[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022014953A1 - 배터리 관리 방법 및 그 방법을 제공하는 배터리 시스템 - Google Patents

배터리 관리 방법 및 그 방법을 제공하는 배터리 시스템 Download PDF

Info

Publication number
WO2022014953A1
WO2022014953A1 PCT/KR2021/008740 KR2021008740W WO2022014953A1 WO 2022014953 A1 WO2022014953 A1 WO 2022014953A1 KR 2021008740 W KR2021008740 W KR 2021008740W WO 2022014953 A1 WO2022014953 A1 WO 2022014953A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
charging
soc
limit soc
upper limit
Prior art date
Application number
PCT/KR2021/008740
Other languages
English (en)
French (fr)
Inventor
이상기
권봉근
이종철
임재환
김잔디
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to CN202180006177.0A priority Critical patent/CN114616125B/zh
Priority to EP21842305.1A priority patent/EP4032746B1/en
Priority to JP2022520021A priority patent/JP7509360B2/ja
Priority to US17/769,866 priority patent/US20220388417A1/en
Publication of WO2022014953A1 publication Critical patent/WO2022014953A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/62Monitoring or controlling charging stations in response to charging parameters, e.g. current, voltage or electrical charge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/12Recording operating variables ; Monitoring of operating variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/11DC charging controlled by the charging station, e.g. mode 4
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/16Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a battery management method capable of extending the life of a battery and a battery system providing the same.
  • Electric vehicle is a vehicle that uses an electric battery and an electric motor without using petroleum fuel and an engine.
  • Electric vehicles include pure electric vehicles (EVs), hybrid electric vehicles (HEVs), and plug-in hybrid electric vehicles (PHEVs) that run only with batteries and electric motors.
  • EVs pure electric vehicles
  • HEVs hybrid electric vehicles
  • PHEVs plug-in hybrid electric vehicles
  • Electric vehicles often use lithium-ion batteries as batteries, and a 400V driving battery and a 12V auxiliary battery can be installed.
  • a 400V driving battery and a 12V auxiliary battery can be installed.
  • it is possible to travel up to 350 km on a single full charge (for example, the Chevrolet Bolt EV), but this varies greatly depending on the type of vehicle.
  • Various modules/devices for the user's convenience in the electric vehicle consume power during operation, and thus may affect the driving distance of the electric vehicle.
  • the charger charges electric energy by connecting a charging cable to a charging terminal of an electric vehicle, and generally supports a high-speed or low-speed charging type.
  • the replacement period of the battery may be shortened or lengthened according to the user's usage pattern. For example, there are many research results showing that the lifespan of a battery is shortened as the number of times of 100% charging and discharging increases, or the number of times of charging with the rapid charging method rather than the slow charging method increases.
  • the proportion of batteries in the cost of electric vehicles (EVs) is very large, about 40%. If the battery life is shortened due to aging due to repeated overcharging or overdischarging of the battery, there is a problem in that the replacement cost of the battery increases. This may act as a burden to users when purchasing electric vehicles (EVs), and may eventually become a stumbling block to each country's policy of environmental protection by expanding electric vehicles.
  • the present invention relates to a battery management method for reducing a usable battery capacity and charging a battery by a slow charging method when an eco-friendly mode (ECO MODE) is turned on by a user's selection, and a battery system to provide the same provides
  • ECO MODE eco-friendly mode
  • a battery system includes a normal mode using a battery and a first battery capacity between a first lower limit SOC (State of Charge) and a first upper limit SOC or between a second lower limit SOC and a second upper limit SOC. and a (Battery Management System) (BMS) that controls charging of the battery according to an eco-mode using a second battery capacity of is greater than the second upper limit SOC.
  • SOC Stable Oxide-Coupus
  • BMS Battery Management System
  • the BMS calculates the current SOC by estimating the SOC of the battery every predetermined period, and when the current SOC reaches the second lower limit SOC in the eco-mode on state, starts charging the battery, and the current SOC is When the SOC reaches the second upper limit SOC, charging of the battery may be terminated.
  • the BMS in the on state of the eco-mode, disables the fast charging method for charging the battery so that the current SOC reaches the second upper limit SOC within a predetermined reference time, and exceeds the predetermined reference time. Then, charging of the battery may be controlled by a slow charging method of charging the battery so that the current SOC reaches the second upper limit SOC.
  • the BMS calculates the current SOC by estimating the SOC of the battery at every predetermined period in the on-state of the normal mode, and starts charging the battery when the current SOC reaches the first lower limit SOC, and When the SOC reaches the first upper limit SOC, charging of the battery may be terminated.
  • the BMS is, in the on-state of the normal mode, a fast charging method of charging the battery so that the current SOC reaches the first upper limit SOC within a predetermined reference time or the current SOC after exceeding the predetermined reference time
  • the charging of the battery may be controlled by a slow charging method of charging the battery so that the battery reaches the first upper limit SOC.
  • the BMS may control charging of the battery by the fast charging method or the slow charging method according to a driver's selection in the on-state of the normal mode.
  • the BMS When the BMS receives the key-on signal of the eco-mode according to the driver's selection, it is determined that the eco-mode is on, and when the BMS receives the key-off signal of the eco-mode according to the driver's selection, the normal mode is turned on. state can be judged.
  • a battery management system uses a first battery capacity between a first lower limit SOC (State of Charge) and a first upper limit SOC or a normal mode or a second lower limit SOC
  • a method of managing the battery by controlling charging of the battery according to an eco-mode using a second battery capacity between and a second upper limit SOC comprising: determining whether the eco-mode is on; the determination result Accordingly, when the current SOC estimated every predetermined period reaches the first lower limit SOC or the second lower limit SOC, starting and controlling the charging of the battery, and the current SOC is the first upper limit SOC or the second and terminating charging of the battery when the upper limit SOC is reached, wherein the first lower limit SOC is smaller than the second lower limit SOC, and the first upper limit SOC is greater than the second upper limit SOC.
  • the step of starting and controlling the charging of the battery may include diagnosing whether the current SOC reaches the second lower limit SOC if the eco-mode is on as a result of the determination. If the diagnosis result is reached, a predetermined reference time After exceeding , starting charging of the battery in a slow charging method of charging the battery so that the current SOC reaches the second upper limit SOC, and diagnosing whether the current SOC reaches the second upper limit SOC may include the step of
  • the step of starting and controlling the charging of the battery may include diagnosing whether the current SOC reaches the first lower limit SOC if the normal mode is on as a result of the determination, and when the diagnosis result is reached, a predetermined reference time
  • the charging method may include starting charging of the battery, and diagnosing whether the current SOC reaches the first upper limit SOC.
  • charging of the battery may be controlled by the fast charging method or the slow charging method according to a driver's selection.
  • the step of determining whether the eco mode is in the on state includes determining that the eco mode is on when a key-on signal of the eco mode according to the driver's selection is received, and the eco mode according to the driver's selection Upon receiving the key-off signal of , it may be determined that the normal mode is on.
  • the use of the upper and lower limit SOC of the usable battery capacity that accelerates the aging of the battery and the number of times of the fast charging method can be reduced to extend the life of the battery.
  • the user can select the normal mode, which reduces the number of times of charging by maximally using the available battery capacity, and provides convenience in using the battery because the charging time is short, and the eco mode, which extends the life of the battery, depending on the situation. By configuring it, it is possible to increase user satisfaction.
  • FIG. 1 is a view for explaining a battery system according to an embodiment.
  • FIG. 2 is a diagram illustrating a normal mode according to an exemplary embodiment.
  • FIG. 3 is a diagram illustrating an eco mode according to an exemplary embodiment.
  • FIG. 4 is a flowchart illustrating a method of extending the life of a battery by charging a battery in a normal mode or an eco mode according to a user's selection, according to an exemplary embodiment.
  • an electric vehicle means any vehicle that includes a battery and an electric motor that drives a wheel using electricity charged in the battery.
  • Electric vehicles include electric vehicles (EVs) as well as plug-in hybrid electric vehicles (PHEVs).
  • An electric vehicle may charge a battery with power supplied from a charging device that is an electric vehicle charging equipment (Electric Vehicle Supply Equipment).
  • the charging device may include a quick charger (or fast charger), a charging stand that supplies AC power in public places, and a home charger that is simply installed at home or work and supplies AC power. have.
  • FIG. 1 is a view for explaining a battery system according to an embodiment.
  • the battery system 1 includes a battery 10 , a relay 20 , a current sensor 30 , and a battery management system (BMS) 40 .
  • BMS battery management system
  • the battery 10 includes a plurality of battery cells Cell1-Celln that are electrically connected.
  • the battery cell may be a rechargeable secondary cell.
  • a predetermined number of battery cells may be connected in series to form a battery module, and a predetermined number of battery modules may be connected in series and parallel to form the battery 10 to supply desired power.
  • Each of the plurality of battery cells Cell1-Celln is electrically connected to the BMS 40 through wiring.
  • a battery 10 includes a plurality of battery cells Cell1-Celln connected in series, and is connected between two output terminals OUT1 and OUT2 of the battery system 1 .
  • the relay 20 is connected between the positive electrode of the battery 10 and the output terminal OUT1
  • the current sensor 30 is connected between the negative electrode of the battery 10 and the output terminal OUT2 .
  • the components shown in FIG. 1 and the connection relationship between the components are examples, and the invention is not limited thereto.
  • the relay 20 controls an electrical connection between the battery system 1 and an external device.
  • the relay 20 When the relay 20 is turned on, the battery system 1 and an external device are electrically connected to perform charging or discharging, and when the relay 20 is turned off, the battery system 1 and the external device are electrically separated.
  • the external device may be a charger in a charging mode for charging the battery 10 by supplying power, and a load in a discharging mode in which the power stored in the battery 10 is discharged.
  • the current sensor 30 is connected in series to a current path between the battery 10 and an external device.
  • the current sensor 30 may measure the current flowing through the battery 10 , that is, the charging current and the discharging current, and transmit the measurement result to the BMS 40 .
  • BMS 40 collects and analyzes various information about a plurality of battery cells (Cell1-Celln) to control charging and discharging of battery cells, cell balancing, protection operation, etc., and can control the operation of the relay 20 have.
  • the BMS 40 may control the charging of the battery 10 in a normal mode or an eco mode according to a user's selection.
  • the battery 10 uses the maximum usable battery capacity (hereinafter, the first battery capacity) within the designed range, and the charging method selected by the user among the slow charging method or the rapid charging method to charge the battery 10.
  • the normal mode (NORMAL MODE) is a method of using and managing the battery 10 in an initially designed state.
  • the battery 10 uses a narrower battery capacity (hereinafter, second battery capacity) than the maximum battery capacity usable in the designed range, and charges the battery 10 by a slow charging method.
  • the eco mode (ECO MODE) is a battery management method for extending the life of the battery 10, and may be set by a user's selection. That is, the eco mode (ECO MODE) is a battery management method to slow the aging rate of the battery 10 by limiting the excessive use of the battery capacity and the rapid charging method.
  • the state of charge (SOC) is the amount of energy currently stored in the battery 10, and the unit is percent (%). When the battery 10 is fully charged, the state of charge SOC is 100%. When the battery 10 is completely discharged, the state of charge (SOC) is 0%. When the fully charged battery 10 starts to be discharged, the state of charge (SOC) decreases to 100%, 80%, 60%, etc. as time elapses. On the other hand, the state of charge (SOC) cannot be directly measured, and the BMS 40 can estimate the state of charge (SOC) by an indirect method such as a conventionally known current integration method or a voltage measurement method. The BMS 40 may estimate the state of charge (SOC) in a predetermined period or in real time.
  • the battery capacity is the total amount of energy that the battery 10 can store, and the unit is ampere-hour (Ah) and represents how long a constant current can flow. For example, when a current of 1A flows for 1 hour, the battery capacity is 1AH, and when a current of 1A flows for 2 hours, the battery capacity is 2AH.
  • the first battery capacity may include a battery capacity having a range between the first lower limit SOC and the first upper limit SOC provided in the design and production process of the battery 10 .
  • the first battery capacity may include a battery capacity defined as 0% to 100%, or substantially in a range of 2% to 96% in consideration of a design margin, resistance, calculation error, and the like.
  • the second battery capacity may include a battery capacity in a narrower region than the first battery capacity in order to slow down the aging rate of the battery 10 .
  • the second battery capacity may include a battery capacity having a range between a second lower limit SOC that is a predetermined size larger than the first lower limit SOC and a second upper limit SOC that is a predetermined size smaller than the first upper limit SOC.
  • the second battery capacity may include a battery capacity defined in a range of 30% to 80%.
  • the BMS (40) In the normal mode (NORMAL MODE), the BMS (40), when the state of charge (SOC) reaches the first lower limit SOC (eg, 2%), enters a charging mode for supplying power to the battery (10) .
  • the BMS 40 may end the charging mode.
  • the BMS (40) when the state of charge (SOC) reaches the second lower limit SOC (eg, 30%), in the charging mode for supplying power to the battery (10) enter
  • the real-time state of charge (SOC) reaches the second upper limit SOC (eg, 80%) by supplying power to the battery 10
  • the BMS 40 may end the charging mode.
  • Slow charging and rapid charging are battery charging methods that are divided according to the charging speed.
  • the slow charging is a slow charging method for completing the charging of the battery 10 after exceeding a predetermined reference time.
  • the rapid charging is a fast charging method for completing the charging of the battery 10 within a predetermined reference time.
  • the battery capacity is used as the maximum value, for example, the first lower limit SOC (eg, 2%) and the first upper limit SOC (eg, 96%) are repeatedly used, or the battery capacity When used by extending (1% to 97% or 0% to 99%), aging of the battery 10 may be accelerated. In addition, when the battery 10 is charged by the rapid charging method, the aging of the battery 10 may be accelerated compared to the case of charging the battery 10 by the slow charging method.
  • the first lower limit SOC eg, 2%) and the first upper limit SOC (eg, 96%) are repeatedly used, or the battery capacity When used by extending (1% to 97% or 0% to 99%), aging of the battery 10 may be accelerated. In addition, when the battery 10 is charged by the rapid charging method, the aging of the battery 10 may be accelerated compared to the case of charging the battery 10 by the slow charging method.
  • a state of health (SOH) is a figure of merit indicating an ideal battery state and a current battery state by comparison. For example, although the battery 10 initially had a battery capacity of 1000 mAH, the battery capacity may decrease to 850 mAH after use for a predetermined period of time. Then, the battery health state (SOH) becomes 85%.
  • the state of charge (SOC) at the time of full charge and full discharge of the battery 10 is 100% and 0%, respectively.
  • SOC state of charge
  • the state of charge (SOC) at the time of full charge and full discharge of the battery 10 is 100% and 0%, respectively. That is, the state of charge (SOC) is 100% when the energy that can be filled in the battery 10 is fully filled, regardless of the state of health (SOH) of the battery, and is 0% when the energy is exhausted.
  • a battery 10 with a battery health state (SOH) of 100% can supply a total of 1000 mAH energy after being fully charged, whereas a battery 10 with a battery health state (SOH) of 85% can supply a total of 850 mAH after a full charge. It can only supply energy.
  • SOH battery health state
  • the battery capacity decreases in response to the battery health state (SOH).
  • SOH battery health state
  • a time when the battery health state (SOH) decreases to a predetermined reference value, for example, 80% may be regarded as a battery replacement time.
  • SOH battery health state
  • FIG. 2 is a diagram illustrating a normal mode according to an embodiment
  • FIG. 3 is a diagram illustrating an eco mode according to an embodiment.
  • a first key Key_1 for executing ECO MODE may be provided in a user interface (not shown).
  • the BMS 40 When the user selects (ON) or non-selects (OFF) the first key (Key_1) to execute the eco mode (ECO MODE), the BMS 40 according to the user's selection (ON) the eco mode (ECO MODE) or It is possible to control the charging of the battery 10 in the normal mode (NORMAL MODE) according to the non-selection (OFF).
  • the BMS 40 may have a first key ON signal that selects a first key Key_1 from an electronic control unit (ECU) or a first key that does not select a first key Key_1. A key OFF signal may be received.
  • the first key (Key_1) executing the eco mode (ECO MODE) that can be manipulated by the user and the second key (Key_2) executing the normal mode (NORMAL MODE) are user interface (not shown) may be provided in each.
  • the BMS 40 may control the charging of the battery 10 in the eco mode (ECO MODE).
  • the BMS 40 may control the charging of the battery 10 in the NORMAL MODE.
  • the BMS 40 is a first key on signal for selecting the first key (Key_1) from the electronic control unit (ECU) or a second key for selecting the second key (Key_2) in the normal mode (NORMAL MODE) On signal can be received.
  • the first battery capacity is set to the usable battery capacity (hereinafter, the available battery capacity), and rapid charging is enabled.
  • the BMS 40 may control the charging of the battery 10 in the first battery capacity range by a fast charging method or a slow charging method according to a user's selection.
  • the end of life (EOL) of the battery 10 is the first (100) available battery capacity. %) compared to a time point at which a predetermined reference value (80%) is reached. That is, when the battery health state (SOH) reaches 80%, the battery 10 must be discarded.
  • the replacement time point (EOL) may be determined by the number of charge/discharge cycles. For example, it is determined that a lithium-ion battery has reached the replacement point (EOL) when 300 to 500 charge/discharge cycles have elapsed.
  • the second battery capacity is set to the available battery capacity, and the fast charging method is disabled. Accordingly, the BMS 40 may control the charging of the battery 10 in the second battery capacity range using the slow charging method. In this case, the second battery capacity may be set to a battery capacity in a range smaller than the first battery capacity.
  • the replacement time (EOL + ⁇ ) of the battery 10, that is, the life of the normal mode (NORMAL MODE) ) may be extended for a predetermined period ( ⁇ ) than when the battery 10 is used and managed.
  • FIG. 4 is a flowchart illustrating a method of extending the life of a battery by charging a battery in a normal mode or an eco mode according to a user's selection, according to an exemplary embodiment.
  • the BMS 40 determines whether the ECO MODE is on by the user's selection (S10).
  • a first key Key_1 for executing ECO MODE may be provided in a user interface (not shown). If the user selects the first key (Key_1), the BMS 40 may determine the eco mode (ECO MODE), if the user does not select the first key (Key_1) may determine the normal mode (NORMAL MODE). That is, if the user does not take any action, the BMS 40 may determine the normal mode (NORMAL MODE). For example, the BMS 40 may have a first key ON signal indicating selection of the first key Key_1 from the electronic control unit ECU or a first key ON signal indicating non-selection of the first key Key_1 . A key OFF signal may be received.
  • a first key (Key_1) for executing an eco-mode (ECO MODE) and a second key (Key_2) for executing a normal mode (NORMAL MODE) may be provided in a user interface (not shown), respectively.
  • the BMS 40 may determine the eco mode (ECO MODE), and if the user selects the second key (Key_2), it may determine the normal mode (NORMAL MODE).
  • the BMS 40 is a first key on signal for selecting the first key (Key_1) from the electronic control unit (ECU) or a second key for selecting the second key (Key_2) in the normal mode (NORMAL MODE) On signal can be received.
  • the BMS 40 controls the charging of the battery 10 in the normal mode (NORMAL MODE) (S20).
  • step S20 the BMS 40 diagnoses whether the current state of charge (SOC) reaches the first lower limit SOC of the first battery capacity (S21).
  • the normal mode is a method of managing the battery 10 as designed.
  • the normal mode uses the first battery capacity, which is the maximum battery capacity usable in the designed range.
  • the first battery capacity may be a battery capacity having a range between the first lower limit SOC and the first upper limit SOC provided in the design and production process of the battery 10 . Assuming an ideal state, the first battery capacity may include a battery capacity defined in a range of 0% to 100%.
  • the BMS 40 may calculate the current state of charge (SOC) by estimating the state of charge (SOC) in a predetermined period or in real time.
  • step S20 when the state of charge SOC reaches the first lower limit SOC ( S21 , Yes), the BMS 40 enters a charging mode for supplying power to the battery 10 ( S22 ).
  • the BMS 40 may control the charging of the battery 10 in the first battery capacity range by a fast charging method or a slow charging method according to a user's selection. For example, when the user selects fast charging, the BMS 40 may control power to be supplied to the battery 10 through fast charging.
  • the BMS 40 may request the user to select the charging method through the electronic control unit (ECU).
  • the electronic control unit (ECU) may control so that a message requesting selection of one of the fast charging and the slow charging method is displayed on the user interface.
  • step S20 the BMS 40 diagnoses whether the current state of charge (SOC) reaches the first upper limit SOC of the first battery capacity (S23).
  • the battery 10 receives power from an external device, and the state of charge (SOC) increases as time elapses.
  • SOC state of charge
  • the state of charge (SOC) may gradually increase to 10%, 30%, or 50% as time elapses.
  • the BMS 40 controls the charging of the battery 10 in the eco mode (ECO MODE) (S30).
  • step S30 first, the BMS 40 diagnoses whether the state of charge (SOC) reaches the second lower limit SOC of the second battery capacity (S31).
  • the eco mode is a battery management method for extending the life of the battery 10 and may be set by a user's selection.
  • the second battery capacity which is a battery capacity in a narrower region than the first battery capacity, is used.
  • the second battery capacity may include a battery capacity having a range between a second lower limit SOC that is a predetermined size larger than the first lower limit SOC and a second upper limit SOC that is a predetermined size smaller than the first upper limit SOC.
  • the second battery capacity may include a battery capacity defined as a range between 30% and 80%.
  • the first lower limit SOC of the first battery capacity is smaller than the second lower limit SOC of the second battery capacity, and the first upper limit SOC is greater than the second upper limit SOC of the second battery capacity.
  • step S30 when the state of charge SOC reaches the second lower limit SOC ( S31 , Yes), the BMS 40 enters a charging mode for supplying power to the battery 10 ( S32 ).
  • the BMS 40 can control the charging of the battery 10 in the second battery capacity range by the slow charging method.
  • the state of charge SOC reaches the second lower limit SOC, for example, 30%, the BMS 40 may control the battery 10 to be charged without further discharging.
  • step S30 the BMS 40 diagnoses whether the state of charge (SOC) reaches the second upper limit SOC of the second battery capacity (S33).
  • the BMS 40 may end the charging mode (S40).
  • the BMS 40 may end charging of the battery 10 .
  • the BMS 40 may end charging of the battery 10 when the state of charge (SOC) reaches 100%.
  • the BMS 40 may end charging of the battery 10 .
  • the state of charge (SOC) may gradually increase to 50% or 70% as time elapses.
  • the state of charge SOC reaches the second upper limit SOC, for example, 80%, the BMS 40 may end the charging mode so that the battery 10 is no longer charged.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

본 발명은, 배터리 관리 방법 및 그 방법을 제공하는 배터리 시스템{METHOD FOR BATTERY MANAGEMENT AND BATTERY SYSTEM PROVIDING THE SAME}에 관한 것으로, 본 발명에 따른 배터리 시스템은, 배터리, 그리고 제1 하한SOC(State of Charge)와 제1 상한SOC 사이의 제1 배터리 용량을 사용하는 노멀모드 또는 제2 하한SOC와 제2 상한SOC 사이의 제2 배터리 용량을 사용하는 에코모드에 따라 상기 배터리의 충전을 제어하는 BMS를 포함하고, 상기 제1 하한SOC는, 상기 제2 하한SOC 보다 작고, 상기 제1 상한SOC는, 상기 제2 상한SOC 보다 크다.

Description

배터리 관리 방법 및 그 방법을 제공하는 배터리 시스템
관련 출원(들)과의 상호 인용
본 출원은 2020년 07월 15일자 한국 특허 출원 제 10-2020-0087773호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은, 배터리의 수명을 연장할 수 있는 배터리 관리 방법 및 이를 제공하는 배터리 시스템에 관한 것이다.
전기자동차(EV, Electric Vehicle)는 석유 연료와 엔진을 사용하지 않고 전기 배터리와 전기 모터를 사용하는 자동차이다. 전기자동차는 배터리와 전기 모터로만 주행하는 순수 전기자동차(EV), 하이브리드 전기자동차(HEV, Hybrid Electric Vehicle), 플러그인 하이브리드 전기자동차(PHEV, Plug-in Hybrid Electric Vehicle) 등을 포함한다.
전기자동차는 배터리로 리튬이온 배터리를 많이 사용하고, 400V 구동 배터리와 12V 보조 배터리를 장착할 수 있다. 최근 양산되어 시장에 보급되는 전기자동차의 경우 1회 완전 충전시에 최대 350km 주행이 가능(예를 들어, 쉐보레 볼트 EV의 경우)하나 이는 차량의 종류에 따라 크게 차이가 난다. 전기자동차 내 사용자의 편의를 위한 다양한 모듈/장치들은 구동시 전력을 소모하기 때문에 전기자동차의 주행 거리에 영향을 줄 수 있다.
배터리의 충전방법으로 완속충전 및 급속충전 방법이 선택적으로 사용되고 있다. 충전 시간의 경우, 완속충전은 4 내지 9시간, 급속충전은 30분 내지 1시간이 소요되는 것으로 알려져 있으며, 배터리 기술의 발전에 따라 완속충전 또는 급속충전 속도가 개선되고 있다. 충전기는 충전 케이블을 전기자동차의 충전 단자에 연결하여 전기 에너지를 충전하며, 통상적으로 고속 또는 저속 충전 타입을 지원한다.
한편, 충방전이 가능한 배터리는 소정 기간 경과하면, 예를 들어, 기 설정된 충방전 사이클에 도달하면 성능이 급격하게 떨어져 교체가 필요하다. 특히, 배터리의 교체시기는 사용자의 사용 패턴에 따라 짧아질 수도, 길어질 수도 있다. 예를 들어, 100% 충방전 횟수가 많아지거나, 완속충전보다 급속충전 방법으로 충전하는 횟수가 많아질수록 배터리의 수명을 단축한다는 많은 연구결과가 나오고 있다.
전기자동차(EV)의 원가에서 배터리가 차지하는 비율은 40%정도로 매우 크다. 배터리의 과충전 또는 과방전이 반복으로 노화가 촉진되어 배터리의 수명이 짧아지면, 배터리의 교체비용이 증가하는 문제가 발생한다. 이는, 사용자가 전기자동차(EV)를 구매할 때 부담으로 작용할 수 있고, 결국 전기자동차를 확대하여 환경보호라는 각국의 정책에 걸림돌이 될 수 있다.
이에, 전기자동차가 이용되는 환경 및 사용자의 성향 등에 따라 배터리의 수명을 연장할 수 있는 방법이 요구되고 있다.
본 발명은, 사용자의 선택으로 에코모드(eco-friendly mode; ECO MODE)가 온 되면, 사용 가능한 배터리 용량을 축소하고, 완속충전 방법으로 배터리를 충전하는 배터리 관리 방법 및 그 방법을 제공하는 배터리 시스템을 제공한다.
본 발명의 일 특징에 따른 배터리 시스템은, 배터리, 그리고 제1 하한SOC(State of Charge)와 제1 상한SOC 사이의 제1 배터리 용량을 사용하는 노멀모드 또는 제2 하한SOC와 제2 상한SOC 사이의 제2 배터리 용량을 사용하는 에코모드에 따라 상기 배터리의 충전을 제어하는 BMS((Battery Management System)를 포함하고, 상기 제1 하한SOC는, 상기 제2 하한SOC 보다 작고, 상기 제1 상한SOC는, 상기 제2 상한SOC 보다 크다.
상기 BMS는, 상기 배터리의 SOC를 소정 주기마다 추정하여 현재 SOC를 산출하고, 상기 에코모드의 온 상태에서, 상기 현재 SOC가 상기 제2 하한SOC에 도달하면 상기 배터리의 충전을 시작하고, 상기 현재 SOC가 상기 제2 상한SOC에 도달하면 상기 배터리의 충전을 종료할 수 있다.
상기 BMS는, 상기 에코모드의 온 상태에서, 소정의 기준시간 내에 상기 현재 SOC가 상기 제2 상한SOC에 도달하도록 상기 배터리를 충전하는 급속충전 방법을 디스에이블시키고, 상기 소정의 기준시간을 초과한 후 상기 현재 SOC가 상기 제2 상한SOC에 도달하도록 상기 배터리를 충전하는 완속충전 방법으로 상기 배터리의 충전을 제어할 수 있다.
상기 BMS는, 상기 노멀모드의 온 상태에서, 상기 배터리의 SOC를 소정 주기마다 추정하여 현재 SOC를 산출하고, 상기 현재 SOC가 상기 제1 하한SOC에 도달하면 상기 배터리의 충전을 시작하고, 상기 현재 SOC가 상기 제1 상한SOC에 도달하면 상기 배터리의 충전을 종료할 수 있다.
상기 BMS는, 상기 노멀모드의 온 상태에서, 소정의 기준시간 내에 상기 현재 SOC가 상기 제1 상한SOC에 도달하도록 상기 배터리를 충전하는 급속충전 방법 또는 상기 소정의 기준시간을 초과한 후 상기 현재 SOC가 상기 제1 상한SOC에 도달하도록 상기 배터리를 충전하는 완속충전 방법으로 상기 배터리의 충전을 제어할 수 있다.
상기 BMS는, 상기 노멀모드의 온 상태에서, 운전자의 선택에 따른 상기 급속충전 방법 또는 상기 완속충전 방법으로 상기 배터리의 충전을 제어할 수 있다.
상기 BMS는, 운전자의 선택에 따른 상기 에코모드의 키 온 신호를 수신하면 상기 에코모드의 온 상태로 판단하고, 상기 운전자의 선택에 따른 상기 에코모드의 키 오프 신호를 수신하면 상기 노멀모드의 온 상태로 판단할 수 있다.
본 발명의 다른 특징에 따른 배터리 관리 방법은, BMS((Battery Management System)가 제1 하한SOC(State of Charge)와 제1 상한SOC 사이의 제1 배터리 용량을 사용하는 노멀모드 또는 제2 하한SOC와 제2 상한SOC 사이의 제2 배터리 용량을 사용하는 에코모드에 따라 배터리의 충전을 제어하여 상기 배터리를 관리하는 방법으로서, 상기 에코모드(ECO MODE)가 온 상태인지 판단하는 단계, 상기 판단결과에 따라, 소정 주기마다 추정되는 현재 SOC가 상기 제1 하한SOC 또는 상기 제2 하한SOC에 도달하면 상기 배터리의 충전을 시작하여 제어하는 단계, 그리고 상기 현재 SOC가 상기 제1 상한SOC 또는 상기 제2 상한SOC에 도달하면 상기 배터리의 충전을 종료하는 단계를 포함하고, 상기 제1 하한SOC는 상기 제2 하한SOC 보다 작고, 상기 제1 상한SOC는 상기 제2 상한SOC 보다 크다.
상기 배터리의 충전을 시작하여 제어하는 단계는, 상기 판단결과 에코모드의 온 상태이면, 상기 현재 SOC가 상기 제2 하한SOC에 도달하는지 여부를 진단하는 단계, 상기 진단 결과 도달하면, 소정의 기준시간을 초과한 후 상기 현재 SOC가 상기 제2 상한SOC에 도달하도록 상기 배터리를 충전하는 완속충전 방법으로 상기 배터리의 충전을 시작하는 단계, 그리고 상기 현재 SOC가 상기 제2 상한SOC에 도달하는지 여부를 진단하는 단계를 포함할 수 있다.
상기 배터리의 충전을 시작하여 제어하는 단계는, 상기 판단결과 노멀모드의 온 상태이면, 상기 현재 SOC가 상기 제1 하한SOC에 도달하는지 여부를 진단하는 단계, 상기 진단 결과 도달하면, 소정의 기준시간 내에 상기 현재 SOC가 상기 제1 상한SOC에 도달하도록 상기 배터리를 충전하는 급속충전 방법, 또는 상기 소정의 기준시간을 초과한 후 상기 현재 SOC가 상기 제1 상한SOC에 도달하도록 상기 배터리를 충전하는 완속충전 방법으로 상기 배터리의 충전을 시작하는 단계, 그리고 상기 현재 SOC가 상기 제1 상한SOC에 도달하는지 여부를 진단하는 단계를 포함할 수 있다.
상기 배터리의 충전을 시작하는 단계는, 운전자의 선택에 따른 상기 급속충전 방법 또는 상기 완속충전 방법으로 상기 배터리의 충전을 제어할 수 있다.
상기 에코모드(ECO MODE)가 온 상태인지 판단하는 단계는, 운전자의 선택에 따른 상기 에코모드의 키 온 신호를 수신하면 상기 에코모드의 온 상태로 판단하고, 상기 운전자의 선택에 따른 상기 에코모드의 키 오프 신호를 수신하면 상기 노멀모드의 온 상태로 판단할 수 있다.
본 발명은, 배터리의 노화를 촉진하는 사용 가능한 배터리 용량의 상한 및 하한 SOC의 사용 및 급속충전 방법의 횟수를 줄여 배터리의 수명을 연장할 수 있다.
본 발명은, 사용 가능한 배터리 용량을 최대로 사용하여 충전 횟수를 줄이고, 충전 시간이 짧아 배터리의 이용에 편의성을 제공하는 노멀모드 그리고 배터리의 수명을 연장하는 에코모드를 사용자가 상황에 따라 선택할 수 있도록 구성하여, 사용자의 만족도를 높일 수 있다.
도 1은 일 실시예에 따른 배터리 시스템을 설명하는 도면이다.
도 2는 일 실시예에 따른 노멀모드를 설명하는 도면이다.
도 3은 일 실시예에 따른 에코모드를 설명하는 도면이다.
도 4는 일 실시예에 따라 사용자의 선택에 따른 노멀모드 또는 에코모드로 배터리를 충전하여 배터리의 수명을 연장하는 방법을 설명하는 순서도이다.
일 실시예에서, 전기 자동차는 배터리를 구비하고, 배터리에 충전된 전기를 이용하여 휠을 구동시키는 전기 모터를 구비하는 모든 차량(Vehicle)을 의미한다. 전기 자동차는 EV(Electric Vehicle)뿐만 아니라, PHEV(Plug-in Hybrid Electric Vehicle)를 포함한다. 전기 자동차는 전기 자동차 충전 설비(Electric Vehicle Supply Equipment)인 충전장치로부터 공급받은 전력으로 배터리를 충전할 수 있다. 충전장치는 급속충전기(Quick Charger, 또는 Fast Charger)와 공공장소에서 교류전력을 공급하는 완속충전스탠드(Charging Stand), 가정 또는 직장 등에서 간단하게 설치하고 교류전력을 공급하는 홈충전기 등을 포함할 수 있다.
이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시예를 상세히 설명하되, 동일하거나 유사한 구성요소에는 동일, 유사한 도면부호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및/또는 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다. 또한, 본 명세서에 개시된 실시예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 실시예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 명세서에 개시된 실시예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되지 않으며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
본 출원에서, "포함한다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
도 1은 일 실시예에 따른 배터리 시스템을 설명하는 도면이다.
도 1을 참고하면, 배터리 시스템(1)은, 배터리(10), 릴레이(20), 전류 센서(30), 및 배터리 관리 시스템(Battery Management System, BMS)(40)을 포함한다.
배터리(10)는 전기적으로 연결되어 있는 복수의 배터리 셀(Cell1-Celln)을 포함한다. 어떤 실시예에서, 배터리 셀은 충전 가능한 2차 전지일 수 있다. 소정 개수의 배터리 셀이 직렬 연결되어 배터리 모듈을 구성하고, 소정 개수의 배터리 모듈이 직렬 및 병렬 연결되어 배터리(10)를 구성하여 원하는 전력을 공급할 수 있다. 복수의 배터리 셀(Cell1-Celln) 각각은 배선을 통해 BMS(40)에 전기적으로 연결되어 있다.
도 1에서, 배터리(10)는 직렬 연결되어 있는 복수의 배터리 셀(Cell1-Celln)을 포함하고, 배터리 시스템(1)의 두 출력단(OUT1, OUT2) 사이에 연결되어 있다. 배터리(10)의 양극과 출력단(OUT1) 사이에 릴레이(20)가 연결되어 있고, 배터리(10)의 음극과 출력단(OUT2) 사이에 전류 센서(30)가 연결되어 있다. 도 1에 도시된 구성들 및 구성들 간의 연결 관계는 일 예로 발명이 이에 한정되는 것은 아니다.
릴레이(20)는 배터리 시스템(1)과 외부 장치 간의 전기적 연결을 제어한다. 릴레이(20)가 온 되면, 배터리 시스템(1)과 외부 장치가 전기적으로 연결되어 충전 또는 방전이 수행되고, 릴레이(20)가 오프 되면, 배터리 시스템(1)과 외부 장치가 전기적으로 분리된다. 이때, 외부 장치는 배터리(10)에 전력을 공급하여 충전하는 충전모드에서 충전기, 배터리(10)에 저장된 전력이 방전되는 방전모드에서 부하일 수 있다.
전류 센서(30)는 배터리(10)와 외부 장치간 전류 경로에 직렬 연결되어 있다. 전류 센서(30)는 배터리(10)에 흐르는 전류 즉, 충전 전류 및 방전 전류를 측정하고, 측정 결과를 BMS(40)에 전달할 수 있다.
BMS(40)는 복수의 배터리 셀(Cell1-Celln)에 대한 다양한 정보를 취합 및 분석하여 배터리 셀의 충전 및 방전, 셀 밸런싱, 보호 동작 등을 제어하고, 릴레이(20)의 동작을 제어할 수 있다. 예를 들어, BMS(40)는 사용자의 선택에 따른 노멀모드(NORMAL MODE) 또는 에코모드(ECO MODE)로 배터리(10)의 충전을 제어할 수 있다.
노멀모드(NORMAL MODE)는, 배터리(10)가 설계된 범위에서 사용 가능한 최대 배터리 용량(Usable Capacity)(이하, 제1 배터리 용량)을 사용하고, 완속충전 방법 또는 급속충전 방법 중 사용자가 선택한 충전방법으로 배터리(10)를 충전한다. 예를 들어, 노멀모드(NORMAL MODE)는, 배터리(10)를 최초 설계된 상태로 사용 및 관리하는 방법이다.
에코모드(ECO MODE)는, 배터리(10)가 설계된 범위에서 사용 가능한 최대 배터리 용량보다 좁은 배터리 용량(이하, 제2 배터리 용량)을 사용하고, 완속충전 방법으로 배터리(10)를 충전한다. 예를 들어, 에코모드(ECO MODE)는 배터리(10)의 수명을 연장하기 위한 배터리 관리방법이며, 사용자의 선택으로 설정될 수 있다. 즉, 에코모드(ECO MODE)는, 배터리 용량의 과도한 사용 및 급속충전 방법을 제한하여 배터리(10)의 노화 속도를 늦추는 배터리 관리 방법이다.
충전상태(state of charge, SOC)는 현재 배터리(10)에 저장된 에너지의 양이며, 단위는 퍼센트(%)이다. 배터리(10)가 완전충전 되면, 충전상태(SOC)는 100%이다. 배터리(10)가 완전방전 되면, 충전상태(SOC)는 0%이다. 완전충전 된 배터리(10)가 방전되기 시작하면, 충전상태(SOC)는 시간이 경과함에 따라 100%, 80%, 60% 등으로 감소한다. 한편, 충전상태(SOC)는 직접 측정이 불가능하며, BMS(40)는 종래 알려진 전류적산법, 전압측정법 등 간접적인 방법으로 충전상태(SOC)를 추정할 수 있다. BMS(40)는, 소정 주기 또는 실시간으로 충전상태(SOC)를 추정할 수 있다.
배터리 용량(Capacity)은, 배터리(10)가 저장할 수 있는 에너지의 총 양이며, 단위는 암페어시(Ah)로 일정한 전류가 얼마 동안 흐를 수 있는지를 나타낸다. 예를 들어, 1A의 전류가 1시간 동안 흐르면 배터리 용량은 1AH이고, 2시간 동안 흐르면 배터리 용량은 2AH이다.
일 실시예에 따라, 제1 배터리 용량은, 배터리(10) 설계 및 생산과정에서 제공되는 제1 하한SOC 및 제1 상한SOC 사이의 범위를 갖는 배터리 용량을 포함할 수 있다. 예를 들어, 제1 배터리 용량은, 0%에서 100%, 또는 설계 마진, 저항, 계산 오차 등을 반영하여 실질적으로 2% 내지 96% 사이의 범위로 정의되는 배터리 용량을 포함할 수 있다. 제2 배터리 용량은, 배터리(10)의 노화 속도를 늦추기 위해 제1 배터리 용량보다 좁은 영역의 배터리 용량을 포함할 수 있다. 구체적으로, 제2 배터리 용량은, 제1 하한SOC보다 소정 크기 큰 제2 하한SOC 및 제1 상한SOC보다 소정 크기 작은 제2 상한SOC 사이로 범위를 갖는 배터리 용량을 포함할 수 있다. 예를 들어, 제2 배터리 용량은, 30%에서 80% 사이의 범위로 정의되는 배터리 용량을 포함할 수 있다.
노멀모드(NORMAL MODE)에서, BMS(40)는, 충전상태(SOC)가 제1 하한SOC(예를 들어, 2%)에 도달하면, 배터리(10)에 전력을 공급하는 충전모드에 진입한다. 배터리(10)에 전력을 공급하여 실시간 충전상태(SOC)가 제1 상한SOC(예를 들어, 96%)에 도달하면, BMS(40)는, 충전모드를 종료할 수 있다. 또한, 에코모드(ECO MODE)에서, BMS(40)는, 충전상태(SOC)가 제2 하한SOC(예를 들어, 30%)에 도달하면, 배터리(10)에 전력을 공급하는 충전모드에 진입한다. 배터리(10)에 전력을 공급하여 실시간 충전상태(SOC)가 제2 상한SOC(예를 들어, 80%)에 도달하면, BMS(40)는, 충전모드를 종료할 수 있다.
완속충전 및 급속충전은 충전속도에 따라 나누는 배터리 충전방법이다. 완속충전은 소정 기준시간을 초과한 후 배터리(10)의 충전을 완료하는 저속 충전방법이다. 급속충전은 소정 기준시간 내에 배터리(10)의 충전을 완료하는 고속 충전방법이다.
한편, 배터리 용량을 최대치로 사용하는 경우, 예를 들어, 제1 하한SOC(예를 들어, 2%)와 제1 상한SOC(예를 들어, 96%)를 반복하여 사용하거나, 또는, 배터리 용량을 확장(1% ~ 97% 또는 0% ~ 99%)하여 사용하는 경우, 배터리(10)의 노화가 촉진될 수 있다. 또한, 배터리(10)를 급속충전 방법으로 충전하는 경우 완속충전 방법으로 충전하는 경우에 비해 배터리(10)의 노화가 촉진될 수 있다.
배터리(10)는 제조된 이후 사용에 의해 노화되며, 저장할 수 있는 에너지의 총 양(배터리 용량)도 감소한다. 배터리 건강상태(State of Health; SOH)는 이상적인 배터리 상태와 현재 배터리 상태를 비교하여 나타내는 성능지수이다. 예를 들어, 배터리(10)가 최초 1000mAH의 배터리 용량을 갖고 있었으나, 소정 기간 사용 후 배터리 용량이 850mAH로 저하될 수 있다. 그러면, 배터리 건강상태(SOH)는 85%가 된다.
참고로, 배터리 건강상태(SOH)가 100%일 때, 배터리(10)의 완전충전 및 완전방전 시의 충전상태(SOC)는 각각 100% 및 0%이다. 또한, 배터리 건강상태(SOH)가 85%일 때, 배터리(10)의 완전충전 및 완전방전 시의 충전상태(SOC)는 각각 100% 및 0%이다. 즉, 충전상태(SOC)는 배터리 건강상태(SOH)와 무관하게 배터리(10)에 채울 수 있는 에너지가 다 채워지면 100%이며, 에너지가 다 방전되면 0%이다. 그러나, 배터리 건강상태(SOH)가 100%인 배터리(10)가 완전충전 된 이후 총 1000mAH 에너지를 공급할 수 있는 반면, 배터리 건강상태(SOH)가 85%인 배터리(10)는 완전충전 이후 총 850mAH 에너지만 공급할 수 있다.
즉, 배터리 용량은 배터리 건강상태(SOH)에 대응하여 감소한다. 예를 들어, 배터리 건강상태(SOH)가 소정 기준치, 예를 들어 80%로 저하되는 시점을 배터리 교체 시점으로 볼 수 있다. 배터리 건강상태(SOH)가 80% 아래로 떨어지면, 배터리 용량이 급격하게 저하되어 배터리(10)는 본래의 역할을 수행할 수 없게 된다.
도 2는 일 실시예에 따른 노멀모드를 설명하는 도면이고, 도 3은 일 실시예에 따른 에코모드를 설명하는 도면이다.
일 실시예에 따라, 사용자 인터페이스(미도시)에 에코모드(ECO MODE)를 실행하는 제1 키(Key_1)가 구비될 수 있다. 사용자가 에코모드(ECO MODE)를 실행하는 제1 키(Key_1)를 선택(ON) 또는 비선택(OFF)하면, BMS(40)는 사용자의 선택(ON)에 따른 에코모드(ECO MODE) 또는 비선택(OFF)에 따른 노멀모드(NORMAL MODE)로 배터리(10)의 충전을 제어할 수 있다. 예를 들어, BMS(40)는 전자 제어 유닛(electronic control unit; ECU)으로부터 제1 키(Key_1)를 선택하는 제1 키 온(ON) 신호 또는 제1 키(Key_1)를 선택하지 않는 제1 키 오프(OFF) 신호를 수신할 수 있다.
다른 실시예에 따라, 사용자가 조작할 수 있는 에코모드(ECO MODE)를 실행하는 제1 키(Key_1) 및 노멀모드(NORMAL MODE)를 실행하는 제2 키(Key_2)가 사용자 인터페이스(미도시)에 각각 구비될 수 있다. 사용자가 에코모드(ECO MODE)를 실행하는 제1 키(Key_1)를 선택(ON)하면, BMS(40)는 에코모드(ECO MODE)로 배터리(10)의 충전을 제어할 수 있다. 사용자가 노멀모드(NORMAL MODE)를 실행하는 제2 키(Key_2)를 선택(ON)하면, BMS(40)는 노멀모드(NORMAL MODE)로 배터리(10)의 충전을 제어할 수 있다. 예를 들어, BMS(40)는 전자 제어 유닛(ECU)으로부터 제1 키(Key_1)를 선택하는 제1 키 온 신호 또는 노멀모드(NORMAL MODE)의 제2 키(Key_2)를 선택하는 제2 키 온 신호를 수신할 수 있다.
도 2의 (A)를 참고하면, 노멀모드(NORMAL MODE)의 온 상태에서, 제1 배터리 용량이 사용 가능한 배터리 용량(이하, 가용 배터리 용량)으로 설정되고, 급속충전이 인에이블(enable)된다. 따라서, BMS(40)는 사용자의 선택에 따라 급속충전 또는 완속충전 방법으로 제1 배터리 용량 범위에서 배터리(10)의 충전을 제어할 수 있다.
도 2의 (B)를 참고하면, 배터리(10)가 노멀모드(NORMAL MODE)로 사용 및 관리되는 경우, 배터리(10)의 교체시점(End of Life; EOL)은 가용 배터리 용량이 최초(100%) 대비 소정 기준값(80%)에 도달하는 시점으로 정해질 수 있다. 즉, 배터리 건강상태(SOH)가 80%가되면, 배터리(10)를 폐기해야 한다. 이때, 교체시점(EOL)은 충방전 사이클 횟수로 정해질 수 있다. 예를 들어, 리튬이온 배터리는 300~500회 충반전 사이클이 경과하면 교체시점(EOL)에 도달한 것으로 판단된다.
도 3의 (A)를 참고하면, 에코모드(ECO MODE)의 온 상태에서, 제2 배터리 용량이 가용 배터리 용량으로 설정되고, 급속충전 방법이 디스에이블(disable)된다. 따라서, BMS(40)는 완속충전 방법으로 제2 배터리 용량 범위에서 배터리(10)의 충전을 제어할 수 있다. 이때, 제2 배터리 용량은 제1 배터리 용량보다 적은 범위의 배터리 용량으로 설정될 수 있다.
도 3의 (B)를 참고하면, 배터리(10)가 에코모드(ECO MODE)로 사용 및 관리되는 경우, 배터리(10)의 교체시점(EOL+α), 즉, 수명이 노멀모드(NORMAL MODE)로 배터리(10)가 사용 및 관리되는 경우보다 소정기간(α) 연장될 수 있다.
도 4는 일 실시예에 따라 사용자의 선택에 따른 노멀모드 또는 에코모드로 배터리를 충전하여 배터리의 수명을 연장하는 방법을 설명하는 순서도이다.
이하, 도 1 내지 도 4를 참고하여, 배터리 관리 방법 및 그 방법을 제공하는 배터리 시스템을 설명한다.
도 4를 참고하면, BMS(40)는 사용자의 선택에 의해 에코모드(ECO MODE)가 온 상태인지 판단한다(S10).
일 실시예에 따라, 사용자 인터페이스(미도시)에 에코모드(ECO MODE)를 실행하는 제1 키(Key_1)가 구비될 수 있다. BMS(40)는 사용자가 제1 키(Key_1)를 선택하면 에코모드(ECO MODE)로 판단하고, 사용자가 제1 키(Key_1)를 선택하지 않으면 노멀모드(NORMAL MODE)로 판단할 수 있다. 즉, BMS(40)는 사용자가 아무런 액션을 취하지 않으면, 노멀모드(NORMAL MODE)로 판단할 수 있다. 예를 들어, BMS(40)는 전자 제어 유닛(ECU)으로부터 제1 키(Key_1)의 선택을 지시하는 제1 키 온(ON) 신호 또는 제1 키(Key_1)의 비선택을 지시하는 제1 키 오프(OFF) 신호를 수신할 수 있다.
다른 실시예에 따라, 에코모드(ECO MODE)를 실행하는 제1 키(Key_1) 및 노멀모드(NORMAL MODE)를 실행하는 제2 키(Key_2)가 사용자 인터페이스(미도시)에 각각 구비될 수 있다. BMS(40)는 사용자가 제1 키(Key_1)를 선택하면 에코모드(ECO MODE)로 판단하고, 제2 키(Key_2)를 선택하면 노멀모드(NORMAL MODE)로 판단할 수 있다. 예를 들어, BMS(40)는 전자 제어 유닛(ECU)으로부터 제1 키(Key_1)를 선택하는 제1 키 온 신호 또는 노멀모드(NORMAL MODE)의 제2 키(Key_2)를 선택하는 제2 키 온 신호를 수신할 수 있다.
다음으로, 에코모드(ECO MODE)가 오프 상태이면(S10, No), BMS(40)는 노멀모드(NORMAL MODE)로 배터리(10)의 충전을 제어한다(S20).
S20 단계에서, 우선, BMS(40)는 현재 충전상태(SOC)가 제1 배터리 용량의 제1 하한SOC에 도달하는지 여부를 진단한다(S21).
노멀모드(NORMAL MODE)는, 배터리(10)를 설계된 대로 관리하는 방법이다. 노멀모드(NORMAL MODE)는, 설계된 범위에서 사용 가능한 최대 배터리 용량인, 제1 배터리 용량을 사용한다. 이때, 제1 배터리 용량은, 배터리(10) 설계 및 생산과정에서 제공되는 제1 하한SOC 및 제1 상한SOC 사이의 범위를 갖는 배터리 용량일 수 있다. 이상적인 상태를 전제로, 제1 배터리 용량은 0%에서 100%, 사이의 범위로 정의되는 배터리 용량을 포함할 수 있다. BMS(40)는 소정 주기 또는 실시간으로 충전상태(SOC)를 추정하여 현재 충전상태(SOC)를 산출할 수 있다.
S20 단계에서, 충전상태(SOC)가 제1 하한SOC에 도달하면(S21, Yes), BMS(40)는 배터리(10)에 전력을 공급하는 충전모드에 진입한다(S22).
BMS(40)는 사용자의 선택에 따라 급속충전 또는 완속충전 방법으로 제1 배터리 용량 범위에서 배터리(10)의 충전을 제어할 수 있다. 예를 들어, 사용자가 급속충전을 선택하면, BMS(40)는 급속충전으로 배터리(10)에 전력이 공급되도록 제어할 수 있다.
실시예에 따라, BMS(40)는 충전방법에 대한 사용자의 선택이 없으면, 전자 제어 유닛(ECU)을 통해 사용자에게 충전방법에 대한 선택을 요청할 수 있다. 전자 제어 유닛(ECU)은, 급속충전 또는 완속충전 중 하나의 충전방법에 대한 선택을 요청하는 메시지가 사용자 인터페이스에 표시되도록 제어할 수 있다.
S20 단계에서, BMS(40)는 현재 충전상태(SOC)가 제1 배터리 용량의 제1 상한SOC에 도달하는지 여부를 진단한다(S23).
충전모드에서 배터리(10)는 외부 장치로부터 전력을 공급받고, 충전상태(SOC)는 시간이 경과함에 따라 증가한다. 예를 들어, 충전상태(SOC)가 0%인 시점에서 충전이 시작되면, 충전상태(SOC)는 시간이 경과함에 따라 10%, 30%, 50%로 점차 증가할 수 있다.
다음으로, 에코모드(ECO MODE)가 온 상태이면(S10, Yes), BMS(40)는 에코모드(ECO MODE)로 배터리(10)의 충전을 제어한다(S30).
S30 단계에서, 우선, BMS(40)는 충전상태(SOC)가 제2 배터리 용량의 제2 하한SOC에 도달하는지 여부를 진단한다(S31).
에코모드(ECO MODE)는, 배터리(10)의 수명을 연장하기 위한 배터리 관리방법이며, 사용자의 선택으로 설정될 수 있다. 에코모드(ECO MODE)는, 제1 배터리 용량보다 좁은 영역의 배터리 용량인 제2 배터리 용량을 사용한다. 이때, 제2 배터리 용량은, 제1 하한SOC보다 소정 크기 큰 제2 하한SOC 및 제1 상한SOC보다 소정 크기 작은 제2 상한SOC 사이로 범위를 갖는 배터리 용량을 포함할 수 있다. 예를 들어, 제2 배터리 용량은 30%에서 80%, 사이의 범위로 정의되는 배터리 용량을 포함할 수 있다.
도 3의 (A)를 참고하면, 제1 배터리 용량의 제1 하한SOC는, 제2 배터리 용량의 제2 하한SOC 보다 작고, 제1 상한SOC는, 제2 배터리 용량의 제2 상한SOC 보다 크다.
S30 단계에서, 충전상태(SOC)가 제2 하한SOC에 도달하면(S31, Yes), BMS(40)는 배터리(10)에 전력을 공급하는 충전모드에 진입한다(S32).
에코모드(ECO MODE)에서는 급속충전 방법이 디스에이블(disable)되므로, BMS(40)는 완속충전 방법으로 제2 배터리 용량 범위에서 배터리(10)의 충전을 제어할 수 있다. 충전상태(SOC)가 제2 하한SOC, 예를 들어, 30%에 도달하면, BMS(40)는 배터리(10)가 더 이상 방전되지 않고 충전될 수 있도록 제어할 수 있다.
S30 단계에서, BMS(40)는 충전상태(SOC)가 제2 배터리 용량의 제2 상한SOC에 도달 여부를 진단한다(S33).
다음으로, 현재 충전상태(SOC)가 제1 상한SOC 또는 제2 상한SOC에 도달하면(S23, Yes), BMS(40)는, 충전모드를 종료할 수 있다(S40).
배터리(10)가 제1 상한SOC까지 완전 충전되면, BMS(40)는, 배터리(10)의 충전을 종료할 수 있다. 예를 들어, BMS(40)는, 충전상태(SOC)가 100%가 되면 배터리(10)의 충전을 종료할 수 있다.
배터리(10)가 제2 상한SOC까지 완전 충전되면, BMS(40)는, 배터리(10)의 충전을 종료할 수 있다. 예를 들어, 충전상태(SOC)가 30%인 시점에서 충전이 시작되면, 충전상태(SOC)는 시간이 경과함에 따라 50%, 70%로 점차 증가할 수 있다. 충전상태(SOC)가 제2 상한SOC, 예를 들어, 80%에 도달하면, BMS(40)는 배터리(10)가 더 이상 충전되지 않도록 충전모드를 종료할 수 있다.
이상에서 본 발명의 실시예에 대하여 상세하게 설명하였으나, 본 발명의 권리범위가 이에 한정되는 것은 아니며 본 발명이 속하는 분야에서 통상의 지식을 가진 자가 여러 가지로 변형 및 개량한 형태 또한 본 발명의 권리범위에 속한다.

Claims (12)

  1. 배터리, 그리고
    제1 하한SOC(State of Charge)와 제1 상한SOC 사이의 제1 배터리 용량을 사용하는 노멀모드 또는 제2 하한SOC와 제2 상한SOC 사이의 제2 배터리 용량을 사용하는 에코모드에 따라 상기 배터리의 충전을 제어하는 BMS((Battery Management System)를 포함하고,
    상기 제1 하한SOC는, 상기 제2 하한SOC 보다 작고,
    상기 제1 상한SOC는, 상기 제2 상한SOC 보다 큰, 배터리 시스템.
  2. 제1항에 있어서,
    상기 BMS는,
    상기 배터리의 SOC를 소정 주기마다 추정하여 현재 SOC를 산출하고,
    상기 에코모드의 온 상태에서,
    상기 현재 SOC가 상기 제2 하한SOC에 도달하면 상기 배터리의 충전을 시작하고, 상기 현재 SOC가 상기 제2 상한SOC에 도달하면 상기 배터리의 충전을 종료하는, 배터리 시스템.
  3. 제2항에 있어서,
    상기 BMS는,
    상기 에코모드의 온 상태에서,
    상기 소정의 기준시간을 초과한 후 상기 현재 SOC가 상기 제2 상한SOC에 도달하도록 상기 배터리를 충전하는 완속충전 방법으로 상기 배터리의 충전을 제어하는, 배터리 시스템.
  4. 제1항에 있어서,
    상기 BMS는,
    상기 노멀모드의 온 상태에서,
    상기 배터리의 SOC를 소정 주기마다 추정하여 현재 SOC를 산출하고,
    상기 현재 SOC가 상기 제1 하한SOC에 도달하면 상기 배터리의 충전을 시작하고, 상기 현재 SOC가 상기 제1 상한SOC에 도달하면 상기 배터리의 충전을 종료하는, 배터리 시스템.
  5. 제4항에 있어서,
    상기 BMS는,
    상기 노멀모드의 온 상태에서,
    소정의 기준시간 내에 상기 현재 SOC가 상기 제1 상한SOC에 도달하도록 상기 배터리를 충전하는 급속충전 방법 또는
    상기 소정의 기준시간을 초과한 후 상기 현재 SOC가 상기 제1 상한SOC에 도달하도록 상기 배터리를 충전하는 완속충전 방법으로 상기 배터리의 충전을 제어하는, 배터리 시스템.
  6. 제5항에 있어서,
    상기 BMS는,
    상기 노멀모드의 온 상태에서,
    운전자의 선택에 따른 상기 급속충전 방법 또는 상기 완속충전 방법으로 상기 배터리의 충전을 제어하는, 배터리 시스템.
  7. 제1항에 있어서,
    상기 BMS는,
    운전자의 선택에 따른 상기 에코모드의 키 온 신호를 수신하면 상기 에코모드의 온 상태로 판단하고,
    상기 운전자의 선택에 따른 상기 에코모드의 키 오프 신호를 수신하면 상기 노멀모드의 온 상태로 판단하는, 배터리 시스템.
  8. BMS((Battery Management System)가 제1 하한SOC(State of Charge)와 제1 상한SOC 사이의 제1 배터리 용량을 사용하는 노멀모드 또는 제2 하한SOC와 제2 상한SOC 사이의 제2 배터리 용량을 사용하는 에코모드에 따라 배터리의 충전을 제어하여 상기 배터리를 관리하는 방법으로서,
    상기 에코모드(ECO MODE)가 온 상태인지 판단하는 단계,
    상기 판단결과에 따라, 소정 주기마다 추정되는 현재 SOC가 상기 제1 하한SOC 또는 상기 제2 하한SOC에 도달하면 상기 배터리의 충전을 시작하여 제어하는 단계, 그리고
    상기 현재 SOC가 상기 제1 상한SOC 또는 상기 제2 상한SOC에 도달하면 상기 배터리의 충전을 종료하는 단계를 포함하고,
    상기 제1 하한SOC는 상기 제2 하한SOC 보다 작고, 상기 제1 상한SOC는 상기 제2 상한SOC 보다 큰, 배터리 관리 방법.
  9. 제8항에 있어서,
    상기 배터리의 충전을 시작하여 제어하는 단계는,
    상기 판단결과 에코모드의 온 상태이면, 상기 현재 SOC가 상기 제2 하한SOC에 도달하는지 여부를 진단하는 단계,
    상기 진단 결과 도달하면, 소정의 기준시간을 초과한 후 상기 현재 SOC가 상기 제2 상한SOC에 도달하도록 상기 배터리를 충전하는 완속충전 방법으로 상기 배터리의 충전을 시작하는 단계, 그리고
    상기 현재 SOC가 상기 제2 상한SOC에 도달하는지 여부를 진단하는 단계를 포함하는, 배터리 관리 방법.
  10. 제8항에 있어서,
    상기 배터리의 충전을 시작하여 제어하는 단계는,
    상기 판단결과 노멀모드의 온 상태이면, 상기 현재 SOC가 상기 제1 하한SOC에 도달하는지 여부를 진단하는 단계,
    상기 진단 결과 도달하면, 소정의 기준시간 내에 상기 현재 SOC가 상기 제1 상한SOC에 도달하도록 상기 배터리를 충전하는 급속충전 방법, 또는 상기 소정의 기준시간을 초과한 후 상기 현재 SOC가 상기 제1 상한SOC에 도달하도록 상기 배터리를 충전하는 완속충전 방법으로 상기 배터리의 충전을 시작하는 단계, 그리고
    상기 현재 SOC가 상기 제1 상한SOC에 도달하는지 여부를 진단하는 단계를 포함하는, 배터리 관리 방법.
  11. 제10항에 있어서,
    상기 배터리의 충전을 시작하는 단계는,
    운전자의 선택에 따른 상기 급속충전 방법 또는 상기 완속충전 방법으로 상기 배터리의 충전을 제어하는, 배터리 관리 방법.
  12. 제8항에 있어서,
    상기 에코모드(ECO MODE)가 온 상태인지 판단하는 단계는,
    운전자의 선택에 따른 상기 에코모드의 키 온 신호를 수신하면 상기 에코모드의 온 상태로 판단하고, 상기 운전자의 선택에 따른 상기 에코모드의 키 오프 신호를 수신하면 상기 노멀모드의 온 상태로 판단하는, 배터리 관리 방법.
PCT/KR2021/008740 2020-07-15 2021-07-08 배터리 관리 방법 및 그 방법을 제공하는 배터리 시스템 WO2022014953A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180006177.0A CN114616125B (zh) 2020-07-15 2021-07-08 电池管理方法和提供该电池管理方法的电池系统
EP21842305.1A EP4032746B1 (en) 2020-07-15 2021-07-08 Method for battery management and battery system providing same
JP2022520021A JP7509360B2 (ja) 2020-07-15 2021-07-08 バッテリー管理方法およびその方法を提供するバッテリーシステム
US17/769,866 US20220388417A1 (en) 2020-07-15 2021-07-08 Method for battery management and battery system providing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0087773 2020-07-15
KR1020200087773A KR20220009273A (ko) 2020-07-15 2020-07-15 배터리 관리 방법 및 그 방법을 제공하는 배터리 시스템

Publications (1)

Publication Number Publication Date
WO2022014953A1 true WO2022014953A1 (ko) 2022-01-20

Family

ID=79555532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/008740 WO2022014953A1 (ko) 2020-07-15 2021-07-08 배터리 관리 방법 및 그 방법을 제공하는 배터리 시스템

Country Status (6)

Country Link
US (1) US20220388417A1 (ko)
EP (1) EP4032746B1 (ko)
JP (1) JP7509360B2 (ko)
KR (1) KR20220009273A (ko)
CN (1) CN114616125B (ko)
WO (1) WO2022014953A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024188465A1 (en) * 2023-03-16 2024-09-19 ABB E-mobility B.V. Systems and methods for controlling a charging session
CN116872792B (zh) * 2023-08-22 2024-04-02 杭州鸿途智慧能源技术有限公司 一种基于快速更换补能动力电池混合动力控制系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010201987A (ja) * 2009-02-27 2010-09-16 Mitsubishi Heavy Ind Ltd ハイブリッド車両の駆動制御装置
JP2014143815A (ja) * 2013-01-23 2014-08-07 Konica Minolta Inc 電子機器および画像形成装置
KR101825617B1 (ko) * 2011-12-27 2018-02-06 주식회사 엘지화학 배터리 사용 영역 가변 장치 및 방법
US9969293B2 (en) * 2015-03-30 2018-05-15 Ford Global Technologies, Llc Battery thermal conditioning to extend battery useful life in electrified vehicles
JP2019030161A (ja) * 2017-08-01 2019-02-21 大阪瓦斯株式会社 分散型電源システム

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000134719A (ja) * 1998-10-29 2000-05-12 Isuzu Motors Ltd パラレル・ハイブリッド電気自動車のバッテリ充電制御装置
JP2005312224A (ja) 2004-04-23 2005-11-04 Toyota Industries Corp バッテリ充電装置
CN101468610B (zh) * 2007-12-28 2011-03-30 比亚迪股份有限公司 一种用于混合动力车辆的充电控制装置及其方法
JP4805328B2 (ja) 2008-10-31 2011-11-02 本田技研工業株式会社 電動車両
US8629657B2 (en) * 2009-12-31 2014-01-14 Tesla Motors, Inc. State of charge range
JP5732766B2 (ja) 2010-07-23 2015-06-10 トヨタ自動車株式会社 車両の制御装置および制御方法
US8937452B2 (en) 2011-02-04 2015-01-20 GM Global Technology Operations LLC Method of controlling a state-of-charge (SOC) of a vehicle battery
CN102856601A (zh) * 2012-08-22 2013-01-02 杭州杰能动力有限公司 汽车充电时调整实时电池容量的方法、系统及电动汽车
JP2014147197A (ja) 2013-01-29 2014-08-14 Hitachi Automotive Systems Ltd バッテリ制御装置
KR101488586B1 (ko) 2013-03-04 2015-02-02 주식회사 엘지씨엔에스 전기차 동적 충전 방법 및 시스템
JP6304165B2 (ja) * 2015-07-31 2018-04-04 トヨタ自動車株式会社 ハイブリッド車両の制御装置
WO2017042973A1 (ja) 2015-09-11 2017-03-16 株式会社東芝 蓄電池システム、方法及びプログラム
CN105818705B (zh) * 2016-03-25 2018-11-06 郑州宇通客车股份有限公司 电动汽车充电控制方法和电动汽车充电控制装置
WO2019120570A1 (en) * 2017-12-22 2019-06-27 Volvo Truck Corporation A method of controlling a state of charge operation range of a vehicle electrical system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010201987A (ja) * 2009-02-27 2010-09-16 Mitsubishi Heavy Ind Ltd ハイブリッド車両の駆動制御装置
KR101825617B1 (ko) * 2011-12-27 2018-02-06 주식회사 엘지화학 배터리 사용 영역 가변 장치 및 방법
JP2014143815A (ja) * 2013-01-23 2014-08-07 Konica Minolta Inc 電子機器および画像形成装置
US9969293B2 (en) * 2015-03-30 2018-05-15 Ford Global Technologies, Llc Battery thermal conditioning to extend battery useful life in electrified vehicles
JP2019030161A (ja) * 2017-08-01 2019-02-21 大阪瓦斯株式会社 分散型電源システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4032746A4 *

Also Published As

Publication number Publication date
JP7509360B2 (ja) 2024-07-02
CN114616125A (zh) 2022-06-10
CN114616125B (zh) 2024-05-14
KR20220009273A (ko) 2022-01-24
EP4032746A4 (en) 2023-01-18
US20220388417A1 (en) 2022-12-08
EP4032746B1 (en) 2024-09-18
JP2022551065A (ja) 2022-12-07
EP4032746A1 (en) 2022-07-27

Similar Documents

Publication Publication Date Title
CN101165963B (zh) 电池管理系统及其驱动方法
CN100585941C (zh) 电池管理系统及其驱动方法
WO2012128445A1 (ko) 배터리 팩 연결 제어 장치 및 방법
WO2016117925A1 (ko) 하이브리드 에너지 저장 모듈 시스템
WO2020076127A1 (ko) 배터리 관리 장치 및 방법
WO2012091287A1 (ko) 이차전지 셀의 퇴화 정도를 반영한 배터리 팩의 관리 장치와 방법 및 이를 구비한 배터리 팩
WO2011083993A2 (ko) 배터리 제어 장치 및 방법
WO2014030839A1 (ko) 릴레이 제어 시스템 및 그 제어 방법
CN107359662A (zh) 一种具有并行均衡功能的电池管理系统及均衡方法
WO2012018204A2 (ko) 전기자동차 및 그 배터리의 충전제어방법
CN207218279U (zh) 一种具有并行均衡功能的电池管理系统
WO2013051863A2 (ko) 배터리 충전 장치 및 방법
WO2022014953A1 (ko) 배터리 관리 방법 및 그 방법을 제공하는 배터리 시스템
JP2003079059A (ja) 車載組電池制御装置
CN216389527U (zh) 电池加热系统、电池包和用电装置
KR101610927B1 (ko) 배터리 셀 밸런싱 장치 및 방법
WO2022092612A1 (ko) 충전 관리 장치, 충전 관리 방법, 및 전기 차량
WO2014182096A1 (ko) 자동차용 충전 시스템 및 이를 포함하는 자동차
JP2003257501A (ja) 二次電池の残存容量計
JP4114310B2 (ja) 組電池の状態監視装置
WO2017111187A1 (ko) 배터리 랙 간 전압 밸런싱 장치 및 방법
WO2022265358A1 (ko) 배터리 관리 시스템, 배터리 팩, 전기 차량 및 배터리 관리 방법
AU2020202736A1 (en) Battery Test System
WO2013047973A1 (ko) 외부 배터리 셀을 이용하여 셀 밸런싱을 수행하는 전원 공급 장치 및 그의 셀 밸런싱 방법
WO2019093625A1 (ko) 충전 제어 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21842305

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022520021

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021842305

Country of ref document: EP

Effective date: 20220420

NENP Non-entry into the national phase

Ref country code: DE