[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022014344A1 - Thin film-forming material, thin film, and thin film producing method - Google Patents

Thin film-forming material, thin film, and thin film producing method Download PDF

Info

Publication number
WO2022014344A1
WO2022014344A1 PCT/JP2021/024953 JP2021024953W WO2022014344A1 WO 2022014344 A1 WO2022014344 A1 WO 2022014344A1 JP 2021024953 W JP2021024953 W JP 2021024953W WO 2022014344 A1 WO2022014344 A1 WO 2022014344A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
raw material
yttrium
group
forming
Prior art date
Application number
PCT/JP2021/024953
Other languages
French (fr)
Japanese (ja)
Inventor
雅子 畑▲瀬▼
千瑛 満井
奈奈 岡田
敦史 山下
Original Assignee
株式会社Adeka
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Adeka filed Critical 株式会社Adeka
Priority to JP2022536245A priority Critical patent/JPWO2022014344A1/ja
Publication of WO2022014344A1 publication Critical patent/WO2022014344A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C225/00Compounds containing amino groups and doubly—bound oxygen atoms bound to the same carbon skeleton, at least one of the doubly—bound oxygen atoms not being part of a —CHO group, e.g. amino ketones
    • C07C225/02Compounds containing amino groups and doubly—bound oxygen atoms bound to the same carbon skeleton, at least one of the doubly—bound oxygen atoms not being part of a —CHO group, e.g. amino ketones having amino groups bound to acyclic carbon atoms of the carbon skeleton
    • C07C225/14Compounds containing amino groups and doubly—bound oxygen atoms bound to the same carbon skeleton, at least one of the doubly—bound oxygen atoms not being part of a —CHO group, e.g. amino ketones having amino groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being unsaturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides

Definitions

  • the present invention relates to a raw material for forming a thin film containing an yttrium compound having a specific structure, a thin film obtained by using the raw material, and a method for producing the same.
  • a metal-containing complex is being studied as a raw material for forming a thin film capable of forming a thin film such as a metal nitride, a metal oxide, or a metal-containing film on a substrate such as silicon.
  • Yttrium is used as a component for constituting a compound semiconductor, and various compounds have been reported as a raw material for forming a thin film for producing a thin film containing yttrium.
  • Examples of the thin film manufacturing method include a sputtering method, an ion plating method, a metal organic compound decomposition (MOD: Metal Organic Decomposition) method such as a coating thermal decomposition method and a solgel method, and a chemical vapor deposition (CVD).
  • Examples include the method, atomic layer deposition (ALD: Atomic Layer Deposition) method, and the like. Among these, the CVD method and the ALD method are mainly used because the quality of the obtained thin film is good.
  • Patent Document 1 As a raw material for forming a thin film for forming a thin film containing yttrium, for example, in Patent Document 1, -R 4- NR 5 R 6 (R 4 is an alkylene crosslinked group, and R 5 and R 6 are formed on the N side chain.
  • R 4 is an alkylene crosslinked group, and R 5 and R 6 are formed on the N side chain.
  • Patent Document 2 proposes a metal-containing complex containing a polydentate ketoimin ligand and an alkoxy ligand or an amino ligand as a precursor for forming a metal film or a metal oxide film. Has been done.
  • Patent Document 3 discloses that an yttrium compound having a ⁇ -ketoimine ligand is used as a catalyst for conjugated diene polymerization.
  • Japanese Patent No. 4680953 Japanese Patent No. 5698161 (Japanese Unexamined Patent Publication No. 2012-153688) Japanese Patent No. 6020257 (Japanese Unexamined Patent Publication No. 2014-166967)
  • the raw material for thin film formation is required to have a low melting point, high volatility, high thermal stability, and the ability to form a high quality thin film with a small amount of residual carbon.
  • the raw materials for forming a thin film containing the yttrium compound proposed in Patent Documents 1 and 2 have not satisfied these requirements.
  • Patent Document 3 does not contain any description suggesting that an yttrium compound having a ⁇ -ketoimine ligand is used as a raw material for forming a thin film.
  • an object of the present invention is to provide a raw material for forming a thin film containing an yttrium compound, which has a low melting point, high volatility and thermal stability, and can be suitably used for a CVD method or an ALD method. ..
  • Another object of the present invention is to provide a thin film obtained by using the thin film forming raw material and a method for producing the same.
  • the present invention is a raw material for forming a thin film containing an yttrium compound represented by the following general formula (1) or (2).
  • R 1 and R 3 independently represent an alkyl group having 1 to 6 carbon atoms or an alkoxyalkyl group having 2 to 6 carbon atoms
  • R 2 is a hydrogen atom or 1 carbon atom
  • R 4 represents an alkyl group having 1 to 3 carbon atoms
  • R 4 represents an alkyl group having 1 to 5 carbon atoms
  • R 5 represents an alkyl group having 1 to 3 carbon atoms
  • a plurality of R 1 , R 2 , and R. 3 , R 4 and R 5 may be the same or different from each other.
  • R 6 and R 8 independently represent an alkyl group having 1 to 6 carbon atoms or an alkoxyalkyl group having 2 to 6 carbon atoms, and R 7 is a hydrogen atom or 1 carbon atom. Representing an alkyl group of ⁇ 3, the plurality of R 6 , R 7 and R 8 may be the same or different, respectively, except that at least one of R 6 and R 8 is carbon. Represents an alkoxyalkyl group having 2 to 6 atoms.
  • R 1 and R 3 are isopropyl groups
  • R 2 is a hydrogen atom
  • R 4 is an ethylene group
  • R 5 is a methyl group.
  • the present invention is a step of introducing a raw material gas obtained by vaporizing the raw material for forming a thin film into a film forming chamber in which a substrate is installed, and a precursor by depositing an yttrium compound in the raw material gas on the surface of the substrate.
  • a thin film including a step of forming a thin film and a step of introducing a reactive gas into a film forming chamber and reacting the precursor thin film with the reactive gas to form a thin film containing an yttrium atom on the surface of the substrate. It is a manufacturing method of.
  • the reactive gas is an oxidizing gas and the thin film containing an yttrium atom is yttrium oxide.
  • the oxidizing gas is a gas containing oxygen, ozone or water vapor.
  • the precursor thin film it is preferable to react the precursor thin film with the reactive gas in the range of 100 ° C to 400 ° C.
  • a specific yttrium compound by containing a specific yttrium compound, it is possible to provide a raw material for forming a thin film having a low melting point and high volatility and thermal stability. Further, by using the raw material for forming a thin film of the present invention, a high-quality yttrium-containing thin film having a small residual carbon content can be produced by using a CVD method, particularly an ALD method.
  • the raw material for forming a thin film of the present invention contains an yttrium compound represented by the above general formula (1) or (2).
  • R 1 and R 3 independently represent an alkyl group having 1 to 6 carbon atoms or an alkoxyalkyl group having 2 to 6 carbon atoms
  • R 2 is a hydrogen atom or
  • R 4 represents an alkyl group having 1 to 3 carbon atoms,
  • R 4 represents an alkylandyl group having 1 to 5 carbon atoms,
  • R 5 represents an alkyl group having 1 to 3 carbon atoms, and a plurality of R 1 ,.
  • R 2 , R 3 , R 4 and R 5 may be the same or different from each other.
  • R 6 and R 8 independently represent an alkyl group having 1 to 6 carbon atoms or an alkoxyalkyl group having 2 to 6 carbon atoms
  • R 7 is a hydrogen atom or a hydrogen atom or Representing an alkyl group having 1 to 3 carbon atoms
  • the plurality of R 6 , R 7 and R 8 may be the same or different from each other.
  • at least one of R 6 and R 8 represents an alkoxyalkyl group having 2 to 6 carbon atoms.
  • the melting point is preferably 100 ° C. or lower. It is more preferable that it is liquid at room temperature. Further, the temperature when the yttrium compound is reduced by 50% by mass by a reduced pressure thermogravimetric differential thermal analyzer (TG-DTA) is preferably 240 ° C. or lower.
  • TG-DTA thermogravimetric differential thermal analyzer
  • the thermal decomposition start temperature of the yttrium compound by the differential scanning calorimeter (DSC) is preferably 250 ° C. or higher, and more preferably 300 ° C. or higher.
  • examples of the alkyl group having 1 to 6 carbon atoms represented by R 1 and R 3 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group and an n-butyl group.
  • examples thereof include sec-butyl group, tert-butyl group, isobutyl group, n-pentyl group, sec-pentyl group, tert-pentyl group, isopentyl group, neopentyl group and hexyl group.
  • an yttrium compound in which R 1 and R 3 are alkyl groups having 1 to 4 carbon atoms is preferable, and R 1 is an ethyl group and isopropyl.
  • An yttrium compound which is a group or a tert-butyl group and R 3 is an ethyl group or an isopropyl group is more preferable, and an yttrium compound in which R 1 and R 3 are an isopropyl group is most preferable.
  • examples of the alkoxyalkyl group having 2 to 6 carbon atoms represented by R 1 and R 3 include a methoxymethyl group, a methoxyethyl group, an ethoxymethyl group, an ethoxyethyl group and a methoxyisopropyl group.
  • Examples thereof include a group, a methoxypropyl group, a methoxyisobutyl group, a methoxysec-butyl group, a methoxytert-butyl group, an ethoxyisopropyl group, an ethoxybutyl group, an ethoxyisobutyl group, an ethoxysec-butyl group, an ethoxytert-butyl group and the like. From the viewpoint that the effect of the present invention is remarkable , the yttrium compound in which R 1 and R 3 are methoxyisopropyl groups or methoxytert-butyl is preferable in the above general formula (1).
  • examples of the alkyl group having 1 to 3 carbon atoms represented by R 2 and R 5 include the above-mentioned alkyl groups having 1 to 3 carbon atoms. From the viewpoint that the effect of the present invention is remarkable , the yttrium compound in which R 2 is a hydrogen atom and R 5 is a methyl group is preferable in the above general formula (1).
  • examples of the alkanediyl group having 1 to 5 carbon atoms represented by R 4 include a methylene group, an ethylene group, a propane-1,3-diyl group, and a propane-1,2-.
  • examples thereof include a diyl group, a butylene group, a butane-1,2-diyl group, a butane-1,3-diyl group, a butane-1,4-diyl group and the like. From the viewpoint that the effect of the present invention is remarkable , the yttrium compound in which R 4 is an ethylene group or a propane-1,2-diyl group is preferable in the above general formula (1).
  • examples of the alkyl group having 1 to 6 carbon atoms and the alkoxyalkyl group having 2 to 6 carbon atoms represented by R 6 and R 8 are the same as those described above.
  • examples of the alkyl group having 1 to 3 carbon atoms represented by R 7 are the same as those described above.
  • the plurality of R 6 , R 7 and R 8 may be the same or different, but at least one of the plurality of R 6 and R 8 may be different.
  • an yttrium compound in which two or more of the plurality of R 6 and R 8 are alkoxyalkyl groups having 2 to 6 carbon atoms is preferable, and three of the plurality of R 6 and R 8 are carbon.
  • An yttrium compound which is an alkoxyalkyl group having 2 to 6 atoms is more preferable.
  • the yttrium compound represented by the above general formula (1) or (2) As a preferable specific example of the yttrium compound represented by the above general formula (1) or (2), the following No. 1 to No. 16 yttrium compounds are mentioned, but the invention is not limited to these yttrium compounds.
  • the following No. 1 to No. In the yttrium compound 16 "Me” represents a methyl group, “Et” represents an ethyl group, “iPr” represents an isopropyl group, and "tBu” represents a tert-butyl group.
  • the yttrium compound of the present invention can be produced by utilizing a well-known reaction.
  • R 1 is a methyl group
  • R 2 is a hydrogen atom
  • R 3 is a methyl group
  • R 4 is a methylene group
  • R 5 is a methyl group.
  • the compound can be obtained by reacting ittrium-tris-trimethylsilylamide with 4-methoxymethylamino-3-penten-2-one in a solvent, removing the solvent, and purifying by distillation.
  • the yttrium compound in which R 6 is a methoxytert-butyl group, R 7 is a hydrogen atom and R 8 is an isopropyl group is an yttrium-tris-trimethylsilylamide in a solvent. It can be obtained by reacting with 5-amino-7-methoxy-4-hepten-3-one, removing the solvent, and purifying by distillation.
  • the raw material for forming a thin film of the present invention may be any as long as it contains the yttrium compound represented by the above general formula (1) or (2), and its composition varies depending on the type of the target thin film.
  • the raw material for forming a thin film of the present invention does not contain a compound containing a metal other than yttrium and a compound containing a semimetal.
  • the raw material for forming a thin film of the present invention is in addition to the yttrium compound represented by the above general formula (1) or (2).
  • a compound containing a desired metal and / or a compound containing a semimetal (hereinafter, may be referred to as "another precursor") can be contained.
  • the other precursors that can be used together with the yttrium compound represented by the above general formula (1) or (2) are not particularly limited.
  • a well-known general precursor used as a raw material for forming a thin film for a CVD method can be used.
  • the other precursors described above include, for example, one or two types selected from the group consisting of compounds used as organic ligands such as alcohol compounds, glycol compounds, ⁇ -diketone compounds, cyclopentadiene compounds, and organic amine compounds.
  • organic ligands such as alcohol compounds, glycol compounds, ⁇ -diketone compounds, cyclopentadiene compounds, and organic amine compounds.
  • the above and compounds with silicon and metals can be mentioned.
  • the metal species of precursors include lithium, sodium, magnesium, aluminum, potassium, calcium, scandium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, gallium, germanium, lutetium, strontium, and ittrium.
  • Examples of the alcohol compound used as the organic ligand of the other precursors described above include methanol, ethanol, propanol, isopropyl alcohol, butanol, sec-butyl alcohol, isobutyl alcohol, tert-butyl alcohol, pentyl alcohol and isopentyl alcohol.
  • Tart-alkyl alcohols such as pentyl alcohol; 2-methoxyethanol, 2-ethoxyethanol, 2-butoxyethanol, 2- (2-methoxyethoxy) ethanol, 2-methoxy-1-methylethanol, 2-methoxy-1 , 1-dimethylethanol, 2-ethoxy-1,1-dimethylethanol, 2-isopropoxy-1,1-dimethylethanol, 2-butoxy-1,1-dimethylethanol, 2- (2-methoxyethoxy) -1 , 1-Dimethylethanol, 2-propoxy-1,1-diethylethanol, 2-sec-butoxy-1,1-diethylethanol, 3-methoxy-1,1-dimethylpropanol and other ether alcohols; dimethylaminoethanol, Ethylmethylaminoethanol, diethylaminoethanol, dimethylamino-2-pentanol, ethylmethylamino-2-pentanol, dimethylamino-2-methyl-2-pentanol, ethyl
  • glycol compound used as the organic ligand of the other precursors described above examples include 1,2-ethanediol, 1,2-propanediol, 1,3-propanediol, 2,4-hexanediol, and 2, 2-Dimethyl-1,3-propanediol, 2,2-diethyl-1,3-propanediol, 1,3-butanediol, 2,4-butanediol, 2,2-diethyl-1,3-butanediol , 2-Ethyl-2-butyl-1,3-propanediol, 2,4-pentanediol, 2-methyl-1,3-propanediol, 2-methyl-2,4-pentanediol, 2,4-hexane Examples thereof include diol, 2,4-dimethyl-2,4-pentanediol and the like.
  • Examples of the ⁇ -diketone compound used as the organic ligand of the other precursors described above include acetylacetone, hexane-2,4-dione, 5-methylhexane-2,4-dione, and heptane-2,4-dione.
  • cyclopentadiene compound used as the organic ligand of the other precursors described above examples include cyclopentadiene, methylcyclopentadiene, ethylcyclopentadiene, propylcyclopentadiene, isopropylcyclopentadiene, butylcyclopentadiene, and second butylcyclopentadiene.
  • examples thereof include isobutylcyclopentadiene, tert-butylcyclopentadiene, dimethylcyclopentadiene, tetramethylcyclopentadiene and the like.
  • Examples of the organic amine compound used as the organic ligand of the above other precursors include methylamine, ethylamine, propylamine, isopropylamine, butylamine, sec-butylamine, tert-butylamine, isobutylamine, dimethylamine, diethylamine and dipropyl. Examples thereof include amines, diisopropylamines, ethylmethylamines, propylmethylamines and isopropylmethylamines.
  • a precursor can be produced by reacting the above-mentioned inorganic salt of a metal or a hydrate thereof with an alkali metal alkoxide of the alcohol compound.
  • examples of the inorganic salt of the metal or its hydrate include metal halides and nitrates
  • examples of the alkali metal alkoxide include sodium alkoxide, lithium alkoxide, potassium alkoxide and the like. Can be done.
  • a method of vaporizing and supplying the raw material for thin film formation independently (hereinafter, also referred to as “single source method”) and a multi-component raw material are desired in advance.
  • a method of vaporizing and supplying a mixed raw material mixed with the composition of (hereinafter, may be referred to as "cocktail sauce method”).
  • a compound whose thermal and / or oxidative decomposition behavior is similar to that of the yttrium compound represented by the general formula (1) or (2) is preferable.
  • a mixture of the yttrium compound represented by the above general formula (1) or (2) and another precursor or a mixed solution obtained by dissolving the mixture in an organic solvent is made into a thin film. It can be used as a raw material for formation.
  • organic solvent a well-known general organic solvent can be used without any particular limitation.
  • organic solvent include acetate esters such as ethyl acetate, butyl acetate and methoxyethyl acetate; ethers such as tetrahydrofuran, tetrahydropyran, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, dibutyl ether and dioxane; methyl.
  • Ketones such as butyl ketone, methylisobutylketone, ethylbutylketone, dipropylketone, diisobutylketone, methylamylketone, cyclohexanone, methylcyclohexanone; hexane, cyclohexane, methylcyclohexane, dimethylcyclohexane, ethylcyclohexane, heptane, octane, toluene, Hydrocarbons such as xylene; 1-cyanopropane, 1-cyanobutane, 1-cyanohexane, cyanocyclohexane, cyanobenzene, 1,3-dicyanopropane, 1,4-dicyanobutane, 1,6-dicyanohexane, 1, Hydrocarbons having a cyano group such as 4-dicyanocyclohexane and 1,4-dicyanobenzen
  • the total amount of the precursor in the raw material for forming a thin film is preferably 0.01 mol / liter to 2.0 mol / liter, more preferably. It may be adjusted to be 0.05 mol / liter to 1.0 mol / liter.
  • the total amount of the precursor is represented by the above general formula (1) or (2) when the raw material for forming a thin film of the present invention does not contain a compound containing a metal other than yttrium and a compound containing a semi-metal.
  • the raw material for forming a thin film of the present invention contains another precursor in addition to the yttrium compound represented by the above general formula (1) or (2), it is represented by the above general formula (1) or (2). Represents the total amount of yttrium compound and other precursors.
  • the raw material for forming a thin film of the present invention contains a nucleophile in order to improve the stability of the yttrium compound represented by the above general formula (1) or (2) and other precursors, if necessary.
  • the nucleophilic reagent include ethylene glycol ethers such as glyme, diglyme, triglime, and tetraglyme, 18-crown-6, dicyclohexyl-18-crown-6, 24-crown-8, and dicyclohexyl-24-crown.
  • Crown ethers such as dibenzo-24-crown-8, ethylenediamine, N, N'-tetramethylethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, 1,1,4,7, Polyamines such as 7-pentamethyldiethylenetriamine, 1,1,4,7,10,10-hexamethyltriethylenetetramine, triethoxytriethyleneamine, cyclic polyamines such as cyclum and cyclone, pyridine, pyrrolidine, piperidine, morpholin.
  • the amount of these nucleophiles used is preferably in the range of 0.1 mol to 10 mol, more preferably in the range of 1 mol to 4 mol, with respect to 1 mol of the total amount of precursor.
  • the raw material for forming a thin film of the present invention contains as little as possible impurity metal elements other than the constituents thereof, impurity halogens such as impurity chlorine, and impurity organics.
  • the impurity metal element content is preferably 100 ppb or less for each element, more preferably 10 ppb or less, and the total amount is preferably 1 ppm or less, more preferably 100 ppb or less.
  • a gate insulating film, a gate film, or a barrier layer of an LSI it is necessary to reduce the contents of alkali metal elements and alkaline earth metal elements that affect the electrical characteristics of the obtained thin film.
  • the impurity halogen content is preferably 100 ppm or less, more preferably 10 ppm or less, still more preferably 1 ppm or less.
  • the total amount of the impurity organic content is preferably 500 ppm or less, more preferably 50 ppm or less, still more preferably 10 ppm or less.
  • precursors, organic solvents and nucleophiles are used to reduce the water content of each. It is better to remove as much water as possible in advance.
  • the water content of each of the precursor, the organic solvent and the nucleophilic reagent is preferably 10 ppm or less, more preferably 1 ppm or less.
  • the raw material for forming a thin film of the present invention contains as little particles as possible in order to reduce or prevent particle contamination of the formed thin film.
  • the number of particles larger than 0.3 ⁇ m is preferably 100 or less in 1 ml of the liquid phase, and is larger than 0.2 ⁇ m. It is more preferable that the number of particles is 100 or less in 1 ml of the liquid phase.
  • a method for producing a thin film of the present invention using the above-mentioned raw material for forming a thin film will be described.
  • a method for producing a thin film containing a yttrium atom (hereinafter, also referred to as “yttrium-containing thin film”) by the ALD method will be described.
  • a well-known ALD device can be used as the device used in the method for producing a thin film of the present invention.
  • the device include a device capable of bubbling and supplying a precursor as shown in FIGS. 1 and 3, and a device having a vaporization chamber as shown in FIGS. 2 and 4.
  • an apparatus capable of performing plasma treatment on the reactive gas can be mentioned.
  • an apparatus capable of simultaneously processing a large number of sheets using a batch furnace can also be used. These devices can be used as CVD devices.
  • the raw material gas obtained by vaporizing the above-mentioned thin film forming raw material is introduced into a film forming chamber in which a substrate is installed (hereinafter, may be referred to as a "deposition reaction portion").
  • the method for producing a thin film of the present invention is a step of exhausting gas in the film forming chamber between the precursor thin film forming step and the ittrium-containing thin film forming step and / or after the ittrium-containing thin film forming step (exhaust step). It is preferable to have.
  • a series of operations of forming a precursor thin film, an exhaust step, an yttrium-containing thin film forming step, and an exhaust step are performed in order, and the deposition is set as one cycle, and this cycle is repeated.
  • the thickness of the thin film of the present invention can be adjusted.
  • each step of the thin film manufacturing method of the present invention will be described.
  • the raw material gas introduction step is a step of vaporizing the above-mentioned raw material for forming a thin film into a raw material gas, and introducing the raw material gas into a deposition reaction section in which a substrate is installed.
  • a method for transporting and supplying the raw material for thin film formation as shown in FIGS. 1 and 3, heating is performed in a container (hereinafter, also referred to as “raw material container”) in which the raw material for thin film formation of the present invention is stored.
  • the raw material gas is vaporized by depressurizing to obtain a raw material gas, and if necessary, the raw material gas is introduced into the deposition reaction section where the substrate is installed together with carrier gas such as argon, nitrogen, and helium.
  • carrier gas such as argon, nitrogen, and helium.
  • the raw material for forming a thin film is transported to a vaporization chamber in the form of a liquid or a solution, and vaporized by heating and / or depressurizing in the vaporization chamber to obtain a raw material gas, and the raw material gas is used as a substrate.
  • the yttrium compound itself represented by the above general formula (1) or (2) can be used as a raw material for forming a thin film.
  • the yttrium compound represented by the above general formula (1) or (2) or a solution obtained by dissolving the yttrium compound in an organic solvent can be used as a raw material for forming a thin film.
  • These raw materials for forming a thin film may further contain a nucleophilic reagent or the like.
  • a multi-component ALD method including a plurality of precursors is used as a single as described in ⁇ Thin film forming raw material>.
  • the raw material for forming a thin film of the present invention is vaporized in the range of 0 ° C to 200 ° C.
  • the pressure in the raw material container and the pressure in the vaporization chamber are preferably in the range of 1 Pa to 10,000 Pa.
  • examples of the material of the substrate installed in the deposition reaction section include silicon; ceramics such as silicon nitride, titanium nitride, tantalum nitride, titanium oxide, ruthenium oxide, zirconium oxide, hafnium oxide, and lanthanum oxide; glass; Examples thereof include metals such as metallic cobalt and metallic ruthenium.
  • examples of the shape of the substrate include plate-like, spherical, fibrous, and scaly shapes.
  • the surface of the substrate may be flat or may have a three-dimensional structure such as a trench structure.
  • the yttrium compound represented by the above general formula (1) or (2) in the raw material gas introduced into the deposition reaction section in which the substrate is installed is deposited on the surface of the substrate to deposit the substrate.
  • a precursor thin film is formed on the surface.
  • the substrate may be heated, or the deposition reaction portion may be heated to apply heat.
  • the production conditions for forming the precursor thin film are not particularly limited, and for example, the reaction temperature (base temperature), reaction pressure, deposition rate and the like can be appropriately determined according to the type of the thin film forming raw material.
  • the reaction temperature is preferably 100 ° C.
  • reaction pressure is preferably 1 Pa to 10,000 Pa, more preferably 10 Pa to 1,000 Pa.
  • the deposition rate can be controlled by the supply conditions (vaporization temperature, vaporization pressure), reaction temperature, and reaction pressure of the raw material for thin film formation. If the deposition rate is high, the characteristics of the obtained thin film may deteriorate, and if it is low, productivity problems may occur. Therefore, 0.01 nm / min to 100 nm / min is preferable, and 0.1 nm / min to 50 nm / min is preferable. Minutes are more preferred.
  • the raw material gas that has not accumulated on the surface of the substrate is exhausted from the deposition reaction section. At this time, it is ideal that the raw material gas is completely exhausted from the deposition reaction portion, but it is not always necessary to completely exhaust the raw material gas.
  • the exhaust method include a method of purging the inside of the system of the deposition reaction part with an inert gas such as helium, nitrogen, and argon, a method of exhausting by depressurizing the inside of the system, and a method of combining these.
  • the degree of decompression in the case of depressurization is preferably in the range of 0.01 Pa to 300 Pa, more preferably in the range of 0.01 Pa to 100 Pa.
  • yttrium-containing thin film forming process In the yttrium-containing thin film forming step, after the exhaust step, a reactive gas is introduced into the deposition reaction section and deposited on the surface of the precursor thin film, that is, the substrate by the action of the reactive gas or the action of the reactive gas and the action of heat.
  • the yttrium compound represented by the above general formula (1) or (2) is reacted with the reactive gas to form an yttrium-containing thin film.
  • the reactive gas examples include oxidizing gas such as oxygen, ozone, nitrogen dioxide, nitrogen monoxide, steam, hydrogen peroxide, formic acid, acetic acid and anhydrous acetic acid, reducing gas such as hydrogen, monoalkylamine and dialkyl.
  • oxidizing gas such as oxygen, ozone, nitrogen dioxide, nitrogen monoxide, steam, hydrogen peroxide, formic acid, acetic acid and anhydrous acetic acid
  • reducing gas such as hydrogen, monoalkylamine and dialkyl.
  • organic amine compounds such as amines, trialkylamines and alkylenediamines, and nitrided gases such as hydrazine and ammonia. These reactive gases may be used alone or in combination of two or more.
  • the reactive gas is preferably an oxidizing gas, and more preferably a gas containing oxygen, ozone or water vapor.
  • an oxidizing gas is used as the reactive gas, a yttrium oxide thin film is formed as the y
  • the reaction is preferably in the range of 50 ° C to 500 ° C, and more preferably in the range of 100 ° C to 400 ° C.
  • the pressure in the deposition reaction section when this step is performed is preferably 1 Pa to 10,000 Pa, more preferably 10 Pa to 1,000 Pa.
  • the raw material gas introduction step, the precursor thin film forming step, the exhaust process, the yttrium-containing thin film forming step and the exhaust step are carried out in order, and the deposition by a series of operations is regarded as one cycle, and this cycle is the required film thickness.
  • this cycle is the required film thickness.
  • energy such as plasma, light, and voltage may be applied to the deposition reaction portion, or a catalyst may be used.
  • the timing of applying the energy and the timing of using the catalyst are not particularly limited, and for example, the reaction in the raw material gas introduction step, the heating in the precursor thin film forming step, and the reaction in the yttrium-containing thin film forming step. It may be at the time of introducing the sex gas, at the time of reacting the reactive gas with the precursor thin film, at the time of exhausting in the system in the exhausting step, or during each of the above steps.
  • annealing treatment may be performed in an inert atmosphere, an oxidizing atmosphere or a reducing atmosphere in order to obtain better electrical characteristics. If embedding is required, a reflow process may be provided.
  • the temperature is preferably 200 ° C to 1,000 ° C, more preferably 250 ° C to 500 ° C.
  • the thin film produced by using the raw material for forming a thin film of the present invention covers a substrate such as metal, oxide ceramics, nitride ceramics, and glass by appropriately selecting other precursors, reactive gases, and production conditions. Therefore, a desired type of thin film can be obtained. Since the thin film of the present invention is excellent in electrical characteristics and optical characteristics, for example, it is used for electrode materials of memory elements represented by DRAM elements, resistance films, antimagnetic films used for recording layers of hard disks, and polymer electrolyte fuel cells. It can be widely used in the production of catalyst materials and the like.
  • the generated yttrium complex (orange viscous liquid) was placed in a flask, connected to a Kugelrohr purification device, and distilled at a heating temperature of 230 ° C. and 55 Pa to obtain a yellow viscous liquid.
  • the obtained yellow viscous liquid was analyzed by 1 H-NMR and ICP-AES, and as a result, yttrium compound No. It was confirmed that it was 1.
  • the analysis results of the obtained yellow viscous liquid are shown below.
  • the produced yttrium complex (orange viscous liquid) was placed in a flask, connected to a Kugelrohr purifier, and distilled at a heating temperature of 205 ° C. and 21 Pa to obtain a yellow viscous liquid.
  • the obtained yellow viscous liquid became a yellow solid when allowed to cool to room temperature.
  • the obtained yellow viscous liquid was analyzed by 1 H-NMR and ICP-AES, and as a result, yttrium compound No. It was confirmed that it was 3.
  • the analysis results of the obtained yellow viscous liquid are shown below.
  • yttrium complex (orange viscous substance) was placed in a flask, connected to a Kugelrohr purifier, and distilled at a heating temperature of 214 ° C. and 17 Pa to obtain a yellow liquid.
  • the obtained yellow liquid became a yellow glassy solid when allowed to cool to room temperature.
  • yttrium compound No. It was confirmed that it was 6.
  • the produced yttrium complex (reddish brown viscous substance) was placed in a flask, connected to a Kugelrohr purifier, and distilled at a heating temperature of 210 ° C. and 23 Pa to obtain a yellow liquid.
  • the obtained yellow liquid was allowed to cool to room temperature to obtain a yellow solid.
  • the obtained yellow solid was analyzed by 1 H-NMR and ICP-AES, and as a result, yttrium compound No. It was confirmed that it was 15.
  • the analysis results of the obtained yellow solid are shown below.
  • Yttrium compound No. 1 produced in Production Examples 1 to 5 above. 1, No. 3, No. 6, No. The following evaluation was performed using 15 and Comparative Compound 1.
  • the comparative compound 1 had a thermal decomposition start temperature of 267 ° C., was poor in thermal stability, and was not satisfactory as a raw material for forming a thin film.
  • yttrium compound No. 1, No. 3, No. 6 and No. It was confirmed that No. 15 had an excellent thermal stability because the thermal decomposition start temperature was 300 ° C. or higher even though the melting point was low. Further, it was confirmed that the temperature of these yttrium compounds when the reduced pressure TG-DTA was reduced by 50% by mass was around 230 ° C., and vapor could be obtained at a low temperature. From these results, it was confirmed that the yttrium compound represented by the general formula (1) or (2) is useful as a raw material for forming a thin film. In addition, compound No. of Example 3 The appearance of No. 6 was similar to that of water glass and had no fluidity.
  • Example 5 Production of thin film by ALD method Yttrium compound No. A thin film was produced on silicon dioxide as a substrate under the following conditions using 15 as a raw material for forming a thin film and using the ALD apparatus of FIG. When the composition of the thin film was analyzed using X-ray photoelectron spectroscopy, it was confirmed that the thin film was a thin film containing yttrium oxide and the residual carbon content was less than the detection limit of 0.01 atom%. Further, when the film thickness of the thin film was measured by the X-ray reflectivity method, the thin film formed on the substrate was a smooth film with a film thickness of 20 nm, and the film thickness obtained per cycle was about 0. It was 0.05 nm.
  • Example 6 Production of thin film by ALD method Yttrium compound No. 3 was used as a raw material for forming a thin film, and a thin film was produced on silicon dioxide as a substrate under the following conditions using the ALD apparatus of FIG.
  • the composition of the thin film was analyzed using X-ray photoelectron spectroscopy, it was confirmed that the thin film was a thin film containing yttrium oxide and the residual carbon content was less than the detection limit of 0.01 atom%.
  • the film thickness of the thin film was measured by the X-ray reflectivity method, the thin film formed on the substrate was a smooth film with a film thickness of 16 nm, and the film thickness obtained per cycle was about 0. It was .04 nm.
  • Comparative Example 2 Production of Thin Film by ALD Method A thin film was produced on silicon dioxide as a substrate under the same conditions as in Example 5 except that Comparative Compound 1 was used as a raw material for forming a thin film.
  • the composition of the thin film was analyzed using X-ray electron spectroscopy, the thin film was a thin film containing yttrium oxide, but residual carbon was detected.
  • the state of the thin film was observed using the scanning electron microscope method, the thin film formed on the substrate was not smooth and the film thickness could not be measured.
  • the raw material for forming a thin film containing the yttrium compound of the present invention has a low melting point, vapor can be obtained at a low temperature, and the thermal stability is excellent. Therefore, when a thin film is produced using the raw material for forming a thin film of the present invention, a high-quality yttrium-containing thin film having a small amount of residual carbon can be produced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

Provided is a thin film-forming material containing a yttrium compound represented by general formula (1). (In the formula, R1 and R3 each independently represent an alkyl group having 1-6 carbon atoms or an alkoxyalkyl group having 2-6 carbon atoms, R2 represents a hydrogen atom or an alkyl group having 1-3 carbon atoms, R4 represents an alkanediyl group having 1-5 carbon atoms, R5 represents an alkyl group each having 1-3 carbon atoms, and R1, R2, R3, R4, and R5, which are each present in a number of more than one, may be the same or different within each other.)

Description

薄膜形成用原料、薄膜及び薄膜の製造方法Raw materials for thin film formation, thin films and methods for manufacturing thin films
 本発明は、特定の構造を有するイットリウム化合物を含有する薄膜形成用原料、それを用いて得られる薄膜及びその製造方法に関する。 The present invention relates to a raw material for forming a thin film containing an yttrium compound having a specific structure, a thin film obtained by using the raw material, and a method for producing the same.
 半導体製造産業では、シリコン等の基板上に、金属窒化物、金属酸化物、金属含有膜等の薄膜を形成することができる薄膜形成用原料として、金属含有錯体の検討が進められている。 In the semiconductor manufacturing industry, a metal-containing complex is being studied as a raw material for forming a thin film capable of forming a thin film such as a metal nitride, a metal oxide, or a metal-containing film on a substrate such as silicon.
 イットリウムは、化合物半導体を構成するための成分として用いられており、イットリウムを含有する薄膜を製造するための薄膜形成用原料として、様々な化合物が報告されている。 Yttrium is used as a component for constituting a compound semiconductor, and various compounds have been reported as a raw material for forming a thin film for producing a thin film containing yttrium.
 薄膜の製造方法としては、例えば、スパッタリング法、イオンプレーティング法、塗布熱分解法やゾルゲル法等の金属有機化合物分解(MOD:Metal Organic Decomposition)法、化学気相成長(CVD:Chemical Vapor Deposition)法、原子層堆積(ALD:Atomic Layer Deposition)法等が挙げられる。これらの中でも、得られる薄膜の品質が良好なことからCVD法やALD法が主に用いられる。 Examples of the thin film manufacturing method include a sputtering method, an ion plating method, a metal organic compound decomposition (MOD: Metal Organic Decomposition) method such as a coating thermal decomposition method and a solgel method, and a chemical vapor deposition (CVD). Examples include the method, atomic layer deposition (ALD: Atomic Layer Deposition) method, and the like. Among these, the CVD method and the ALD method are mainly used because the quality of the obtained thin film is good.
 CVD法やALD法のような気相薄膜形成法に用いることができる薄膜形成用原料は、種々報告されているが、ALD法に適用可能な薄膜形成用原料は、ALDウィンドウと呼ばれる温度領域が充分な広さを有することが必要である。CVD法に使用可能な薄膜形成用原料であっても、ALD法に適さない場合が多くあることは当該技術分野における技術常識である。 Various thin film forming raw materials that can be used in vapor phase thin film forming methods such as the CVD method and the ALD method have been reported, but the thin film forming raw materials applicable to the ALD method have a temperature region called an ALD window. It is necessary to have sufficient space. It is common general knowledge in the art that even a thin film forming raw material that can be used in the CVD method is not suitable for the ALD method in many cases.
 イットリウムを含有する薄膜を形成する薄膜形成用原料として、例えば、特許文献1では、N側鎖に、-R4-NR56(R4は、アルキレン架橋基であり、R5及びR6は、アルキル基等から選択される)を有するβ-ケトイミナート構造の金属含有錯体が提案されている。 As a raw material for forming a thin film for forming a thin film containing yttrium, for example, in Patent Document 1, -R 4- NR 5 R 6 (R 4 is an alkylene crosslinked group, and R 5 and R 6 are formed on the N side chain. Has been proposed as a metal-containing complex having a β-ketominate structure (selected from an alkyl group and the like).
 特許文献2には、金属膜又は金属酸化物膜を形成するための前駆体として、多座配位のケトイミン配位子と、アルコキシ配位子又はアミノ配位子とを含む金属含有錯体が提案されている。 Patent Document 2 proposes a metal-containing complex containing a polydentate ketoimin ligand and an alkoxy ligand or an amino ligand as a precursor for forming a metal film or a metal oxide film. Has been done.
 特許文献3には、共役ジエン重合用触媒として、β-ケトイミン配位子を有するイットリウム化合物を用いることが開示されている。 Patent Document 3 discloses that an yttrium compound having a β-ketoimine ligand is used as a catalyst for conjugated diene polymerization.
特許第4680953号(特開2007-302656号公報)Japanese Patent No. 4680953 (Japanese Unexamined Patent Publication No. 2007-302656) 特許第5698161号(特開2012-153688号公報)Japanese Patent No. 5698161 (Japanese Unexamined Patent Publication No. 2012-153688) 特許第6020257号(特開2014-166967号公報)Japanese Patent No. 6020257 (Japanese Unexamined Patent Publication No. 2014-166967)
 薄膜形成用原料には、低融点であること、揮発性が高いこと、熱安定性が高いこと、残留炭素量が少ない高品質な薄膜を形成できること等が要求される。しかしながら、特許文献1及び2で提案されるイットリウム化合物を含有する薄膜形成用原料は、これらの要求を満足できるものではなかった。 The raw material for thin film formation is required to have a low melting point, high volatility, high thermal stability, and the ability to form a high quality thin film with a small amount of residual carbon. However, the raw materials for forming a thin film containing the yttrium compound proposed in Patent Documents 1 and 2 have not satisfied these requirements.
 特許文献3には、β-ケトイミン配位子を有するイットリウム化合物を薄膜形成用原料として用いることを示唆するような記載は一切なかった。 Patent Document 3 does not contain any description suggesting that an yttrium compound having a β-ketoimine ligand is used as a raw material for forming a thin film.
 従って、本発明は、低融点であり且つ揮発性及び熱安定性が高く、CVD法やALD法に好適に用いることのできる、イットリウム化合物を含有する薄膜形成用原料を提供することを目的とする。また、本発明は、該薄膜形成用原料を用いて得られる薄膜及びその製造方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a raw material for forming a thin film containing an yttrium compound, which has a low melting point, high volatility and thermal stability, and can be suitably used for a CVD method or an ALD method. .. Another object of the present invention is to provide a thin film obtained by using the thin film forming raw material and a method for producing the same.
 本発明者等は、鋭意検討を重ねた結果、特定の構造を有するイットリウム化合物を含有する薄膜形成用原料が、上記課題を解決し得ることを見出し、本発明を完成するに至った。
 すなわち、本発明は、下記一般式(1)又は(2)で表されるイットリウム化合物を含有する薄膜形成用原料である。
As a result of diligent studies, the present inventors have found that a raw material for forming a thin film containing an yttrium compound having a specific structure can solve the above-mentioned problems, and have completed the present invention.
That is, the present invention is a raw material for forming a thin film containing an yttrium compound represented by the following general formula (1) or (2).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(式中、R1及びR3は、それぞれ独立して、炭素原子数1~6のアルキル基又は炭素原子数2~6のアルコキシアルキル基を表し、R2は、水素原子又は炭素原子数1~3のアルキル基を表し、R4は、炭素原子数1~5のアルカンジイル基を表し、R5は、炭素原子数1~3のアルキル基を表し、複数のR1、R2、R3、R4及びR5は、それぞれ同じものであってもよく異なるものであってもよい。) (In the formula, R 1 and R 3 independently represent an alkyl group having 1 to 6 carbon atoms or an alkoxyalkyl group having 2 to 6 carbon atoms, and R 2 is a hydrogen atom or 1 carbon atom. R 4 represents an alkyl group having 1 to 3 carbon atoms, R 4 represents an alkyl group having 1 to 5 carbon atoms, R 5 represents an alkyl group having 1 to 3 carbon atoms, and a plurality of R 1 , R 2 , and R. 3 , R 4 and R 5 may be the same or different from each other.)
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(式中、R6及びR8は、それぞれ独立して、炭素原子数1~6のアルキル基又は炭素原子数2~6のアルコキシアルキル基を表し、R7は、水素原子又は炭素原子数1~3のアルキル基を表し、複数のR6、R7及びR8は、それぞれ同じものであってもよく異なるものであってもよい。ただし、R6及びR8のうち少なくとも一つは炭素原子数2~6のアルコキシアルキル基を表す。) (In the formula, R 6 and R 8 independently represent an alkyl group having 1 to 6 carbon atoms or an alkoxyalkyl group having 2 to 6 carbon atoms, and R 7 is a hydrogen atom or 1 carbon atom. Representing an alkyl group of ~ 3, the plurality of R 6 , R 7 and R 8 may be the same or different, respectively, except that at least one of R 6 and R 8 is carbon. Represents an alkoxyalkyl group having 2 to 6 atoms.)
 本発明の薄膜形成用原料は、上記一般式(1)における、R1及びR3がイソプロピル基であり、R2が水素原子であり、R4がエチレン基であり、R5がメチル基であるイットリウム化合物、又は上記一般式(2)における、R6がメトキシtert-ブチル基であり、R7が水素原子であり、R8がイソプロピル基であるイットリウム化合物を含有すると、低融点であり、揮発性及び熱安定性が高いので好ましい。 In the raw material for forming a thin film of the present invention, in the above general formula (1), R 1 and R 3 are isopropyl groups, R 2 is a hydrogen atom, R 4 is an ethylene group, and R 5 is a methyl group. A certain yttrium compound, or the yttrium compound in the above general formula (2) in which R 6 is a methoxytert-butyl group, R 7 is a hydrogen atom, and R 8 is an isopropyl group, has a low melting point. It is preferable because of its high volatile and thermal stability.
 また、本発明は、上記薄膜形成用原料を気化させた原料ガスを、基体が設置された成膜チャンバー内に導入する工程と、原料ガス中のイットリウム化合物を基体の表面に堆積させて前駆体薄膜を形成する工程と、反応性ガスを成膜チャンバー内に導入し、前駆体薄膜と反応性ガスとを反応させて、基体の表面にイットリウム原子を含有する薄膜を形成する工程とを含む薄膜の製造方法である。 Further, the present invention is a step of introducing a raw material gas obtained by vaporizing the raw material for forming a thin film into a film forming chamber in which a substrate is installed, and a precursor by depositing an yttrium compound in the raw material gas on the surface of the substrate. A thin film including a step of forming a thin film and a step of introducing a reactive gas into a film forming chamber and reacting the precursor thin film with the reactive gas to form a thin film containing an yttrium atom on the surface of the substrate. It is a manufacturing method of.
 また、本発明の薄膜の製造方法において、上記反応性ガスが、酸化性ガスであり、且つ上記イットリウム原子を含有する薄膜が、酸化イットリウムであることが好ましい。 Further, in the method for producing a thin film of the present invention, it is preferable that the reactive gas is an oxidizing gas and the thin film containing an yttrium atom is yttrium oxide.
 さらに、本発明の薄膜の製造方法において、上記酸化性ガスが、酸素、オゾン又は水蒸気を含有するガスであることがより好ましい。 Further, in the method for producing a thin film of the present invention, it is more preferable that the oxidizing gas is a gas containing oxygen, ozone or water vapor.
 また、本発明の薄膜の製造方法において、100℃~400℃の範囲で前駆体薄膜と反応性ガスとを反応させることが好ましい。 Further, in the method for producing a thin film of the present invention, it is preferable to react the precursor thin film with the reactive gas in the range of 100 ° C to 400 ° C.
 本発明によれば、特定のイットリウム化合物を含有することで、低融点であり且つ揮発性及び熱安定性が高い薄膜形成用原料を提供することができる。また、本発明の薄膜形成用原料を用いることで、CVD法、特にALD法を用いて、残留炭素量が少ない高品質なイットリウム含有薄膜を製造することができる。 According to the present invention, by containing a specific yttrium compound, it is possible to provide a raw material for forming a thin film having a low melting point and high volatility and thermal stability. Further, by using the raw material for forming a thin film of the present invention, a high-quality yttrium-containing thin film having a small residual carbon content can be produced by using a CVD method, particularly an ALD method.
本発明に係る薄膜の製造方法に用いられるALD装置の一例を示す概略図である。It is a schematic diagram which shows an example of the ALD apparatus used in the manufacturing method of the thin film which concerns on this invention. 本発明に係る薄膜の製造方法に用いられるALD装置の別の例を示す概略図である。It is a schematic diagram which shows another example of the ALD apparatus used in the manufacturing method of the thin film which concerns on this invention. 本発明に係る薄膜の製造方法に用いられるALD装置のさらに別の例を示す概略図である。It is a schematic diagram which shows still another example of the ALD apparatus used in the manufacturing method of the thin film which concerns on this invention. 本発明に係る薄膜の製造方法に用いられるALD装置のさらに別の例を示す概略図である。It is a schematic diagram which shows still another example of the ALD apparatus used in the manufacturing method of the thin film which concerns on this invention.
<薄膜形成用原料>
 本発明の薄膜形成用原料は、上記一般式(1)又は(2)で表されるイットリウム化合物を含有するものである。
<Raw material for thin film formation>
The raw material for forming a thin film of the present invention contains an yttrium compound represented by the above general formula (1) or (2).
 上記一般式(1)において、R1及びR3は、それぞれ独立して、炭素原子数1~6のアルキル基又は炭素原子数2~6のアルコキシアルキル基を表し、R2は、水素原子又は炭素原子数1~3のアルキル基を表し、R4は、炭素原子数1~5のアルカンジイル基を表し、R5は、炭素原子数1~3のアルキル基を表し、複数のR1、R2、R3、R4及びR5は、それぞれ同じものであってもよく異なるものであってもよい。 In the above general formula (1), R 1 and R 3 independently represent an alkyl group having 1 to 6 carbon atoms or an alkoxyalkyl group having 2 to 6 carbon atoms, and R 2 is a hydrogen atom or R 4 represents an alkyl group having 1 to 3 carbon atoms, R 4 represents an alkylandyl group having 1 to 5 carbon atoms, R 5 represents an alkyl group having 1 to 3 carbon atoms, and a plurality of R 1 ,. R 2 , R 3 , R 4 and R 5 may be the same or different from each other.
 上記一般式(2)において、R6及びR8は、それぞれ独立して、炭素原子数1~6のアルキル基又は炭素原子数2~6のアルコキシアルキル基を表し、R7は、水素原子又は炭素原子数1~3のアルキル基を表し、複数のR6、R7及びR8は、それぞれ同じものであってもよく異なるものであってもよい。ただし、R6及びR8のうち少なくとも一つは炭素原子数2~6のアルコキシアルキル基を表す。 In the above general formula (2), R 6 and R 8 independently represent an alkyl group having 1 to 6 carbon atoms or an alkoxyalkyl group having 2 to 6 carbon atoms, and R 7 is a hydrogen atom or a hydrogen atom or Representing an alkyl group having 1 to 3 carbon atoms, the plurality of R 6 , R 7 and R 8 may be the same or different from each other. However, at least one of R 6 and R 8 represents an alkoxyalkyl group having 2 to 6 carbon atoms.
 上記一般式(1)又は(2)で表されるイットリウム化合物は、CVD法又はALD法による薄膜を形成するためのプリカーサ(前駆体)として用いるため、融点が100℃以下であることが好ましく、常温で液体であることがより好ましい。また、イットリウム化合物の減圧熱重量示差熱分析装置(TG-DTA)による50質量%減少時の温度は240℃以下であることが好ましい。 Since the yttrium compound represented by the general formula (1) or (2) is used as a precursor for forming a thin film by the CVD method or the ALD method, the melting point is preferably 100 ° C. or lower. It is more preferable that it is liquid at room temperature. Further, the temperature when the yttrium compound is reduced by 50% by mass by a reduced pressure thermogravimetric differential thermal analyzer (TG-DTA) is preferably 240 ° C. or lower.
 イットリウム化合物の示差走査熱量計(DSC)による熱分解開始温度が、250℃以上であることが好ましく、300℃以上であることがさらに好ましい。 The thermal decomposition start temperature of the yttrium compound by the differential scanning calorimeter (DSC) is preferably 250 ° C. or higher, and more preferably 300 ° C. or higher.
 上記一般式(1)において、R1及びR3で表される炭素原子数1~6のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、イソブチル基、n-ペンチル基、sec-ペンチル基、tert-ペンチル基、イソペンチル基、ネオペンチル基、ヘキシル基が挙げられる。本発明の効果が顕著であるという観点から、上記一般式(1)において、R1及びR3が、炭素原子数1~4のアルキル基であるイットリウム化合物が好ましく、R1がエチル基、イソプロピル基又はtert-ブチル基であり、R3が、エチル基又はイソプロピル基であるイットリウム化合物がより好ましく、R1及びR3がイソプロピル基であるイットリウム化合物が最も好ましい。 In the above general formula (1) , examples of the alkyl group having 1 to 6 carbon atoms represented by R 1 and R 3 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group and an n-butyl group. Examples thereof include sec-butyl group, tert-butyl group, isobutyl group, n-pentyl group, sec-pentyl group, tert-pentyl group, isopentyl group, neopentyl group and hexyl group. From the viewpoint that the effect of the present invention is remarkable, in the above general formula (1), an yttrium compound in which R 1 and R 3 are alkyl groups having 1 to 4 carbon atoms is preferable, and R 1 is an ethyl group and isopropyl. An yttrium compound which is a group or a tert-butyl group and R 3 is an ethyl group or an isopropyl group is more preferable, and an yttrium compound in which R 1 and R 3 are an isopropyl group is most preferable.
 上記一般式(1)において、R1及びR3で表される炭素原子数2~6のアルコキシアルキル基としては、例えば、メトキシメチル基、メトキシエチル基、エトキシメチル基、エトキシエチル基、メトキシイソプロピル基、メトキシプロピル基、メトキシイソブチル基、メトキシsec-ブチル基、メトキシtert-ブチル基、エトキシイソプロピル基、エトキシブチル基、エトキシイソブチル基、エトキシsec-ブチル基、エトキシtert-ブチル基等が挙げられる。本発明の効果が顕著であるという観点から、上記一般式(1)において、R1及びR3がメトキシイソプロピル基又はメトキシtert-ブチルであるイットリウム化合物が好ましい。 In the above general formula (1) , examples of the alkoxyalkyl group having 2 to 6 carbon atoms represented by R 1 and R 3 include a methoxymethyl group, a methoxyethyl group, an ethoxymethyl group, an ethoxyethyl group and a methoxyisopropyl group. Examples thereof include a group, a methoxypropyl group, a methoxyisobutyl group, a methoxysec-butyl group, a methoxytert-butyl group, an ethoxyisopropyl group, an ethoxybutyl group, an ethoxyisobutyl group, an ethoxysec-butyl group, an ethoxytert-butyl group and the like. From the viewpoint that the effect of the present invention is remarkable , the yttrium compound in which R 1 and R 3 are methoxyisopropyl groups or methoxytert-butyl is preferable in the above general formula (1).
 上記一般式(1)において、R2及びR5で表される炭素原子数1~3のアルキル基としては、前述したアルキル基のうち炭素原子数が1~3のアルキル基が挙げられる。本発明の効果が顕著であるという観点から、上記一般式(1)において、R2が水素原子であり、R5がメチル基であるイットリウム化合物が好ましい。 In the above general formula (1), examples of the alkyl group having 1 to 3 carbon atoms represented by R 2 and R 5 include the above-mentioned alkyl groups having 1 to 3 carbon atoms. From the viewpoint that the effect of the present invention is remarkable , the yttrium compound in which R 2 is a hydrogen atom and R 5 is a methyl group is preferable in the above general formula (1).
 上記一般式(1)において、R4で表される炭素原子数1~5のアルカンジイル基としては、例えば、メチレン基、エチレン基、プロパン-1,3-ジイル基、プロパン-1,2-ジイル基、ブチレン基、ブタン-1,2-ジイル基、ブタン-1,3-ジイル基、ブタン-1,4-ジイル基等が挙げられる。本発明の効果が顕著であるという観点から、上記一般式(1)において、R4がエチレン基又はプロパン-1,2-ジイル基であるイットリウム化合物が好ましい。 In the above general formula (1) , examples of the alkanediyl group having 1 to 5 carbon atoms represented by R 4 include a methylene group, an ethylene group, a propane-1,3-diyl group, and a propane-1,2-. Examples thereof include a diyl group, a butylene group, a butane-1,2-diyl group, a butane-1,3-diyl group, a butane-1,4-diyl group and the like. From the viewpoint that the effect of the present invention is remarkable , the yttrium compound in which R 4 is an ethylene group or a propane-1,2-diyl group is preferable in the above general formula (1).
 上記一般式(2)において、R6及びR8で表される炭素原子数1~6のアルキル基及び炭素原子数2~6のアルコキシアルキル基としては、前述したものと同じものが挙げられる。 In the above general formula (2), examples of the alkyl group having 1 to 6 carbon atoms and the alkoxyalkyl group having 2 to 6 carbon atoms represented by R 6 and R 8 are the same as those described above.
 上記一般式(2)において、R7で表される炭素原子数1~3のアルキル基としては、前述したものと同じものが挙げられる。 In the above general formula (2), examples of the alkyl group having 1 to 3 carbon atoms represented by R 7 are the same as those described above.
 上記一般式(2)において、複数のR6、R7及びR8は、それぞれ同じものであってもよく、異なるものであってもよいが、複数のR6及びR8のうち少なくとも一つは炭素原子数2~6のアルコキシアルキル基である。上記一般式(2)において、複数のR6及びR8のうち二つ以上が炭素原子数2~6のアルコキシアルキル基であるイットリウム化合物が好ましく、複数のR6及びR8のうち三つが炭素原子数2~6のアルコキシアルキル基であるイットリウム化合物がより好ましい。 In the above general formula (2), the plurality of R 6 , R 7 and R 8 may be the same or different, but at least one of the plurality of R 6 and R 8 may be different. Is an alkoxyalkyl group having 2 to 6 carbon atoms. In the above general formula (2), an yttrium compound in which two or more of the plurality of R 6 and R 8 are alkoxyalkyl groups having 2 to 6 carbon atoms is preferable, and three of the plurality of R 6 and R 8 are carbon. An yttrium compound which is an alkoxyalkyl group having 2 to 6 atoms is more preferable.
 上記一般式(1)又は(2)で表されるイットリウム化合物の好ましい具体例として、下記No.1~No.16のイットリウム化合物が挙げられるが、本発明は、これらのイットリウム化合物によって限定されるものではない。なお、下記No.1~No.16のイットリウム化合物において、「Me」は、メチル基を表し、「Et」は、エチル基を表し、「iPr」は、イソプロピル基を表し、「tBu」は、tert-ブチル基を表す。 As a preferable specific example of the yttrium compound represented by the above general formula (1) or (2), the following No. 1 to No. 16 yttrium compounds are mentioned, but the invention is not limited to these yttrium compounds. In addition, the following No. 1 to No. In the yttrium compound 16, "Me" represents a methyl group, "Et" represents an ethyl group, "iPr" represents an isopropyl group, and "tBu" represents a tert-butyl group.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 上記イットリウム化合物の中でも、本発明の効果が特に顕著であるという観点から、No.1、No.3、No.6及びNo.15のイットリウム化合物が好ましい。 Among the above yttrium compounds, from the viewpoint that the effect of the present invention is particularly remarkable, No. 1, No. 3, No. 6 and No. Fifteen yttrium compounds are preferred.
 本発明のイットリウム化合物は、周知の反応を利用して製造することができる。例えば、上記一般式(1)において、R1がメチル基であり、R2が水素原子であり、R3がメチル基であり、R4がメチレン基であり、R5がメチル基であるイットリウム化合物は、溶媒中で、イットリウム-トリス-トリメチルシリルアミドと、4-メトキシメチルアミノ-3-ペンテン-2-オンとを反応させた後、溶媒を除去し、蒸留精製することで得ることができる。また、上記一般式(2)において、R6がメトキシtert-ブチル基であり、R7が水素原子であり、R8がイソプロピル基であるイットリウム化合物は、溶媒中で、イットリウム-トリス-トリメチルシリルアミドと、5-アミノ-7-メトキシ-4-ヘプテン-3-オンとを反応させた後、溶媒を除去し、蒸留精製することで得ることができる。 The yttrium compound of the present invention can be produced by utilizing a well-known reaction. For example, in the above general formula (1), R 1 is a methyl group, R 2 is a hydrogen atom, R 3 is a methyl group, R 4 is a methylene group, and R 5 is a methyl group. The compound can be obtained by reacting ittrium-tris-trimethylsilylamide with 4-methoxymethylamino-3-penten-2-one in a solvent, removing the solvent, and purifying by distillation. Further, in the above general formula (2), the yttrium compound in which R 6 is a methoxytert-butyl group, R 7 is a hydrogen atom and R 8 is an isopropyl group is an yttrium-tris-trimethylsilylamide in a solvent. It can be obtained by reacting with 5-amino-7-methoxy-4-hepten-3-one, removing the solvent, and purifying by distillation.
 本発明の薄膜形成用原料は、上記一般式(1)又は(2)で表されるイットリウム化合物を含有するものであればよく、その組成は、目的とする薄膜の種類によって異なる。例えば、金属としてイットリウムのみを含む薄膜を製造する場合、本発明の薄膜形成用原料は、イットリウム以外の金属を含む化合物及び半金属を含む化合物を含有しない。一方、イットリウムとイットリウム以外の金属及び/又は半金属とを含む薄膜を製造する場合、本発明の薄膜形成用原料は、上記一般式(1)又は(2)で表されるイットリウム化合物に加えて、所望の金属を含む化合物及び/又は半金属を含む化合物(以下、「他のプリカーサ」と記載することもある)を含有することができる。 The raw material for forming a thin film of the present invention may be any as long as it contains the yttrium compound represented by the above general formula (1) or (2), and its composition varies depending on the type of the target thin film. For example, when producing a thin film containing only yttrium as a metal, the raw material for forming a thin film of the present invention does not contain a compound containing a metal other than yttrium and a compound containing a semimetal. On the other hand, when producing a thin film containing yttrium and a metal other than yttrium and / or a semimetal, the raw material for forming a thin film of the present invention is in addition to the yttrium compound represented by the above general formula (1) or (2). , A compound containing a desired metal and / or a compound containing a semimetal (hereinafter, may be referred to as "another precursor") can be contained.
 また、複数のプリカーサを用いる多成分系のCVD法の場合において、上記一般式(1)又は(2)で表されるイットリウム化合物と共に用いることができる他のプリカーサとしては、特に制限を受けず、CVD法のための薄膜形成用原料に用いられている周知一般のプリカーサを用いることができる。 Further, in the case of a multi-component CVD method using a plurality of precursors, the other precursors that can be used together with the yttrium compound represented by the above general formula (1) or (2) are not particularly limited. A well-known general precursor used as a raw material for forming a thin film for a CVD method can be used.
 上記の他のプリカーサとしては、例えば、アルコール化合物、グリコール化合物、β-ジケトン化合物、シクロペンタジエン化合物、有機アミン化合物等の有機配位子として用いられる化合物からなる群から選択される一種類又は二種類以上と、珪素や金属との化合物が挙げられる。また、プリカーサの金属種としては、リチウム、ナトリウム、マグネシウム、アルミニウム、カリウム、カルシウム、スカンジウム、チタニウム、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ガリウム、ゲルマニウム、ルビジウム、ストロンチウム、イットリウム、ジルコニウム、ニオブ、モリブテン、テクネチウム、ルテニウム、ロジウム、パラジウム、銀、インジウム、錫、アンチモン、バリウム、ハフニウム、タンタル、タングステン、レニウム、オスミウム、イリジウム、白金、金、鉛、ビスマス、ラジウム、ランタン、セリウム、プラセオジム、ネオジム、プロメチウム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、又はルテチウムが挙げられる。 The other precursors described above include, for example, one or two types selected from the group consisting of compounds used as organic ligands such as alcohol compounds, glycol compounds, β-diketone compounds, cyclopentadiene compounds, and organic amine compounds. The above and compounds with silicon and metals can be mentioned. The metal species of precursors include lithium, sodium, magnesium, aluminum, potassium, calcium, scandium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, gallium, germanium, lutetium, strontium, and ittrium. , Zirconium, niobium, molybdenum, technetium, lutetium, rhodium, palladium, silver, indium, tin, antimony, barium, hafnium, tantalum, tungsten, renium, osmium, iridium, platinum, gold, lead, bismus, radium, lantern, cerium , Praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, itterbium, or lutetium.
 上記の他のプリカーサの有機配位子として用いられるアルコール化合物としては、例えば、メタノール、エタノール、プロパノール、イソプロピルアルコール、ブタノール、sec-ブチルアルコール、イソブチルアルコール、tert-ブチルアルコール、ペンチルアルコール、イソペンチルアルコール、tert-ペンチルアルコール等のアルキルアルコール類;2-メトキシエタノール、2-エトキシエタノール、2-ブトキシエタノール、2-(2-メトキシエトキシ)エタノール、2-メトキシ-1-メチルエタノール、2-メトキシ-1,1-ジメチルエタノール、2-エトキシ-1,1-ジメチルエタノール、2-イソプロポキシ-1,1-ジメチルエタノール、2-ブトキシ-1,1-ジメチルエタノール、2-(2-メトキシエトキシ)-1,1-ジメチルエタノール、2-プロポキシ-1,1-ジエチルエタノール、2-sec-ブトキシ-1,1-ジエチルエタノール、3-メトキシ-1,1-ジメチルプロパノール等のエーテルアルコール類;ジメチルアミノエタノール、エチルメチルアミノエタノール、ジエチルアミノエタノール、ジメチルアミノ-2-ペンタノール、エチルメチルアミノ-2-ペンタノール、ジメチルアミノ-2-メチル-2-ペンタノール、エチルメチルアミノ-2-メチル-2-ペンタノール、ジエチルアミノ-2-メチル-2-ペンタノール等のジアルキルアミノアルコール類等が挙げられる。 Examples of the alcohol compound used as the organic ligand of the other precursors described above include methanol, ethanol, propanol, isopropyl alcohol, butanol, sec-butyl alcohol, isobutyl alcohol, tert-butyl alcohol, pentyl alcohol and isopentyl alcohol. , Tart-alkyl alcohols such as pentyl alcohol; 2-methoxyethanol, 2-ethoxyethanol, 2-butoxyethanol, 2- (2-methoxyethoxy) ethanol, 2-methoxy-1-methylethanol, 2-methoxy-1 , 1-dimethylethanol, 2-ethoxy-1,1-dimethylethanol, 2-isopropoxy-1,1-dimethylethanol, 2-butoxy-1,1-dimethylethanol, 2- (2-methoxyethoxy) -1 , 1-Dimethylethanol, 2-propoxy-1,1-diethylethanol, 2-sec-butoxy-1,1-diethylethanol, 3-methoxy-1,1-dimethylpropanol and other ether alcohols; dimethylaminoethanol, Ethylmethylaminoethanol, diethylaminoethanol, dimethylamino-2-pentanol, ethylmethylamino-2-pentanol, dimethylamino-2-methyl-2-pentanol, ethylmethylamino-2-methyl-2-pentanol, Examples thereof include dialkylaminoalcohols such as diethylamino-2-methyl-2-pentanol.
 上記の他のプリカーサの有機配位子として用いられるグリコール化合物としては、例えば、1,2-エタンジオール、1,2-プロパンジオール、1,3-プロパンジオール、2,4-ヘキサンジオール、2,2-ジメチル-1,3-プロパンジオール、2,2-ジエチル-1,3-プロパンジオール、1,3-ブタンジオール、2,4-ブタンジオール、2,2-ジエチル-1,3-ブタンジオール、2-エチル-2-ブチル-1,3-プロパンジオール、2,4-ペンタンジオール、2-メチル-1,3-プロパンジオール、2-メチル-2,4-ペンタンジオール、2,4-ヘキサンジオール、2,4-ジメチル-2,4-ペンタンジオール等が挙げられる。 Examples of the glycol compound used as the organic ligand of the other precursors described above include 1,2-ethanediol, 1,2-propanediol, 1,3-propanediol, 2,4-hexanediol, and 2, 2-Dimethyl-1,3-propanediol, 2,2-diethyl-1,3-propanediol, 1,3-butanediol, 2,4-butanediol, 2,2-diethyl-1,3-butanediol , 2-Ethyl-2-butyl-1,3-propanediol, 2,4-pentanediol, 2-methyl-1,3-propanediol, 2-methyl-2,4-pentanediol, 2,4-hexane Examples thereof include diol, 2,4-dimethyl-2,4-pentanediol and the like.
 上記の他のプリカーサの有機配位子として用いられるβ-ジケトン化合物としては、例えば、アセチルアセトン、ヘキサン-2,4-ジオン、5-メチルヘキサン-2,4-ジオン、ヘプタン-2,4-ジオン、2-メチルヘプタン-3,5-ジオン、5-メチルヘプタン-2,4-ジオン、6-メチルヘプタン-2,4-ジオン、2,2-ジメチルヘプタン-3,5-ジオン、2,6-ジメチルヘプタン-3,5-ジオン、2,2,6-トリメチルヘプタン-3,5-ジオン、2,2,6,6-テトラメチルヘプタン-3,5-ジオン、オクタン-2,4-ジオン、2,2,6-トリメチルオクタン-3,5-ジオン、2,6-ジメチルオクタン-3,5-ジオン、2,9-ジメチルノナン-4,6-ジオン、2-メチル-6-エチルデカン-3,5-ジオン、2,2-ジメチル-6-エチルデカン-3,5-ジオン等のアルキル置換β-ジケトン類;1,1,1-トリフルオロペンタン-2,4-ジオン、1,1,1-トリフルオロ-5,5-ジメチルヘキサン-2,4-ジオン、1,1,1,5,5,5-ヘキサフルオロペンタン-2,4-ジオン、1,3-ジパーフルオロヘキシルプロパン-1,3-ジオン等のフッ素置換アルキルβ-ジケトン類;1,1,5,5-テトラメチル-1-メトキシヘキサン-2,4-ジオン、2,2,6,6-テトラメチル-1-メトキシヘプタン-3,5-ジオン、2,2,6,6-テトラメチル-1-(2-メトキシエトキシ)ヘプタン-3,5-ジオン等のエーテル置換β-ジケトン類等が挙げられる。 Examples of the β-diketone compound used as the organic ligand of the other precursors described above include acetylacetone, hexane-2,4-dione, 5-methylhexane-2,4-dione, and heptane-2,4-dione. , 2-Methylheptane-3,5-dione, 5-methylheptane-2,4-dione, 6-methylheptane-2,4-dione, 2,2-dimethylheptane-3,5-dione, 2,6 -Dimethylheptane-3,5-dione, 2,2,6-trimethylheptane-3,5-dione, 2,2,6,6-tetramethylheptane-3,5-dione, octane-2,4-dione , 2,2,6-trimethyloctane-3,5-dione, 2,6-dimethyloctane-3,5-dione, 2,9-dimethylnonane-4,6-dione, 2-methyl-6-ethyldecane- Alkyl-substituted β-diketones such as 3,5-dione, 2,2-dimethyl-6-ethyldecane-3,5-dione; 1,1,1-trifluoropentane-2,4-dione, 1,1, 1-Trifluoro-5,5-dimethylhexane-2,4-dione, 1,1,1,5,5,5-hexafluoropentane-2,4-dione, 1,3-diperfluorohexylpropane- Fluoro-substituted alkyl β-diketones such as 1,3-dione; 1,1,5,5-tetramethyl-1-methoxyhexane-2,4-dione, 2,2,6,6-tetramethyl-1- Examples thereof include ether-substituted β-diketones such as methoxyheptane-3,5-dione and 2,2,6,6-tetramethyl-1- (2-methoxyethoxy) heptane-3,5-dione.
 上記の他のプリカーサの有機配位子として用いられるシクロペンタジエン化合物としては、例えば、シクロペンタジエン、メチルシクロペンタジエン、エチルシクロペンタジエン、プロピルシクロペンタジエン、イソプロピルシクロペンタジエン、ブチルシクロペンタジエン、第2ブチルシクロペンタジエン、イソブチルシクロペンタジエン、tert-ブチルシクロペンタジエン、ジメチルシクロペンタジエン、テトラメチルシクロペンタジエン等が挙げられる。 Examples of the cyclopentadiene compound used as the organic ligand of the other precursors described above include cyclopentadiene, methylcyclopentadiene, ethylcyclopentadiene, propylcyclopentadiene, isopropylcyclopentadiene, butylcyclopentadiene, and second butylcyclopentadiene. Examples thereof include isobutylcyclopentadiene, tert-butylcyclopentadiene, dimethylcyclopentadiene, tetramethylcyclopentadiene and the like.
 上記の他のプリカーサの有機配位子として用いられる有機アミン化合物としては、メチルアミン、エチルアミン、プロピルアミン、イソプロピルアミン、ブチルアミン、sec-ブチルアミン、tert-ブチルアミン、イソブチルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジイソプロピルアミン、エチルメチルアミン、プロピルメチルアミン、イソプロピルメチルアミン等が挙げられる。 Examples of the organic amine compound used as the organic ligand of the above other precursors include methylamine, ethylamine, propylamine, isopropylamine, butylamine, sec-butylamine, tert-butylamine, isobutylamine, dimethylamine, diethylamine and dipropyl. Examples thereof include amines, diisopropylamines, ethylmethylamines, propylmethylamines and isopropylmethylamines.
 上記の他のプリカーサは、当該技術分野において公知のものであり、その製造方法も公知である。例えば、有機配位子としてアルコール化合物を用いる場合には、先に述べた金属の無機塩又はその水和物と、該アルコール化合物のアルカリ金属アルコキシドとを反応させることによって、プリカーサを製造することができる。ここで、金属の無機塩又はその水和物としては、例えば、金属のハロゲン化物、硝酸塩等を挙げることができ、アルカリ金属アルコキシドとしては、例えば、ナトリウムアルコキシド、リチウムアルコキシド、カリウムアルコキシド等を挙げることができる。 The other precursors described above are known in the art, and their manufacturing methods are also known. For example, when an alcohol compound is used as an organic ligand, a precursor can be produced by reacting the above-mentioned inorganic salt of a metal or a hydrate thereof with an alkali metal alkoxide of the alcohol compound. can. Here, examples of the inorganic salt of the metal or its hydrate include metal halides and nitrates, and examples of the alkali metal alkoxide include sodium alkoxide, lithium alkoxide, potassium alkoxide and the like. Can be done.
 上述したような多成分系のCVD法においては、薄膜形成用原料を各成分独立で気化、供給する方法(以下、「シングルソース法」と記載することもある)と、多成分原料を予め所望の組成で混合した混合原料を気化、供給する方法(以下、「カクテルソース法」と記載することもある)がある。シングルソース法の場合、上記の他のプリカーサとしては、熱及び/又は酸化分解の挙動が上記一般式(1)又は(2)で表されるイットリウム化合物と類似している化合物が好ましい。カクテルソース法の場合、上記の他のプリカーサとしては、熱及び/又は酸化分解の挙動が上記一般式(1)又は(2)で表されるイットリウム化合物と類似していることに加え、混合時に化学反応等による変質を起こさない化合物が好ましい。 In the multi-component CVD method as described above, a method of vaporizing and supplying the raw material for thin film formation independently (hereinafter, also referred to as “single source method”) and a multi-component raw material are desired in advance. There is a method of vaporizing and supplying a mixed raw material mixed with the composition of (hereinafter, may be referred to as "cocktail sauce method"). In the case of the single source method, as the other precursor, a compound whose thermal and / or oxidative decomposition behavior is similar to that of the yttrium compound represented by the general formula (1) or (2) is preferable. In the case of the cocktail sauce method, as the other precursors described above, in addition to the behavior of thermal and / or oxidative decomposition being similar to that of the ittrium compound represented by the above general formula (1) or (2), at the time of mixing. A compound that does not deteriorate due to a chemical reaction or the like is preferable.
 多成分系のCVD法におけるカクテルソース法の場合、上記一般式(1)又は(2)で表されるイットリウム化合物と、他のプリカーサとの混合物又は該混合物を有機溶剤に溶解した混合溶液を薄膜形成用原料とすることができる。 In the case of the cocktail sauce method in the multi-component CVD method, a mixture of the yttrium compound represented by the above general formula (1) or (2) and another precursor or a mixed solution obtained by dissolving the mixture in an organic solvent is made into a thin film. It can be used as a raw material for formation.
 上記の有機溶剤としては、特に制限を受けることはなく周知一般の有機溶剤を用いることができる。該有機溶剤としては、例えば、酢酸エチル、酢酸ブチル、酢酸メトキシエチル等の酢酸エステル類;テトラヒドロフラン、テトラヒドロピラン、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、ジブチルエーテル、ジオキサン等のエーテル類;メチルブチルケトン、メチルイソブチルケトン、エチルブチルケトン、ジプロピルケトン、ジイソブチルケトン、メチルアミルケトン、シクロヘキサノン、メチルシクロヘキサノン等のケトン類;ヘキサン、シクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサン、エチルシクロヘキサン、ヘプタン、オクタン、トルエン、キシレン等の炭化水素類;1-シアノプロパン、1-シアノブタン、1-シアノヘキサン、シアノシクロヘキサン、シアノベンゼン、1,3-ジシアノプロパン、1,4-ジシアノブタン、1,6-ジシアノヘキサン、1,4-ジシアノシクロヘキサン、1,4-ジシアノベンゼン等のシアノ基を有する炭化水素類;ピリジン、ルチジン等が挙げられる。これらの有機溶剤は、溶質の溶解性、使用温度と沸点、引火点の関係等により、単独で用いてもよいし、又は二種類以上を混合して用いてもよい。 As the above-mentioned organic solvent, a well-known general organic solvent can be used without any particular limitation. Examples of the organic solvent include acetate esters such as ethyl acetate, butyl acetate and methoxyethyl acetate; ethers such as tetrahydrofuran, tetrahydropyran, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, dibutyl ether and dioxane; methyl. Ketones such as butyl ketone, methylisobutylketone, ethylbutylketone, dipropylketone, diisobutylketone, methylamylketone, cyclohexanone, methylcyclohexanone; hexane, cyclohexane, methylcyclohexane, dimethylcyclohexane, ethylcyclohexane, heptane, octane, toluene, Hydrocarbons such as xylene; 1-cyanopropane, 1-cyanobutane, 1-cyanohexane, cyanocyclohexane, cyanobenzene, 1,3-dicyanopropane, 1,4-dicyanobutane, 1,6-dicyanohexane, 1, Hydrocarbons having a cyano group such as 4-dicyanocyclohexane and 1,4-dicyanobenzene; pyridine, lutidine and the like can be mentioned. These organic solvents may be used alone or in combination of two or more depending on the solubility of the solute, the relationship between the operating temperature and the boiling point, the flash point, and the like.
 本発明の薄膜形成用原料が上記有機溶剤を含む混合溶液である場合、薄膜形成用原料中におけるプリカーサ全体の量が、好ましくは0.01モル/リットル~2.0モル/リットル、より好ましくは0.05モル/リットル~1.0モル/リットルとなるように調整すればよい。 When the raw material for forming a thin film of the present invention is a mixed solution containing the above organic solvent, the total amount of the precursor in the raw material for forming a thin film is preferably 0.01 mol / liter to 2.0 mol / liter, more preferably. It may be adjusted to be 0.05 mol / liter to 1.0 mol / liter.
 ここで、プリカーサ全体の量とは、本発明の薄膜形成用原料が、イットリウム以外の金属を含む化合物及び半金属を含む化合物を含有しない場合、上記一般式(1)又は(2)で表されるイットリウム化合物の量を表す(ただし、本発明の薄膜形成用原料が、イットリウムを含む他のプリカーサを更に含有する場合、プリカーサ全体の量とは、上記一般式(1)又は(2)で表されるイットリウム化合物と、イットリウムを含む他のプリカーサとの合計量を表す)。本発明の薄膜形成用原料が、上記一般式(1)又は(2)で表されるイットリウム化合物に加えて、他のプリカーサを含有する場合、上記一般式(1)又は(2)で表されるイットリウム化合物と、他のプリカーサとの合計量を表す。 Here, the total amount of the precursor is represented by the above general formula (1) or (2) when the raw material for forming a thin film of the present invention does not contain a compound containing a metal other than yttrium and a compound containing a semi-metal. Represents the amount of the yttrium compound (however, when the raw material for forming a thin film of the present invention further contains another yttrium-containing precursor, the total amount of the precursor is represented by the above general formula (1) or (2). Represents the total amount of yttrium compound to be produced and other precursors containing yttrium). When the raw material for forming a thin film of the present invention contains another precursor in addition to the yttrium compound represented by the above general formula (1) or (2), it is represented by the above general formula (1) or (2). Represents the total amount of yttrium compound and other precursors.
 また、本発明の薄膜形成用原料は、必要に応じて、上記一般式(1)又は(2)で表されるイットリウム化合物及び他のプリカーサの安定性を向上させるため、求核性試薬を含有してもよい。該求核性試薬としては、例えば、グライム、ジグライム、トリグライム、テトラグライム等のエチレングリコールエーテル類、18-クラウン-6、ジシクロヘキシル-18-クラウン-6、24-クラウン-8、ジシクロヘキシル-24-クラウン-8、ジベンゾ-24-クラウン-8等のクラウンエーテル類、エチレンジアミン、N,N’-テトラメチルエチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、1,1,4,7,7-ペンタメチルジエチレントリアミン、1,1,4,7,10,10-ヘキサメチルトリエチレンテトラミン、トリエトキシトリエチレンアミン等のポリアミン類、サイクラム、サイクレン等の環状ポリアミン類、ピリジン、ピロリジン、ピペリジン、モルホリン、N-メチルピロリジン、N-メチルピペリジン、N-メチルモルホリン、テトラヒドロフラン、テトラヒドロピラン、1,4-ジオキサン、オキサゾール、チアゾール、オキサチオラン等の複素環化合物類、アセト酢酸メチル、アセト酢酸エチル、アセト酢酸-2-メトキシエチル等のβ-ケトエステル類又はアセチルアセトン、2,4-ヘキサンジオン、2,4-ヘプタンジオン、3,5-ヘプタンジオン、ジピバロイルメタン等のβ-ジケトン類が挙げられる。これら求核性試薬の使用量は、プリカーサ全体の量1モルに対して、0.1モル~10モルの範囲が好ましく、1モル~4モルの範囲がより好ましい。 Further, the raw material for forming a thin film of the present invention contains a nucleophile in order to improve the stability of the yttrium compound represented by the above general formula (1) or (2) and other precursors, if necessary. You may. Examples of the nucleophilic reagent include ethylene glycol ethers such as glyme, diglyme, triglime, and tetraglyme, 18-crown-6, dicyclohexyl-18-crown-6, 24-crown-8, and dicyclohexyl-24-crown. -8, Crown ethers such as dibenzo-24-crown-8, ethylenediamine, N, N'-tetramethylethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, 1,1,4,7, Polyamines such as 7-pentamethyldiethylenetriamine, 1,1,4,7,10,10-hexamethyltriethylenetetramine, triethoxytriethyleneamine, cyclic polyamines such as cyclum and cyclone, pyridine, pyrrolidine, piperidine, morpholin. , N-Methylpyrrolidin, N-Methylpiperidine, N-methylmorpholine, tetrahydrofuran, tetrahydropyran, 1,4-dioxane, oxazole, thiazole, oxathiolane and other heterocyclic compounds, methyl acetoacetate, ethyl acetoacetate, acetoacetate- Examples thereof include β-ketoesters such as 2-methoxyethyl or β-diketones such as acetylacetone, 2,4-hexanedione, 2,4-heptandione, 3,5-heptandione and dipivaloylmethane. The amount of these nucleophiles used is preferably in the range of 0.1 mol to 10 mol, more preferably in the range of 1 mol to 4 mol, with respect to 1 mol of the total amount of precursor.
 本発明の薄膜形成用原料には、これを構成する成分以外の不純物金属元素分、不純物塩素などの不純物ハロゲン分、及び不純物有機分が極力含まないようにすることが望ましい。不純物金属元素分は、元素毎では100ppb以下が好ましく、10ppb以下がより好ましく、総量では、1ppm以下が好ましく、100ppb以下がより好ましい。特に、LSIのゲート絶縁膜、ゲート膜、バリア層として用いる場合は、得られる薄膜の電気的特性に影響のあるアルカリ金属元素及びアルカリ土類金属元素の含有量を少なくすることが必要である。不純物ハロゲン分は、100ppm以下が好ましく、10ppm以下がより好ましく、1ppm以下がさらに好ましい。不純物有機分は、総量で500ppm以下が好ましく、50ppm以下がより好ましく、10ppm以下がさらに好ましい。また、水分は、CVD用原料中でのパーティクル発生や、薄膜形成中におけるパーティクル発生の原因となるので、プリカーサ、有機溶剤及び求核性試薬については、それぞれの水分の低減のために、使用の際にあらかじめできる限り水分を取り除いた方がよい。プリカーサ、有機溶剤及び求核性試薬それぞれの水分量は、10ppm以下が好ましく、1ppm以下がより好ましい。 It is desirable that the raw material for forming a thin film of the present invention contains as little as possible impurity metal elements other than the constituents thereof, impurity halogens such as impurity chlorine, and impurity organics. The impurity metal element content is preferably 100 ppb or less for each element, more preferably 10 ppb or less, and the total amount is preferably 1 ppm or less, more preferably 100 ppb or less. In particular, when used as a gate insulating film, a gate film, or a barrier layer of an LSI, it is necessary to reduce the contents of alkali metal elements and alkaline earth metal elements that affect the electrical characteristics of the obtained thin film. The impurity halogen content is preferably 100 ppm or less, more preferably 10 ppm or less, still more preferably 1 ppm or less. The total amount of the impurity organic content is preferably 500 ppm or less, more preferably 50 ppm or less, still more preferably 10 ppm or less. In addition, since water causes particles to be generated in the raw material for CVD and particles to be generated during thin film formation, precursors, organic solvents and nucleophiles are used to reduce the water content of each. It is better to remove as much water as possible in advance. The water content of each of the precursor, the organic solvent and the nucleophilic reagent is preferably 10 ppm or less, more preferably 1 ppm or less.
 また、本発明の薄膜形成用原料は、形成される薄膜のパーティクル汚染を低減又は防止するために、パーティクルが極力含まれないようにするのが好ましい。具体的には、液相での光散乱式液中粒子検出器によるパーティクル測定において、0.3μmより大きい粒子の数が液相1ml中に100個以下であることが好ましく、0.2μmより大きい粒子の数が液相1ml中に100個以下であることがより好ましい。 Further, it is preferable that the raw material for forming a thin film of the present invention contains as little particles as possible in order to reduce or prevent particle contamination of the formed thin film. Specifically, in the particle measurement by the light scattering type submersible particle detector in the liquid phase, the number of particles larger than 0.3 μm is preferably 100 or less in 1 ml of the liquid phase, and is larger than 0.2 μm. It is more preferable that the number of particles is 100 or less in 1 ml of the liquid phase.
<薄膜の製造方法>
 次に、上記の薄膜形成用原料を用いる本発明の薄膜の製造方法について説明する。
 ここでは、一実施形態として、ALD法により、イットリウム原子を含有する薄膜(以下、「イットリウム含有薄膜」と記載することもある)を製造する方法について説明する。
<Thin film manufacturing method>
Next, a method for producing a thin film of the present invention using the above-mentioned raw material for forming a thin film will be described.
Here, as one embodiment, a method for producing a thin film containing a yttrium atom (hereinafter, also referred to as “yttrium-containing thin film”) by the ALD method will be described.
 本発明の薄膜の製造方法に用いられる装置には、周知のALD装置を用いることができる。具体的な装置の例としては、図1及び図3のようなプリカーサをバブリング供給することのできる装置や、図2及び図4のように気化室を有する装置が挙げられる。また、図3及び図4のように反応性ガスに対してプラズマ処理を行うことのできる装置が挙げられる。なお、図1~図4のような枚葉式装置に限らず、バッチ炉を用いた多数枚同時処理可能な装置を用いることもできる。なお、これらの装置はCVD装置として用いることができる。 A well-known ALD device can be used as the device used in the method for producing a thin film of the present invention. Specific examples of the device include a device capable of bubbling and supplying a precursor as shown in FIGS. 1 and 3, and a device having a vaporization chamber as shown in FIGS. 2 and 4. Further, as shown in FIGS. 3 and 4, an apparatus capable of performing plasma treatment on the reactive gas can be mentioned. In addition to the single-wafer type apparatus as shown in FIGS. 1 to 4, an apparatus capable of simultaneously processing a large number of sheets using a batch furnace can also be used. These devices can be used as CVD devices.
 本発明の薄膜の製造方法は、上記の薄膜形成用原料を気化させた原料ガスを、基体が設置された成膜チャンバー(以下、「堆積反応部」と記載することもある)内に導入する工程(原料ガス導入工程)と、該原料ガス中のイットリウム化合物を該基体の表面に堆積させて前駆体薄膜を形成する工程(前駆体薄膜形成工程)と、反応性ガスを成膜チャンバー内に導入し、前駆体薄膜と反応性ガスとを反応させて、基体の表面にイットリウム含有薄膜を形成する工程(イットリウム含有薄膜形成工程)とを有するものである。また、本発明の薄膜の製造方法は、前駆体薄膜形成工程とイットリウム含有薄膜形成工程との間及び/又はイットリウム含有薄膜形成工程の後に、成膜チャンバー内のガスを排気する工程(排気工程)を有することが好ましい。 In the method for producing a thin film of the present invention, the raw material gas obtained by vaporizing the above-mentioned thin film forming raw material is introduced into a film forming chamber in which a substrate is installed (hereinafter, may be referred to as a "deposition reaction portion"). A step (raw material gas introduction step), a step of depositing the yttrium compound in the raw material gas on the surface of the substrate to form a precursor thin film (precursor thin film forming step), and a step of depositing a reactive gas in the film forming chamber. It has a step of forming an ittrium-containing thin film on the surface of the substrate (ittrium-containing thin film forming step) by introducing the precursor thin film and reacting the reactive gas with the reaction gas. Further, the method for producing a thin film of the present invention is a step of exhausting gas in the film forming chamber between the precursor thin film forming step and the ittrium-containing thin film forming step and / or after the ittrium-containing thin film forming step (exhaust step). It is preferable to have.
 本発明の薄膜の製造方法の一実施形態として、前駆体薄膜形成工程、排気工程、イットリウム含有薄膜形成工程及び排気工程を順に行う、一連の操作による堆積を1サイクルとし、このサイクルを繰り返すことで、本発明の薄膜の厚みを調整することができる。以下、本発明の薄膜の製造方法の各工程について説明する。 As an embodiment of the method for producing a thin film of the present invention, a series of operations of forming a precursor thin film, an exhaust step, an yttrium-containing thin film forming step, and an exhaust step are performed in order, and the deposition is set as one cycle, and this cycle is repeated. , The thickness of the thin film of the present invention can be adjusted. Hereinafter, each step of the thin film manufacturing method of the present invention will be described.
(原料ガス導入工程)
 原料ガス導入工程は、上記の薄膜形成用原料を気化させて原料ガスとし、該原料ガスを基体が設置された堆積反応部内へ導入する工程である。
 薄膜形成用原料の輸送供給方法としては、図1及び図3に示すように、本発明の薄膜形成用原料が貯蔵される容器(以下、「原料容器」と記載することもある)中で加熱及び/又は減圧することにより気化させて原料ガスとし、必要に応じてアルゴン、窒素、ヘリウム等のキャリアガスと共に、該原料ガスを基体が設置された堆積反応部内へと導入する気体輸送法、並びに図2及び図4に示すように、薄膜形成用原料を液体又は溶液の状態で気化室まで輸送し、気化室で加熱及び/又は減圧することにより気化させて原料ガスとし、該原料ガスを基体が設置された堆積反応部内へと導入する液体輸送法がある。気体輸送法の場合、上記一般式(1)又は(2)で表されるイットリウム化合物そのものを薄膜形成用原料とすることができる。液体輸送法の場合、上記一般式(1)又は(2)で表されるイットリウム化合物、又は該イットリウム化合物を有機溶剤に溶解した溶液を薄膜形成用原料とすることができる。これらの薄膜形成用原料は求核性試薬等を更に含んでもよい。
(Raw material gas introduction process)
The raw material gas introduction step is a step of vaporizing the above-mentioned raw material for forming a thin film into a raw material gas, and introducing the raw material gas into a deposition reaction section in which a substrate is installed.
As a method for transporting and supplying the raw material for thin film formation, as shown in FIGS. 1 and 3, heating is performed in a container (hereinafter, also referred to as “raw material container”) in which the raw material for thin film formation of the present invention is stored. And / or a gas transport method in which the raw material gas is vaporized by depressurizing to obtain a raw material gas, and if necessary, the raw material gas is introduced into the deposition reaction section where the substrate is installed together with carrier gas such as argon, nitrogen, and helium. As shown in FIGS. 2 and 4, the raw material for forming a thin film is transported to a vaporization chamber in the form of a liquid or a solution, and vaporized by heating and / or depressurizing in the vaporization chamber to obtain a raw material gas, and the raw material gas is used as a substrate. There is a liquid transport method to introduce into the deposition reaction part where is installed. In the case of the gas transport method, the yttrium compound itself represented by the above general formula (1) or (2) can be used as a raw material for forming a thin film. In the case of the liquid transport method, the yttrium compound represented by the above general formula (1) or (2) or a solution obtained by dissolving the yttrium compound in an organic solvent can be used as a raw material for forming a thin film. These raw materials for forming a thin film may further contain a nucleophilic reagent or the like.
 また、上記気体輸送法及び液体輸送法以外にも、原料ガス導入工程に用いられる方法としては、複数のプリカーサを含む多成分系のALD法として、<薄膜形成用原料>で説明したようなシングルソース法及びカクテルソース法があるが、いずれの導入方法を用いた場合においても、本発明の薄膜形成用原料は0℃~200℃の範囲内で気化させることが好ましい。また、原料容器内又は気化室内で薄膜形成用原料を気化させて原料ガスとする場合の原料容器内の圧力及び気化室内の圧力は、1Pa~10,000Paの範囲内であることが好ましい。 In addition to the above gas transport method and liquid transport method, as a method used in the raw material gas introduction step, a multi-component ALD method including a plurality of precursors is used as a single as described in <Thin film forming raw material>. There are a sauce method and a cocktail sauce method, and regardless of which introduction method is used, it is preferable that the raw material for forming a thin film of the present invention is vaporized in the range of 0 ° C to 200 ° C. Further, when the raw material for forming a thin film is vaporized into a raw material gas in the raw material container or in the vaporization chamber, the pressure in the raw material container and the pressure in the vaporization chamber are preferably in the range of 1 Pa to 10,000 Pa.
 ここで、堆積反応部に設置される上記基体の材質としては、例えば、シリコン;窒化ケイ素、窒化チタン、窒化タンタル、酸化チタン、酸化ルテニウム、酸化ジルコニウム、酸化ハフニウム、酸化ランタン等のセラミックス;ガラス;金属コバルト、金属ルテニウム等の金属が挙げられる。基体の形状としては、板状、球状、繊維状、鱗片状が挙げられる。基体表面は、平面であってもよく、トレンチ構造等の三次元構造となっていてもよい。 Here, examples of the material of the substrate installed in the deposition reaction section include silicon; ceramics such as silicon nitride, titanium nitride, tantalum nitride, titanium oxide, ruthenium oxide, zirconium oxide, hafnium oxide, and lanthanum oxide; glass; Examples thereof include metals such as metallic cobalt and metallic ruthenium. Examples of the shape of the substrate include plate-like, spherical, fibrous, and scaly shapes. The surface of the substrate may be flat or may have a three-dimensional structure such as a trench structure.
(前駆体薄膜形成工程)
 前駆体薄膜形成工程では、基体が設置された堆積反応部内に導入した原料ガス中の、上記一般式(1)又は(2)で表されるイットリウム化合物を基体の表面に堆積させて、基体の表面に前駆体薄膜を形成する。このとき、基体を加熱するか、又は堆積反応部を加熱して熱を加えてもよい。前駆体薄膜を形成するときの製造条件は、特に限定されず、例えば、反応温度(基体温度)、反応圧力、堆積速度等を薄膜形成用原料の種類に応じて適宜決めることができる。反応温度については、本発明の薄膜形成用原料が充分に反応する温度である100℃以上が好ましく、100℃~400℃がより好ましい。反応圧力は1Pa~10,000Paが好ましく、10Pa~1,000Paがより好ましい。
(Precursor thin film forming step)
In the precursor thin film forming step, the yttrium compound represented by the above general formula (1) or (2) in the raw material gas introduced into the deposition reaction section in which the substrate is installed is deposited on the surface of the substrate to deposit the substrate. A precursor thin film is formed on the surface. At this time, the substrate may be heated, or the deposition reaction portion may be heated to apply heat. The production conditions for forming the precursor thin film are not particularly limited, and for example, the reaction temperature (base temperature), reaction pressure, deposition rate and the like can be appropriately determined according to the type of the thin film forming raw material. The reaction temperature is preferably 100 ° C. or higher, which is a temperature at which the raw material for forming a thin film of the present invention sufficiently reacts, and more preferably 100 ° C. to 400 ° C. The reaction pressure is preferably 1 Pa to 10,000 Pa, more preferably 10 Pa to 1,000 Pa.
 また、上記堆積速度は、薄膜形成用原料の供給条件(気化温度、気化圧力)、反応温度、反応圧力により制御することができる。堆積速度が大きいと得られる薄膜の特性が悪化する場合があり、小さいと生産性に問題を生じる場合があるので、0.01nm/分~100nm/分が好ましく、0.1nm/分~50nm/分がより好ましい。 Further, the deposition rate can be controlled by the supply conditions (vaporization temperature, vaporization pressure), reaction temperature, and reaction pressure of the raw material for thin film formation. If the deposition rate is high, the characteristics of the obtained thin film may deteriorate, and if it is low, productivity problems may occur. Therefore, 0.01 nm / min to 100 nm / min is preferable, and 0.1 nm / min to 50 nm / min is preferable. Minutes are more preferred.
(排気工程)
 前駆体薄膜を形成後、基体の表面に堆積しなかった原料ガスを堆積反応部から排気する。この際、原料ガスが堆積反応部から完全に排気されるのが理想であるが、必ずしも完全に排気する必要はない。排気方法としては、例えば、ヘリウム、窒素、アルゴン等の不活性ガスにより堆積反応部の系内をパージする方法、系内を減圧することで排気する方法、これらを組み合わせた方法等が挙げられる。減圧する場合の減圧度は、0.01Pa~300Paの範囲が好ましく、0.01Pa~100Paの範囲がより好ましい。
(Exhaust process)
After forming the precursor thin film, the raw material gas that has not accumulated on the surface of the substrate is exhausted from the deposition reaction section. At this time, it is ideal that the raw material gas is completely exhausted from the deposition reaction portion, but it is not always necessary to completely exhaust the raw material gas. Examples of the exhaust method include a method of purging the inside of the system of the deposition reaction part with an inert gas such as helium, nitrogen, and argon, a method of exhausting by depressurizing the inside of the system, and a method of combining these. The degree of decompression in the case of depressurization is preferably in the range of 0.01 Pa to 300 Pa, more preferably in the range of 0.01 Pa to 100 Pa.
(イットリウム含有薄膜形成工程)
 イットリウム含有薄膜形成工程では、排気工程後、堆積反応部内に反応性ガスを導入し、反応性ガスの作用又は反応性ガスの作用と熱の作用とにより、前駆体薄膜、すなわち基体の表面に堆積させた上記一般式(1)又は(2)で表されるイットリウム化合物と反応性ガスとを反応させて、イットリウム含有薄膜が形成される。
(Yttrium-containing thin film forming process)
In the yttrium-containing thin film forming step, after the exhaust step, a reactive gas is introduced into the deposition reaction section and deposited on the surface of the precursor thin film, that is, the substrate by the action of the reactive gas or the action of the reactive gas and the action of heat. The yttrium compound represented by the above general formula (1) or (2) is reacted with the reactive gas to form an yttrium-containing thin film.
 上記反応性ガスとしては、例えば、酸素、オゾン、二酸化窒素、一酸化窒素、水蒸気、過酸化水素、ギ酸、酢酸、無水酢酸等の酸化性ガス、水素等の還元性ガス、モノアルキルアミン、ジアルキルアミン、トリアルキルアミン、アルキレンジアミン等の有機アミン化合物、ヒドラジン、アンモニア等の窒化性ガスなどが挙げられる。これらの反応性ガスは、単独で用いてもよいし、又は二種類以上を混合して用いてもよい。本発明の薄膜の製造方法において、反応性ガスは、酸化性ガスであることが好ましく、酸素、オゾン又は水蒸気を含有するガスであることがより好ましい。反応性ガスとして酸化性ガスを用いる場合には、イットリウム含有薄膜として酸化イットリウムの薄膜が形成される。 Examples of the reactive gas include oxidizing gas such as oxygen, ozone, nitrogen dioxide, nitrogen monoxide, steam, hydrogen peroxide, formic acid, acetic acid and anhydrous acetic acid, reducing gas such as hydrogen, monoalkylamine and dialkyl. Examples thereof include organic amine compounds such as amines, trialkylamines and alkylenediamines, and nitrided gases such as hydrazine and ammonia. These reactive gases may be used alone or in combination of two or more. In the method for producing a thin film of the present invention, the reactive gas is preferably an oxidizing gas, and more preferably a gas containing oxygen, ozone or water vapor. When an oxidizing gas is used as the reactive gas, a yttrium oxide thin film is formed as the yttrium-containing thin film.
 前駆体薄膜と反応性ガスとの反応において熱を用いる場合、50℃~500℃の範囲で反応させることが好ましく、100℃~400℃の範囲で反応させることがより好ましい。また、本工程が行われる際の堆積反応部における圧力は1Pa~10,000Paが好ましく、10Pa~1,000Paがより好ましい。 When heat is used in the reaction between the precursor thin film and the reactive gas, the reaction is preferably in the range of 50 ° C to 500 ° C, and more preferably in the range of 100 ° C to 400 ° C. The pressure in the deposition reaction section when this step is performed is preferably 1 Pa to 10,000 Pa, more preferably 10 Pa to 1,000 Pa.
(排気工程)
 上記イットリウム含有薄膜形成後、未反応の反応性ガス及び副生ガスを堆積反応部から排気する。この際、反応性ガス及び副生ガスが堆積反応部から完全に排気されるのが理想であるが、必ずしも完全に排気する必要はない。排気方法及び減圧する場合の減圧度は、上述した前駆体薄膜形成工程後の排気工程と同様である。
(Exhaust process)
After forming the yttrium-containing thin film, unreacted reactive gas and by-product gas are exhausted from the deposition reaction section. At this time, it is ideal that the reactive gas and the by-product gas are completely exhausted from the deposition reaction portion, but it is not always necessary to completely exhaust the reactive gas and the by-product gas. The exhaust method and the degree of decompression in the case of depressurization are the same as those in the exhaust step after the precursor thin film forming step described above.
 以上、説明したように、原料ガス導入工程、前駆体薄膜形成工程、排気行程、イットリウム含有薄膜形成工程及び排気工程を順に行い、一連の操作による堆積を1サイクルとし、このサイクルを必要な膜厚の薄膜が得られるまで複数回繰り返すことで、所望の膜厚を有するイットリウム含有薄膜を製造する。ALD法を用いた薄膜の製造方法では、形成されるイットリウム含有薄膜の膜厚を、上記サイクルの回数で制御することができる。 As described above, the raw material gas introduction step, the precursor thin film forming step, the exhaust process, the yttrium-containing thin film forming step and the exhaust step are carried out in order, and the deposition by a series of operations is regarded as one cycle, and this cycle is the required film thickness. By repeating this process a plurality of times until a thin film is obtained, an yttrium-containing thin film having a desired film thickness is produced. In the method for producing a thin film using the ALD method, the film thickness of the yttrium-containing thin film to be formed can be controlled by the number of cycles.
 また、本発明の薄膜の製造方法においては、図3及び図4に示すように、堆積反応部にプラズマ、光、電圧などのエネルギーを印加してもよく、触媒を用いてもよい。該エネルギーを印加する時期及び触媒を用いる時期は、特には限定されず、例えば、原料ガス導入工程における原料ガスの導入時、前駆体薄膜を形成する際の加熱時、イットリウム含有薄膜形成工程における反応性ガスの導入時、反応性ガスと前駆体薄膜とを反応させる時、排気工程における系内の排気時などでよく、上記の各工程の間でもよい。 Further, in the method for producing a thin film of the present invention, as shown in FIGS. 3 and 4, energy such as plasma, light, and voltage may be applied to the deposition reaction portion, or a catalyst may be used. The timing of applying the energy and the timing of using the catalyst are not particularly limited, and for example, the reaction in the raw material gas introduction step, the heating in the precursor thin film forming step, and the reaction in the yttrium-containing thin film forming step. It may be at the time of introducing the sex gas, at the time of reacting the reactive gas with the precursor thin film, at the time of exhausting in the system in the exhausting step, or during each of the above steps.
 また、本発明の薄膜の製造方法においては、薄膜の形成後に、より良好な電気特性を得るために不活性雰囲気下、酸化性雰囲気下又は還元性雰囲気下でアニール処理を行ってもよく、段差埋め込みが必要な場合には、リフロー工程を設けてもよい。この場合の温度は、200℃~1,000℃が好ましく、250℃~500℃がより好ましい。 Further, in the method for producing a thin film of the present invention, after the thin film is formed, annealing treatment may be performed in an inert atmosphere, an oxidizing atmosphere or a reducing atmosphere in order to obtain better electrical characteristics. If embedding is required, a reflow process may be provided. In this case, the temperature is preferably 200 ° C to 1,000 ° C, more preferably 250 ° C to 500 ° C.
 本発明の薄膜形成用原料を用いて製造される薄膜は、他のプリカーサ、反応性ガス及び製造条件を適宜選択することにより、メタル、酸化物セラミックス、窒化物セラミックス、ガラス等の基体を被覆して、所望の種類の薄膜とすることができる。本発明の薄膜は、電気特性及び光学特性に優れるため、例えば、DRAM素子に代表されるメモリー素子の電極材料、抵抗膜、ハードディスクの記録層に用いられる反磁性膜及び固体高分子形燃料電池用の触媒材料等の製造に広く用いることが可能である。 The thin film produced by using the raw material for forming a thin film of the present invention covers a substrate such as metal, oxide ceramics, nitride ceramics, and glass by appropriately selecting other precursors, reactive gases, and production conditions. Therefore, a desired type of thin film can be obtained. Since the thin film of the present invention is excellent in electrical characteristics and optical characteristics, for example, it is used for electrode materials of memory elements represented by DRAM elements, resistance films, antimagnetic films used for recording layers of hard disks, and polymer electrolyte fuel cells. It can be widely used in the production of catalyst materials and the like.
 以下、実施例等を用いて本発明を更に詳細に説明する。しかしながら、本発明は以下の実施例等によって制限を受けるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and the like. However, the present invention is not limited by the following examples and the like.
〔製造例1〕イットリウム化合物No.1の製造
 100mLの3つ口フラスコに、イットリウム-トリス-トリメチルシリルアミド 1.78g(3.12mmol)及び脱水トルエン 5.8gを加え、十分に混合させた。この懸濁液に室温にて5-((2-メトキシエチル)アミノ)-4-ヘプテン-3-オン 2.02g(10.92mmol)を滴下した。85℃にて3時間撹拌後、減圧下、オイルバス130℃にて溶媒を除去した。生成したイットリウム錯体(橙色粘性液体)をフラスコに入れクーゲルロール(Kugelrohr)精製装置に接続し、加熱温度230℃、55Paにて蒸留を行い、黄色粘性液体を得た。得られた黄色粘性液体は、1H-NMR及びICP-AESによる分析の結果、イットリウム化合物No.1であることを確認した。得られた黄色粘性液体の分析結果を以下に示す。
[Production Example 1] Yttrium compound No. Production of No. 1 To a 100 mL three-necked flask, 1.78 g (3.12 mmol) of yttrium-tris-trimethylsilylamide and 5.8 g of dehydrated toluene were added and mixed thoroughly. 2.02 g (10.92 mmol) of 5-((2-methoxyethyl) amino) -4-heptene-3-one was added dropwise to this suspension at room temperature. After stirring at 85 ° C. for 3 hours, the solvent was removed in an oil bath at 130 ° C. under reduced pressure. The generated yttrium complex (orange viscous liquid) was placed in a flask, connected to a Kugelrohr purification device, and distilled at a heating temperature of 230 ° C. and 55 Pa to obtain a yellow viscous liquid. The obtained yellow viscous liquid was analyzed by 1 H-NMR and ICP-AES, and as a result, yttrium compound No. It was confirmed that it was 1. The analysis results of the obtained yellow viscous liquid are shown below.
(1)1H-NMR(重ベンゼン)
 0.993-1.031ppm(9H,triplet)、1.204-1.242ppm(9H,triplet)、2.118-2.1754ppm(6H,quartet)、2.183-2.240ppm(6H,quartet)、3.223ppm(9H,singlet)、3.477-3.501ppm(6H,triplet)、3.690-3.721ppm(6H,triplet)、4.953ppm(3H,singlet)
(1) 1 1 H-NMR (heavy benzene)
0.993-1.031ppm (9H, triplet), 1.204-1.242ppm (9H, triplet), 2.118-2.754ppm (6H, quartet), 2.183-2.240ppm (6H, quartet) ), 3.223 ppm (9H, singlet), 3.477-3.501 ppm (6H, triplet), 3.690-3.721 ppm (6H, triplet), 4.953 ppm (3H, singlet).
(2)ICP-AESによる元素分析結果
 Y:13.9質量%(理論値:13.66質量%)、C:55.4質量%(理論値:55.37質量%)、H:9.8質量%(理論値:9.75質量%)、N:6.4質量%(理論値:6.46質量%)、O:14.5質量%(理論値:14.76質量%)
(2) Element analysis result by ICP-AES Y: 13.9% by mass (theoretical value: 13.66% by mass), C: 55.4% by mass (theoretical value: 55.37% by mass), H: 9. 8% by mass (theoretical value: 9.75% by mass), N: 6.4% by mass (theoretical value: 6.46% by mass), O: 14.5% by mass (theoretical value: 14.76% by mass)
〔製造例2〕イットリウム化合物No.3の製造
 100mLの3つ口フラスコに、イットリウム-トリス-トリメチルシリルアミド 1.57g(2.76mmol)及び脱水トルエン 5.1gを加え、十分に混合させた。この懸濁液に室温にて5-((2-メトキシエチル)アミノ)-2,6-ジメチル-4-ヘプテン-3-オン 2.06g(9.66mmol)を滴下した。55℃にて5時間撹拌後、減圧下、オイルバス111℃にて溶媒を除去した。生成したイットリウム錯体(橙色粘性液体)をフラスコに入れクーゲルロール精製装置に接続し、加熱温度205℃、21Paにて蒸留を行い、黄色粘性液体を得た。得られた黄色粘性液体は室温まで放冷すると黄色固体となった。得られた黄色粘性液体は、1H-NMR及びICP-AESによる分析の結果、イットリウム化合物No.3であることを確認した。得られた黄色粘性液体の分析結果を以下に示す。
[Production Example 2] Yttrium compound No. Production of 3 To a 100 mL three-necked flask, 1.57 g (2.76 mmol) of yttrium-tris-trimethylsilylamide and 5.1 g of dehydrated toluene were added and mixed thoroughly. To this suspension, 2.06 g (9.66 mmol) of 5-((2-methoxyethyl) amino) -2,6-dimethyl-4-heptene-3-one was added dropwise at room temperature. After stirring at 55 ° C. for 5 hours, the solvent was removed in an oil bath at 111 ° C. under reduced pressure. The produced yttrium complex (orange viscous liquid) was placed in a flask, connected to a Kugelrohr purifier, and distilled at a heating temperature of 205 ° C. and 21 Pa to obtain a yellow viscous liquid. The obtained yellow viscous liquid became a yellow solid when allowed to cool to room temperature. The obtained yellow viscous liquid was analyzed by 1 H-NMR and ICP-AES, and as a result, yttrium compound No. It was confirmed that it was 3. The analysis results of the obtained yellow viscous liquid are shown below.
(1)1H-NMR(重ベンゼン)
 1.061-1.077ppm(18H,doublet)、1.228-1.244ppm(18H,doublet)、2.403-2.505ppm(3H,septet)、2.967-3.064ppm(3H,septet)、3.213ppm(9H,singlet)、3.430-3.462ppm(6H,triplet)、3.802-3.834ppm(6H,triplet)、5.112ppm(3H,singlet)
(1) 1 1 H-NMR (heavy benzene)
1.061-1.077ppm (18H, doublet), 1.228-1.244ppm (18H, doublet), 2.403-2.505ppm (3H, septet), 2.967-3.064ppm (3H, septet) ), 3.213 ppm (9H, singlet), 3.430-3.462 ppm (6H, triplet), 3.802-3.834 ppm (6H, triplet), 5.112 ppm (3H, singlet).
(2)ICP-AESによる元素分析結果
 Y:12.3質量%(理論値:12.09質量%)、C:58.4質量%(理論値:58.84質量%)、H:10.3質量%(理論値:10.29質量%)、N:5.9質量%(理論値:5.71質量%)、O:13.1質量%(理論値:13.07質量%)
(2) Element analysis result by ICP-AES Y: 12.3% by mass (theoretical value: 12.09% by mass), C: 58.4% by mass (theoretical value: 58.84% by mass), H: 10. 3% by mass (theoretical value: 10.29% by mass), N: 5.9% by mass (theoretical value: 5.71% by mass), O: 13.1% by mass (theoretical value: 13.07% by mass)
〔製造例3〕イットリウム化合物No.6の製造
 100mLの3つ口フラスコに、イットリウム-トリス-トリメチルシリルアミド 1.41g(2.47mmol)及び脱水トルエン 6.8gを加え、十分に混合させた。この懸濁液に室温にて2,2,6-トリメチル-5-((1-メトキシ-2-プロピル)アミノ)-4-ヘプテン-3-オン 2.08g(8.65mmol)を滴下した。53℃にて4時間撹拌後、減圧下、オイルバス115℃にて溶媒を除去した。生成したイットリウム錯体(橙色粘状物)をフラスコに入れクーゲルロール精製装置に接続し、加熱温度214℃、17Paにて蒸留を行い、黄色液体を得た。得られた黄色液体は室温まで放冷すると黄色ガラス状固体となった。ICP発光分光法による元素分析の結果、イットリウム化合物No.6であることを確認した。
[Production Example 3] Yttrium compound No. Preparation of No. 6 To a 100 mL three-necked flask, 1.41 g (2.47 mmol) of yttrium-tris-trimethylsilylamide and 6.8 g of dehydrated toluene were added and mixed well. 2.08 g (8.65 mmol) of 2,2,6-trimethyl-5-((1-methoxy-2-propyl) amino) -4-heptene-3-one was added dropwise to this suspension at room temperature. After stirring at 53 ° C. for 4 hours, the solvent was removed in an oil bath at 115 ° C. under reduced pressure. The produced yttrium complex (orange viscous substance) was placed in a flask, connected to a Kugelrohr purifier, and distilled at a heating temperature of 214 ° C. and 17 Pa to obtain a yellow liquid. The obtained yellow liquid became a yellow glassy solid when allowed to cool to room temperature. As a result of elemental analysis by ICP emission spectroscopy, yttrium compound No. It was confirmed that it was 6.
(1)ICP-AESによる元素分析結果
 Y:10.8質量%(理論値:10.85質量%)、C:61.7質量%(理論値:61.58質量%)、H:10.5質量%(理論値:10.71質量%)、N:5.2質量%(理論値:5.14質量%)、O:11.8質量%(理論値:11.72質量%)
(1) Element analysis result by ICP-AES Y: 10.85% by mass (theoretical value: 10.85% by mass), C: 61.7% by mass (theoretical value: 61.58% by mass), H: 10. 5% by mass (theoretical value: 10.71% by mass), N: 5.2% by mass (theoretical value: 5.14% by mass), O: 11.8% by mass (theoretical value: 11.72% by mass)
〔製造例4〕イットリウム化合物No.15の製造
 100mLの3つ口フラスコに、イットリウム-トリス-トリメチルシリルアミド 1.65g(2.90mmol)及び脱水トルエン 8.0gを加え、十分に混合させた。この懸濁液に室温にて5-アミノ-1-メトキシ-2,2,6-トリメチル-4-ヘプテン-3-オン 2.02g(10.2mmol)を滴下した。86℃にて5時間撹拌後、減圧下、オイルバス120℃にて溶媒を除去した。生成したイットリウム錯体(赤褐色粘状物)をフラスコに入れクーゲルロール精製装置に接続し、加熱温度210℃、23Paにて蒸留を行い、黄色液体を得た。得られた黄色液体は室温まで放冷して黄色固体を得た。得られた黄色固体は、1H-NMR及びICP-AESによる分析の結果、イットリウム化合物No.15であることを確認した。得られた黄色固体の分析結果を以下に示す。
[Production Example 4] Yttrium compound No. Production of 15 To a 100 mL three-necked flask, 1.65 g (2.90 mmol) of yttrium-tris-trimethylsilylamide and 8.0 g of dehydrated toluene were added and mixed well. 2.02 g (10.2 mmol) of 5-amino-1-methoxy-2,2,6-trimethyl-4-heptene-3-one was added dropwise to this suspension at room temperature. After stirring at 86 ° C. for 5 hours, the solvent was removed in an oil bath at 120 ° C. under reduced pressure. The produced yttrium complex (reddish brown viscous substance) was placed in a flask, connected to a Kugelrohr purifier, and distilled at a heating temperature of 210 ° C. and 23 Pa to obtain a yellow liquid. The obtained yellow liquid was allowed to cool to room temperature to obtain a yellow solid. The obtained yellow solid was analyzed by 1 H-NMR and ICP-AES, and as a result, yttrium compound No. It was confirmed that it was 15. The analysis results of the obtained yellow solid are shown below.
(1)1H-NMR(重ベンゼン)
 0.908ppm(18H,broad)、1.393ppm(18H,singlet)、2.079ppm(3H,singlet)、3.239ppm(9H,singlet)、3.525ppm(6H,singlet)、5.269ppm(3H,singlet)、7.378ppm(3H,broad)
(1) 1 1 H-NMR (heavy benzene)
0.908ppm (18H, broad), 1.393ppm (18H, singlet), 2.079ppm (3H, singlet), 3.239ppm (9H, singlet), 3.525ppm (6H, singlet), 5.269ppm (3H) , Singlet), 7.378ppm (3H, broad)
(2)ICP-AESによる元素分析結果
 Y:12.8質量%(理論値:12.83質量%)、C:57.5質量%(理論値:57.21質量%)、H:10.0質量%(理論値:10.03質量%)、N:6.1質量%(理論値:6.07質量%)、O:13.6質量%(理論値:13.86質量%)
(2) Element analysis result by ICP-AES Y: 12.8% by mass (theoretical value: 12.83% by mass), C: 57.5% by mass (theoretical value: 57.21% by mass), H: 10. 0% by mass (theoretical value: 10.03% by mass), N: 6.1% by mass (theoretical value: 6.07% by mass), O: 13.6% by mass (theoretical value: 13.86% by mass)
〔製造例5〕比較化合物1の製造
 100mLの3つ口フラスコに、イットリウム-トリス-トリメチルシリルアミド 2.44g(4.28mmol)及び脱水トルエン 7.9gを加え、十分に混合させた。この懸濁液に室温にて5-アミノ-4-ヘプテン-3-オン1.91g(15.0mmol)を滴下した。87℃にて3時間撹拌後、減圧下、オイルバス111℃にて溶媒を除去した。生成したイットリウム錯体(橙色粘性液体)をフラスコに入れクーゲルロール精製装置に接続し、加熱温度215℃、50Paにて蒸留を行い、黄色粘性液体を得た。得られた黄色粘性液体は室温まで放冷して黄色固体を得た。得られた黄色固体について、1H-NMR及びICP-AESによる分析の結果、下記に示す比較化合物1であることを確認した。得られた黄色固体の分析結果を以下に示す。
[Production Example 5] Production of Comparative Compound 1 To a 100 mL three-necked flask, 2.44 g (4.28 mmol) of yttrium-tris-trimethylsilylamide and 7.9 g of dehydrated toluene were added and mixed thoroughly. 1.91 g (15.0 mmol) of 5-amino-4-heptene-3-one was added dropwise to this suspension at room temperature. After stirring at 87 ° C. for 3 hours, the solvent was removed in an oil bath at 111 ° C. under reduced pressure. The generated yttrium complex (orange viscous liquid) was placed in a flask, connected to a Kugelrohr purifier, and distilled at a heating temperature of 215 ° C. and 50 Pa to obtain a yellow viscous liquid. The obtained yellow viscous liquid was allowed to cool to room temperature to obtain a yellow solid. As a result of analysis by 1 H-NMR and ICP-AES, it was confirmed that the obtained yellow solid was Comparative Compound 1 shown below. The analysis results of the obtained yellow solid are shown below.
(1)1H-NMR(重ベンゼン)
 0.879-0.916ppm(9H,triplet)、1.232-1.270ppm(9H,triplet)、1.919-1.976ppm(6H,quartet)、2.306-2.363ppm(6H,quartet)、5.025-5.030ppm(3H,doublet)、7.614ppm(3H,singlet)
(1) 1 1 H-NMR (heavy benzene)
0.879-0.916ppm (9H, triplet), 1.232-1.270ppm (9H, triplet), 1.919-1.976ppm (6H, quartet), 2.306-2.363ppm (6H, quartet) ), 5.025-5.030ppm (3H, doublet), 7.614ppm (3H, singlet)
(2)ICP-AESによる元素分析結果
 Y:18.9質量%(理論値:18.66質量%)、C:52.8質量%(理論値:52.93質量%)、H:9.4質量%(理論値:9.51質量%)、N:8.7質量%(理論値:8.82質量%)、O:10.2質量%(理論値:10.08質量%)
(2) Element analysis results by ICP-AES Y: 18.9% by mass (theoretical value: 18.66% by mass), C: 52.8% by mass (theoretical value: 52.93% by mass), H: 9. 4% by mass (theoretical value: 9.51% by mass), N: 8.7% by mass (theoretical value: 8.82% by mass), O: 10.2% by mass (theoretical value: 10.08% by mass)
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 上記製造例1~5で製造したイットリウム化合物No.1、No.3、No.6、No.15及び比較化合物1を用いて、下記の評価を行った。 Yttrium compound No. 1 produced in Production Examples 1 to 5 above. 1, No. 3, No. 6, No. The following evaluation was performed using 15 and Comparative Compound 1.
(1)融点評価
 目視によって、常圧25℃における化合物の状態を観察し、固体化合物については、示差走査熱量計DSCを用いて、昇温速度10℃/分、走査温度範囲を30℃~600℃として測定し、得られたチャートにおいて、低温側のベースラインを高温側に延長した直線と、吸熱反応を示すピークの低温側の曲線に勾配が最大になる点で引いた接線の交点の温度を融点として評価した。結果を表1に示す。
(1) Melting point evaluation Visually observe the state of the compound at normal pressure of 25 ° C, and for solid compounds, use a differential scanning calorimeter DSC to raise the temperature at 10 ° C / min and set the scanning temperature range to 30 ° C to 600. In the obtained chart measured as ° C, the temperature of the intersection of the straight line extending the baseline on the low temperature side to the high temperature side and the tangent line drawn at the point where the gradient becomes maximum on the curve on the low temperature side of the peak showing the heat absorption reaction. Was evaluated as the melting point. The results are shown in Table 1.
(2)減圧TG-DTA50質量%減少時の温度(℃)
 TG-DTAを用いて、10Torr、アルゴン流量50mL/分、昇温速度10℃/分、走査温度範囲を30℃~600℃として測定し、試験化合物の質量が50質量%減少した時の温度(℃)を「減圧TG-DTA50質量%減少時の温度(℃)」として評価した。減圧TG-DTA50質量%減少時の温度(℃)が低いほど、低温で蒸気が得られることを示す。結果を表1に示す。
(2) Temperature (° C.) when reduced pressure TG-DTA 50% by mass
Using TG-DTA, the temperature was measured with 10 Torr, an argon flow rate of 50 mL / min, a heating rate of 10 ° C./min, and a scanning temperature range of 30 ° C. to 600 ° C., and the temperature when the mass of the test compound was reduced by 50% by mass ( ° C.) was evaluated as "temperature (° C.) when reduced pressure TG-DTA 50% by mass". It is shown that the lower the temperature (° C.) when the reduced pressure TG-DTA is reduced by 50% by mass, the lower the temperature, the lower the temperature, the more steam can be obtained. The results are shown in Table 1.
(3)熱分解開始温度(℃)
 示差走査熱量計DSCを用いて、昇温速度10℃/分、走査温度範囲を30℃~600℃として測定したDSCチャートにおいて、発熱又は吸熱の開始点を熱分解開始温度(℃)として評価した。結果を表1に示す。
(3) Thermal decomposition start temperature (° C)
In the DSC chart measured with a differential scanning calorimeter DSC at a heating rate of 10 ° C./min and a scanning temperature range of 30 ° C. to 600 ° C., the start point of heat generation or endothermic evaluation was evaluated as the thermal decomposition start temperature (° C.). .. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 表1より、比較化合物1は、熱分解開始温度が267℃であり、熱安定性に乏しく薄膜形成用原料として、満足できるものではなかった。 From Table 1, the comparative compound 1 had a thermal decomposition start temperature of 267 ° C., was poor in thermal stability, and was not satisfactory as a raw material for forming a thin film.
 これに対して、イットリウム化合物No.1、No.3、No.6及びNo.15は、低融点でありながら熱分解開始温度が300℃以上であり、優れた熱安定性を有することが確認できた。また、これらのイットリウム化合物は、減圧TG-DTA50質量%減少時の温度が230℃近傍であり、低い温度で蒸気が得られることが確認できた。これらの結果より、一般式(1)又は(2)で表されるイットリウム化合物は、薄膜形成用原料として有用であることが確認できた。なお、実施例3の化合物No.6の外観は、水ガラスに類似し流動性はなかった。 On the other hand, yttrium compound No. 1, No. 3, No. 6 and No. It was confirmed that No. 15 had an excellent thermal stability because the thermal decomposition start temperature was 300 ° C. or higher even though the melting point was low. Further, it was confirmed that the temperature of these yttrium compounds when the reduced pressure TG-DTA was reduced by 50% by mass was around 230 ° C., and vapor could be obtained at a low temperature. From these results, it was confirmed that the yttrium compound represented by the general formula (1) or (2) is useful as a raw material for forming a thin film. In addition, compound No. of Example 3 The appearance of No. 6 was similar to that of water glass and had no fluidity.
〔実施例5〕ALD法による薄膜の製造
 イットリウム化合物No.15を薄膜形成用原料として用い、図1のALD装置を用い、下記の条件で、基体である二酸化ケイ素上に薄膜を製造した。X線光電子分光法を用いて薄膜の組成を分析したところ、薄膜は、イットリウム酸化物を含有する薄膜であり、残留炭素量は、検出限界である0.01atom%よりも少ないことを確認した。また、X線反射率法を用いて薄膜の膜厚を測定したところ、基体上に形成された薄膜は、膜厚20nmの平滑な膜であり、1サイクル当たりに得られる膜厚は、約0.05nmであった。
[Example 5] Production of thin film by ALD method Yttrium compound No. A thin film was produced on silicon dioxide as a substrate under the following conditions using 15 as a raw material for forming a thin film and using the ALD apparatus of FIG. When the composition of the thin film was analyzed using X-ray photoelectron spectroscopy, it was confirmed that the thin film was a thin film containing yttrium oxide and the residual carbon content was less than the detection limit of 0.01 atom%. Further, when the film thickness of the thin film was measured by the X-ray reflectivity method, the thin film formed on the substrate was a smooth film with a film thickness of 20 nm, and the film thickness obtained per cycle was about 0. It was 0.05 nm.
(条件)
 製造方法:ALD法
 反応温度(基体温度):300℃
 反応性ガス:オゾン
(工程)
 下記(1)~(4)からなる一連の工程を1サイクルとして、400サイクル繰り返した。
 (1)原料容器温度200℃、原料容器内圧力100Paの条件で薄膜形成用原料を気化して得られる原料ガスを成膜チャンバー内に導入し、系圧100Paで10秒間、基体表面に原料ガス中のイットリウム化合物を堆積させて前駆体薄膜を形成する。
 (2)15秒間のアルゴンパージにより、堆積しなかった原料ガスを系内から排気する。
 (3)反応性ガスを成膜チャンバー内に導入し、系圧力100Paで10秒間、前駆体薄膜と反応性ガスとを反応させる。
 (4)15秒間のアルゴンパージにより、未反応の反応性ガス及び副生ガスを系内から排気する。
(conditions)
Manufacturing method: ALD method Reaction temperature (base temperature): 300 ° C
Reactive gas: ozone (process)
A series of steps consisting of the following (1) to (4) was regarded as one cycle, and 400 cycles were repeated.
(1) The raw material gas obtained by vaporizing the raw material for thin film formation under the conditions of the raw material container temperature of 200 ° C. and the pressure inside the raw material container of 100 Pa is introduced into the film forming chamber, and the raw material gas is placed on the surface of the substrate at a system pressure of 100 Pa for 10 seconds. The yttrium compound inside is deposited to form a precursor thin film.
(2) The raw material gas that has not accumulated is exhausted from the system by argon purging for 15 seconds.
(3) The reactive gas is introduced into the film forming chamber, and the precursor thin film and the reactive gas are reacted at a system pressure of 100 Pa for 10 seconds.
(4) Unreacted reactive gas and by-product gas are exhausted from the system by argon purging for 15 seconds.
〔実施例6〕ALD法による薄膜の製造
 イットリウム化合物No.3を薄膜形成用原料として用い、図1のALD装置を用い、下記の条件で、基体である二酸化ケイ素上に薄膜を製造した。X線光電子分光法を用いて薄膜の組成を分析したところ、薄膜は、イットリウム酸化物を含有する薄膜であり、残留炭素量は、検出限界である0.01atom%よりも少ないことを確認した。また、X線反射率法を用いて薄膜の膜厚を測定したところ、基体上に形成された薄膜は、膜厚16nmの平滑な膜であり、1サイクル当たりに得られる膜厚は、約0.04nmであった。
[Example 6] Production of thin film by ALD method Yttrium compound No. 3 was used as a raw material for forming a thin film, and a thin film was produced on silicon dioxide as a substrate under the following conditions using the ALD apparatus of FIG. When the composition of the thin film was analyzed using X-ray photoelectron spectroscopy, it was confirmed that the thin film was a thin film containing yttrium oxide and the residual carbon content was less than the detection limit of 0.01 atom%. Further, when the film thickness of the thin film was measured by the X-ray reflectivity method, the thin film formed on the substrate was a smooth film with a film thickness of 16 nm, and the film thickness obtained per cycle was about 0. It was .04 nm.
(条件)
 製造方法:ALD法
 反応温度(基体温度):300℃
 反応性ガス:オゾン
(工程)
 下記(1)~(4)からなる一連の工程を1サイクルとして、400サイクル繰り返した。
 (1)原料容器温度200℃、原料容器内圧力100Paの条件で薄膜形成用原料を気化して得られる原料ガスを成膜チャンバー内に導入し、系圧100Paで10秒間、基体表面に原料ガス中のイットリウム化合物を堆積させて前駆体薄膜を形成する。
 (2)15秒間のアルゴンパージにより、堆積しなかった原料ガスを系内から排気する。
 (3)反応性ガスを成膜チャンバー内に導入し、系圧力100Paで10秒間、前駆体薄膜と反応性ガスとを反応させる。
 (4)15秒間のアルゴンパージにより、未反応の反応性ガス及び副生ガスを系内から排気する。
(conditions)
Manufacturing method: ALD method Reaction temperature (base temperature): 300 ° C
Reactive gas: ozone (process)
A series of steps consisting of the following (1) to (4) was regarded as one cycle, and 400 cycles were repeated.
(1) The raw material gas obtained by vaporizing the raw material for thin film formation under the conditions of the raw material container temperature of 200 ° C. and the pressure inside the raw material container of 100 Pa is introduced into the film forming chamber, and the raw material gas is placed on the surface of the substrate at a system pressure of 100 Pa for 10 seconds. The yttrium compound inside is deposited to form a precursor thin film.
(2) The raw material gas that has not accumulated is exhausted from the system by argon purging for 15 seconds.
(3) The reactive gas is introduced into the film forming chamber, and the precursor thin film and the reactive gas are reacted at a system pressure of 100 Pa for 10 seconds.
(4) Unreacted reactive gas and by-product gas are exhausted from the system by argon purging for 15 seconds.
〔比較例2〕ALD法による薄膜の製造
 比較化合物1を薄膜形成用原料として用いたこと以外は、実施例5と同一条件で、基体である二酸化ケイ素上に薄膜を製造した。X線電子分光法を用いて薄膜の組成を分析したところ、薄膜は、イットリウム酸化物を含有する薄膜であったが、残留炭素が検出された。また、走査型電子顕微鏡法を用いて薄膜の状態を観察したところ、基体上に形成された薄膜は平滑ではなく、膜厚を計測できなかった。
[Comparative Example 2] Production of Thin Film by ALD Method A thin film was produced on silicon dioxide as a substrate under the same conditions as in Example 5 except that Comparative Compound 1 was used as a raw material for forming a thin film. When the composition of the thin film was analyzed using X-ray electron spectroscopy, the thin film was a thin film containing yttrium oxide, but residual carbon was detected. Moreover, when the state of the thin film was observed using the scanning electron microscope method, the thin film formed on the substrate was not smooth and the film thickness could not be measured.
 以上より、本発明のイットリウム化合物を含有する薄膜形成用原料は、融点が低く、低い温度で蒸気が得られ、且つ熱安定性に優れている。そのため、本発明の薄膜形成用原料を用いて薄膜を製造した場合、残留炭素量が少ない高品質なイットリウム含有薄膜を製造することができる。 From the above, the raw material for forming a thin film containing the yttrium compound of the present invention has a low melting point, vapor can be obtained at a low temperature, and the thermal stability is excellent. Therefore, when a thin film is produced using the raw material for forming a thin film of the present invention, a high-quality yttrium-containing thin film having a small amount of residual carbon can be produced.

Claims (7)

  1.  下記一般式(1)又は(2)で表されるイットリウム化合物を含有する薄膜形成用原料。
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1及びR3は、それぞれ独立して、炭素原子数1~6のアルキル基又は炭素原子数2~6のアルコキシアルキル基を表し、R2は、水素原子又は炭素原子数1~3のアルキル基を表し、R4は、炭素原子数1~5のアルカンジイル基を表し、R5は、炭素原子数1~3のアルキル基を表し、複数のR1、R2、R3、R4及びR5は、それぞれ同じものであってもよく異なるものであってもよい。)
    Figure JPOXMLDOC01-appb-C000002
    (式中、R6及びR8は、それぞれ独立して、炭素原子数1~6のアルキル基又は炭素原子数2~6のアルコキシアルキル基を表し、R7は、水素原子又は炭素原子数1~3のアルキル基を表し、複数のR6、R7及びR8は、それぞれ同じものであってもよく異なるものであってもよい。ただし、R6及びR8のうち少なくとも一つは炭素原子数2~6のアルコキシアルキル基を表す。)
    A raw material for forming a thin film containing an yttrium compound represented by the following general formula (1) or (2).
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, R 1 and R 3 independently represent an alkyl group having 1 to 6 carbon atoms or an alkoxyalkyl group having 2 to 6 carbon atoms, and R 2 is a hydrogen atom or 1 carbon atom. R 4 represents an alkyl group having 1 to 3 carbon atoms, R 4 represents an alkyl group having 1 to 5 carbon atoms, R 5 represents an alkyl group having 1 to 3 carbon atoms, and a plurality of R 1 , R 2 , and R. 3 , R 4 and R 5 may be the same or different from each other.)
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, R 6 and R 8 independently represent an alkyl group having 1 to 6 carbon atoms or an alkoxyalkyl group having 2 to 6 carbon atoms, and R 7 is a hydrogen atom or 1 carbon atom. Representing an alkyl group of ~ 3, the plurality of R 6 , R 7 and R 8 may be the same or different, respectively, except that at least one of R 6 and R 8 is carbon. Represents an alkoxyalkyl group having 2 to 6 atoms.)
  2.  前記一般式(1)における、R1及びR3がイソプロピル基であり、R2が水素原子であり、R4がエチレン基であり、R5がメチル基であるイットリウム化合物、又は前記一般式(2)における、R6がメトキシtert-ブチル基であり、R7が水素原子であり、R8がイソプロピル基であるイットリウム化合物を含有する請求項1に記載の薄膜形成用原料。 In the general formula (1) , an yttrium compound in which R 1 and R 3 are isopropyl groups, R 2 is a hydrogen atom, R 4 is an ethylene group, and R 5 is a methyl group, or the general formula (1). The raw material for forming a thin film according to claim 1, which contains an yttrium compound in which R 6 is a methoxytert-butyl group, R 7 is a hydrogen atom, and R 8 is an isopropyl group in 2).
  3.  請求項1又は2に記載の薄膜形成用原料を用いてなる薄膜。 A thin film made by using the raw material for forming a thin film according to claim 1 or 2.
  4.  請求項1又は2に記載の薄膜形成用原料を気化させた原料ガスを、基体が設置された成膜チャンバー内に導入する工程と、
     前記原料ガス中のイットリウム化合物を前記基体の表面に堆積させて前駆体薄膜を形成する工程と、
     反応性ガスを前記成膜チャンバー内に導入し、前記前駆体薄膜と前記反応性ガスとを反応させて、前記基体の表面にイットリウム原子を含有する薄膜を形成する工程と
    を含む薄膜の製造方法。
    A step of introducing the raw material gas obtained by vaporizing the raw material for forming a thin film according to claim 1 or 2 into a film forming chamber in which a substrate is installed, and a step of introducing the raw material gas.
    A step of depositing the yttrium compound in the raw material gas on the surface of the substrate to form a precursor thin film, and
    A method for producing a thin film, which comprises a step of introducing a reactive gas into the film forming chamber and reacting the precursor thin film with the reactive gas to form a thin film containing an yttrium atom on the surface of the substrate. ..
  5.  前記反応性ガスが、酸化性ガスであり、且つ前記イットリウム原子を含有する薄膜が、酸化イットリウムである請求項4に記載の薄膜の製造方法。 The method for producing a thin film according to claim 4, wherein the reactive gas is an oxidizing gas and the thin film containing the yttrium atom is yttrium oxide.
  6.  前記酸化性ガスが、酸素、オゾン又は水蒸気を含有するガスである請求項5に記載の薄膜の製造方法。 The method for producing a thin film according to claim 5, wherein the oxidizing gas is a gas containing oxygen, ozone, or water vapor.
  7.  100℃~400℃の範囲で前記前駆体薄膜と前記反応性ガスとを反応させる請求項4~6の何れか一項に記載の薄膜の製造方法。 The method for producing a thin film according to any one of claims 4 to 6, wherein the precursor thin film and the reactive gas are reacted in the range of 100 ° C to 400 ° C.
PCT/JP2021/024953 2020-07-13 2021-07-01 Thin film-forming material, thin film, and thin film producing method WO2022014344A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022536245A JPWO2022014344A1 (en) 2020-07-13 2021-07-01

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-119765 2020-07-13
JP2020119765 2020-07-13

Publications (1)

Publication Number Publication Date
WO2022014344A1 true WO2022014344A1 (en) 2022-01-20

Family

ID=79554619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/024953 WO2022014344A1 (en) 2020-07-13 2021-07-01 Thin film-forming material, thin film, and thin film producing method

Country Status (3)

Country Link
JP (1) JPWO2022014344A1 (en)
TW (1) TW202212343A (en)
WO (1) WO2022014344A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023154270A1 (en) * 2022-02-08 2023-08-17 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Preparation of lanthanide-containing precursors and deposition of lanthanide-containing films

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007302656A (en) * 2006-04-25 2007-11-22 Air Products & Chemicals Inc POLYDENTATE beta-KETOIMINATE METAL COMPLEX
JP2009161513A (en) * 2007-11-27 2009-07-23 Air Products & Chemicals Inc Metal complex of tridentate beta-ketoiminate
JP2012153688A (en) * 2011-01-25 2012-08-16 Air Products & Chemicals Inc Metal complex for metal-containing film deposition
JP2014166967A (en) * 2013-02-28 2014-09-11 Ube Ind Ltd Novel yttrium compound, catalyst for conjugated diene polymerization, and production method of conjugated diene polymer using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007302656A (en) * 2006-04-25 2007-11-22 Air Products & Chemicals Inc POLYDENTATE beta-KETOIMINATE METAL COMPLEX
JP2009161513A (en) * 2007-11-27 2009-07-23 Air Products & Chemicals Inc Metal complex of tridentate beta-ketoiminate
JP2012153688A (en) * 2011-01-25 2012-08-16 Air Products & Chemicals Inc Metal complex for metal-containing film deposition
JP2014166967A (en) * 2013-02-28 2014-09-11 Ube Ind Ltd Novel yttrium compound, catalyst for conjugated diene polymerization, and production method of conjugated diene polymer using the same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BELOT J. A, WANG A, EDLEMAN N. L, BABCOCK J. R, METZ M. V, MARKS T. J, MARKWORTH P. R, CHANG R.: "Metal-Organic Chemical Vapor Deposition of Metal Oxides: from Precursor Synthesis to Thin Films", MATERIALS RESEARCH SOCIETY SYMPOSIA PROCEEDINGS, vol. 574, 30 November 1998 (1998-11-30), US , pages 37 - 43, XP009534146, ISSN: 0272-9172, ISBN: 978-1-60560-826-6, DOI: 10.1557/PROC-574-37 *
EDLEMAN NIKKI L., WANG ANCHUAN, BELOT JOHN A., METZ ANDREW W., BABCOCK JASON R., KAWAOKA AMBER M., NI JUN, METZ MATTHEW V., FLASCH: "Synthesis and Characterization of Volatile, Fluorine-Free β-Ketoiminate Lanthanide MOCVD Precursors and Their Implementation in Low-Temperature Growth of Epitaxial CeO 2 Buffer Layers for Superconducting Electronics", INORGANIC CHEMISTRY, AMERICAN CHEMICAL SOCIETY, EASTON , US, vol. 41, no. 20, 1 October 2002 (2002-10-01), Easton , US , pages 5005 - 5023, XP055899837, ISSN: 0020-1669, DOI: 10.1021/ic020299h *
SHAKHOV FEDOR M.; ABYZOV ANDREY M.; TAKAI KAZUYUKI: "Boron doped diamond synthesized from detonation nanodiamond in a C-O-H fluid at high pressure and high temperature", JOURNAL OF SOLID STATE CHEMISTRY, ORLANDO, FL, US, vol. 256, 1 January 1900 (1900-01-01), US , pages 72 - 92, XP085229856, ISSN: 0022-4596, DOI: 10.1016/j.jssc.2017.08.009 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023154270A1 (en) * 2022-02-08 2023-08-17 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Preparation of lanthanide-containing precursors and deposition of lanthanide-containing films
US11784041B2 (en) 2022-02-08 2023-10-10 L'Air Liquide, Sociéte Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Preparation of lanthanide-containing precursors and deposition of lanthanide-containing films

Also Published As

Publication number Publication date
TW202212343A (en) 2022-04-01
JPWO2022014344A1 (en) 2022-01-20

Similar Documents

Publication Publication Date Title
WO2019203035A1 (en) Source material for thin film formation for atomic layer deposition and method for producing thin film
EP3677585A1 (en) Metal alkoxide compound, thin-film-forming raw material, and thin film production method
JP6735163B2 (en) Vanadium compound, thin film forming raw material, and thin film manufacturing method
JP7554763B2 (en) Novel compound, raw material for thin film formation containing said compound, and method for producing thin film
WO2022190877A1 (en) Thin film-forming starting material for use in atomic layer deposition method, thin film, method for producing thin film, and zinc compound
WO2021200219A1 (en) Zinc compound, raw material for thin film formation, thin film, and method for producing thin film
WO2022014344A1 (en) Thin film-forming material, thin film, and thin film producing method
WO2020129616A1 (en) Raw material for forming thin film for atomic layer deposition, production method of thin film, and alkoxide compound
EP3712159B1 (en) Ruthenium compound, raw material for forming thin film, and method for producing thin film
WO2021200218A1 (en) Material for formation of thin film for use in atomic layer deposition and method for producing thin film
EP3643700A1 (en) Metal alkoxide compound, thin-film-forming raw material, and method for producing thin film
CN114787168B (en) Compound, raw material for forming thin film, and method for producing thin film
WO2021054160A1 (en) Raw material for forming thin film for atomic layer deposition and method for producing zinc-containing thin film using same
WO2021075397A1 (en) Novel tin compound, thin-film-forming raw material containing said compound, thin film formed from said thin-film-forming raw material, method for producing said thin film using said compound as precursor, and method for producing said thin film
WO2020170853A1 (en) Starting material for forming gallium nitride-containing thin film for atomic layer deposition method, and method for producing gallium nitride-containing thin film
JP7573514B2 (en) Raw material for forming thin film, thin film manufacturing method, and novel scandium compound
WO2023276716A1 (en) Starting material for forming thin film, thin film and method for producing thin film
WO2022059571A1 (en) Raw material for formation of thin film for use in atomic layer deposition, and method for producing thin film
WO2022107769A1 (en) Method for manufacturing thin film
WO2023090179A1 (en) Thin film-forming material for use in atomic layer deposition, thin film, method for producing thin film, and ruthenium compound
WO2023171489A1 (en) Starting material for thin film formation by atomic layer deposition, thin film, and method for producing thin film
JP7516092B2 (en) Thin film forming material, thin film and its manufacturing method
WO2022220153A1 (en) Thin film-forming feedstock for use in atomic layer deposition, thin film, method for producing thin film, and ruthenium compound
WO2023054066A1 (en) Thin film-forming material, thin film manufacturing method, thin film, and molybdenum compound
JP6429352B1 (en) Ruthenium compound, raw material for thin film formation, and method for producing thin film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21842720

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022536245

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21842720

Country of ref document: EP

Kind code of ref document: A1