[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022014361A1 - 情報処理装置、情報処理方法、及び、プログラム - Google Patents

情報処理装置、情報処理方法、及び、プログラム Download PDF

Info

Publication number
WO2022014361A1
WO2022014361A1 PCT/JP2021/025078 JP2021025078W WO2022014361A1 WO 2022014361 A1 WO2022014361 A1 WO 2022014361A1 JP 2021025078 W JP2021025078 W JP 2021025078W WO 2022014361 A1 WO2022014361 A1 WO 2022014361A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
unit
block
captured image
control unit
Prior art date
Application number
PCT/JP2021/025078
Other languages
English (en)
French (fr)
Inventor
学 川島
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Priority to US18/014,899 priority Critical patent/US20230254588A1/en
Priority to EP21843526.1A priority patent/EP4184912A4/en
Publication of WO2022014361A1 publication Critical patent/WO2022014361A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/73Circuitry for compensating brightness variation in the scene by influencing the exposure time
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B7/00Control of exposure by setting shutters, diaphragms or filters, separately or conjointly
    • G03B7/08Control effected solely on the basis of the response, to the intensity of the light received by the camera, of a built-in light-sensitive device
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/246Analysis of motion using feature-based methods, e.g. the tracking of corners or segments
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • G06T7/74Determining position or orientation of objects or cameras using feature-based methods involving reference images or patches
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/10Image acquisition
    • G06V10/12Details of acquisition arrangements; Constructional details thereof
    • G06V10/14Optical characteristics of the device performing the acquisition or on the illumination arrangements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • G06V10/24Aligning, centring, orientation detection or correction of the image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/60Extraction of image or video features relating to illumination properties, e.g. using a reflectance or lighting model
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/74Image or video pattern matching; Proximity measures in feature spaces
    • G06V10/75Organisation of the matching processes, e.g. simultaneous or sequential comparisons of image or video features; Coarse-fine approaches, e.g. multi-scale approaches; using context analysis; Selection of dictionaries
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/74Image or video pattern matching; Proximity measures in feature spaces
    • G06V10/761Proximity, similarity or dissimilarity measures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/71Circuitry for evaluating the brightness variation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/72Combination of two or more compensation controls
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/76Circuitry for compensating brightness variation in the scene by influencing the image signals
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30244Camera pose

Definitions

  • This technology relates to information processing devices, information processing methods, and programs, and in particular, when detecting feature points from captured images and estimating the position and orientation of oneself, etc., the exposure is appropriately controlled to control the feature points. It relates to an information processing device, an information processing method, and a program that enable appropriate detection.
  • Patent Documents 1 to 5 disclose a technique for performing original exposure control in a camera for a specific purpose such as an in-vehicle camera or a surveillance camera.
  • This technology was made in view of such a situation, and when the feature points are detected from the captured image and the position and posture of oneself etc. are estimated, the exposure is appropriately controlled and the feature points are detected appropriately. To be able to do it.
  • the information processing device or program of the present technology estimates the position and orientation of the photographing unit or a moving body that moves integrally with the photographing unit based on the feature points of the captured image captured by the photographing unit.
  • An information processing device having an estimation unit and a control unit that controls the brightness of the captured image so that the image area on the ground included in the captured image has an appropriate exposure, or a computer as such an information processing device. It is a program to make it work.
  • the position / orientation estimation unit of the information processing apparatus having a position / orientation estimation unit and a control unit is the photographing unit or the photographing unit based on the feature points of the captured image captured by the photographing unit.
  • Information processing that estimates the position and posture of a moving body that moves integrally with the unit, and controls the brightness of the captured image so that the image area on the ground included in the captured image has an appropriate exposure. The method.
  • the position and posture of the photographing unit or a moving body that moves integrally with the photographing unit are estimated based on the feature points of the captured image captured by the photographing unit, and the position and posture of the moving body are estimated and included in the captured image on the ground.
  • the brightness of the captured image is controlled so that the image area has an appropriate exposure.
  • FIG. 1 is a block diagram illustrating an outline of the overall configuration of a position / orientation estimation system to which the present technology is applied.
  • the position / posture estimation system 11 of FIG. 1 is mounted on a moving body such as a drone (unmanned aerial vehicle), an autonomous driving vehicle, or a robot, and detects (estimates) the position and posture of the moving body.
  • a moving body such as a drone (unmanned aerial vehicle), an autonomous driving vehicle, or a robot
  • the position and posture are also referred to as position posture.
  • the position and orientation of the moving body assuming that the coordinate system set in the three-dimensional space in which the moving body moves is the absolute coordinate system (world coordinate system), the position and orientation of the moving body is the aircraft coordinates fixed to the moving body. Represents the position and orientation of the system in the absolute coordinate system.
  • the aircraft coordinate system may be an IMU coordinate system fixed to the IMU 21 described later, a camera coordinate system fixed to the camera 22 described later, or any coordinate system having a certain relationship between them.
  • the airframe coordinate system shall be the camera coordinate system, and the airframe coordinate system shall represent the camera coordinate system.
  • the transformation matrix for converting the coordinates from the IMU coordinate system to the camera coordinate system has been obtained in advance by calibration.
  • the position / orientation estimation system 11 of FIG. 1 has an IMU (Inertial Measurement Unit) 21, a camera (shooting unit) 22, an exposure processing unit 23, a map storage unit 24, and a SLAM (Simultaneous Localization and Mapping) processing unit 25.
  • IMU Inertial Measurement Unit
  • camera shooting unit
  • exposure processing unit 23
  • map storage unit 24
  • SLAM Simultaneous Localization and Mapping
  • the IMU21 is fixed to the moving body.
  • the IMU 21 detects the acceleration in the orthogonal three-axis direction of the IMU coordinate system set by itself and the angular velocity around the orthogonal three axes, and supplies the acceleration to the SLAM processing unit 25.
  • the camera 22 is fixed to the moving body in a state where the relative position and the relative posture are unchanged with respect to the IMU 21.
  • the camera 22 and the IMU 21 may be directly fixed or may be fixed via an intervening member.
  • the camera 22 includes an image sensor and a lens.
  • the camera 22 converts an image of the subject imaged on the light receiving surface of the image pickup device by the lens from an optical image into an electric signal and supplies it to the exposure processing unit 23. Images for one frame (frame) are repeatedly supplied from the camera 22 to the exposure processing unit 23 at a predetermined cycle.
  • the exposure processing unit 23 adjusts the brightness of the image from the camera 22, and supplies the adjusted image to the SLAM processing unit 25. As will be described later with reference to FIG. 10, the exposure processing unit 23 not only adjusts the brightness of the image output from the camera 22 by controlling the exposure of the camera 22, but also signals the image from the camera 22. It also includes processing when adjusting the brightness of the image by processing (gain adjustment, etc.).
  • the map storage unit 24 stores the map information created by the SLAM processing unit 25.
  • Map information includes key frame information and map point information.
  • Key frame information includes multiple key frames.
  • the key frame is a frame used for estimating the position and orientation of the camera 22 (camera coordinate system) in the absolute coordinate system among the images (frames) taken by the camera 22 in the SLAM process.
  • the key frame information includes a key frame ID that identifies each of the plurality of key frames, the position and orientation of the camera 22 when each key frame is photographed, and information on feature points included in each key frame.
  • the feature point information includes the two-dimensional position of each feature point in each key frame, the feature amount, and the map point ID of the map point corresponding to each feature point.
  • a feature point is a point in a key frame (image) that is characteristic of the image, such as an edge portion or a corner portion. Further, each point on the subject in the three-dimensional space captured as a feature point in the key frame is a map point.
  • the map point information is the information on the three-dimensional position of the map point corresponding to each feature point and the map point ID that identifies each map point.
  • the SLAM processing unit 25 estimates the position and orientation of the moving body (aircraft coordinate system) based on the acceleration and angular velocity from the IMU 21, the image from the exposure processing unit 23, and the map information from the map storage unit 24. As described above, in the description of this embodiment, since the camera coordinate system is used as the machine coordinate system, the SLAM processing unit 25 estimates the position and orientation of the camera 22 (camera coordinate system) as the position and orientation of the moving body. The SLAM processing unit 25 supplies the estimated position and orientation of the moving body (camera 22) to the external processing unit.
  • the external processing unit is not limited to the processing unit that performs a specific process.
  • the SLAM processing unit 25 includes an INS (Inertial Navigation System) processing unit 41, an absolute position / orientation calculation unit 42, a movement locus calculation unit (Visual Odometry) 43, an absolute position / orientation calculation unit 44, a position / orientation estimation unit 45, and filter processing. It has a part 46.
  • INS Inertial Navigation System
  • the INS processing unit 41 acquires the acceleration and the angular velocity from the IMU 21 at predetermined time (period ⁇ t) intervals, and the IMU 21 (IMU coordinate system fixed to the IMU 21) in the absolute coordinate system generated during the period ⁇ t for each period ⁇ t). Calculate the amount of change in the position and orientation of (relative position and orientation).
  • the INS processing unit 41 acquires the acceleration bias and the angular velocity bias estimated by the SLAM processing unit 25 from the SLAM processing unit 25.
  • the INS processing unit 41 removes the acceleration bias and the angular velocity bias, which are bias noises included in the acceleration and the angular velocity from the IMU 21, by the acceleration bias and the angular velocity bias from the SLAM processing unit 25.
  • the acceleration and angular velocity from the IMU 21 are integrated. Therefore, the bias noise included in the acceleration and the angular velocity from the IMU 21 may also be integrated to increase the error.
  • the INS processing unit 41 removes bias noise to reduce the error.
  • the INS processing unit 41 supplies the calculated relative position / orientation of the IMU 22 (IMU coordinate system) to the absolute position / attitude calculation unit 42.
  • the absolute position / attitude calculation unit 42 calculates the position / attitude (absolute position / attitude) of the moving body (aircraft coordinate system) in the absolute coordinate system based on the relative position / attitude of the IMU coordinate system from the INS processing unit 41, and performs filter processing. Supply to unit 46. That is, each time the absolute position / orientation calculation unit 42 supplies the relative position / orientation of the IMU coordinate system from the INS processing unit 41, the relative position / orientation of the IMU coordinate system is changed to the relative position / orientation of the camera coordinate system which is the aircraft coordinate system. Convert.
  • the absolute position / orientation calculation unit 42 adds (adds) the converted relative position / orientation of the camera coordinate system to the absolute position / orientation of the camera coordinate system calculated based on the relative position / orientation up to the previous time, and adds (adds) the current camera coordinates. Calculate the absolute position and orientation of the system.
  • the absolute position / attitude calculation unit 42 supplies the calculated absolute position / attitude of the camera coordinate system to the filter processing unit 46 as the absolute position / attitude of the aircraft coordinate system.
  • the movement locus calculation unit 43 acquires an image taken by the camera 22 from the exposure processing unit 23. Further, the movement locus calculation unit 43 acquires images for each frame (frame) at a predetermined cycle. In addition, in FIG. 1, the image (past image) supplied from the exposure processing unit 23 at a predetermined time in the past and the image (current image) supplied at the present time to the movement locus calculation unit 43 are actually It is differently represented as being supplied in parallel for illustration purposes.
  • the movement locus calculation unit 43 is a camera 22 (camera coordinate system) generated between the time when the past image is taken and the time when the current image is taken, based on the past image and the present image from the exposure processing unit 23. ) Position change amount (relative position / posture) is calculated.
  • the relative position / orientation of the camera coordinate system is the relative position / orientation of the moving body (airframe coordinate system).
  • the movement locus calculation unit 43 supplies the calculated relative position / orientation of the camera coordinate system to the absolute position / orientation calculation unit 44.
  • the absolute position / posture calculation unit 44 calculates the position / posture (absolute position / posture) of the moving body (camera 22) in the absolute coordinate system based on the relative position / posture of the camera coordinate system from the movement locus calculation unit 43, and performs filter processing. Supply to unit 46. That is, each time the movement locus calculation unit 43 supplies the relative position / orientation of the camera coordinate system, the absolute position / orientation calculation unit 42 calculates the relative position / orientation based on the relative position / orientation up to the previous time. The absolute position and orientation of the current camera coordinate system is calculated by adding (adding) to the position and orientation.
  • the absolute position / attitude calculation unit 44 supplies the calculated absolute position / attitude of the camera coordinate system to the filter processing unit 46 as the position / attitude of the machine coordinate system.
  • the position / orientation estimation unit 45 determines the absolute position / orientation of the camera coordinate system in the absolute coordinate system based on the image (current image) from the exposure processing unit 23 and the key frame information and map point information acquired from the map storage unit 24. To estimate.
  • the position / attitude estimation unit 45 supplies the estimated absolute position / orientation of the camera coordinate system to the filter processing unit 46 as the absolute position / attitude of the aircraft coordinate system.
  • the filter processing unit 46 is, for example, based on the absolute position / orientation of the camera coordinate system (aircraft coordinate system) supplied from the absolute position / attitude calculation unit 42, the absolute position / attitude calculation unit 44, and the position / attitude estimation unit 45, respectively.
  • the absolute position and orientation of the camera coordinate system is estimated so that the error covariance with respect to the true value becomes small.
  • the filter processing unit 46 supplies the estimated absolute position / orientation of the camera coordinate system (airframe coordinate system) to the external processing unit.
  • the filter processing unit 46 calculates bias noise (acceleration noise and angular velocity noise) included in the acceleration and angular velocity detected by the IMU 22 based on the estimated absolute position and orientation of the camera coordinate system (aircraft coordinate system), and INS. It is supplied to the processing unit 41.
  • bias noise acceleration noise and angular velocity noise
  • the filter processing unit 46 supplies the estimated absolute position / orientation to the map storage unit 24 (position / orientation estimation unit 45), and the keyframe information and the map point information corresponding to the estimated absolute position / orientation are supplied from the map storage unit 24. It is supplied to the position / orientation estimation unit 45.
  • FIG. 2 is a block diagram illustrating the configuration of the INS processing unit 41.
  • the INS processing unit 41 has a bias removing unit 61 and an integrating unit 62.
  • the bias removing unit 61 acquires the acceleration bias ba and the angular velocity bias bg from the filter processing unit 46 from the acceleration am and the angular velocity ⁇ m from the IMU 21. Then, the bias removing unit 61 calculates the acceleration a obtained by removing the acceleration bias ba from the acceleration am by the following equation.
  • the filter processing unit 46 calculates the angular velocity ⁇ obtained by removing the angular velocity bias bg from the angular velocity ⁇ m by the following equation.
  • the bias removing unit 61 supplies the calculated acceleration a and angular velocity ⁇ to the integrating unit 62.
  • the integrating unit 62 executes a process corresponding to the integration based on the acceleration a and the angular velocity ⁇ from the bias removing unit 61, calculates the relative position / orientation of the IMU21 (IMU coordinate system), and calculates the relative position / orientation of the IMU21 (IMU coordinate system). It is supplied to the calculation unit 42.
  • the integrating unit 62 acquires the acceleration and the angular velocity from the bias removing unit 61 at predetermined time (period ⁇ t) intervals.
  • the change in posture (relative posture) of the IMU 21 during that period ⁇ t is expressed by the following equation (1) using a quaternion.
  • the subscript t of the angular velocity ⁇ t represents a time step (number), and the angular velocity ⁇ t represents the t-th angular velocity ⁇ acquired from the bias removing unit 61. Further, the angular velocity ⁇ t is a vector whose component is the angular velocity around each of the three axes of the IMU coordinate system detected by the IMU 21.
  • qx, qy, and qz of the quaternion represent an imaginary component
  • qw of the quaternion represents a real component
  • the integrator 62 calculates the rotation matrix ⁇ R of the following equation (3) expressed using each component of the quaternion.
  • the rotation matrix ⁇ R represents the change (relative attitude) of the attitude of the IMU21 (IMU coordinate system) in the period ⁇ t from the time step t to the time step t + 1. Further, the rotation matrix ⁇ R corresponds to a change (relative attitude) in the attitude of the moving body (airframe coordinate system) in the absolute coordinate system.
  • the integration unit 62 calculates the relative position ⁇ P of the following equation (5) using the rotation matrix ⁇ R calculated by the equation (3).
  • the speed Vt represents the speed of the IMU 21 in the time step t.
  • the rotation matrix Rt represents the absolute posture of the IMU21 (IMU coordinate system) at the time step t in the absolute coordinate system.
  • the acceleration at is a vector whose component is the acceleration in each of the three axes of the IMU coordinate system detected by the IMU 21 in the time step t.
  • the gravitational acceleration g is a vector whose component is the gravitational acceleration in each axial direction of the absolute coordinate system.
  • the relative position ⁇ P represents the change (relative position) of the position of the IMU21 (IMU coordinate system) in the period ⁇ t from the time step t to the time step t + 1. Further, the relative position ⁇ P corresponds to a change (relative position) in the position of the moving body (camera 22) in the absolute coordinate system.
  • FIG. 3 is a block diagram illustrating the configuration of the movement locus calculation unit 43.
  • the movement locus calculation unit 43 has a feature point extraction unit 81, a feature point matching unit 82, and a position / posture estimation unit 83.
  • the feature point extraction unit 81 extracts feature points from the image from the exposure processing unit 23 in FIG. In FIG. 3, two feature point extraction units 81 are shown, but they are actually the same processing unit. Of the two feature point extraction units 81, the upper side represents the feature point extraction unit 81 at a predetermined time (predetermined frame) before the current time, and the lower side represents the feature point extraction unit 81 at the present time.
  • the upper feature point extraction unit 81 extracts a plurality of feature points from the past image (past image) supplied from the exposure processing unit 23 at a time point before a predetermined time (predetermined frame).
  • the lower feature point extraction unit 81 extracts a plurality of feature points from the current image (current image) currently supplied from the exposure processing unit 23.
  • the past image is an image before a predetermined frame with respect to the current image.
  • the absolute coordinates of the feature points detected in the past image have already been detected.
  • the absolute coordinates of the feature points represent points on the substance (three-dimensional coordinates in the absolute coordinate system) corresponding to the feature points on the image.
  • the feature point extraction unit 81 supplies the position (two-dimensional coordinates in the image coordinate system) and the absolute coordinates of the feature points detected in the past image on the image to the feature point matching unit 82.
  • the feature point extraction unit 81 supplies the position of the feature point detected in the current image on the image (two-dimensional coordinates in the image coordinate system) to the feature point matching unit 82.
  • the feature point matching unit 82 matches the feature points in the past image detected by the feature point extraction unit 81 and the feature points in the current image, which correspond to the same points in substance. In the matching process in the feature point matching unit 82, since the time when the past image was taken and the time when the current image was taken are close to each other, it is a process of tracking each feature point in the past image on the image. good. For example, the feature point matching unit 82 matches each feature point of the past image with the feature points of the current image adjacent to those feature points on the image coordinate system. However, the feature point matching unit 82 may perform matching processing based on the feature amount of each feature point.
  • the feature point matching unit 82 includes two-dimensional coordinates in the absolute coordinate system of each feature point of the current image, an absolute position of each feature point of the past image matched with respect to each feature point of the current image, and the current image.
  • the two-dimensional coordinates of each feature point in the image coordinate system are supplied to the position / orientation estimation unit 83.
  • the position / orientation estimation unit 83 is the two-dimensional coordinates in the absolute coordinate system of each feature point of the current image from the feature point matching unit 82, and the absolute of each feature point of the past image matched with respect to each feature point of the current image.
  • the camera 22 camera coordinate system
  • the position / attitude estimation unit 83 supplies the estimated relative position / orientation of the camera coordinate system to the absolute position / attitude calculation unit 44 in FIG.
  • FIG. 4 is a block diagram illustrating the configuration of the position / orientation estimation unit 45.
  • the position / posture estimation unit 45 includes a feature amount extraction unit 101, an image search unit 102, a feature amount matching unit 103, and a position / orientation estimation unit 104.
  • the feature amount extraction unit 101 extracts feature points from the image from the exposure processing unit 23 in FIG. 1 and extracts the feature amount of each feature point.
  • the feature amount extraction unit 101 supplies the position of the extracted feature points on the image (two-dimensional coordinates in the image coordinate system) and the feature amount of each extracted feature point to the feature amount matching unit 103 for extraction.
  • the feature amount of each feature point is supplied to the image search unit 102.
  • the image search unit 102 searches the map storage unit 24 for the key frame containing the most feature points of the current image based on the feature amount of each feature point from the feature amount extraction unit 101. That is, the image search unit 102 has a feature amount that matches the feature amount of each feature point of the current image among the feature amounts of the feature points of each key frame included in the keyframe information stored in the map storage unit 24. Is detected. Then, the image search unit 102 detects the key frame ID of the key frame containing the most feature points of the detected feature amount. The image search unit 102 includes the key frame of the detected key frame ID, the two-dimensional coordinates in the image coordinate system of each feature point included in the key frame, and the absolute position and orientation of the camera coordinate system when the key frame is photographed. And are acquired from the key frame information of the map storage unit 24.
  • the image search unit 102 acquires the absolute coordinates of the map point of the map point ID associated with the feature point included in the key frame of the detected key frame ID from the map point information of the map storage unit 24.
  • the image search unit 102 supplies the information acquired from the map storage unit 24 to the feature amount matching unit 103.
  • the feature amount matching unit 103 matches each feature point of the current image from the feature amount extraction unit 101 and each feature point of the key frame from the image search unit 102 with each other that the feature amounts match. do. That is, the feature amount matching unit 103 matches feature points corresponding to the same map point.
  • the feature amount matching unit 103 supplies the two-dimensional coordinates in the absolute coordinate system of each feature point of the current image to the position / orientation estimation unit 104. Further, the feature amount matching unit 103 includes the absolute position of each feature point of the key frame matched with respect to each feature point of the current image (three-dimensional coordinates in the absolute coordinate system of the map point corresponding to each feature point) and the key. The two-dimensional coordinates in the image coordinate system of each feature point of the frame and the absolute position / orientation of the camera 22 (camera coordinate system) at the time of shooting the key frame are supplied to the position / orientation estimation unit 104.
  • the position / orientation estimation unit 104 includes two-dimensional coordinates of each feature point of the current image from the feature amount matching unit 103, an absolute position of each feature point of the key frame matched with respect to each feature point of the current image, and a key. Estimate the absolute position and orientation of the camera coordinate system when the current image is taken, based on the two-dimensional coordinates of each feature point of the frame and the absolute position and orientation of the camera 22 (camera coordinate system) when the key frame was taken. do. The position / orientation estimation unit 104 supplies the estimated absolute position / orientation of the camera coordinate system to the filter processing unit 46 of FIG.
  • the position / orientation estimation unit 104 calculates the absolute coordinates of the new feature points when there is a feature point whose absolute coordinates are not specified in the current image.
  • the position / orientation estimation unit 83 uses the current image as a key frame for key frame information, and registers the calculated absolute coordinates of the feature points in the map storage unit 24 as the absolute coordinates of the map points in the map point information.
  • FIG. 5 is a block diagram illustrating the configuration of the first embodiment of the exposure processing unit 23.
  • the exposure processing unit 23 has an exposure control unit 121 and an AE detection processing unit 122.
  • the exposure control unit 121 controls the brightness of the image from the camera 22 in FIG. 1, and supplies the controlled image to the movement locus calculation unit 43 and the position / posture estimation unit 45 of the SLAM processing unit 25 in FIG.
  • FIG. 5 two exposure control units 121 are shown, but they are actually the same processing unit.
  • the upper side represents the exposure control unit 121 at a predetermined time (predetermined frame) before the current time
  • the lower side represents the current exposure control unit 121.
  • the upper exposure control unit 121 controls the brightness of the past image (past image) supplied from the camera 22 before a predetermined time (predetermined frame).
  • the lower exposure control unit 121 controls the brightness of the current image (current image 151) currently supplied from the camera 22.
  • the past image is an image before a predetermined frame with respect to the current image 151.
  • the current image 151 becomes a past image.
  • the exposure control unit 121 shall perform exposure control for each frame of images supplied from the camera 22 (for each frame). Then, the cycle in which the image for one frame is supplied is set to one hour step, the time step t when the past image is taken is set to 0, and the time step t when the current image is taken is set to 1.
  • the exposure control unit 121 not only adjusts the brightness of the image output from the camera 22 by controlling the exposure of the camera 22, but also controls the image from the camera 22. It also includes processing when adjusting the brightness of the image by signal processing (gain adjustment, etc.).
  • the exposure control unit 121 supplies the controlled image to the AE detection processing unit 122.
  • the current image 151 output from the lower exposure control unit 121 is not supplied to the AE detection processing unit 122, but is on the lower side as in the past image output from the upper exposure control unit 121.
  • the current image output from the exposure control unit 121 is supplied to the AE detection processing unit 122. That is, regardless of the processing time, the image output from the exposure control unit 121 is supplied to the AE detection processing unit 122.
  • the AE detection processing unit 122 calculates an appropriate exposure value (exposure value) based on the brightness of the past image from the exposure control unit 121 and supplies it to the exposure control unit 121.
  • the exposure control unit 121 controls the brightness of the current image 151 based on the exposure value supplied from the AE detection processing unit 122.
  • the AE detection processing unit 122 calculates an appropriate exposure value for the images sequentially supplied from the camera 22, and sequentially supplies the exposure value to the exposure control unit 121.
  • the exposure control unit 121 controls the brightness of the image according to the exposure value sequentially supplied from the AE detection processing unit 122. As a result, the exposure is controlled according to the change in the brightness of the subject photographed by the camera 22.
  • the AE detection processing unit 122 has a block integration unit 141, a weight calculation unit 142, and an exposure calculation unit 143.
  • the block integration unit 141 sets a metering area in which small rectangular areas are arranged vertically and horizontally with respect to an image area (image area) for one frame supplied from the exposure control unit 121. Each small area is called a block.
  • FIG. 6 is a diagram illustrating the metering area set for the image area.
  • the image 153 illustrates an image supplied from the exposure control unit 121 to the block integration unit 141.
  • the image area of image 153 includes, for example, an image of land 153A, an image of sky 153B, and an image of the horizon 153C which is a boundary between them.
  • the metering area 154 is set in the image area of the image 153.
  • the metering area 154 is smaller than the image area and is set in the center of the image area. However, the entire image area may be used as the metering area.
  • FIG. 7 is a diagram showing only the photometric area 154 of FIG.
  • the metering area 154 is divided into, for example, nine rectangular blocks B00 to B22. Each block B00 to B22 is arranged vertically and horizontally in 3 ⁇ 3. Each block B00 to B22 contains a plurality of pixels. The number of blocks and the arrangement for dividing the photometric area 154 may be different from those in FIG. 7. Further, the sizes and shapes of the blocks B00 to B22 do not have to be the same.
  • the block integration unit 141 adds the luminance values of the pixels included in each of the blocks B00 to B22 of the photometric area 152.
  • the value obtained for each block B00 to B22 as a result of the addition is referred to as a block integral value.
  • the block integration unit 141 supplies the calculated block integration values of the blocks B00 to B22 to the weight calculation unit 142.
  • the weight calculation unit 142 acquires the block integral value of each block B00 to B22 from the block integral unit 141.
  • the weight calculation unit 142 acquires the relative position / orientation of the IMU coordinate system, which is the amount of change in the position / attitude of the IMU21, from the INS processing unit 41 also shown in FIGS. 1 and 2.
  • the weight calculation unit 142 acquires the absolute position and orientation of the camera coordinate system estimated by the filter processing unit 46 of the SLAM processing unit 25 in FIG.
  • the weight calculation unit 142 is based on the relative position / orientation of the IMU coordinate system from the INS processing unit 41 and the absolute position / orientation of the camera coordinate system from the filter processing unit 46.
  • the absolute position and orientation are calculated, and the gravity vector representing the gravity direction and magnitude in the image coordinate system is calculated.
  • FIG. 8 is a diagram illustrating the gravity vector calculated by the weight calculation unit 142.
  • FIG. 8 shows the image 153 and the metering area 154 shown in FIG. 7.
  • the gravity vector 155 calculated by the weight calculation unit 142 is shown.
  • the starting point of the gravity vector 155 is the center of the image 153 (the center of the photometric area 154).
  • the gravity vector 155 is acquired and represents the direction of gravity on the image 153, that is, the direction of the ground (ground).
  • the gravity vector 155 will be described later.
  • the weight calculation unit 142 determines the weight (weight coefficient) to be multiplied by the block integral value of each block B00 to B22 in the metering area 154 based on the gravity vector 155, and calculates the weighted sum. At this time, the weight calculation unit 142 increases the weight for the block set in the image area on the ground and decreases the weight for the block set in the empty image area. As a result, the exposure is performed with the influence of the brightness of the image portion of the sky reduced.
  • the weight calculation unit 142 supplies the calculated weighted sum to the exposure calculation unit 143 as a detection value of the brightness indicating the brightness of the image.
  • the exposure calculation unit 143 calculates an appropriate exposure value based on the detection value from the weight calculation unit 142 and supplies it to the exposure control unit 121.
  • FIG. 9 is a diagram illustrating a comparative form of the exposure processing unit 23.
  • the exposure processing unit 23 in FIG. 9 has an exposure control unit 121 and an AE detection processing unit 122.
  • the AE detection processing unit 122 of FIG. 9 has a block integration unit 141, a total calculation unit 142P, and an exposure calculation unit 143. Therefore, the exposure processing unit 23 of FIG. 9 is common to the case of FIG. 5 in that it has an exposure control unit 121, an AE detection processing unit 122, a block integration unit 141, and an exposure calculation unit 143.
  • the exposure processing unit 23 of FIG. 9 is different from the case of FIG. 5 in that the total sum calculation unit 142P is provided instead of the weight calculation unit 142 of FIG.
  • the total sum calculation unit 142P in the exposure processing unit 23 of FIG. 9 calculates the total of the block integral values of the blocks B00 to B22 supplied from the block integral unit 141.
  • the total sum calculation unit 142P supplies the calculated total sum to the exposure calculation unit 143 as a detection value of the brightness indicating the brightness of the image.
  • the empty image portion is bright, so that each block B00 to the light measuring area 154 is formed.
  • the sum of the block integral values of B22 added as they are is also high. Therefore, the detection value supplied from the total sum calculation unit 142P to the exposure calculation unit 143 also increases, and the appropriate exposure value supplied from the exposure calculation unit 143 to the exposure control unit 121 also increases.
  • the exposure control unit 121 controls the exposure in the direction of darkening the image
  • the image on the ground becomes dark as a whole and exists on the ground instead of the image in which clouds and the like existing in the sky are easily recognized.
  • the image is difficult to recognize. That is, the contrast of the image on the ground is unlikely to be high. Since the sky is considered to exist at infinity, the feature points detected in the sky cannot be used for estimating the position and orientation because the depth information is unclear.
  • the brightness of the image detected by the photometric area 154 is less affected by the sky image, and the brightness of the image is controlled so that the contrast of the image on the ground is increased.
  • FIG. 10 is a block diagram illustrating the configuration of the weight calculation unit 142 of FIG.
  • the weight calculation unit 142 includes an absolute posture calculation unit 161, a gravity direction calculation unit 162, a base region detection unit 163, a brightness determination weight calculation unit 164, and an empty determination weight calculation unit 165.
  • the absolute attitude calculation unit 161 is from the time when the SLAM processing unit 25 (filter processing unit 46) in FIG. 1 previously estimated the absolute attitude of the camera coordinate system (aircraft coordinate system) (the time step t is -1) to the present time (the time step t is -1).
  • the relative posture ⁇ R of the IMU coordinate system which is the amount of change in the position and posture of the IMU 21 until the time step t is set to 0), is acquired from the INS processing unit 41 shown in FIGS. 1 and 5. In FIG. 10, the INS processing unit 41 is omitted.
  • a transposed matrix of (I R C) T is the rotation matrix for converting coordinates from the camera coordinate system to the IMU coordinate system (I R C).
  • ( IR C ) T is predetermined by calibration.
  • FIG. 11 is a diagram illustrating a calculation procedure of the gravity vector 155 on the image.
  • the projection surface (camera screen) 171 represents a virtual surface on which an image equivalent to the image taken by the camera 22 is projected when the camera 22 is represented by a perspective projection model.
  • the image coordinate system fixed on the image is fixed on the camera screen 171.
  • the camera screen 171 may be regarded as a light receiving surface of the image sensor of the camera 22.
  • the image coordinate system on the camera screen 171 maintains a constant relative posture with respect to the camera coordinate system.
  • the gravity direction calculation unit 162 grasps the relative posture between the camera coordinate system and the image coordinate system.
  • the gravity direction calculation unit 162 calculates the absolute posture of the image coordinate system from the absolute posture of the camera coordinate system from the absolute posture calculation unit 161 and the relative posture of the camera coordinate system and the image coordinate system.
  • the gravity direction calculation unit 162 projects the gravity direction vector W G, which represents the gravity direction in the absolute coordinate system as a unit vector, onto the camera screen 171 in the normal direction of the camera screen 171. As a result, the gravity direction vector CU in the image coordinate system is obtained.
  • x, y, and z are calculated by the absolute posture of the camera coordinate system from the absolute posture calculation unit 161.
  • the direction perpendicular to the camera screen 171 is the z-axis direction
  • the horizontal direction of the camera screen 171 is the x-axis direction
  • the vertical direction of the camera screen 171 image coordinates
  • the y-axis direction of the system is set as the y-axis direction.
  • Gravity direction vector C U represents a gravity vector 155 on the image 153 shown in FIG. 8 (image coordinate system).
  • the gravity direction calculation unit 162 supplies the calculated gravity vector 155 to the base region detection unit 163.
  • the gravity direction calculation unit 162 calculates the angle ⁇ formed by the gravity direction vector CU and the camera screen 171 (gravity direction vector CW), and supplies the angle ⁇ to the empty determination weight calculation unit 165.
  • the base region detection unit 163 acquires the gravity vector 155 from the gravity direction calculation unit 162, it detects the block pointed to by the gravity vector 155 among the blocks B00 to B22 (see FIG. 9) of the photometric area 154. Then, the base region detection unit 163 sets the block pointed to by the gravity vector 155, or the block and the surrounding blocks as the base region.
  • the base area detection unit 163 sets the block integral value obtained by integrating the luminance values of the pixels included in the block as the base integral value.
  • the base region detection unit 163 uses a weighted average (weighted average) in which a predetermined weight is given to the block integral value of those blocks as the base integral value.
  • the base integral value is used as a reference value representing the brightness value of the image on the ground.
  • FIG. 12 is a diagram illustrating the setting of the base area in the metering area 154.
  • the image in which the metering area 154 is set is omitted.
  • the end point of the gravity vector 155 is at the substantially center of the block B01, and the gravity vector 155 points to the substantially center of the block B01.
  • the base region detection unit 163 limits only the block pointed to by the gravity vector 155 as one pattern to the base region. Set as.
  • the base region detection unit 163 sets the block pointed to by the gravity vector 155 and two blocks adjacent to the block (excluding the central block B11) as the base region.
  • block B00, block B01, and block B02 are set as the base region, if the respective block integral values are represented by B00, B01, and B02, the weighted average calculated by (B00 + 2, B01 + B02) / 4 is obtained. It is set as the base integrated value.
  • pattern C which is the same pattern as pattern A
  • the end point of the gravity vector 155 is at the substantially center of block B02, and points to the substantially center of block B02.
  • this pattern C as well, as in the case of the pattern A, only the block B02 is set as the base region, or the block B02 and the blocks B01 and B12 adjacent to the block B02 are set as the base region.
  • block B01, block B02, and block B12 are set as the base region, if the respective block integral values are represented by B01, B02, and B12, the weighted average calculated by (B01 + 2, B02 + B12) / 4 is obtained. It is set as the base integrated value.
  • pattern F which is the same pattern as pattern A
  • the end point of the gravity vector 155 is at the substantially center of block B12, and points to the substantially center of block B12.
  • this pattern F as in the case of the pattern A, only the block B12 is set as the base region, or the block B12 and the blocks B02 and B22 adjacent to the block B12 are set as the base region.
  • block integral value of block B12 is set as the base integral value.
  • block B02, block B12, and block B22 are set as the base region, if the respective block integral values are represented by B02, B12, and B22, the weighted average calculated by (B02 + 2, B11 + B22) / 4 is obtained. It is set as the base integrated value.
  • the base region detection unit 163 determines the two blocks adjacent to each other as one pattern. Is set as the base area. As another pattern, the base region detection unit 163 sets two blocks adjacent to each other and two other blocks adjacent to each of the two blocks as a base region.
  • the block B01 and the block B02 are set as the base area, or the block B01 and the block B02 and the blocks B00 and B12 adjacent to them are set as the base area, respectively.
  • the weighted average calculated by (B01 + B02) / 2 is set as the base integrated value when the respective block integral values are represented by B01 and B02.
  • block B00, block B01, block B02, and block B12 are set as the base region
  • the block integral values represented by B00, B01, B02, and B12 are (B00 + 3, B01 + 3, B02 + B12) / 8
  • the weighted average calculated by is set as the base integrated value.
  • pattern E which is the same pattern as pattern B
  • the end point of the gravity vector 155 is near the boundary between the block B02 and the block B12
  • the gravity vector 155 points to the vicinity of the boundary between the block B02 and the block B12.
  • the blocks B02 and B12 are set as the base area, or the blocks B02 and B12 and the blocks B01 and B22 adjacent to them are set as the base areas, respectively. Will be done.
  • block integral values are represented by B01, B02, B12, and B22 as (B01 + 3, B02 + 3, B12 + B22) / 8
  • the weighted average calculated by is set as the base integrated value.
  • the block B20 and the block B21 It may be near the boundary between block B10 and block B20, near the boundary between block B00 and block B10, or near the boundary between block B00 and block B01. Since these cases are the same as the cases of pattern B and pattern E, the description thereof will be omitted.
  • the base region detection unit 163 supplies the calculated base integral value to the luminance determination weight calculation unit 164.
  • the brightness determination weight calculation unit 164 acquires the base integral value from the base region detection unit 163.
  • the luminance determination weight calculation unit 164 acquires the block integration values of the blocks B00 to B22 (see FIG. 9) of the photometric area 154 from the block integration unit 141 of FIG.
  • the weight calculation unit 142 calculates the weight (weight coefficient) Wi i to be multiplied by each block integral value when calculating the weighted sum of the block integral values of the blocks B00 to B22 in the photometric area 154.
  • i is an identification number associated with each block B00 to B22 on a one-to-one basis.
  • Brightness determination weight calculation unit 164 a brightness determination weight w i is a factor that determines the weight W i, is calculated by the following equation (8).
  • sum i represents the block integral value of the identification number i
  • sum base represents the base integral value
  • represents the adjustment parameter.
  • the luminance determination weight w i becomes smaller, so that the contribution rate to the exposure control becomes lower. For example, the effect on exposure control of bright image areas such as the sky is reduced. Further, as ⁇ is larger, the luminance determination weight w i is less likely to become smaller, so that the image tends to be brighter as a whole.
  • Brightness determination weight calculation unit 164 supplies the luminance determination weight w i for each block B00 to B22 calculated emptied determining the weight calculation section 165.
  • Check determining the weight calculation unit 165 calculates an image 153 taken by the camera 22 as a factor in determining the weight W i certainty that contains empty image (see FIG. 6) (or likelihood).
  • the sky determination weight calculation unit 165 detects whether or not the image region on the ground and the image region in the sky are polarized when the luminance histogram is obtained along the axis of the gravity vector 155 on the image 153.
  • the sky determination weight calculation unit 165 simply determines a bipolar determination value Da that indicates a large value when the image 153 is polarized between the ground image region and the sky image region. Calculated by the following equation (9).
  • w diag is the brightness determination weight w i of the block (diagonal block) located diagonally to the block of the photometric area 154 set as the base area by the base area detection unit 163.
  • C is an arbitrary constant for adjustment.
  • the diagonal block is also a block at a position symmetrical with respect to the block in the base region with the center of the photometric area 154 (image) as the point of symmetry.
  • the bipolar determination value Da can be the accuracy that the image 153 includes an empty image area.
  • the bipolar determination value Da is calculated by setting the weighted average of the brightness determination weight w i of the diagonal blocks for each block as w diag.
  • the weight at this time may be the same as the weight for each block when calculating the base integral value. Further, even when the diagonal block with respect to the block in the base region is singular, the blocks around the diagonal block may be used as the diagonal block.
  • the empty determination weight calculation unit 165 calculates the luminance determination value Db by the following equation (10) based on the block integral value of the diagonal block with respect to the block in the base region.
  • sum ref is a luminance value (threshold value) for determining whether or not it is empty
  • sum diag is a block integral value of a diagonal block with respect to a block in the base region
  • ⁇ ' is for adjustment. It is an arbitrary constant.
  • the luminance determination value Db can be the accuracy that the image 153 includes an empty image region.
  • the sky determination weight calculation unit 165 acquires the angle ⁇ formed by the gravity direction vector C U calculated by the gravity direction calculation unit 162 and the camera screen 171 (gravity direction vector C W), and the shooting direction of the camera 22 is changed.
  • the horizontal determination value Dc for determining whether or not it is close to the horizontal direction is calculated by the following equation (11).
  • the horizontal determination value Dc can be the accuracy that the image 153 includes an empty image region.
  • the sky determination weight calculation unit 165 multiplies the above bipolar determination value Da, the luminance determination value Db, and the horizontal determination value Dc to determine the probability that the image 153 includes an empty image region, and the sky determination weight w sky. Is calculated by the following equation (12).
  • the image taken by the camera 22 includes an empty image area.
  • exposure control is performed with the influence of the sky image area reduced, and appropriate exposure control is performed for the image area on the ground. If the empty image area is not included, the exposure control is performed as usual. As a result, the feature points on the ground are appropriately detected in the extraction from the image taken by the camera 22, and the position and orientation of the moving body can be estimated appropriately.
  • FIG. 13 is a block diagram illustrating the flow of transmission information of the exposure processing unit 23.
  • the exposure processing unit 23 in FIG. 13 has an AE detection processing unit 122 and an exposure control unit 222.
  • the AE detection processing unit 122 is the AE detection processing unit 122 shown in FIG. 5, and is constructed by executing a program in the image processing calculation unit 221.
  • FIG. 13 differs from the case of FIG. 5 in that the image captured by the image sensor 22A of the camera 22 is supplied to the AE detection processing unit 122 without going through the exposure processing unit 23 of FIG.
  • the acceleration and acceleration detected by the IMU 21 are supplied to the AE detection processing unit 122.
  • the relative attitude of the IMU coordinate system calculated by the INS processing unit 41 is supplied to the AE detection processing unit 122, but the process of calculating the relative attitude of the IMU coordinate system based on the acceleration and the angular velocity from the IMU 21 is performed.
  • the AE detection processing unit 122 may perform this.
  • the AE detection processing unit 122 detects the gravity direction (gravity vector 155) on the image based on the acceleration and the angular velocity from the IMU 22, and the empty image region and the ground image region included in the image from the image sensor 22A. And are determined.
  • the AE detection processing unit 122 reduces the weight of the block integral value of the block set in the empty image area among the blocks B00 to B22 of the metering area 154, and weights the block integral value. calculate.
  • the AE detection processing unit 122 calculates an appropriate exposure value based on the weighted sum of the calculated block integral values, and supplies it to the exposure control unit 222.
  • the exposure control unit 222 does not acquire an image from the camera 22, and the shutter speed (exposure time), analog gain, digital gain, etc. of the image sensor 22A are transmitted by a control signal to the image sensor 22A. To control the exposure. If the camera 22 is provided with an aperture, the aperture may be controlled.
  • the exposure control unit 222 controls the exposure of the image sensor 22A and the like according to the exposure value from the AE detection processing unit 122.
  • FIG. 14 is a flowchart illustrating the procedure of the processing performed by the exposure processing unit 23.
  • step S11 the exposure processing unit 23 acquires an image from the camera 22 and acquires acceleration and angular velocity from the IMU 21.
  • the process proceeds from step S11 to step S12.
  • the exposure processing unit 23 may acquire the relative attitude of the IMU coordinate system from the INS processing unit 41 instead of acquiring the acceleration and the angular velocity from the IMU 21 as in the case of FIG.
  • step S12 the exposure processing unit 23 calculates the block integral value of each block B00 to B22 in the photometric area 154. The process proceeds from step S12 to step S13.
  • step S13 the exposure processing unit 23 calculates a weight to be multiplied by the block integral value calculated in step S12. The process proceeds from step S13 to step S14.
  • step S14 the exposure processing unit 23 calculates a weighted sum from the block integral value calculated in step S12 and the weight calculated in step S13, and uses the calculated weighted sum as a detection signal representing the brightness of the photometric area 154. Generate. The process proceeds from step S14 to step S15.
  • step S15 the exposure processing unit 23 performs exposure control following the detection signal generated in step S15. The process proceeds from step S15 to step S16.
  • step S16 the exposure processing unit 23 determines whether or not the end instruction has been given.
  • step S16 If it is determined in step S16 that the end instruction has not been given, the process returns from step S16 to step S11, and the process from step S11 is repeated.
  • step S16 If it is determined in step S16 that the end instruction has been given, the processing of this flowchart ends.
  • the brightness of the image area on the ground contributes more strongly to the exposure control of the camera 22 than the image area in the sky. Therefore, it is possible to prevent the situation where the contrast of the image on the ground is low and the feature points cannot be detected.
  • the IMU21 inertia sensor
  • a device that can detect and observe the direction of gravity may be used even if it is not the IMU21.
  • the sky determination weight w sky is used as the certainty that the image 153 includes an empty image region, and the bipolar determination value Da, the luminance determination value Db, and the brightness determination value Db are used.
  • the sky determination weight w sky may be obtained by any one or a plurality of these.
  • An arbitrary type and any number of determination values may be used in the calculation of the empty determination weight w sky , including the depth determination value Dd and the empty label determination value De described in the following embodiments.
  • the brightness determination weight w i may be used without using the sky determination weight w sky.
  • FIG. 15 is a block diagram illustrating the configuration of the second embodiment of the exposure processing unit.
  • the exposure processing unit 261 of FIG. 15 has an exposure control unit 121 and an AE detection processing unit 122A. Further, the AE detection processing unit 122A in FIG. 15 has a block integration unit 141, a weight calculation unit 142A, and an exposure calculation unit 143.
  • the exposure processing unit 261 of FIG. 15 is common to the case of FIG. 5 in that it has an exposure control unit 121, an AE detection processing unit 122A, a block integration unit 141, a weight calculation unit 142A, and an exposure calculation unit 143.
  • the exposure processing unit 261 of FIG. 15 is different from the case of FIG. 5 in that the weight calculation unit 142A acquires the depth information from the distance measuring sensor 251.
  • the ranging sensor 251 is a sensor that can acquire depth information of a subject such as a LIDAR (Light Detection and Ringing) or a stereo camera.
  • LIDAR Light Detection and Ringing
  • stereo camera a stereo camera
  • the depth information obtained by the distance measuring sensor 251 is supplied to the weight calculation unit 142A of the AE detection processing unit 122A.
  • FIG. 16 is a block diagram illustrating the configuration of the weight calculation unit 142A of FIG.
  • the weight calculation unit 142A of FIG. 16 has an absolute posture calculation unit 161, a gravity direction calculation unit 162, a base area detection unit 163, a brightness determination weight calculation unit 164, and an empty determination weight calculation unit 165A.
  • the weight calculation unit 142A of FIG. 16 has an absolute posture calculation unit 161, a gravity direction calculation unit 162, a base area detection unit 163, a brightness determination weight calculation unit 164, and an empty determination weight calculation unit 165A. It is common with the case of. However, the weight calculation unit 142A of FIG. 16 is different from the case of FIG. 10 in that the sky determination weight calculation unit 165A acquires the depth information from the distance measuring sensor 251.
  • the sky determination weight calculation unit 165A has a bipolar determination value Da (see equation (9)), a luminance determination value Db (see equation (10)), and a horizontal determination value, similarly to the sky determination weight calculation unit 165 of FIG. Calculate Dc (see equation (11)).
  • the sky determination weight calculation unit 165A acquires depth information from the ranging sensor 251. Then, the sky determination weight calculation unit 165A calculates the depth determination value Dd, which indicates a large value when the image of the diagonal block with respect to the block in the base region of the light measurement area 154 is empty, by the following equation (14).
  • dsum ref is a depth value (threshold value) for determining whether or not it is empty
  • dsum diag is a depth integral value in a diagonal block with respect to a block in the base region
  • is for adjustment. It is an arbitrary constant.
  • the depth determination value Dd can be the accuracy that the image 153 includes an empty image region.
  • the depth determination value Dd is calculated by using the weighted average of the depth integral values of the diagonal blocks for each block as the depth integral value dsum diag.
  • the weight at this time may be the same as the weight for each block when calculating the base integral value.
  • the blocks around the diagonal block may be used as the diagonal block. In that case, the weighted average of the depth integral values of the diagonal blocks is the depth integral value dsum diag .
  • the sky determination weight calculation unit 165A determines the accuracy that the image 153 includes an empty image region by multiplying the bipolar determination value Da, the luminance determination value Db, the horizontal determination value Dc, and the depth determination value Dd.
  • the sky determination weight w sky is calculated by the following equation (15).
  • the sky determination weight calculation unit 165A raises the weight (weight coefficient) Wi i to be multiplied by each block integral value when finally calculating the weighted sum of the block integral values of the blocks B00 to B22 in the metering area 154. Calculated by equation (13).
  • the exposure control is also appropriately performed.
  • FIG. 17 is a block diagram illustrating the flow of transmission information of the exposure processing unit 261 of FIG.
  • the exposure processing unit 261 of FIG. 17 has an AE detection processing unit 122A and an exposure control unit 222.
  • the exposure processing unit 261 of FIG. 17 is common to the case of FIG. 13 in that it has the AE detection processing unit 122A and the exposure control unit 222. However, the exposure processing unit 261 of FIG. 17 is different from the case of FIG. 13 in that the AE detection processing unit 122A acquires depth information from the distance measuring sensor 251.
  • the AE detection processing unit 122A acquires an image from the image sensor 22A, and acquires acceleration and angular velocity from the IMU 21. AE detection processing unit 122A by the information, as in the case of FIG. 13, calculated and the brightness determining weights w i for calculating a weighted sum of the block integration values of the respective blocks B00 to B22 of the photometric area, an empty judgment
  • the bipolar determination value Da, the luminance determination value Db, and the horizontal determination value Dc for calculating the weight w sky are calculated.
  • the AE detection processing unit 122A calculates the depth determination value Dd by acquiring the depth information from the distance measuring sensor 251.
  • the AE detection processing unit 122A uses the depth determination value Dd as one element for calculating the sky determination weight w sky. This improves the accuracy of the sky determination weight w sky.
  • FIG. 18 is a flowchart illustrating the procedure of the processing performed by the exposure processing unit 261 of FIGS. 15 and 17.
  • step S31 the exposure processing unit 261 acquires an image from the camera 22 and acquires acceleration and angular velocity from the IMU 21. Further, the exposure processing unit 261 acquires depth information from the distance measuring sensor 251. The process proceeds from step S31 to step S32.
  • steps S32 to S36 differ from the processes of steps S12 to S16 of FIG. 14 in detailed processing contents such as weight calculation contents, but the rough processing procedures are common, so the description thereof is omitted. do.
  • FIG. 19 is a block diagram illustrating the configuration of the third embodiment of the exposure processing unit.
  • the exposure processing unit 301 in FIG. 19 has an exposure control unit 121 and an AE detection processing unit 122B. Further, the AE detection processing unit 122B in FIG. 19 has a block integration unit 141, a weight calculation unit 142B, and an exposure calculation unit 143.
  • the exposure processing unit 301 of FIG. 19 is common to the case of FIG. 5 in that it has an exposure control unit 121, an AE detection processing unit 122B, a block integration unit 141, a weight calculation unit 142B, and an exposure calculation unit 143.
  • the exposure processing unit 301 of FIG. 19 is different from the case of FIG. 5 in that the weight calculation unit 142B acquires an empty label from the empty detection unit 321.
  • the sky detection unit 321 detects an empty image area from the image taken by the camera 22 by a machine learning model using DNN (Deep Neural Network). In addition, the sky detection unit 321 outputs a DNN (for example, Alex Kendall, Vijay Badrinarayanan, Roberto Cipolla (2017) "Bayesian SegNet: Model Uncertainty in Deep Convolutional Encoder- DecoderArchitectures for Scene Understanding ", BMVC) is used.
  • a DNN for example, Alex Kendall, Vijay Badrinarayanan, Roberto Cipolla (2017) "Bayesian SegNet: Model Uncertainty in Deep Convolutional Encoder- DecoderArchitectures for Scene Understanding ", BMVC
  • the weight calculation unit 142B calculates the sky determination weight w sky based on the sky label and the reliability probability from the sky detection unit 321.
  • FIG. 20 is a block diagram illustrating the configuration of the weight calculation unit 142B of FIG.
  • the weight calculation unit 142B of FIG. 20 has an absolute posture calculation unit 161, a gravity direction calculation unit 162, a base area detection unit 163, a brightness determination weight calculation unit 164, and an empty determination weight calculation unit 165B.
  • the weight calculation unit 142B of FIG. 20 has an absolute posture calculation unit 161, a gravity direction calculation unit 162, a base area detection unit 163, a brightness determination weight calculation unit 164, and an empty determination weight calculation unit 165B. It is common with the case of. However, the weight calculation unit 142B of FIG. 20 is different from the case of FIG. 10 in that the empty determination weight calculation unit 165B acquires an empty label and a reliability probability from the empty detection unit 321.
  • the sky determination weight calculation unit 165B has a bipolar determination value Da (see equation (9)), a luminance determination value Db (see equation (10)), and a horizontal determination value, similarly to the sky determination weight calculation unit 165 of FIG. Calculate Dc (see equation (11)).
  • the sky determination weight calculation unit 165B acquires an empty label representing an empty area included in the image taken by the camera 22 and its reliability probability from the sky detection unit 321 (see FIG. 19).
  • the sky determination weight calculation unit 165B calculates an empty label determination value De indicating a large value when the image of the diagonal block with respect to the block in the base region of the light measurement area 154 is empty by the following equation (16).
  • Isum ref is the confidence probability (threshold value) for determining whether or not it is empty
  • Isum diag is the confidence probability integral value of the empty label in the diagonal block with respect to the block in the base region
  • ⁇ ' is the confidence probability integral value of the empty label in the diagonal block with respect to the block in the base region
  • the empty label determination value De can be the certainty that the image 153 includes an empty image area.
  • the empty label determination value De is calculated by using the weighted average of the confidence probability integral values of the diagonal blocks for each block as the confidence probability integral value Isum diag.
  • the weight at this time may be the same as the weight for each block when calculating the base integral value.
  • the blocks around the diagonal block may be used as the diagonal block. In that case, the weighted average of the confidence probability integral values of the diagonal blocks is the confidence probability integral value Isum diag .
  • the sky determination weight calculation unit 165B multiplies the bipolar determination value Da, the luminance determination value Db, the horizontal determination value Dc, and the empty label determination value De to ensure that the image 153 includes an empty image area.
  • the sky determination weight w sky is calculated by the following equation (17).
  • the sky determination weight calculation unit 165B increases the weight (weight coefficient) Wi i to be multiplied by each block integral value when finally calculating the weighted sum of the block integral values of the blocks B00 to B22 in the metering area 154. Calculated by equation (13).
  • the exposure control is also appropriately performed.
  • FIG. 21 is a block diagram illustrating the flow of transmission information of the exposure processing unit 301 of FIG.
  • the exposure processing unit 301 in FIG. 21 has an AE detection processing unit 122B and an exposure control unit 222.
  • the exposure processing unit 301 of FIG. 17 is common to the case of FIG. 13 in that it has the AE detection processing unit 122B and the exposure control unit 222.
  • the exposure processing unit 261 of FIG. 21 is different from the case of FIG. 13 in that the AE detection processing unit 122B acquires an empty label and a reliability probability from the inference calculation unit (empty detection unit) 321.
  • the inference calculation unit 321 represents the sky detection unit 321 in FIG. 19 and performs arithmetic processing using a machine learning model.
  • the AE detection processing unit 122B acquires an image from the image sensor 22A, and acquires acceleration and angular velocity from the IMU 21. AE detection processing unit 122B by the information, as in the case of FIG. 13, calculated and the brightness determining weights w i for calculating a weighted sum of the block integration values of the respective blocks B00 to B22 of the photometric area, an empty judgment
  • the bipolar determination value Da, the luminance determination value Db, and the horizontal determination value Dc for calculating the weight w sky are calculated.
  • the AE detection processing unit 122B calculates the empty label determination value De by acquiring the empty label and the reliability probability from the inference calculation unit (empty detection unit) 321.
  • the AE detection processing unit 122B uses the empty label determination value De as one element for calculating the empty determination weight w sky. This improves the accuracy of the sky determination weight w sky.
  • FIG. 22 is a flowchart illustrating the procedure of the processing performed by the exposure processing unit 301 of FIG.
  • step S51 the exposure processing unit 301 acquires an image from the camera 22 and acquires acceleration and angular velocity from the IMU 21. The process proceeds from step S51 to step S52 and step S54.
  • step S52 the exposure processing unit 301 calculates the block integral value of each block B00 to B22 in the photometric area 154.
  • the process proceeds from step S52 to step S54.
  • the processing of steps S54 to S57 differs from the processing of steps S13 to S16 of FIG. 14 in detailed processing contents such as weight calculation contents, but the rough processing procedure is common, so the description thereof is omitted. do.
  • the brightness of the image area on the ground contributes more strongly to the exposure control of the camera 22 than the image area in the sky. Therefore, it is possible to prevent the situation where the contrast of the image on the ground is low and the feature points cannot be detected.
  • the series of processes in the SLAM processing unit 25 and the like described above can be executed by hardware or by software.
  • the programs constituting the software are installed in the computer.
  • the computer includes a computer embedded in dedicated hardware and, for example, a general-purpose personal computer capable of executing various functions by installing various programs.
  • FIG. 23 is a block diagram showing a configuration example of computer hardware that executes the above-mentioned series of processes by a program.
  • a CPU Central Processing Unit
  • ROM ReadOnly Memory
  • RAM RandomAccessMemory
  • An input / output interface 405 is further connected to the bus 404.
  • An input unit 406, an output unit 407, a storage unit 408, a communication unit 409, and a drive 410 are connected to the input / output interface 405.
  • the input unit 406 consists of a keyboard, mouse, microphone, etc.
  • the output unit 407 includes a display, a speaker, and the like.
  • the storage unit 408 includes a hard disk, a non-volatile memory, and the like.
  • the communication unit 409 includes a network interface and the like.
  • the drive 410 drives a removable media 411 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory.
  • the CPU 401 loads the program stored in the storage unit 408 into the RAM 403 via the input / output interface 405 and the bus 404 and executes the above-mentioned series. Is processed.
  • the program executed by the computer (CPU401) can be recorded and provided on the removable media 411 as a package media or the like, for example.
  • the program can also be provided via a wired or wireless transmission medium such as a local area network, the Internet, or digital satellite broadcasting.
  • the program can be installed in the storage unit 408 via the input / output interface 405 by mounting the removable media 411 in the drive 410. Further, the program can be received by the communication unit 409 via a wired or wireless transmission medium and installed in the storage unit 408. In addition, the program can be pre-installed in the ROM 402 or the storage unit 408.
  • the program executed by the computer may be a program in which processing is performed in chronological order according to the order described in the present specification, in parallel, or at a necessary timing such as when a call is made. It may be a program in which processing is performed.
  • a position / posture estimation unit that estimates the position and posture of the photographing unit or a moving body that moves integrally with the photographing unit based on the feature points of the captured image captured by the photographing unit.
  • An information processing device having a control unit that controls the brightness of the photographed image so that the image area on the ground included in the photographed image has an appropriate exposure.
  • the control unit The information processing apparatus according to (1) above, which specifies an image region on the ground based on the direction of gravity on the captured image.
  • the control unit The information processing device according to (2) above, which detects the direction of gravity on the captured image based on information from an inertial sensor that moves integrally with the imaging unit.
  • the control unit A weighting coefficient is set for each of the plurality of blocks in the metering area consisting of the plurality of blocks set in the image area of the captured image.
  • the information according to any one of (1) to (3) above, which controls the brightness of the photographed image based on the weighted sum using the weighting coefficient of the brightness value of the photographed image in each of the plurality of blocks. Processing equipment.
  • the control unit The weighting coefficient for the block set in the ground image area included in the captured image is set to a value larger than the weighting coefficient for the block set in the empty image area included in the captured image.
  • the information processing apparatus according to (4) above.
  • the control unit Among the plurality of blocks the block set in the ground image area is specified based on the direction of gravity on the captured image, and the brightness of the captured image in the block set in the ground image area. Using the value as a reference value, the weighting coefficient for each of the plurality of blocks is set according to the difference between the brightness value of the captured image and the reference value in each of the plurality of blocks (4) or (5).
  • the information processing device described in. (7) The control unit The information processing apparatus according to (6), wherein the weighting coefficient is reduced as the luminance value of the captured image in each of the plurality of blocks is larger than the reference value.
  • the control unit The information processing apparatus according to any one of (4) to (7) above, wherein the luminance value of the captured image in the block is an integral value obtained by integrating the luminance values of the pixels included in the block. (9) The control unit The weighting factor is changed to a value obtained by adding the weighting coefficient and 1 by the ratio of the probability that the empty image region is included in the captured image and (1-accuracy). The information processing apparatus according to any one of 8). (10) The certainty is a polarization determination value regarding the polarization of the brightness of the captured image, a brightness determination value regarding the magnitude of the brightness of the captured image, a horizontal determination value regarding the tilt of the imaging unit, a depth determination value regarding the depth of the subject, and a machine.
  • the information processing apparatus which is a value based on any one or a plurality of empty label determination values relating to the reliability probability for an empty region detected by the learning model.
  • the control unit The binarization is based on the weighting coefficient for the block set at a position symmetrical with the center of the captured image as a point of symmetry with respect to the block set in the ground image region included in the captured image.
  • the information processing apparatus according to (10) above, which calculates a determination value.
  • the control unit The block based on the brightness value of the captured image in the block set at a position symmetrical with the center of the captured image as a point of symmetry with respect to the block set in the ground image region included in the captured image.
  • the information processing apparatus according to (10) or (11) above, which calculates a brightness determination value.
  • the control unit The information processing apparatus according to any one of (10) to (12), wherein the horizontal determination value is calculated based on an angle corresponding to the shooting direction of the shooting unit.
  • the control unit The depth of the block set at a position symmetrical with the center of the captured image as the symmetry point with respect to the block set in the ground image area included in the captured image is acquired from the ranging sensor and acquired.
  • the information processing apparatus according to any one of (11) to (13) above, which calculates the depth determination value based on the depth information.
  • the control unit The information processing apparatus according to any one of (1) to (14), wherein the brightness of the captured image is controlled by controlling the exposure time or gain of the photographing unit.
  • Position / posture estimation unit and The position / orientation estimation unit of the information processing device having the control unit is Based on the feature points of the captured image captured by the photographing unit, the position and posture of the photographing unit or the moving body that moves integrally with the photographing unit are estimated.
  • the control unit An information processing method for controlling the brightness of a photographed image so that an image area on the ground included in the photographed image has an appropriate exposure.
  • a position / posture estimation unit that estimates the position and posture of the photographing unit or a moving body that moves integrally with the photographing unit based on the feature points of the captured image captured by the photographing unit.
  • a program for functioning as a control unit that controls the brightness of the captured image so that the image area on the ground included in the captured image has an appropriate exposure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Signal Processing (AREA)
  • Software Systems (AREA)
  • Artificial Intelligence (AREA)
  • Computing Systems (AREA)
  • Databases & Information Systems (AREA)
  • Evolutionary Computation (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Health & Medical Sciences (AREA)
  • Studio Devices (AREA)

Abstract

本技術は、撮影画像から特徴点を検出して自己等の位置や姿勢を推定する場合に、適切に露出を制御して特徴点の検出を適切に行えるようにする情報処理装置、情報処理方法、及び、プログラムに関する。 撮影部で撮影された撮影画像の特徴点に基づいて前記撮影部又は前記撮影部と一体的に移動する移動体の位置及び姿勢が推定され、前記撮影画像に含まれる地上の画像領域が適正露光となるように前記撮影画像の明るさが制御される。

Description

情報処理装置、情報処理方法、及び、プログラム
 本技術は、情報処理装置、情報処理方法、及び、プログラムに関し、特に、撮影画像から特徴点を検出して自己等の位置や姿勢を推定する場合に、適切に露出を制御して特徴点の検出を適切に行えるようにする情報処理装置、情報処理方法、及び、プログラムに関する。
 特許文献1乃至5には、車載カメラや監視カメラなどの特定用途のカメラにおいて独自の露出制御を行う技術が開示されている。
特開2009-157087号公報 特開平11-205663号公報 特開2012-75059号公報 特開2014-138277号公報 特開2007-228201号公報
 撮影画像から特徴点を検出して自己等の位置や姿勢を推定する場合に、露出が適切ではないために特徴点の検出が困難になる場合があった。
 本技術はこのような状況に鑑みてなされたものであり、撮影画像から特徴点を検出して自己等の位置や姿勢を推定する場合に、適切に露出を制御して特徴点の検出を適切に行えるようにする。
 本技術の情報処理装置、又は、プログラムは、撮影部で撮影された撮影画像の特徴点に基づいて前記撮影部又は前記撮影部と一体的に移動する移動体の位置及び姿勢を推定する位置姿勢推定部と、前記撮影画像に含まれる地上の画像領域が適正露光となるように前記撮影画像の明るさを制御する制御部とを有する情報処理装置、又は、そのような情報処理装置として、コンピュータを機能させるためのプログラムである。
 本技術の情報処理方法は、位置姿勢推定部と、制御部とを有する情報処理装置の前記位置姿勢推定部は、撮影部で撮影された撮影画像の特徴点に基づいて前記撮影部又は前記撮影部と一体的に移動する移動体の位置及び姿勢を推定し、前記制御部は、前記撮影画像に含まれる地上の画像領域が適正露光となるように前記撮影画像の明るさを制御する情報処理方法である。
 本技術においては、撮影部で撮影された撮影画像の特徴点に基づいて前記撮影部又は前記撮影部と一体的に移動する移動体の位置及び姿勢が推定され、前記撮影画像に含まれる地上の画像領域が適正露光となるように前記撮影画像の明るさが制御される。
本技術が適用された位置姿勢推定システムの全体構成の概略を例示したブロック図である。 INS処理部の構成を例示したブロック図である。 移動軌跡算出部の構成を例示したブロック図である。 位置姿勢推定部の構成を例示したブロック図である。 露出処理部の第1の実施の形態の構成を例示したブロック図である。 画像エリアに対して設定された測光エリアを例示した図である。 図6の測光エリアのみを表した図である。 重み算出部で算出された重力方向を例示した図である。 露出処理部の比較形態を例示した図である。 図5の重み算出部の構成を例示したブロック図である。 画像上での重力ベクトルの算出手順を説明する図である。 測光エリアにおけるベース領域の設定について説明する図である。 露出処理部の伝達情報の流れを例示したブロック図である。 露出処理部が行う処理の手順を例示したフローチャートである。 露出処理部の第2の実施の形態の構成を例示したブロック図である。 重み算出部の構成を例示したブロック図である。 図15の露出処理部の伝達情報の流れを例示したブロック図である。 図15の露出処理部が行う処理の手順を例示したフローチャートである。 露出処理部の第3の実施の形態の構成を例示したブロック図である。 図19の重み算出部の構成を例示したブロック図である。 図19の露出処理部の伝達情報の流れを例示したブロック図である。 図19の露出処理部が行う処理の手順を例示したフローチャートである。 一連の処理をプログラムにより実行するコンピュータのハードウエアの構成例を示すブロック図である。
 以下、図面を参照しながら本技術の実施の形態について説明する。
<<本技術が適用された位置姿勢推定システム>>
 図1は、本技術が適用された位置姿勢推定システムの全体構成の概略を例示したブロック図である。
 図1の位置姿勢推定システム11は、例えば、ドローン(無人航空機)、自動運転車両、ロボット等の移動体に搭載され、移動体の位置及び姿勢を検出(推定)する。なお、以下において、位置及び姿勢を位置姿勢ともいう。また、移動体の位置姿勢は、移動体が移動する3次元空間に設定された座標系を絶対座標系(ワールド座標系)とすると、移動体の位置姿勢は、移動体に固定された機体座標系の絶対座標系における位置姿勢を表す。機体座標系は、後述のIMU21に固定されたIMU座標系、後述のカメラ22に固定されたカメラ座標系、又は、これらの一定の関係を有する任意の座標系であってよい。以下の説明においては、機体座標系はカメラ座標系であるものとし、機体座標系という場合にはカメラ座標系を表すものとする。また、IMU座標系からカメラ座標系に座標を変換する変換行列はキャリブレーションにより事前に得られているものとする。
 図1の位置姿勢推定システム11は、IMU(Inertial Measurement Unit)21、カメラ(撮影部)22、露出処理部23、マップ記憶部24、及び、SLAM(Simultaneous Localization and Mapping)処理部25を有する。
 IMU21は、移動体に固定される。IMU21は、自己に設定されたIMU座標系の直交3軸方向の加速度、及び、直交3軸周りの角速度を検出し、SLAM処理部25に供給する。
 カメラ22は、IMU21に対して相対位置及び相対姿勢が不変な状態で移動体に固定される。カメラ22とIMU21とは、直接的に固定されていてもよいし、介在部材を介して固定されていてもよい。
 カメラ22は、撮像素子及びレンズを備える。カメラ22は、レンズにより撮像素子の受光面に結像された被写体の画像を光像から電気信号に変換し、露出処理部23に供給する。カメラ22から露出処理部23へは、1フレーム(コマ)分ずつの画像が所定周期で繰り返し供給される。
 露出処理部23は、カメラ22からの画像の明るさを調整し、調整後の画像をSLAM処理部25に供給する。なお、後述の図10で説明するように露出処理部23は、カメラ22の露出制御を行うことでカメラ22から出力される画像の明るさを調整するだけでなく、カメラ22からの画像に対する信号処理(ゲイン調整等)により画像の明るさを調整する場合の処理も含む。
 マップ記憶部24は、SLAM処理部25で作成された地図情報を記憶する。地図情報は、キーフレーム情報及びマップポイント情報を含む。
 キーフレーム情報は、複数のキーフレームを含む。キーフレームは、SLAM処理において、カメラ22が撮影した画像(フレーム)のうち、絶対座標系におけるカメラ22(カメラ座標系)の位置姿勢の推定に用いられるフレームである。また、キーフレーム情報は、複数のキーフレームのそれぞれを識別するキーフレームID、それぞれのキーフレームを撮影した時のカメラ22の位置姿勢と、各キーフレーム中に含まれる特徴点の情報を含む。
 特徴点の情報は、各キーフレーム内における各特徴点の2次元位置、特徴量、及び、各特徴点に対応するマップポイントのマップポイントIDを含む。
 特徴点とは、キーフレーム(画像)中の、エッジ部分やコーナー部分等、画像内の特徴的な部分の点である。また、キーフレーム中に特徴点として写された3次元空間の被写体上の各点がマップポイントである。
 マップポイント情報は、各特徴点に対応したマップポイントの3次元位置の情報と、各マップポイントを識別するマップポイントIDである。
 SLAM処理部25は、IMU21からの加速度及び角速度と、露出処理部23からの画像と、マップ記憶部24からの地図情報とに基づいて、移動体(機体座標系)の位置姿勢を推定する。上述のように、本形態の説明では、カメラ座標系を機体座標系としているため、SLAM処理部25は、移動体の位置姿勢として、カメラ22(カメラ座標系)の位置姿勢を推定する。SLAM処理部25は、推定した移動体(カメラ22)の位置姿勢を外部の処理部に供給する。外部の処理部は、特定の処理を行う処理部に限定されない。
 SLAM処理部25は、INS(Inertial Navigation System)処理部41、絶対位置姿勢算出部42、移動軌跡算出部(Visual Odometry)43、絶対位置姿勢算出部44、位置姿勢推定部45、及び、フィルタ処理部46を有する。
 INS処理部41は、IMU21からの加速度及び角速度を所定時間(期間Δt)置きに取得し、期間Δtごとに期間Δtの間に生じた絶対座標系におけるIMU21(IMU21に固定されたIMU座標系)の位置姿勢の変化量(相対位置姿勢)を算出する。
 また、INS処理部41は、SLAM処理部25で推定される加速度バイアス及び角速度バイアスをSLAM処理部25から取得する。INS処理部41は、相対位置姿勢を算出する際に、IMU21からの加速度及び角速度に含まれるバイアスノイズである加速度バイアス及び角速度バイアスをSLAM処理部25からの加速度バイアス及び角速度バイアスにより除去する。相対位置姿勢を算出する際には、IMU21からの加速度及び角速度の積分が行われる。そのため、IMU21からの加速度及び角速度に含まれるバイアスノイズも積分されて誤差の増大を招く可能性がある。INS処理部41はバイアスノイズを除去して誤差を低減する。
 INS処理部41は、算出したIMU22(IMU座標系)の相対位置姿勢を絶対位置姿勢算出部42に供給する。
 絶対位置姿勢算出部42は、INS処理部41からのIMU座標系の相対位置姿勢に基づいて、絶対座標系における移動体(機体座標系)の位置姿勢(絶対位置姿勢)を算出し、フィルタ処理部46に供給する。即ち、絶対位置姿勢算出部42は、INS処理部41からIMU座標系の相対位置姿勢が供給されるごとに、IMU座標系の相対位置姿勢を機体座標系であるカメラ座標系の相対位置姿勢に変換する。そして、絶対位置姿勢算出部42は、変換後のカメラ座標系の相対位置姿勢を、前回までの相対位置姿勢により算出したカメラ座標系の絶対位置姿勢に加算(加味)して、現在のカメラ座標系の絶対位置姿勢を算出する。
 絶対位置姿勢算出部42は、算出したカメラ座標系の絶対位置姿勢を機体座標系の絶対位置姿勢としてフィルタ処理部46に供給する。
 移動軌跡算出部43は、カメラ22で撮影された画像を露出処理部23から取得する。また、移動軌跡算出部43は、1フレーム(コマ)分ずつの画像を所定周期で取得する。尚、図1では、移動軌跡算出部43に対して、露出処理部23から過去の所定の時点で供給された画像(過去画)と現時点で供給された画像(現在画)とが、実際と相違して説明上のために並列に供給されているように表されている。
 移動軌跡算出部43は、露出処理部23からの過去画と現在画とに基づいて、過去画が撮影された時点から現在画が撮影された時点までの間に生じたカメラ22(カメラ座標系)の位置姿勢の変化量(相対位置姿勢)を算出する。カメラ座標系の相対位置姿勢は、本実施の形態では、移動体(機体座標系)の相対位置姿勢である。
 移動軌跡算出部43は、算出したカメラ座標系の相対位置姿勢を絶対位置姿勢算出部44に供給する。
 絶対位置姿勢算出部44は、移動軌跡算出部43からのカメラ座標系の相対位置姿勢に基づいて、絶対座標系における移動体(カメラ22)の位置姿勢(絶対位置姿勢)を算出し、フィルタ処理部46に供給する。即ち、絶対位置姿勢算出部42は、移動軌跡算出部43からカメラ座標系の相対位置姿勢が供給されるごとに、その相対位置姿勢を、前回までの相対位置姿勢により算出したカメラ座標系の絶対位置姿勢に加算(加味)して、現在のカメラ座標系の絶対位置姿勢を算出する。
 絶対位置姿勢算出部44は、算出したカメラ座標系の絶対位置姿勢を機体座標系の位置姿勢としてフィルタ処理部46に供給する。
 位置姿勢推定部45は、露出処理部23からの画像(現在画)とマップ記憶部24からの取得したキーフレーム情報及びマップポイント情報とに基づいて、絶対座標系におけるカメラ座標系の絶対位置姿勢を推定する。位置姿勢推定部45は、推定したカメラ座標系の絶対位置姿勢を機体座標系の絶対位置姿勢としてフィルタ処理部46に供給する。
 フィルタ処理部46は、絶対位置姿勢算出部42、絶対位置姿勢算出部44、及び、位置姿勢推定部45からそれぞれ供給されるカメラ座標系(機体座標系)の絶対位置姿勢に基づいて、例えば、カルマンフィルタの処理により、真値に対する誤差共分散が小さくなるように、カメラ座標系(機体座標系)の絶対位置姿勢を推定する。フィルタ処理部46は、推定したカメラ座標系(機体座標系)の絶対位置姿勢を外部の処理部に供給する。
 また、フィルタ処理部46は、推定したカメラ座標系(機体座標系)の絶対位置姿勢に基づいてIMU22で検出される加速度及び角速度に含まれるバイアスノイズ(加速度ノイズ及び角速度ノイズ)を算出し、INS処理部41に供給する。
 また、フィルタ処理部46は、推定した絶対位置姿勢をマップ記憶部24(位置姿勢推定部45)に供給し、推定した絶対位置姿勢に対応するキーフレーム情報及びマップポイント情報をマップ記憶部24から位置姿勢推定部45に供給させる。
(INS処理部41)
 図2は、INS処理部41の構成を例示したブロック図である。
 INS処理部41は、バイアス除去部61、及び、積分部62を有する。
 バイアス除去部61は、IMU21からの加速度am及び角速度ωmから、フィルタ処理部46からの加速度バイアスba及び角速度バイアスbgを取得する。そして、バイアス除去部61は、加速度amから加速度バイアスbaを除去した加速度aを、次式、
 a=am-ba
により算出する。
 また、フィルタ処理部46は、角速度ωmから角速度バイアスbgを除去した角速度ωを、次式、
 ω=ωm-bg
により算出する。
 バイアス除去部61は、算出した加速度a及び角速度ωを、積分部62に供給する。
 積分部62は、バイアス除去部61からの加速度a及び角速度ωに基づいて、積分に相当する処理を実行して、IMU21(IMU座標系)の相対位置姿勢を算出し、図1の絶対位置姿勢算出部42に供給する。
 具体的には、積分部62は、バイアス除去部61から加速度及び角速度を所定時間(期間Δt)置きに取得する。その期間ΔtにおけるIMU21の姿勢の変化(相対姿勢)は、クォータニオンを用いて次式(1)により表される。
Figure JPOXMLDOC01-appb-M000001
 ただし、q=(qx,qy,qz)であり、次式(2)が適用される。
Figure JPOXMLDOC01-appb-M000002
 なお、角速度ωtの添字tは、時間ステップ(数)を表し、角速度ωtは、バイアス除去部61から取得されたt番目の角速度ωであることを表す。また、角速度ωtは、IMU21により検出されるIMU座標系の各3軸周りの角速度を成分とするベクトルである。
 また、クォータニオンのqx、qy、及び、qzは、虚数成分を表し、クォータニオンのqwは、実数成分を表す。
 積分部62は、クォータニオンの各成分を用いて表される次式(3)の回転行列ΔRを算出する。
Figure JPOXMLDOC01-appb-M000003
 ただし、次式(4)が適用される。
Figure JPOXMLDOC01-appb-M000004
 回転行列ΔRは、時間ステップtから時間ステップt+1までの期間ΔtにおけるIMU21(IMU座標系)の姿勢の変化(相対姿勢)を表す。また、回転行列ΔRは、絶対座標系における移動体(機体座標系)の姿勢の変化(相対姿勢)に相当する。
 また、積分部62は、式(3)で算出した回転行列ΔRを用いて次式(5)の相対位置ΔPを算出する。
Figure JPOXMLDOC01-appb-M000005
 ただし、速度Vtは、時間ステップtでのIMU21の速度を表す。回転行列Rtは、絶対座標系における時間ステップtでのIMU21(IMU座標系)の絶対姿勢を表す。加速度atは、時間ステップtでのIMU21により検出されるIMU座標系の各3軸方向の加速度を成分とするベクトルである。重力加速度gは、絶対座標系の各軸方向の重力加速度を成分とするベクトルである。
 相対位置ΔPは、時間ステップtから時間ステップt+1までの期間ΔtにおけるIMU21(IMU座標系)の位置の変化(相対位置)を表す。また、相対位置ΔPは、絶対座標系における移動体(カメラ22)の位置の変化(相対位置)に相当する。
(移動軌跡算出部43)
 図3は、移動軌跡算出部43の構成を例示したブロック図である。
 移動軌跡算出部43は、特徴点抽出部81、特徴点マッチング部82、及び、位置姿勢推定部83を有する。
 特徴点抽出部81は、図1の露出処理部23からの画像から特徴点を抽出する。図3では、特徴点抽出部81が2つ示されているが実際には同一の処理部である。2つの特徴点抽出部81のうち、上側は、現時点よりも所定時間(所定フレーム)前の時点での特徴点抽出部81を表し、下側は、現時点での特徴点抽出部81を表す。
 上側の特徴点抽出部81は、露出処理部23から現時点よりも所定時間(所定フレーム)前の時点で供給された過去の画像(過去画)から複数の特徴点を抽出する。
 下側の特徴点抽出部81は、露出処理部23から現時点で供給された現在の画像(現在画)から複数の特徴点を抽出する。
 過去画は現在画に対して所定フレーム前の画像である。特徴点抽出部81に現在画が供給された後、所定フレーム分の時間が経過して新たな画像が特徴点抽出部81に供給されると、現在画は過去画となる。
 なお、特徴点抽出部81が現在画を取得する際には、過去画において検出される特徴点の絶対座標は検出済みとなっている。特徴点の絶対座標とは、画像上の特徴点に対応する実体上の点(絶対座標系における3次元座標)のことを表す。
 特徴点抽出部81は、過去画において検出された特徴点の画像上での位置(画像座標系における2次元座標)及び絶対座標を特徴点マッチング部82に供給する。
 また、特徴点抽出部81は、現在画において検出された特徴点の画像上での位置(画像座標系における2次元座標)を特徴点マッチング部82に供給する。
 特徴点マッチング部82は、特徴点抽出部81において検出された過去画における特徴点と、現在画における特徴点とのうち、実体上の同一の点に対応する特徴点同士をマッチングする。特徴点マッチング部82におけるマッチングの処理では、過去画が撮影された時刻と現在画が撮影された時刻とが近接しているので、過去画における各特徴点を画像上で追尾する処理であってよい。例えば、特徴点マッチング部82は、過去画の各特徴点と、それらの特徴点に対して画像座標系上で近接する現在画の特徴点とをマッチングする。ただし、特徴点マッチング部82は、各特徴点の特徴量に基づいてマッチングの処理を行ってもよい。
 また、特徴点マッチング部82は、現在画の各特徴点の絶対座標系における2次元座標と、現在画の各特徴点に対してマッチングした過去画の各特徴点の絶対位置と、現在画の各特徴点の画像座標系における2次元座標とを、位置姿勢推定部83に供給する。
 位置姿勢推定部83は、特徴点マッチング部82からの現在画の各特徴点の絶対座標系における2次元座標と、現在画の各特徴点に対してマッチングされた過去画の各特徴点の絶対位置と、現在画の各特徴点の画像座標系における2次元座標とに基づいて、過去画を撮影した時点から、現在画を撮影した現時点までの間にカメラ22(カメラ座標系)が移動した位置姿勢の変化量(相対位置姿勢)を推定する。位置姿勢推定部83は、推定したカメラ座標系の相対位置姿勢を図1の絶対位置姿勢算出部44に供給する。
(位置姿勢推定部45)
 図4は、位置姿勢推定部45の構成を例示したブロック図である。
 位置姿勢推定部45は、特徴量抽出部101、画像検索部102、特徴量マッチング部103、及び、位置姿勢推定部104を有する。
 特徴量抽出部101は、図1の露出処理部23からの画像から特徴点を抽出し、各特徴点の特徴量を抽出する。
 特徴量抽出部101は、抽出した特徴点の画像上での位置(画像座標系での2次元座標)と、抽出した各特徴点の特徴量とを、特徴量マッチング部103に供給し、抽出した各特徴点の特徴量を画像検索部102に供給する。
 画像検索部102は、特徴量抽出部101からの各特徴点の特徴量に基づいて、現在画の各特徴点を最も多く含むキーフレームをマップ記憶部24から検索する。即ち、画像検索部102は、マップ記憶部24に記憶されているキーフレーム情報に含まれる各キーフレームが有する特徴点の特徴量のうち、現在画の各特徴点の特徴量と合致する特徴量を検出する。そして、画像検索部102は、検出した特徴量の特徴点を最も多く含むキーフレームのキーフレームIDを検出する。画像検索部102は、検出したキーフレームIDのキーフレームと、そのキーフレームに含まれる各特徴点の画像座標系における2次元座標と、そのキーフレームを撮影した際のカメラ座標系の絶対位置姿勢とをマップ記憶部24のキーフレーム情報から取得する。
 また、画像検索部102は、検出したキーフレームIDのキーフレームに含まれる特徴点に対応付けられたマップポイントIDのマップポイントの絶対座標をマップ記憶部24のマップポイント情報から取得する。
 画像検索部102は、マップ記憶部24から取得した情報を特徴量マッチング部103に供給する。
 特徴量マッチング部103は、特徴量抽出部101からの現在画の各特徴点と、画像検索部102からのキーフレームの各特徴点とのうち、それらの特徴量が合致する特徴点同士をマッチングする。即ち、特徴量マッチング部103は、同一のマップポイントに対応する特徴点同士をマッチングする。
 特徴量マッチング部103は、現在画の各特徴点の絶対座標系における2次元座標を位置姿勢推定部104に供給する。また、特徴量マッチング部103は、現在画の各特徴点に対してマッチングしたキーフレームの各特徴点の絶対位置(各特徴点に対応するマップポイントの絶対座標系における3次元座標)と、キーフレームの各特徴点の画像座標系における2次元座標と、キーフレームを撮影した際のカメラ22(カメラ座標系)の絶対位置姿勢とを、位置姿勢推定部104に供給する。
 位置姿勢推定部104は、特徴量マッチング部103からの現在画の各特徴点の2次元座標と、現在画の各特徴点に対してマッチングされたキーフレームの各特徴点の絶対位置と、キーフレームの各特徴点の2次元座標と、キーフレームを撮影した際のカメラ22(カメラ座標系)の絶対位置姿勢とに基づいて、現在画を撮影した際のカメラ座標系の絶対位置姿勢を推定する。位置姿勢推定部104は、推定したカメラ座標系の絶対位置姿勢を、図1のフィルタ処理部46に供給する。
 また、位置姿勢推定部104は、現在画の中に絶対座標が特定されていない特徴点が存在する場合には、その新たな特徴点の絶対座標を算出する。位置姿勢推定部83は、現在画をキーフレーム情報のキーフレームとし、算出した特徴点の絶対座標をマップポイント情報のマップポイントの絶対座標としてマップ記憶部24に登録する。
(露出処理部23)
 図5は、露出処理部23の第1の実施の形態の構成を例示したブロック図である。
 露出処理部23は、露出制御部121、及び、AE検波処理部122を有する。
 露出制御部121は、図1のカメラ22からの画像の明るさを制御し、制御後の画像を図1のSLAM処理部25の移動軌跡算出部43及び位置姿勢推定部45に供給する。図5では、露出制御部121が2つ示されているが実際には同一の処理部である。2つの露出制御部121のうち、上側は、現時点よりも所定時間(所定フレーム)前の時点での露出制御部121を表し、下側は、現時点での露出制御部121を表す。
 上側の露出制御部121は、カメラ22から現時点よりも所定時間(所定フレーム)前に供給された過去の画像(過去画)の明るさを制御する。
 下側の露出制御部121は、カメラ22から現時点で供給された現在の画像(現在画151)の明るさを制御する。
 過去画は現在画151に対して所定フレーム前の画像である。露出制御部121に現在画が供給された後、所定フレーム分の時間が経過して新たな画像が露出制御部121に供給されると、現在画151は過去画となる。
 なお、露出制御部121は、以下の説明において、カメラ22から供給される1フレーム分の画像ごと(1フレームごと)に露出制御を行うものとする。そして、1フレーム分の画像が供給される周期を1時間ステップとし、過去画が撮影された時の時間ステップtを0とし、現在画が撮影された時の時間ステップtを1とする。
 また、露出制御部121は、後述の図10で説明するように、カメラ22の露出制御を行うことでカメラ22から出力される画像の明るさを調整するだけでなく、カメラ22からの画像に対する信号処理(ゲイン調整等)により画像の明るさを調整する場合の処理も含む。
 また、露出制御部121は、制御後の画像をAE検波処理部122に供給する。なお、図5では、下側の露出制御部121から出力された現在画151はAE検波処理部122に供給されていないが、上側の露出制御部121から出力された過去画と同様に下側の露出制御部121から出力された現在画はAE検波処理部122に供給される。即ち、処理時刻にかかわらず、露出制御部121から出力された画像はAE検波処理部122に供給される。
 AE検波処理部122は、露出制御部121からの過去画の明るさに基づいて適正な露出値(露光値)を算出し、露出制御部121に供給する。露出制御部121は、AE検波処理部122から供給される露出値に基づいて現在画151の明るさを制御する。
 また、AE検波処理部122は、カメラ22から逐次供給される画像に対して適正な露出値を算出し、露出制御部121に逐次供給する。露出制御部121は、AE検波処理部122から逐次供給される露出値に従って画像の明るさを制御する。これにより、カメラ22で撮影される被写体の明るさの変化に応じて露出の制御が行われる。
 AE検波処理部122は、ブロック積分部141、重み算出部142、及び、露出計算部143を有する。
 ブロック積分部141は、露出制御部121から供給された1フレーム分の画像の領域(画像エリア)に対して矩形状の小領域を縦横に配列した測光エリアを設定する。なお、各小領域をブロックというものとする。
 図6は、画像エリアに対して設定された測光エリアを例示した図である。
 図6において、画像153は、露出制御部121からブロック積分部141に供給された画像を例示している。画像153の画像エリアには、例えば、陸153Aの画像と空153Bの画像とそれらの境界である地平線153Cの画像とが含まれる。
 測光エリア154は、画像153の画像エリア内に設定される。測光エリア154は、画像エリアよりも小さく、画像エリア内の中央に設定される。ただし、画像エリア全体を測光エリアとしてもよい。
 図7は、図6の測光エリア154のみを表した図である。
 測光エリア154は、例えば、9個の矩形状のブロックB00乃至B22に区分される。各ブロックB00乃至B22は、縦横に3×3で配列される。各ブロックB00乃至B22は複数の画素を内包する。なお、測光エリア154を分割するブロックの数、及び、配列は、図7の場合と相違していてもよい。また、各ブロックB00乃至B22の大きさや形状は同一でなくてもよい。
 ブロック積分部141は、測光エリア152のブロックB00乃至B22ごとに、それぞれに内包される画素の輝度値を加算する。加算の結果、ブロックB00乃至B22ごとに得られた値をブロック積分値というものとする。
 図5において、ブロック積分部141は、算出した各ブロックB00乃至B22のブロック積分値を重み算出部142に供給する。
 重み算出部142は、ブロック積分部141からの各ブロックB00乃至B22のブロック積分値を取得する。
 また、重み算出部142は、IMU21の位置姿勢の変化量であるIMU座標系の相対位置姿勢を図1及び図2にも示したINS処理部41から取得する。
 また、重み算出部142は、図1のSLAM処理部25のフィルタ処理部46により推定されたカメラ座標系の絶対位置姿勢を取得する。
 詳細は後述するが、重み算出部142は、INS処理部41からのIMU座標系の相対位置姿勢とフィルタ処理部46からカメラ座標系の絶対位置姿勢とに基づいて、現時点でのカメラ座標系の絶対位置姿勢を算出し、画像座標系における重力方向及び大きさを表す重力ベクトルを算出する。
 図8は、重み算出部142で算出された重力ベクトルを例示した図である。
 図8には、図7で示した画像153と測光エリア154が示されている。画像153の画像エリアには、重み算出部142により算出された重力ベクトル155が示されている。重力ベクトル155の始点は、画像153の中心(測光エリア154の中心)とする。重力ベクトル155は、取得して画像153上での重力方向、即ち、地上(地面)の方向を表す。なお、重力ベクトル155については後述する。
 重み算出部142は、重力ベクトル155に基づいて、測光エリア154の各ブロックB00乃至B22のブロック積分値に乗じる重み(重み係数)を決定し、重み付き和を算出する。このとき、重み算出部142は、地上の画像領域に設定されているブロックに対する重みを大きくし、空の画像領域に設定されているブロックに対する重みを小さくする。これによって、空の画像部分の明るさの影響が低減された露出が行われる。
 重み算出部142は、算出した重み付き和を画像の明るさを示す輝度の検波値として露出計算部143に供給する。
 露出計算部143は、重み算出部142からの検波値に基づいて適正な露出値を算出し、露出制御部121に供給する。
(露出処理部23の比較形態)
 図9は、露出処理部23の比較形態を例示した図である。
 なお、図中、図5の露出処理部23と対応する部分については、同一の符号を付してあり、その説明は省略する。
 図9の露出処理部23は、露出制御部121、及び、AE検波処理部122を有する。図9のAE検波処理部122は、ブロック積分部141、総和算出部142P、及び、露出計算部143を有する。したがって、図9の露出処理部23は、露出制御部121、AE検波処理部122、ブロック積分部141、及び、露出計算部143を有する点で、図5の場合と共通する。但し、図9の露出処理部23は、図5の重み算出部142の代わりに総和算出部142Pが設けられている点で、図5の場合と相違する。
 図9の露出処理部23における総和算出部142Pは、ブロック積分部141から供給される各ブロックB00乃至B22のブロック積分値の総和を算出する。
 総和算出部142Pは、算出した総和を画像の明るさを示す輝度の検波値として露出計算部143に供給する。
 図9の露出処理部23の比較形態によれば、露出処理部23に供給された画像に空の画像が含まれた場合に空の画像部分が明るいために、測光エリア154の各ブロックB00乃至B22のブロック積分値をそのまま加算した総和も高くなる。そのため、総和算出部142Pから露出計算部143に供給される検波値も高くなり、露出計算部143から露出制御部121に供給される適正な露出値も高くなる。
 その結果、露出制御部121は、画像を暗くする方に露出を制御するため、空に存在する雲などが認識され易い画像となる代わりに、地上の画像が全体的に暗くなり、地上に存在する物体の認識が困難な画像となる。即ち、地上の画像のコントラストが高くなり難い画像となる。空は無限遠に存在すると考えられるため、空に検出された特徴点は深度情報が不明確となり位置姿勢の推定には使用できない。
 通常では、人が見るのに好ましい画像とあるように、なるべく地上にも空にもコントラストが残るように露出制御が行われる。その結果、例えばSLAMにとって有益な地上のコントラストが減り、無益な空のコントラストを残そうとするため、位置姿勢推定にとっては情報効率の悪い制御と言える。
 また、カメラ22で撮影された画像を用いて移動体の位置姿勢を推定するSLAM技術にとっては、カメラ22で撮影された画像から特徴点を正しく検出することは性能を担保する重要な事項である。そのため、有益な特徴点が存在する地上のコントラストを上げることはSLAM技術にとって大きな課題となる。
 図5の露出処理部23では、測光エリア154により検出される画像の明るさが空の画像の影響を受けにくいようにしており、地上の画像のコントラストが上がるように画像の明るさが制御される。
(重み算出部142)
 図10は、図5の重み算出部142の構成を例示したブロック図である。
 重み算出部142は、絶対姿勢算出部161、重力方向算出部162、ベース領域検出部163、輝度判定重み算出部164、及び、空判定重み算出部165を有する。
 絶対姿勢算出部161は、図1のSLAM処理部25(フィルタ処理部46)がカメラ座標系(機体座標系)の絶対姿勢を前回推定した時点(時間ステップtを-1とする)から現時点(時間ステップtを0とする)までの間のIMU21の位置姿勢の変化量であるIMU座標系の相対姿勢ΔRを図1及び図5に示したINS処理部41から取得する。尚、図10では、INS処理部41は省略している。
 また、絶対姿勢算出部161は、時間ステップtが-1の時点でSLAM処理部25の出力であるカメラ座標系(機体座標系)の絶対姿勢WC(t=-1)を図1のフィルタ処理部46から取得する。WC(t=-1)は、時間ステップt=-1においてカメラ座標系から絶対座標系(ワールド座標系)へと座標を変換する回転行列である。
 重み算出部142は、IMU21から取得したIMU座標系の相対姿勢ΔRと、フィルタ処理部46から取得したカメラ座標系の絶対姿勢WC(t=-1)とに基づいて、次式(6)により、現時点(時間ステップtが0)でのカメラ座標系の絶対姿勢WC(t=0)を算出する。WC(t=0)は、時間ステップt=0においてカメラ座標系から絶対座標系(ワールド座標系)へと座標を変換する回転行列である。
 WC(t=0)WC(t=-1)(IC)TΔR   ・・・(6)
 なお、(IC)Tは、カメラ座標系からIMU座標系へと座標を変換する回転行列(IC)の転置行列である。(IC)Tはキャリブレーションにより事前に決められる。
 絶対姿勢算出部161は、算出したカメラ座標系の絶対姿勢WC(t=0)を重力方向算出部162に供給する。
 重力方向算出部162は、絶対姿勢算出部161からのカメラ座標系の絶対姿勢WC(t=0)に基づいて、図8に示した画像上(画像座標系)での重力ベクトル155を算出する。
 図11は、画像上での重力ベクトル155の算出手順を説明する図である。図11において投影面(カメラ画面)171は、カメラ22を透視投影モデルで表した場合に、カメラ22で撮影される画像と等価な画像が投影される仮想面を表す。画像上に固定された画像座標系はカメラ画面171に固定される。なお、カメラ画面171は、カメラ22の撮像素子の受光面とみなしてもよい。
 この場合において、カメラ画面171上の画像座標系は、カメラ座標系に対して一定の相対姿勢を維持する。重力方向算出部162は、カメラ座標系と画像座標系との相対姿勢を把握している。
 重力方向算出部162は、絶対姿勢算出部161からのカメラ座標系の絶対姿勢と、カメラ座標系と画像座標系との相対姿勢とから画像座標系の絶対姿勢を算出する。
 また、重力方向算出部162は、絶対座標系における重力方向を単位ベクトルで表した重力方向ベクトルWGをカメラ画面171に対してカメラ画面171の法線方向に投影する。これによって、画像座標系における重力方向ベクトルCUが求められる。
 ここで、重力方向算出部162は、絶対姿勢算出部161から取得したカメラ座標系の絶対姿勢WC(t=0)と、絶対座標系で成分表示した重力方向ベクトルWGとから、次式(7)により、カメラ座標系で成分表示した重力方向ベクトルC(t=0)Gを算出する。
 C(t=0)G=(WC(t=0))T WG   ・・・(7)
 具体例として、絶対座標系のz軸方向が地面(水平面)に垂直な方向に設定されているとすると、絶対座標系での重力方向ベクトルWGはWG=(0,0,-1)により成分表示される。
 これに対して、カメラ座標系で重力方向ベクトルWGを成分表示した場合の重力方向ベクトルCGは、CG=(x,y,z)により成分表示される。x、y、zは、絶対姿勢算出部161からのカメラ座標系の絶対姿勢により算出される。
 一方、カメラ座標系は、カメラ画面171に垂直な方向をz軸方向として、カメラ画面171の横方向(画像座標系のx軸方向)をx軸方向として、カメラ画面171の縦方向(画像座標系のy軸方向)をy軸方向として設定されているとする。この場合に、重力方向ベクトルCGをカメラ画面171の法線方向と、法線方向に垂直な方向とに分解したときの後者のカメラ座標系での重力方向ベクトルCUは、CU=(x,y,0)により成分表示される。重力方向ベクトルCUは、図8で示した画像153上(画像座標系)での重力ベクトル155を表す。
 重力方向算出部162は、算出した重力ベクトル155をベース領域検出部163に供給する。
 また、重力方向算出部162は、重力方向ベクトルCUとカメラ画面171(重力方向ベクトルCW)とのなす角θを算出し、空判定重み算出部165に供給する。
 ベース領域検出部163は、重力方向算出部162からの重力ベクトル155を取得すると、測光エリア154の各ブロックB00乃至B22(図9参照)のうち、重力ベクトル155が指し示すブロックを検出する。そして、ベース領域検出部163は、重力ベクトル155が指し示すブロック、又は、そのブロックと周辺のブロックとをベース領域として設定する。
 ベース領域検出部163は、ベース領域として設定したブロックが単数の場合には、そのブロックに含まれる画素の輝度値を積算したブロック積分値をベース積分値として設定する。
 また、ベース領域検出部163は、ベース領域として設定したブロックが複数の場合には、それらのブロックのブロック積分値に対して予め決められた重みを付けた重み付け平均(加重平均)をベース積分値として設定する。
 なお、ベース積分値は、地上の画像の輝度値を表すリファレンス値として用いられる。
 図12は、測光エリア154におけるベース領域の設定について説明する図である。なお、図12では、測光エリア154が設定される画像は省略されている。
 図12において、パターンAでは、重力ベクトル155の終点がブロックB01の略中心にあり、重力ベクトル155がブロックB01の略中心を指し示す。このように、重力ベクトル155が、中心のブロックB11を除くいずれかのブロックの略中心を指し示す場合には、ベース領域検出部163は、1つのパターンとして重力ベクトル155が指し示したブロックのみをベース領域として設定する。また、他のパターンとして、ベース領域検出部163は、重力ベクトル155が指し示したブロックと、そのブロックに隣接する2つのブロック(中心のブロックB11を除く)とをベース領域として設定する。
 図12のパターンAでは、ブロックB01のみがベース領域として設定され、又は、ブロックB01と、ブロックB01に隣接するブロックB00及びB02とがベース領域として設定される。
 ブロックB01のみがベース領域として設定された場合、ブロック01のブロック積分値がベース積分値として設定される。
 ブロックB00、ブロックB01、及び、ブロックB02がベース領域として設定された場合には、それぞれのブロック積分値をB00、B01、B02で表すと、(B00+2・B01+B02)/4により算出される加重平均がベース積算値として設定される。
 パターンAと同様のパターンであるパターンCでは、重力ベクトル155の終点がブロックB02の略中心にあり、ブロックB02の略中心を指し示す。このパターンCの場合もパターンAの場合と同様に、ブロックB02のみがベース領域として設定され、又は、ブロックB02と、ブロックB02に隣接するブロックB01及びB12とがベース領域として設定される。
 ブロックB02のみがベース領域として設定された場合、ブロック02のブロック積分値がベース積分値として設定される。
 ブロックB01、ブロックB02、及び、ブロックB12がベース領域として設定された場合には、それぞれのブロック積分値をB01、B02、B12で表すと、(B01+2・B02+B12)/4により算出される加重平均がベース積算値として設定される。
 パターンAと同様のパターンであるパターンFでは、重力ベクトル155の終点がブロックB12の略中心にあり、ブロックB12の略中心を指し示す。このパターンFの場合もパターンAの場合と同様に、ブロックB12のみがベース領域として設定され、又は、ブロックB12と、ブロックB12に隣接するブロックB02及びB22とがベース領域として設定される。
 ブロックB12のみがベース領域として設定された場合、ブロックB12のブロック積分値がベース積分値として設定される。
 ブロックB02、ブロックB12、及び、ブロックB22がベース領域として設定された場合には、それぞれのブロック積分値をB02、B12、B22で表すと、(B02+2・B11+B22)/4により算出される加重平均がベース積算値として設定される。
 重力ベクトル155の終点が、ブロックB00の略中心、ブロックB10の略中心、ブロックB20の略中心、ブロックB21の略中心、又は、ブロックB22の略中心にある場合も、パターンA、パターンC、及び、パターンFの場合と同様であるので説明を省略する。
 パターンBでは、重力ベクトル155の終点がブロックB01とブロックB02との境界付近にあり、重力ベクトル155がブロックB01とブロックB02との境界付近を指し示す。このように、重力ベクトル155が、中心のブロックB11を除く、互いに隣接する2つのブロックの境界付近を指し示す場合には、ベース領域検出部163は、1つのパターンとしてそれらの互いに隣接する2のブロックをベース領域として設定する。他のパターンとして、ベース領域検出部163は、それらの互いに隣接する2つのブロックと、それらの2つブロックにそれぞれ隣接する他の2つのブロックとを、ベース領域として設定する。
 パターンBでは、ブロックB01及びブロックB02がベース領域として設定され、又は、ブロックB01及びブロックB02と、それらにそれぞれ隣接するブロックB00及びB12とがベース領域として設定される。
 ブロックB01及びブロックB02がベース領域として設定された場合、それぞれのブロック積分値をB01及びB02で表すと、(B01+B02)/2により算出される加重平均がベース積算値として設定される。
 ブロックB00、ブロックB01、ブロックB02、及び、ブロックB12がベース領域として設定された場合、それぞれのブロック積分値をB00、B01、B02、及び、B12で表すと、(B00+3・B01+3・B02+B12)/8により算出される加重平均がベース積算値として設定される。
 パターンBと同様のパターンであるパターンEでは、重力ベクトル155の終点がブロックB02とブロックB12との境界付近にあり、重力ベクトル155がブロックB02とブロックB12との境界付近を指し示す。このパターンEの場合もパターンBの場合と同様に、ブロックB02及びブロックB12がベース領域として設定され、又は、ブロックB02及びブロックB12と、それらにそれぞれ隣接するブロックB01及びB22とがベース領域として設定される。
 ブロックB02及びブロックB12がベース領域として設定された場合、それぞれのブロック積分値をB02及びB12で表すと、(B02+B12)/2により算出される加重平均がベース積算値として設定される。
 ブロックB01、ブロックB02、ブロックB12、及び、ブロックB22がベース領域として設定された場合、それぞれのブロック積分値をB01、B02、B12、及び、B22で表すと、(B01+3・B02+3・B12+B22)/8により算出される加重平均がベース積算値として設定される。
 パターンB及びパターンEと同様のパターンとして、重力ベクトル155の終点が、ブロックB12とブロックB22との境界付近にある場合、ブロックB21とブロックB22との境界付近にある場合、ブロックB20とブロックB21との境界付近にある場合、ブロックB10とブロックB20との境界付近にある場合、ブロックB00とブロックB10との境界付近にある場合、及び、ブロックB00とブロックB01との境界付近にある場合がある。これらの場合については、パターンB及びパターンEの場合と同様であるので説明を省略する。
 図10において、ベース領域検出部163は、算出したベース積分値を輝度判定重み算出部164に供給する。
 輝度判定重み算出部164は、ベース領域検出部163からベース積分値を取得する。
 また、輝度判定重み算出部164は、図5のブロック積分部141から測光エリア154の各ブロックB00乃至B22(図9参照)のブロック積分値を取得する。
 ところで、重み算出部142では、測光エリア154の各ブロックB00乃至B22のブロック積分値の重み付け和を算出する際に、各ブロック積分値に乗じる重み(重み係数)Wiを算出する。iは、各ブロックB00乃至B22に一対一に対応付けられた識別番号である。
 輝度判定重み算出部164は、その重みWiを決定する要素である輝度判定重みwiを、次式(8)により算出する。
 wi=exp(-max(sumi-sumbase,0)2/σ)   ・・・(8)
 ただし、sumiは、識別番号iのブロック積分値、sumbaseは、ベース積分値、σは、調整パラメータを表す。
 式(8)によれば、ベース積分値に対してブロック積分値が大きくなる程、輝度判定重みwiが小さくなるので、露出制御への寄与率が低くなる。たとえば、空などの明るい画像領域の露出制御への影響が低減される。また、σが大きい程、輝度判定重みwiが小さくなりにくくなるため、全体的に画像を明るくする傾向となる。
 輝度判定重み算出部164は、算出した各ブロックB00乃至B22に対する輝度判定重みwiを空判定重み算出部165に供給する。
 空判定重み算出部165は、重みWiを決定する要素としてカメラ22で撮影された画像153(図6参照)に空の画像が含まれる確度(又は尤度)を算出する。
 空判定重み算出部165は、画像153上の重力ベクトル155の軸上に沿って輝度ヒストグラムを求めた場合に地上の画像領域と空の画像領域とで二極化しているか否かを検出する。
 本実施の形態では、空判定重み算出部165は、簡易的に、画像153が地上の画像領域と空の画像領域とで二極化されている場合に大きな値を示す二極判定値Daを次式(9)により算出する。
 Da=C/(C+wdiag)   ・・・(9)
 ただし、wdiagは、ベース領域検出部163によりベース領域として設定された測光エリア154のブロックに対して対角に位置するブロック(対角ブロック)の輝度判定重みwiである。Cは、調整ための任意定数である。
 なお、対角ブロックは、測光エリア154(画像)の中心を対称点としてベース領域のブロックに対して対称となる位置のブロックでもある。
 式(9)によれば、ベース領域のブロックに対する対角ブロックの輝度判定重みwdiagが小さい程、地上の画像領域の輝度値のリファレンスとなるベース積分値との差が大きくなることを意味するため、二極化している可能性が高い。
 したがって、二極判定値Daは、画像153に空の画像領域が含まれている確度となり得る。
 なお、ベース領域のブロックが複数の場合、各々のブロックに対する対角ブロックの輝度判定重みwiの加重平均をwdiagとして二極判定値Daを算出する。このときの重みは、ベース積分値を算出する際の各ブロックに対する重みと同じであってよい。また、ベース領域のブロックに対する対角ブロックが単数の場合であっても、対角ブロックの周辺のブロックを対角ブロックとしてもよい。
 また、空判定重み算出部165は、ベース領域のブロックに対する対角ブロックのブロック積分値により、輝度判定値Dbを次式(10)により算出する。
 Db=exp(-max(sumref-sumdiag,0)2/σ’)   ・・・(10)
 ただし、sumrefは、空であるか否かを判定する輝度値(閾値)であり、sumdiagは、ベース領域のブロックに対する対角ブロックのブロック積分値であり、σ’は、調整のための任意定数である。
 式(10)によれば、対角ブロックのブロック積分値が空であると判定できる輝度値(閾値)より大きければ、画像153に空の画像領域が含まれている可能性が高い。したがって、輝度判定値Dbは、画像153に空の画像領域が含まれている確度となり得る。
 また、空判定重み算出部165は、重力方向算出部162により算出された重力方向ベクトルCUとカメラ画面171(重力方向ベクトルCW)とのなす角θを取得し、カメラ22の撮影方向が水平方向に近いか否かを判定する水平判定値Dcを次式(11)により算出する。
 Dc=cosθ   ・・・(11)
 式(11)によれば、カメラ22の撮影方向が水平方向に近い程、画像153に空の画像領域が含まれる可能性が高く、水平判定値Dcが大きくなる。したがって、水平判定値Dcは、画像153に空の画像領域が含まれている確度となり得る。
 空判定重み算出部165は、以上の二極判定値Daと、輝度判定値Dbと、水平判定値Dcとを掛け合わせることによって、画像153が空の画像領域を含む確度として空判定重みwskyを、次式(12)により算出する。
 wsky=Da・Db・Dc   ・・・(12)
 そして、空判定重み算出部165は、最終的に測光エリア154の各ブロックB00乃至B22のブロック積分値の重み付け和を算出する際に、各ブロック積分値に乗じる重み(重み係数)Wiを次式(13)により算出する。
 Wi=wsky・wi+(1-wsky)・1   ・・・(13)
 式(13)によれば、空判定重みwskyが大きい程、式(8)によりベース積分値とブロック積分値とに基づいて算出された輝度判定重みwiが最終的な重みWiの値に反映される。
 一方、空判定重みwskyが小さい程、各ブロックB00乃至B22に対する重みWiの差異は小さくなる。
 したがって、カメラ22で撮影された画像に空の画像領域が含まれるか否かが自動的に判定される。そして、空の画像領域が含まれる場合には、空の画像領域の影響が低減された露出制御が行われ、地上の画像領域に対する適切な露出制御が行われる。空の画像領域が含まれない場合には通常通りの露出制御が行われる。これによって、カメラ22で撮影された画像から地上の特徴点が適切に抽出に検出され、移動体の位置姿勢の推定が適切に行われるようになる。
 図13は、露出処理部23の伝達情報の流れを例示したブロック図である。
 図13の露出処理部23は、AE検波処理部122、及び、露出制御部222を有する。
 AE検波処理部122は、図5に示したAE検波処理部122であり、画像処理演算部221においてプログラムの実行により構築される。
 ただし、図13では、カメラ22の撮像素子22Aで撮像された画像が、図5の露出処理部23を介さずにAE検波処理部122に供給されている点で図5の場合と相違する。
 また、AE検波処理部122には、IMU21で検出された加速度及び加速度が供給される。図5では、INS処理部41により算出されたIMU座標系の相対姿勢がAE検波処理部122に供給されたが、IMU21からの加速度及び角速度に基づいてIMU座標系の相対姿勢を算出する処理をAE検波処理部122が行ってもよい。
 AE検波処理部122は、IMU22からの加速度及び角速度に基づいて、画像上での重力方向(重力ベクトル155)を検出し、撮像素子22Aからの画像に含まれる空の画像領域と地上の画像領域とを判別する。
 そして、AE検波処理部122は、測光エリア154の各ブロックB00乃至B22のうち、空の画像領域に設定されたブロックのブロック積分値に対しては重みを小さくしてブロック積分値の重み付け和を算出する。
 AE検波処理部122は、算出したブロック積分値の重み付け和に基づいて適正な露出値を算出し、露出制御部222に供給する。
 露出制御部222は、図5の場合と異なり、カメラ22からの画像を取得せず、撮像素子22Aへの制御信号により撮像素子22Aのシャッター速度(露光時間)、アナログゲイン、及び、デジタルゲイン等を制御して露出制御を行う。尚、カメラ22が絞りを備える場合には絞りを制御してもよい。
 露出制御部222は、AE検波処理部122からの露出値に従って撮像素子22A等の露出制御を行う。
(露出処理部23の処理手順)
 図14は、露出処理部23が行う処理の手順を例示したフローチャートである。
 図14において、ステップS11では、露出処理部23は、カメラ22から画像を取得し、IMU21から加速度及び角速度を取得する。処理はステップS11からステップS12に進む。なお、図13の場合のように露出処理部23はIMU21から加速度及び角速度を取得するのではなく、INS処理部41からIMU座標系の相対姿勢を取得してもよい。
 ステップS12では、露出処理部23は、測光エリア154の各ブロックB00乃至B22のブロック積分値を算出する。処理はステップS12からステップS13に進む。
 ステップS13では、露出処理部23は、ステップS12で算出したブロック積分値に乗じる重みを算出する。処理はステップS13からステップS14に進む。
 ステップS14では、露出処理部23は、ステップS12で算出したブロック積分値とステップS13で算出した重みとから重み付け和を算出し、算出した重み付け和を測光エリア154の明るさを表す検波信号としてを生成する。処理はステップS14からステップS15に進む。
 ステップS15では、露出処理部23は、ステップS15で生成した検波信号にも続いて露出制御を行う。処理はステップS15からステップS16に進む。
 ステップS16では、露出処理部23は、終了の指示が与えられたか否かを判定する。
 ステップS16において、終了の指示が与えられていないと判定された場合、処理はステップS16からステップS11に戻り、ステップS11からの処理を繰り返す。
 ステップS16において、終了の指示が与えられたと判定された場合、本フローチャートの処理が終了する。
 以上の露出処理部23の処理によれば、カメラ22の露出制御に対して、空の画像領域よりも地上の画像領域の明るさが強く寄与するようになる。したがって、地上の画像のコントラストが低く、特徴点の検出が行えないという事態を抑止できる。
 なお、上記実施の形態では、重力方向の検出にIMU21(慣性センサ)を利用したが、IMU21でなくても重力方向を検出、観察できるデバイスを用いてよい。
 また、上記実施の形態では、空判定重み算出部165(図11)において、画像153が空の画像領域を含む確度として空判定重みwskyを二極判定値Da、輝度判定値Db、及び、水平判定値Dcにより算出したが、これらのいずれか1つ又は複数によって空判定重みwskyを求めてもよい。以下の実施の形態で説明する深度判定値Dd、及び、空ラベル判定値Deを含めて、空判定重みwskyの算出には、任意の種類、任意の数の判定値を用いてよい。また、空判定重みwskyは用いることなく、輝度判定重みwiだけを使用してもよい。
<露出処理部の第2の実施の形態の説明>
 図15は、露出処理部の第2の実施の形態の構成を例示したブロック図である。
 なお、図中、図5の露出処理部23と対応する部分については、同一の符号を付してあり、その説明は省略する。
 図15の露出処理部261は、露出制御部121、及び、AE検波処理部122Aを有する。また、図15のAE検波処理部122Aは、ブロック積分部141、重み算出部142A、及び、露出計算部143を有する。
 したがって、図15の露出処理部261は、露出制御部121、AE検波処理部122A、ブロック積分部141、重み算出部142A、及び、露出計算部143を有する点で図5の場合と共通する。但し、図15の露出処理部261は、重み算出部142Aが測距センサ251からの深度情報を取得する点で図5の場合と相違する。
 測距センサ251は、例えば、LIDAR(Light Detection and Ranging)やステレオカメラのような被写体の深度情報を取得することができるセンサである。
 測距センサ251により得られた深度情報は、AE検波処理部122Aの重み算出部142Aに供給される。
 図16は、図15の重み算出部142Aの構成を例示したブロック図である。
 なお、図中、図10の重み算出部142と対応する部分については、同一の符号を付してあり、その説明は省略する。
 図16の重み算出部142Aは、絶対姿勢算出部161、重力方向算出部162、ベース領域検出部163、輝度判定重み算出部164、及び、空判定重み算出部165Aを有する。
 したがって、図16の重み算出部142Aは、絶対姿勢算出部161、重力方向算出部162、ベース領域検出部163、輝度判定重み算出部164、及び、空判定重み算出部165Aを有する点で図10の場合と共通する。ただし、図16の重み算出部142Aは、空判定重み算出部165Aが測距センサ251からの深度情報を取得する点で図10の場合と相違する。
 空判定重み算出部165Aは、図10の空判定重み算出部165と同様に、二極判定値Da(式(9)参照)、輝度判定値Db(式(10)参照))、水平判定値Dc(式(11)参照)を算出する。
 また、空判定重み算出部165Aは、測距センサ251から深度情報を取得する。そして、空判定重み算出部165Aは、測光エリア154のベース領域のブロックに対する対角ブロックの画像が空である場合に大きな値を示す深度判定値Ddを次式(14)により算出する。
 Dd=exp(-max(dsumref-dsumdiag,0)2/σ”)   ・・・(14)
 ただし、dsumrefは、空であるか否かを判定する深度値(閾値)であり、dsumdiagは、ベース領域のブロックに対する対角ブロックにおける深度積分値であり、σ”は、調整のための任意定数である。
 式(14)によれば、対角ブロックの深度積分値dsumdiagが、閾値dsumrefよりも大きい場合には、対角ブロックの画像が空である可能性が高く、深度判定値Ddも大きくなる。したがって、深度判定値Ddは、画像153に空の画像領域が含まれている確度となり得る。
 なお、ベース領域のブロックが複数の場合、各々のブロックに対する対角ブロックの深度積分値の加重平均を深度積分値dsumdiagとして深度判定値Ddを算出する。このときの重みは、ベース積分値を算出する際の各ブロックに対する重みと同じであってよい。また、ベース領域のブロックに対する対角ブロックが単数の場合であっても、対角ブロックの周辺のブロックを対角ブロックとしてもよい。その場合には、対角ブロックの深度積分値の加重平均を深度積分値dsumdiagとする。
 空判定重み算出部165Aは、二極判定値Daと、輝度判定値Dbと、水平判定値Dcと、深度判定値Ddとを掛け合わせることによって、画像153に空の画像領域が含まれる確度として空判定重みwskyを、次式(15)により算出する。
 wsky=Da・Db・Dc・Dd   ・・・(15)
 そして、空判定重み算出部165Aは、最終的に測光エリア154の各ブロックB00乃至B22のブロック積分値の重み付け和を算出する際に、各ブロック積分値に乗じる重み(重み係数)Wiを上式(13)により算出する。
 Wi=wsky・wi+(1-wsky)・1   ・・・(13)
 露出処理部261の第2の実施の形態における空判定重み算出部165Aによれば、カメラ22で撮影された画像に空が含まれるかの判定の確度が向上する。従って、露出制御も適切に行われるようになる。
 図17は、図15の露出処理部261の伝達情報の流れを例示したブロック図である。
 なお、図中、図13の露出処理部23と対応する部分については、同一の符号を付してあり、その説明は省略する。
 図17の露出処理部261は、AE検波処理部122A、及び、露出制御部222を有する。
 したがって、図17の露出処理部261は、AE検波処理部122A、及び、露出制御部222を有する点で図13の場合と共通する。ただし、図17の露出処理部261は、AE検波処理部122Aが測距センサ251から深度情報を取得する点で図13の場合と相違する。
 AE検波処理部122Aは、撮像素子22Aから画像を取得し、IMU21から加速度及び角速度を取得する。これらの情報によってAE検波処理部122Aは、図13の場合と同様に、測光エリアの各ブロックB00乃至B22のブロック積分値の重み付け和を算出するための輝度判定重みwiの算出や、空判定重みwskyを算出するための二極判定値Da、輝度判定値Db、及び、水平判定値Dcの算出を行う。
 また、AE検波処理部122Aは、測距センサ251から深度情報を取得することで、深度判定値Ddを算出する。AE検波処理部122Aは、深度判定値Ddを、空判定重みwskyを算出する1要素とする。これによって、空判定重みwskyの確度が向上する。
(露出処理部261の処理手順)
 図18は、図15及び図17の露出処理部261が行う処理の手順を例示したフローチャートである。
 図14において、ステップS31では、露出処理部261は、カメラ22から画像を取得し、IMU21から加速度及び角速度を取得する。また、露出処理部261は、測距センサ251から深度情報を取得する。処理はステップS31からステップS32に進む。
 ステップS32乃至ステップS36の処理は、図14のステップS12乃至ステップS16の処理と比較して、重みの算出内容等、詳細な処理内容が相違するが大まかな処理手順は共通するので、説明を省略する。
 以上の露出処理部261の処理によれば、カメラ22の露出制御に対して、空の画像領域よりも地上の画像領域の明るさが強く寄与するようになる。したがって、地上の画像のコントラストが低く、特徴点の検出が行えないという事態を抑止できる。
<露出処理部の第3の実施の形態の説明>
 図19は、露出処理部の第3の実施の形態の構成を例示したブロック図である。
 なお、図中、図5の露出処理部23と対応する部分については、同一の符号を付してあり、その説明は省略する。
 図19の露出処理部301は、露出制御部121、及び、AE検波処理部122Bを有する。また、図19のAE検波処理部122Bは、ブロック積分部141、重み算出部142B、及び、露出計算部143を有する。
 したがって、図19の露出処理部301は、露出制御部121、AE検波処理部122B、ブロック積分部141、重み算出部142B、及び、露出計算部143を有する点で図5の場合と共通する。但し、図19の露出処理部301は、重み算出部142Bが空検出部321から空ラベルを取得する点で図5の場合と相違する。
 空検出部321は、DNN(Deep Neural Network)を用いた機械学習モデルにより、カメラ22で撮影された画像から空の画像領域を検出する。また、空検出部321には、空の画像領域に対する空ラベルと共に、その信頼確率を出力するDNN(例えば、Alex Kendall, Vijay Badrinarayanan, Roberto Cipolla (2017) " Bayesian SegNet: Model Uncertainty in Deep Convolutional Encoder-Decoder Architectures for Scene Understanding ", BMVC)が用いられる。
 重み算出部142Bは、空検出部321からの空ラベル及び信頼確率に基づいて、空判定重みwskyを算出する。
 図20は、図19の重み算出部142Bの構成を例示したブロック図である。
 なお、図中、図10の重み算出部142と対応する部分については、同一の符号を付してあり、その説明は省略する。
 図20の重み算出部142Bは、絶対姿勢算出部161、重力方向算出部162、ベース領域検出部163、輝度判定重み算出部164、及び、空判定重み算出部165Bを有する。
 したがって、図20の重み算出部142Bは、絶対姿勢算出部161、重力方向算出部162、ベース領域検出部163、輝度判定重み算出部164、及び、空判定重み算出部165Bを有する点で図10の場合と共通する。ただし、図20の重み算出部142Bは、空判定重み算出部165Bが空検出部321からの空ラベル及び信頼確率を取得する点で図10の場合と相違する。
 空判定重み算出部165Bは、図10の空判定重み算出部165と同様に、二極判定値Da(式(9)参照)、輝度判定値Db(式(10)参照))、水平判定値Dc(式(11)参照)を算出する。
 また、空判定重み算出部165Bは、空検出部321(図19参照)からカメラ22で撮影された画像に含まれる空領域を表す空ラベル及びその信頼確率を取得する。空判定重み算出部165Bは、測光エリア154のベース領域のブロックに対する対角ブロックの画像が空である場合に大きな値を示す空ラベル判定値Deを次式(16)により算出する。
 De=exp(-max(Isumref-Isumdiag,0)2/σ'”)   ・・・(16)
 ただし、Isumrefは、空であるか否かを判定する信頼確率(閾値)であり、Isumdiagは、ベース領域のブロックに対する対角ブロックにおける空ラベルの信頼確率積分値であり、σ'”は、調整のための任意定数である。
 式(16)によれば、対角ブロックの信頼確率積分値Isumdiagが、閾値Isumrefよりも大きい場合には、対角ブロックの画像が空である可能性が高く、空ラベル判定値Deも大きな値となる。したがって、空ラベル判定値Deは、画像153に空の画像領域が含まれている確度となり得る。
 なお、ベース領域のブロックが複数の場合、各々のブロックに対する対角ブロックの信頼確率積分値の加重平均を信頼確率積分値Isumdiagとして空ラベル判定値Deを算出する。このときの重みは、ベース積分値を算出する際の各ブロックに対する重みと同じであってよい。また、ベース領域のブロックに対する対角ブロックが単数の場合であっても、対角ブロックの周辺のブロックを対角ブロックとしてもよい。その場合には、対角ブロックの信頼確率積分値の加重平均を信頼確率積分値Isumdiagとする。
 空判定重み算出部165Bは、二極判定値Daと、輝度判定値Dbと、水平判定値Dcと、空ラベル判定値Deとを掛け合わせることによって、画像153に空の画像領域が含まれる確度として空判定重みwskyを、次式(17)により算出する。
 wsky=Da・Db・Dc・De   ・・・(17)
 そして、空判定重み算出部165Bは、最終的に測光エリア154の各ブロックB00乃至B22のブロック積分値の重み付け和を算出する際に、各ブロック積分値に乗じる重み(重み係数)Wiを上式(13)により算出する。
 Wi=wsky・wi+(1-wsky)・1   ・・・(13)
 露出処理部261の第2の実施の形態における空判定重み算出部165Aによれば、カメラ22で撮影された画像に空が含まれるかの判定の確度が向上する。従って、露出制御も適切に行われるようになる。
 図21は、図19の露出処理部301の伝達情報の流れを例示したブロック図である。
 なお、図中、図13の露出処理部23と対応する部分については、同一の符号を付してあり、その説明は省略する。
 図21の露出処理部301は、AE検波処理部122B、及び、露出制御部222を有する。
 したがって、図17の露出処理部301は、AE検波処理部122B、及び、露出制御部222を有する点で図13の場合と共通する。ただし、図21の露出処理部261は、AE検波処理部122Bが推論演算部(空検出部)321から空ラベル及び信頼確率を取得する点で図13の場合と相違する。
 推論演算部321は、図19の空検出部321を表し、機械学習モデルを用いた演算処理を実施する。
 AE検波処理部122Bは、撮像素子22Aから画像を取得し、IMU21から加速度及び角速度を取得する。これらの情報によってAE検波処理部122Bは、図13の場合と同様に、測光エリアの各ブロックB00乃至B22のブロック積分値の重み付け和を算出するための輝度判定重みwiの算出や、空判定重みwskyを算出するための二極判定値Da、輝度判定値Db、及び、水平判定値Dcの算出を行う。
 また、AE検波処理部122Bは、推論演算部(空検出部)321から空ラベル及び信頼確率を取得することで、空ラベル判定値Deを算出する。AE検波処理部122Bは、空ラベル判定値Deを、空判定重みwskyを算出する1要素とする。これによって、空判定重みwskyの確度が向上する。
(露出処理部301の処理手順)
 図22は、図19の露出処理部301が行う処理の手順を例示したフローチャートである。
 図22において、ステップS51では、露出処理部301は、カメラ22から画像を取得し、IMU21から加速度及び角速度を取得する。処理はステップS51からステップS52及びステップS54に進む。
 ステップS52では、露出処理部301は、測光エリア154の各ブロックB00乃至B22のブロック積分値を算出する。処理はステップS52からステップS54に進む。ステップS54乃至ステップS57の処理は、図14のステップS13乃至ステップS16の処理と比較して、重みの算出内容等、詳細な処理内容が相違するが大まかな処理手順は共通するので、説明を省略する。
 以上の露出処理部301の処理によれば、カメラ22の露出制御に対して、空の画像領域よりも地上の画像領域の明るさが強く寄与するようになる。したがって、地上の画像のコントラストが低く、特徴点の検出が行えないという事態を抑止できる。
<プログラム>
 上述したSLAM処理部25等での一連の処理は、ハードウエアにより実行することもできるし、ソフトウエアにより実行することもできる。一連の処理をソフトウエアにより実行する場合には、そのソフトウエアを構成するプログラムが、コンピュータにインストールされる。ここで、コンピュータには、専用のハードウエアに組み込まれているコンピュータや、各種のプログラムをインストールすることで、各種の機能を実行することが可能な、例えば汎用のパーソナルコンピュータなどが含まれる。
 図23は、上述した一連の処理をプログラムにより実行するコンピュータのハードウエアの構成例を示すブロック図である。
 コンピュータにおいて、CPU(Central Processing Unit)401,ROM(Read Only Memory)402,RAM(Random Access Memory)403は、バス404により相互に接続されている。
 バス404には、さらに、入出力インタフェース405が接続されている。入出力インタフェース405には、入力部406、出力部407、記憶部408、通信部409、及びドライブ410が接続されている。
 入力部406は、キーボード、マウス、マイクロフォンなどよりなる。出力部407は、ディスプレイ、スピーカなどよりなる。記憶部408は、ハードディスクや不揮発性のメモリなどよりなる。通信部409は、ネットワークインタフェースなどよりなる。ドライブ410は、磁気ディスク、光ディスク、光磁気ディスク、又は半導体メモリなどのリムーバブルメディア411を駆動する。
 以上のように構成されるコンピュータでは、CPU401が、例えば、記憶部408に記憶されているプログラムを、入出力インタフェース405及びバス404を介して、RAM403にロードして実行することにより、上述した一連の処理が行われる。
 コンピュータ(CPU401)が実行するプログラムは、例えば、パッケージメディア等としてのリムーバブルメディア411に記録して提供することができる。また、プログラムは、ローカルエリアネットワーク、インターネット、デジタル衛星放送といった、有線又は無線の伝送媒体を介して提供することができる。
 コンピュータでは、プログラムは、リムーバブルメディア411をドライブ410に装着することにより、入出力インタフェース405を介して、記憶部408にインストールすることができる。また、プログラムは、有線又は無線の伝送媒体を介して、通信部409で受信し、記憶部408にインストールすることができる。その他、プログラムは、ROM402や記憶部408に、あらかじめインストールしておくことができる。
 なお、コンピュータが実行するプログラムは、本明細書で説明する順序に沿って時系列に処理が行われるプログラムであっても良いし、並列に、あるいは呼び出しが行われたとき等の必要なタイミングで処理が行われるプログラムであっても良い。
本技術は以下のような構成も取ることができる。
(1)
 撮影部で撮影された撮影画像の特徴点に基づいて前記撮影部又は前記撮影部と一体的に移動する移動体の位置及び姿勢を推定する位置姿勢推定部と、
 前記撮影画像に含まれる地上の画像領域が適正露光となるように前記撮影画像の明るさを制御する制御部と
 を有する情報処理装置。
(2)
 前記制御部は、
 前記撮影画像上での重力方向に基づいて前記地上の画像領域を特定する
 前記(1)に記載の情報処理装置。
(3)
 前記制御部は、
 前記撮影部と一体的に移動する慣性センサからの情報に基づいて前記撮影画像上での前記重力方向を検出する
 前記(2)に記載の情報処理装置。
(4)
 前記制御部は、
 前記撮影画像の画像エリアに設定された複数のブロックからなる測光エリアの前記複数のブロックの各々に対して重み係数を設定し、
 前記複数のブロックの各々における前記撮影画像の輝度値の前記重み係数を用いた重み付け和に基づいて前記撮影画像の明るさを制御する
 前記(1)乃至前記(3)のいずれかに記載の情報処理装置。
(5)
 前記制御部は、
 前記撮影画像に含まれる前記地上の画像領域に設定された前記ブロックに対する前記重み係数を、前記撮影画像に含まれる空の画像領域に設定された前記ブロックに対する前記重み係数よりも大きい値に設定する
 前記(4)に記載の情報処理装置。
(6)
 前記制御部は、
 前記複数のブロックのうち、前記撮影画像上での重力方向に基づいて、前記地上の画像領域に設定されたブロックを特定し、前記地上の画像領域に設定された前記ブロックにおける前記撮影画像の輝度値を基準値として、前記複数のブロックの各々における前記撮影画像の輝度値の前記基準値との差分に応じて前記複数のブロックの各々に対する重み係数を設定する
 前記(4)又は前記(5)に記載の情報処理装置。
(7)
 前記制御部は、
 前記複数のブロックの各々における前記撮影画像の輝度値が前記基準値よりも大きい程、前記重み係数を小さくする
 前記(6)に記載の情報処理装置。
(8)
 前記制御部は、
 前記ブロックにおける前記撮影画像の輝度値を、前記ブロックに含まれる画素の輝度値を積分した積分値とする
 前記(4)乃至前記(7)のいずれかに記載の情報処理装置。
(9)
 前記制御部は、
 前記重み係数と、1とを、前記撮影画像に前記空の画像領域が含まれる確度と、(1-確度)との割合で加算した値に前記重み係数を変更する
 前記(4)乃至前記(8)のいずれかに記載の情報処理装置。
(10)
 前記確度は、前記撮影画像の輝度の二極化に関する二化判定値、前記撮影画像の輝度の大きさに関する輝度判定値、撮像部の傾きに関する水平判定値、被写体の深度に関する深度判定値、機械学習モデルにより検出された空の領域に対する信頼確率に関する空ラベル判定値のうちのいずれか1つ又は複数に基づく値である
 前記(9)に記載の情報処理装置。
(11)
 前記制御部は、
 前記撮影画像に含まれる前記地上の画像領域に設定された前記ブロックに対して、前記撮影画像の中心を対称点として対称となる位置に設定された前記ブロックに対する前記重み係数に基づいて前記二化判定値を算出する
 前記(10)に記載の情報処理装置。
(12)
 前記制御部は、
 前記撮影画像に含まれる前記地上の画像領域に設定された前記ブロックに対して、前記撮影画像の中心を対称点として対称となる位置に設定されたブロックにおける前記撮影画像の輝度値に基づいて前記輝度判定値を算出する
 前記(10)又は前記(11)に記載の情報処理装置。
(13)
 前記制御部は、
 前記撮影部の撮影方向に対応する角度に基づいて前記水平判定値を算出する
 前記(10)乃至前記(12)のいずれかに記載の情報処理装置。
(14)
 前記制御部は、
 前記撮影画像に含まれる前記地上の画像領域に設定された前記ブロックに対して、前記撮影画像の中心を対称点として対称となる位置に設定されたブロックにおける深度を測距センサから取得し、取得した深度情報に基づいて前記深度判定値を算出する
 前記(11)乃至前記(13)のいずれかに記載の情報処理装置。
(15)
 制御部は、
 前記撮影部の露光時間又はゲイン制御により前記撮影画像の明るさを制御する
 前記(1)乃至前記(14)のいずれかに記載の情報処理装置。
(16)
 位置姿勢推定部と、
 制御部と
 を有する
 情報処理装置の
 前記位置姿勢推定部は、
 撮影部で撮影された撮影画像の特徴点に基づいて前記撮影部又は前記撮影部と一体的に移動する移動体の位置及び姿勢を推定し、
 前記制御部は、
 前記撮影画像に含まれる地上の画像領域が適正露光となるように前記撮影画像の明るさを制御する
 情報処理方法。
(17)
 コンピュータを、
 撮影部で撮影された撮影画像の特徴点に基づいて前記撮影部又は前記撮影部と一体的に移動する移動体の位置及び姿勢を推定する位置姿勢推定部と、
 前記撮影画像に含まれる地上の画像領域が適正露光となるように前記撮影画像の明るさを制御する制御部と
 して機能させるためのプログラム。
 1 位置姿勢推定システム, 22 カメラ, 23 露出制御部, 24 マップ記憶部, 25 SLAM処理部, 41 INS処理部, 43 移動軌跡算出部, 45 位置姿勢推定部, 46 フィルタ処理部, 121 露出制御部, 122 AE検波処理部, 141 ブロック積分部, 142 重み算出部, 143 露出計算部

Claims (17)

  1.  撮影部で撮影された撮影画像の特徴点に基づいて前記撮影部又は前記撮影部と一体的に移動する移動体の位置及び姿勢を推定する位置姿勢推定部と、
     前記撮影画像に含まれる地上の画像領域が適正露光となるように前記撮影画像の明るさを制御する制御部と
     を有する情報処理装置。
  2.  前記制御部は、
     前記撮影画像上での重力方向に基づいて前記地上の画像領域を特定する
     請求項1に記載の情報処理装置。
  3.  前記制御部は、
     前記撮影部と一体的に移動する慣性センサからの情報に基づいて前記撮影画像上での前記重力方向を検出する
     請求項2に記載の情報処理装置。
  4.  前記制御部は、
     前記撮影画像の画像エリアに設定された複数のブロックからなる測光エリアの前記複数のブロックの各々に対して重み係数を設定し、
     前記複数のブロックの各々における前記撮影画像の輝度値の前記重み係数を用いた重み付け和に基づいて前記撮影画像の明るさを制御する
     請求項1に記載の情報処理装置。
  5.  前記制御部は、
     前記撮影画像に含まれる前記地上の画像領域に設定された前記ブロックに対する重み係数を、前記撮影画像に含まれる空の画像領域に設定された前記ブロックに対する重み係数よりも大きい値に設定する
     請求項4に記載の情報処理装置。
  6.  前記制御部は、
     前記複数のブロックのうち、前記撮影画像上での重力方向に基づいて、前記地上の画像領域に設定されたブロックを特定し、前記地上の画像領域に設定された前記ブロックにおける前記撮影画像の輝度値を基準値として、前記複数のブロックの各々における前記撮影画像の輝度値の前記基準値との差分に応じて前記複数のブロックの各々に対する重み係数を設定する
     請求項4に記載の情報処理装置。
  7.  前記制御部は、
     前記複数のブロックの各々における前記撮影画像の輝度値が前記基準値よりも大きい程、前記重み係数を小さくする
     請求項6に記載の情報処理装置。
  8.  前記制御部は、
     前記ブロックにおける前記撮影画像の輝度値を、前記ブロックに含まれる画素の輝度値を積分した積分値とする
     請求項4に記載の情報処理装置。
  9.  前記制御部は、
     前記重み係数と、1とを、前記撮影画像に前記空の画像領域が含まれる確度と、(1-確度)との割合で加算した値に前記重み係数を変更する
     請求項4に記載の情報処理装置。
  10.  前記確度は、前記撮影画像の輝度の二極化に関する二極判定値、前記撮影画像の輝度の大きさに関する輝度判定値、撮像部の傾きに関する水平判定値、被写体の深度に関する深度判定値、機械学習モデルにより検出された空の領域に対する信頼確率に関する空ラベル判定値のうちのいずれか1つ又は複数に基づく値である
     請求項9に記載の情報処理装置。
  11.  前記制御部は、
     前記撮影画像に含まれる前記地上の画像領域に設定された前記ブロックに対して、前記撮影画像の中心を対称点として対称となる位置に設定された前記ブロックに対する前記重み係数に基づいて前記二極判定値を算出する
     請求項10に記載の情報処理装置。
  12.  前記制御部は、
     前記撮影画像に含まれる前記地上の画像領域に設定された前記ブロックに対して、前記撮影画像の中心を対称点として対称となる位置に設定されたブロックにおける前記撮影画像の輝度値に基づいて前記輝度判定値を算出する
     請求項10に記載の情報処理装置。
  13.  前記制御部は、
     前記撮影部の撮影方向に対応する角度に基づいて前記水平判定値を算出する
     請求項10に記載の情報処理装置。
  14.  前記制御部は、
     前記撮影画像に含まれる前記地上の画像領域に設定された前記ブロックに対して、前記撮影画像の中心を対称点として対称となる位置に設定されたブロックにおける深度を測距センサから取得し、取得した深度情報に基づいて前記深度判定値を算出する
     請求項10に記載の情報処理装置。
  15.  制御部は、
     前記撮影部の露光時間又はゲイン制御により前記撮影画像の明るさを制御する
     請求項1に記載の情報処理装置。
  16.  位置姿勢推定部と、
     制御部と
     を有する
     情報処理装置の
     前記位置姿勢推定部は、
     撮影部で撮影された撮影画像の特徴点に基づいて前記撮影部又は前記撮影部と一体的に移動する移動体の位置及び姿勢を推定し、
     前記制御部は、
     前記撮影画像に含まれる地上の画像領域が適正露光となるように前記撮影画像の明るさを制御する
     情報処理方法。
  17.  コンピュータを、
     撮影部で撮影された撮影画像の特徴点に基づいて前記撮影部又は前記撮影部と一体的に移動する移動体の位置及び姿勢を推定する位置姿勢推定部と、
     前記撮影画像に含まれる地上の画像領域が適正露光となるように前記撮影画像の明るさを制御する制御部と
     して機能させるためのプログラム。
PCT/JP2021/025078 2020-07-15 2021-07-02 情報処理装置、情報処理方法、及び、プログラム WO2022014361A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/014,899 US20230254588A1 (en) 2020-07-15 2021-07-02 Information processing device, information processing method, and program
EP21843526.1A EP4184912A4 (en) 2020-07-15 2021-07-02 INFORMATION PROCESSING DEVICE, INFORMATION PROCESSING METHOD AND PROGRAM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020121132 2020-07-15
JP2020-121132 2020-07-15

Publications (1)

Publication Number Publication Date
WO2022014361A1 true WO2022014361A1 (ja) 2022-01-20

Family

ID=79555318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/025078 WO2022014361A1 (ja) 2020-07-15 2021-07-02 情報処理装置、情報処理方法、及び、プログラム

Country Status (3)

Country Link
US (1) US20230254588A1 (ja)
EP (1) EP4184912A4 (ja)
WO (1) WO2022014361A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11205663A (ja) 1998-01-20 1999-07-30 Nissan Motor Co Ltd 車両用撮像装置の露光量制御装置
JP2001356385A (ja) * 2000-06-14 2001-12-26 Canon Inc カメラの露出制御装置
JP2007228201A (ja) 2006-02-23 2007-09-06 Fujifilm Corp 撮像装置およびその制御方法
JP2009157087A (ja) 2007-12-26 2009-07-16 Denso Corp 露出制御装置及び露出制御プログラム
JP2011035705A (ja) * 2009-08-03 2011-02-17 Canon Inc 撮像装置及びその制御方法
JP2012075059A (ja) 2010-09-30 2012-04-12 Hitachi Automotive Systems Ltd 画像処理装置
JP2014138277A (ja) 2013-01-17 2014-07-28 Canon Inc 撮像装置、遠隔操作端末、カメラシステム、撮像装置の制御方法およびプログラム、遠隔操作端末の制御方法およびプログラム
WO2019163576A1 (ja) * 2018-02-26 2019-08-29 ソニー株式会社 情報処理装置、情報処理方法、およびプログラム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5621462A (en) * 1992-08-18 1997-04-15 Canon Kabushiki Kaisha Image pickup device capable of controlling made pickup operation
JP2000184271A (ja) * 1998-12-17 2000-06-30 Konica Corp デジタルスチルカメラ
JP5228318B2 (ja) * 2006-12-07 2013-07-03 株式会社ニコン カメラおよび発光量演算プログラム
JP5504895B2 (ja) * 2010-01-07 2014-05-28 日本電気株式会社 携帯端末、測光領域選択方法、測光領域選択プログラムおよびプログラム記録媒体
JP2012049709A (ja) * 2010-08-25 2012-03-08 Ricoh Co Ltd 撮像装置、空領域判定方法、プログラム
JP2013160895A (ja) * 2012-02-03 2013-08-19 Denso Corp カメラ露出設定装置
FR3041135B1 (fr) * 2015-09-10 2017-09-29 Parrot Drone avec camera a visee frontale avec segmentation de l'image du ciel pour le controle de l'autoexposition
EP3780578A4 (en) * 2018-03-29 2021-04-21 Sony Corporation EXPOSURE CONTROL DEVICE, EXPOSURE CONTROL METHOD, PROGRAM, IMAGING DEVICE, AND MOBILE BODY
MX2021002613A (es) * 2018-09-13 2021-05-12 Sony Semiconductor Solutions Corp Aparato de procesamiento de informacion y metodo de procesamiento de informacion, aparato de imagen, dispositivo movil, y programa de ordenador.

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11205663A (ja) 1998-01-20 1999-07-30 Nissan Motor Co Ltd 車両用撮像装置の露光量制御装置
JP2001356385A (ja) * 2000-06-14 2001-12-26 Canon Inc カメラの露出制御装置
JP2007228201A (ja) 2006-02-23 2007-09-06 Fujifilm Corp 撮像装置およびその制御方法
JP2009157087A (ja) 2007-12-26 2009-07-16 Denso Corp 露出制御装置及び露出制御プログラム
JP2011035705A (ja) * 2009-08-03 2011-02-17 Canon Inc 撮像装置及びその制御方法
JP2012075059A (ja) 2010-09-30 2012-04-12 Hitachi Automotive Systems Ltd 画像処理装置
JP2014138277A (ja) 2013-01-17 2014-07-28 Canon Inc 撮像装置、遠隔操作端末、カメラシステム、撮像装置の制御方法およびプログラム、遠隔操作端末の制御方法およびプログラム
WO2019163576A1 (ja) * 2018-02-26 2019-08-29 ソニー株式会社 情報処理装置、情報処理方法、およびプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4184912A4

Also Published As

Publication number Publication date
EP4184912A4 (en) 2023-12-20
EP4184912A1 (en) 2023-05-24
US20230254588A1 (en) 2023-08-10

Similar Documents

Publication Publication Date Title
CN112567201B (zh) 距离测量方法以及设备
US11263761B2 (en) Systems and methods for visual target tracking
US20210133996A1 (en) Techniques for motion-based automatic image capture
Rambach et al. Learning to fuse: A deep learning approach to visual-inertial camera pose estimation
CN107357286A (zh) 视觉定位导航装置及其方法
JP2018522348A (ja) センサーの3次元姿勢を推定する方法及びシステム
US20150245020A1 (en) Image processing method, particularly used in a vision-based localization of a device
WO2022077296A1 (zh) 三维重建方法、云台负载、可移动平台以及计算机可读存储介质
CN113568435B (zh) 一种基于无人机自主飞行态势感知趋势的分析方法与系统
CN106529538A (zh) 一种飞行器的定位方法和装置
EP2901236B1 (en) Video-assisted target location
CN108780577A (zh) 图像处理方法和设备
CN108537214B (zh) 一种室内语义地图的自动化构建方法
EP3761629B1 (en) Information processing device, autonomous mobile body, information processing method, and program
WO2019205087A1 (zh) 图像增稳方法和装置
WO2022198508A1 (zh) 镜头异常提示方法、装置、可移动平台及可读存储介质
WO2020019175A1 (zh) 图像处理方法和设备、摄像装置以及无人机
CN111402324A (zh) 一种目标测量方法、电子设备以及计算机存储介质
CN104937608B (zh) 道路区域检测
WO2022014361A1 (ja) 情報処理装置、情報処理方法、及び、プログラム
WO2010089938A1 (ja) 回転推定装置、回転推定方法および記録媒体
Rajakaruna et al. Image deblurring for navigation systems of vision impaired people using sensor fusion data
US20210256732A1 (en) Image processing method and unmanned aerial vehicle
Escudero et al. Enabling UAVs night-time navigation through Mutual Information-based matching of event-generated images
CN112154477A (zh) 图像处理方法、装置和可移动平台

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21843526

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021843526

Country of ref document: EP

Effective date: 20230215

NENP Non-entry into the national phase

Ref country code: JP