 203
  • S405 -(-400 x 1.2) 480 265
  • S407 -(-500 x 1.2) 600 321
  • the calculation unit 210 obtains the proportionality constant K by introducing the measurement values of Table 1 to Equation 4, and may be calculated using a least square method. In Table 1 where (L4/L2) is 1.2, the proportionality constant K becomes 2.0321 (Kg/ ⁇ m). In the above method, it is possible to easily obtain the proportionality constant K between the amount of deformation of the axle with respect to the change in the vehicle load.
  • the proportional constant corresponding to the slope of the linear approximation between the load and the amount of micro-deformation will be similar. Therefore, the statistical proportional constant K can be obtained for each vehicle by measuring three or more vehicles of the same type.
  • the upper structure may be changed while the freight vehicle is changed to a special vehicle (wing body, tank lorry, forklift, etc.), and the changed upper structure affects the stiffness of the axle. Therefore, it is possible to show a load characteristic curve compared to the amount of deformation different from before the change after the structural change. Even in this case, by applying the present invention, it is possible to easily obtain and correct the proportional constant K between the amount of deformation caused by the change of the vehicle's upper structure and the load.
  • the proportionality constant K can be calculated with different values for the position of the same axle, especially on the left and right. Since the housing of the axle has a complex shape with an asymmetric structure, and parts that transmit various driving forces are assembled therein, it is necessary to recalculate the proportionality constant K for each measuring terminal installed at different positions on the same axle.
  • the calculation unit 210 calculates the load W of the vehicle in the loaded state using Equation 5 below.
  • Wro is the tolerance load of the adjacent axle
  • ⁇ X is the amount of deformation of the axle.
  • the calculator 210 may display 3410 kg and 3810 kg on a display unit (not shown) after rounding up to 10 digits in consideration of the error range and the user's visibility.
  • a more accurate load may be calculated by installing the first measuring terminal 207a and the second measuring terminal 207b on the left and right of the axle 10 to measure the amount of change in the axle from the left and right sides of the axle 10 .
  • the proportionality constant in each measurement terminal 207 must be individually obtained using the method of FIG.
  • the adjacent shaft load is as shown in Equation 6 below.
  • the proportional constant of the first measuring terminal 207a is Ka
  • the proportional constant of the second measuring terminal 207b is Kb
  • ⁇ Xa is the amount of deformation of the axle measured by the first measuring terminal 207a
  • ⁇ Xb is the amount of deformation of the axle measured by the second measuring terminal 207b.
  • the calculator 210 may store and manage vehicle specification information, variable axis specification information, and variable axis control conditions.
  • vehicle specification information includes the load for each axle in the tolerance state, the distance between the axles, the vehicle weight, the maximum load capacity, the total vehicle weight, the shape of the variable shaft, etc.
  • variable shaft specification information includes the specification information of the air bellows 401 applied to the variable shaft 201 and structural dimensions of the variable axis.
  • the variable axle control conditions include the maximum design load per vehicle axle, the time of raising/lowering the variable axle, and the load distribution ratio between the adjacent axle and the variable axle. Some of this information may be entered by the user.
  • Example Measuring terminal (measurement of the amount of deformation of the distance between two points of the axle)
  • the measuring terminal 207 is installed between two points in the transverse direction of the axle 10 to measure the amount of deformation in the lateral direction, and a measuring terminal 500 capable of measuring the lateral deformation is shown in FIG. 5 .
  • the measuring terminal 500 includes a measuring unit 510 , a first fixing unit 530 , and a second fixing unit 550 .
  • the measuring part 510 is disposed to connect between the first fixing part 530 and the second fixing part 550 to measure the distance stretched in the transverse direction (transverse axis direction) of the axle shaft 10 .
  • the measuring unit 510 does not need to be fixed in a specific direction with respect to the axle 10 or the horizontal plane.
  • the measuring part 510 be installed to be spaced apart from the axle 10 . This is because the measurement unit 510 measures the size of the lower portion of the axle 10 tensioned by the load, and thus has an effect of amplifying the actual tensile size as it is spaced apart from the axle 10 that is actually bent and stretched.
  • an electric micrometer sensor or a load cell may be used as a measuring means of the measuring unit 510.
  • a load cell is a sensor assembly for measuring an object's load or external force, and a load sensing sensor ( sensor).
  • a load cell is used as the measurement unit 510, the movement of the internal measurement means is converted into an electrical signal by the strain gauge.
  • the measurement unit 510 includes a communication means connected to the calculation unit 210 and provides the measured value to the calculation unit 210 .
  • the first fixing part 530 and the second fixing part 550 connect the measuring part 510 to the first and second points (eg, P1 and P2 in FIG. 1 ) set at a relatively lower portion of the axle 10 . plays a role
  • the first fixing part 530 and the second fixing part 550 may be implemented in various forms depending on the installation location.
  • the first point is set as the lower end of the U-bolt plate 61 that is the point of application of the vehicle load
  • the second point is set as the lower end of the shock absorber 63 fixed to the axle 10.
  • One end of the first fixing part 530 is connected to the measuring part 510 and the other end is fixed to the first point by welding or the like.
  • one end of the second fixing unit 550 is connected to the measuring unit 510 and the other end is connected to the second point.
  • the other end 551 of the second fixing part 550 is implemented in a ring shape to be connected to the shock absorber 63, which is the second point, and is fixed with a bolt.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Vehicle Body Suspensions (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

차축이 지지하는 하중을 측정하는 차량용 하중 측정장치 및 그 방법이 개시된다. 본 발명의 하중 측정장치는 가변축이 설치된 화물차량의 차축이 적재하중에 의해 변형되면서 차축의 두 지점 사이가 인장될 때의 미세한 변형량을 측정할 수 있다. 또한, 차축의 변형량과 차축 하중 사이의 비례상수 K를 구하는 오토 캘리브레이션 방법을 제시한다.

Description

차축이 지지하는 하중을 측정하는 차량용 하중 측정장치 및 그 방법
본 발명은 완성차에 설치하는 장치로서, 가변축이 설치된 화물차량의 차축이 적재하중에 의해 변형되면서 차축의 두 지점 사이가 인장될 때의 미세한 변형량을 측정하여 차축의 하중을 측정하는 장치 및 그 방법에 관한 것이다.
운행 중인 차량, 특히 화물 차량의 차축에 부과된 하중을 측정하는 것은 과적 방지 및 가변축 제어 등 여러 가지 이유로 필요하다. 축당 지지할 수 있는 하중에는 정해진 규격이 있어서, 정격을 넘겨 적재하게 되면 차량 파손이나 도로 파손의 원인이 되기도 한다. 대한민국 도로법 77조 및 동법 시행령 79조와 도로교통법 39조 및 동법 시행령 22조에서는 도로파괴 및 안전을 감안하여 총중량 40톤 및 축 당 10톤으로 하중을 제한하고 있다. 하지만, 현실적으로 화물 차량의 운전자가 차량에 적재되어 있는 하중을 가늠하기 어렵기 때문에 총중량이나 축당 허용하중을 위반하는 일이 빈번하다.
축당 하중을 줄이기 위한 방법으로 널리 사용되는 것 중 하나가, 가변축을 사용하는 것이다. 가변축이란 중형 화물차에 주로 사용되는 차축의 한 종류로서, 차대(Chassis)에 고정된 축이 아니라 필요에 따라 내리고 들어올릴 수 있는 차축으로서, 과적 문제를 해결하기 위한 방법으로 사용한다. 가변축은 리프트 에어 벨로우즈(Lift Air Bellows)와 로드 에어 벨로우즈(Load Air Bellows)의 동작에 의해 내리고 올린다. 에어 벨로우즈는 '에어 스프링' 또는 '에어백'이라고도 한다. 리프트 에어 벨로우즈가 소정의 공기압으로 팽창하면 가변축이 올라가고, 반대로 로드 에어 벨로우즈가 팽창하면 가변축이 내려와 적재된 하중을 나누어 지지한다. 리프트 에어벨로우즈(401)와 로드 에어벨로우즈(401)는 공기압 회로에 의해 동작하며, 운전자가 직접 제어할 수도 있고 자동으로 제어할 수도 있다.
차축에 작용하는 하중을 측정하는 것은 다양한 이유로 필요하지만 가변축 제어를 위해서도 필수적이며, 다양한 방법들이 제시되고 있다. 그 방법들은 적재물의 하중이 지면으로 전달되는 경로 상에 배치된 다양한 차량 구성품을 대상으로 이루어진다. 적재물에 의해 차량이 하중이 실리면, 판 스프링과 타이어의 압력이 바뀌고, 판 스프링의 변형에 의해 프레임과 차축간의 거리가 바뀌고, 적재물에 의한 프레임과 스프링의 결합 부위에 발생하는 집중하중과 스프링과 차축 결합부위에 발생하는 하중 등이 바뀌게 되는데, 그 변화를 측정하는 측정함으로써 적재하중을 측정할 수 있다.
이 중에서 변형량이 큰 구성은 여러 방향으로 전달되는 내부력과 마찰력 등에 의해 쉽게 변형을 일으키는 것들이다. 대표적인 것이 판 스프링이다. 변형이 크기 때문에 적재하중의 측정을 위해 많이 이용되었다. 예를 들어, 대한민국 공개특허 제10-2009-0073976호는 적재하중에 의한 현가장치 스프링의 기울기를 측정하여 하중을 계산하는 방법을 제시하고, 대한민국 공개특허 제10-1999-0004089호는 차대와 스프링 연결부분에 로드셀(Load Cell)을 설치하는 방법을 제시한다.
그러나 변형량이 큰 구성품은 하중과 변형량 사이의 히스테리시스 현상이 많이 발생할 수 있어서, 적재하중에 의한 변화가 선형적이지 않다는 문제가 있다. 판스프링도 마찰에 의한 히스테리시스 현상이 있으며, 스토퍼가 있는 경우에 일정한 크기 이상의 하중에서는 변형이 더 이상 발생하지 않기 때문에 측정 오차가 크게 발생한다. 또한, 화물차량 스프링의 처짐을 인식하는 장치는 일반적으로 크기가 커서 차대의 아래에 설치하는 것이 쉽지 않을 뿐만 아니라, 기계적인 방법으로 인식하는 것이어서 내구성을 담보하기 어렵다. 스프링에 로드셀을 직접 설치하는 방법도 고가의 대용량 로드셀이 필요하고 진동과 충격에 대한 내구성을 보장하기 어렵다.
적재하중에 의해 변형되는 차량 구성품 중에 차축(또는 차축 하우징)이 있다. 차축은 다른 구성품과 대비해 가장 고강성체이며 변형량이 가장 적고 대략 마이크로미터(㎛) 단위로 미세하게 휜다. 따라서 적재물의 하중에 대한 차축 하우징의 횡방향에서의 하중과 변형량 사이의 특성곡선에서 히스테리시스 현상이 매우 적고 차축의 설계 허용하중의 최소 130% 안에서는 탄성변형 구간으로 변형량이 포화되지 않으며 1차 선형식으로 근사할 수 있다. 따라서 차축 하우징의 미세한 변형량을 측정한다면 매우 정확한 하중을 계산할 수 있다.
보의 해석에 사용되는 이론을 차축에 적용하면, 차축은 수직방향(중력 방향) 힘과 수평방향 힘에 의해 변형된다. 수직방향 힘과 비교할 때 수평 방향 힘에 의한 변형은 무시할 정도이기 때문에, 차축은 수직방향 힘에 의해 휜다고 할 수 있으며, 매우 미세한 변화이지만 적재하중에 선형적으로 변하는 특징이 있다.
다판 스프링 구조의 현가장치를 구비한 화물차량의 차축에 작용하는 수직방향 힘은 적재하중이다. 도 1을 참조하면, 차량의 하중(W)이 판스프링 결합 부분을 통해 차축으로 전달되면, 직관형태의 차축은 미세하게 휘어 차축의 위쪽은 압축되고 아랫쪽은 마이크로미터 단위로 인장된다. 실험해 보면, 5톤 중형화물차량에 10톤 중량을 적재할 때 구동 차축의 수직방향으로의 변형은 약 200 마이크로미터 정도이며, 이때 차축의 변형은 적재하중에 비례하여 선형적인 특징이 있다. 화물을 적재하는 중이거나 차량을 운행하는 중에 차축에 발생하는 미소 변형량을 측정할 수 있다면, 하중과 변형량의 관계에서 차축에 가해지는 하중을 측정할 수 있다.
한편, 종래에 차축의 변형량을 측정하는 방법들이 있었다. 예를 들어, 대한민국 공개특허 제10-2019-0080183호는 스트레인 게이지를 사용하여 차축의 변형을 측정하는 방식이다. 다만, 스트레인 게이지는 워낙 미세하고 민감한 센서이기 때문에 차축에 충분히 안정된 상태로 고정되어야 한다. 따라서 이미 제작되어 운행 중인 차량에는 스트레인 게이지를 직접 설치하기가 매우 어렵기 때문에, 스트레인 게이지를 장착할 수 있도록 차축 자체의 설계를 변경해야 한다. 그것은 차축의 형태가 센서 부착에 적합하지 않은 것도 있고, 센서를 설치하는 과정에서 차축이 손상될 위험도 있기 때문이다. 대한민국 공개특허 제10-2019-0080183호는 센서 부착을 위해 특별한 형태의 차축을 제안하고 있다.
또한, 독일 특허공개 DE 10 2004 019 624 B3 (2005.12.22)은 차축 하중 센서를 구비하여 하중을 계산하는 방법을 제시하고 있다. 그러나 해당 특허 도 4 내지 도 6에 도시된 것처럼 스프링 요소에서의 변형을 측정하는 방법을 제시한다.
[관련 기술 문헌]
1. 대한민국 공개특허 제10-2019-0080183호 (차축 부착형 차량 축하중 센서모듈)
2. 대한민국 공개특허 제10-2009-0073976호 (차량의 하중 측정 장치 및 측정 방법)
3. 대한민국 공개특허 제10-1999-0004089호 (트럭의 화물적재량 측정 및 확인장치)
4. 대한민국 공개특허 제10-2013-0061904호 (상용차량 축하중 모니터링용 센서 조립 장치)
5. 대한민국 등록특허 제10-0884233호 (차량의 적재중량 측정장치)
6. 독일 특허공개 DE 10 2004 019 624 B3 (Axle Load Measuring Device for Axles with Pneumatic and Mechanical Suspension)
본 발명의 목적은 가변축이 설치된 화물차량의 차축이 적재하중에 의해 변형되면서 차축의 두 지점 사이가 인장될 때의 미세한 변형량을 측정하여 차축의 하중을 측정하는 장치를 제공함에 있다.
본 발명의 다른 목적은, 차축의 변화량을 측정하는 방법으로 차량의 하중을 계산함에 있어서 차량의 하중과 차축의 미세한 변형량 사이의 1차 선형 근사식의 비례상수 K를 구하는 방법을 제시하는 것이다.
상기 목적을 달성하기 위한 본 발명은 차축 하중 측정장치의 하중 측정방법을 제시한다. 본 발명의 방법은 공차상태에서 가변축의 가변축 하중을 바꾸어 상기 가변축에 인접한 인접축이 지지하는 인접축 하중을 바꾸고, 하중이 바뀐 상기 인접축에 설치된 측정단말이 차축 변형량을 측정하는 단계와; 계산부가 상기 가변축의 에어밸로우즈에 설치된 공기압 센서를 이용하여 상기 가변축 하중을 계산하고 상기 측정단말로부터 상기 차축 변형량을 읽어와, 상기 차축 변형량과 인접축 하중의 변화량 사이의 비례상수 K를 다음의 수학식을 이용하여 계산하는 단계를 포함한다.
Figure PCTKR2021001365-appb-img-000001
상기 L2는 공차 상태에서 전축과 상기 인접축간의 거리, L4는 상기 전축과 상기 가변축간 거리, ΔX은 차축 변형량, 그리고 ΔWa은 가변축 하중의 변화량이고, 상기 차축 변형량은 상기 인접축이 하중에 의해 휠 때 생기는 변형 중에서 크기를 측정할 수 있는 것이다.
실시 예에 따라, 본 발명의 방법은 상기 가변축 하중을 반복적으로 바꾸면서, 상기 차축 변형량을 측정하는 단계를 n차 반복하는 단계를 더 포함할 수 있다. 이 경우, 상기 계산부는 상기 n차 반복하는 단계마다 구한, n쌍의 상기 가변축 하중과 차축 변형량 결과를 기초로 상기 비례상수 K를 계산한다.
다른 실시 예에 따라, 본 발명의 측정방법은 상기 계산부가 상기 적재물이 적재된 상태의 인접축 하중을 계산하는 단계를 더 포함할 수 있다. 계산부는 차량에 적재물이 적재된 상태에서 상기 측정단말이 측정한 차축 변형량에 상기 비례상수 K를 곱한 다음 상기 인접축의 공차 하중을 더하여 인접축 하중을 계산한다.
또 다른 실시 예에 따라, 본 발명의 측정방법은, 상기 차축의 좌측에 상기 측정단말인 제1 측정단말을 설치하고 상기 차축의 우측에 상기 측정단말인 제2 측정단말을 설치한 경우에, 상기 계산부가 공차상태에서 상기 제1 측정단말을 이용하여 비례상수 Ka를 계산하고 상기 제2 측정단말을 이용하여 비례상수 Kb를 계산하는 단계를 더 포함할 수 있다. 이 경우, 상기 인접축 하중을 계산하는 단계는, 상기 제1 측정단말이 제공하는 차축 변형량에 상기 비례상수 Ka를 곱한 값과 상기 제2 측정단말이 제공하는 차축 변형량에 상기 비례상수 Kb를 곱한 값의 평균에 상기 인접축의 공차 하중을 더하여 상기 인접축 하중을 계산한다.
또 다른 실시 예에 따라, 상기 측정단말은 상기 차축이 하중에 의해 휠 때 축방향으로 인장되는 크기를 측정하는 것일 수 있다. 예를 들어, 상기 측정단말은 일단이 상기 차축의 일 지점에 고정된 제1 고정부와, 일단이 상기 차축의 다른 지점에 고정된 제2 고정부와, 상기 차축의 아래에 상기 차축과 이격된 상태로 상기 제1 고정부와 제2 고정부 사이에 연결되어 상기 차축이 축방향으로 인장되는 크기를 측정하는 측정부를 포함할 수 있다.
본 발명은 차량용 하중 측정장치에도 미친다. 본 발명의 하중 측정장치는 가변축의 에어 밸로우즈에 설치된 공기압 센서와, 상기 가변축에 인접한 인접축에 설치되는 측정단말(상기 인접축이 하중에 의해 휠 때 생기는 변형 중에서 크기를 측정할 수 있는 차축 변형량 중 하나를 측정함)과, 비례상수 K를 계산하는 계산부를 포함한다. 계산부는 공차상태에서 상기 공기압 센서를 이용하여 상기 가변축 하중을 계산하고 상기 측정단말로부터 상기 차축 변형량을 읽어와, 상기 차축 변형량과 인접축 하중의 변화량 사이의 비례상수 K를 상기의 수학식을 이용하여 계산한다.
본 발명의 하중 측정장치는 가변축이 설치된 화물차량의 차축이 적재하중에 의해 변형되면서 차축의 두 지점 사이가 인장될 때의 미세한 변형량을 측정할 수 있다.
또한, 본 발명에 의하면 가변축을 제어함으로써, 차축의 변형량과 차축 하중 사이의 비례상수 K를 간단한 방법으로 구할 수 있다. 동종차량이라면, 차량의 하중과 차축의 미세 변형량 사이의 1차 선형근사식의 기울기에 해당하는 비례상수는 유사할 것이므로, 동종 차량 대략 3대 이상에 대해 하중을 변화시키면서 미세 변형량을 측정하는 방법으로, 각 차량별 비례상수 K를 구할 수 있다.
반대로, 동일한 차량 모델이라도, 화물 차량은 특장차량으로 변경되면서(윙바디, 탱크로리, 집게차 등) 상부 구조가 변경될 수 있고, 변경된 상부 구조는 차축의 강성에 영향을 준다. 따라서, 구조변경 후에 차축 변형량 대비 하중 특성 곡선이 달라질 수 있다. 이런 경우에도, 본 발명을 적용하여, 차량의 상부 구조의 변화로 인한 변형량-하중 사이의 비례상수 K를 용이하게 구하여 보정할 수 있다.
도 1은 적재하중에 의한 화물차량의 차축의 변화를 도시한 도면,
도 2는 본 발명의 차량용 차축 하중 측정장치의 블록도,
도 3은 비례상수 K의 설명에 제공되는 차량의 개략적인 구조도,
도 4는 본 발명의 오토 캘리브레이션에 따른 비례상수 K의 계산방법의 설명에 제공되는 흐름도,
도 5는 본 발명의 일 실시 예에 따른 측정단말을 도시한 도면, 그리고
도 6은 도 5의 측정단말을 차축에 설치한 상태를 도시한 도면이다.
이하 도면을 참조하여 본 발명을 더욱 상세히 설명한다.
도 2를 참조하면, 본 발명의 차량 하중 측정장치(200)는 차량에 설치되는 가변축(201), 가변축(201)을 제어하는 가변축 제어기(203), 공기압 센서(205), 적어도 하나의 측정단말(207a, 207b, 207c) 및 계산부(210)를 포함한다.
가변축(201)은 가변축 제어기(203)에 의해 제어된다. 가변축(201)은 종래의 어떠한 것이어도 무방하며, 가변축 제어기(203)의 제어에 따라 가변축(201)이 지지하는 하중의 크기가 복수 개의 단계로 제어될 수 있는 것이면 수동 제어방식이든 자동 제어방식이든 무방하다. 공기압 센서(205)는 가변축(201)의 에어벨로우즈(Air Bellows)(도 4, 401)의 공기압을 측정하여 계산부(210)에게 제공하며, 계산부(210)는 공기압 센서(205)의 측정값으로 가변축(201)이 지지하는 하중을 계산한다.
측정단말(207a, 207b, 207c)은 설치 위치가 다를 뿐 동일한 구성이다. 이하에서는 개별 측정단말(207a, 207b, 207c)을 구분하여 사용하는 경우를 제외하고는 '측정단말(207)'로 대표로 표시하고 설명한다.
측정단말(207)은 차량의 차축(10)에 설치되어 적재물 등에 의해 하중에 부가될 때 차축(10)에서 발생하는 변형량을 측정한다. 이때 측정대상이 되는 차축 변형량은 차축(10)이 하중에 의해 휠 때 생기는 변형의 크기를 측정할 수 있는 것이라면 어떠한 것이어도 무방하다.
예를 들어, 도 1에서처럼 차축(10)의 아랫부분의 두 지점(P1, P2) 사이의 거리는 차축(10)의 휨 변형을 직접 반영하는 것으로서 측정 대상이 된다. 다른 방법으로, 차축(10)이 휠 때, 수직방향(중력방향)의 변형을 측정해도 좋고 차축(10)의 윗부분의 압축 정도를 측정하는 것이어도 좋다. 차축(10)의 변형량 측정을 위해 종래에 알려진 로드셀(Load cell) 또는 스트레인 게이지(Strain Guage)를 이용할 수 있다. 측정단말(207)의 구체적인 예는 아래에서 따로 설명한다.
측정단말(207)은 계산부(210)로 측정값을 제공한다. 측정단말(207)과 계산부(210) 사이의 통신은 차량용 통신 수단으로 널리 사용되는 캔(CAN: Controller Area Network)을 사용할 수도 있고, 종래의 다른 통신수단을 사용할 수도 있다.
측정단말(207)의 비례상수 K를 계산하기 위한 오토 캘리브레이션(Calibration)을 위해서 가변축(201)의 인접축(11)에 측정단말(207)이 설치되어야 한다. 예를 들어, 도 3에서처럼 가변축(201)이 후축 뒷편에 설치되었으면, 인접축(11)은 후축이 되고, 측정단말(207)은 후축에 설치되어야 한다. 이하에서는 식별번호 11이 '인접축' 또는 '후축'으로 설명되고 표시된다.
그 밖에도 측정단말(207)은 차량의 여러 개 축중에서 어느 축에라도 설치할 수도 있고, 축마다 설치할 수도 있으며, 동일한 축에도 여러 개가 설치될 수 있다. 만약 차량의 전축(15)의 하중을 측정하려면, 전축(15)에 설치되어야 한다. 이러한 점을 고려하면, 측정단말(207)를 차량의 여러 개 축중에서 어느 한 축에 설치할 경우에는 가변축(201)에 인접한 인접축(11)에 설치하는 것이 바람직하다.
계산부(210)는 공기압 센서(205) 및 측정단말(207)과 연결되며, 가변축 제어를 이용한 차량의 하중 계산에 사용되는 비례상수 K를 계산하는 오토 캘리브레이션을 수행하고, 차량의 차축(10)의 변형을 이용하여 차량의 하중을 계산한다.
한편, 계산부(210)는 가변축 제어기(203)와 연결되어 가변축 제어기(203)를 통해 가변축(201)을 직접 제어할 수도 있지만, 필수적인 사항은 아니다. 만약, 사용자가 수동 가변축 제어기(203)를 직접 제어할 경우에, 계산부(210)는 공기압 센서(205)를 이용하여 가변축(201)의 에어밸로우즈의 공기압을 확인함으로써 가변축 제어 상태를 확인할 수 있다.
오토 캘리브레이션 (비례상수 K의 계산)
이하에서는 도 1 내지 도 4를 참조하여, 본 발명의 오토 캘리브레이션을 설명한다. 우선, 도 1을 참조하면, 차축(10)은 차량의 하중이 변함에 따라 휘면서 차축(10)의 윗부분은 압축되고 아랫부분은 인장된다. 차량의 정격 적재하중 범위 내에서, 차축에 부가되는 하중과 차축의 변형이 선형적인 관계에 있으므로, 다음의 수학식 1의 근사식이 성립한다.
Figure PCTKR2021001365-appb-img-000002
여기서, W는 차축이 지지하는 하중, X 0은 휨 변형이 일어나기 전의 차축 상의 두 지점(P1, P2) 간의 거리, X은 하중에 의해 휨 변형이 일어났을 때의 차축의 두 지점(P1, P2)간의 거리다. K는 차축이 지지하는 하중(W)과 차축의 변형(X-X 0) 사이의 비례상수로서, 차축의 탄성계수라 볼 수 있다. 비례상수 K를 알면, 측정단말(207)이 측정한 차축의 변형량으로부터 해당 차축이 지지하는 하중을 계산할 수 있다.
비례상수 K를 계산하기 위해서는, 하중의 변화량과 차축의 변형량을 동시에 측정할 수 있어야 한다. 본 발명은 차축 하우징의 복잡한 형상과 구조 해석을 통한 수학적 방법을 적용하지 않고도, 가변축 제어를 통해 비례상수 K를 구하는 방법을 제시하며, 본 발명에서는 이것을 '오토 캘리브레이션'이라 칭한다.
우선, 이하에서는 설명의 편리를 위해, 가변축이 지지하는 하중을 '가변축 하중', 차량의 전축(15)이 지지하는 하중을 '전축 하중', 그리고 차량의 인접축(11)이 지지하는 하중을 '인접축 하중'이라 한다. 가변축(201)은 에어벨로우즈(401)의 공기 압력에 의해 가변축 하중이 달라진다. 가변축(201)은 통상 차량의 특정 차축(대부분 후축)에 인접하게 설치하기 때문에, 가변축(201)을 제어하여 가변축 하중을 바꾸면 가변축(201)에 인접한 인접축(11)의 하중도 선형적으로 변한다.
도 3에서 인접축(11)이 가변축(201)에 인접한 후축으로 도시되었다. 도 3을 참조하면, 인접축 하중(Wr)은 다음의 수학식 2와 같이 계산할 수 있다.
Figure PCTKR2021001365-appb-img-000003
여기서, Wr은 인접축 하중, L1은 전축(15)과 공차상태의 차량의 무게 중심 사이의 거리, L2는 공차 상태의 차량에서 전축(15)과 인접축(11)간의 거리, L3은 인접축(11)과 가변축(201)간 거리, L4는 전축(15)과 가변축(201)간 거리(L4 =L2 + L3), Wf는 전축 하중, Wa는 가변축 하중, We는 공차 상태의 차량의 하중이다. 수학식 2에서, We, L1, L2는 상수이므로, 인접축 하중(Wr)은 가변축 하중(Wa)에 (L4/L2)만큼 반비례 하는 것을 알 수 있다. 수학식 2에 나오는 We, L1, L2, L4는 직접 측정하여 구할 수 있다. 한편, 가변축 하중(Wa)은 에어벨로우즈(401)에 발생하는 공기압력(Wb)에 의해 발생한다. 공기압 센서(205)를 이용하여 에어벨로우즈(401)의 공기압(Wb)을 측정하면, 에어벨로우즈(401) 제작사가 제공하는 (공기압 대비 힘)의 도표를 통해 가변축 하중(Wa)을 얻을 수 있다. 다른 방법으로, 직접 측정하는 방법으로, 에어벨로우즈(401)의 공기압(Wb)으로부터 가변축 하중(Wa)을 얻을 수 있다.
가변축 하중(Wa)을 바꿀 때, 수학식 2를 통해 인접축인 인접축 하중(Wr)의 변화를 계산할 수 있다. 이때 차량의 무게중심은 거의 변하지 않기 때문에 수학식 2로부터 다음의 수학식 3을 구할 수 있다. 여기서, ΔWr은 인접축 하중(Wr)의 변화량이고, ΔWa은 가변축 하중(Wa)의 변화량이다.
Figure PCTKR2021001365-appb-img-000004
수학식 3에 의하면, 가변축 하중(Wa)이 늘어나는 만큼 인접축 하중(Wr)이 줄어들고, 반대로 가변축 하중(Wa)이 줄어드는 만큼 인접축 하중(Wr)이 선형적으로 늘어난다. 가변축 하중(Wa)이 바뀔 때 인접축 하중(Wr)도 바뀌기 때문에, 가변축 하중(Wa)을 바꾸면서 측정단말(207)의 측정값(ΔX)을 얻으면, 수학식 1과 수학식 3을 이용하여 비례상수 K를 다음의 수학식 4와 같이 구할 수 있다. ΔX는 차축의 변형량이다.
Figure PCTKR2021001365-appb-img-000005
가변축 제어를 통한 비례상수 K의 계산 방법 (도 4)
이하에서는 도 4를 참조하여, 본 발명의 오토 캘리브레이션에 따른 비례상수 K를 구하는 방법에 대하여 설명한다. 차량에 다른 적재물이 없는 공차 상태에서, 계산부(210)는 이상의 수학식 2 내지 수학식 4에 기초하여 인접축 하중의 변화량과 차축의 변형량을 측정하고 비례상수 K를 계산한다. 설명의 편리를 위해, 도 3을 기준으로, 인접축(11)이 후축인 경우를 가정하면, 오토 캘리브레이션을 위한 측정단말(207)은 당연히 인접축(11)인 후축에 설치되어야 한다.
<공차 상태에서 초기 가변축 하중 부가: S401>
차량에 다른 적재물이 없는 공차 상태에서, 계산부(210)는 '초기 가변축 하중' 상태를 확인한다. 실시 예에 따라, 계산부(210)가 공기압 센서(205)가 측정한 에어벨로우즈(401)의 공기압(Wb)을 기초로, 가변축 제어기(203)를 통해 가변축(201)을 하강하면서 초기 가변축 하중을 생성할 수도 있고 사용자 직접 제어를 통해 초기 가변축 하중 상태를 확인할 수도 있다.
가변축(201)이 하강하여 가변축 하중(Wa)이 생기면 인접축 하중은 그만큼 줄어든다. 초기 가변축 하중은 임의로 설정할 수 있는데, 가변축이 작동하지 않는 공차 상태에서의 인접축(예, 후축) 하중과 같거나 작은 값이어야 한다. 초기 가변축 하중이 공차 상태의 인접축 하중을 초과하면 인접축 하중이 제로(0)가 되면서 들리게 되어 상관 관계를 얻을 수 없기 때문이다. 공차 상태의 인접축 하중 또는 초기 가변축 하중은 초기 설정값으로 계산부(210)에 미리 설정할 수 있다.
<n차에 걸친 가변축 하중의 감소 또는 인접축 하중의 증가: S403 내지 S407>
가변축 하중(Wa)을 n차에 걸쳐 반복적으로 감소시키면서, 계산부(210)에게 제공하고, 계산부(210)는 공기압 센서(205)를 이용하여 가변축 하중(Wa)을 계산하고 측정단말(207)은 가변축 하중(Wa)가 감소할 때마다 차축의 변형량을 측정하여 계산부(210)에게 제공한다. 여기서, n은 n>0인 자연수이다. 가변축 하중(Wa)을 줄이면, 인접축 하중은 수학식 3에 의해 비례적으로 증가한다. 마찬가지로, 계산부(210)는 가변축 제어기(203)를 제어하면서, 공기압 센서(205)가 측정한 에어벨로우즈(401)의 공기압(Wb)을 기초로 가변축 하중(Wa)을 제어할 수 있다.
예를 들어, 가변축 하중을 전체 3차(n=3)에 걸쳐 줄인다고 할 때, 1차로 가변축 하중(Wa)을 300kg 감소하면 인접축 하중(Wr)은 수학식 3에 의해 300x(L4/L2) 만큼 증가한다. 다시 2차로 가변축 하중(Wa)을 400kg 감소하면, 인접축 하중(Wr)은 400x(L4/L2) 만큼 증가한다. 3차로 가변축 하중(Wa)을 500kg 감소하면, 인접축 하중(Wr)은 500x(L4/L2)만큼 증가한다.
한편, 각 단계의 가변축 하중(Wa)의 감소(인접축 하중의 증가) 크기는 동일해도 무방하지만 서로 다른 크기인 것이 바람직하다. 위의 예는 가변축 하중(Wa)을 점점 큰 값으로 감소하는 것이지만, 반대로 점점 작은 크기로 감소시켜도 무방하다.
<비례상수 K의 계산: S409>
계산부(210)는 n차에 걸친 가변축 하중의 조정(S403 내지 S407 단계)마다 가변축 하중의 변화량과 측정단말()이 측정한 차축 변형량을 구하여, n쌍의 가변축 하중의 변화량과 차축의 변형량 결과를 수학식 4에 적용하여 비례상수 K를 계산한다.
우선, 인접축 하중의 변화량은 수학식 3를 통해 구할 수 있다. 예를 들어, (L4/L2)값이 1.2 일 때, 인접축 하중의 변화량(ΔWr)과 그때 측정한 차축의 변형량이 다음의 표 1과 같다고 가정한다.
단계 인접축 하중의 변화량
(ΔWr= -ΔWa x L4/L2)
차축의 변형량
(거리, ㎛)
S403 -(-300 x 1.2) = 360 203
S405 -(-400 x 1.2) = 480 265
S407 -(-500 x 1.2) = 600 321
계산부(210)는 수학식 4에 표 1의 측정 값들을 도입하여 비례상수 K를 구하며, 통상 최소자승법(Least square method)을 이용해 계산할 수 있다. (L4/L2)가 1.2인 표 1의 경우, 비례상수 K는 2.0321 (Kg/㎛)가 된다. 이상의 방법으로, 차량의 하중의 변화에 대한 차축 변형량 사이의 비례상수 K를 쉽게 구할 수 있다.
동종차량에 대해 하중과 미세 변형량 사이의 1차 선형근사식의 기울기에 해당하는 비례상수는 유사할 것이므로, 동종 차량 3대 이상에 대한 측정을 통해, 각 차량별로 통계적인 비례상수 K를 구할 수 있다.
반대로, 동일한 차량 모델이라도, 화물 차량은 특장차량으로 변경되면서(윙바디, 탱크로리, 집게차 등) 상부 구조가 변경될 수 있고, 변경된 상부 구조는 차축의 강성에 영향을 준다. 따라서, 구조변경 후에 변경 전과 다른 변형량 대비 하중 특성 곡선을 보일 수 있다. 이런 경우에도, 본 발명을 적용하여, 차량의 상부 구조의 변화로 인한 변형량-하중 사이의 비례상수 K를 용이하게 구하여 보정할 수 있다.
또한, 비례상수 K는 동일한 차축에 대해서도 그 위치, 특히 좌우가 다른 값으로 계산될 수 있다. 차축의 하우징은 비대칭 구조로 형상이 복잡하고, 내부에 여러 구동력을 전달하는 부품들이 조립되어 있기 때문에, 동일한 차축에 대해서도 서로 다른 위치에 설치된 측정단말마다 비례상수 K를 다시 계산할 필요가 있다.
차량 하중의 계산
계산부(210)는 다음의 수학식 5를 이용하여 적재물 적재된 상태의 차량의 하중(W)을 계산한다. 여기서, Wro는 인접축의 공차 하중이고 ΔX는 차축의 변형량이다.
Figure PCTKR2021001365-appb-img-000006
예를 들어, 비례상수 K가 2.0321이고 공차시 인접축 축중이 3000kg인 경우에 인접축 하중은 측정단말(207)의 측정값을 이용하여 계산할 수 있다. 측정단말(207)이 측정한 인접축의 변형량(ΔX)이 200㎛이면 인접축 하중은 3000+2.0321(kg/㎛) x 200 = 3406.42kg으로 계산되고, 인접축 변형량(ΔX)이 400㎛로 측정되면 인접축 하중은 3000+2.0321(kg/㎛) x 400 = 3812.84 kg으로 계산된다. 계산부(210)는 오차범위와 사용자의 시안성을 고려해 10자리에서 반올림해서 3410kg, 3810kg으로 표시부(미도시)에 표시할 수 있다.
나아가, 차축(10)의 좌우에 제1 측정단말(207a)과 제2 측정단말(207b)을 설치하여 차축 변화량을 차축(10)의 좌우에서 각각 측정함으로써 더욱 정확한 하중을 계산할 수도 있다. 이때, 각 측정단말(207)에서의 비례상수는 도 4의 방법을 이용해 개별적으로 구해야 한다. 인접축의 좌측 부분에 제1 측정단말(207a)과 우측 부분에 제2 측정단말(207b)을 설치한 경우에 인접축 하중은 다음의 수학식 6과 같다.
Figure PCTKR2021001365-appb-img-000007
여기서, 제1 측정단말(207a)의 비례상수를 Ka, 제2 측정단말(207b)의 비례상수를 Kb이라 한다. ΔXa는 제1 측정단말(207a)이 측정한 차축의 변형량이고, ΔXb는 제2 측정단말(207b)이 측정한 차축의 변형량이다.
이를 위해, 계산부(210)는 차량 제원정보와, 가변축 제원정보 및 가변축 제어조건 등을 저장하고 관리할 수 있다. 차량 제원정보에는 공차상태의 축별 하중, 축간 거리, 차량 중량, 최대 적재량, 차량 총중량, 가변축의 형태 등을 포함하고, 가변축 제원 정보에는 가변축(201)에 적용된 에어벨로우즈(401)의 사양 정보와 가변축의 구조물 치수 등이 포함된다. 가변축 제어 조건에는 차량 축당 최대 설계하중, 가변축 상승/하강 시점, 인접축과 가변축의 하중 배분 비율 등을 포함한다. 이런 정보 중 일부는 사용자가 입력할 수도 있다.
실시 예: 측정단말 (차축의 두 지점 사이의 거리의 변형량 측정)
측정단말(207)은 차축(10)의 가로 방향의 두 개 지점 사이에 설치되어 횡 방향의 변형량 측정할 수 있으며, 그 횡 방향 변형을 측정하기 할 수 있는 측정단말(500)이 도 5에 도시되어 있다. 도 5를 참조하면, 측정단말(500)은 측정부(510), 제1 고정부(530) 및 제2 고정부(550)를 포함한다.
측정부(510)는 제1 고정부(530)와 제2 고정부(550) 사이를 연결하도록 배치되어 차축(10)의 가로방향(횡축 방향)으로 인장된 거리를 측정한다. 앞서 설명한 것처럼, 하중 계산에 사용되는 것은 차축(10)의 어떠한 변형이어도 무방하기 때문에, 측정부(510)가 차축(10)이나 수평면에 대해 특정한 방향으로 고정될 필요는 없다.
제1 고정부(530)와 제2 고정부(550)가 차축(10)의 일 측에 고정되는 것과 반대로, 측정부(510)는 차축(10)으로부터 이격되어 설치되는 것이 좋다. 측정부(510)는 차축(10)의 아랫부분이 하중에 의해 인장된 크기를 측정하는 것이므로, 실제로 휘면서 인장되는 차축(10)으로부터 이격될수록 실제 인장 크기를 증폭하는 효과가 있기 때문이다.
측정부(510)의 측정수단으로는 전기 마이크로미터 센서나 로드셀(Load Cell)을 사용할 수 있다. 그 중 로드셀은 물체의 하중이나 외부에서 가해지는 힘 등을 측정하기 위한 센서 조립체로서, 외력에 의해 비례적으로 변형되는 탄성체와 이를 전기적 신호로 바꾸어주는 스트레인 게이지(Strain Guage)를 이용한 하중감지센서(Sensor)이다. 측정부(510)로 로드셀을 사용할 경우에, 내부 측정수단의 움직임은 스트레인 게이지에 의해 전기 신호로 바뀐다.
측정부(510)는 계산부(210)와 연결된 통신수단을 포함하여, 측정된 값을 계산부(210)에 제공한다.
제1 고정부(530)와 제2 고정부(550)는 차축(10)의 비교적 하부에 설정된 제1 지점과 제2 지점(예컨대, 도 1의 P1, P2)에 측정부(510)를 연결하는 역할을 한다. 제1 고정부(530)와 제2 고정부(550)는 설치하는 위치에 따라 다양한 형태로 구현될 수 있다.
도 6의 예에서, 제1 지점은 차량 하중의 작용점인 U볼트 플레이트(61)의 하단으로 설정하고, 제2 지점은 차축(10)에 고정되어 있는 쇼크 업쇼버(63) 하단부로 설정된 예이다. 제1 고정부(530)의 일단의 측정부(510)에 연결되고 타단은 제1 지점에 용접 등의 방법으로 고정된다. 마찬가지로, 제2 고정부(550)의 일단의 측정부(510)에 연결되고 타단은 제2 지점에 연결된다. 제2 고정부(550)의 타단(551)은 제2 지점인 쇼크 옵쇼버(63)에 연결하기 위해, 링 형상으로 구현되어 볼트로 고정된다.
이상에서는 본 발명의 바람직한 실시 예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시 예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어서는 안 될 것이다.

Claims (11)

  1. 차량용 하중을 측정하는 방법에 있어서,
    공차상태에서 가변축의 가변축 하중을 바꾸어 상기 가변축에 인접한 인접축이 지지하는 인접축 하중을 바꾸고, 하중이 바뀐 상기 인접축에 설치된 측정단말이 차축 변형량을 측정하는 단계. 상기 차축 변형량은 상기 인접축이 하중에 의해 휠 때 생기는 변형 중에서 크기를 측정할 수 있는 것임; 및
    계산부가 상기 가변축의 에어밸로우즈에 설치된 공기압 센서를 이용하여 상기 가변축 하중을 계산하고 상기 측정단말로부터 상기 차축 변형량을 읽어와, 상기 차축 변형량과 인접축 하중의 변화량 사이의 비례상수 K를 다음의 수학식을 이용하여 계산하는 단계를 포함하되,
    Figure PCTKR2021001365-appb-img-000008
    상기 L2는 공차 상태에서 전축과 상기 인접축간의 거리, L4는 상기 전축과 상기 가변축간 거리, ΔX은 차축 변형량, 그리고 ΔWa은 가변축 하중의 변화량인 것을 특징으로 하는 차량용 하중을 측정하는 방법.
  2. 제1항에 있어서,
    상기 가변축 하중을 반복적으로 바꾸면서, 상기 차축 변형량을 측정하는 단계를 n차 반복하는 단계를 더 포함하고,
    상기 계산부는 상기 n차 반복하는 단계마다 구한, n쌍의 상기 가변축 하중과 차축 변형량 결과를 기초로 상기 비례상수 K를 계산하는 것을 특징으로 차량용 하중을 측정하는 방법.
  3. 제1항에 있어서,
    상기 계산부가
    차량에 적재물이 적재된 상태에서 상기 측정단말이 측정한 차축 변형량에 상기 비례상수 K를 곱한 다음 상기 인접축의 공차 하중을 더함으로써, 상기 적재물이 적재된 상태의 인접축 하중을 계산하는 단계를 더 포함하는 것을 특징으로 하는 차량용 하중을 측정하는 방법.
  4. 제3항에 있어서,
    상기 차축의 좌측에 상기 측정단말인 제1 측정단말을 설치하고 상기 차축의 우측에 상기 측정단말인 제2 측정단말을 설치한 경우에, 상기 계산부가 공차상태에서 상기 제1 측정단말을 이용하여 비례상수 Ka를 계산하고 상기 제2 측정단말을 이용하여 비례상수 Kb를 계산하는 단계를 더 포함하고,
    상기 인접축 하중을 계산하는 단계는, 상기 제1 측정단말이 제공하는 차축 변형량에 상기 비례상수 Ka를 곱한 값과 상기 제2 측정단말이 제공하는 차축 변형량에 상기 비례상수 Kb를 곱한 값의 평균에 상기 인접축의 공차 하중을 더하여 상기 인접축 하중을 계산하는 것을 특징으로 하는 차량용 하중을 측정하는 방법.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서,
    상기 측정단말은 상기 차축이 하중에 의해 휠 때 축방향으로 인장되는 크기를 측정하는 것임을 특징으로 하는 차량용 하중을 측정하는 방법.
  6. 차량용 하중 측정장치에 있어서,
    가변축의 에어 밸로우즈에 설치된 공기압 센서;
    상기 가변축에 인접한 인접축에 설치되어, 상기 인접축이 하중에 의해 휠 때 생기는 변형 중에서 크기를 측정할 수 있는 차축 변형량 중 하나를 측정하는 측정단말; 및
    공차상태에서 상기 공기압 센서를 이용하여 상기 가변축 하중을 계산하고 상기 측정단말로부터 상기 차축 변형량을 읽어와, 상기 차축 변형량과 인접축 하중의 변화량 사이의 비례상수 K를 다음의 수학식을 이용하여 계산하는 계산부를 포함하되,
    Figure PCTKR2021001365-appb-img-000009
    상기 L2는 공차 상태에서 전축과 상기 인접축간의 거리, L4는 상기 전축과 상기 가변축간 거리, ΔX은 차축 변형량, 그리고 ΔWa은 가변축 하중의 변화량인 것을 특징으로 하는 차량용 하중 측정장치.
  7. 제6항에 있어서,
    상기 계산부는,
    공차상태에서 상기 가변축 하중이 다시 변경될 때 상기 공기압 센서를 이용하여 상기 가변축 하중을 계산하고 상기 측정단말로부터 상기 차축 변형량을 읽어오는 과정을 n차 반복한 다음, n쌍의 상기 가변축 하중과 차축 변형량 결과를 기초로 상기 비례상수 K를 계산하는 것을 특징으로 차량용 하중 측정장치.
  8. 제7항에 있어서,
    상기 계산부는,
    차량에 적재물이 적재된 상태에서 상기 측정단말이 측정한 차축 변형량에 상기 비례상수 K를 곱한 다음 상기 인접축의 공차 하중을 더함으로써, 상기 적재물이 적재된 상태의 인접축 하중을 계산하는 것을 특징으로 하는 차축 하중 측정장치.
  9. 제8항에 있어서,
    상기 차축의 좌측에 상기 측정단말인 제1 측정단말을 설치하고, 상기 차축의 우측에 상기 측정단말인 제2 측정단말을 설치한 경우에, 상기 계산부는 상기 계산부가 공차상태에서 상기 제1 측정단말을 이용하여 비례상수 Ka를 계산하고 상기 제2 측정단말을 이용하여 비례상수 Kb를 계산하고,
    상기 적재물이 적재된 상태의 인접축 하중은 상기 제1 측정단말이 제공하는 차축 변형량에 상기 비례상수 Ka를 곱한 값과 상기 제2 측정단말이 제공하는 차축 변형량에 상기 비례상수 Kb를 곱한 값의 평균에 상기 인접축의 공차 하중을 더하여 상기 인접축 하중을 계산하는 것을 특징으로 하는 차축 하중 측정장치.
  10. 제7항 내지 제9항 중 어느 한 항에 있어서,
    상기 측정단말은 상기 차축이 하중에 의해 휠 때 축방향으로 인장되는 크기를 측정하는 것임을 특징으로 하는 차축 하중 측정장치.
  11. 제10항에 있어서,
    상기 측정단말은;
    일단이 상기 차축의 일 지점에 고정된 제1 고정부;
    일단이 상기 차축의 다른 지점에 고정된 제2 고정부; 및
    상기 차축의 아래에 상기 차축과 이격된 상태로 상기 제1 고정부와 제2 고정부 사이에 연결되어 상기 차축이 축방향으로 인장되는 크기를 측정하는 측정부를 포함하는 것을 특징으로 하는 차축 하중 측정장치.
PCT/KR2021/001365 2020-07-21 2021-02-02 차축이 지지하는 하중을 측정하는 차량용 하중 측정장치 및 그 방법 WO2022019422A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0090610 2020-07-21
KR1020200090610A KR102211870B1 (ko) 2020-07-21 2020-07-21 차축이 지지하는 하중을 측정하는 차량용 하중 측정장치 및 그 방법

Publications (1)

Publication Number Publication Date
WO2022019422A1 true WO2022019422A1 (ko) 2022-01-27

Family

ID=74571667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/001365 WO2022019422A1 (ko) 2020-07-21 2021-02-02 차축이 지지하는 하중을 측정하는 차량용 하중 측정장치 및 그 방법

Country Status (2)

Country Link
KR (1) KR102211870B1 (ko)
WO (1) WO2022019422A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220144897A (ko) 2021-04-20 2022-10-28 주식회사 알티엠테크 화물차의 가변축 제어용 축중량 측정 방법 및 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004019624B3 (de) * 2004-04-22 2005-12-22 Federal-Mogul Friction Products Gmbh Achslastmessgerät für Achsen mit pneumatischer und mechanischer Federung
KR100806929B1 (ko) * 2006-01-10 2008-02-22 정한상 차량의 하중 측정 방법 및 장치
KR101246941B1 (ko) * 2012-05-17 2013-03-25 김창율 차량용 하중감지장치
KR101440239B1 (ko) * 2013-07-01 2014-10-30 김창율 차량의 가변축 제어방법 및 그 제어장치
KR102129946B1 (ko) * 2019-09-24 2020-07-03 (주)유디엔에스 화물 차량의 중량 측정 시스템 및 그 방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100653737B1 (ko) * 2005-09-13 2006-12-06 (주)에이티맥스 차량의 하중 측정 방법 및 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004019624B3 (de) * 2004-04-22 2005-12-22 Federal-Mogul Friction Products Gmbh Achslastmessgerät für Achsen mit pneumatischer und mechanischer Federung
KR100806929B1 (ko) * 2006-01-10 2008-02-22 정한상 차량의 하중 측정 방법 및 장치
KR101246941B1 (ko) * 2012-05-17 2013-03-25 김창율 차량용 하중감지장치
KR101440239B1 (ko) * 2013-07-01 2014-10-30 김창율 차량의 가변축 제어방법 및 그 제어장치
KR102129946B1 (ko) * 2019-09-24 2020-07-03 (주)유디엔에스 화물 차량의 중량 측정 시스템 및 그 방법

Also Published As

Publication number Publication date
KR102211870B1 (ko) 2021-02-03

Similar Documents

Publication Publication Date Title
WO2022019422A1 (ko) 차축이 지지하는 하중을 측정하는 차량용 하중 측정장치 및 그 방법
KR102390163B1 (ko) 차량에 설치하여 차축의 하중을 측정하는 장치 및 그 방법
CN105865598A (zh) 车辆动态实时监控系统及监控方法
CN115655641B (zh) 一种用于风洞天平校准的高精度加载施力装置及方法
KR20020033068A (ko) 센싱소자의 고정구조
CN101229891A (zh) 电梯的承载负重检测装置
WO2022114429A1 (ko) 차축이 지지하는 하중을 측정하는 차량용 하중 측정장치와 그 방법, 그리고 하중 측정장치를 구비한 가변축제어시스템
CN114563069A (zh) 一种综合高精度智能车辆实时称重方法及其系统
WO1993006442A1 (en) Axle loading measuring device for trucks
KR100685006B1 (ko) 과적 차량 단속 방법 및 시스템
KR102498443B1 (ko) 광센서를 이용한 차량의 하중 측정용 측정단말 및 그 측정단말을 구비한 하중 측정장치
CN206446396U (zh) 一种空气悬挂系统及基于该系统的车载称重装置
CN219914616U (zh) 一种便于调节的电子汽车衡
CN220912213U (zh) 一种检测车辆桥架形变的桥式力传感器
CN220525104U (zh) 一种具有辅助支撑功能的电子汽车衡
CN113959545B (zh) 一种用s型柱式拉压传感器检测的自卸半挂车称重装置
KR102204868B1 (ko) Iso 11783호환 차량의 중량 모니터링시스템
RU35004U1 (ru) Измерительная система
CN211262445U (zh) 一种车载称重结构
JP2591665Y2 (ja) 車両の荷重測定装置
CN112758101B (zh) 空气悬架系统、车辆和测试车辆载重量的称重方法
KR102242991B1 (ko) 틸팅센서를 기반으로 한 iso 11783호환 차량의 중량측정시스템
CN2526305Y (zh) 一种压力差分方式的电梯称重装置
KR20020044522A (ko) 화물 자동차용 적재량 측정 장치
CN112326119A (zh) 一种车辆质心高度测量装置和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21845209

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21845209

Country of ref document: EP

Kind code of ref document: A1