WO2022017419A1 - 一种激光雷达校准装置和方法 - Google Patents
一种激光雷达校准装置和方法 Download PDFInfo
- Publication number
- WO2022017419A1 WO2022017419A1 PCT/CN2021/107644 CN2021107644W WO2022017419A1 WO 2022017419 A1 WO2022017419 A1 WO 2022017419A1 CN 2021107644 W CN2021107644 W CN 2021107644W WO 2022017419 A1 WO2022017419 A1 WO 2022017419A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- spot image
- laser beam
- light spot
- screen
- lidar
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 37
- 238000013507 mapping Methods 0.000 claims description 8
- 238000012545 processing Methods 0.000 claims description 7
- 238000010586 diagram Methods 0.000 description 8
- 238000012986 modification Methods 0.000 description 6
- 230000004048 modification Effects 0.000 description 6
- 238000004364 calculation method Methods 0.000 description 5
- 238000012937 correction Methods 0.000 description 5
- 238000006073 displacement reaction Methods 0.000 description 5
- 230000009286 beneficial effect Effects 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000004590 computer program Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000010977 jade Substances 0.000 description 1
- 238000010330 laser marking Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/497—Means for monitoring or calibrating
Definitions
- This specification relates to the field of laser technology, and in particular, to a laser radar calibration device and method.
- Lidar detects the location (such as distance and angle), motion state (such as speed, vibration and attitude) and shape of the environment and objects within the target range by emitting laser light to the target range or object and receiving the reflected light from the object. . Due to possible errors in the design and manufacture of mechanical components, the lidar itself may have certain errors. Lidar has errors, which may lead to deviations in object data or information obtained when detecting objects.
- the device includes: a lidar carrier for carrying the lidar to be calibrated; a coarse positioning module for acquiring a first spot image of the laser beam of the radar to be calibrated; a movable fine positioning module for The first spot image adjusts the second shooting position and obtains the second spot image of the laser beam, the resolution of the second spot image is higher than that of the first spot image; the control module is configured to based on the second spot image
- the spot image determines a target position of the spot in a preset coordinate system; and, at least based on the target position, determines an actual exit angle of the laser beam.
- the lidar carrier includes a controllable 360-degree rotating platform, which is used to control the lidar to be calibrated to rotate around a rotation axis in a vertical direction, so as to output different horizontal fields of view of the lidar to be calibrated
- the module is calibrated.
- the coarse positioning module includes a first camera and a receiving screen; the receiving screen is used for receiving the laser beam; the first camera is used for photographing the laser beam to form on the receiving screen spot to obtain the first spot image.
- the receiving screen includes a liftable screen.
- the fine positioning module includes: a second camera and a photosensitive screen, the second camera and the photosensitive screen are mounted on a guide rail; the guide rail is used for the second camera and the photosensitive screen The screen moves in the plane of the receiving screen or in a plane parallel to the receiving screen to provide a motion track, so as to position the fine positioning module to the second shooting position; the photosensitive screen is used for receiving the laser light beam; the second camera is used for photographing the light spot formed by the laser beam on the photosensitive screen, so as to obtain the second light spot image.
- the guide rail includes a first guide rail arranged along a horizontal edge of the receiving screen and a second guide rail arranged vertically relative to the first guide rail; the positioning accuracy of the guide rail is higher than 10 microns.
- the apparatus further includes a distance adjuster for adjusting the distance between the lidar stage and the receiving screen.
- the distance adjuster includes at least a track and a rangefinder.
- the device further includes a detachable origin definition module for defining a spatial center origin of the lidar calibration device, where the spatial center origin is when the actual exit angle of the laser beam is 0 degrees The mapping position on the receiving screen.
- the origin definition module includes a self-level laser reticle and an attitude adjustment pan/tilt; the self-level laser reticle is used to define the position of the origin of the space center, and the attitude adjustment pan/tilt is used for defining the position of the origin of the space center. To adjust the position of the self-leveling laser reticle.
- control module in order to determine the target position of the light spot in the preset coordinate system based on the second light spot image, is further configured to: acquire second position information of the light spot based on the second light spot image ; determining the target position of the light spot in the preset coordinate system based on the second position information of the light spot and the second shooting position.
- the method includes: acquiring a first spot image of a laser beam emitted by a laser radar to be calibrated; determining a shooting position of a second spot image of the laser beam based on the first spot image and acquiring a second spot image, the first spot image
- the resolution of the two-spot image is higher than that of the first spot image
- the target position of the spot in the preset coordinate system is determined based on the second spot image
- the target position of the laser beam is determined at least based on the target position Actual exit angle.
- acquiring the first spot image of the laser beam emitted by the lidar to be calibrated includes acquiring the first spot image of the laser beam emitted by the lidar to be calibrated through a coarse positioning module; wherein the The coarse positioning module includes a first camera and a receiving screen; the receiving screen is used to receive the laser beam; the first camera is used to photograph the light spot formed by the laser beam on the receiving screen to obtain the First spot image.
- the coarse positioning module includes a first camera and a receiving screen; the receiving screen is used to receive the laser beam; the first camera is used to photograph the light spot formed by the laser beam on the receiving screen to obtain the First spot image.
- the determining the shooting position of the second spot image of the laser beam based on the first spot image and acquiring the second spot image includes: processing the first spot image to determine the spot Position data on the receiving screen; move the fine positioning module based on the position data, so that the fine positioning module can acquire the second spot image; wherein, the fine positioning module includes: a second camera and a photosensitive The second camera and the photosensitive screen are installed on the guide rail; the guide rail is used for the second camera and the photosensitive screen to be in the plane of the receiving screen or parallel to the receiving screen.
- In-plane movement provides a motion track for positioning the fine positioning module to the shooting position of the second spot image; the photosensitive screen is used for receiving the laser beam; the second camera is used for shooting the laser beam in The light spot formed on the photosensitive screen to obtain the second light spot image.
- the determining the target position of the light spot in the preset coordinate system based on the second light spot image includes: acquiring second position information of the light spot based on the second light spot image; The second position information is superimposed with the shooting position of the second light spot image to obtain the target position of the light spot in the preset coordinate system; wherein, the second position information includes the position data of the light spot in the photosensitive screen , the shooting position is the position data of the second camera and the photosensitive screen on the plane where the receiving screen is located, and the preset coordinate system is established based on the receiving screen.
- the method further includes: defining a spatial center origin of the laser radar to be calibrated; the spatial center origin is a mapping position on the receiving screen when the actual exit angle of the laser beam is 0 degrees.
- the defining the spatial center origin of the lidar to be calibrated includes: adjusting the position of the origin defining module so that two mutually perpendicular planes projected by the origin defining module are projected on the lidar to be calibrated The intersection of the two mutually perpendicular lines coincides with the laser exit port of the lidar to be calibrated; define the position information of the intersection of the two mutually perpendicular lines projected on the receiving screen by the two mutually perpendicular planes is the position information of the origin of the space center.
- the determining the actual exit angle of the laser beam based on at least the target position includes: determining a first laser beam based on the target position and the position information of the spatial center origin in the preset coordinate system The length of one side is determined based on the distance from the laser exit port of the laser radar to be calibrated to the preset coordinate plane; the length of the first side and the length of the second side are processed by an arctangent function to determine the The actual exit angle of the laser beam.
- FIG. 1 is a schematic diagram of an exemplary lidar calibration scenario shown in accordance with some embodiments of the present specification
- FIG. 2 is a schematic diagram of an exemplary lidar calibration apparatus according to some embodiments of the present specification
- 3A and 3B are schematic diagrams of exemplary fine positioning modules according to some embodiments of the present specification.
- FIG. 4 is an exemplary flowchart of a lidar calibration method according to some embodiments of the present specification
- FIG. 5 is a schematic diagram of an exemplary lidar calibration method shown in accordance with some embodiments of the present specification.
- system means for distinguishing different components, elements, parts, parts or assemblies at different levels.
- device means for converting signals into signals.
- unit means for converting signals into signals.
- module means for converting signals into signals.
- modules or units in systems according to embodiments of the present specification, any number of different modules or units may be used and run on clients and/or servers.
- the modules are illustrative only, and different aspects of the systems and methods may use different modules.
- FIG. 1 is a schematic diagram of an exemplary lidar calibration scenario shown in accordance with some embodiments of the present specification.
- the laser radar calibration scene 100 may include a laser radar to be calibrated 110 , a receiving screen 120 , a first camera 130 and an origin definition module 140 .
- the lidar 110 to be calibrated may be used to emit a laser beam.
- the lidar 110 to be calibrated may be placed on the lidar stage 115.
- the laser radar 110 to be calibrated can emit laser beams with different horizontal deflection angles and elevation angles, that is, laser beams with different deflection angles can be respectively emitted in the horizontal direction and the vertical direction.
- the to-be-calibrated lidar 110 can be placed on an object such as a table top, a stand, etc., which can raise the height of the lidar. By placing the lidar to be calibrated at a high place, the lidar to be calibrated can emit laser beams with different angular ranges in the vertical plane.
- the lidar 110 to be calibrated may include, but is not limited to, a pulsed lidar, a continuous wave lidar, and the like.
- the receiving screen 120 can be used to receive the laser beam emitted by the laser radar 110 to be calibrated. When the emitted laser beam reaches the receiving screen, a light spot can be formed on the receiving screen.
- the plane position of the receiving screen may be calibrated when the receiving screen is installed to ensure that the plane of the receiving screen is absolutely vertical relative to the ground.
- the first camera 130 may be used to capture a first spot image of the laser beam on the receiving screen 120 .
- the first camera 130 may include, but is not limited to, an optical camera or the like.
- the origin definition module 140 may be used to define the spatial center origin in the lidar calibration scene 100 .
- the origin of the space center is the mapping position on the receiving screen when the actual exit angle of the laser beam is 0 degrees.
- the line connecting the origin of the space center and the laser exit port of the laser radar to be calibrated is parallel to the ground and perpendicular to the receiving screen.
- the position of the origin definition module 140 can be adjusted so that two mutually perpendicular planes projected by the origin definition module 140 (the planes where J and W are respectively located in FIG. 1 ) are projected on the two mutually perpendicular planes on the lidar 110 to be calibrated.
- the intersection point P of the vertical lines coincides with the laser exit port S of the laser radar 110 to be calibrated, wherein one of the two mutually perpendicular planes is perpendicular to the ground, and the other plane is parallel to the ground; the origin definition module 140 projects a
- the position information of the intersection Q of the two mutually perpendicular planes projected on the receiving screen 120 is the position information of the origin O of the space center.
- the origin definition module may include a self-leveling laser reticle and an attitude adjustment pan/tilt.
- the self-leveling laser reticle can be used to project two mutually perpendicular planes, and one of the two mutually perpendicular planes is horizontal (that is, the plane is parallel to the ground), and the other is vertical (that is, the plane is perpendicular to the ground), the attitude adjustment pan/tilt can be used to adjust the position of the self-level laser reticle so that it is aligned with the exit port of the laser radar to be calibrated, and the self-level laser reticle projects
- the two mutually perpendicular horizontal and vertical planes are perpendicular to the vertical edge and horizontal edge of the receiving screen respectively (that is, the connection line between the horizontal laser marking instrument and the laser exit port of the laser radar to be calibrated and the receiving screen vertical).
- the origin definition module 140 may be configured as a detachable structure in the laser alignment device. In some alternative embodiments, the origin definition module may be any device or device capable of performing origin calibration, which is not limited in this specification.
- the origin definition module 140 may define the spatial center origin in the lidar calibration scene 100 .
- the origin of the spatial center is the mapping position on the receiving screen when the actual exit angle of the laser beam is 0 degrees, for example, point Q in the figure.
- a first spot image of the laser beam on the receiving screen 120 can be captured by the first camera 130 .
- the coordinate position of the light spot relative to the origin can be obtained.
- the distance between the planes parallel to the receiving screen can be calculated to obtain the actual exit angle of the laser beam.
- the error angle of the laser beam can be known, and the laser radar can be calibrated based on the error angle.
- LiDAR can emit multiple laser beams at different angles (such as -60 degrees to +60 degrees in the vertical plane, or -45 degrees to 45 degrees in the horizontal plane), in order to calibrate the laser beams at various angles,
- the camera's field of view needs to be wide enough to cover the wider angle of the laser beam.
- the shooting field of view and edge imaging distortion of an optical camera are usually a pair of contradictions. If a wide-angle camera lens is used to cover a sufficient field of view, the edge of the captured image may be geometrically distorted, resulting in the measurement of a larger exit angle ( For example, when the laser beam is 80 degrees), the light spot in the obtained light spot image is distorted, which affects the calculation of the actual exit angle of the laser beam.
- the angle difference between the emitted multiple laser beams is small, and the measurement accuracy of the lidar calibration device may be affected by the resolution of the camera.
- the camera resolution is 5 million pixels, it can only provide millimeter-level resolution at a two-meter line of sight.
- the spots corresponding to the laser beams at different angles are The positions of the light spots in the image may be the same, so that the calculation results of the actual exit angles corresponding to laser beams with different specified exit angles may be the same, which affects the accuracy of calibration.
- the embodiments of this specification provide a laser radar calibration device, in which a movable fine positioning module is set at the receiving screen, and a higher-resolution spot image can be obtained.
- the laser radar calibration device provided in the embodiments of this specification can obtain the position data of the light spot on the receiving screen based on the first spot image of the laser beam obtained by the first camera, and move the fine positioning module based on the position data to adjust the fine positioning module.
- a second spot image with a higher resolution than the first spot image is obtained at close range. Based on the second spot image, more accurate spot position information can be obtained, thereby improving the precision and accuracy of lidar calibration.
- FIG. 2 is a schematic diagram of an exemplary lidar calibration apparatus shown in accordance with some embodiments of the present specification.
- the lidar calibration apparatus 200 may include a lidar carrier 210 , a coarse positioning module 220 and a fine positioning module 230 .
- the lidar carrier 210 can be used to carry the lidar to be calibrated.
- the lidar stage 210 may include a controllable 360-degree rotating platform 210-1.
- the controllable 360-degree rotating platform 210-1 can be used to control the lidar to be calibrated to rotate around a vertical axis, so as to calibrate the outgoing modules of different horizontal fields of view of the lidar to be calibrated. For example, if the laser radar to be calibrated consists of four emission modules covering a 90-degree horizontal field of view, when calibrating the laser radar, the controllable 360-degree rotating platform 210-1 can be rotated horizontally to 0 degrees and 90 degrees, respectively.
- the horizontal field of view of the exit module of the laser radar to be calibrated can be any angle, for example, a 45-degree horizontal field of view; correspondingly, the controllable 360-degree rotating platform can be based on the horizontal field of view angle of the exit module of the laser radar to be calibrated Rotation at different horizontal angles is not limited in this manual.
- the coarse positioning module 220 may be used to obtain the first spot image of the laser beam of the laser radar to be calibrated. A rough exit angle of the laser beam emitted by the laser radar to be calibrated can be determined according to the first spot image, and based on the rough exit angle, the fine positioning module can be assisted to complete positioning.
- the coarse positioning module 220 may acquire a first spot image of the laser beam at the first shooting position.
- the first shooting position may be a fixed shooting position.
- the coarse positioning module 220 may include a receiving screen 220-1 and a first camera 220-2. The receiving screen 220-1 can be used to receive the laser beam emitted by the laser radar to be calibrated.
- the receiving screen 220-1 may include, but is not limited to, a liftable screen.
- the liftable curtain can be lowered before acquiring the first spot image, and raised after capturing the first spot image. Raising the receiving screen after acquiring the first spot image can prevent the receiving screen from affecting the acquisition of the second spot image.
- the angle between the plane of the receiving screen and the ground can be calibrated to ensure that the plane of the receiving screen is absolutely perpendicular to the ground; or based on the angle between the plane of the receiving screen and the ground, the laser Beam position calculation to improve the accuracy of laser alignment.
- the first camera 220-2 can be used to photograph the light spot formed by the laser beam on the receiving screen 220-1, so as to obtain a first light spot image of the laser beam.
- the first camera 220-2 may include, but is not limited to, a wide-angle camera and a non-wide-angle camera.
- the first camera 220-2 may be located on a bracket of the lidar carrier 210, such as being mounted on a bracket below the platform 210-1 on which the lidar carrier carries the lidar to be calibrated, and the receiving screen 220-1 It can be located at a certain distance from the lidar stage, opposite to the first camera 220-2, for example, the position shown in FIG. 2 .
- the fine positioning module 230 may be used to obtain the second spot image of the laser beam.
- the fine positioning module 230 may determine the second shooting position of the laser beam based on the position data of the light spot in the first light spot image, and acquire the second light spot image of the laser beam at the second shooting position.
- the second shooting position is the same as or close to the first position of the light spot (ie, the position of the light spot in the receiving screen).
- the resolution of the second spot image is higher than that of the first spot image.
- the second position information of the light spot can be obtained based on the second light spot image with a higher resolution, and the actual exit angle of the laser beam can be obtained by performing correlation processing on the second position information.
- the exit angle of the laser beam may include an azimuth angle and an elevation angle.
- the azimuth angle refers to the deflection angle in the horizontal direction parallel to the ground
- the pitch angle refers to the deflection angle in the vertical direction perpendicular to the ground.
- the fine positioning module 230 may be located in a plane where the receiving screen 220-1 is located and or in a plane parallel to the receiving screen. For more details about the fine positioning module 230, reference may be made to FIG. 3A and FIG. 3B and their related descriptions, which will not be repeated here.
- the lidar calibration apparatus 200 may further include a control module (not shown in the figure).
- the control module may be used to control and/or schedule various modules in the lidar calibration apparatus 200 (eg, lidar stage 210 , coarse positioning module 220 , fine positioning module 230 , etc.).
- the control module may control the coarse positioning module to acquire the first spot image.
- the control module may acquire position data of the light spot based on the first light spot image, and control the fine positioning module to move based on the position data.
- the control module may determine the actual exit angle of the laser beam.
- the control module may obtain second position information of the light spot based on the second light spot image, determine the target position of the light spot in the preset coordinate system based on the second position information and the corresponding second shooting position, and determine the target position of the light spot in the preset coordinate system based on the second position information and the to-be-calibrated
- the distance between the laser exit port of the lidar and the plane where the preset coordinate system is located determines the actual exit angle of the laser beam.
- the control module may include, but is not limited to, a programmable chip, a desktop computer, a notebook computer, a mobile phone terminal, an iPad mobile terminal, and the like.
- the lidar calibration apparatus 200 may further include a distance adjuster 250 .
- the distance adjuster 250 may be used to adjust the distance between the lidar stage 210 and the receiving screen 220-1. By adjusting the distance between the lidar carrier and the receiving screen, the lidar calibration device can be adapted to the calibration of lidars with various laser beam emission ranges.
- the distance adjuster may include a track and a rangefinder. The track can be used to move the lidar stage, and the rangefinder can be used to measure the moving distance of the lidar stage and/or the distance between the lidar stage and the receiving screen.
- the lidar calibration apparatus 200 may further include a detachable origin definition module (eg, the origin definition module 140 ).
- the lidar to be calibrated can be placed on the lidar carrier 210, and the distance between the lidar carrier and the receiving screen 220-1 can be adjusted through the distance adjuster 250 according to the performance parameters of the lidar to be calibrated , so that the receiving screen can receive all the laser beams emitted by the laser radar to be calibrated on the receiving screen plane.
- the receiving screen 220-1 is controlled to be in a down state. After the laser radar is calibrated to emit a laser beam with a specified exit angle, the first camera 220-2 is controlled to capture a first spot image of the laser beam, and the receiving screen is controlled to rise.
- the control module determines the second shooting position of the laser beam based on the position data of the light spot in the first light spot image, and controls the fine positioning module to move to the second shooting position to obtain the second light spot image of the laser beam. Based on the second position of the spot in the second spot image, the second shooting position, and the distance between the laser exit port of the laser radar to be calibrated and the fine positioning module, the actual exit angle of the laser beam can be determined. In some embodiments, the relative error angle of the laser beam can be obtained based on the actual exit angle of the laser beam and the specified exit angle of the laser beam when the laser radar to be calibrated emits the laser beam.
- 3A and 3B are schematic diagrams of exemplary fine positioning modules shown in accordance with some embodiments of the present specification.
- the fine positioning module 230 may include a second camera 235 and a photosensitive screen 237 .
- the second camera 235 and the photosensitive screen 237 can be mounted on guide rails, which can be used to provide for the second camera and the photosensitive screen to move in the plane of the receiving screen 220-1 or in a plane parallel to the receiving screen 220-1 sports track.
- the photosensitive screen can be used to receive the laser beam emitted by the laser radar to be calibrated, and the second camera can be used to photograph the light spot formed by the laser beam on the photosensitive screen to obtain a second light spot image.
- the guide rails may include a first guide rail arranged along a horizontal edge of the receiving screen, and a second guide rail arranged vertically relative to the first guide rail.
- the guide rails may include a first guide rail 233-1 arranged parallel to the horizontal edge of the receiving screen and a second guide rail 233-1 arranged perpendicular to the first guide rail 233-1 2.
- guide rails may be used to locate the position of the fine positioning module. The position of the fine positioning module corresponds to the second shooting position.
- the coordinate position of the second shooting position in the coordinate system established with the receiving screen can be obtained based on the displacement distance of the guide rail.
- the higher the positioning accuracy of the guide rail the more accurate the obtained position of the fine positioning module (ie, the second shooting position).
- the positioning accuracy of the guide rails is better than 10 microns.
- the displacement distance may be 10 microns, 8 microns, or 5 microns.
- the second camera and the photosensitive screen may be mounted on the rails.
- the second camera 235 and the photosensitive screen 237 can move up and down on the second guide rail 233-2, a certain position of the second guide rail is clamped with the first guide rail, and the second guide rail can be along the first guide rail. Move horizontally.
- the second camera and the photosensitive screen and the second guide rail, and between the second guide rail and the first guide rail may be screwed together, and the second camera is driven to rotate by the first motor to drive the second guide rail to rotate along the photosensitive screen.
- the second guide rail moves up and down, and the first guide rail is driven to rotate by the second motor to realize the left and right movement of the second guide rail along the first guide rail.
- the control module may control the first motor and the second motor based on the first position information of the light spot, so that the fine positioning model is moved to the vicinity of the first position of the light spot.
- the second camera and the photosensitive screen can be installed on the movable robot, the movable robot can move on the guide rail, the control module can determine the second shooting position based on the first position information of the light spot, and the coordinate information of the second shooting position It is sent to the movable robot, and the movable robot carries the second camera and the photosensitive screen and moves to the second shooting position based on the coordinate information.
- the distance between the second camera and the lidar stage is greater than the distance between the photosensitive screen and the lidar stage.
- the right screen of the photosensitive screen 237 can be parallel to the plane of the receiving screen 220 - 1 to receive the laser beam emitted by the laser radar to be calibrated, and the second camera 235 is located at a certain distance from the left screen of the photosensitive screen 237 , to capture the second spot image of the laser beam on the photosensitive screen.
- the photosensitive screen may be any screen capable of simultaneously presenting light spots on the left and right sides of the corresponding position of the photosensitive screen after receiving the laser beam.
- the performance parameters of the second camera may be the same or different from the performance parameters of the first camera.
- the distance between the second camera and the photosensitive screen in the fine positioning module is shorter, and the fine positioning module can move to the corresponding position of the laser beam, so the spot image of the laser beam with higher definition can be obtained. Based on the spot image, a more accurate spot position can be obtained, thereby improving the calibration accuracy of the lidar calibration device.
- FIG. 4 is an exemplary flowchart of a lidar calibration method 400 according to some embodiments of the present specification.
- Step 410 Acquire a first spot image of the laser beam emitted by the laser radar to be calibrated.
- the first spot image can reflect the position of the spot formed by the emitted laser beam on the receiving screen.
- the first spot image of the laser beam emitted by the laser radar to be calibrated may be acquired by the coarse positioning module.
- the coarse positioning module may include a first camera and a receiving screen. Wherein, the receiving screen may be used for receiving the laser beam, and the first camera may be used for photographing the light spot formed by the laser beam on the receiving screen, so as to obtain the first light spot image of the laser beam.
- the receiving screen may be a lift screen.
- the system may control the coarse positioning module to acquire the first spot image based on the measurement instruction.
- the control module can control the coarse positioning module to capture the first spot image of the laser beam based on the received measurement instruction.
- the first spot image of the laser beam may be acquired in other feasible manners, which is not limited in this specification.
- Step 420 Determine the shooting position of the second spot image of the laser beam based on the first spot image, and acquire the second spot image.
- the position data of the emitted laser beam in space for example, the position data of the laser beam relative to the receiving screen
- the second shooting position of the laser beam that is, the shooting position of the second spot image
- the second spot image of the laser beam can be acquired by the fine positioning module.
- the position data of the light spot on the receiving screen can be obtained by processing the first light spot image, and the fine positioning module can be moved based on the position data, so that the precise fine positioning module can obtain the second light spot image with higher resolution.
- the The coordinate position in the coordinate system is (50, 80), then a certain point in the fine positioning module (such as the intersection of the upper left corner of the photosensitive screen) can be used as the reference point, and the fine positioning module can be moved relative to the intersection of the upper left corner of the receiving screen, so that the photosensitive screen can receive laser light
- the beam is moved horizontally and vertically by 45 cm and 75 cm respectively (assuming that the initial position of the fine positioning module is the intersection position of the upper left corner of the receiving screen) to obtain the second light spot image.
- the photosensitive screen and the receiving screen can be adjusted to be in the same plane. After the shooting position of the second light spot image is determined, the receiving screen in the coarse positioning module can be raised so that the fine positioning module can move and be on the same plane. received the laser beam.
- the fine positioning module may include a second camera and a photosensitive screen.
- the second camera and the photosensitive screen can be installed on the guide rail, and the guide rail can be used to provide a movement track for the second camera and the photosensitive screen to move in the plane of the receiving screen or in a plane parallel to the receiving screen, so as to locate the fine positioning module to the shooting position of the second spot image.
- the photosensitive screen can be used to receive the laser beam; the second camera can be used to photograph the light spot formed by the laser beam on the photosensitive screen to obtain a second light spot image of the laser beam.
- the shooting position of the second light spot image may be determined based on the movement and displacement of the guide rail.
- Step 430 Acquire second position information of the light spot based on the second light spot image.
- the second position information of the light spot may be the coordinate position of the light spot in the second light spot image. In some embodiments, the second position information of the light spot may be the coordinate position of the light spot in the plane of the receiving screen. In some embodiments, the second position information of the light spot may be the coordinate position of the light spot in the photosensitive screen.
- the coordinate position of the light spot can be obtained in any feasible way, for example, tools such as OpenCv and MATLAB, which are not limited in this specification. For more content about the position information of the light spot, reference may be made to other parts of this specification (for example, FIG. 5 and related descriptions), which will not be repeated here.
- Step 440 Determine the target position of the light spot in the preset coordinate system based on the second position information and the shooting position of the second light spot image.
- the preset coordinate system may be determined based on the second position information and/or the shooting position of the second spot image.
- the coordinate system corresponding to the second position information may be determined as a preset coordinate system.
- the target position of the light spot in the preset coordinate system can be determined by a method of coordinate transformation.
- the coordinate system corresponding to the second position information is a coordinate system established based on the photosensitive screen (with the upper left corner of the photosensitive screen as the origin, and the horizontal edge of the photosensitive screen as the x-axis, The vertical edge is the y-axis), that is, the second position information includes the position data of the light spot in the photosensitive screen, and the coordinate system corresponding to the second shooting position is the coordinate system established based on the receiving screen, that is, the second shooting position is the second camera and the The position data of the photosensitive screen on the plane where the receiving screen is located, the second position and the second shooting position can be superimposed by means of coordinate superposition (assuming that the second shooting position is directly at the intersection point of the upper left corner of the photosensitive screen), and the preset coordinates of the light spot can be obtained. target location in the system. For more content about the target position of the light spot, reference may be made to other parts of this specification (for example, FIG. 5
- Step 450 Determine the actual exit angle of the laser beam based on the target position.
- the actual exit angle of the laser beam may be determined based on the positional relationship between the target position of the light spot and the origin of the spatial center of the laser radar to be calibrated.
- the origin of the space center is the mapping position on the receiving screen when the actual exit angle of the laser beam is 0 degrees.
- the origin of the spatial center of the lidar to be calibrated can be defined by the origin definition module. For more details about defining the origin of the space center through the origin definition module, reference may be made to FIG. 1 and related descriptions, which will not be repeated here.
- the actual exit angle of the laser beam can be determined based on the target position of the light spot and the position information of the spatial center origin O in the preset coordinate system, and the distance between the laser radar to be calibrated and the preset coordinate plane.
- the first side length can be determined based on the target position of the light spot and the position information of the origin of the space center in the preset coordinate system
- the second side length can be determined based on the distance from the laser exit port of the laser radar to be calibrated to the preset coordinate plane
- the first side length and the second side length are processed by the arc tangent function to determine the actual exit angle of the laser beam.
- the first side length may include the displacement of the light spot relative to the spatial center origin in the horizontal direction and the displacement in the vertical direction.
- the second position information of the light spot in step 430 may be directly converted to the space coordinate system (as When the actual exit angle is calculated in the space coordinate system, step 440 may be omitted.
- FIG. 5 is a schematic diagram of an exemplary lidar calibration method 500 shown in accordance with some embodiments of the present specification.
- a coordinate system (X, Y) can be established by receiving the intersection point D of the upper left corner of the screen as the origin, and determined as the preset coordinate system.
- the horizontal edge of the receiving screen is the X-axis and the horizontal right is the positive direction of the X-axis
- the vertical edge of the receiving screen is the Y-axis and the vertical downward is the positive direction of the Y-axis
- the coordinate unit is centimeters. Since the first spot image is the image of the laser beam on the receiving screen, the first spot image including the entire receiving screen can be obtained when shooting with the coarse positioning module, and the first spot image of the spot in the preset coordinate system can be obtained based on the first spot image.
- a position (corresponding to the position data of the spot on the receiving screen).
- the coordinates of the light spot in the first light spot image can be determined first, and then based on the relationship between the image coordinate system and the internal coordinate system of the first camera, and the relationship between the internal coordinate system of the first camera and the spatial coordinate system, the space coordinates of the light spot can be calculated. position in the system.
- the XOY plane of the space (three-dimensional) coordinate system may be the aforementioned preset (two-dimensional) coordinate system determined based on the receiving screen, and the Z-axis of the space coordinate system is perpendicular to the preset coordinate system.
- the second shooting position of the fine positioning module may be determined based on the first position, and the fine positioning module may be moved to the shooting position through the guide rail to obtain the second spot image of the laser beam. Since the fine positioning module has a certain volume, in actual operation, a point in the plane of the photosensitive screen can be used as the reference point, and it can be moved relative to a certain point (for example, the intersection point D of the upper left corner of the receiving screen), and the position after the movement of the reference point is defined as the second Shooting location.
- the intersection point of the upper left corner of the photosensitive screen can be used as the origin (corresponding to point A in Figure 5(a)) to establish a coordinate system, and the second position of the light spot in this coordinate system is obtained.
- the coordinates of the second position B are (20,15).
- the target position of point B in the preset coordinate system (X, Y) can be obtained by superposition as (70, 85).
- the coordinates of point B and the origin of the space center O can be transformed into the same coordinate system to calculate the distance between them. For example, it can be determined that the magnitude of the value corresponding to x1 and/or y1 in FIG. 5(a) is the length of the first side.
- the value corresponding to x1 is the side length (or distance) of point B and point O in the horizontal direction parallel to the ground
- the value corresponding to y1 is the side length (or distance) of point B and point O in the vertical direction perpendicular to the ground. distance).
- the distance from the laser exit port S of the laser radar to be calibrated to the preset coordinate plane is l, as shown in Figures 5(b) and (c), based on the length of the first side and l corresponding to x1, through arctangent calculation, we can obtain Obtain the actual exit angle ⁇ of the laser beam in the horizontal direction, that is, the actual azimuth angle of the laser beam; based on the first side length corresponding to y1 and l, through arctangent calculation, the actual exit angle ⁇ of the laser beam in the vertical direction can be obtained, That is, the actual pitch angle of the laser beam.
- the difference values can be calculated with ⁇ and ⁇ , respectively, to obtain the laser beam in the horizontal direction and the vertical direction, respectively.
- the error angle of the direction based on the specified exit angle of the laser beam in the horizontal direction and the specified exit angle in the vertical direction of the laser radar to be calibrated.
- the laser beam emitted by the to-be-calibrated lidar may be adjusted based on the error angle of the laser beam.
- the error angle table or curve of the laser radar to be calibrated can be statistically obtained by calibrating laser beams with different specified exit angles (reflecting the mapping relationship between different specified exit angles and actual exit angles), so as to obtain the laser beam to be calibrated. The laser beam emitted by the radar is adjusted.
- the above description about the method 500 is only for example and illustration, and does not limit the scope of application of this specification.
- Various modifications and changes to method 500 may be made to method 500 under the guidance of this specification to those skilled in the art.
- the preset coordinate system in FIG. 5 may be a coordinate system established with a point corresponding to the origin of the space center of the lidar calibration device on the plane where the receiving screen is located as the origin.
- these corrections and changes are still within the scope of this specification.
- the possible beneficial effects of the embodiments of this specification include, but are not limited to: (1) using a movable fine positioning module, a spot image of a laser beam with a higher resolution can be obtained; (2) a higher resolution based on the laser beam The spot position obtained from the spot image can improve the accuracy of the lidar calibration device. It should be noted that different embodiments may have different beneficial effects, and in different embodiments, the possible beneficial effects may be any one or a combination of the above, or any other possible beneficial effects.
- aspects of this specification may be illustrated and described in several patentable categories or situations, including any new and useful process, machine, product, or combination of matter, or combinations of them. of any new and useful improvements. Accordingly, various aspects of this specification may be performed entirely in hardware, entirely in software (including firmware, resident software, microcode, etc.), or in a combination of hardware and software.
- the above hardware or software may be referred to as a "data block”, “module”, “engine”, “unit”, “component” or “system”.
- aspects of this specification may be embodied as a computer product comprising computer readable program code embodied in one or more computer readable media.
- a computer storage medium may contain a propagated data signal with the computer program code embodied therein, for example, on baseband or as part of a carrier wave.
- the propagating signal may take a variety of manifestations, including electromagnetic, optical, etc., or a suitable combination.
- Computer storage media can be any computer-readable media other than computer-readable storage media that can communicate, propagate, or transmit a program for use by coupling to an instruction execution system, apparatus, or device.
- Program code on a computer storage medium may be transmitted over any suitable medium, including radio, cable, fiber optic cable, RF, or the like, or a combination of any of the foregoing.
- the computer program coding required for the operation of the various parts of this manual may be written in any one or more programming languages, including object-oriented programming languages such as Java, Scala, Smalltalk, Eiffel, JADE, Emerald, C++, C#, VB.NET, Python etc., conventional procedural programming languages such as C language, VisualBasic, Fortran2003, Perl, COBOL2002, PHP, ABAP, dynamic programming languages such as Python, Ruby and Groovy, or other programming languages, etc.
- the program code may run entirely on the user's computer, or as a stand-alone software package on the user's computer, or partly on the user's computer and partly on a remote computer, or entirely on the remote computer or processing device.
- the remote computer can be connected to the user's computer through any network, such as a local area network (LAN) or wide area network (WAN), or to an external computer (eg, through the Internet), or in a cloud computing environment, or as a service Use eg software as a service (SaaS).
- LAN local area network
- WAN wide area network
- SaaS software as a service
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Optical Radar Systems And Details Thereof (AREA)
Abstract
一种激光雷达校准装置(200)和方法。装置包括:激光雷达载台(210),用于承载待校准激光雷达(110);粗定位模块(220),用于获取待校准激光雷达(110)的激光束的第一光斑图像;可移动的精细定位模块(230),用于基于第一光斑图像调整第二拍摄位置并获取激光束的第二光斑图像,第二光斑图像的分辨率高于第一光斑图像;控制模块,用于基于第二光斑图像确定光斑在预设坐标系中的目标位置;以及,至少基于目标位置确定激光束的实际出射角。
Description
优先权声明
本申请要求2020年7月22日提交的中国申请号202010711316.7的优先权,全部内容通过引用并入本文。
本说明书涉及激光技术领域,特别涉及一种激光雷达校准装置和方法。
激光雷达通过向目标范围或物体发射激光和接收物体的反射光,探测目标范围内的环境和对象的位置(如,距离和角度)、运动状态(如,速度、振动和姿态)和形状等特征。由于机械部件的设计、制造等各环节可能存在误差,导致激光雷达自身可能会带有一定的误差。激光雷达存在误差,可能会导致探测物体时,获得的物体数据或信息存在偏差。
因此,期望提供一种激光雷达的校准装置和方法。
发明内容
本说明书的一个方面提供一种激光雷达校准装置。所述装置包括:激光雷达载台,用于承载待校准激光雷达;粗定位模块,用于获取所述待校准雷达的激光束的第一光斑图像;可移动的精细定位模块,用于基于所述第一光斑图像调整第二拍摄位置并获取所述激光束的第二光斑图像,所述第二光斑图像的分辨率高于所述第一光斑图像;控制模块,用于基于所述第二光斑图像确定光斑在预设坐标系中的目标位置;以及,至少基于所述目标位置确定所述激光束的实际出射角。
在一些实施例中,所述激光雷达载台包括可控制360度旋转平台,用于控制所述待校准激光雷达围绕竖直方向的转轴旋转,以对所述待校准激光雷达不同水平视野的出射模块进行校准。
在一些实施例中,所述粗定位模块包括第一相机以及接收屏;所述接收屏用于接收所述激光束;所述第一相机用于拍摄所述激光束在所述接收屏上形成的光斑,以获得所述第一光斑图像。
在一些实施例中,所述接收屏包括可升降幕布。
在一些实施例中,所述精细定位模块包括:第二相机以及感光屏,所述第二相机以及所述感光屏安装在导轨上;所述导轨用于为所述第二相机以及所述感光屏在所述接收屏的平面内或在与所述接收屏平行的平面内移动提供运动轨道,以便定位所述精细定位模块至所述第二拍摄位置;所述感光屏用于接收所述激光束;所述第二相机用于拍摄所述激光束在所述感光屏上形成的光斑,以获得所述第二光斑图像。
在一些实施例中,所述导轨包括沿所述接收屏水平边缘布设的第一导轨以及相对所述第一导轨垂直布设的第二导轨;所述导轨的定位精度高于10微米。
在一些实施例中,所述装置还包括距离调节器,用于调节所述激光雷达载台与所述接收屏之间的距离。
在一些实施例中,所述距离调节器至少包括轨道和测距仪。
在一些实施例中,所述装置还包括可拆卸的原点定义模块,用于定义所述激光雷达校准装置的空间中心原点,所述空间中心原点为所述激光束的实际出射角为0度时在所述接收屏上的映射位置。
在一些实施例中,所述原点定义模块包括自水平激光标线仪和姿态调节云台;所述自水平激光标线仪用于定义所述空间中心原点的位置,所述姿态调节云台用于调节所述自水平激光标线仪的位置。
在一些实施例中,为了基于所述第二光斑图像确定所述光斑在预设坐标系中的目标位置,所述控制模块还用于:基于所述第二光斑图像获取光斑的第二位置信息;基于所述光斑的第二位置信息以及所述第二拍摄位置确定光斑在预设坐标系中的目标位置。
本说明书的另一方面提供一种激光雷达校准方法。所述方法包括:获取待 校准激光雷达发射的激光束的第一光斑图像;基于所述第一光斑图像确定所述激光束的第二光斑图像的拍摄位置并获取第二光斑图像,所述第二光斑图像的分辨率高于所述第一光斑图像;基于所述第二光斑图像确定所述光斑在预设坐标系中的目标位置;以及,至少基于所述目标位置确定所述激光束的实际出射角。
在一些实施例中,所述获取所述待校准激光雷达发射的激光束的第一光斑图像,包括通过粗定位模块获取所述待校准激光雷达发射的激光束的第一光斑图像;其中,所述粗定位模块包括第一相机以及接收屏;所述接收屏用于接收所述激光束;所述第一相机用于拍摄所述激光束在所述接收屏上形成的光斑,以获得所述第一光斑图像。
在一些实施例中,所述基于所述第一光斑图像确定所述激光束的第二光斑图像的拍摄位置并获取第二光斑图像,包括:处理所述第一光斑图像,以确定所述光斑在所述接收屏上的位置数据;基于所述位置数据移动精细定位模块,以使所述精细定位模块能够获取所述第二光斑图像;其中,所述精细定位模块包括:第二相机以及感光屏,所述第二相机以及所述感光屏安装在导轨上;所述导轨用于为所述第二相机以及所述感光屏在所述接收屏的平面内或在与所述接收屏平行的平面内移动提供运动轨道,以便定位所述精细定位模块至所述第二光斑图像的拍摄位置;所述感光屏用于接收所述激光束;所述第二相机用于拍摄所述激光束在所述感光屏上形成的光斑,以获得所述第二光斑图像。
在一些实施例中,所述基于所述第二光斑图像确定所述光斑在预设坐标系中的目标位置,包括:基于所述第二光斑图像获取光斑的第二位置信息;将所述第二位置信息与所述第二光斑图像的拍摄位置叠加,得到所述光斑在预设坐标系中的目标位置;其中,所述第二位置信息包括所述光斑在所述感光屏中的位置数据,所述拍摄位置为所述第二相机与所述感光屏在所述接收屏所在平面的位置数据,所述预设坐标系基于所述接收屏建立。
在一些实施例中,所述方法还包括:定义待校准激光雷达的空间中心原点;所述空间中心原点为所述激光束的实际出射角为0度时在所述接收屏上的映射 位置。
在一些实施例中,所述定义待校准激光雷达的空间中心原点包括:调节原点定义模块的位置,使得所述原点定义模块投射出的相互垂直的两个平面投影在所述待校准激光雷达上的两条相互垂直的线的交点与所述待校准激光雷达的激光出射口重合;定义所述相互垂直的两个平面投影在所述接收屏上的两条相互垂直的线的交点的位置信息为所述空间中心原点的位置信息。
在一些实施例中,所述至少基于所述目标位置确定所述激光束的实际出射角,包括:基于所述目标位置与所述空间中心原点在所述预设坐标系中的位置信息确定第一边长;基于所述待校准激光雷达的激光出射口到所述预设坐标平面的距离确定第二边长;利用反正切函数处理所述第一边长与第二边长,确定所述激光束的实际出射角。
本说明书将以示例性实施例的方式进一步说明,这些示例性实施例将通过附图进行详细描述。这些实施例并非限制性的,在这些实施例中,相同的编号表示相同的结构,其中:
图1是根据本说明书的一些实施例所示的示例性激光雷达校准场景的示意图;
图2是根据本说明书的一些实施例所示的示例性激光雷达校准装置的示意图;
图3A和图3B是根据本说明书的一些实施例所示的示例性精细定位模块的示意图;
图4是根据本说明书的一些实施例所示的激光雷达校准方法的示例性流程图;
图5是根据本说明书的一些实施例所示的示例性激光雷达校准方法的示意图。
为了更清楚地说明本说明书实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本说明书的一些示例或实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本说明书应用于其它类似情景。除非从语言环境中显而易见或另做说明,图中相同标号代表相同结构或操作。
应当理解,本文使用的“系统”、“装置”、“单元”和/或“模组”是用于区分不同级别的不同组件、元件、部件、部分或装配的一种方法。然而,如果其他词语可实现相同的目的,则可通过其他表达来替换所述词语。
如本说明书和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其它的步骤或元素。
虽然本说明书对根据本说明书的实施例的系统中的某些模块或单元做出了各种引用,然而,任何数量的不同模块或单元可以被使用并运行在客户端和/或服务器上。所述模块仅是说明性的,并且所述系统和方法的不同方面可以使用不同模块。
本说明书中使用了流程图用来说明根据本说明书的实施例的系统所执行的操作。应当理解的是,前面或后面操作不一定按照顺序来精确地执行。相反,可以按照倒序或同时处理各个步骤。同时,也可以将其他操作添加到这些过程中,或从这些过程移除某一步或数步操作。
图1是根据本说明书的一些实施例所示的示例性激光雷达校准场景的示意图。
如图1所示,激光雷达校准场景100中可以包括待校准激光雷达110、接收屏120、第一相机130以及原点定义模块140。
待校准激光雷达110可以用于发射激光束。在一些实施例中,待校准激 光雷达110可以放置在激光雷达载台115上。在一些实施例中,待校准激光雷达110可以发射出不同水平偏转角和俯仰角的激光束,即可以分别在水平方向和竖直方向发出不同偏转角度的激光束。在一些实施例中,待校准激光雷达110可以放置在桌面、支架等可以提升激光雷达高度的物体上。通过将待校准激光雷达放置在高处,可以使待校准激光雷达在竖直平面内能够发射不同角度范围的激光束。在一些实施例中,待校准激光雷达110可以包括但不限于脉冲激光雷达、连续波激光雷达等。
接收屏120可以用于接收待校准激光雷达110发射的激光束。发射的激光束在到达接收屏时,可以在接收屏上形成光斑。在一些实施例中,可以在安装接收屏时对接收屏的平面位置进行校准,确保接收屏平面相对地面绝对竖直。
第一相机130可以用于拍摄激光束在接收屏120上的第一光斑图像。在一些实施例中,第一相机130可以包括但不限于光学相机等。
原点定义模块140可以用于定义激光雷达校准场景100中的空间中心原点。所述空间中心原点为激光束的实际出射角为0度时在接收屏上的映射位置。空间中心原点与待校准激光雷达的激光出射口的连线与地面平行并且与接收屏垂直。具体地,可以调节原点定义模块140的位置,使得原点定义模块140投射出的相互垂直的两个平面(如图1中J与W分别所在平面)投影在待校准激光雷达110上的两条相互垂直的线的交点P与待校准激光雷达110的激光出射口S重合,其中,两个相互垂直的平面中的其中一个平面与地面垂直,另一个平面与地面平行;定义原点定义模块140投射出的相互垂直的两个平面投影在接收屏120上的两条相互垂直的线的交点Q的位置信息为空间中心原点O的位置信息。通过定义激光雷达校准场景中的空间中心原点,可以获得光斑相对于原点的位置,进而获知激光束的发射角度。在一些实施例中,原点定义模块可以包括自水平激光标线仪和姿态调节云台。自水平激光标线仪可以用于投射出相互垂直的两个平面,且两个相互垂直的平面中的其中一个平面为水平方向的(即该平面与地面平行),另一个平面为竖直方向的(即该平面与地面垂直),姿态调节云 台可以用于调节所述自水平激光标线仪的位置,使其与待校准激光雷达的出射口对齐的同时,自水平激光标线仪投射出的相互垂直的水平方向与竖直方向的两个平面分别与接收屏的竖直边缘和水平边缘垂直(即自水平激光标线仪与待校准激光雷达的激光出射口的连线与接收屏垂直)。在一些实施例中,原点定义模块140在激光校准装置中可以设置为可拆卸结构。在一些替代性实施例中,原点定义模块可以为任意能够实现原点校准的设备或装置,本说明书对此不做限制。
在一具体实施例中,可以通过原点定义模块140定义激光雷达校准场景100中的空间中心原点。所述空间中心原点为激光束的实际出射角为0度时在接收屏上的映射位置,例如,图中点Q。待校准激光雷达110发出指定出射角的激光束后,可以通过第一相机130拍摄激光束在接收屏120上的第一光斑图像。基于光斑在第一光斑图像中的位置信息与空间中心原点的位置信息,可以获知光斑相对原点的坐标位置,基于该坐标位置以及待校准激光雷达110的激光出射口S与空间中心原点所在的与接收屏平行的平面之间的距离,即可计算获得激光束的实际出射角。通过对比激光束的指定出射角与实际出射角,可获知该激光束的误差角,基于该误差角即可对激光雷达进行校准。
由于激光雷达可以发射多个不同角度(如竖直平面内的-60度~+60度,或者水平平面内的-45度~45度)的激光束,因此,为校准各个角度的激光束,相机的拍摄视野需要足够广,以覆盖更大角度的激光束。但是,光学相机的拍摄视野和边缘成像畸变通常是一对矛盾,若为了覆盖足够的视野而使用广角的相机镜头时,可能会使得拍摄的图像的边缘产生几何畸变,导致测量较大出射角度(如,80度)的激光束时,获取的光斑图像中光斑发生畸变,影响激光束实际出射角的计算。此外,对于多线激光雷达,发射的多束激光束之间的角度差值较小,激光雷达校准装置的测量精度可能会受到相机分辨率的影响。例如,若相机分辨率为五百万级像素,在两米视距时只能提供毫米级的分辨率,对于32线以上的激光雷达,其拍摄的光斑图像中,不同角度激光束对应的光斑图像中光斑的 位置可能相同,导致不同指定出射角的激光束对应的实际出射角的计算结果可能相同,影响校准的准确性。
本说明书实施例提供一种激光雷达校准装置,在接收屏处设置了可移动的精细定位模块,可以获得更高分辨率的光斑图像。本说明书实施例提供的激光雷达校准装置,可以基于第一相机获取的激光束的第一光斑图像,获取光斑在接收屏上的位置数据,基于该位置数据移动精细定位模块,以调整精细定位模块的拍摄位置,近距离获取分辨率高于第一光斑图像的第二光斑图像,基于该第二光斑图像可以获取更加精确的光斑的位置信息,进而可以提高激光雷达校准的精度和准确性。
图2是根据本说明书的一些实施例所示的示例性激光雷达校准装置的示意图。
如图2所示,激光雷达校准装置200可以包括激光雷达载台210、粗定位模块220以及精细定位模块230。
激光雷达载台210可以用于承载待校准激光雷达。在一些实施例中,激光雷达载台210可以包括可控制360度旋转平台210-1。可控制360度旋转平台210-1可以用于控制待校准激光雷达围绕竖直方向的转轴旋转,以对待校准激光雷达不同水平视野的出射模块进行校准。例如,若待校准激光雷达由四个分别覆盖90度水平视野的出射模块组成,在对该激光雷达进行校准时,可以使可控制360度旋转平台210-1分别水平旋转至0度、90度、180度、270度的位置,分别完成该激光雷达四个出射模块的校准。在一些实施例中,待校准激光雷达的出射模块的水平视野可以为任意角度,例如,45度水平视野;相应地,可控制360度旋转平台可以基于待校准激光雷达的出射模块的水平视野角度进行不同水平角度的旋转,本说明书对此不做限制。
粗定位模块220可以用于获取待校准激光雷达的激光束的第一光斑图像。根据第一光斑图像可以确定待校准激光雷达发射的激光束的粗略出射角,基于所述粗略出射角可以帮助精细定位模块完成定位。在一些实施例中,粗定位模块 220可以在第一拍摄位置获取激光束的第一光斑图像。在一些实施例中,第一拍摄位置可以为固定拍摄位置。在一些实施例中,粗定位模块220可以包括接收屏220-1和第一相机220-2。接收屏220-1可以用于接收待校准激光雷达发射的激光束。在一些实施例中,接收屏220-1可以包括但不限于可升降幕布。可升降幕布可以在获取第一光斑图像前下降,获取第一光斑图像后升起。在获取第一光斑图像后升起接收屏,可以避免接收屏影响第二光斑图像的获取。在一些实施例中,在降下接收屏时,可通过校准接收屏平面与地面之间的夹角,确保接收屏平面与地面绝对垂直;或基于接收屏平面与地面之间的夹角,进行激光束位置计算,以提高激光校准的准确性。第一相机220-2可以用于拍摄激光束在接收屏220-1上形成的光斑,以获得激光束的第一光斑图像。在一些实施例中,第一相机220-2可以包括但不限于广角相机和非广角相机。在一些实施例中,第一相机220-2可以位于激光雷达载台210的支架上,如安装于激光雷达载台承载待校准激光雷达的平台210-1下方的支架上,接收屏220-1可以位于与激光雷达载台一定距离处,与所述第一相机220-2相对设置,例如,图2中所示位置。
精细定位模块230可以用于获取所述激光束的第二光斑图像。在一些实施例中,精细定位模块230可以基于第一光斑图像中光斑的位置数据确定激光束的第二拍摄位置,在第二拍摄位置获取激光束的第二光斑图像。在一些实施例中,第二拍摄位置与光斑的第一位置(即光斑在接收屏中的位置)相同或接近。所述第二光斑图像的分辨率高于所述第一光斑图像。基于更高分辨率的第二光斑图像可以获取光斑的第二位置信息,通过对第二位置信息进行相关处理可以获知激光束的实际出射角。激光束的出射角可以包括方位角和俯仰角。方位角是指在与地面平行的水平方向的偏转角,俯仰角是指在与地面垂直的竖直方向的偏转角。在一些实施例中,精细定位模块230可以位于接收屏220-1所在平面与或与接收屏平行的平面内。更多关于精细定位模块230的内容可以参见图3A和图3B及其相关描述,在此不再赘述。
在一些实施例中,激光雷达校准装置200还可以包括控制模块(图中未 示出)。控制模块可以用于控制和/或调度激光雷达校准装置200中各个模块(例如,激光雷达载台210、粗定位模块220、精细定位模块230等)。在一些实施例中,控制模块可以控制粗定位模块获取第一光斑图像。在一些实施例中,控制模块可以基于第一光斑图像获取光斑的位置数据,基于该位置数据控制精细定位模块移动。在一些实施例中,控制模块可以确定激光束的实际出射角。具体地,控制模块可以基于第二光斑图像获取光斑的第二位置信息,基于该第二位置信息以及对应的第二拍摄位置确定光斑在预设坐标系中的目标位置,基于目标位置以及待校准激光雷达激光出射口与预设坐标系所在平面之间的距离确定激光束的实际出射角。更多关于确定实际出射角的内容可以参见本说明书其他部分(例如,图4、图5及其相关描述),在此不再赘述。在一些实施例中,控制模块可以包括但不限于可编程芯片、台式计算机、笔记本电脑、手机移动终端、iPad移动终端等。
在一些实施例中,激光雷达校准装置200还可以包括距离调节器250。距离调节器250可以用于调节激光雷达载台210与接收屏220-1之间的距离。通过调节激光雷达载台与接收屏之间的距离,可以使得激光雷达校准装置能够适应于各种激光束发射范围的激光雷达的校准。在一些实施例中,距离调节器可以包括轨道和测距仪。轨道可以用于移动激光雷达载台,测距仪可以用于测量激光雷达载台的移动距离和/或激光雷达载台与接收屏之间的距离。在一些实施例中,激光雷达校准装置200还可以包括可拆卸的原点定义模块(如原点定义模块140)。
在一具体实施例中,可以将待校准激光雷达放置在激光雷达载台210上,根据待校准激光雷达的性能参数通过距离调节器250调节激光雷达载台与接收屏220-1之间的距离,使得接收屏可以接收到待校准激光雷达在接收屏平面发射的所有激光束。控制接收屏220-1处于降下状态,待校准激光雷达发射指定出射角的激光束后,控制第一相机220-2拍摄激光束的第一光斑图像,并控制接收屏升起。控制模块基于第一光斑图像中光斑的位置数据确定激光束的第二拍摄位置,并控制精细定位模块移动到第二拍摄位置,以获取激光束的第二光斑图像。 基于光斑在第二光斑图像的第二位置、第二拍摄位置、待校准激光雷达激光出射口与精细定位模块之间的距离,可以确定激光束的实际出射角。在一些实施例中,可以基于激光束的实际出射角和待校准激光雷达发射该激光束时的指定出射角获得激光束的相对误差角。
图3A和图3B是根据本说明书的一些实施例所示的示例性精细定位模块的示意图。
在一些实施例中,精细定位模块230可以包括第二相机235以及感光屏237。第二相机235以及感光屏237可以安装于导轨上,所述导轨可以用于为第二相机以及感光屏在接收屏220-1的平面内或在与接收屏220-1平行的平面内移动提供运动轨道。感光屏可以用于接收待校准激光雷达发射的激光束,第二相机可以用于拍摄激光束在感光屏上形成的光斑,以获得第二光斑图像。
在一些实施例中,导轨可以包括沿接收屏水平边缘布设的第一导轨,以及相对第一导轨垂直布设的第二导轨。例如,图3A中所示(或图2中所示),导轨可以包括沿与接收屏水平边缘平行布设的第一导轨233-1以及相对第一导轨233-1垂直布设的第二导轨233-2。在一些实施例中,导轨可以用于定位精细定位模块的位置。精细定位模块的位置对应于第二拍摄位置。例如,导轨相对接收屏移动精细定位模块使其至第二拍摄位置时,可以基于导轨的位移距离,获得第二拍摄位置在以接收屏建立的坐标系中的坐标位置。在一些实施例中,导轨的定位精度越高,获得的精细定位模块的位置(即第二拍摄位置)越准确。在一些实施例中,导轨的定位精度高于10微米。例如,导轨每移动一格,其位移距离可以为10微米、或8微米、或5微米等。
在一些实施例中,第二相机以及感光屏可以安装在导轨上。例如,图3A中所示,第二相机235以及感光屏237可以在第二导轨233-2上上下移动,第二导轨的某位置与第一导轨卡接,并且第二导轨可以沿第一导轨水平移动。在一些实施例中,第二相机以及感光屏与第二导轨之间、第二导轨与第一导轨之间可以是螺纹配合,通过第一电机带动第二导轨旋转实现第二相机与感光屏沿第二导 轨上下移动,通过第二电机带动第一导轨旋转实现第二导轨沿第一导轨左右移动。控制模块可以基于光斑的第一位置信息,控制第一电机与第二电机,以使精细定位模型移动到光斑的第一位置附近。又例如,第二相机与感光屏可以安装于可移动机器人上,可移动机器人可以在导轨上运动,控制模块可以基于光斑的第一位置信息确定第二拍摄位置,将第二拍摄位置的坐标信息发送给可移动机器人,可移动机器人基于坐标信息携带第二相机及感光屏移动到第二拍摄位置。在一些实施例中,第二相机与激光雷达载台之间的距离大于感光屏与激光雷达载台之间的距离。例如,图3B中所示,感光屏237的右面屏可以与接收屏220-1的平面平行,以接收待校准激光雷达发射的激光束,第二相机235位于感光屏237的左面屏一定距离处,以拍摄激光束在感光屏上的第二光斑图像。在一些实施例中,感光屏可以为任意能够在接收到激光束后,在感光屏对应位置的左右两面同时呈现光斑的屏幕。在一些实施例中,第二相机的性能参数与第一相机的性能参数可以相同或不同。
相对于粗定位模块,精细定位模块中第二相机与感光屏的距离较近,且精细定位模块可以移动到激光束的相应位置,因此可以获取清晰度更高的激光束的光斑图像。基于该光斑图像可以获得更准确的光斑位置,进而可以提高激光雷达校准装置的校准精度。
图4是根据本说明书的一些实施例所示的激光雷达校准方法400的示例性流程图。
步骤410,获取待校准激光雷达发射的激光束的第一光斑图像。
第一光斑图像可以反映发射的激光束在接收屏上形成的光斑的位置。在一些实施例中,可以通过粗定位模块获取待校准激光雷达发射的激光束的第一光斑图像。粗定位模块可以包括第一相机和接收屏。其中,接收屏可以用于接收激光束,第一相机可以用于拍摄激光束在接收屏上形成的光斑,以获得激光束的第一光斑图像。在一些实施例中,接收屏可以为升降幕布。在一些实施例中,系统可以基于测量指令控制粗定位模块获取第一光斑图像。例如,待校准激光雷达 发射指定出射角的激光束后,控制模块可以基于接收到的测量指令控制粗定位模块拍摄激光束的第一光斑图像。在一些替代性实施例中,可以通过其他可行的方式获取激光束的第一光斑图像,本说明书对此不做限制。
步骤420,基于第一光斑图像确定所述激光束的第二光斑图像的拍摄位置,并获取第二光斑图像。
基于第一光斑图像可以获取发射的激光束在空间中的位置数据,例如,激光束相对接收屏的位置数据,根据该位置数据可以确定激光束的第二拍摄位置(即第二光斑图像的拍摄位置),以获取分辨率高于第一光斑图像的第二光斑图像。在一些实施例中,可以通过精细定位模块获取激光束的第二光斑图像。具体地,可以通过处理第一光斑图像,获取光斑在接收屏上的位置数据,基于该位置数据移动精细定位模块,以使该精准细定位模块能够获取分辨率更高的第二光斑图像。例如,若在以接收屏左上角交点为原点,接收屏水平边缘为x轴,接收屏竖直边缘为y轴,建立的坐标系中(单位:厘米),基于第一光斑图像获得光斑在该坐标系中坐标位置为(50,80),则可以精细定位模块中某一点(如感光屏左上角交点)为基准点,相对接收屏左上角交点移动精细定位模块,使感光屏可以接收到激光束,例如,横向和纵向分别移动45厘米和75厘米(假设精细定位模块的初始位置为接收屏左上角交点位置),以获取第二光斑图像。在一些实施例中,可以调整感光屏与接收屏位于同一平面内,在确定第二光斑图像的拍摄位置后,可以将粗定位模块中接收屏升起,以便精细定位模块可以移动且在同一平面内接收到激光束。
在一些实施例中,精细定位模块可以包括第二相机以及感光屏。其中,第二相机以及感光屏可以安装在导轨上,导轨可以用于为第二相机以及感光屏在接收屏的平面内或在与接收屏平行的平面内移动提供运动轨道,以便定位精细定位模块至第二光斑图像的拍摄位置。感光屏可以用于接收激光束;第二相机可以用于拍摄激光束在感光屏上形成的光斑,以获得激光束的第二光斑图像。在一些实施例中,可以基于导轨的移动位移确定第二光斑图像的拍摄位置。
步骤430,基于第二光斑图像获取光斑的第二位置信息。
在一些实施例中,光斑的第二位置信息可以为光斑在第二光斑图像中的坐标位置。在一些实施例中,光斑的第二位置信息可以为光斑在接收屏平面内的坐标位置。在一些实施例中,光斑的第二位置信息可以为光斑在感光屏中的坐标位置。光斑的坐标位置可以通过任意可行的方式获得,例如,OpenCv、MATLAB等工具,本说明书对此不做限制。更多关于光斑的位置信息的内容可以参见本说明书其他部分(例如,图5及其相关描述),在此不再赘述。
步骤440,基于第二位置信息与第二光斑图像的拍摄位置确定光斑在预设坐标系中的目标位置。
在一些实施例中,预设坐标系可以基于第二位置信息和/或第二光斑图像的拍摄位置确定。例如,可以将第二位置信息对应的坐标系确定为预设坐标系。在一些实施例中,可以通过坐标转换的方法确定光斑在预设坐标系中的目标位置。例如,若预设坐标系为基于接收屏建立的坐标系,第二位置信息对应坐标系为基于感光屏建立的坐标系(以感光屏的左上角为原点,感光屏的水平边缘为x轴,竖直边缘为y轴),即第二位置信息包括光斑在感光屏中的位置数据,第二拍摄位置对应的坐标系为基于接收屏建立的坐标系,即第二拍摄位置为第二相机与感光屏在接收屏所在平面的位置数据,则可以通过坐标叠加的方式,将第二位置与第二拍摄位置叠加(假设第二拍摄位置正对感光屏左上角交点),得到光斑在预设坐标系中的目标位置。更多关于光斑的目标位置的内容可以参见本说明书其他部分(例如,图5及其相关描述),在此不再赘述。
步骤450,基于目标位置确定激光束的实际出射角。
在一些实施例中,可以基于光斑的目标位置与待校准激光雷达的空间中心原点之间的位置关系,确定激光束的实际出射角。所述空间中心原点为激光束的实际出射角为0度时在接收屏上的映射位置。在一些实施例中,可以通过原点定义模块定义待校准激光雷达的空间中心原点。更多关于通过原点定义模块定义空间中心原点的内容可以参见图1及其相关描述,在此不再赘述。
在一些实施例中,可以基于光斑的目标位置与空间中心原点O在预设坐标系中的位置信息,以及待校准激光雷达与预设坐标平面内的距离,确定激光束的实际出射角。具体地:可以基于光斑的目标位置与空间中心原点在预设坐标系中的位置信息确定第一边长,基于待校准激光雷达的激光出射口到预设坐标平面的距离确定第二边长,利用反正切函数处理第一边长与第二边长,确定激光束的实际出射角。在一些实施例中,第一边长可以包括光斑相对空间中心原点在水平方向的位移和在竖直方向的位移。
应当注意的是,上述有关方法400的描述仅仅是为了示例和说明,而不限定本说明书的适用范围。对于本领域技术人员来说,在本说明书的指导下可以对方法400进行各种修正和改变。然而,这些修正和改变仍在本说明书的范围之内。例如,可以基于第二光斑图像坐标系与第二相机内在坐标系的关系,第二相机内在坐标系与空间坐标系的关系将步骤430中的光斑第二位置信息直接转换到空间坐标系(作为预设坐标系)中,并在空间坐标系中计算实际出射角时,则可省略步骤440。
图5是根据本说明书的一些实施例所示的示例性激光雷达校准方法500的示意图。
为方便理解,以下将结合图5以具体实施例描述激光雷达校准过程。
在一具体实施例中,可以接收屏左上角交点D为原点建立坐标系(X,Y),并将其确定为预设坐标系。其中,接收屏水平边缘为X轴且水平向右为X轴的正向,接收屏竖直边缘为Y轴且竖直向下为Y轴的正向,坐标单位为厘米。由于第一光斑图像为激光束在接收屏上的成像,使用粗定位模块拍摄时可以获取包含整个接收屏的第一光斑图像,基于该第一光斑图像可以获取光斑在预设坐标系中的第一位置(对应于光斑在接收屏的位置数据)。仅作为示例,可以先确定光斑在第一光斑图像中的坐标,再基于图像坐标系与第一相机内部坐标系关系、第一相机内部坐标系与空间坐标系的关系,计算出光斑在空间坐标系中的位置。其中,空间(三维)坐标系的XOY平面可以是前述基于接收屏确定的预设 (二维)坐标系,空间坐标系的Z轴垂直于所述预设坐标系。进一步,可以基于第一位置确定精细定位模块的第二拍摄位置,通过导轨将精细定位模块移动到该拍摄位置,以获取激光束的第二光斑图像。由于精细定位模块具有一定体积,实际操作中可以感光屏平面内一个点为基准点,相对某一点(例如,接收屏左上角交点D)进行移动,将该基准点移动后的位置定义为第二拍摄位置。例如,以感光屏左上角交点为基准点,相对接收屏左上角交点D移动到第二拍摄位置,使得感光屏可以覆盖光斑的第一位置,假设第二拍摄位置为图5(a)中点A所在位置,A的坐标为(50,70)。
在获取光斑在第二光斑图像中第二位置时,可以感光屏左上角交点为原点(对应图5(a)中点A)建立坐标系,获取光斑在该坐标系的第二位置,假设第二位置B的坐标为(20,15)。则可以通过叠加的方式可获得点B在预设坐标系(X,Y)的目标位置为(70,85)。
可以将点B和空间中心原点O的坐标转换到同一坐标系中以计算两者间的距离。例如,可以确定,图5(a)中x1和/或y1对应的值的大小为第一边长。其中,x1对应的值为点B与点O在与地面平行的水平方向的边长(或距离),y1对应的值为点B与点O在与地面垂直的竖直方向的边长(或距离)。
若待校准激光雷达的激光出射口S到预设坐标平面的距离为l,如图5(b)和(c)中所示,基于x1对应第一边长和l,通过反正切计算,可获取激光束在水平方向的实际出射角α,即激光束实际的方位角;基于y1对应的第一边长和l,过反正切计算,可获取激光束在竖直方向的实际出射角β,即激光束实际的俯仰角。在一些实施例中,可以基于激光束在待校准激光雷达的水平方向的指定出射角和竖直方向的指定出射角,分别与α和β计算差值,分别获得激光束在水平方向和竖直方向的误差角。
在一些实施例中,可以基于激光束的误差角对待校准激光雷达发射的激光束进行调整。在一些实施例中,可以通过对不同指定出射角的激光束进行校准,统计获得待校准激光雷达的误差角表格或曲线(反映不同指定出射角与实际出 射角的映射关系),以对待校准激光雷达发射的激光束进行调整。
应当注意的是,上述有关方法500的描述仅仅是为了示例和说明,而不限定本说明书的适用范围。对于本领域技术人员来说,在本说明书的指导下可以对方法500进行各种修正和改变。例如,图5中预设坐标系可以为以激光雷达校准装置的空间中心原点在接收屏所在平面对应的点为原点建立的坐标系。然而,这些修正和改变仍在本说明书的范围之内。
本说明书实施例可能带来的有益效果包括但不限于:(1)利用可移动的精细定位模块,可以获得分辨率更高的激光束的光斑图像;(2)基于激光束的更高分辨率的光斑图像获取光斑位置,可以提高激光雷达校准装置的准确性。需要说明的是,不同实施例可能产生的有益效果不同,在不同的实施例里,可能产生的有益效果可以是以上任意一种或几种的组合,也可以是其他任何可能获得的有益效果。
上文已对基本概念做了描述,显然,对于本领域技术人员来说,上述详细披露仅仅作为示例,而并不构成对本说明书的限定。虽然此处并没有明确说明,本领域技术人员可能会对本说明书进行各种修改、改进和修正。该类修改、改进和修正在本说明书中被建议,所以该类修改、改进、修正仍属于本说明书示范实施例的精神和范围。
同时,本说明书使用了特定词语来描述本说明书的实施例。如“一个实施例”、“一实施例”、和/或“一些实施例”意指与本说明书至少一个实施例相关的某一特征、结构或特点。因此,应强调并注意的是,本说明书中在不同位置两次或多次提及的“一实施例”或“一个实施例”或“一个替代性实施例”并不一定是指同一实施例。此外,本说明书的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。
此外,本领域技术人员可以理解,本说明书的各方面可以通过若干具有可专利性的种类或情况进行说明和描述,包括任何新的和有用的工序、机器、产品或物质的组合,或对他们的任何新的和有用的改进。相应地,本说明书的各个方 面可以完全由硬件执行、可以完全由软件(包括固件、常驻软件、微码等)执行、也可以由硬件和软件组合执行。以上硬件或软件均可被称为“数据块”、“模块”、“引擎”、“单元”、“组件”或“系统”。此外,本说明书的各方面可能表现为位于一个或多个计算机可读介质中的计算机产品,该产品包括计算机可读程序编码。
计算机存储介质可能包含一个内含有计算机程序编码的传播数据信号,例如在基带上或作为载波的一部分。该传播信号可能有多种表现形式,包括电磁形式、光形式等,或合适的组合形式。计算机存储介质可以是除计算机可读存储介质之外的任何计算机可读介质,该介质可以通过连接至一个指令执行系统、装置或设备以实现通讯、传播或传输供使用的程序。位于计算机存储介质上的程序编码可以通过任何合适的介质进行传播,包括无线电、电缆、光纤电缆、RF、或类似介质,或任何上述介质的组合。
本说明书各部分操作所需的计算机程序编码可以用任意一种或多种程序语言编写,包括面向对象编程语言如Java、Scala、Smalltalk、Eiffel、JADE、Emerald、C++、C#、VB.NET、Python等,常规程序化编程语言如C语言、VisualBasic、Fortran2003、Perl、COBOL2002、PHP、ABAP,动态编程语言如Python、Ruby和Groovy,或其他编程语言等。该程序编码可以完全在用户计算机上运行、或作为独立的软件包在用户计算机上运行、或部分在用户计算机上运行部分在远程计算机运行、或完全在远程计算机或处理设备上运行。在后种情况下,远程计算机可以通过任何网络形式与用户计算机连接,比如局域网(LAN)或广域网(WAN),或连接至外部计算机(例如通过因特网),或在云计算环境中,或作为服务使用如软件即服务(SaaS)。
此外,除非权利要求中明确说明,本说明书所述处理元素和序列的顺序、数字字母的使用、或其他名称的使用,并非用于限定本说明书流程和方法的顺序。尽管上述披露中通过各种示例讨论了一些目前认为有用的发明实施例,但应当理解的是,该类细节仅起到说明的目的,附加的权利要求并不仅限于披露的实施 例,相反,权利要求旨在覆盖所有符合本说明书实施例实质和范围的修正和等价组合。例如,虽然以上所描述的系统组件可以通过硬件设备实现,但是也可以只通过软件的解决方案得以实现,如在现有的处理设备或移动设备上安装所描述的系统。
同理,应当注意的是,为了简化本说明书披露的表述,从而帮助对一个或多个发明实施例的理解,前文对本说明书实施例的描述中,有时会将多种特征归并至一个实施例、附图或对其的描述中。但是,这种披露方法并不意味着本说明书对象所需要的特征比权利要求中提及的特征多。实际上,实施例的特征要少于上述披露的单个实施例的全部特征。
一些实施例中使用了描述成分、属性数量的数字,应当理解的是,此类用于实施例描述的数字,在一些示例中使用了修饰词“大约”、“近似”或“大体上”来修饰。除非另外说明,“大约”、“近似”或“大体上”表明所述数字允许有±20%的变化。相应地,在一些实施例中,说明书和权利要求中使用的数值参数均为近似值,该近似值根据个别实施例所需特点可以发生改变。在一些实施例中,数值参数应考虑规定的有效数位并采用一般位数保留的方法。尽管本说明书一些实施例中用于确认其范围广度的数值域和参数为近似值,在具体实施例中,此类数值的设定在可行范围内尽可能精确。
针对本说明书引用的每个专利、专利申请、专利申请公开物和其他材料,如文章、书籍、说明书、出版物、文档等,特此将其全部内容并入本说明书作为参考。与本说明书内容不一致或产生冲突的申请历史文件除外,对本说明书权利要求最广范围有限制的文件(当前或之后附加于本说明书中的)也除外。需要说明的是,如果本说明书附属材料中的描述、定义、和/或术语的使用与本说明书所述内容有不一致或冲突的地方,以本说明书的描述、定义和/或术语的使用为准。
最后,应当理解的是,本说明书中所述实施例仅用以说明本说明书实施例的原则。其他的变形也可能属于本说明书的范围。因此,作为示例而非限制,本 说明书实施例的替代配置可视为与本说明书的教导一致。相应地,本说明书的实施例不仅限于本说明书明确介绍和描述的实施例。
Claims (18)
- 一种激光雷达校准装置,所述装置包括:激光雷达载台,用于承载待校准激光雷达;粗定位模块,用于获取所述待校准激光雷达的激光束的第一光斑图像;可移动的精细定位模块,用于基于所述第一光斑图像调整第二拍摄位置并获取所述激光束的第二光斑图像,所述第二光斑图像的分辨率高于所述第一光斑图像;控制模块,用于基于所述第二光斑图像确定光斑在预设坐标系中的目标位置;以及,至少基于所述目标位置确定所述激光束的实际出射角。
- 根据权利要求1所述的装置,所述激光雷达载台包括可控制360度旋转平台,用于控制所述待校准激光雷达围绕竖直方向的转轴旋转,以对所述待校准激光雷达不同水平视野的出射模块进行校准。
- 根据权利要求1所述的装置,所述粗定位模块包括第一相机以及接收屏;所述接收屏用于接收所述激光束;所述第一相机用于拍摄所述激光束在所述接收屏上形成的光斑,以获得所述第一光斑图像。
- 根据权利要求3所述的装置,所述接收屏包括可升降幕布。
- 根据权利要求3所述的装置,所述精细定位模块包括:第二相机以及感光屏,所述第二相机以及所述感光屏安装在导轨上;所述导轨用于为所述第二相机以及所述感光屏在所述接收屏的平面内或在与所述接收屏平行的平面内移动提供运动轨道,以便定位所述精细定位模块至所述第二拍摄位置;所述感光屏用于接收所述激光束;所述第二相机用于拍摄所述激光束在所述感光屏上形成的光斑,以获得所述第二光斑图像。
- 根据权利要求5所述的装置,所述导轨包括沿所述接收屏水平边缘布设的第一导轨以及相对所述第一导轨垂直布设的第二导轨;所述导轨的定位精度高于10微米。
- 根据权利要求1所述的装置,还包括距离调节器,用于调节所述激光雷达载台与所述粗定位模块之间的距离。
- 根据权利要求7所述的装置,所述距离调节器至少包括轨道和测距仪。
- 根据权利要求1所述的装置,还包括可拆卸的原点定义模块,用于定义所述激光雷达校准装置的空间中心原点,所述空间中心原点为所述激光束的实际出射角为0度时在接收屏上的映射位置。
- 根据权利要求9所述的装置,所述原点定义模块包括自水平激光标线仪和姿态调节云台;所述自水平激光标线仪用于定义所述空间中心原点的位置,所述姿态调节云台用于调节所述自水平激光标线仪的位置。
- 根据权利要求1所述的装置,为了基于所述第二光斑图像确定所述光斑在预设坐标系中的目标位置,所述控制模块还用于:基于所述第二光斑图像获取所述光斑的第二位置信息;基于所述光斑的第二位置信息以及所述第二拍摄位置确定所述光斑在预设坐标系中的目标位置。
- 一种激光雷达校准方法,所述方法包括:获取待校准激光雷达发射的激光束的第一光斑图像;基于所述第一光斑图像确定所述激光束的第二光斑图像的拍摄位置并获取第二光斑图像,所述第二光斑图像的分辨率高于所述第一光斑图像;基于所述第二光斑图像确定光斑在预设坐标系中的目标位置;以及,至少基于所述目标位置确定所述激光束的实际出射角。
- 根据权利要求12所述的方法,所述获取所述待校准激光雷达发射的激光束的第一光斑图像,包括通过粗定位模块获取所述待校准激光雷达发射的激光束的第一光斑图像;其中,所述粗定位模块包括第一相机以及接收屏;所述接收屏用于接收所述激光束;所述第一相机用于拍摄所述激光束在所述接收屏上形成的光斑,以获得所述第一光斑图像。
- 根据权利要求13所述的方法,所述基于所述第一光斑图像确定所述激光束的第二光斑图像的拍摄位置并获取第二光斑图像,包括:处理所述第一光斑图像,以确定所述光斑在所述接收屏上的位置数据;基于所述位置数据移动精细定位模块,以使所述精细定位模块能够获取所述第二光斑图像;其中,所述精细定位模块包括:第二相机以及感光屏,所述第二相机以及所述感光屏安装在导轨上;所述导轨用于为所述第二相机以及所述感光屏在所述接收屏的平面内或在 与所述接收屏平行的平面内移动提供运动轨道,以便定位所述精细定位模块至所述第二光斑图像的拍摄位置;所述感光屏用于接收所述激光束;所述第二相机用于拍摄所述激光束在所述感光屏上形成的光斑,以获得所述第二光斑图像。
- 根据权利要求14所述的方法,所述基于所述第二光斑图像确定光斑在预设坐标系中的目标位置,包括:基于所述第二光斑图像获取所述光斑的第二位置信息;将所述第二位置信息与所述第二光斑图像的拍摄位置叠加,得到所述光斑在预设坐标系中的目标位置;其中,所述第二位置信息包括所述光斑在所述感光屏中的位置数据,所述拍摄位置为所述第二相机与所述感光屏在所述接收屏所在平面的位置数据,所述预设坐标系基于所述接收屏建立。
- 根据权利要求13所述的方法,还包括:定义待校准激光雷达的空间中心原点;所述空间中心原点为所述激光束的实际出射角为0度时在所述接收屏上的映射位置。
- 根据权利要求16所述的方法,所述定义待校准激光雷达的空间中心原点包括:调节原点定义模块的位置,使得所述原点定义模块投射出的相互垂直的两个平面投影在所述待校准激光雷达上的两条相互垂直的线的交点与所述待校准激光雷达的激光出射口重合;定义所述相互垂直的两个平面投影在所述接收屏上的两条相互垂直的线的 交点的位置信息为所述空间中心原点的位置信息。
- 根据权利要求17所述的方法,所述至少基于所述目标位置确定所述激光束的实际出射角,包括:基于所述目标位置与所述空间中心原点在所述预设坐标系中的位置信息确定第一边长;基于所述待校准激光雷达的激光出射口到所述预设坐标平面的距离确定第二边长;利用反正切函数处理所述第一边长与第二边长,确定所述激光束的实际出射角。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010711316.7A CN111880164B (zh) | 2020-07-22 | 2020-07-22 | 一种激光雷达校准装置和方法 |
CN202010711316.7 | 2020-07-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022017419A1 true WO2022017419A1 (zh) | 2022-01-27 |
Family
ID=73155310
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/107644 WO2022017419A1 (zh) | 2020-07-22 | 2021-07-21 | 一种激光雷达校准装置和方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111880164B (zh) |
WO (1) | WO2022017419A1 (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114894084A (zh) * | 2022-02-16 | 2022-08-12 | 深圳市深视智能科技有限公司 | 激光发射器校准系统和校准方法 |
CN115507779A (zh) * | 2022-10-13 | 2022-12-23 | 中国人民解放军63653部队 | 旋转式管道中心对正方法以及管道对正装置 |
CN115615338A (zh) * | 2022-09-09 | 2023-01-17 | 成都飞机工业(集团)有限责任公司 | 一种飞机整机水平测量系统及测量方法 |
CN117111044A (zh) * | 2023-10-25 | 2023-11-24 | 武汉市品持科技有限公司 | 一种激光雷达俯仰角及光斑尺寸自动修正设备 |
CN118376217A (zh) * | 2024-05-31 | 2024-07-23 | 南京景曜智能科技有限公司 | 一种激光定位投射方法 |
CN118549909A (zh) * | 2024-07-24 | 2024-08-27 | 广东电网有限责任公司佛山供电局 | 线激光雷达和相机的外参标定方法、装置和外参标定系统 |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111880164B (zh) * | 2020-07-22 | 2023-02-28 | 北京嘀嘀无限科技发展有限公司 | 一种激光雷达校准装置和方法 |
CN112526486B (zh) * | 2020-11-23 | 2022-06-14 | 哈尔滨工业大学 | 一种基于轴系误差模型的三维激光雷达空间坐标校准方法 |
CN114646944A (zh) * | 2020-12-17 | 2022-06-21 | 广东博智林机器人有限公司 | 激光雷达校准装置和校准方法 |
CN112946607B (zh) * | 2021-01-26 | 2023-10-27 | 光为科技(广州)有限公司 | 光探测和测距设备的校准方法、系统及机器可读介质 |
CN113176579B (zh) * | 2021-03-01 | 2024-08-23 | 奥比中光科技集团股份有限公司 | 光斑位置自适应搜索方法、时间飞行测距系统及测距方法 |
CN112689114B (zh) * | 2021-03-11 | 2021-06-22 | 太平金融科技服务(上海)有限公司 | 对车辆的目标位置进行确定的方法、装置、设备和介质 |
CN113204004A (zh) * | 2021-04-30 | 2021-08-03 | 北京航迹科技有限公司 | 一种激光雷达校准装置和方法 |
CN113296082B (zh) * | 2021-05-28 | 2024-05-24 | 南京牧镭激光科技股份有限公司 | 一种激光净空雷达监测风机净空距离时的标定方法及辅助装置 |
CN113433520B (zh) * | 2021-08-26 | 2021-12-17 | 盎锐(常州)信息科技有限公司 | 零位检测方法、系统及激光雷达 |
CN113567967B (zh) * | 2021-08-27 | 2024-06-07 | 广州沃芽来得灵科技有限公司 | 激光雷达校准装置和方法 |
CN113960574B (zh) * | 2021-10-27 | 2024-09-03 | 合肥英睿系统技术有限公司 | 一种激光测距校准方法、装置、设备及存储介质 |
CN114076953A (zh) * | 2021-11-19 | 2022-02-22 | 深圳市优必选科技股份有限公司 | 激光雷达及机器人 |
CN113985420B (zh) * | 2021-12-28 | 2022-05-03 | 四川吉埃智能科技有限公司 | 一种斜45°激光雷达扫描光路误差补偿方法 |
CN116879872B (zh) * | 2023-09-05 | 2023-11-07 | 家园数字科技(吉林省)有限公司 | 一种激光雷达校准设备 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105682900A (zh) * | 2013-09-19 | 2016-06-15 | 物化股份有限公司 | 用于校准激光扫描系统的系统和方法 |
CN110553605A (zh) * | 2019-09-18 | 2019-12-10 | 苏州华兴源创科技股份有限公司 | 一种激光雷达偏转角误差的测量系统及方法 |
CN110749876A (zh) * | 2019-08-30 | 2020-02-04 | 上海禾赛光电科技有限公司 | 可用于激光雷达的校准方法以及装校结构 |
CN111044990A (zh) * | 2018-10-11 | 2020-04-21 | 北京北科天绘科技有限公司 | 机载激光雷达光束指向标定方法、系统及激光光斑探测器 |
KR200491988Y1 (ko) * | 2019-09-30 | 2020-07-13 | (주)이즈미디어 | Tof 카메라용 오차 보정 장치 |
CN111880164A (zh) * | 2020-07-22 | 2020-11-03 | 北京嘀嘀无限科技发展有限公司 | 一种激光雷达校准装置和方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102353950B (zh) * | 2011-10-18 | 2013-08-28 | 中国工程物理研究院应用电子学研究所 | 一种具有光轴校准功能的激光雷达光学系统及光轴校准方法 |
US10534074B2 (en) * | 2016-08-31 | 2020-01-14 | Qualcomm Incorporated | Hybrid scanning lidar systems |
CN111208496B (zh) * | 2020-03-10 | 2023-07-28 | 广东博智林机器人有限公司 | 一种激光雷达的校准装置及校准方法 |
CN111308450B (zh) * | 2020-03-13 | 2021-11-12 | 广东博智林机器人有限公司 | 一种激光雷达校准装置及其使用方法 |
-
2020
- 2020-07-22 CN CN202010711316.7A patent/CN111880164B/zh active Active
-
2021
- 2021-07-21 WO PCT/CN2021/107644 patent/WO2022017419A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105682900A (zh) * | 2013-09-19 | 2016-06-15 | 物化股份有限公司 | 用于校准激光扫描系统的系统和方法 |
CN111044990A (zh) * | 2018-10-11 | 2020-04-21 | 北京北科天绘科技有限公司 | 机载激光雷达光束指向标定方法、系统及激光光斑探测器 |
CN110749876A (zh) * | 2019-08-30 | 2020-02-04 | 上海禾赛光电科技有限公司 | 可用于激光雷达的校准方法以及装校结构 |
CN110553605A (zh) * | 2019-09-18 | 2019-12-10 | 苏州华兴源创科技股份有限公司 | 一种激光雷达偏转角误差的测量系统及方法 |
KR200491988Y1 (ko) * | 2019-09-30 | 2020-07-13 | (주)이즈미디어 | Tof 카메라용 오차 보정 장치 |
CN111880164A (zh) * | 2020-07-22 | 2020-11-03 | 北京嘀嘀无限科技发展有限公司 | 一种激光雷达校准装置和方法 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114894084A (zh) * | 2022-02-16 | 2022-08-12 | 深圳市深视智能科技有限公司 | 激光发射器校准系统和校准方法 |
CN115615338A (zh) * | 2022-09-09 | 2023-01-17 | 成都飞机工业(集团)有限责任公司 | 一种飞机整机水平测量系统及测量方法 |
CN115615338B (zh) * | 2022-09-09 | 2024-02-20 | 成都飞机工业(集团)有限责任公司 | 一种飞机整机水平测量系统及测量方法 |
CN115507779A (zh) * | 2022-10-13 | 2022-12-23 | 中国人民解放军63653部队 | 旋转式管道中心对正方法以及管道对正装置 |
CN117111044A (zh) * | 2023-10-25 | 2023-11-24 | 武汉市品持科技有限公司 | 一种激光雷达俯仰角及光斑尺寸自动修正设备 |
CN118376217A (zh) * | 2024-05-31 | 2024-07-23 | 南京景曜智能科技有限公司 | 一种激光定位投射方法 |
CN118549909A (zh) * | 2024-07-24 | 2024-08-27 | 广东电网有限责任公司佛山供电局 | 线激光雷达和相机的外参标定方法、装置和外参标定系统 |
Also Published As
Publication number | Publication date |
---|---|
CN111880164A (zh) | 2020-11-03 |
CN111880164B (zh) | 2023-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022017419A1 (zh) | 一种激光雷达校准装置和方法 | |
WO2022227844A1 (zh) | 一种激光雷达校准装置和方法 | |
CN111095355B (zh) | 实时定位和定向跟踪器 | |
CA2233806C (en) | Camera/lens calibration apparatus and method | |
JP2018013337A (ja) | 飛行物体の誘導位置決め装置および方法 | |
CN110749874A (zh) | 激光雷达发射光路的调平装置及方法 | |
CN107339935B (zh) | 用于全视角扫描测量系统的靶标空间交会测量方法 | |
US20200200529A1 (en) | Device and Method to Locate a Measurement Point with an Image Capture Device | |
CN111811496B (zh) | 一种斜交非接触式三维线速度及双轴动态角度测量系统、方法 | |
CN109724540A (zh) | 二维mems扫描反射镜转角标定系统及标定方法 | |
US6611664B2 (en) | Stereo image photographing system | |
CN108181610A (zh) | 室内机器人定位方法和系统 | |
CN117146710A (zh) | 基于主动视觉的动态投影三维重建系统及方法 | |
US20130162971A1 (en) | Optical system | |
JP2001296124A (ja) | 3次元座標計測方法及び3次元座標計測装置 | |
CN108931236B (zh) | 工业机器人末端重复定位精度测量装置与方法 | |
US20230045402A1 (en) | Laser Leveling Device and Leveling Method | |
CN113960564B (zh) | 一种用于水下检测的激光综合参考系统及测距和标定的方法 | |
CN109813231A (zh) | 高铁桥梁竖向动扰度测量方法 | |
JP4276360B2 (ja) | ステレオ画像撮影用システム | |
Wu et al. | A novel precise guiding method for visual guiding theodolite measurement in volume space | |
CN111707446B (zh) | 光斑中心与探测器接收面中心对准的调节方法及系统 | |
CN114967767A (zh) | 基于组合转镜的复合轴粗精跟踪装置及方法 | |
CN113251951A (zh) | 基于单标定面映射的线结构光视觉测量系统的标定方法 | |
CN117233735B (zh) | 一种用于红外侦察告警系统的光学标定装置及方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21845939 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10/05/2023) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21845939 Country of ref document: EP Kind code of ref document: A1 |