[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022017127A1 - 一种被用于无线通信的用户设备、基站中的方法和装置 - Google Patents

一种被用于无线通信的用户设备、基站中的方法和装置 Download PDF

Info

Publication number
WO2022017127A1
WO2022017127A1 PCT/CN2021/102643 CN2021102643W WO2022017127A1 WO 2022017127 A1 WO2022017127 A1 WO 2022017127A1 CN 2021102643 W CN2021102643 W CN 2021102643W WO 2022017127 A1 WO2022017127 A1 WO 2022017127A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
time window
carrier symbols
condition
pool
Prior art date
Application number
PCT/CN2021/102643
Other languages
English (en)
French (fr)
Inventor
吴克颖
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2022017127A1 publication Critical patent/WO2022017127A1/zh
Priority to US18/098,699 priority Critical patent/US20230155795A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space

Definitions

  • the present application relates to a transmission method and apparatus in a wireless communication system, in particular to a wireless signal transmission method and apparatus in a wireless communication system supporting a cellular network.
  • Multi-antenna technology is a key technology in 3GPP (3rd Generation Partner Project, 3rd Generation Partnership Project) LTE (Long-term Evolution, Long Term Evolution) system and NR (New Radio, New Radio) system. Additional spatial degrees of freedom are obtained by configuring multiple antennas at a communication node, such as a base station or a UE (User Equipment, user equipment). Multiple antennas use beamforming to form beams pointing in a specific direction to improve communication quality. When multiple antennas belong to multiple TRPs (Transmitter Receiver Points)/panels (antenna panels), additional diversity gain can be obtained by utilizing the spatial differences between different TRPs/panels. In NR R (release) R16, multi-TRP-based transmission is used to improve the transmission reliability of downlink physical layer data channels.
  • NR R release
  • the multi-TRP/panel-based transmission scheme will continue to evolve, an important aspect of which includes enhancing the uplink physical layer data channel. Similar to the downlink physical layer data channel, the transmission reliability of the uplink physical layer data channel can be improved by using beams for different TRP/panels for repeated transmission. Switching between beams targeting different TRPs/panels requires a certain processing time, which imposes requirements on the time interval between repeated transmissions.
  • the present application discloses a solution. It should be noted that although the above description takes a multi-TRP/panel scenario as an example, the present application is also applicable to other scenarios such as a single TRP/panel scenario, and achieves similar technical effects in a multi-TRP/panel scenario.
  • the present application discloses a method used in a first node of wireless communication, which is characterized by comprising:
  • the first signaling is used to determine K time windows, where K is a positive integer greater than 1; both the first signal and the second signal carry a first bit block; among the K time windows is associated with one of the first reference signal or the second reference signal, and the first signaling is used to determine the first reference signal and the second reference signal; the first time The pool includes one or more of the K time windows and all or part of the multi-carrier symbols in the time windows associated with the first reference signal, and the second time pool includes the K time windows.
  • the first time window and the second time window are two adjacent time windows in the K time windows, respectively a time window, the first time window and the second time window are respectively associated with the first reference signal and the second reference signal;
  • the first time pool includes all of the first time windows or part of the multi-carrier symbols, the second time pool includes all or part of the multi-carrier symbols in the second time window; whether the first set of conditions is satisfied is used to determine at least one of the following:
  • the problem to be solved by the present application includes: how to meet the processing time required for switching between beams in uplink transmission based on multiple TRP/panels.
  • the above method solves this problem by forgoing signaling on some of the multicarrier symbols reserved for uplink transmission.
  • the problem to be solved in this application includes: how to avoid resource waste caused by meeting the processing time requirement of beam switching.
  • the above method solves this problem by judging whether the processing time requirement for beam switching has been met between two repeated transmissions, and then judging whether to give up sending signals on part of the multi-carrier symbols reserved for uplink transmission.
  • the characteristics of the above method include: the first condition set is used to determine whether the processing time requirement for beam switching has been satisfied between two repeated transmissions.
  • the advantages of the above method include: not only meeting the processing time requirement of beam switching, but also avoiding resource waste and improving resource utilization.
  • the first condition set includes S condition subsets, and S is a positive integer; when one condition subset in the S condition subsets is satisfied, the first condition The set is satisfied; when each of the S condition subsets is not satisfied, the first condition set is not satisfied.
  • the first condition subset is one of the S condition subsets, and the first condition subset includes: the first time window and the second time window are Time unit boundary separation.
  • the second condition subset is one of the S condition subsets, and the second condition subset includes: a difference between the first time window and the second time window The number of multi-carrier symbols existing between the two is not less than a first value, and the first value is a non-negative integer.
  • the third condition subset is one of the S condition subsets, and the third condition subset includes: a difference between the first time window and the second time window The type in which one multi-carrier symbol exists between them belongs to the first type set.
  • the first time pool does not include the last P1 multi-carrier symbols in the first time window
  • the second The time pool does not include the earliest P2 multi-carrier symbols in the second time window
  • P1 and P2 are respectively non-negative integers, the sum of the P1 and P2 is equal to P, and the P is a positive integer
  • the first time At least one of the number of multi-carrier symbols included in the window or the number of multi-carrier symbols included in the second time window is used to determine the value of P1 and the value of P2.
  • the present application is characterized in that whether there is a type of multi-carrier symbol between the first time window and the second time window belongs to the first type set and is used to determine the first value, the first A value is a non-negative integer; the number of multi-carrier symbols existing between the first time pool and the second time pool is not less than the first value.
  • the first node is a user equipment.
  • the first node is a relay node.
  • the present application discloses a method used in a second node for wireless communication, which is characterized by comprising:
  • the first signaling is used to determine K time windows, where K is a positive integer greater than 1; both the first signal and the second signal carry a first bit block; among the K time windows is associated with one of the first reference signal or the second reference signal, and the first signaling is used to determine the first reference signal and the second reference signal; the first time The pool includes one or more of the K time windows and all or part of the multi-carrier symbols in the time windows associated with the first reference signal, and the second time pool includes the K time windows.
  • the first time window and the second time window are two adjacent time windows in the K time windows, respectively a time window, the first time window and the second time window are respectively associated with the first reference signal and the second reference signal;
  • the first time pool includes all of the first time windows or part of the multi-carrier symbols, the second time pool includes all or part of the multi-carrier symbols in the second time window; whether the first set of conditions is satisfied is used to determine at least one of the following:
  • the first condition set includes S condition subsets, and S is a positive integer; when one condition subset in the S condition subsets is satisfied, the first condition The set is satisfied; when each of the S condition subsets is not satisfied, the first condition set is not satisfied.
  • the first condition subset is one of the S condition subsets, and the first condition subset includes: the first time window and the second time window are Time unit boundary separation.
  • the second condition subset is one of the S condition subsets, and the second condition subset includes: a difference between the first time window and the second time window The number of multi-carrier symbols existing between the two is not less than a first value, and the first value is a non-negative integer.
  • the third condition subset is one of the S condition subsets, and the third condition subset includes: a difference between the first time window and the second time window The type in which one multi-carrier symbol exists between them belongs to the first type set.
  • the first time pool does not include the last P1 multi-carrier symbols in the first time window
  • the second The time pool does not include the earliest P2 multi-carrier symbols in the second time window
  • P1 and P2 are respectively non-negative integers, the sum of the P1 and P2 is equal to P, and the P is a positive integer
  • the first time At least one of the number of multi-carrier symbols included in the window or the number of multi-carrier symbols included in the second time window is used to determine the value of P1 and the value of P2.
  • the present application is characterized in that whether there is a type of multi-carrier symbol between the first time window and the second time window belongs to the first type set and is used to determine the first value, the first A value is a non-negative integer; the number of multi-carrier symbols existing between the first time pool and the second time pool is not less than the first value.
  • the second node is a base station.
  • the second node is a user equipment.
  • the second node is a relay node.
  • the present application discloses a first node device used for wireless communication, which is characterized by comprising:
  • a first receiver receiving the first signaling
  • a first transmitter which sends the first signal in the first time pool and sends the second signal in the second time pool
  • the first signaling is used to determine K time windows, where K is a positive integer greater than 1; both the first signal and the second signal carry a first bit block; among the K time windows is associated with one of the first reference signal or the second reference signal, and the first signaling is used to determine the first reference signal and the second reference signal; the first time The pool includes one or more of the K time windows and all or part of the multi-carrier symbols in the time windows associated with the first reference signal, and the second time pool includes the K time windows.
  • the first time window and the second time window are two adjacent time windows in the K time windows, respectively a time window, the first time window and the second time window are respectively associated with the first reference signal and the second reference signal;
  • the first time pool includes all of the first time windows or part of the multi-carrier symbols, the second time pool includes all or part of the multi-carrier symbols in the second time window; whether the first set of conditions is satisfied is used to determine at least one of the following:
  • the present application discloses a second node device used for wireless communication, which is characterized by comprising:
  • the second transmitter sends the first signaling
  • a second receiver that receives the first signal in the first time pool and receives the second signal in the second time pool
  • the first signaling is used to determine K time windows, where K is a positive integer greater than 1; both the first signal and the second signal carry a first bit block; among the K time windows is associated with one of the first reference signal or the second reference signal, and the first signaling is used to determine the first reference signal and the second reference signal; the first time The pool includes one or more of the K time windows and all or part of the multi-carrier symbols in the time windows associated with the first reference signal, and the second time pool includes the K time windows.
  • the first time window and the second time window are two adjacent time windows in the K time windows, respectively a time window, the first time window and the second time window are respectively associated with the first reference signal and the second reference signal;
  • the first time pool includes all of the first time windows or part of the multi-carrier symbols, the second time pool includes all or part of the multi-carrier symbols in the second time window; whether the first set of conditions is satisfied is used to determine at least one of the following:
  • the present application has the following advantages:
  • the processing time requirement of beam switching is met, resource waste is avoided, and resource utilization is improved.
  • Fig. 1 shows the first signaling, the flow chart of the first signal and the second signal according to an embodiment of the present application
  • FIG. 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • FIG. 3 shows a schematic diagram of an embodiment of a radio protocol architecture for the user plane and the control plane according to an embodiment of the present application
  • FIG. 4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application
  • Figure 5 shows a flow chart of transmission according to an embodiment of the present application
  • FIG. 6 shows a schematic diagram that the first signaling is used to determine K time windows according to an embodiment of the present application
  • FIG. 7 shows a schematic diagram that the first signaling is used to determine K time windows according to an embodiment of the present application
  • FIG. 8 shows a schematic diagram of a first time pool, a second time pool and K time windows according to an embodiment of the present application
  • FIG. 9 shows a schematic diagram of a first time pool, a second time pool and K time windows according to an embodiment of the present application.
  • FIG. 10 shows a schematic diagram of a given time window being associated with a given reference signal according to an embodiment of the present application
  • FIG. 11 shows a first condition set according to an embodiment of the present application, whether the first time pool includes all multi-carrier symbols in the first time window and whether the second time pool includes all multi-carrier symbols in the second time window.
  • FIG. 12 shows a schematic diagram of a first condition set and S condition subsets according to an embodiment of the present application
  • FIG. 13 shows a schematic diagram of S conditional subsets and a first conditional subset according to an embodiment of the present application
  • the first time pool does not include the last P1 multi-carrier symbols in the first time window, and the second time pool does not include the second Schematic diagram of the earliest P2 multi-carrier symbols in the time window;
  • 17 shows a schematic diagram of whether there is a type of multi-carrier symbol belonging to the first type set and used to determine the first value between the first time window and the second time window according to an embodiment of the present application;
  • FIG. 18 shows a structural block diagram of a processing apparatus used in a first node device according to an embodiment of the present application
  • FIG. 19 shows a structural block diagram of a processing apparatus for a device in a second node according to an embodiment of the present application.
  • Embodiment 1 illustrates a flow chart of the first signal, the first signal and the second signal according to an embodiment of the present application, as shown in FIG. 1 .
  • each block represents a step.
  • the order of the steps in the blocks does not represent a specific chronological relationship between the various steps.
  • the first node in this application receives the first signaling in step 101; sends the first signal in the first time pool in step 102; in step 103, sends the first signal in the second time pool Send a second signal.
  • the first signaling is used to determine K time windows, where K is a positive integer greater than 1; both the first signal and the second signal carry a first bit block; among the K time windows is associated with one of the first reference signal or the second reference signal, and the first signaling is used to determine the first reference signal and the second reference signal; the first time
  • the pool includes one or more of the K time windows and all or part of the multi-carrier symbols in the time windows associated with the first reference signal, and the second time pool includes the K time windows.
  • the first time window and the second time window are two adjacent time windows in the K time windows, respectively a time window, the first time window and the second time window are respectively associated with the first reference signal and the second reference signal;
  • the first time pool includes all of the first time windows or part of the multi-carrier symbols, the second time pool includes all or part of the multi-carrier symbols in the second time window; whether the first set of conditions is satisfied is used to determine at least one of the following:
  • the first signaling includes physical layer signaling.
  • the first signaling includes dynamic signaling.
  • the first signaling includes layer 1 (L1) signaling.
  • the first signaling includes layer 1 (L1) control signaling.
  • the first signaling includes DCI (Downlink control information, downlink control information).
  • the first signaling includes one or more fields in a DCI.
  • the first signaling includes one or more fields (fields) in an SCI (Sidelink Control Information, secondary link control information).
  • SCI Servicelink Control Information, secondary link control information
  • the first signaling includes DCI for uplink grant (UpLink Grant).
  • the first signaling includes DCI for activation of an uplink configuration grant type 2 (Configured Uplink Grant Type 2).
  • the first signaling includes higher layer signaling.
  • the first signaling includes RRC (Radio Resource Control, radio resource control) signaling.
  • RRC Radio Resource Control, radio resource control
  • the first signaling includes MAC CE (Medium Access Control layer Control Element, medium access control layer control element) signaling.
  • MAC CE Medium Access Control layer Control Element, medium access control layer control element
  • the first signaling includes information in one or more fields (fields) in an IE (Information Element, information element).
  • IE Information Element, information element
  • the first signaling includes scheduling information of the first signal and the second signal.
  • the scheduling information includes time domain resources, frequency domain resources, MCS (Modulation and Coding Scheme, modulation and coding scheme), DMRS (DeModulation Reference Signals, demodulation reference signal) port (port), HARQ (Hybrid Automatic Repeat reQuest, hybrid automatic repeat request) process number (process number), one or more of RV (Redundancy Version, redundancy version) or NDI (New Data Indicator, new data indication).
  • MCS Modulation and Coding Scheme, modulation and coding scheme
  • DMRS DeModulation Reference Signals, demodulation reference signal
  • port port
  • HARQ Hybrid Automatic Repeat reQuest, hybrid automatic repeat request
  • process number process number
  • RV Redundancy Version
  • NDI New Data Indicator, new data indication
  • the first signaling explicitly indicates the K time windows.
  • the first signaling implicitly indicates the K time windows.
  • the information indicated by the first signaling is used to infer the K time windows.
  • the multi-carrier symbols include OFDM (Orthogonal Frequency Division Multiplexing, orthogonal frequency division multiplexing) symbols.
  • the multi-carrier symbols include SC-FDMA (Single Carrier-Frequency Division Multiple Access, single-carrier frequency division multiple access) symbols.
  • SC-FDMA Single Carrier-Frequency Division Multiple Access, single-carrier frequency division multiple access
  • the multi-carrier symbols include DFT-S-OFDM (Discrete Fourier Transform Spread OFDM, Discrete Fourier Transform Orthogonal Frequency Division Multiplexing) symbols.
  • DFT-S-OFDM Discrete Fourier Transform Spread OFDM, Discrete Fourier Transform Orthogonal Frequency Division Multiplexing
  • the first reference signal includes a CSI-RS (Channel State Information-Reference Signal, channel state information reference signal).
  • CSI-RS Channel State Information-Reference Signal, channel state information reference signal
  • the first reference signal includes SSB (Synchronisation Signal/physical broadcast channel Block, synchronization signal/physical broadcast channel block).
  • SSB Synchronisation Signal/physical broadcast channel Block, synchronization signal/physical broadcast channel block.
  • the first reference signal includes an SRS (Sounding Reference Signal, sounding reference signal).
  • SRS Sounding Reference Signal, sounding reference signal
  • the second reference signal includes CSI-RS.
  • the second reference signal includes SSB.
  • the second reference signal includes an SRS.
  • the first reference signal and the second reference signal are not QCL (Quasi-Co-Located, quasi co-located).
  • the first reference signal and the second reference signal are not QCLs corresponding to QCL-TypeD.
  • the first signaling indicates the first reference signal and the second reference signal.
  • the first signaling includes a third field
  • the third field in the first signaling indicates the first reference signal and the second reference signal.
  • the third field includes a positive integer number of bits greater than 1.
  • the third field includes all or part of the information in the SRS resource indicator field.
  • the third field in the first signaling indicates a TCI (Transmission Configuration Indicator, transmission configuration identifier) field codepoint (codepoint) corresponding to the first reference signal and the second reference signal The corresponding TCI field code point.
  • TCI Transmission Configuration Indicator, transmission configuration identifier
  • the first reference signal and the second reference signal correspond to the same TCI domain code point.
  • the first reference signal and the second reference signal correspond to different TCI domain code points.
  • the third field in the first signaling indicates that the SRI (SRS resource indicator, sounding reference signal resource identifier) field code point corresponding to the first reference signal corresponds to the second reference signal SRI domain code point.
  • SRI SRS resource indicator, sounding reference signal resource identifier
  • the first reference signal and the second reference signal correspond to the same SRI domain code point.
  • the first reference signal and the second reference signal correspond to different SRI domain code points.
  • the time-frequency resources occupied by the first signaling are used to determine the first reference signal and the second reference signal.
  • the DCI format of the first signaling is used to determine the first reference signal and the second reference signal.
  • any time window in the K time windows is a continuous time period.
  • any one of the K time windows includes a positive integer number of multi-carrier symbols.
  • any one of the K time windows includes one or more consecutive multi-carrier symbols.
  • any one of the K time windows includes a time slot (slot).
  • any one of the K time windows includes a positive integer number of time slots (slots).
  • any one of the K time windows includes a sub-slot.
  • the length of any time window in the K time windows is not greater than one time slot.
  • the K time windows are orthogonal to each other in pairs.
  • the number of multi-carrier symbols included in two time windows in the K time windows is not equal.
  • the number of multi-carrier symbols included in two time windows in the K time windows is equal.
  • one of the K time windows includes only one multi-carrier symbol.
  • one of the K time windows includes multiple multi-carrier symbols.
  • any one of the K time windows includes a positive integer number of multi-carrier symbols greater than 1.
  • the K time windows are continuous in the time domain.
  • the K time windows are discontinuous in the time domain.
  • the first time window is the i-th time window among the K time windows
  • the second time window is the (i+1)-th time window among the K time windows , where i is a positive integer less than K.
  • the positions of the first time window and the second time window are adjacent in the K time windows.
  • the K time windows are respectively reserved for K repeated transmissions of the first bit block.
  • the K repeated transmissions of the first bit block are respectively K actual repeated transmissions.
  • one repeated transmission occupies all multi-carrier symbols in a corresponding time window.
  • one repeated transmission occupies only part of the multi-carrier symbols in the corresponding time window.
  • the K repeated transmissions of the first bit block occupy the same frequency domain resources.
  • two repeated transmissions in the K repeated transmissions of the first bit block occupy different frequency domain resources.
  • the K repeated transmissions of the first bit block belong to the same BWP (Bandwidth part, bandwidth interval) in the frequency domain.
  • the K repeated transmissions of the first bit block belong to the same serving cell in the frequency domain.
  • any one of the K repeated transmissions of the first bit block is transmitted on a PUSCH (Physical Uplink Shared CHannel, physical uplink shared channel).
  • PUSCH Physical Uplink Shared CHannel, physical uplink shared channel
  • none of the K time windows exists between the first time window and the second time window in the time domain.
  • the end time of the first time window is not later than the start time of the second time window.
  • the first node is in the In any multi-carrier symbol between two adjacent time windows, no wireless signal is sent in the serving cell to which the first signal belongs.
  • the wireless signal carrying the first bit block is not sent in the serving cell to which the first signal belongs.
  • the given time pool includes a positive integer number of time periods; any time period included in the given time pool is continuous in the time domain.
  • a given time pool includes a plurality of time periods; the plurality of time periods are not consecutive.
  • a given time pool includes only 1 time period.
  • a given time pool includes a positive integer number of multi-carrier symbols.
  • the multi-carrier symbols included in a given time pool are discontinuous in the time domain.
  • the multi-carrier symbols included in a given time pool are contiguous in the time domain.
  • the given time pool includes all or part of the time domain resources in some of the K time windows.
  • the given time pool consists of all or part of the time domain resources in some of the K time windows.
  • the given time pool is the first time pool or the second time pool.
  • the given time pool is the first time pool.
  • the given time pool is the second time pool.
  • the first time pool includes all multi-carrier symbols in the first time window.
  • the first time pool includes only part of the multicarrier symbols in the first time window.
  • the second time pool includes all multi-carrier symbols in the second time window.
  • the second time pool includes only a portion of the multi-carrier symbols in the second time window.
  • the first time pool and the second time pool are orthogonal to each other in the time domain.
  • the end time of the first time pool is not later than the start time of the second time pool.
  • the end time of the first time pool is not later than the end time of the first time window.
  • the start time of the second time pool is not earlier than the start time of the second time window.
  • the first time pool is composed of one or more of the K time windows and all or part of the multi-carrier symbols in the time windows associated with the first reference signal
  • the The second time pool consists of one or more of the K time windows and all or part of the multi-carrier symbols in the time windows associated with the second reference signal.
  • the first signal and the second signal respectively comprise baseband signals.
  • the first signal and the second signal respectively comprise wireless signals.
  • the first signal and the second signal respectively comprise radio frequency signals.
  • the first signal and the second signal respectively comprise two repeated transmissions of the first bit block.
  • the first signal and the second signal each comprise two actual repeated transmissions of the first bit block.
  • the first signal occupies all time domain resources in the first time pool.
  • the second signal occupies all time domain resources in the second time pool.
  • the first signal and the second signal belong to the same BWP in the frequency domain.
  • the first signal and the second signal belong to the same serving cell in the frequency domain.
  • the first bit block includes a positive integer number of bits greater than 1.
  • all bits in the first bit block are arranged in sequence.
  • the first bit block includes a TB (Transport Block, transport block).
  • TB Transport Block, transport block
  • the first bit block includes a CB (Code Block, code block).
  • the first bit block includes a CBG (Code Block Group, code block group).
  • CBG Code Block Group, code block group
  • the first signaling is used to determine the number of bits included in the first bit block.
  • the meaning of the sentence that the first signal and the second signal both carry the first bit block includes: the first signal and the second signal respectively include the order of bits in the first bit block.
  • CRC Cyclic Redundancy Check, Cyclic Redundancy Check
  • Attachment Attachment
  • Code Block Segmentation Code Block Segmentation
  • Code Block CRC Attachment Channel Coding (Channel Coding), Rate Matching (Rate Matching)
  • Concatenation Concatenation
  • Scrambling Modulation, Layer Mapping, transform precoding, Precoding, Mapping to Virtual Resource Blocks, virtual to physical resources Block mapping (Mapping from Virtual to Physical Resource Blocks), multi-carrier symbol generation (Generation), output after modulation and upconversion (Modulation and Upconversion).
  • the meaning of the sentence that the first signal and the second signal both carry the first bit block includes: the first signal and the second signal respectively include the order of bits in the first bit block.
  • the sentence that the first signal and the second signal both carry a first block of bits includes that the first block of bits is used to generate the first signal and the second signal.
  • the first set of conditions is related to whether there is a time unit interval between the first time window and the second time window.
  • the first set of conditions is related to whether there is a multi-carrier symbol between the first time window and the second time window.
  • the first set of conditions is related to the number of multi-carrier symbols between the first time window and the second time window.
  • the first set of conditions is related to the type of multi-carrier symbols between the first time window and the second time window.
  • the first set of conditions includes: the first time window and the second time window are separated by a time unit boundary.
  • the first set of conditions includes: the first time window and the second time window are separated by a time unit boundary, and at the time separating the first time window and the second time window The conversion of multi-carrier symbols of the first type to multi-carrier symbols of the second type occurs at cell boundaries.
  • the first condition set includes: the number of multi-carrier symbols existing between the first time window and the second time window is not less than a first value, and the first value is a non-negative integer.
  • the first condition set includes: a type in which a multi-carrier symbol exists between the first time window and the second time window belongs to the first type set.
  • the first set of conditions includes: the first node is not configured with a first higher layer parameter.
  • the first higher layer parameter indicates the first value.
  • the name of the first higher layer parameter includes StartingSymbolOffset.
  • the higher layer signaling for configuring the first higher layer parameter includes information in all or part of the fields in the RepetitionSchemeConfig IE.
  • the first node abandons the first time pool that does not belong to the first time window
  • the signal is transmitted in multi-carrier symbols.
  • the first node discards that the second time window does not belong to the second time pool
  • the signal is transmitted in multi-carrier symbols.
  • the first node abandons the first time pool that does not belong to the first time window
  • the signal carrying the first bit block is sent in the multi-carrier symbol of .
  • the first node discards that the second time window does not belong to the second time pool
  • the signal carrying the first bit block is sent in the multi-carrier symbol of .
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to an embodiment of the present application, as shown in FIG. 2 .
  • FIG. 2 illustrates a network architecture 200 of LTE (Long-Term Evolution, Long Term Evolution), LTE-A (Long-Term Evolution Advanced, Enhanced Long Term Evolution) and future 5G systems.
  • the network architecture 200 of LTE, LTE-A and future 5G systems is called EPS (Evolved Packet System, Evolved Packet System) 200.
  • EPS Evolved Packet System, Evolved Packet System
  • 5G NR or LTE network architecture 200 may be called 5GS (5G System)/EPS (Evolved Packet System, evolved grouping system) 200 or some other suitable term.
  • the 5GS/EPS 200 may include one or more UE (User Equipment, user equipment) 201, a UE 241 for sidelink (Sidelink) communication with the UE 201, NG-RAN (Next Generation Radio Access Network) 202, 5GC (5G CoreNetwork, 5G Core Network)/EPC (Evolved Packet Core, Evolved Packet Core) 210, HSS (Home Subscriber Server, Home Subscriber Server)/UDM (Unified Data Management, Unified Data Management) 220 and Internet Services 230.
  • 5GS/EPS200 Interconnections with other access networks are possible, but these entities/interfaces are not shown for simplicity.
  • the 5GS/EPS 200 provides packet-switched services, however those skilled in the art will readily appreciate that the various concepts presented throughout this application can be extended to networks that provide circuit-switched services.
  • the NG-RAN 202 includes an NR (New Radio) Node B (gNB) 203 and other gNBs 204.
  • gNB 203 provides user and control plane protocol termination towards UE 201 .
  • gNBs 203 may connect to other gNBs 204 via an Xn interface (eg, backhaul).
  • the gNB 203 may also be referred to as a base station, base transceiver station, radio base station, radio transceiver, transceiver function, Basic Service Set (BSS), Extended Service Set (ESS), TRP (Transmit Receive Point) or some other suitable terminology.
  • gNB203 provides UE201 with an access point to 5GC/EPC210.
  • Examples of UE 201 include cellular phones, smart phones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, global positioning systems, multimedia devices, video devices, digital audio players ( For example, MP3 players), cameras, game consoles, drones, aircraft, narrowband physical network devices, machine type communication devices, land vehicles, automobiles, wearable devices, or any other similarly functional device.
  • UE 201 may also refer to UE 201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • gNB203 is connected to 5GC/EPC210 through S1/NG interface.
  • 5GC/EPC210 includes MME (Mobility Management Entity, mobility management entity)/AMF (Authentication Management Field, authentication management domain)/SMF (Session Management Function, session management function) 211.
  • MME Mobility Management Entity
  • AMF Authentication Management Field, authentication management domain
  • Session Management Function Session Management Function, session management function
  • MME/AMF/SMF214 S-GW (Service Gateway, service gateway)/UPF (User Plane Function, user plane function) 212 and P-GW (Packet Date Network Gateway, packet data network gateway)/UPF213.
  • the MME/AMF/SMF 211 is the control node that handles signaling between the UE 201 and the 5GC/EPC 210 .
  • MME/AMF/SMF 211 provides bearer and connection management. All user IP (Internet Protocol, Internet Protocol) packets are transmitted through the S-GW/UPF212, and the S-GW/UPF212 itself is connected to the P-GW/UPF213.
  • the P-GW provides UE IP address allocation and other functions.
  • the P-GW/UPF 213 is connected to the Internet service 230 .
  • the Internet service 230 includes the Internet Protocol service corresponding to the operator, and may specifically include Internet, intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem) and packet switching (Packet switching) service.
  • IMS IP Multimedia Subsystem
  • IP Multimedia Subsystem IP Multimedia Subsystem
  • Packet switching Packet switching
  • the first node in this application includes the UE201.
  • the first node in this application includes the UE241.
  • the second node in this application includes the gNB203.
  • the second node in this application includes the UE241.
  • the wireless link between the UE 201 and the gNB 203 is a cellular network link.
  • the radio link between the UE201 and the UE241 is a side link.
  • the sender of the first signaling in this application includes the gNB203.
  • the recipient of the first signaling in this application includes the UE201.
  • the sender of the first signal in this application includes the UE201.
  • the receiver of the first signal in this application includes the gNB203.
  • the sender of the second signal in this application includes the UE201.
  • the receiver of the second signal in this application includes the gNB203.
  • Embodiment 3 illustrates a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane according to an embodiment of the present application, as shown in FIG. 3 .
  • Embodiment 3 shows a schematic diagram of an embodiment of a radio protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3 .
  • Figure 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for the user plane 350 and the control plane 300, showing three layers for a first communication node device (UE, gNB or RSU in V2X) and a second The radio protocol architecture of the control plane 300 between communication node devices (gNB, UE or RSU in V2X), or between two UEs: Layer 1, Layer 2 and Layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (Physical Layer) signal processing functions.
  • the L1 layer will be referred to herein as PHY301.
  • Layer 2 (L2 layer) 305 is above the PHY 301 and is responsible for the link between the first communication node device and the second communication node device, or between two UEs.
  • L2 layer 305 includes MAC (Medium Access Control, Media Access Control) sublayer 302, RLC (Radio Link Control, Radio Link Layer Control Protocol) sublayer 303 and PDCP (Packet Data Convergence Protocol, Packet Data Convergence Protocol) sublayer 304, the sublayers are terminated at the second communication node device.
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides for providing security by encrypting data packets, as well as providing handoff support for the first communication node device between the second communication node devices.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer packets, retransmission of lost packets, and reordering of packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 302 provides multiplexing between logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (eg, resource blocks) in a cell among the first communication node devices.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control, Radio Resource Control) sublayer 306 in the layer 3 (L3 layer) in the control plane 300 is responsible for obtaining radio resources (ie, radio bearers) and using the communication between the second communication node device and the first communication node device.
  • the RRC signaling between them is used to configure the lower layers.
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer), the radio protocol architecture for the first communication node device and the second communication node device in the user plane 350
  • L1 layer layer 1
  • L2 layer layer 2
  • the PDCP sublayer 354 in the layer 355, the RLC sublayer 353 in the L2 layer 355, and the MAC sublayer 352 in the L2 layer 355 are substantially the same as the corresponding layers and sublayers in the control plane 300, but the PDCP sublayer 354 is also Provides header compression for upper layer packets to reduce radio transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes an SDAP (Service Data Adaptation Protocol, Service Data Adaptation Protocol) sublayer 356, and the SDAP sublayer 356 is responsible for the mapping between the QoS flow and the data radio bearer (DRB, Data Radio Bearer). , to support business diversity.
  • the first communication node device may have several upper layers above the L2 layer 355, including a network layer (eg, IP layer) terminating at the P-GW on the network side and another terminating in a connection Application layer at one end (eg, remote UE, server, etc.).
  • the radio protocol architecture in FIG. 3 is applicable to the first node in this application.
  • the radio protocol architecture in FIG. 3 is applicable to the second node in this application.
  • the first signaling is generated in the PHY 301 or the PHY 351.
  • the first signaling is generated in the MAC sublayer 302 or the MAC sublayer 352 .
  • the first signal is generated by the PHY 301 or the PHY 351 .
  • the second signal is generated by the PHY 301 or the PHY 351 .
  • Embodiment 4 illustrates a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application, as shown in FIG. 4 .
  • FIG. 4 is a block diagram of a first communication device 410 and a second communication device 450 that communicate with each other in an access network.
  • the first communication device 410 includes a controller/processor 475 , a memory 476 , a receive processor 470 , a transmit processor 416 , a multi-antenna receive processor 472 , a multi-antenna transmit processor 471 , a transmitter/receiver 418 and an antenna 420 .
  • Second communication device 450 includes controller/processor 459, memory 460, data source 467, transmit processor 468, receive processor 456, multiple antenna transmit processor 457, multiple antenna receive processor 458, transmitter/receiver 454 and antenna 452.
  • upper layer data packets from the core network are provided to the controller/processor 475 .
  • the controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels, and the second communication device 450 based on various priority metrics Radio resource allocation.
  • the controller/processor 475 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the second communication device 450 .
  • Transmit processor 416 and multi-antenna transmit processor 471 implement various signal processing functions for the L1 layer (ie, the physical layer).
  • the transmit processor 416 implements encoding and interleaving to facilitate forward error correction (FEC) at the second communication device 450, and based on various modulation schemes (eg, binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), M Phase Shift Keying (M-PSK), M Quadrature Amplitude Modulation (M-QAM)) constellation mapping.
  • modulation schemes eg, binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), M Phase Shift Keying (M-PSK), M Quadrature Amplitude Modulation (M-QAM)
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift keying
  • M-PSK M Phase Shift Keying
  • M-QAM M Quadrature Amplitude Modulation
  • the multi-antenna transmit processor 471 performs digital spatial precoding on the encoded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing
  • the transmit processor 416 maps each parallel stream to a subcarrier, multiplexes the modulated symbols with a reference signal (eg, a pilot) in the time and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT) ) to generate a physical channel that carries a multi-carrier symbol stream in the time domain. Then the multi-antenna transmit processor 471 performs transmit analog precoding/beamforming operations on the time-domain multi-carrier symbol stream. Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmit processor 471 into a radio frequency stream, which is then provided to a different antenna 420.
  • a reference signal eg, a pilot
  • IFFT inverse fast Fourier transform
  • each receiver 454 receives a signal through its respective antenna 452 .
  • Each receiver 454 recovers the information modulated onto the radio frequency carrier and converts the radio frequency stream into a baseband multi-carrier symbol stream that is provided to a receive processor 456 .
  • the receive processor 456 and the multi-antenna receive processor 458 implement various signal processing functions of the L1 layer.
  • the multi-antenna receive processor 458 performs receive analog precoding/beamforming operations on the baseband multi-carrier symbol stream from the receiver 454 .
  • the receive processor 456 uses a Fast Fourier Transform (FFT) to convert the received analog precoding/beamforming operation of the baseband multicarrier symbol stream from the time domain to the frequency domain.
  • FFT Fast Fourier Transform
  • the physical layer data signal and the reference signal are demultiplexed by the receiving processor 456, wherein the reference signal will be used for channel estimation, and the data signal is recovered by the multi-antenna receiving processor 458 after multi-antenna detection.
  • Communication device 450 is any parallel stream of destination. The symbols on each parallel stream are demodulated and recovered in receive processor 456 and soft decisions are generated.
  • the receive processor 456 then decodes and de-interleaves the soft decisions to recover the upper layer data and control signals transmitted by the first communication device 410 on the physical channel.
  • the upper layer data and control signals are then provided to the controller/processor 459 .
  • the controller/processor 459 implements the functions of the L2 layer.
  • the controller/processor 459 may be associated with a memory 460 that stores program codes and data. Memory 460 may be referred to as a computer-readable medium.
  • the controller/processor 459 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression, control signal processing to recover upper layer packets from the core network.
  • the upper layer packets are then provided to all protocol layers above the L2 layer.
  • Various control signals may also be provided to L3 for L3 processing.
  • the controller/processor 459 is also responsible for error detection using acknowledgement (ACK) and/or negative acknowledgement (NACK) protocols to support HARQ operations.
  • ACK acknowledgement
  • NACK negative acknowledgement
  • a data source 467 is used to provide upper layer data packets to the controller/processor 459 .
  • Data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements header compression, encryption, packet segmentation and reordering, and logical AND based on the radio resource allocation of the first communication device 410 Multiplexing between transport channels, implementing L2 layer functions for user plane and control plane.
  • the controller/processor 459 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the first communication device 410.
  • Transmit processor 468 performs modulation mapping, channel coding processing, multi-antenna transmit processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beamforming processing, followed by transmission
  • the processor 468 modulates the generated parallel stream into a multi-carrier/single-carrier symbol stream, which undergoes an analog precoding/beamforming operation in the multi-antenna transmit processor 457 and then provides it to different antennas 452 via the transmitter 454.
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmit processor 457 into a radio frequency symbol stream, which is then provided to the antenna 452 .
  • the function at the first communication device 410 is similar to that in the transmission from the first communication device 410 to the second communication device 450
  • the receive function at the second communication device 450 described in the transmission of .
  • Each receiver 418 receives radio frequency signals through its respective antenna 420 , converts the received radio frequency signals to baseband signals, and provides the baseband signals to multi-antenna receive processor 472 and receive processor 470 .
  • the receive processor 470 and the multi-antenna receive processor 472 jointly implement the functions of the L1 layer.
  • Controller/processor 475 implements L2 layer functions.
  • the controller/processor 475 may be associated with a memory 476 that stores program codes and data.
  • Memory 476 may be referred to as a computer-readable medium.
  • the controller/processor 475 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression, control signal processing to recover upper layer data packets from the second communication device 450. Upper layer packets from controller/processor 475 may be provided to the core network.
  • the controller/processor 475 is also responsible for error detection using the ACK and/or NACK protocol to support HARQ operations.
  • the second communication device 450 includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory and the computer program code are configured to interact with the used together with at least one processor.
  • the second communication device 450 means at least: receiving the first signaling; sending the first signal in the first time pool; sending the second signal in the second time pool.
  • the first signaling is used to determine K time windows, where K is a positive integer greater than 1; both the first signal and the second signal carry a first bit block; among the K time windows is associated with one of the first reference signal or the second reference signal, and the first signaling is used to determine the first reference signal and the second reference signal; the first time The pool includes one or more of the K time windows and all or part of the multi-carrier symbols in the time windows associated with the first reference signal, and the second time pool includes the K time windows.
  • the first time window and the second time window are two adjacent time windows in the K time windows, respectively a time window, the first time window and the second time window are respectively associated with the first reference signal and the second reference signal;
  • the first time pool includes all of the first time windows or part of the multi-carrier symbols, the second time pool includes all or part of the multi-carrier symbols in the second time window; whether the first set of conditions is satisfied is used to determine at least one of the following:
  • the second communication device 450 includes: a memory storing a program of computer-readable instructions, the program of computer-readable instructions, when executed by at least one processor, produces actions, the actions comprising: receiving the received sending the first signal in the first time pool; sending the second signal in the second time pool.
  • the first signaling is used to determine K time windows, where K is a positive integer greater than 1; both the first signal and the second signal carry a first bit block; among the K time windows is associated with one of the first reference signal or the second reference signal, and the first signaling is used to determine the first reference signal and the second reference signal; the first time The pool includes one or more of the K time windows and all or part of the multi-carrier symbols in the time windows associated with the first reference signal, and the second time pool includes the K time windows.
  • the first time window and the second time window are two adjacent time windows in the K time windows, respectively a time window, the first time window and the second time window are respectively associated with the first reference signal and the second reference signal;
  • the first time pool includes all of the first time windows or part of the multi-carrier symbols, the second time pool includes all or part of the multi-carrier symbols in the second time window; whether the first set of conditions is satisfied is used to determine at least one of the following:
  • the first communication device 410 includes: at least one processor and at least one memory, the at least one memory including computer program code; the at least one memory and the computer program code are configured to interact with the used together with at least one processor.
  • the first communication device 410 means at least: sending the first signaling; receiving the first signal in the first time pool; and receiving the second signal in the second time pool.
  • the first signaling is used to determine K time windows, where K is a positive integer greater than 1; both the first signal and the second signal carry a first bit block; among the K time windows is associated with one of the first reference signal or the second reference signal, and the first signaling is used to determine the first reference signal and the second reference signal; the first time The pool includes one or more of the K time windows and all or part of the multi-carrier symbols in the time windows associated with the first reference signal, and the second time pool includes the K time windows.
  • the first time window and the second time window are two adjacent time windows in the K time windows, respectively a time window, the first time window and the second time window are respectively associated with the first reference signal and the second reference signal;
  • the first time pool includes all of the first time windows or part of the multi-carrier symbols, the second time pool includes all or part of the multi-carrier symbols in the second time window; whether the first set of conditions is satisfied is used to determine at least one of the following:
  • the first communication device 410 includes: a memory for storing a program of computer-readable instructions, the program of computer-readable instructions generating actions when executed by at least one processor, the actions comprising: sending the receiving the first signal in the first time pool; and receiving the second signal in the second time pool.
  • the first signaling is used to determine K time windows, where K is a positive integer greater than 1; both the first signal and the second signal carry a first bit block; among the K time windows is associated with one of the first reference signal or the second reference signal, and the first signaling is used to determine the first reference signal and the second reference signal; the first time The pool includes one or more of the K time windows and all or part of the multi-carrier symbols in the time windows associated with the first reference signal, and the second time pool includes the K time windows.
  • the first time window and the second time window are two adjacent time windows in the K time windows, respectively a time window, the first time window and the second time window are respectively associated with the first reference signal and the second reference signal;
  • the first time pool includes all of the first time windows or part of the multi-carrier symbols, the second time pool includes all or part of the multi-carrier symbols in the second time window; whether the first set of conditions is satisfied is used to determine at least one of the following:
  • the first node in this application includes the second communication device 450 .
  • the second node in this application includes the first communication device 410 .
  • One is used to receive the first signaling; ⁇ the antenna 420, the transmitter 418, the transmit processor 416, the multi-antenna transmit processor 471, the controller/processor 475, At least one of the memories 476 ⁇ is used to send the first signaling.
  • At least one of ⁇ the antenna 420, the receiver 418, the receive processor 470, the multi-antenna receive processor 472, the controller/processor 475, the memory 476 ⁇ One is used to receive the first signal in the first time pool; ⁇ the antenna 452, the transmitter 454, the transmit processor 468, the multi-antenna transmit processor 457, the At least one of the controller/processor 459, the memory 460 ⁇ is used to send the first signal in the first time pool.
  • At least one of ⁇ the antenna 420, the receiver 418, the receive processor 470, the multi-antenna receive processor 472, the controller/processor 475, the memory 476 ⁇ One is used to receive the second signal in the second time pool; ⁇ the antenna 452, the transmitter 454, the transmit processor 468, the multi-antenna transmit processor 457, the At least one of the controller/processor 459, the memory 460 ⁇ is used to transmit the second signal in the second time pool.
  • Embodiment 5 illustrates a flowchart of wireless transmission according to an embodiment of the present application, as shown in FIG. 5 .
  • the second node U1 and the first node U2 are communication nodes transmitting over the air interface.
  • the steps in block F51 are optional.
  • step S511 For the second node U1, transmitted in a first signaling step S511; step S512 in the received signal at a first time a first cell; In step S513, receiving the second signal at a second time in the pool; in step S5101 A sub-signal that does not belong to the first signal and the second signal among the K sub-signals is received.
  • step S521 For the first node U2, received at step S521 in the first signaling; in step S522 transmits a first signal at a first time cell; in step S523 transmits a second signal at a second time in the pool; in step S5201 Sub-signals that do not belong to the first signal and the second signal among the K sub-signals are transmitted.
  • the first signaling is used by the first node U2 to determine K time windows, where K is a positive integer greater than 1; both the first signal and the second signal carry the first bit block; any one of the K time windows is associated with one of the first reference signal or the second reference signal, and the first signaling is used by the first node U2 to determine the first reference signal.
  • the first time pool includes one or more of the K time windows and all or part of the multicarriers in the time window associated with the first reference signal symbol
  • the second time pool includes one or more of the K time windows and all or part of the multi-carrier symbols in the time window associated with the second reference signal
  • the first time window and the second time window The time windows are respectively two adjacent time windows in the K time windows, and the first time window and the second time window are respectively associated with the first reference signal and the second reference signal
  • the first time pool includes all or part of the multi-carrier symbols in the first time window
  • the second time pool includes all or part of the multi-carrier symbols in the second time window; whether the first condition set is Satisfaction is used by the first node U2 to determine at least one of the following:
  • whether the first condition set is satisfied is used by the second node U1 to determine at least one of the following:
  • the first node U2 is the first node in this application.
  • the second node U1 is the second node in this application.
  • the air interface between the second node U1 and the first node U2 includes a wireless interface between the base station equipment and the user equipment.
  • the air interface between the second node U1 and the first node U2 includes a wireless interface between user equipment and user equipment.
  • the second node U1 is a serving cell maintenance base station of the first node U2.
  • the first signaling is transmitted on a downlink physical layer control channel (ie, a downlink channel that can only be used to carry physical layer signaling).
  • a downlink physical layer control channel ie, a downlink channel that can only be used to carry physical layer signaling.
  • the first signaling is transmitted on PDCCH (Physical Downlink Control Channel, physical downlink control channel).
  • PDCCH Physical Downlink Control Channel, physical downlink control channel.
  • the first signaling is transmitted on PSCCH (Physical Sidelink Control Channel, Physical Sidelink Control Channel).
  • PSCCH Physical Sidelink Control Channel, Physical Sidelink Control Channel.
  • the first signal and the second signal are respectively transmitted on an uplink physical layer data channel (ie, an uplink channel that can be used to carry physical layer data).
  • an uplink physical layer data channel ie, an uplink channel that can be used to carry physical layer data.
  • the first signal and the second signal are transmitted on the same PUSCH (Physical Uplink Shared CHannel, physical uplink shared channel).
  • PUSCH Physical Uplink Shared CHannel, physical uplink shared channel
  • the first signal and the second signal are respectively transmitted on different PUSCHs.
  • the first signal is transmitted on one or more PUSCHs.
  • the second signal is transmitted on one or more PUSCHs.
  • the first signal and the second signal are respectively transmitted on PSSCH (Physical Sidelink Shared Channel, Physical Sidelink Shared Channel).
  • PSSCH Physical Sidelink Shared Channel, Physical Sidelink Shared Channel
  • the steps in block F51 in FIG. 5 exist; the K time windows are respectively reserved for the K sub-signals; the K sub-signals respectively include all of the first bit block The K repeated transmissions; the first signal includes all sub-signals in the K sub-signals that are located in the first time pool, and the second signal includes all the K sub-signals that are located in the second time. Subsignals in the pool.
  • one sub-signal in the K sub-signals is earlier than the first signal in the time domain.
  • one of the K sub-signals is later than the second signal in the time domain.
  • none of the K sub-signals is located between the first signal and the second signal in the time domain.
  • any one of the K sub-signals is transmitted on the PUSCH.
  • Embodiment 6 illustrates a schematic diagram in which the first signaling according to an embodiment of the present application is used to determine K time windows; as shown in FIG. 6 .
  • the first signaling includes a first field, and the first field in the first signaling indicates the K time windows.
  • the first field includes a positive integer number of bits greater than one.
  • the first field includes information in one or more fields in a DCI.
  • the first field includes information in one or more fields in an IE.
  • the first field in the first signaling indicates a first SLIV (Start and Length Indicator Value, start and length indicator value), and the first SLIV indicates the K time windows in the The starting moment of the first time window and the length of each time window in the K time windows.
  • first SLIV Start and Length Indicator Value, start and length indicator value
  • the first multi-carrier symbol occupied by the first time window in the K time windows is the first multi-carrier symbol in the first time unit
  • the first multi-carrier symbol in the first signaling A field indicates the time interval between the first time unit and the time unit to which the first signaling belongs, and the position of the first multi-carrier symbol in the first time unit.
  • the K time windows are respectively located in K consecutive time units, and the positions of the K time windows in the K consecutive time units are the same.
  • the first field in the first signaling indicates the K.
  • one of said time units is one slot.
  • one of said time units is one sub-slot.
  • one of said time units is one multi-carrier symbol.
  • one of the time units consists of a positive integer number of consecutive multi-carrier symbols greater than 1.
  • the number of multi-carrier symbols included in one time unit is configured by RRC signaling.
  • Embodiment 7 illustrates a schematic diagram in which the first signaling according to an embodiment of the present application is used to determine K time windows; as shown in FIG. 7 .
  • the first signaling includes a second field, and the second field in the first signaling indicates a first time slice set, and the first time slice set includes a positive integer number of time slices , any time slice in the first time slice set is a continuous time period; the first time slice set is used to determine the K time windows.
  • the second field includes a positive integer number of bits greater than one.
  • the second field includes information in one or more fields in a DCI.
  • the second field includes information in one or more fields in an IE.
  • the first time slice set includes only one time slice.
  • the first set of time slices includes multiple time slices.
  • any time slice in the first time slice set includes 1 or a positive integer number of consecutive multi-carrier symbols greater than 1.
  • the number of multi-carrier symbols included in any two time slices in the first time slice set is equal.
  • the first set of time slices includes multiple time slices, and the multiple time slices are orthogonal to each other.
  • any two adjacent time slices in the first time slice set are consecutive in the time domain.
  • any time slice in the first time slice set is reserved for a nominal repeated transmission of the first bit block.
  • the second field in the first signaling indicates a second SLIV
  • the second SLIV indicates a start time of the earliest time slice in the first time slice set and the first time slice The length of each time slice in the time slice collection.
  • the first multi-carrier symbol occupied by the earliest time slot in the first time slot set is the second multi-carrier symbol in the second time unit, and the first multi-carrier symbol in the first signaling
  • the second field indicates the time interval between the second time unit and the time unit to which the first signaling belongs, and the position of the second multi-carrier symbol in the second time unit.
  • the second field in the first signaling indicates the number of time slices included in the first time slice set.
  • any time window in the K time windows belongs to one time slice in the first time slice set.
  • the first set of time slices is used to determine the K.
  • the first set of time slices is used to determine the start time of each time window in the K time windows.
  • the first set of time slices is used to determine the length of each of the K time windows.
  • all multi-carrier symbols in the given time slice that do not belong to the first multi-carrier symbol set form the first reference symbol set; if all the multi-carrier symbols in the given time slice do not belong to the first multi-carrier symbol set
  • the number of multi-carrier symbols that can be used for PUSCH repetition type B transmission in the first reference symbol set is greater than 1, and the first reference symbol set is used to determine the first time window subset in the K time windows; Any time window in the first time window subset is composed of 1 or more consecutive multi-carrier symbols that can be used for PUSCH repetition type B transmission in the same time unit in the first reference symbol set; the Any time window in the first subset of time windows is one of the K time windows.
  • the first time window subset includes only one time window.
  • the first subset of time windows includes a plurality of time windows.
  • the first multi-carrier symbol set includes one or more multi-carrier symbols.
  • the first multi-carrier symbol set is configured by RRC signaling.
  • Embodiment 8 illustrates a schematic diagram of the first time pool, the second time pool and K time windows according to an embodiment of the present application; as shown in FIG. 8 .
  • the indices of the K time windows are respectively #0, . . . , #(K-1); the i is a positive integer smaller than K-2.
  • the first time pool is made up of all or part of the multi-carrier symbols in the first time window group, and the second time pool is made up of all or part of the multi-carrier symbols in the second time window group;
  • the first time window group includes a positive integer number of time windows associated with the first reference signal in the K time windows, and the second time window group includes the K time windows and the first reference signal.
  • a positive integer number of time windows associated with two reference signals; the first time window is the latest time window in the first time window group, and the second time window is the earliest time window in the second time window group a time window.
  • none of the K time windows does not belong to the first time window group and the second time window group at the same time.
  • any time window in the first time window group belongs to the K time windows.
  • any time window in the second time window group belongs to the K time windows.
  • the first time window group includes a plurality of time windows in the K time windows.
  • the positions of the multiple time windows in the K time windows are continuous.
  • the positions of the multiple time windows in the K time windows are discontinuous.
  • the second time window group includes a plurality of time windows in the K time windows.
  • the positions of the multiple time windows in the K time windows are continuous.
  • the positions of the multiple time windows in the K time windows are discontinuous.
  • the sum of the number of time windows included in the first time window group and the number of time windows included in the second time window group is equal to the K.
  • the end time of the latest time window in the first time window group is earlier than the start time of the earliest time window in the second time window group.
  • the positions of the latest time window in the first time window group and the earliest time window in the second time window group among the K time windows are adjacent.
  • the K time windows are respectively reserved for the K sub-signals; the K sub-signals respectively include the K repeated transmissions of the first bit block; the first signal includes all the All sub-signals of the K sub-signals located in the first time window group, and the second signal includes all the sub-signals of the K sub-signals located in the second time window group.
  • any sub-signal of the first signal and the second signal includes a baseband signal.
  • any sub-signal of the first signal and the second signal includes a wireless signal.
  • any sub-signal of the first signal and the second signal includes a radio frequency signal.
  • the first signal includes only one sub-signal.
  • the first signal includes a positive integer number of sub-signals greater than 1.
  • the second signal includes only one sub-signal.
  • the second signal includes a positive integer number of sub-signals greater than 1.
  • the number of time windows included in the first time window group is equal to the number of sub-signals included in the first signal; the number of time windows included in the second time window group is equal to the second signal The number of sub-signals to include.
  • the first time window group includes only one time window
  • the first signal includes only one sub-signal
  • the one sub-signal is located in the part of the one time window in the first time pool is transmitted.
  • the first time window group includes K1 time windows, where K1 is a positive integer greater than 1; the first signal includes K1 sub-signals, and the K1 sub-signals are located in the K1 time windows respectively. Portions of the first time pool are transmitted.
  • the second time window group includes only one time window
  • the second signal includes only one sub-signal
  • the one sub-signal is located in the part of the one time window in the second time pool is transmitted.
  • the second time window group includes K2 time windows, and K2 is a positive integer greater than 1; the second signal includes K2 sub-signals, and the K2 sub-signals are located in the K2 time windows respectively. Portions of the second time pool are transmitted.
  • the first time sub-window is a part of a given time window located in a given time pool, and the first sub-signal is a sub-signal of the K sub-signals that is transmitted in the first time sub-window ;
  • the first sub-signal is generated by the first coded bit block, and the first coded bit block includes a positive integer number of bits greater than 1;
  • the first coded bit block is the first bit block after the output after channel coding and rate matching;
  • the number of multi-carrier symbols included in the first time sub-window is used to determine the number of bits included in the first encoded bit block;
  • the given time window and the The given time pool is respectively the first time window and the first time pool, or the given time window and the given time pool are the second time window and the second time pool respectively .
  • the first sub-signal includes modulation of the first encoded bit block, layer mapping, precoding, virtual resource block mapping, virtual to physical resource block mapping, multi-carrier symbol generation , the output after modulation and upconversion.
  • the number of bits included in the first coded bit block is the same as the number of bits included in the given time window.
  • the number of multi-carrier symbols included in the fixed time window is irrelevant.
  • Embodiment 9 illustrates a schematic diagram of the first time pool, the second time pool and K time windows according to an embodiment of the present application; as shown in FIG. 9 .
  • the indices of the K time windows are #0, . . . , #(K-1).
  • the first time window group includes only one time window among the K time windows.
  • the second time window group includes only one time window among the K time windows.
  • the sum of the number of time windows included in the first time window group and the number of time windows included in the second time window group is smaller than the K.
  • Embodiment 10 illustrates a schematic diagram of the association between a given time window and a given reference signal according to an embodiment of the present application; as shown in FIG. 10 .
  • the given time window is any one of the K time windows, and the given reference signal is the first reference signal or the second reference signal; the K The time windows are respectively reserved for the K sub-signals, and the meaning that a given time window is associated with a given reference signal includes: among the K sub-signals, the sub-signals transmitted in the given time window and The given reference signal is spatially correlated.
  • the meaning of the spatial correlation includes QCL (Quasi-Co-Located, quasi-co-located).
  • the spatially correlated meaning includes QCL and corresponds to QCL type A (QCL-TypeA).
  • the spatially correlated meaning includes QCL and corresponds to QCL type B (QCL-TypeB).
  • the spatially correlated meaning includes QCL and corresponds to QCL type C (QCL-TypeC).
  • the spatially correlated meaning includes QCL and corresponds to QCL type D (QCL-TypeD).
  • the meaning of the spatial correlation includes: the DMRS of the sub-signals transmitted in the given time window among the K sub-signals and the given reference signal QCL.
  • the spatial correlation means that the DMRS of the sub-signals transmitted in the given time window among the K sub-signals and the given reference signal QCL correspond to QCL-TypeD.
  • the spatial correlation means that the DMRS of the sub-signals transmitted in the given time window among the K sub-signals and the given reference signal QCL correspond to QCL-TypeA.
  • the spatial correlation means that the given reference signal is used to determine the large-scale characteristics of the channel experienced by the sub-signals transmitted in the given time window among the K sub-signals .
  • the meaning of the spatial correlation includes: a sub-signal of the K sub-signals transmitted in the given time window can be inferred from the large-scale characteristics of the channel experienced by the given reference signal Large-scale properties of the experienced channel.
  • the large-scale properties include delay spread, Doppler spread, Doppler shift, and average delay , or one or more of the Spatial Rx parameters.
  • the spatial correlation means that the given reference signal is used to determine a spatial domain filter of the sub-signals transmitted in the given time window among the K sub-signals ).
  • the spatial correlation means that the first node uses the same spatial filter to receive the given reference signal and transmit the K sub-signals to be transmitted in the given time window sub-signal.
  • the spatial correlation means that: the first node uses the same spatial filter to transmit the given reference signal and the K sub-signals that are transmitted in the given time window sub-signal.
  • the spatial correlation means that the sub-signals transmitted in the given time window among the K sub-signals use the same precoding as the given reference signal.
  • the meaning of the spatial correlation includes: the transmit antenna port of the given reference signal is used to determine the transmit antenna port of the sub-signals transmitted in the given time window among the K sub-signals .
  • the spatial correlation means that the sub-signal transmitted in the given time window among the K sub-signals and the given reference signal are sent by the same antenna port.
  • any one of the K time windows is only associated with one of the first reference signal and the second reference signal.
  • the K time windows are sequentially indexed according to the time domain sequence relationship.
  • the index of the given time window in the K time windows is used to determine the given time window and the first time window. Whether a reference signal is associated with the second reference signal, the index of the given time window in the K time windows is a non-negative integer less than the K.
  • the x modulo 2 is equal to 0, the (x+1)th time window and the first time window are equal to 0.
  • the reference signal is associated; if the x modulo 2 is equal to 1, the (x+1)th time window is associated with the second reference signal; the x is any non-negative value less than the K Integer.
  • the xth time window is associated with the first reference signal ; If the first parameter modulo 2 is equal to 1, the xth time window is associated with the second reference signal; the first parameter is equal to the second parameter divided by 2 and then rounded down, so The second parameter is equal to the x modulo 4; the x is any non-negative integer less than the K.
  • the time slices in the first time slice set are sequentially indexed according to the time domain sequence relationship.
  • the given time window belongs to a given time slice in the first time slice set;
  • An index in the first set of time slices is used to determine whether the given time window is associated with the first reference signal or the second reference signal, the given time slice at the first time
  • the index in the slice set is a non-negative integer smaller than the number of time slices included in the first time slice set.
  • the given time window belongs to the (y+1)th time slice in the first time slice set; if the y Taking modulo 2 equal to 0, the given time window is associated with the first reference signal; if the modulo 2 of y is equal to 1, the given time window is associated with the second reference signal;
  • the y is a non-negative integer smaller than the number of time slices included in the first time slice set.
  • the given time window belongs to the (y+1)th time slice in the first time slice set; if the first parameter If the modulo 2 is equal to 0, the given time window is associated with the first reference signal; if the first parameter is modulo 2 equal to 1, the given time window is associated with the second reference signal.
  • the first parameter is equal to the second parameter divided by 2 and then rounded down, the second parameter is equal to the y modulo 4; the y is smaller than the time slice included in the first time slice set Quantity of non-negative integers.
  • Embodiment 11 illustrates the first condition set according to an embodiment of the present application, whether the first time pool includes all multi-carrier symbols in the first time window and whether the second time pool includes all multi-carrier symbols in the second time window. A schematic diagram of the relationship between them; as shown in Figure 11. In Embodiment 11, if the first condition set is satisfied, the first time pool includes all multi-carrier symbols in the first time window, and the second time pool includes all the multi-carrier symbols in the second time window Multicarrier symbols.
  • whether the first set of conditions is satisfied is used to determine whether the first time pool includes all multi-carrier symbols in the first time window and whether the second time pool includes the first time pool All multicarrier symbols in two time windows.
  • the second time pool includes all multi-carrier symbols in the second time window.
  • the second time pool always includes all multi-carrier symbols in the second time window.
  • whether the second time pool includes all multi-carrier symbols in the second time window is irrelevant to whether the first condition set is satisfied.
  • the first time pool includes all multi-carrier symbols in the first time window.
  • the first time pool always includes all multi-carrier symbols in the first time window.
  • whether the first time pool includes all multi-carrier symbols in the first time window is irrelevant to whether the first condition set is satisfied.
  • the first time pool does not include the last P multi-carrier symbols in the first time window, where P is a positive integer.
  • the second time pool does not include the earliest P multi-carrier symbols in the second time window, where P is a positive integer.
  • the first time pool does not include the last P1 multi-carrier symbols in the first time window
  • the second time pool does not include the first time pool
  • the first time window and the second time window are respectively reserved for the second sub-signal and the third sub-signal in the K sub-signals; the second sub-signal and the third sub-signal are respectively reserved.
  • Whether there is a sub-signal in the three sub-signals carries the second type of bit block and is used to determine the value of the P1 and the value of the P2; the second type of bit block carries UCI (Uplink Control Information, uplink control information).
  • the P1 is equal to 0, and the P2 equal to the P.
  • the Said P2 is equal to 0.
  • Embodiment 12 illustrates a schematic diagram of a first condition set and S condition subsets according to an embodiment of the present application; as shown in FIG. 12 .
  • the first condition set is satisfied; if each condition subset in the S condition subsets is not satisfied, The first set of conditions is not satisfied.
  • the S is equal to one.
  • the S is greater than 1.
  • the first condition set consists of the S condition subsets.
  • the fourth condition subset is one of the S condition subsets, and the fourth condition subset includes: the first node is not configured with a first higher layer parameter.
  • Embodiment 13 illustrates a schematic diagram of the S condition subsets and the first condition subset according to an embodiment of the present application; as shown in FIG. 13 .
  • the S conditional subsets include the first conditional subset
  • the first conditional subset includes: the first time window and the second time window are separated by a time unit boundary.
  • the first set of conditions is satisfied if the first subset of conditions is satisfied.
  • the meaning that the first time window and the second time window are separated by a time unit boundary in the sentence includes: there is a time unit between the first time window and the second time window. Boundary.
  • the meaning that the first time window and the second time window are separated by a time unit boundary in the sentence includes: the first time window and the second time window respectively belong to two different times unit.
  • the time unit boundary refers to: a slot boundary.
  • the time unit boundary refers to: a sub-slot boundary.
  • the first subset of conditions includes: the first time window and the second time window are separated by a time unit boundary, and at the point separating the first time window and the second time window The conversion of multi-carrier symbols of the first type to multi-carrier symbols of the second type occurs at time unit boundaries.
  • the first subset of conditions includes: the first time window and the second time window are separated by a time unit boundary, and at the point separating the first time window and the second time window The time unit boundary conversion of the multi-carrier symbols of the first type to the multi-carrier symbols of the second type occurs in the serving cells to which the first signal and the second signal belong.
  • the first type of multi-carrier symbols includes multi-carrier symbols that can be used by the first node to send signals to the sender of the first signaling;
  • the second type of multi-carrier symbols includes A multi-carrier symbol used by a sender of the first signaling to send a signal to the first node.
  • the first type of multi-carrier symbols includes multi-carrier symbols that can be used by the sender of the first signaling to send signals to the first node;
  • the second type of multi-carrier symbols includes A multi-carrier symbol used by the first node to signal the sender of the first signaling.
  • the multi-carrier symbols of the first type include UL (UpLink, uplink) multi-carrier symbols; the multi-carrier symbols of the second type include DL (DownLink, downlink) multi-carrier symbols.
  • the first type of multi-carrier symbols includes DL multi-carrier symbols; the second type of multi-carrier symbols includes UL multi-carrier symbols.
  • Embodiment 14 illustrates a schematic diagram of the S conditional subsets and the second conditional subset according to an embodiment of the present application; as shown in FIG. 14 .
  • the S condition subsets include the second condition subset
  • the second condition subset includes: multi-carrier symbols existing between the first time window and the second time window The number is not less than the first value.
  • the first set of conditions is satisfied if the second subset of conditions is satisfied.
  • the first value is configured by a higher layer parameter.
  • the first value is configured by the first higher layer parameter.
  • the first value is configured by higher layer signaling.
  • the higher layer signaling for configuring the first value includes information in all or part of the fields in the RepetitionSchemeConfig IE.
  • the first value is equal to zero.
  • the first value is greater than 0.
  • the first value is related to the subcarrier spacing corresponding to the first signal.
  • the first value when the first signal corresponds to a first subcarrier interval, the first value is equal to a first integer; when the first signal corresponds to a second subcarrier interval, the first value is equal to the first integer Two integers; the first subcarrier spacing is not equal to the second subcarrier spacing, and the first integer is not equal to the second integer.
  • the first subcarrier spacing is greater than the second subcarrier spacing, and the first integer is greater than the second integer.
  • the first signal and the second signal correspond to the same subcarrier spacing.
  • the K repeated transmissions of the first bit block correspond to the same subcarrier spacing.
  • any multi-carrier symbol between the first time window and the second time window does not belong to the K time windows.
  • Embodiment 15 illustrates a schematic diagram of S condition subsets and a third condition subset according to an embodiment of the present application; as shown in FIG. 15 .
  • the S condition subsets include the third condition subset
  • the third condition subset includes: a multi-carrier exists between the first time window and the second time window The types of symbols belong to said first type set.
  • the first set of conditions is satisfied.
  • the type of any multi-carrier symbol existing between the first time window and the second time window is one of UL, DL, SL (Sidelink, secondary link) or Flexible.
  • the set of first types includes multi-carrier symbol types that can be used by the first node to signal a sender of the first signaling.
  • the set of first types includes types of multi-carrier symbols that may be used by a sender of the first signaling to signal the first node.
  • the first type set includes DL.
  • the first type set includes Flexible.
  • the first type set includes UL.
  • the first type set includes DL and Flexible.
  • the first type set includes only DL.
  • Embodiment 16 illustrates that when the first condition set is not satisfied according to an embodiment of the present application, the first time pool does not include the last P1 multi-carrier symbols in the first time window, and the second time pool does not include the second time pool.
  • At least one of the number of multi-carrier symbols included in the first time window or the number of multi-carrier symbols included in the second time window is used by the first node to determine the P1 value and the value of the P2.
  • At least one of the number of multi-carrier symbols included in the first time window or the number of multi-carrier symbols included in the second time window is used by the second node to determine the P1 value and the value of the P2.
  • the P1 is equal to 0, and the P2 is equal to the P.
  • the P2 is equal to 0, and the P1 is equal to the P.
  • the P1 is greater than 0, and the P2 is greater than 0.
  • the first value is used to determine the P.
  • the P is equal to the first value.
  • the P is smaller than the first value.
  • the P is equal to the first value minus the number of multi-carrier symbols existing between the first time window and the second time window.
  • the P is equal to the first value minus the number of multi-carrier symbols of types that do not belong to the first type set existing between the first time window and the second time window.
  • the P is equal to the first value minus the number of multi-carrier symbols of the type belonging to the first type set existing between the first time window and the second time window.
  • the P2 is equal to 0
  • the P1 is equal to the P
  • the third value is not Negative integer
  • the P1 is equal to 0
  • the P2 is equal to the P
  • the third value is not Negative integer
  • the third value is equal to zero.
  • the third value is equal to one.
  • the third numerical value is equal to two.
  • the third value is fixed.
  • the third value is configured by RRC signaling.
  • only the number of multi-carrier symbols included in the first time window is used for determining the value of P1 and the value of P2.
  • only the number of multi-carrier symbols included in the second time window is used for determining the value of P1 and the value of P2.
  • the number of multi-carrier symbols included in the first time window and the number of multi-carrier symbols included in the second time window are jointly used to determine the value of P1 and the value of P2.
  • the P1 is equal to the number of multi-carrier symbols included in the first time window minus the second value
  • the P2 is equal to the P minus the P1.
  • the P2 is equal to the number of multi-carrier symbols included in the second time window minus the second value
  • the P1 is equal to the P minus the P2.
  • the second numerical value is a non-negative positive integer.
  • the second value is equal to zero.
  • the second value is greater than 0.
  • the second value is equal to one.
  • the second value is greater than 1.
  • the second value is configured by higher layer signaling.
  • the P1 and the P2 are respectively two non-negative integers that satisfy the P1 plus the P2 equal to the P, and maximize the minimum of Q1 and Q2;
  • the Q1 is equal to the The number of multi-carrier symbols included in the first time window minus the P1
  • the Q2 is equal to the number of multi-carrier symbols included in the second time window minus the P2.
  • Embodiment 17 illustrates a schematic diagram of whether there is a multi-carrier symbol type between the first time window and the second time window according to an embodiment of the present application, which belongs to the first type set and is used to determine the first value; as shown in the accompanying drawings 17 shown.
  • the first value is equal to a third integer
  • the first value is equal to the fourth integer
  • the third integer is not equal to the fourth an integer
  • the third integer and the fourth integer are each non-negative integers.
  • whether there is a type of multi-carrier symbol between the first time window and the second time window belongs to the first type set and is used by the first node to determine the first value.
  • whether there is a type of multi-carrier symbol between the first time window and the second time window belongs to the first type set and is used by the second node to determine the first value.
  • the third integer is smaller than the fourth integer.
  • the third integer is greater than the fourth integer.
  • the third integer is equal to 0, and the fourth integer is greater than 0.
  • the third integer is greater than 0, and the fourth integer is equal to 0.
  • the number of multi-carrier symbols existing between the first time pool and the second time pool is greater than the first value.
  • the number of multi-carrier symbols existing between the first time pool and the second time pool is equal to the first value.
  • the first value is used to determine the number of multi-carrier symbols belonging to the first time pool in the first time window.
  • the first value is used to determine the number of multi-carrier symbols belonging to the second time pool in the second time window.
  • Embodiment 18 illustrates a structural block diagram of a processing apparatus used in a first node device according to an embodiment of the present application; as shown in FIG. 18 .
  • the processing apparatus 1800 in the first node device includes a first receiver 1801 and a first transmitter 1802 .
  • the first receiver 1801 receives the first signaling; the first transmitter 1802 sends the first signal in the first time pool, and sends the second signal in the second time pool.
  • the first signaling is used to determine K time windows, where K is a positive integer greater than 1; both the first signal and the second signal carry a first bit block; the K any one of the time windows is associated with one of a first reference signal or a second reference signal, and the first signaling is used to determine the first reference signal and the second reference signal; the The first time pool includes 1 or more of the K time windows and all or part of the multi-carrier symbols in the time window associated with the first reference signal, and the second time pool includes the K One or more of the time windows and all or part of the multi-carrier symbols in the time window associated with the second reference signal; the first time window and the second time window are the phase in the K time windows, respectively.
  • the first time window and the second time window are respectively associated with the first reference signal and the second reference signal;
  • the first time pool includes the first time All or part of the multi-carrier symbols in the window, the second time pool includes all or part of the multi-carrier symbols in the second time window; whether the first condition set is satisfied is used to determine at least one of the following:
  • the first condition set includes S condition subsets, and S is a positive integer; when one condition subset in the S condition subsets is satisfied, the first condition set is satisfied; when all the condition subsets are satisfied, the first condition set is satisfied; When each condition subset in the S condition subsets is not satisfied, the first condition set is not satisfied.
  • the first conditional subset is one of the S conditional subsets, and the first conditional subset includes: the first time window and the second time window are separated by a time unit boundary.
  • the second condition subset is one of the S condition subsets, and the second condition subset includes: multi-carrier symbols existing between the first time window and the second time window The number of is not less than a first numerical value, and the first numerical value is a non-negative integer.
  • the third condition subset is one of the S condition subsets, and the third condition subset includes: a multi-carrier symbol exists between the first time window and the second time window The type of belongs to the first type set.
  • the first time pool does not include the last P1 multi-carrier symbols in the first time window
  • the second time pool does not include the The earliest P2 multi-carrier symbols in the second time window, P1 and P2 are respectively non-negative integers, the sum of the P1 and the P2 is equal to P, and the P is a positive integer;
  • the multi-carrier symbols included in the first time window At least one of the number of or the number of multi-carrier symbols included in the second time window is used to determine the value of P1 and the value of P2.
  • whether there is a type of multi-carrier symbol between the first time window and the second time window belongs to the first type set and is used to determine a first value, and the first value is a non-negative integer;
  • the number of multi-carrier symbols existing between the first time pool and the second time pool is not less than the first value.
  • the first node device is user equipment.
  • the first node device is a relay node device.
  • the first receiver 1801 includes ⁇ antenna 452, receiver 454, receiving processor 456, multi-antenna receiving processor 458, controller/processor 459, memory 460, data source in Embodiment 4 467 ⁇ at least one.
  • the first transmitter 1802 includes ⁇ antenna 452, transmitter 454, transmit processor 468, multi-antenna transmit processor 457, controller/processor 459, memory 460, data source in Embodiment 4 467 ⁇ at least one.
  • Embodiment 19 illustrates a structural block diagram of a processing apparatus used in a second node device according to an embodiment of the present application; as shown in FIG. 19 .
  • the processing apparatus 1900 in the second node device includes a second transmitter 1901 and a second receiver 1902 .
  • the second transmitter 1901 sends the first signaling; the second receiver 1902 receives the first signal in the first time pool, and receives the second signal in the second time pool.
  • the first signaling is used to determine K time windows, where K is a positive integer greater than 1; both the first signal and the second signal carry a first bit block; the K any one of the time windows is associated with one of a first reference signal or a second reference signal, and the first signaling is used to determine the first reference signal and the second reference signal; the The first time pool includes 1 or more of the K time windows and all or part of the multi-carrier symbols in the time window associated with the first reference signal, and the second time pool includes the K One or more of the time windows and all or part of the multi-carrier symbols in the time window associated with the second reference signal; the first time window and the second time window are the phase in the K time windows, respectively.
  • the first time window and the second time window are respectively associated with the first reference signal and the second reference signal;
  • the first time pool includes the first time All or part of the multi-carrier symbols in the window, the second time pool includes all or part of the multi-carrier symbols in the second time window; whether the first condition set is satisfied is used to determine at least one of the following:
  • the first condition set includes S condition subsets, and S is a positive integer; when one condition subset in the S condition subsets is satisfied, the first condition set is satisfied; when When each condition subset in the S condition subsets is not satisfied, the first condition set is not satisfied.
  • the first conditional subset is one of the S conditional subsets, and the first conditional subset includes: the first time window and the second time window are separated by a time unit boundary.
  • the second condition subset is one of the S condition subsets, and the second condition subset includes: multiple carriers existing between the first time window and the second time window The number of symbols is not less than the first numerical value, which is a non-negative integer.
  • the third condition subset is one of the S condition subsets, and the third condition subset includes: a multi-carrier exists between the first time window and the second time window The type of the symbol belongs to the first type set.
  • the first time pool does not include the last P1 multi-carrier symbols in the first time window, and the second time pool does not include all
  • the earliest P2 multi-carrier symbols in the second time window, P1 and P2 are respectively non-negative integers, the sum of the P1 and P2 is equal to P, and the P is a positive integer;
  • the multi-carrier symbols included in the first time window At least one of the number of symbols or the number of multi-carrier symbols included in the second time window is used to determine the value of P1 and the value of P2.
  • whether there is a type of multi-carrier symbol belonging to the first type set between the first time window and the second time window is used to determine a first value, where the first value is a non-negative integer ; the number of multi-carrier symbols existing between the first time pool and the second time pool is not less than the first value.
  • the second node device is a base station device.
  • the second node device is user equipment.
  • the second node device is a relay node device.
  • the second transmitter 1901 includes ⁇ antenna 420, transmitter 418, transmit processor 416, multi-antenna transmit processor 471, controller/processor 475, memory 476 ⁇ in Embodiment 4 at least one.
  • the second receiver 1902 includes ⁇ antenna 420, receiver 418, receiving processor 470, multi-antenna receiving processor 472, controller/processor 475, memory 476 ⁇ in Embodiment 4 at least one.
  • User equipment, terminals and UEs in this application include but are not limited to drones, communication modules on drones, remote-controlled aircraft, aircraft, small aircraft, mobile phones, tablet computers, notebooks, in-vehicle communication equipment, wireless sensors, network cards, IoT terminal, RFID terminal, NB-IOT terminal, MTC (Machine Type Communication, machine type communication) terminal, eMTC (enhanced MTC, enhanced MTC) terminal, data card, network card, vehicle communication equipment, low-cost mobile phone, low Wireless communication devices such as tablet PCs.
  • MTC Machine Type Communication, machine type communication
  • eMTC enhanced MTC
  • the base station or system equipment in this application includes but is not limited to macro cell base station, micro cell base station, home base station, relay base station, gNB (NR Node B) NR Node B, TRP (Transmitter Receiver Point, sending and receiving node) and other wireless communication equipment.
  • gNB NR Node B
  • TRP Transmitter Receiver Point

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的用户设备、基站中的方法和装置。第一节点接收第一信令;在第一时间池中发送第一信号;在第二时间池中发送第二信号。所述第一信令被用于确定K个时间窗;所述第一时间池和所述第二时间池分别包括所述K个时间窗中的部分多载波符号;第一时间窗和第二时间窗分别是所述K个时间窗中相邻的两个时间窗,所述第一时间窗和所述第二时间窗分别与第一参考信号和第二参考信号相关联;第一条件集合是否被满足被用于确定所述第一时间池是否包括所述第一时间窗中的全部多载波符号,和/或,所述第二时间池是否包括所述第二时间窗中的全部多载波符号。上述方法既满足了波束切换的处理时间需求,又提高了资源利用率。

Description

一种被用于无线通信的用户设备、基站中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其是支持蜂窝网的无线通信系统中的无线信号的传输方法和装置。
背景技术
多天线技术是3GPP(3rd Generation Partner Project,第三代合作伙伴项目)LTE(Long-term Evolution,长期演进)系统和NR(New Radio,新无线电)系统中的关键技术。通过在通信节点处,比如基站或UE(User Equipment,用户设备)处,配置多根天线来获得额外的空间自由度。多根天线通过波束赋型,形成波束指向一个特定方向来提高通信质量。当多根天线属于多个TRP(Transmitter Receiver Point,发送接收节点)/panel(天线面板)时,利用不同TRP/panel之间的空间差异,可以获得额外的分集增益。在NR R(release)R16中,基于多TRP的传输被用于提高下行物理层数据信道的传输可靠性。
发明内容
在NR R17及其后续版本中,基于多TRP/panel的传输方案将会被继续演进,其中一个重要的方面包括用于增强上行物理层数据信道。和下行物理层数据信道类似,通过用针对不同TRP/panel的波束进行重复传输,可以提高上行物理层数据信道的传输可靠性。在针对不同TRP/panel的波束之间进行切换需要一定的处理时间,这对重复传输之间的时间间隔带来要求。针对上述问题,本申请公开了一种解决方案。需要说明的是,虽然上述描述采用多TRP/panel场景作为例子,本申请也适用于其他场景比如单TRP/panel场景,并取得类似在多TRP/panel场景中的技术效果。此外,不同场景(包括但不限于多TRP/panel和单TRP/panel)采用统一解决方案还有助于降低硬件复杂度和成本。在不冲突的情况下,本申请的第一节点中的实施例和实施例中的特征可以应用到第二节点中,反之亦然。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
本申请公开了一种被用于无线通信的第一节点中的方法,其特征在于,包括:
接收第一信令;
在第一时间池中发送第一信号;
在第二时间池中发送第二信号;
其中,所述第一信令被用于确定K个时间窗,K是大于1的正整数;所述第一信号和所述第二信号均携带第一比特块;所述K个时间窗中的任一时间窗与第一参考信号或第二参考信号中之一相关联,所述第一信令被用于确定所述第一参考信号和所述第二参考信号;所述第一时间池包括所述K个时间窗中的1个或多个和所述第一参考信号相关联的时间窗中的全部或部分多载波符号,所述第二时间池包括所述K个时间窗中的1个或多个和所述第二参考信号相关联的时间窗中的全部或部分多载波符号;第一时间窗和第二时间窗分别是所述K个时间窗中相邻的两个时间窗,所述第一时间窗和所述第二时间窗分别与所述第一参考信号和所述第二参考信号相关联;所述第一时间池包括所述第一时间窗中的全部或部分多载波符号,所述第二时间池包括所述第二时间窗中的全部或部分多载波符号;第一条件集合是否被满足被用于确定下述至少之一:
- 所述第一时间池是否包括所述第一时间窗中的全部多载波符号;
- 所述第二时间池是否包括所述第二时间窗中的全部多载波符号。
作为一个实施例,本申请要解决的问题包括:在基于多TRP/panel的上行传输中,如何满足波束间切换需要的处理时间。上述方法通过放弃在部分预留给上行传输的多载波符号上发送信号,解决了这一问题。
作为一个实施例,本申请要解决的问题包括:如何避免为满足波束切换的处理时间需求而导致的资源浪费。上述方法通过判断两次重复传输之间是否已满足波束切换的处理时间需求,来判断是否放弃在部分预留给上行传输的多载波符号上发送信号,解决了这一问题。
作为一个实施例,上述方法的特质包括:所述第一条件集合被用于判断两次重复传输之间是否已满足波束切换的处理时间需求。
作为一个实施例,上述方法的好处包括:既满足了波束切换的处理时间需求,又避免了资源浪费,提高了资源利用率。
根据本申请的一个方面,其特征在于,所述第一条件集合包括S个条件子集,S是正整数;当所述S个条件子集中的一个条件子集被满足时,所述第一条件集合被满足;当所述S个条件子集中的每个条件子集都不被满足时,所述第一条件集合不被满足。
根据本申请的一个方面,其特征在于,第一条件子集是所述S个条件子集中之一,所述第一条件子集包括:所述第一时间窗和所述第二时间窗被时间单元边界分隔。
根据本申请的一个方面,其特征在于,第二条件子集是所述S个条件子集中之一,所述第二条件子集包括:所述第一时间窗和所述第二时间窗之间存在的多载波符号的数量不小于第一数值,所述第一数值是非负整数。
根据本申请的一个方面,其特征在于,第三条件子集是所述S个条件子集中之一,所述第三条件子集包括:所述第一时间窗和所述第二时间窗之间存在一个多载波符号的类型属于第一类型集合。
根据本申请的一个方面,其特征在于,当所述第一条件集合不被满足时,所述第一时间池不包括所述第一时间窗中最后的P1个多载波符号,所述第二时间池不包括所述第二时间窗中最早的P2个多载波符号,P1和P2分别是非负整数,所述P1和所述P2的和等于P,所述P是正整数;所述第一时间窗包括的多载波符号的数量或所述第二时间窗包括的多载波符号的数量中的至少之一被用于确定所述P1的值和所述P2的值。
根据本申请的一个方面,其特征在于,所述第一时间窗和所述第二时间窗之间是否存在一个多载波符号的类型属于第一类型集合被用于确定第一数值,所述第一数值是非负整数;所述第一时间池和所述第二时间池之间存在的多载波符号的数量不小于所述第一数值。
根据本申请的一个方面,其特征在于,所述第一节点是用户设备。
根据本申请的一个方面,其特征在于,所述第一节点是中继节点。
本申请公开了一种被用于无线通信的第二节点中的方法,其特征在于,包括:
发送第一信令;
在第一时间池中接收第一信号;
在第二时间池中接收第二信号;
其中,所述第一信令被用于确定K个时间窗,K是大于1的正整数;所述第一信号和所述第二信号均携带第一比特块;所述K个时间窗中的任一时间窗与第一参考信号或第二参考信号中之一相关联,所述第一信令被用于确定所述第一参考信号和所述第二参考信号;所述第一时间池包括所述K个时间窗中的1个或多个和所述第一参考信号相关联的时间窗中的全部或部分多载波符号,所述第二时间池包括所述K个时间窗中的1个或多个和所述第二参考信号相关联的时间窗中的全部或部分多载波符号;第一时间窗和第二时间窗分别是所述K个时间窗中相邻的两个时间窗,所述第一时间窗和所述第二时间窗分别与所述第一参考信号和所述第二参考信号相关联;所述第一时间池包括所述第一时间窗中的全部或部分多载波符号,所述第二时间池包括所述第二时间窗中的全部或部分多载波符号;第一条件集合是否被满足被用于确定下述至少之一:
- 所述第一时间池是否包括所述第一时间窗中的全部多载波符号;
- 所述第二时间池是否包括所述第二时间窗中的全部多载波符号。
根据本申请的一个方面,其特征在于,所述第一条件集合包括S个条件子集,S是正整数;当所述S个条件子集中的一个条件子集被满足时,所述第一条件集合被满足;当所述S个条件子集中的每个条件子集都不被满足时,所述第一条件集合不被满足。
根据本申请的一个方面,其特征在于,第一条件子集是所述S个条件子集中之一,所述第一条件子集包括:所述第一时间窗和所述第二时间窗被时间单元边界分隔。
根据本申请的一个方面,其特征在于,第二条件子集是所述S个条件子集中之一,所述第二条件子集包括:所述第一时间窗和所述第二时间窗之间存在的多载波符号的数量不小于第一数值,所述第一数值是非负整数。
根据本申请的一个方面,其特征在于,第三条件子集是所述S个条件子集中之一,所述第三条件子集 包括:所述第一时间窗和所述第二时间窗之间存在一个多载波符号的类型属于第一类型集合。
根据本申请的一个方面,其特征在于,当所述第一条件集合不被满足时,所述第一时间池不包括所述第一时间窗中最后的P1个多载波符号,所述第二时间池不包括所述第二时间窗中最早的P2个多载波符号,P1和P2分别是非负整数,所述P1和所述P2的和等于P,所述P是正整数;所述第一时间窗包括的多载波符号的数量或所述第二时间窗包括的多载波符号的数量中的至少之一被用于确定所述P1的值和所述P2的值。
根据本申请的一个方面,其特征在于,所述第一时间窗和所述第二时间窗之间是否存在一个多载波符号的类型属于第一类型集合被用于确定第一数值,所述第一数值是非负整数;所述第一时间池和所述第二时间池之间存在的多载波符号的数量不小于所述第一数值。
根据本申请的一个方面,其特征在于,所述第二节点是基站。
根据本申请的一个方面,其特征在于,所述第二节点是用户设备。
根据本申请的一个方面,其特征在于,所述第二节点是中继节点。
本申请公开了一种被用于无线通信的第一节点设备,其特征在于,包括:
第一接收机,接收第一信令;
第一发送机,在第一时间池中发送第一信号,并在第二时间池中发送第二信号;
其中,所述第一信令被用于确定K个时间窗,K是大于1的正整数;所述第一信号和所述第二信号均携带第一比特块;所述K个时间窗中的任一时间窗与第一参考信号或第二参考信号中之一相关联,所述第一信令被用于确定所述第一参考信号和所述第二参考信号;所述第一时间池包括所述K个时间窗中的1个或多个和所述第一参考信号相关联的时间窗中的全部或部分多载波符号,所述第二时间池包括所述K个时间窗中的1个或多个和所述第二参考信号相关联的时间窗中的全部或部分多载波符号;第一时间窗和第二时间窗分别是所述K个时间窗中相邻的两个时间窗,所述第一时间窗和所述第二时间窗分别与所述第一参考信号和所述第二参考信号相关联;所述第一时间池包括所述第一时间窗中的全部或部分多载波符号,所述第二时间池包括所述第二时间窗中的全部或部分多载波符号;第一条件集合是否被满足被用于确定下述至少之一:
- 所述第一时间池是否包括所述第一时间窗中的全部多载波符号;
- 所述第二时间池是否包括所述第二时间窗中的全部多载波符号。
本申请公开了一种被用于无线通信的第二节点设备,其特征在于,包括:
第二发送机,发送第一信令;
第二接收机,在第一时间池中接收第一信号,并在第二时间池中接收第二信号;
其中,所述第一信令被用于确定K个时间窗,K是大于1的正整数;所述第一信号和所述第二信号均携带第一比特块;所述K个时间窗中的任一时间窗与第一参考信号或第二参考信号中之一相关联,所述第一信令被用于确定所述第一参考信号和所述第二参考信号;所述第一时间池包括所述K个时间窗中的1个或多个和所述第一参考信号相关联的时间窗中的全部或部分多载波符号,所述第二时间池包括所述K个时间窗中的1个或多个和所述第二参考信号相关联的时间窗中的全部或部分多载波符号;第一时间窗和第二时间窗分别是所述K个时间窗中相邻的两个时间窗,所述第一时间窗和所述第二时间窗分别与所述第一参考信号和所述第二参考信号相关联;所述第一时间池包括所述第一时间窗中的全部或部分多载波符号,所述第二时间池包括所述第二时间窗中的全部或部分多载波符号;第一条件集合是否被满足被用于确定下述至少之一:
- 所述第一时间池是否包括所述第一时间窗中的全部多载波符号;
- 所述第二时间池是否包括所述第二时间窗中的全部多载波符号。
作为一个实施例,和传统方案相比,本申请具备如下优势:
在基于多TRP/panel的上行传输中,既满足了波束切换的处理时间需求,又避免了资源浪费,提高了资源利用率。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会 变得更加明显:
图1示出了根据本申请的一个实施例的第一信令,第一信号和第二信号的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5示出了根据本申请的一个实施例的传输的流程图;
图6示出了根据本申请的一个实施例的第一信令被用于确定K个时间窗的示意图;
图7示出了根据本申请的一个实施例的第一信令被用于确定K个时间窗的示意图;
图8示出了根据本申请的一个实施例的第一时间池,第二时间池和K个时间窗的示意图;
图9示出了根据本申请的一个实施例的第一时间池,第二时间池和K个时间窗的示意图;
图10示出了根据本申请的一个实施例的给定时间窗和给定参考信号相关联的示意图;
图11示出了根据本申请的一个实施例的第一条件集合,第一时间池是否包括第一时间窗中全部多载波符号和第二时间池是否包括第二时间窗中全部多载波符号之间关系的示意图;
图12示出了根据本申请的一个实施例的第一条件集合和S个条件子集的示意图;
图13示出了根据本申请的一个实施例的S个条件子集和第一条件子集的示意图;
图14示出了根据本申请的一个实施例的S个条件子集和第二条件子集的示意图;
图15示出了根据本申请的一个实施例的S个条件子集和第三条件子集的示意图;
图16示出了根据本申请的一个实施例的当第一条件集合不被满足时,第一时间池不包括第一时间窗中最后的P1个多载波符号,第二时间池不包括第二时间窗中最早的P2个多载波符号的示意图;
图17示出了根据本申请的一个实施例的第一时间窗和第二时间窗之间是否存在一个多载波符号的类型属于第一类型集合被用于确定第一数值的示意图;
图18示出了根据本申请的一个实施例的用于第一节点设备中的处理装置的结构框图;
图19示出了根据本申请的一个实施例的用于第二节点中设备的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请中的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的第一信号,第一信号和第二信号的流程图,如附图1所示。在附图1所示的100中,每个方框代表一个步骤。特别的,方框中的步骤的顺序不代表各个步骤之间特定的时间先后关系。
在实施例1中,本申请中的所述第一节点在步骤101中接收第一信令;在步骤102中在第一时间池中发送第一信号;在步骤103中在第二时间池中发送第二信号。其中,所述第一信令被用于确定K个时间窗,K是大于1的正整数;所述第一信号和所述第二信号均携带第一比特块;所述K个时间窗中的任一时间窗与第一参考信号或第二参考信号中之一相关联,所述第一信令被用于确定所述第一参考信号和所述第二参考信号;所述第一时间池包括所述K个时间窗中的1个或多个和所述第一参考信号相关联的时间窗中的全部或部分多载波符号,所述第二时间池包括所述K个时间窗中的1个或多个和所述第二参考信号相关联的时间窗中的全部或部分多载波符号;第一时间窗和第二时间窗分别是所述K个时间窗中相邻的两个时间窗,所述第一时间窗和所述第二时间窗分别与所述第一参考信号和所述第二参考信号相关联;所述第一时间池包括所述第一时间窗中的全部或部分多载波符号,所述第二时间池包括所述第二时间窗中的全部或部分多载波符号;第一条件集合是否被满足被用于确定下述至少之一:
- 所述第一时间池是否包括所述第一时间窗中的全部多载波符号;
- 所述第二时间池是否包括所述第二时间窗中的全部多载波符号。
作为一个实施例,所述第一信令包括物理层信令。
作为一个实施例,所述第一信令包括动态信令。
作为一个实施例,所述第一信令包括层1(L1)的信令。
作为一个实施例,所述第一信令包括层1(L1)的控制信令。
作为一个实施例,所述第一信令包括DCI(Downlink control information,下行控制信息)。
作为一个实施例,所述第一信令包括一个DCI中的一个或多个域(field)。
作为一个实施例,所述第一信令包括一个SCI(Sidelink Control Information,副链路控制信息)中的一个或多个域(field)。
作为一个实施例,所述第一信令包括用于上行授予(UpLink Grant)的DCI。
作为一个实施例,所述第一信令包括用于上行配置授予类型2(Configured Uplink Grant Type 2)激活的DCI。
作为一个实施例,所述第一信令包括更高层(higher layer)信令。
作为一个实施例,所述第一信令包括RRC(Radio Resource Control,无线电资源控制)信令。
作为一个实施例,所述第一信令包括MAC CE(Medium Access Control layer Control Element,媒体接入控制层控制元素)信令。
作为一个实施例,所述第一信令包括一个IE(Information Element,信息单元)中一个或多个域(field)中的信息。
作为一个实施例,所述第一信令包括所述第一信号和所述第二信号的调度信息。
作为一个实施例,所述调度信息包括时域资源,频域资源,MCS(Modulation and Coding Scheme,调制编码方式),DMRS(DeModulation Reference Signals,解调参考信号)端口(port),HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)进程号(process number),RV(Redundancy Version,冗余版本)或NDI(New Data Indicator,新数据指示)中的一种或多种。
作为一个实施例,所述第一信令显式的指示所述K个时间窗。
作为一个实施例,所述第一信令隐式的指示所述K个时间窗。
作为一个实施例,所述第一信令指示的信息被用于推断出所述K个时间窗。
作为一个实施例,所述多载波符号包括OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号。
作为一个实施例,所述多载波符号包括SC-FDMA(Single Carrier-Frequency Division Multiple Access,单载波频分多址接入)符号。
作为一个实施例,所述多载波符号包括DFT-S-OFDM(Discrete Fourier Transform Spread OFDM,离散傅里叶变化正交频分复用)符号。
作为一个实施例,所述第一参考信号包括CSI-RS(Channel State Information-Reference Signal,信道状态信息参考信号)。
作为一个实施例,所述第一参考信号包括SSB(Synchronisation Signal/physical broadcast channel Block,同步信号/物理广播信道块)。
作为一个实施例,所述第一参考信号包括SRS(Sounding Reference Signal,探测参考信号)。
作为一个实施例,所述第二参考信号包括CSI-RS。
作为一个实施例,所述第二参考信号包括SSB。
作为一个实施例,所述第二参考信号包括SRS。
作为一个实施例,所述第一参考信号和所述第二参考信号不是QCL(Quasi-Co-Located,准共址)的。
作为一个实施例,所述第一参考信号和所述第二参考信号不是对应QCL-TypeD的QCL。
作为一个实施例,所述第一信令指示所述第一参考信号和所述第二参考信号。
作为一个实施例,所述第一信令包括第三域,所述第一信令中的所述第三域指示所述第一参考信号和所述第二参考信号。
作为一个实施例,所述第三域包括大于1的正整数个比特。
作为一个实施例,所述第三域包括SRS resource indicator域中的全部或部分信息。
作为一个实施例,所述第一信令中的所述第三域指示所述第一参考信号对应的TCI(Transmission Configuration Indicator,传输配置标识)域码点(codepoint)和所述第二参考信号对应的TCI域码点。
作为一个实施例,所述第一参考信号和所述第二参考信号对应相同的TCI域码点。
作为一个实施例,所述第一参考信号和所述第二参考信号对应不同的TCI域码点。
作为一个实施例,所述第一信令中的所述第三域指示所述第一参考信号对应的SRI(SRS resource indicator,探测参考信号资源标识)域码点和所述第二参考信号对应的SRI域码点。
作为一个实施例,所述第一参考信号和所述第二参考信号对应相同的SRI域码点。
作为一个实施例,所述第一参考信号和所述第二参考信号对应不同的SRI域码点。
作为一个实施例,所述第一信令占用的时频资源被用于确定所述第一参考信号和所述第二参考信号。
作为一个实施例,所述第一信令的DCI格式(format)被用于确定所述第一参考信号和所述第二参考信号。
作为一个实施例,所述K个时间窗中任一时间窗是一个连续的时间段。
作为一个实施例,所述K个时间窗中任一时间窗包括正整数个多载波符号。
作为一个实施例,所述K个时间窗中任一时间窗包括1个或多个连续的多载波符号。
作为一个实施例,所述K个时间窗中任一时间窗包括一个时隙(slot)。
作为一个实施例,所述K个时间窗中任一时间窗包括正整数个时隙(slot)。
作为一个实施例,所述K个时间窗中任一时间窗包括一个子时隙(sub-slot)。
作为一个实施例,所述K个时间窗中任一时间窗的长度不大于1个时隙。
作为一个实施例,所述K个时间窗两两相互正交。
作为一个实施例,所述K个时间窗中存在两个时间窗包括的多载波符号的数量不等。
作为一个实施例,所述K个时间窗中存在两个时间窗包括的多载波符号的数量相等。
作为一个实施例,所述K个时间窗中存在一个时间窗仅包括一个多载波符号。
作为一个实施例,所述K个时间窗中存在一个时间窗包括多个多载波符号。
作为一个实施例,所述K个时间窗中的任一时间窗包括大于1的正整数个多载波符号。
作为一个实施例,所述K个时间窗在时域是连续的。
作为一个实施例,所述K个时间窗在时域是不连续的。
作为一个实施例,所述第一时间窗是所述K个时间窗中的第i个时间窗,所述第二时间窗是所述K个时间窗中的第(i+1)个时间窗,所述i是小于K的正整数。
作为一个实施例,所述第一时间窗和所述第二时间窗在所述K个时间窗中的位置相邻。
作为一个实施例,所述K个时间窗分别被预留给所述第一比特块的K次重复传输。
作为一个实施例,所述第一比特块的所述K次重复传输分别是K次实际的(actual)重复传输。
作为一个实施例,所述第一比特块的所述K次重复传输中存在一次重复传输占用对应的时间窗中的全部多载波符号。
作为一个实施例,所述第一比特块的所述K次重复传输中存在一次重复传输占用对应的时间窗中的仅部分多载波符号。
作为一个实施例,所述第一比特块的所述K次重复传输占用相同的频域资源。
作为一个实施例,所述第一比特块的所述K次重复传输中存在两次重复传输占用不同的频域资源。
作为一个实施例,所述第一比特块的所述K次重复传输在频域属于同一个BWP(Bandwidth part,带宽区间)。
作为一个实施例,所述第一比特块的所述K次重复传输在频域属于同一个服务小区。
作为一个实施例,所述第一比特块的所述K次重复传输中的任一次重复传输在PUSCH(Physical Uplink Shared CHannel,物理上行共享信道)上被传输。
作为一个实施例,所述K个时间窗中不存在一个时间窗在时域位于所述第一时间窗和所述第二时间窗之间。
作为一个实施例,所述第一时间窗的结束时刻不晚于所述第二时间窗的起始时刻。
作为一个实施例,对于所述K个时间窗中任意两个相邻的时间窗,如果所述两个相邻的时间窗之间存在正整数个多载波符号,所述第一节点在所述两个相邻的时间窗之间的任一多载波符号中在所述第一信号所属的服务小区中不发送无线信号。
作为一个实施例,对于所述K个时间窗中任意两个相邻的时间窗,如果所述两个相邻的时间窗之间存 在正整数个多载波符号,所述第一节点在所述两个相邻的时间窗之间的任一多载波符号中在所述第一信号所属的服务小区中不发送携带所述第一比特块的无线信号。
作为一个实施例,给定时间池包括正整数个时间段;所述给定时间池包括的任一时间段在时域是连续的。
作为一个实施例,给定时间池包括多个时间段;所述多个时间段之间不连续。
作为一个实施例,给定时间池仅包括1个时间段。
作为一个实施例,给定时间池包括正整数个多载波符号。
作为一个实施例,给定时间池包括的多载波符号在时域是不连续的。
作为一个实施例,给定时间池包括的多载波符号在时域是连续的。
作为一个实施例,给定时间池包括所述K个时间窗中的部分时间窗中的全部或部分时域资源。
作为一个实施例,给定时间池由所述K个时间窗中的部分时间窗中的全部或部分时域资源组成。
作为一个实施例,所述给定时间池是所述第一时间池或所述第二时间池。
作为一个实施例,所述给定时间池是所述第一时间池。
作为一个实施例,所述给定时间池是所述第二时间池。
作为一个实施例,所述第一时间池包括所述第一时间窗中的全部多载波符号。
作为一个实施例,所述第一时间池包括所述第一时间窗中的仅部分多载波符号。
作为一个实施例,所述第二时间池包括所述第二时间窗中的全部多载波符号。
作为一个实施例,所述第二时间池包括所述第二时间窗中的仅部分多载波符号。
作为一个实施例,所述第一时间池和所述第二时间池在时域相互正交。
作为一个实施例,所述第一时间池的结束时刻不晚于所述第二时间池的起始时刻。
作为一个实施例,所述第一时间池的结束时刻不晚于所述第一时间窗的结束时刻。
作为一个实施例,所述第二时间池的起始时刻不早于所述第二时间窗的起始时刻。
作为一个实施例,所述第一时间池由所述K个时间窗中的1个或多个和所述第一参考信号相关联的时间窗中的全部或部分多载波符号组成,所述第二时间池由所述K个时间窗中的1个或多个和所述第二参考信号相关联的时间窗中的全部或部分多载波符号组成。
作为一个实施例,所述第一信号和所述第二信号分别包括基带信号。
作为一个实施例,所述第一信号和所述第二信号分别包括无线信号。
作为一个实施例,所述第一信号和所述第二信号分别包括射频信号。
作为一个实施例,所述第一信号和所述第二信号分别包括所述第一比特块的两次重复传输。
作为一个实施例,所述第一信号和所述第二信号分别包括所述第一比特块的两次实际的(actual)重复传输。
作为一个实施例,所述第一信号占用所述第一时间池中的全部时域资源。
作为一个实施例,所述第二信号占用所述第二时间池中的全部时域资源。
作为一个实施例,所述第一信号和所述第二信号在频域属于同一个BWP。
作为一个实施例,所述第一信号和所述第二信号在频域属于同一个服务小区。
作为一个实施例,所述第一比特块包括大于1的正整数个比特。
作为一个实施例,所述第一比特块中的所有比特依次排列。
作为一个实施例,所述第一比特块包括一个TB(Transport Block,传输块)。
作为一个实施例,所述第一比特块包括一个CB(Code Block,码块)。
作为一个实施例,所述第一比特块包括一个CBG(Code Block Group,码块组)。
作为一个实施例,所述第一信令被用于确定所述第一比特块包括的比特的数量。
作为一个实施例,句子所述第一信号和所述第二信号均携带第一比特块的意思包括:所述第一信号和所述第二信号分别包括所述第一比特块中的比特依次经过CRC(Cyclic Redundancy Check,循环冗余校验)附着(Attachment),编码块分段(Code Block Segmentation),编码块CRC附着,信道编码(Channel Coding),速率匹配(Rate Matching),串联(Concatenation),加扰(Scrambling),调制(Modulation),层映射(Layer Mapping),转换预编码(transform precoding),预编码(Precoding),虚拟资源块映射(Mapping to Virtual  Resource Blocks),虚拟到物理资源块映射(Mapping from Virtual to Physical Resource Blocks),多载波符号发生(Generation),调制和上变频(Modulation and Upconversion)之后的输出。
作为一个实施例,句子所述第一信号和所述第二信号均携带第一比特块的意思包括:所述第一信号和所述第二信号分别包括所述第一比特块中的比特依次经过CRC附着,信道编码,速率匹配,调制,层映射,预编码,虚拟资源块映射,虚拟到物理资源块映射,多载波符号发生,调制和上变频之后的输出。
作为一个实施例,句子所述第一信号和所述第二信号均携带第一比特块的意思包括:所述第一比特块被用于生成所述第一信号和所述第二信号。
作为一个实施例,所述第一条件集合与所述第一时间窗和所述第二时间窗之间是否存在时间单元间隔有关。
作为一个实施例,所述第一条件集合与所述第一时间窗和所述第二时间窗之间是否存在多载波符号有关。
作为一个实施例,所述第一条件集合与所述第一时间窗和所述第二时间窗之间的多载波符号的数量有关。
作为一个实施例,所述第一条件集合与所述第一时间窗和所述第二时间窗之间的多载波符号的类型有关。
作为一个实施例,所述第一条件集合包括:所述第一时间窗和所述第二时间窗被时间单元边界分隔。
作为一个实施例,所述第一条件集合包括:所述第一时间窗和所述第二时间窗被时间单元边界分隔,并且在分隔所述第一时间窗和所述第二时间窗的时间单元边界发生第一类多载波符号到第二类多载波符号的转换。
作为一个实施例,所述第一条件集合包括:所述第一时间窗和所述第二时间窗之间存在的多载波符号的数量不小于第一数值,所述第一数值是非负整数。
作为一个实施例,所述第一条件集合包括:所述第一时间窗和所述第二时间窗之间存在一个多载波符号的类型属于第一类型集合。
作为一个实施例,所述第一条件集合包括:所述第一节点未被配置第一更高层参数。
作为一个实施例,所述第一更高层参数指示所述第一数值。
作为一个实施例,所述第一更高层参数的名称里包括StartingSymbolOffset。
作为一个实施例,配置所述第一更高层参数的更高层信令包括RepetitionSchemeConfig IE中全部或部分域中的信息。
作为一个实施例,当所述第一时间池包括所述第一时间窗中的仅部分多载波符号时,所述第一节点放弃在所述第一时间窗中不属于所述第一时间池的多载波符号中发送信号。
作为一个实施例,当所述第二时间池包括所述第二时间窗中的仅部分多载波符号时,所述第一节点放弃在所述第二时间窗中不属于所述第二时间池的多载波符号中发送信号。
作为一个实施例,当所述第一时间池包括所述第一时间窗中的仅部分多载波符号时,所述第一节点放弃在所述第一时间窗中不属于所述第一时间池的多载波符号中发送携带所述第一比特块的信号。
作为一个实施例,当所述第二时间池包括所述第二时间窗中的仅部分多载波符号时,所述第一节点放弃在所述第二时间窗中不属于所述第二时间池的多载波符号中发送携带所述第一比特块的信号。
实施例2
实施例2示例了根据本申请的一个实施例的网络架构的示意图,如附图2所示。
附图2说明了LTE(Long-Term Evolution,长期演进),LTE-A(Long-Term Evolution Advanced,增强长期演进)及未来5G系统的网络架构200。LTE,LTE-A及未来5G系统的网络架构200称为EPS(Evolved Packet System,演进分组系统)200。5G NR或LTE网络架构200可称为5GS(5G System)/EPS(Evolved Packet System,演进分组系统)200或某种其它合适术语。5GS/EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,一个与UE201进行副链路(Sidelink)通信的UE241,NG-RAN(下一代无线接入网络)202,5GC(5G CoreNetwork,5G核心网)/EPC(Evolved Packet Core,演进分组核心)210,HSS(Home Subscriber Server,归属签约用户服务器)/UDM(Unified Data Management,统一数据管理)220和因特网 服务230。5GS/EPS200可与其它接入网络互连,但为了简单未展示这些实体/接口。如附图2所示,5GS/EPS200提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络。NG-RAN202包括NR(New Radio,新无线)节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收点)或某种其它合适术语。gNB203为UE201提供对5GC/EPC210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物理网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到5GC/EPC210。5GC/EPC210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/SMF(Session Management Function,会话管理功能)211、其它MME/AMF/SMF214、S-GW(Service Gateway,服务网关)/UPF(User Plane Function,用户面功能)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)/UPF213。MME/AMF/SMF211是处理UE201与5GC/EPC210之间的信令的控制节点。大体上MME/AMF/SMF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW/UPF212传送,S-GW/UPF212自身连接到P-GW/UPF213。P-GW提供UE IP地址分配以及其它功能。P-GW/UPF213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网,内联网,IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换(Packet switching)服务。
作为一个实施例,本申请中的所述第一节点包括所述UE201。
作为一个实施例,本申请中的所述第一节点包括所述UE241。
作为一个实施例,本申请中的所述第二节点包括所述gNB203。
作为一个实施例,本申请中的所述第二节点包括所述UE241。
作为一个实施例,所述UE201与所述gNB203之间的无线链路是蜂窝网链路。
作为一个实施例,所述UE201与所述UE241之间的无线链路是副链路(Sidelink)。
作为一个实施例,本申请中的所述第一信令的发送者包括所述gNB203。
作为一个实施例,本申请中的所述第一信令的接收者包括所述UE201。
作为一个实施例,本申请中的所述第一信号的发送者包括所述UE201。
作为一个实施例,本申请中的所述第一信号的接收者包括所述gNB203。
作为一个实施例,本申请中的所述第二信号的发送者包括所述UE201。
作为一个实施例,本申请中的所述第二信号的接收者包括所述gNB203。
实施例3
实施例3示例了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于第一通信节点设备(UE,gNB或V2X中的RSU)和第二通信节点设备(gNB,UE或V2X中的RSU)之间,或者两个UE之间的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,负责第一通信节点设备与第二通信节点设备之间,或者两个UE之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于第二通信节点设备处。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供通过加密数 据包而提供安全性,以及提供第二通信节点设备之间的对第一通信节点设备的越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复用。MAC子层302还负责在第一通信节点设备之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306负责获得无线电资源(即,无线电承载)且使用第二通信节点设备与第一通信节点设备之间的RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一通信节点设备和第二通信节点设备的无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的标头压缩以减少无线电发射开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。虽然未图示,但第一通信节点设备可具有在L2层355之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,所述第一信令生成于所述PHY301,或所述PHY351。
作为一个实施例,所述第一信令生成于所述MAC子层302,或所述MAC子层352。
作为一个实施例,所述第一信号生成于所述PHY301,或所述PHY351。
作为一个实施例,所述第二信号生成于所述PHY301,或所述PHY351。
实施例4
实施例4示例了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图,如附图4所示。附图4是在接入网络中相互通信的第一通信设备410以及第二通信设备450的框图。
第一通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
第二通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第一通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在DL中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与传输信道之间的多路复用,以及基于各种优先级量度对第二通信设备450的无线电资源分配。控制器/处理器475还负责HARQ操作、丢失包的重新发射,和到第二通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进第二通信设备450处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的星座映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个并行流。发射处理器416随后将每一并行流映射到子载波,将调制后的符号在时域和/或频域中与参考信号(例如,导频)复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第二通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流 从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以第二通信设备450为目的地的任何并行流。每一并行流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由第一通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在DL中,控制器/处理器459提供传输与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。控制器/处理器459还负责使用确认(ACK)和/或否定确认(NACK)协议进行错误检测以支持HARQ操作。
在从所述第二通信设备450到所述第一通信设备410的传输中,在所述第二通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在DL中所描述第一通信设备410处的发送功能,控制器/处理器459基于第一通信设备410的无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与传输信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责HARQ操作、丢失包的重新发射,和到所述第一通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的并行流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第二通信设备450到所述第一通信设备410的传输中,所述第一通信设备410处的功能类似于在从所述第一通信设备410到所述第二通信设备450的传输中所描述的所述第二通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。控制器/处理器475提供传输与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自第二通信设备450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。控制器/处理器475还负责使用ACK和/或NACK协议进行错误检测以支持HARQ操作。
作为一个实施例,所述第二通信设备450包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备450装置至少:接收所述第一信令;在所述第一时间池中发送所述第一信号;在所述第二时间池中发送所述第二信号。其中,所述第一信令被用于确定K个时间窗,K是大于1的正整数;所述第一信号和所述第二信号均携带第一比特块;所述K个时间窗中的任一时间窗与第一参考信号或第二参考信号中之一相关联,所述第一信令被用于确定所述第一参考信号和所述第二参考信号;所述第一时间池包括所述K个时间窗中的1个或多个和所述第一参考信号相关联的时间窗中的全部或部分多载波符号,所述第二时间池包括所述K个时间窗中的1个或多个和所述第二参考信号相关联的时间窗中的全部或部分多载波符号;第一时间窗和第二时间窗分别是所述K个时间窗中相邻的两个时间窗,所述第一时间窗和所述第二时间窗分别与所述第一参考信号和所述第二参考信号相关联;所述第一时间池包括所述第一时间窗中的全部或部分多载波符号,所述第二时间池包括所述第二时间窗中的全部或部分多载波符号;第一条件集合是否被满足被用于确定下述至少之一:
- 所述第一时间池是否包括所述第一时间窗中的全部多载波符号;
- 所述第二时间池是否包括所述第二时间窗中的全部多载波符号。
作为一个实施例,所述第二通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收所述第一信令;在所述第一时间池中发送所述第一信号;在所述第二时间池中发送所述第二信号。其中,所述第一信令被用于确定K个时 间窗,K是大于1的正整数;所述第一信号和所述第二信号均携带第一比特块;所述K个时间窗中的任一时间窗与第一参考信号或第二参考信号中之一相关联,所述第一信令被用于确定所述第一参考信号和所述第二参考信号;所述第一时间池包括所述K个时间窗中的1个或多个和所述第一参考信号相关联的时间窗中的全部或部分多载波符号,所述第二时间池包括所述K个时间窗中的1个或多个和所述第二参考信号相关联的时间窗中的全部或部分多载波符号;第一时间窗和第二时间窗分别是所述K个时间窗中相邻的两个时间窗,所述第一时间窗和所述第二时间窗分别与所述第一参考信号和所述第二参考信号相关联;所述第一时间池包括所述第一时间窗中的全部或部分多载波符号,所述第二时间池包括所述第二时间窗中的全部或部分多载波符号;第一条件集合是否被满足被用于确定下述至少之一:
- 所述第一时间池是否包括所述第一时间窗中的全部多载波符号;
- 所述第二时间池是否包括所述第二时间窗中的全部多载波符号。
作为一个实施例,所述第一通信设备410包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第一通信设备410装置至少:发送所述第一信令;在所述第一时间池中接收所述第一信号;在所述第二时间池中接收所述第二信号。其中,所述第一信令被用于确定K个时间窗,K是大于1的正整数;所述第一信号和所述第二信号均携带第一比特块;所述K个时间窗中的任一时间窗与第一参考信号或第二参考信号中之一相关联,所述第一信令被用于确定所述第一参考信号和所述第二参考信号;所述第一时间池包括所述K个时间窗中的1个或多个和所述第一参考信号相关联的时间窗中的全部或部分多载波符号,所述第二时间池包括所述K个时间窗中的1个或多个和所述第二参考信号相关联的时间窗中的全部或部分多载波符号;第一时间窗和第二时间窗分别是所述K个时间窗中相邻的两个时间窗,所述第一时间窗和所述第二时间窗分别与所述第一参考信号和所述第二参考信号相关联;所述第一时间池包括所述第一时间窗中的全部或部分多载波符号,所述第二时间池包括所述第二时间窗中的全部或部分多载波符号;第一条件集合是否被满足被用于确定下述至少之一:
- 所述第一时间池是否包括所述第一时间窗中的全部多载波符号;
- 所述第二时间池是否包括所述第二时间窗中的全部多载波符号。
作为一个实施例,所述第一通信设备410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送所述第一信令;在所述第一时间池中接收所述第一信号;在所述第二时间池中接收所述第二信号。其中,所述第一信令被用于确定K个时间窗,K是大于1的正整数;所述第一信号和所述第二信号均携带第一比特块;所述K个时间窗中的任一时间窗与第一参考信号或第二参考信号中之一相关联,所述第一信令被用于确定所述第一参考信号和所述第二参考信号;所述第一时间池包括所述K个时间窗中的1个或多个和所述第一参考信号相关联的时间窗中的全部或部分多载波符号,所述第二时间池包括所述K个时间窗中的1个或多个和所述第二参考信号相关联的时间窗中的全部或部分多载波符号;第一时间窗和第二时间窗分别是所述K个时间窗中相邻的两个时间窗,所述第一时间窗和所述第二时间窗分别与所述第一参考信号和所述第二参考信号相关联;所述第一时间池包括所述第一时间窗中的全部或部分多载波符号,所述第二时间池包括所述第二时间窗中的全部或部分多载波符号;第一条件集合是否被满足被用于确定下述至少之一:
- 所述第一时间池是否包括所述第一时间窗中的全部多载波符号;
- 所述第二时间池是否包括所述第二时间窗中的全部多载波符号。
作为一个实施例,本申请中的所述第一节点包括所述第二通信设备450。
作为一个实施例,本申请中的所述第二节点包括所述第一通信设备410。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460}中的至少之一被用于接收所述第一信令;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送所述第一信令。
作为一个实施例,{所述天线420,所述接收器418,所述接收处理器470,所述多天线接收处理器472,所述控制器/处理器475,所述存储器476}中的至少之一被用于在所述第一时间池中接收所述第一信号;{所述天线452,所述发射器454,所述发射处理器468,所述多天线发射处理器457,所述控制器/处理器 459,所述存储器460}中的至少之一被用于在所述第一时间池中发送所述第一信号。
作为一个实施例,{所述天线420,所述接收器418,所述接收处理器470,所述多天线接收处理器472,所述控制器/处理器475,所述存储器476}中的至少之一被用于在所述第二时间池中接收所述第二信号;{所述天线452,所述发射器454,所述发射处理器468,所述多天线发射处理器457,所述控制器/处理器459,所述存储器460}中的至少之一被用于在所述第二时间池中发送所述第二信号。
实施例5
实施例5示例了根据本申请的一个实施例的无线传输的流程图,如附图5所示。在附图5中,第二节点U1和第一节点U2是通过空中接口传输的通信节点。附图5中,方框F51中的步骤是可选的。
对于 第二节点U1,在步骤S511中发送第一信令;在步骤S512中在第一时间池中接收第一信号;在步骤S513中在第二时间池中接收第二信号;在步骤S5101中接收K个子信号中不属于所述第一信号和所述第二信号的子信号。
对于 第一节点U2,在步骤S521中接收第一信令;在步骤S522中在第一时间池中发送第一信号;在步骤S523中在第二时间池中发送第二信号;在步骤S5201中发送K个子信号中不属于所述第一信号和所述第二信号的子信号。
在实施例5中,所述第一信令被所述第一节点U2用于确定K个时间窗,K是大于1的正整数;所述第一信号和所述第二信号均携带第一比特块;所述K个时间窗中的任一时间窗与第一参考信号或第二参考信号中之一相关联,所述第一信令被所述第一节点U2用于确定所述第一参考信号和所述第二参考信号;所述第一时间池包括所述K个时间窗中的1个或多个和所述第一参考信号相关联的时间窗中的全部或部分多载波符号,所述第二时间池包括所述K个时间窗中的1个或多个和所述第二参考信号相关联的时间窗中的全部或部分多载波符号;第一时间窗和第二时间窗分别是所述K个时间窗中相邻的两个时间窗,所述第一时间窗和所述第二时间窗分别与所述第一参考信号和所述第二参考信号相关联;所述第一时间池包括所述第一时间窗中的全部或部分多载波符号,所述第二时间池包括所述第二时间窗中的全部或部分多载波符号;第一条件集合是否被满足被所述第一节点U2用于确定下述至少之一:
- 所述第一时间池是否包括所述第一时间窗中的全部多载波符号;
- 所述第二时间池是否包括所述第二时间窗中的全部多载波符号。
作为一个实施例,所述第一条件集合是否被满足被所述第二节点U1用于确定下述至少之一:
- 所述第一时间池是否包括所述第一时间窗中的全部多载波符号;
- 所述第二时间池是否包括所述第二时间窗中的全部多载波符号。
作为一个实施例,所述第一节点U2是本申请中的所述第一节点。
作为一个实施例,所述第二节点U1是本申请中的所述第二节点。
作为一个实施例,所述第二节点U1和所述第一节点U2之间的空中接口包括基站设备与用户设备之间的无线接口。
作为一个实施例,所述第二节点U1和所述第一节点U2之间的空中接口包括用户设备与用户设备之间的无线接口。
作为一个实施例,所述第二节点U1是所述第一节点U2的服务小区维持基站。
作为一个实施例,所述第一信令在下行物理层控制信道(即仅能用于承载物理层信令的下行信道)上被传输。
作为一个实施例,所述第一信令在PDCCH(Physical Downlink Control Channel,物理下行控制信道)上被传输。
作为一个实施例,所述第一信令在PSCCH(Physical Sidelink Control Channel,物理副链路控制信道)上被传输。
作为一个实施例,所述第一信号和所述第二信号分别在上行物理层数据信道(即能用于承载物理层数据的上行信道)上被传输。
作为一个实施例,所述第一信号和所述第二信号在同一个PUSCH(Physical Uplink Shared CHannel,物理上行共享信道)上被传输。
作为一个实施例,所述第一信号和所述第二信号分别在不同的PUSCH上被传输。
作为一个实施例,所述第一信号在一个或多个PUSCH上被传输。
作为一个实施例,所述第二信号在一个或多个PUSCH上被传输。
作为一个实施例,所述第一信号和所述第二信号分别在PSSCH(Physical Sidelink Shared Channel,物理副链路共享信道)上被传输。
作为一个实施例,附图5中的方框F51中的步骤存在;所述K个时间窗分别被预留给所述K个子信号;所述K个子信号分别包括所述第一比特块的所述K次重复传输;所述第一信号包括所述K个子信号中所有位于所述第一时间池中的子信号,所述第二信号包括所述K个子信号中所有位于所述第二时间池中的子信号。
作为一个实施例,所述K个子信号中存在一个子信号在时域早于所述第一信号。
作为一个实施例,所述K个子信号中存在一个子信号在时域晚于所述第二信号。
作为一个实施例,所述K个子信号中不存在一个子信号在时域位于所述第一信号和所述第二信号之间。
作为一个实施例,所述K个子信号中的任一子信号在PUSCH上被传输。
作为一个实施例,附图5中的方框F51中的步骤不存在。
实施例6
实施例6示例了根据本申请的一个实施例的第一信令被用于确定K个时间窗的示意图;如附图6所示。在实施例6中,所述第一信令包括第一域,所述第一信令中的所述第一域指示所述K个时间窗。
作为一个实施例,所述第一域包括大于1的正整数个比特。
作为一个实施例,所述第一域包括一个DCI中的一个或多个域(field)中的信息。
作为一个实施例,所述第一域包括一个IE中的一个或多个域(field)中的信息。
作为一个实施例,所述第一信令中的所述第一域指示第一SLIV(Start and Length Indicator Value,起始和长度指示值),所述第一SLIV指示所述K个时间窗中的第一个时间窗的起始时刻和所述K个时间窗中每个时间窗的长度。
作为一个实施例,所述K个时间窗中的第一个时间窗占用的第一个多载波符号是第一时间单元中的第一多载波符号,所述第一信令中的所述第一域指示所述第一时间单元和所述第一信令所属的时间单元间的时间间隔以及所述第一多载波符号在所述第一时间单元中的位置。
作为一个实施例,所述K个时间窗分别位于K个连续的时间单元中,所述K个时间窗在所述K个连续的时间单元中的位置是相同的。
作为一个实施例,所述第一信令中的所述第一域指示所述K。
作为一个实施例,一个所述时间单元是一个时隙(slot)。
作为一个实施例,一个所述时间单元是一个子时隙(sub-slot)。
作为一个实施例,一个所述时间单元是一个多载波符号。
作为一个实施例,一个所述时间单元由大于1的正整数个连续的多载波符号组成。
作为一个实施例,一个所述时间单元包括的多载波符号的数量是RRC信令配置的。
实施例7
实施例7示例了根据本申请的一个实施例的第一信令被用于确定K个时间窗的示意图;如附图7所示。在实施例7中,所述第一信令包括第二域,所述第一信令中的所述第二域指示第一时间片集合,所述第一时间片集合包括正整数个时间片,所述第一时间片集合中的任一时间片是一个连续的时间段;所述第一时间片集合被用于确定所述K个时间窗。
作为一个实施例,所述第二域包括大于1的正整数个比特。
作为一个实施例,所述第二域包括一个DCI中的一个或多个域(field)中的信息。
作为一个实施例,所述第二域包括一个IE中的一个或多个域(field)中的信息。
作为一个实施例,所述第一时间片集合仅包括1个时间片。
作为一个实施例,所述第一时间片集合包括多个时间片。
作为一个实施例,所述第一时间片集合中的任一时间片包括1个或大于1的正整数个连续的多载波符号。
作为一个实施例,所述第一时间片集合中任意两个时间片包括的多载波符号的数量相等。
作为一个实施例,所述第一时间片集合包括多个时间片,所述多个时间片两两相互正交。
作为一个实施例,所述第一时间片集合中的任意两个相邻的时间片在时域是连续的。
作为一个实施例,所述第一时间片集合中的任一时间片被预留给所述第一比特块的一次记名的(nominal)重复传输。
作为一个实施例,所述第一信令中的所述第二域指示第二SLIV,所述第二SLIV指示所述第一时间片集合中最早一个时间片的起始时刻和所述第一时间片集合中每个时间片的长度。
作为一个实施例,所述第一时间片集合中最早的一个时间片占用的第一个多载波符号是第二时间单元中的第二多载波符号,所述第一信令中的所述第二域指示所述第二时间单元和所述第一信令所属的时间单元之间的时间间隔以及所述第二多载波符号在所述第二时间单元中的位置。
作为一个实施例,所述第一信令中的所述第二域指示所述第一时间片集合包括的时间片的数量。
作为一个实施例,所述K个时间窗中的任一时间窗属于所述第一时间片集合中的一个时间片。
作为一个实施例,所述第一时间片集合被用于确定所述K。
作为一个实施例,所述第一时间片集合被用于确定所述K个时间窗中每个时间窗的起始时刻。
作为一个实施例,所述第一时间片集合被用于确定所述K个时间窗中每个时间窗的长度。
作为一个实施例,对于所述第一时间片集合中任一给定时间片,所述给定时间片中不属于第一多载波符号集合的所有多载波符号组成第一参考符号集合;如果所述第一参考符号集合中可被用于PUSCH repetition type B传输的多载波符号数量大于1,所述第一参考符号集合被用于确定所述K个时间窗中的第一时间窗子集;所述第一时间窗子集中任一时间窗由所述第一参考符号集合中位于同一个时间单元内的1个或多个连续的可被用于PUSCH repetition type B传输的多载波符号组成;所述第一时间窗子集中任一时间窗是所述K个时间窗中之一。
作为上述实施例的一个子实施例,所述第一时间窗子集仅包括1个时间窗。
作为上述实施例的一个子实施例,所述第一时间窗子集包括多个时间窗。
作为上述实施例的一个子实施例,所述第一多载波符号集合包括1个或多个多载波符号。
作为上述实施例的一个子实施例,所述第一多载波符号集合由RRC信令配置。
实施例8
实施例8示例了根据本申请的一个实施例的第一时间池,第二时间池和K个时间窗的示意图;如附图8所示。在附图8中,所述K个时间窗的索引分别是#0,...,#(K-1);所述i是小于K-2的正整数。在实施例8中,所述第一时间池由第一时间窗组中的全部或部分多载波符号组成,所述第二时间池由第二时间窗组中的全部或部分多载波符号组成;所述第一时间窗组包括所述K个时间窗中和所述第一参考信号相关联的正整数个时间窗,所述第二时间窗组包括所述K个时间窗中和所述第二参考信号相关联的正整数个时间窗;所述第一时间窗是所述第一时间窗组中最晚的一个时间窗,所述第二时间窗是所述第二时间窗组中最早的一个时间窗。
作为一个实施例,所述K个时间窗中不存在一个时间窗同时属于所述第一时间窗组和所述第二时间窗组。
作为一个实施例,所述第一时间窗组中的任一时间窗属于所述K个时间窗。
作为一个实施例,所述第二时间窗组中的任一时间窗属于所述K个时间窗。
作为一个实施例,所述第一时间窗组包括所述K个时间窗中的多个时间窗。
作为上述实施例的一个子实施例,所述多个时间窗在所述K个时间窗中的位置是连续的。
作为上述实施例的一个子实施例,所述多个时间窗在所述K个时间窗中的位置不连续。
作为一个实施例,所述第二时间窗组包括所述K个时间窗中的多个时间窗。
作为上述实施例的一个子实施例,所述多个时间窗在所述K个时间窗中的位置是连续的。
作为上述实施例的一个子实施例,所述多个时间窗在所述K个时间窗中的位置不连续。
作为一个实施例,所述第一时间窗组包括的时间窗的数量和所述第二时间窗组包括的时间窗的数量之和等于所述K。
作为一个实施例,所述第一时间窗组中最晚的一个时间窗的结束时刻早于所述第二时间窗组中最早的一个时间窗的起始时刻。
作为一个实施例,所述第一时间窗组中最晚的一个时间窗和所述第二时间窗组中最早的一个时间窗在所述K个时间窗中的位置是相邻的。
作为一个实施例,所述K个时间窗分别被预留给所述K个子信号;所述K个子信号分别包括所述第一比特块的所述K次重复传输;所述第一信号包括所述K个子信号中所有位于所述第一时间窗组中的子信号,所述第二信号包括所述K个子信号中所有位于所述第二时间窗组中的子信号。
作为一个实施例,所述第一信号和所述第二信号中的任一子信号包括基带信号。
作为一个实施例,所述第一信号和所述第二信号中的任一子信号包括无线信号。
作为一个实施例,所述第一信号和所述第二信号中的任一子信号包括射频信号。
作为一个实施例,所述第一信号仅包括一个子信号。
作为一个实施例,所述第一信号包括大于1的正整数个子信号。
作为一个实施例,所述第二信号仅包括一个子信号。
作为一个实施例,所述第二信号包括大于1的正整数个子信号。
作为一个实施例,所述第一时间窗组包括的时间窗的数量等于所述第一信号包括的子信号的数量;所述第二时间窗组包括的时间窗的数量等于所述第二信号包括的子信号的数量。
作为一个实施例,所述第一时间窗组仅包括一个时间窗,所述第一信号仅包括一个子信号,所述一个子信号在所述一个时间窗位于所述第一时间池中的部分被传输。
作为一个实施例,所述第一时间窗组包括K1个时间窗,K1是大于1的正整数;所述第一信号包括K1个子信号,所述K1个子信号分别在所述K1个时间窗位于所述第一时间池中的部分被传输。
作为一个实施例,所述第二时间窗组仅包括一个时间窗,所述第二信号仅包括一个子信号,所述一个子信号在所述一个时间窗位于所述第二时间池中的部分被传输。
作为一个实施例,所述第二时间窗组包括K2个时间窗,K2是大于1的正整数;所述第二信号包括K2个子信号,所述K2个子信号分别在所述K2个时间窗位于所述第二时间池中的部分被传输。
作为一个实施例,第一时间子窗是给定时间窗中位于给定时间池中的部分,第一子信号是所述K个子信号中在所述第一时间子窗中被传输的子信号;所述第一子信号由第一编码后比特块生成的,所述第一编码后比特块包括大于1的正整数个比特;所述第一编码后比特块是所述第一比特块经过信道编码和速率匹配后的输出;所述第一时间子窗包括的多载波符号的数量被用于确定所述第一编码后比特块包括的比特的数量;所述给定时间窗和所述给定时间池分别是所述第一时间窗和所述第一时间池,或者,所述给定时间窗和所述给定时间池分别是所述第二时间窗和所述第二时间池。
作为上述实施例的一个子实施例,所述第一子信号包括所述第一编码后比特块经过调制,层映射,预编码,虚拟资源块映射,虚拟到物理资源块映射,多载波符号发生,调制和上变频之后的输出。
作为上述实施例的一个子实施例,如果所述第一时间子窗仅包括所述给定时间窗中的部分多载波符号,所述第一编码后比特块包括的比特的数量和所述给定时间窗包括的多载波符号的数量无关。
实施例9
实施例9示例了根据本申请的一个实施例的第一时间池,第二时间池和K个时间窗的示意图;如附图9所示。附图9中,所述K个时间窗的索引分别是#0,...,#(K-1)。
作为一个实施例,所述第一时间窗组仅包括所述K个时间窗中的一个时间窗。
作为一个实施例,所述第二时间窗组仅包括所述K个时间窗中的一个时间窗。
作为一个实施例,所述第一时间窗组包括的时间窗的数量和所述第二时间窗组包括的时间窗的数量之和小于所述K。
实施例10
实施例10示例了根据本申请的一个实施例的给定时间窗和给定参考信号相关联的示意图;如附图10所示。在实施例10中,所述给定时间窗是所述K个时间窗中的任一时间窗,所述给定参考信号是所述第一参考信号或者所述第二参考信号;所述K个时间窗分别被预留给所述K个子信号,句子给定时间窗和给定参考信号相关联的意思包括:所述K个子信号中在所述给定时间窗中被传输的子信号和所述给定参考信号空间相关。
作为一个实施例,所述空间相关的意思包括QCL(Quasi-Co-Located,准共址)。
作为一个实施例,所述空间相关的意思包括QCL且对应QCL类型A(QCL-TypeA)。
作为一个实施例,所述空间相关的意思包括QCL且对应QCL类型B(QCL-TypeB)。
作为一个实施例,所述空间相关的意思包括QCL且对应QCL类型C(QCL-TypeC)。
作为一个实施例,所述空间相关的意思包括QCL且对应QCL类型D(QCL-TypeD)。
作为一个实施例,所述空间相关的意思包括:所述K个子信号中在所述给定时间窗中被传输的子信号的DMRS和所述给定参考信号QCL。
作为一个实施例,所述空间相关的意思包括:所述K个子信号中在所述给定时间窗中被传输的子信号的DMRS和所述给定参考信号QCL且对应QCL-TypeD。
作为一个实施例,所述空间相关的意思包括:所述K个子信号中在所述给定时间窗中被传输的子信号的DMRS和所述给定参考信号QCL且对应QCL-TypeA。
作为一个实施例,所述空间相关的意思包括:所述给定参考信号被用于确定所述K个子信号中在所述给定时间窗中被传输的子信号所经历的信道的大尺度特性。
作为一个实施例,所述空间相关的意思包括:从所述给定参考信号所经历的信道的大尺度特性可以推断出所述K个子信号中在所述给定时间窗中被传输的子信号所经历的信道的大尺度特性。
作为一个实施例,所述大尺度特性(large-scale properties)包括延时扩展(delay spread),多普勒扩展(Doppler spread),多普勒位移(Doppler shift),平均延时(average delay),或空域接收参数(Spatial Rx parameter)中的一种或者多种。
作为一个实施例,所述空间相关的意思包括:所述给定参考信号被用于确定所述K个子信号中在所述给定时间窗中被传输的子信号的空域滤波器(spatial domain filter)。
作为一个实施例,所述空间相关的意思包括:所述第一节点用相同的空域滤波器来接收所述给定参考信号和发送所述K个子信号中在所述给定时间窗中被传输的子信号。
作为一个实施例,所述空间相关的意思包括:所述第一节点用相同的空域滤波器来发送所述给定参考信号和所述K个子信号中在所述给定时间窗中被传输的子信号。
作为一个实施例,所述空间相关的意思包括:所述给定参考信号的预编码被用于确定所述K个子信号中在所述给定时间窗中被传输的子信号的预编码。
作为一个实施例,所述空间相关的意思包括:所述K个子信号中在所述给定时间窗中被传输的子信号和所述给定参考信号采用相同的预编码。
作为一个实施例,所述空间相关的意思包括:所述给定参考信号的发送天线端口被用于确定所述K个子信号中在所述给定时间窗中被传输的子信号的发送天线端口。
作为一个实施例,所述空间相关的意思包括:所述K个子信号中在所述给定时间窗中被传输的子信号和所述给定参考信号被相同的天线端口发送。
作为一个实施例,所述K个时间窗中的任一时间窗仅和所述第一参考信号和所述第二参考信号中之一相关联。
作为一个实施例,所述K个时间窗按照时域先后关系被依次索引。
作为一个实施例,对于所述K个时间窗中任一给定时间窗,所述给定时间窗在所述K个时间窗中的索引被用于确定所述给定时间窗和所述第一参考信号相关联还是和所述第二参考信号相关联,所述给定时间窗在所述K个时间窗中的索引是小于所述K的非负整数。
作为一个实施例,对于所述K个时间窗的第(x+1)个时间窗,如果所述x对2取模等于0,所述第(x+1)个时间窗和所述第一参考信号相关联;如果所述x对2取模等于1,所述第(x+1)个时间窗和所述第二参考 信号相关联;所述x是任一小于所述K的非负整数。
作为一个实施例,对于所述K个时间窗的第(x+1)个时间窗,如果第一参数对2取模等于0,所述第x个时间窗和所述第一参考信号相关联;如果所述第一参数对2取模等于1,所述第x个时间窗和所述第二参考信号相关联;所述第一参数等于第二参数除以2后向下取整,所述第二参数等于所述x对4取模;所述x是任一小于所述K的非负整数。
作为一个实施例,所述第一时间片集合中的时间片按照时域先后关系被依次索引。
作为一个实施例,对于所述K个时间窗中任一给定时间窗,所述给定时间窗属于所述第一时间片集合中的给定时间片;所述给定时间片在所述第一时间片集合中的索引被用于确定所述给定时间窗和所述第一参考信号相关联还是和所述第二参考信号相关联,所述给定时间片在所述第一时间片集合中的索引是小于所述第一时间片集合包括的时间片数量的非负整数。
作为一个实施例,对于所述K个时间窗中任一给定时间窗,所述给定时间窗属于所述第一时间片集合中的第(y+1)个时间片;如果所述y对2取模等于0,所述给定时间窗和所述第一参考信号相关联;如果所述y对2取模等于1,所述给定时间窗和所述第二参考信号相关联;所述y是小于所述第一时间片集合包括的时间片数量的非负整数。
作为一个实施例,对于所述K个时间窗的任一给定时间窗,所述给定时间窗属于所述第一时间片集合中的第(y+1)个时间片;如果第一参数对2取模等于0,所述给定时间窗和所述第一参考信号相关联;如果所述第一参数对2取模等于1,所述给定时间窗和所述第二参考信号相关联;所述第一参数等于第二参数除以2后向下取整,所述第二参数等于所述y对4取模;所述y是小于所述第一时间片集合包括的时间片数量的非负整数。
实施例11
实施例11示例了根据本申请的一个实施例的第一条件集合,第一时间池是否包括第一时间窗中全部多载波符号和第二时间池是否包括第二时间窗中全部多载波符号之间关系的示意图;如附图11所示。在实施例11中,如果所述第一条件集合被满足,所述第一时间池包括所述第一时间窗中全部多载波符号,所述第二时间池包括所述第二时间窗中全部多载波符号。
作为一个实施例,所述第一条件集合是否被满足被用于确定所述第一时间池是否包括所述第一时间窗中的全部多载波符号以及所述第二时间池是否包括所述第二时间窗中的全部多载波符号。
作为一个实施例,所述第二时间池包括所述第二时间窗中的全部多载波符号。
作为一个实施例,无论所述第一条件集合是否被满足,所述第二时间池始终包括所述第二时间窗中的全部多载波符号。
作为一个实施例,所述第二时间池是否包括所述第二时间窗中的全部多载波符号和所述第一条件集合是否被满足无关。
作为一个实施例,所述第一时间池包括所述第一时间窗中的全部多载波符号。
作为一个实施例,无论所述第一条件集合是否被满足,所述第一时间池始终包括所述第一时间窗中的全部多载波符号。
作为一个实施例,所述第一时间池是否包括所述第一时间窗中的全部多载波符号和所述第一条件集合是否被满足无关。
作为一个实施例,如果所述第一条件集合不被满足,所述第一时间池不包括所述第一时间窗中最后的P个多载波符号,P是正整数。
作为一个实施例,如果所述第一条件集合不被满足,所述第二时间池不包括所述第二时间窗中最早的P个多载波符号,P是正整数。
作为一个实施例,如果所述第一条件集合不被满足,所述第一时间池不包括所述第一时间窗中最后的P1个多载波符号,所述第二时间池不包括所述第二时间窗中最早的P2个多载波符号,P1和P2分别是非负整数,所述P1和所述P2之和等于P,所述P是正整数。
作为一个实施例,所述第一时间窗和所述第二时间窗分别被预留给所述K个子信号中的第二子信号和第三子信号;所述第二子信号和所述第三子信号中是否存在一个子信号携带第二类比特块被用于确定所述 P1的值和所述P2的值;所述第二类比特块携带UCI(Uplink Control Information,上行控制信息)。
作为上述实施例的一个子实施例,如果所述第二子信号和所述第三子信号中仅所述第二子信号携带所述第二类比特块,所述P1等于0,所述P2等于所述P。
作为上述实施例的一个子实施例,如果所述第二子信号和所述第三子信号中仅所述第三子信号携带所述第二类比特块,所述P1等于所述P,所述P2等于0。
实施例12
实施例12示例了根据本申请的一个实施例的第一条件集合和S个条件子集的示意图;如附图12所示。在实施例12中,如果所述S个条件子集中的一个条件子集被满足,所述第一条件集合被满足;如果所述S个条件子集中的每个条件子集都不被满足,所述第一条件集合不被满足。
作为一个实施例,所述S等于1。
作为一个实施例,所述S大于1。
作为一个实施例,所述第一条件集合由所述S个条件子集组成。
作为一个实施例,第四条件子集是所述S个条件子集中之一,所述第四条件子集包括:所述第一节点未被配置第一更高层参数。
实施例13
实施例13示例了根据本申请的一个实施例的S个条件子集和第一条件子集的示意图;如附图13所示。在实施例13中,所述S个条件子集包括所述第一条件子集,所述第一条件子集包括:所述第一时间窗和所述第二时间窗被时间单元边界分隔。
作为一个实施例,如果所述第一条件子集被满足,所述第一条件集合被满足。
作为一个实施例,所述句子所述第一时间窗和所述第二时间窗被时间单元边界分隔的意思包括:所述第一时间窗和所述第二时间窗之间存在一个时间单元的边界(boundary)。
作为一个实施例,所述句子所述第一时间窗和所述第二时间窗被时间单元边界分隔的意思包括:所述第一时间窗和所述第二时间窗分别属于两个不同的时间单元。
作为一个实施例,所述时间单元边界是指:时隙边界(slot boundary)。
作为一个实施例,所述时间单元边界是指:子时隙边界(sub-slot boundary)。
作为一个实施例,所述第一条件子集包括:所述第一时间窗和所述第二时间窗被时间单元边界分隔,并且在分隔所述第一时间窗和所述第二时间窗的时间单元边界发生第一类多载波符号到第二类多载波符号的转换。
作为一个实施例,所述第一条件子集包括:所述第一时间窗和所述第二时间窗被时间单元边界分隔,并且在分隔所述第一时间窗和所述第二时间窗的时间单元边界在所述第一信号和所述第二信号所属的服务小区中发生第一类多载波符号到第二类多载波符号的转换。
作为一个实施例,所述第一类多载波符号包括可以被所述第一节点用于向所述第一信令的发送者发送信号的多载波符号;所述第二类多载波符号包括可以被所述第一信令的发送者用于向所述第一节点发送信号的多载波符号。
作为一个实施例,所述第一类多载波符号包括可以被所述第一信令的发送者用于向所述第一节点发送信号的多载波符号;所述第二类多载波符号包括可以被所述第一节点用于向所述第一信令的发送者发送信号的多载波符号。
作为一个实施例,所述第一类多载波符号包括UL(UpLink,上行)多载波符号;所述第二类多载波符号包括DL(DownLink,下行)多载波符号。
作为一个实施例,所述第一类多载波符号包括DL多载波符号;所述第二类多载波符号包括UL多载波符号。
实施例14
实施例14示例了根据本申请的一个实施例的S个条件子集和第二条件子集的示意图;如附图14所示。 在实施例14中,所述S个条件子集包括所述第二条件子集,所述第二条件子集包括:所述第一时间窗和所述第二时间窗间存在的多载波符号的数量不小于所述第一数值。
作为一个实施例,如果所述第二条件子集被满足,所述第一条件集合被满足。
作为一个实施例,所述第一数值是更高层参数配置的。
作为一个实施例,所述第一数值被所述第一更高层参数配置。
作为一个实施例,所述第一数值是更高层信令配置的。
作为一个实施例,配置所述第一数值的更高层信令包括RepetitionSchemeConfig IE中全部或部分域中的信息。
作为一个实施例,所述第一数值等于0。
作为一个实施例,所述第一数值大于0。
作为一个实施例,所述第一数值和所述第一信号对应的子载波间隔有关。
作为一个实施例,当所述第一信号对应第一子载波间隔时,所述第一数值等于第一整数;当所述第一信号对应第二子载波间隔时,所述第一数值等于第二整数;所述第一子载波间隔不等于所述第二子载波间隔,所述第一整数不等于所述第二整数。
作为上述实施例的一个子实施例,所述第一子载波间隔大于所述第二子载波间隔,所述第一整数大于所述第二整数。
作为一个实施例,所述第一信号和所述第二信号对应相同的子载波间隔。
作为一个实施例,所述第一比特块的所述K次重复传输对应相同的子载波间隔。
作为一个实施例,所述第一时间窗和所述第二时间窗间的任一多载波符号不属于所述K个时间窗。
实施例15
实施例15示例了根据本申请的一个实施例的S个条件子集和第三条件子集的示意图;如附图15所示。在实施例15中,所述S个条件子集包括所述第三条件子集,所述第三条件子集包括:所述第一时间窗和所述第二时间窗之间存在一个多载波符号的类型属于所述第一类型集合。
作为一个实施例,如果所述第三条件子集被满足,所述第一条件集合被满足。
作为一个实施例,所述第一时间窗和所述第二时间窗之间存在的任一多载波符号的类型是UL,DL,SL(Sidelink,副链路)或Flexible中之一。
作为一个实施例,所述第一类型集合包括可以被所述第一节点用于向所述第一信令的发送者发送信号的多载波符号类型。
作为一个实施例,所述第一类型集合包括可以被所述第一信令的发送者用于向所述第一节点发送信号的多载波符号类型。
作为一个实施例,所述第一类型集合包括DL。
作为一个实施例,所述第一类型集合包括Flexible。
作为一个实施例,所述第一类型集合包括UL。
作为一个实施例,所述第一类型集合包括DL和Flexible。
作为一个实施例,所述第一类型集合仅包括DL。
实施例16
实施例16示例了根据本申请的一个实施例的当第一条件集合不被满足时,第一时间池不包括第一时间窗中最后的P1个多载波符号,第二时间池不包括第二时间窗中最早的P2个多载波符号的示意图;如附图16所示。
作为一个实施例,所述第一时间窗包括的多载波符号的数量或所述第二时间窗包括的多载波符号的数量中的至少之一被所述第一节点用于确定所述P1的值和所述P2的值。
作为一个实施例,所述第一时间窗包括的多载波符号的数量或所述第二时间窗包括的多载波符号的数量中的至少之一被所述第二节点用于确定所述P1的值和所述P2的值。
作为一个实施例,所述P1等于0,所述P2等于所述P。
作为一个实施例,所述P2等于0,所述P1等于所述P。
作为一个实施例,所述P1大于0,所述P2大于0。
作为一个实施例,所述第一数值被用于确定所述P。
作为一个实施例,所述P等于所述第一数值。
作为一个实施例,所述P小于所述第一数值。
作为一个实施例,所述P等于所述第一数值减去所述第一时间窗和所述第二时间窗之间存在的多载波符号的数量。
作为一个实施例,所述P等于所述第一数值减去所述第一时间窗和所述第二时间窗之间存在的类型不属于所述第一类型集合的多载波符号的数量。
作为一个实施例,所述P等于所述第一数值减去所述第一时间窗和所述第二时间窗之间存在的类型属于所述第一类型集合的多载波符号的数量。
作为一个实施例,如果所述第一时间窗包括的多载波符号的数量大于或等于所述P加第三数值,所述P2等于0,所述P1等于所述P,所述第三数值是非负整数。
作为一个实施例,如果所述第二时间窗包括的多载波符号的数量大于或等于所述P加第三数值,所述P1等于0,所述P2等于所述P,所述第三数值是非负整数。
作为一个实施例,所述第三数值等于0。
作为一个实施例,所述第三数值等于1。
作为一个实施例,所述第三数值等于2。
作为一个实施例,所述第三数值是固定的。
作为一个实施例,所述第三数值是RRC信令配置的。
作为一个实施例,所述第一时间窗包括的多载波符号的数量和所述第二时间窗包括的多载波符号的数量中的仅所述第一时间窗包括的多载波符号的数量被用于确定所述P1的值和所述P2的值。
作为一个实施例,所述第一时间窗包括的多载波符号的数量和所述第二时间窗包括的多载波符号的数量中的仅所述第二时间窗包括的多载波符号的数量被用于确定所述P1的值和所述P2的值。
作为一个实施例,所述第一时间窗包括的多载波符号的数量和所述第二时间窗包括的多载波符号的数量共同被用于确定所述P1的值和所述P2的值。
作为一个实施例,如果所述第一时间窗包括的多载波符号数量小于所述P加第三数值,所述P1等于所述第一时间窗包括的多载波符号数量减第二数值,所述P2等于所述P减所述P1。
作为一个实施例,如果所述第二时间窗包括的多载波符号数量小于所述P加第三数值,所述P2等于所述第二时间窗包括的多载波符号数量减第二数值,所述P1等于所述P减所述P2。
作为一个实施例,所述第二数值是非负正整。
作为一个实施例,所述第二数值等于0。
作为一个实施例,所述第二数值大于0。
作为一个实施例,所述第二数值等于1。
作为一个实施例,所述第二数值大于1。
作为一个实施例,所述第二数值是更高层信令配置的。
作为一个实施例,所述P1和所述P2分别是满足所述P1加所述P2等于所述P,并且最大化Q1和Q2中的最小值的两个非负整数;所述Q1等于所述第一时间窗包括的多载波符号的数量减去所述P1,所述Q2等于所述第二时间窗包括的多载波符号的数量减去所述P2。
实施例17
实施例17示例了根据本申请的一个实施例的第一时间窗和第二时间窗之间是否存在一个多载波符号的类型属于第一类型集合被用于确定第一数值的示意图;如附图17所示。在实施例17中,如果所述第一时间窗和所述第二时间窗之间存在一个多载波符号的类型属于所述第一类型集合,所述第一数值等于第三整数;如果所述第一时间窗和所述第二时间窗之间不存在一个多载波符号的类型属于所述第一类型集合,所述第一数值等于第四整数;所述第三整数不等于所述第四整数;所述第三整数和所述第四整数分别是非 负整数。
作为一个实施例,所述第一时间窗和所述第二时间窗之间是否存在一个多载波符号的类型属于所述第一类型集合被所述第一节点用于确定所述第一数值。
作为一个实施例,所述第一时间窗和所述第二时间窗之间是否存在一个多载波符号的类型属于所述第一类型集合被所述第二节点用于确定所述第一数值。
作为一个实施例,所述第三整数小于所述第四整数。
作为一个实施例,所述第三整数大于所述第四整数。
作为一个实施例,所述第三整数等于0,所述第四整数大于0。
作为一个实施例,所述第三整数大于0,所述第四整数等于0。
作为一个实施例,所述第三整数和所述第四整数中存在一个正整数。
作为一个实施例,所述第一时间池和所述第二时间池之间存在的多载波符号的数量大于所述第一数值。
作为一个实施例,所述第一时间池和所述第二时间池之间存在的多载波符号的数量等于所述第一数值。
作为一个实施例,所述第一数值被用于确定所述第一时间窗中属于所述第一时间池的多载波符号的数量。
作为一个实施例,所述第一数值被用于确定所述第二时间窗中属于所述第二时间池的多载波符号的数量。
实施例18
实施例18示例了根据本申请的一个实施例的用于第一节点设备中的处理装置的结构框图;如附图18所示。在附图18中,第一节点设备中的处理装置1800包括第一接收机1801和第一发送机1802。
在实施例18中,第一接收机1801接收第一信令;第一发送机1802在第一时间池中发送第一信号,并在第二时间池中发送第二信号。
在实施例18中,所述第一信令被用于确定K个时间窗,K是大于1的正整数;所述第一信号和所述第二信号均携带第一比特块;所述K个时间窗中的任一时间窗与第一参考信号或第二参考信号中之一相关联,所述第一信令被用于确定所述第一参考信号和所述第二参考信号;所述第一时间池包括所述K个时间窗中的1个或多个和所述第一参考信号相关联的时间窗中的全部或部分多载波符号,所述第二时间池包括所述K个时间窗中的1个或多个和所述第二参考信号相关联的时间窗中的全部或部分多载波符号;第一时间窗和第二时间窗分别是所述K个时间窗中相邻的两个时间窗,所述第一时间窗和所述第二时间窗分别与所述第一参考信号和所述第二参考信号相关联;所述第一时间池包括所述第一时间窗中的全部或部分多载波符号,所述第二时间池包括所述第二时间窗中的全部或部分多载波符号;第一条件集合是否被满足被用于确定下述至少之一:
- 所述第一时间池是否包括所述第一时间窗中的全部多载波符号;
- 所述第二时间池是否包括所述第二时间窗中的全部多载波符号。
作为一个实施例,所述第一条件集合包括S个条件子集,S是正整数;当所述S个条件子集中的一个条件子集被满足时,所述第一条件集合被满足;当所述S个条件子集中的每个条件子集都不被满足时,所述第一条件集合不被满足。
作为一个实施例,第一条件子集是所述S个条件子集中之一,所述第一条件子集包括:所述第一时间窗和所述第二时间窗被时间单元边界分隔。
作为一个实施例,第二条件子集是所述S个条件子集中之一,所述第二条件子集包括:所述第一时间窗和所述第二时间窗之间存在的多载波符号的数量不小于第一数值,所述第一数值是非负整数。
作为一个实施例,第三条件子集是所述S个条件子集中之一,所述第三条件子集包括:所述第一时间窗和所述第二时间窗之间存在一个多载波符号的类型属于第一类型集合。
作为一个实施例,当所述第一条件集合不被满足时,所述第一时间池不包括所述第一时间窗中最后的P1个多载波符号,所述第二时间池不包括所述第二时间窗中最早的P2个多载波符号,P1和P2分别是非负整数,所述P1和所述P2的和等于P,所述P是正整数;所述第一时间窗包括的多载波符号的数量或所述第二时间窗包括的多载波符号的数量中的至少之一被用于确定所述P1的值和所述P2的值。
作为一个实施例,所述第一时间窗和所述第二时间窗之间是否存在一个多载波符号的类型属于第一类型集合被用于确定第一数值,所述第一数值是非负整数;所述第一时间池和所述第二时间池之间存在的多载波符号的数量不小于所述第一数值。
作为一个实施例,所述第一节点设备是用户设备。
作为一个实施例,所述第一节点设备是中继节点设备。
作为一个实施例,所述第一接收机1801包括实施例4中的{天线452,接收器454,接收处理器456,多天线接收处理器458,控制器/处理器459,存储器460,数据源467}中的至少之一。
作为一个实施例,所述第一发送机1802包括实施例4中的{天线452,发射器454,发射处理器468,多天线发射处理器457,控制器/处理器459,存储器460,数据源467}中的至少之一。
实施例19
实施例19示例了根据本申请的一个实施例的用于第二节点设备中的处理装置的结构框图;如附图19所示。在附图19中,第二节点设备中的处理装置1900包括第二发送机1901和第二接收机1902。
在实施例19中,第二发送机1901发送第一信令;第二接收机1902在第一时间池中接收第一信号,并在第二时间池中接收第二信号。
在实施例19中,所述第一信令被用于确定K个时间窗,K是大于1的正整数;所述第一信号和所述第二信号均携带第一比特块;所述K个时间窗中的任一时间窗与第一参考信号或第二参考信号中之一相关联,所述第一信令被用于确定所述第一参考信号和所述第二参考信号;所述第一时间池包括所述K个时间窗中的1个或多个和所述第一参考信号相关联的时间窗中的全部或部分多载波符号,所述第二时间池包括所述K个时间窗中的1个或多个和所述第二参考信号相关联的时间窗中的全部或部分多载波符号;第一时间窗和第二时间窗分别是所述K个时间窗中相邻的两个时间窗,所述第一时间窗和所述第二时间窗分别与所述第一参考信号和所述第二参考信号相关联;所述第一时间池包括所述第一时间窗中的全部或部分多载波符号,所述第二时间池包括所述第二时间窗中的全部或部分多载波符号;第一条件集合是否被满足被用于确定下述至少之一:
- 所述第一时间池是否包括所述第一时间窗中的全部多载波符号;
- 所述第二时间池是否包括所述第二时间窗中的全部多载波符号。
作为一个实施例,,所述第一条件集合包括S个条件子集,S是正整数;当所述S个条件子集中的一个条件子集被满足时,所述第一条件集合被满足;当所述S个条件子集中的每个条件子集都不被满足时,所述第一条件集合不被满足。
作为一个实施例,,第一条件子集是所述S个条件子集中之一,所述第一条件子集包括:所述第一时间窗和所述第二时间窗被时间单元边界分隔。
作为一个实施例,,第二条件子集是所述S个条件子集中之一,所述第二条件子集包括:所述第一时间窗和所述第二时间窗之间存在的多载波符号的数量不小于第一数值,所述第一数值是非负整数。
作为一个实施例,,第三条件子集是所述S个条件子集中之一,所述第三条件子集包括:所述第一时间窗和所述第二时间窗之间存在一个多载波符号的类型属于第一类型集合。
作为一个实施例,,当所述第一条件集合不被满足时,所述第一时间池不包括所述第一时间窗中最后的P1个多载波符号,所述第二时间池不包括所述第二时间窗中最早的P2个多载波符号,P1和P2分别是非负整数,所述P1和所述P2的和等于P,所述P是正整数;所述第一时间窗包括的多载波符号的数量或所述第二时间窗包括的多载波符号的数量中的至少之一被用于确定所述P1的值和所述P2的值。
作为一个实施例,,所述第一时间窗和所述第二时间窗之间是否存在一个多载波符号的类型属于第一类型集合被用于确定第一数值,所述第一数值是非负整数;所述第一时间池和所述第二时间池之间存在的多载波符号的数量不小于所述第一数值。
作为一个实施例,所述第二节点设备是基站设备。
作为一个实施例,所述第二节点设备是用户设备。
作为一个实施例,所述第二节点设备是中继节点设备。
作为一个实施例,所述第二发送机1901包括实施例4中的{天线420,发射器418,发射处理器416, 多天线发射处理器471,控制器/处理器475,存储器476}中的至少之一。
作为一个实施例,所述第二接收机1902包括实施例4中的{天线420,接收器418,接收处理器470,多天线接收处理器472,控制器/处理器475,存储器476}中的至少之一。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的用户设备、终端和UE包括但不限于无人机,无人机上的通信模块,遥控飞机,飞行器,小型飞机,手机,平板电脑,笔记本,车载通信设备,无线传感器,上网卡,物联网终端,RFID终端,NB-IOT终端,MTC(Machine Type Communication,机器类型通信)终端,eMTC(enhanced MTC,增强的MTC)终端,数据卡,上网卡,车载通信设备,低成本手机,低成本平板电脑等无线通信设备。本申请中的基站或者系统设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,gNB(NR节点B)NR节点B,TRP(Transmitter Receiver Point,发送接收节点)等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (36)

  1. 一种被用于无线通信的第一节点设备,其特征在于,包括:
    第一接收机,接收第一信令;
    第一发送机,在第一时间池中发送第一信号,并在第二时间池中发送第二信号;
    其中,所述第一信令被用于确定K个时间窗,K是大于1的正整数;所述第一信号和所述第二信号均携带第一比特块;所述K个时间窗中的任一时间窗与第一参考信号或第二参考信号中之一相关联,所述第一信令被用于确定所述第一参考信号和所述第二参考信号;所述第一时间池包括所述K个时间窗中的1个或多个和所述第一参考信号相关联的时间窗中的全部或部分多载波符号,所述第二时间池包括所述K个时间窗中的1个或多个和所述第二参考信号相关联的时间窗中的全部或部分多载波符号;第一时间窗和第二时间窗分别是所述K个时间窗中相邻的两个时间窗,所述第一时间窗和所述第二时间窗分别与所述第一参考信号和所述第二参考信号相关联;所述第一时间池包括所述第一时间窗中的全部或部分多载波符号,所述第二时间池包括所述第二时间窗中的全部或部分多载波符号;第一条件集合与所述第一时间窗和所述第二时间窗之间是否存在时间单元边界,所述第一时间窗和所述第二时间窗之间的多载波符号的数量,或所述第一时间窗和所述第二时间窗之间的多载波符号的类型中的至少之一有关;所述第一条件集合是否被满足被用于确定下述至少之一:
    -所述第一时间池是否包括所述第一时间窗中的全部多载波符号;
    -所述第二时间池是否包括所述第二时间窗中的全部多载波符号。
  2. 根据权利要求1所述的第一节点设备,其特征在于,所述第一条件集合包括S个条件子集,S是正整数;当所述S个条件子集中的一个条件子集被满足时,所述第一条件集合被满足;当所述S个条件子集中的每个条件子集都不被满足时,所述第一条件集合不被满足。
  3. 根据权利要求2所述的第一节点设备,其特征在于,第一条件子集是所述S个条件子集中之一,所述第一条件子集包括:所述第一时间窗和所述第二时间窗被时间单元边界分隔。
  4. 根据权利要求2或3所述的第一节点设备,其特征在于,第二条件子集是所述S个条件子集中之一,所述第二条件子集包括:所述第一时间窗和所述第二时间窗之间存在的多载波符号的数量不小于第一数值,所述第一数值是非负整数。
  5. 根据权利要求2至4中任一权利要求所述的第一节点设备,其特征在于,第三条件子集是所述S个条件子集中之一,所述第三条件子集包括:所述第一时间窗和所述第二时间窗之间存在一个多载波符号的类型属于第一类型集合。
  6. 根据权利要求1至5中任一权利要求所述的第一节点设备,其特征在于,当所述第一条件集合不被满足时,所述第一时间池不包括所述第一时间窗中最后的P1个多载波符号,所述第二时间池不包括所述第二时间窗中最早的P2个多载波符号,P1和P2分别是非负整数,所述P1和所述P2的和等于P,所述P是正整数;所述第一时间窗包括的多载波符号的数量或所述第二时间窗包括的多载波符号的数量中的至少之一被用于确定所述P1的值和所述P2的值。
  7. 根据权利要求1至6中任一权利要求所述的第一节点设备,其特征在于,所述第一时间窗和所述第二时间窗之间是否存在一个多载波符号的类型属于第一类型集合被用于确定第一数值,所述第一数值是非负整数;所述第一时间池和所述第二时间池之间存在的多载波符号的数量不小于所述第一数值。
  8. 根据权利要求1至7中任一权利要求所述的第一节点设备,其特征在于,所述第一时间窗和所述第二时间窗之间存在的任一多载波符号的类型是UL,DL,SL或Flexible中之一。
  9. 根据权利要求6所述的第一节点设备,其特征在于,所述P1和所述P2分别是满足所述P1加所述P2等于所述P,并且最大化Q1和Q2中的最小值的两个非负整数;所述Q1等于所述第一时间窗包括的多载波符号的数量减去所述P1,所述Q2等于所述第二时间窗包括的多载波符号的数量减去所述P2。
  10. 一种被用于无线通信的第二节点设备,其特征在于,包括:
    第二发送机,发送第一信令;
    第二接收机,在第一时间池中接收第一信号,并在第二时间池中接收第二信号;
    其中,所述第一信令被用于确定K个时间窗,K是大于1的正整数;所述第一信号和所述第二信号均携带第一比特块;所述K个时间窗中的任一时间窗与第一参考信号或第二参考信号中之一相关联,所述第一信令被用于确定所述第一参考信号和所述第二参考信号;所述第一时间池包括所述K个时间窗中的1个 或多个和所述第一参考信号相关联的时间窗中的全部或部分多载波符号,所述第二时间池包括所述K个时间窗中的1个或多个和所述第二参考信号相关联的时间窗中的全部或部分多载波符号;第一时间窗和第二时间窗分别是所述K个时间窗中相邻的两个时间窗,所述第一时间窗和所述第二时间窗分别与所述第一参考信号和所述第二参考信号相关联;所述第一时间池包括所述第一时间窗中的全部或部分多载波符号,所述第二时间池包括所述第二时间窗中的全部或部分多载波符号;第一条件集合与所述第一时间窗和所述第二时间窗之间是否存在时间单元边界,所述第一时间窗和所述第二时间窗之间的多载波符号的数量,或所述第一时间窗和所述第二时间窗之间的多载波符号的类型中的至少之一有关;所述第一条件集合是否被满足被用于确定下述至少之一:
    -所述第一时间池是否包括所述第一时间窗中的全部多载波符号;
    -所述第二时间池是否包括所述第二时间窗中的全部多载波符号。
  11. 根据权利要求10所述的第二节点设备,其特征在于,所述第一条件集合包括S个条件子集,S是正整数;当所述S个条件子集中的一个条件子集被满足时,所述第一条件集合被满足;当所述S个条件子集中的每个条件子集都不被满足时,所述第一条件集合不被满足。
  12. 根据权利要求11所述的第二节点设备,其特征在于,第一条件子集是所述S个条件子集中之一,所述第一条件子集包括:所述第一时间窗和所述第二时间窗被时间单元边界分隔。
  13. 根据权利要求11或12所述的第二节点设备,其特征在于,第二条件子集是所述S个条件子集中之一,所述第二条件子集包括:所述第一时间窗和所述第二时间窗之间存在的多载波符号的数量不小于第一数值,所述第一数值是非负整数。
  14. 根据权利要求11至13中任一权利要求所述的第二节点设备,其特征在于,第三条件子集是所述S个条件子集中之一,所述第三条件子集包括:所述第一时间窗和所述第二时间窗之间存在一个多载波符号的类型属于第一类型集合。
  15. 根据权利要求10至14中任一权利要求所述的第二节点设备,其特征在于,当所述第一条件集合不被满足时,所述第一时间池不包括所述第一时间窗中最后的P1个多载波符号,所述第二时间池不包括所述第二时间窗中最早的P2个多载波符号,P1和P2分别是非负整数,所述P1和所述P2的和等于P,所述P是正整数;所述第一时间窗包括的多载波符号的数量或所述第二时间窗包括的多载波符号的数量中的至少之一被用于确定所述P1的值和所述P2的值。
  16. 根据权利要求10至15中任一权利要求所述的第二节点设备,其特征在于,所述第一时间窗和所述第二时间窗之间是否存在一个多载波符号的类型属于第一类型集合被用于确定第一数值,所述第一数值是非负整数;所述第一时间池和所述第二时间池之间存在的多载波符号的数量不小于所述第一数值。
  17. 根据权利要求1至7中任一权利要求所述的第二节点设备,其特征在于,所述第一时间窗和所述第二时间窗之间存在的任一多载波符号的类型是UL,DL,SL或Flexible中之一。
  18. 根据权利要求15所述的第二节点设备,其特征在于,所述P1和所述P2分别是满足所述P1加所述P2等于所述P,并且最大化Q1和Q2中的最小值的两个非负整数;所述Q1等于所述第一时间窗包括的多载波符号的数量减去所述P1,所述Q2等于所述第二时间窗包括的多载波符号的数量减去所述P2。
  19. 一种被用于无线通信的第一节点中的方法,其特征在于,包括:
    接收第一信令;
    在第一时间池中发送第一信号;
    在第二时间池中发送第二信号;
    其中,所述第一信令被用于确定K个时间窗,K是大于1的正整数;所述第一信号和所述第二信号均携带第一比特块;所述K个时间窗中的任一时间窗与第一参考信号或第二参考信号中之一相关联,所述第一信令被用于确定所述第一参考信号和所述第二参考信号;所述第一时间池包括所述K个时间窗中的1个或多个和所述第一参考信号相关联的时间窗中的全部或部分多载波符号,所述第二时间池包括所述K个时间窗中的1个或多个和所述第二参考信号相关联的时间窗中的全部或部分多载波符号;第一时间窗和第二时间窗分别是所述K个时间窗中相邻的两个时间窗,所述第一时间窗和所述第二时间窗分别与所述第一参考信号和所述第二参考信号相关联;所述第一时间池包括所述第一时间窗中的全部或部分多载波符号,所述第二时间池包括所述第二时间窗中的全部或部分多载波符号;第一条件集合与所述第一时间窗和所述第 二时间窗之间是否存在时间单元边界,所述第一时间窗和所述第二时间窗之间的多载波符号的数量,或所述第一时间窗和所述第二时间窗之间的多载波符号的类型中的至少之一有关;所述第一条件集合是否被满足被用于确定下述至少之一:
    -所述第一时间池是否包括所述第一时间窗中的全部多载波符号;
    -所述第二时间池是否包括所述第二时间窗中的全部多载波符号。
  20. 根据权利要求19所述的方法,其特征在于,所述第一条件集合包括S个条件子集,S是正整数;当所述S个条件子集中的一个条件子集被满足时,所述第一条件集合被满足;当所述S个条件子集中的每个条件子集都不被满足时,所述第一条件集合不被满足。
  21. 根据权利要求20所述的方法,其特征在于,第一条件子集是所述S个条件子集中之一,所述第一条件子集包括:所述第一时间窗和所述第二时间窗被时间单元边界分隔。
  22. 根据权利要求20或21所述的方法,其特征在于,第二条件子集是所述S个条件子集中之一,所述第二条件子集包括:所述第一时间窗和所述第二时间窗之间存在的多载波符号的数量不小于第一数值,所述第一数值是非负整数。
  23. 根据权利要求20至22中任一权利要求所述的方法,其特征在于,第三条件子集是所述S个条件子集中之一,所述第三条件子集包括:所述第一时间窗和所述第二时间窗之间存在一个多载波符号的类型属于第一类型集合。
  24. 根据权利要求19至23中任一权利要求所述的方法,其特征在于,当所述第一条件集合不被满足时,所述第一时间池不包括所述第一时间窗中最后的P1个多载波符号,所述第二时间池不包括所述第二时间窗中最早的P2个多载波符号,P1和P2分别是非负整数,所述P1和所述P2的和等于P,所述P是正整数;所述第一时间窗包括的多载波符号的数量或所述第二时间窗包括的多载波符号的数量中的至少之一被用于确定所述P1的值和所述P2的值。
  25. 根据权利要求19至24中任一权利要求所述的方法,其特征在于,所述第一时间窗和所述第二时间窗之间是否存在一个多载波符号的类型属于第一类型集合被用于确定第一数值,所述第一数值是非负整数;所述第一时间池和所述第二时间池之间存在的多载波符号的数量不小于所述第一数值。
  26. 根据权利要求19至25中任一权利要求所述的方法,其特征在于,所述第一时间窗和所述第二时间窗之间存在的任一多载波符号的类型是UL,DL,SL或Flexible中之一。
  27. 根据权利要求24所述的方法,其特征在于,所述P1和所述P2分别是满足所述P1加所述P2等于所述P,并且最大化Q1和Q2中的最小值的两个非负整数;所述Q1等于所述第一时间窗包括的多载波符号的数量减去所述P1,所述Q2等于所述第二时间窗包括的多载波符号的数量减去所述P2。
  28. 一种被用于无线通信的第二节点中的方法,其特征在于,包括:
    发送第一信令;
    在第一时间池中接收第一信号;
    在第二时间池中接收第二信号;
    其中,所述第一信令被用于确定K个时间窗,K是大于1的正整数;所述第一信号和所述第二信号均携带第一比特块;所述K个时间窗中的任一时间窗与第一参考信号或第二参考信号中之一相关联,所述第一信令被用于确定所述第一参考信号和所述第二参考信号;所述第一时间池包括所述K个时间窗中的1个或多个和所述第一参考信号相关联的时间窗中的全部或部分多载波符号,所述第二时间池包括所述K个时间窗中的1个或多个和所述第二参考信号相关联的时间窗中的全部或部分多载波符号;第一时间窗和第二时间窗分别是所述K个时间窗中相邻的两个时间窗,所述第一时间窗和所述第二时间窗分别与所述第一参考信号和所述第二参考信号相关联;所述第一时间池包括所述第一时间窗中的全部或部分多载波符号,所述第二时间池包括所述第二时间窗中的全部或部分多载波符号;第一条件集合与所述第一时间窗和所述第二时间窗之间是否存在时间单元边界,所述第一时间窗和所述第二时间窗之间的多载波符号的数量,或所述第一时间窗和所述第二时间窗之间的多载波符号的类型中的至少之一有关;所述第一条件集合是否被满足被用于确定下述至少之一:
    -所述第一时间池是否包括所述第一时间窗中的全部多载波符号;
    -所述第二时间池是否包括所述第二时间窗中的全部多载波符号。
  29. 根据权利要求28所述的方法,其特征在于,所述第一条件集合包括S个条件子集,S是正整数;当所述S个条件子集中的一个条件子集被满足时,所述第一条件集合被满足;当所述S个条件子集中的每个条件子集都不被满足时,所述第一条件集合不被满足。
  30. 根据权利要求29所述的方法,其特征在于,第一条件子集是所述S个条件子集中之一,所述第一条件子集包括:所述第一时间窗和所述第二时间窗被时间单元边界分隔。
  31. 根据权利要求29或30所述的方法,其特征在于,第二条件子集是所述S个条件子集中之一,所述第二条件子集包括:所述第一时间窗和所述第二时间窗之间存在的多载波符号的数量不小于第一数值,所述第一数值是非负整数。
  32. 根据权利要求29至31中任一权利要求所述的方法,其特征在于,第三条件子集是所述S个条件子集中之一,所述第三条件子集包括:所述第一时间窗和所述第二时间窗之间存在一个多载波符号的类型属于第一类型集合。
  33. 根据权利要求28至32中任一权利要求所述的方法,其特征在于,当所述第一条件集合不被满足时,所述第一时间池不包括所述第一时间窗中最后的P1个多载波符号,所述第二时间池不包括所述第二时间窗中最早的P2个多载波符号,P1和P2分别是非负整数,所述P1和所述P2的和等于P,所述P是正整数;所述第一时间窗包括的多载波符号的数量或所述第二时间窗包括的多载波符号的数量中的至少之一被用于确定所述P1的值和所述P2的值。
  34. 根据权利要求28至33中任一权利要求所述的方法,其特征在于,所述第一时间窗和所述第二时间窗之间是否存在一个多载波符号的类型属于第一类型集合被用于确定第一数值,所述第一数值是非负整数;所述第一时间池和所述第二时间池之间存在的多载波符号的数量不小于所述第一数值。
  35. 根据权利要求28至34中任一权利要求所述的方法,其特征在于,所述第一时间窗和所述第二时间窗之间存在的任一多载波符号的类型是UL,DL,SL或Flexible中之一。
  36. 根据权利要求33所述的方法,其特征在于,所述P1和所述P2分别是满足所述P1加所述P2等于所述P,并且最大化Q1和Q2中的最小值的两个非负整数;所述Q1等于所述第一时间窗包括的多载波符号的数量减去所述P1,所述Q2等于所述第二时间窗包括的多载波符号的数量减去所述P2。
PCT/CN2021/102643 2020-07-20 2021-06-28 一种被用于无线通信的用户设备、基站中的方法和装置 WO2022017127A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/098,699 US20230155795A1 (en) 2020-07-20 2023-01-19 Method and device in ue and base station used for wireless communication

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010701550.1A CN113965230B (zh) 2020-07-20 2020-07-20 一种被用于无线通信的用户设备、基站中的方法和装置
CN202010701550.1 2020-07-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/098,699 Continuation US20230155795A1 (en) 2020-07-20 2023-01-19 Method and device in ue and base station used for wireless communication

Publications (1)

Publication Number Publication Date
WO2022017127A1 true WO2022017127A1 (zh) 2022-01-27

Family

ID=79459579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/102643 WO2022017127A1 (zh) 2020-07-20 2021-06-28 一种被用于无线通信的用户设备、基站中的方法和装置

Country Status (3)

Country Link
US (1) US20230155795A1 (zh)
CN (2) CN115021882A (zh)
WO (1) WO2022017127A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106788926A (zh) * 2015-11-25 2017-05-31 上海朗帛通信技术有限公司 一种降低网络延迟的无线通信方法和装置
CN106877984A (zh) * 2015-12-10 2017-06-20 上海朗帛通信技术有限公司 一种窄带无线传输中的方法和装置
CN108242944A (zh) * 2016-12-26 2018-07-03 上海朗帛通信技术有限公司 一种用于多天线传输的ue、基站中的方法和装置
CN109039555A (zh) * 2017-06-10 2018-12-18 上海朗帛通信技术有限公司 一种被用于无线通信的用户、基站中的方法和装置
CN109391298A (zh) * 2017-08-03 2019-02-26 上海朗帛通信技术有限公司 一种用于无线通信的用户设备、基站中的方法和装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2814303A1 (fr) * 2000-09-20 2002-03-22 France Telecom Signal multiporteuse a symbole de reference concu pour limiter l'interference, procede de reception, procede de construction, recepteur et dispositif correspondants
CN107113268B (zh) * 2014-11-24 2020-08-14 瑞典爱立信有限公司 用于信号的传输的方法、通信节点以及计算机可读存储介质
CN107483166B (zh) * 2016-06-08 2019-10-01 上海朗帛通信技术有限公司 一种无线通信中的方法和装置
CN109743145B (zh) * 2016-07-13 2021-07-27 上海朗帛通信技术有限公司 一种无线通信中的方法和装置
CN110120859B (zh) * 2018-02-05 2021-09-24 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN111431680B (zh) * 2019-01-10 2022-09-27 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106788926A (zh) * 2015-11-25 2017-05-31 上海朗帛通信技术有限公司 一种降低网络延迟的无线通信方法和装置
CN106877984A (zh) * 2015-12-10 2017-06-20 上海朗帛通信技术有限公司 一种窄带无线传输中的方法和装置
CN108242944A (zh) * 2016-12-26 2018-07-03 上海朗帛通信技术有限公司 一种用于多天线传输的ue、基站中的方法和装置
CN109039555A (zh) * 2017-06-10 2018-12-18 上海朗帛通信技术有限公司 一种被用于无线通信的用户、基站中的方法和装置
CN109391298A (zh) * 2017-08-03 2019-02-26 上海朗帛通信技术有限公司 一种用于无线通信的用户设备、基站中的方法和装置

Also Published As

Publication number Publication date
US20230155795A1 (en) 2023-05-18
CN113965230A (zh) 2022-01-21
CN113965230B (zh) 2022-08-19
CN115021882A (zh) 2022-09-06

Similar Documents

Publication Publication Date Title
WO2019174530A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2021023039A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020088212A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2021023038A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2018024158A1 (zh) 一种被用于无线通信的用户、基站中的方法和装置
WO2020253532A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2019144264A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN113597014A (zh) 一种被用于无线通信的节点中的方法和装置
WO2021093512A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN117545088A (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2021077961A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021082933A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022017127A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2024212914A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023221800A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024046251A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023185522A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024212916A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022194114A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024022342A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023174230A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024099209A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022237709A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023174375A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022206460A1 (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21845232

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12/06/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21845232

Country of ref document: EP

Kind code of ref document: A1