[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022004471A1 - 樹脂組成物及び成形体 - Google Patents

樹脂組成物及び成形体 Download PDF

Info

Publication number
WO2022004471A1
WO2022004471A1 PCT/JP2021/023493 JP2021023493W WO2022004471A1 WO 2022004471 A1 WO2022004471 A1 WO 2022004471A1 JP 2021023493 W JP2021023493 W JP 2021023493W WO 2022004471 A1 WO2022004471 A1 WO 2022004471A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
resin composition
structural unit
formula
carbon atoms
Prior art date
Application number
PCT/JP2021/023493
Other languages
English (en)
French (fr)
Inventor
敦史 酒井
勇希 佐藤
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to CN202180046728.6A priority Critical patent/CN115734987B/zh
Priority to JP2022533882A priority patent/JPWO2022004471A1/ja
Priority to US18/003,565 priority patent/US20230257515A1/en
Priority to EP21832177.6A priority patent/EP4177295A4/en
Priority to KR1020227046205A priority patent/KR20230031850A/ko
Publication of WO2022004471A1 publication Critical patent/WO2022004471A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • C08G63/065Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids the hydroxy and carboxylic ester groups being bound to aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • C08G73/101Preparatory processes from tetracarboxylic acids or derivatives and diamines containing chain terminating or branching agents
    • C08G73/1017Preparatory processes from tetracarboxylic acids or derivatives and diamines containing chain terminating or branching agents in the form of (mono)amine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • C08G73/1082Partially aromatic polyimides wholly aromatic in the tetracarboxylic moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/043Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/243Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/60Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds
    • C08G63/605Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds the hydroxy and carboxylic groups being bound to aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/66Polyesters containing oxygen in the form of ether groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08J2467/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the hydroxy and the carboxyl groups directly linked to aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/004Additives being defined by their length
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/30Applications used for thermoforming

Definitions

  • the present invention relates to a resin composition and a molded product.
  • the liquid crystal polymer which is a thermoplastic resin, is known as an organic material having a low dielectric constant and a low dielectric loss tangent, and is used as a material for forming an insulating layer of a printed wiring board (see, for example, Patent Documents 1 and 2). ).
  • the liquid crystal polymer has a problem that it is difficult to handle when the liquid crystal polymer is melt-molded because the crystallization rate is high and the elasticity at the time of melting is lowered. Further, since the liquid crystal polymer is hard due to its structure and has low flexibility and toughness, improvement in mechanical properties is also desired.
  • the subject of the present invention is a resin composition containing a liquid crystal polymer, which is excellent in handleability at the time of melting, is easy to melt-knead and extrude, and can achieve both a low dielectric constant and a low dielectric loss tangent, and the resin composition.
  • a resin composition containing a liquid crystal polymer which is excellent in handleability at the time of melting, is easy to melt-knead and extrude, and can achieve both a low dielectric constant and a low dielectric loss tangent, and the resin composition.
  • A, b, and c indicate the average number of repeating constituent units.
  • R 1 is a divalent group having 6 to 22 carbon atoms containing at least one alicyclic hydrocarbon structure.
  • R 2 is a divalent chain aliphatic group having 5 to 16 carbon atoms.
  • X 1 And X 2 are independently tetravalent groups with 6 to 22 carbon atoms containing at least one aromatic ring.
  • the resin composition of the present invention contains a liquid crystal polymer, it is excellent in handleability at the time of melting, is easily melt-kneaded and extruded, and can achieve both a low dielectric constant and a low dielectric loss tangent.
  • the resin composition and the molded product containing the resin composition can be extruded, and are expected to be applied to applications requiring low dielectric constant and low dielectric loss tangent. For example, it can be applied to applications such as 5th generation mobile communication system (5G) and 6th generation mobile communication system (6G) related members, other electrical / electronic members, and insulating films.
  • 5G 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • the resin composition of the present invention comprises a liquid crystal polymer (A) containing at least one repeating structural unit selected from the group consisting of repeating structural units represented by the following formulas (I) to (IV), and the following formula (1). ) And the repetitive structural unit represented by the following formula (2), and the repetitive structural unit of the formula (1) and the repetitive structural unit of the formula (2) are totaled.
  • It is a resin composition containing the polyimide resin (B) having a content ratio of 20 to 70 mol% of the repeating constituent units.
  • A, b, and c indicate the average number of repeating constituent units.
  • R 1 is a divalent group having 6 to 22 carbon atoms containing at least one alicyclic hydrocarbon structure.
  • R 2 is a divalent chain aliphatic group having 5 to 16 carbon atoms.
  • X 1 And X 2 are independently tetravalent groups with 6 to 22 carbon atoms containing at least one aromatic ring.
  • the resin composition of the present invention has the above-mentioned structure, it is excellent in handleability at the time of melting while containing a liquid crystal polymer, is easy to melt-knead and extrude, and has a low dielectric constant and a low dielectric loss tangent (for example, 3. A resin composition having both a low dielectric constant of 0 or less and a low dielectric loss tangent of 0.005 or less) is obtained.
  • the reason why the above effect is obtained by the present invention is not clear, but it is considered as follows.
  • the liquid crystal polymer (A) (hereinafter, also simply referred to as “component (A)”) and the polyimide resin (B) (hereinafter, also simply referred to as “component (B)”) are both crystalline thermoplastic resins, and these are melted. It is considered that alloying can be achieved by kneading.
  • the liquid crystal polymer (A) can be a polymer exhibiting optical anisotropy and can achieve, for example, a low dielectric loss tangent of 0.005 or less.
  • the crystallization temperature is improved by using the liquid crystal polymer (A) together with the polyimide resin (B), and as a result, it has appropriate elasticity even when melted at a high temperature (200 ° C. or higher) and is handled at the time of melting. It is considered that a resin composition having excellent properties can be obtained. Further, the liquid crystal polymer (A) alone has a problem that it is difficult to obtain a low dielectric constant of 3.0 or less, but when used in combination with a polyimide resin (B) having a specific structure, the low dielectric constant can be obtained.
  • the liquid crystal polymer used in the present invention contains at least one repeating structural unit selected from the group consisting of repeating structural units represented by the following formulas (I) to (IV).
  • the liquid crystal polymer (A) can be a liquid crystal polymer that exhibits optical anisotropy and can achieve low dielectric loss tangent.
  • A, b, and c indicate the average number of repeating constituent units.
  • the repeating structural unit represented by the formula (I) consists of a structural unit derived from polyethylene glycol, terephthalic acid, and 4-hydroxybenzoic acid.
  • the repeating building block represented by formula (II) consists of building blocks derived from 4,4'-dihydroxybiphenyl, terephthalic acid, and 4-hydroxybenzoic acid.
  • the repeating building block represented by formula (III) consists of building blocks derived from bis (4-hydroxyphenyl) propane (bisphenol A), terephthalic acid, and 4-hydroxybenzoic acid.
  • the repeating structural unit represented by the formula (IV) consists of a structural unit derived from 6-hydroxy-2-naphthoic acid and 4-hydroxybenzoic acid.
  • a, b, and c indicate the average number of repeating constituent units, and each of them may be a number of 1 or more.
  • the liquid crystal polymer (A) may contain at least one of the repeating constituent units represented by the formulas (I) to (IV), and may contain two or more of them. From the viewpoint of achieving low dielectric constant and low dielectric loss tangent, it is more preferable that the liquid crystal polymer (A) contains a repeating structural unit represented by the formula (IV).
  • the total content of the repeating constituent units represented by the formulas (I) to (IV) is preferably 50% by mass or more, more preferably 50% by mass or more, from the viewpoint of obtaining a resin composition having a low dielectric loss tangent. It is 60% by mass or more, more preferably 70% by mass or more, still more preferably 80% by mass or more, and may be 100% by mass.
  • the liquid crystal polymer (A) may contain any structural unit other than the structural units contained in the repeating structural units represented by the formulas (I) to (IV).
  • the arbitrary constituent unit includes a group consisting of aromatic hydroxycarboxylic acid, aromatic dicarboxylic acid, aromatic diol, aromatic aminocarboxylic acid, aromatic hydroxyamine, aromatic diamine, aliphatic diol and aliphatic dicarboxylic acid. Examples include building blocks derived from one or more selected species.
  • the structural unit derived from the aromatic hydroxycarboxylic acid which is an arbitrary structural unit, is 3-hydroxybenzoic acid in the liquid crystal polymer (A) containing the repeating structural unit according to any one of the formulas (I) to (III).
  • 2-Hydroxybenzoic acid, 6-hydroxy-2-naphthoic acid, 5-hydroxy-2-naphthoic acid, 7-hydroxy-2-naphthoic acid, 3-hydroxy-2-naphthoic acid, 4'-hydroxyphenyl-4 -Constituent units derived from benzoic acid, 3'-hydroxyphenyl-4-benzoic acid, 4'-hydroxyphenyl-3-benzoic acid and the like can be mentioned.
  • a structural unit derived from an aromatic hydroxycarboxylic acid other than 6-hydroxy-2-naphthoic acid can be mentioned.
  • the structural unit derived from the aromatic dicarboxylic acid which is an arbitrary structural unit, in the liquid crystal polymer (A) containing the repeating structural unit according to any one of the formulas (I) to (III), isophthalic acid, 2,6 -Naphthalenedicarboxylic acid, 1,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 4,4'-dicarboxybiphenyl, 3,4'-dicarboxybiphenyl, 4,4''-dicarboxyterphenyl, Derived from ethylene glycol bis (4-carboxyphenyl) ether, bis (4-carboxyphenoxy) butane, bis (4-carboxyphenyl) ethane, ethylene glycol bis (3-carboxyphenyl) ether, bis (3-carboxyphenyl) ethane Examples of the structural unit to be used.
  • the structural unit to be used in the liquid crystal polymer (A) containing the repeat
  • Examples of the structural unit derived from the aromatic diol, which is an arbitrary structural unit, include hydroquinone, resorcin, and 2,6 in the liquid crystal polymer (A) containing the repeating structural unit according to any one of the formulas (I) to (III).
  • Examples thereof include structural units derived from ethane and 2,2'-dihydroxybinaphthyl.
  • liquid crystal polymer (A) containing the repeating structural unit of the formula (IV) in addition to the structural unit derived from the aromatic diol exemplified above, 4,4'-dihydroxybiphenyl and bis (4-hydroxyphenyl) propane can be used.
  • the building blocks from which it is derived can be mentioned.
  • Examples of the constituent unit derived from the aromatic aminocarboxylic acid, which is an arbitrary constituent unit, include a constituent unit derived from 4-aminobenzoic acid, 3-aminobenzoic acid, 6-amino-2-naphthoic acid and the like.
  • Examples of the structural unit derived from the aromatic hydroxyamine, which is an arbitrary structural unit, include 4-aminophenol, N-methyl-4-aminophenol, 3-aminophenol, 3-methyl-4-aminophenol, and 4-amino.
  • -1-naphthol 4-amino-4'-hydroxybiphenyl, 4-amino-4'-hydroxybiphenyl ether, 4-amino-4'-hydroxybiphenylmethane, 4-amino-4'-hydroxybiphenyl sulfide, 2, Examples thereof include structural units derived from 2'-diaminobinaphthyl.
  • the structural unit derived from the aromatic diamine which is an arbitrary structural unit, includes 1,4-phenylenediamine, 1,3-phenylenediamine, 1,5-diaminonaphthalene, 2,6-diaminonaphthalene, and 1,8-. Examples thereof include structural units derived from diaminonaphthalene.
  • the hydrogen atom on the aromatic ring in the aromatic dicarboxylic acid, aromatic diol, aromatic aminocarboxylic acid, aromatic hydroxyamine, and aromatic diamine may be substituted with an alkyl group, an alkoxy group, or a halogen. ..
  • the structural unit derived from the aliphatic diol which is an arbitrary structural unit, in the liquid crystal polymer (A) containing the repeating structural unit of the formula (I), propylene glycol, 1,4-butanediol, 1,6- Examples thereof include structural units derived from hexanediol.
  • a structural unit derived from the aliphatic diol exemplified above and a structural unit derived from ethylene glycol can be mentioned.
  • Examples of the constituent unit derived from the aliphatic dicarboxylic acid which is an arbitrary constituent unit, include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, and dodecanedic acid. Examples thereof include constituent units derived from tetradecanedioic acid, fumaric acid, maleic acid, and hexahydroterephthalic acid.
  • any of the above structural units can include one type or two or more types.
  • the content thereof is preferably 50% by mass or less, more preferably 50% by mass or less in the liquid crystal polymer (A). It is 40% by mass or less, more preferably 30% by mass or less, still more preferably 20% by mass or less.
  • the melting point of the liquid crystal polymer (A) is preferably 180 ° C. or higher, more preferably 180 ° C. or higher, from the viewpoint of ease of melt-kneading and extrusion with the polyimide resin (B) described later, and from the viewpoint of heat resistance of the obtained resin composition. It is 200 ° C. or higher, more preferably 215 ° C. or higher.
  • the upper limit of the melting point of the liquid crystal polymer (A) is not particularly limited, but is preferably 350 ° C. or lower, more preferably 330 ° C. or lower, from the viewpoint of molding processability of the obtained resin composition.
  • the method for producing the liquid crystal polymer (A) is not particularly limited, and a polymerizable monomer for forming each repeating structural unit constituting the liquid crystal polymer (A) can be polycondensed by a known method.
  • the polyimide resin (B) used in the present invention includes a repeating structural unit represented by the following formula (1) and a repeating structural unit represented by the following formula (2), and the repeating structural unit of the formula (1) and the formula (1).
  • the content ratio of the repeating constituent unit of the formula (1) to the total of the repeating constituent units of 2) is 20 to 70 mol%.
  • R 1 is a divalent group having 6 to 22 carbon atoms containing at least one alicyclic hydrocarbon structure.
  • R 2 is a divalent chain aliphatic group having 5 to 16 carbon atoms.
  • X 1 And X 2 are independently tetravalent groups with 6 to 22 carbon atoms containing at least one aromatic ring.
  • the polyimide resin (B) used in the present invention is a thermoplastic resin, and its form is preferably powder or pellets.
  • the thermoplastic polyimide resin is a polyimide resin having no glass transition temperature (Tg), which is formed by closing the imide ring after being molded in the state of a polyimide precursor such as polyamic acid, or a temperature lower than the glass transition temperature. It is distinguished from the polyimide resin that decomposes in.
  • R 1 is a divalent group having 6 to 22 carbon atoms containing at least one alicyclic hydrocarbon structure.
  • the alicyclic hydrocarbon structure means a ring derived from the alicyclic hydrocarbon compound, and the alicyclic hydrocarbon compound may be saturated or unsaturated, and may simply be used. It may be a ring or a polycycle.
  • Examples of the alicyclic hydrocarbon structure include, but are limited to, a cycloalkane ring such as a cyclohexane ring, a cycloalkane ring such as cyclohexene, a bicycloalkane ring such as norbornane ring, and a bicycloalkene ring such as norbornene. Do not mean. Among these, a cycloalkane ring is preferable, a cycloalkane ring having 4 to 7 carbon atoms is more preferable, and a cyclohexane ring is more preferable.
  • R 1 has 6 to 22 carbon atoms, preferably 8 to 17 carbon atoms.
  • R 1 contains at least one alicyclic hydrocarbon structure, preferably 1 to 3.
  • R 1 is preferably a divalent group represented by the following formula (R1-1) or (R1-2).
  • M 11 and m 12 are independently integers of 0 to 2, preferably 0 or 1.
  • m 13 to m 15 are independently integers of 0 to 2, preferably 0. Or it is 1.
  • R 1 is particularly preferably a divalent group represented by the following formula (R1-3).
  • R1-3 the positional relationship between the two methylene groups with respect to the cyclohexane ring may be cis or trans, and the ratio of cis to trans is Any value may be used.
  • X 1 is a tetravalent group having 6 to 22 carbon atoms and containing at least one aromatic ring.
  • the aromatic ring may be a monocyclic ring or a condensed ring, and examples thereof include a benzene ring, a naphthalene ring, an anthracene ring, and a tetracene ring, but the aromatic ring is not limited thereto. Among these, a benzene ring and a naphthalene ring are preferable, and a benzene ring is more preferable.
  • the number of carbon atoms of X 1 is 6 to 22, preferably 6 to 18.
  • X 1 contains at least one aromatic ring, preferably 1 to 3 aromatic rings.
  • X 1 is preferably a tetravalent group represented by any of the following formulas (X-1) to (X-4).
  • R 11 to R 18 are independently alkyl groups having 1 to 4 carbon atoms.
  • P 11 to p 13 are independently integers of 0 to 2, preferably 0.
  • P 14 , P 15 , p 16 and p 18 are independently integers of 0 to 3, preferably 0.
  • p 17 is an integer of 0 to 4, preferably 0. L 11 to L.
  • X 13 is independently a single bond, an ether group, a carbonyl group, or an alkylene group having 1 to 4 carbon atoms.
  • X 1 is a tetravalent group having 6 to 22 carbon atoms containing at least one aromatic ring
  • R 12 , R 13 , p 12 and p 13 in the formula (X-2) are represented by the formula (X-).
  • the tetravalent group represented by 2) is selected so that the number of carbon atoms is in the range of 10 to 22.
  • L 11 , R 14 , R 15 , p 14 and p 15 in the formula (X-3) have the carbon number of the tetravalent group represented by the formula (X-3) in the range of 12 to 22.
  • X 1 is particularly preferably a tetravalent group represented by the following formula (X-5) or (X-6).
  • R 2 is a divalent chain aliphatic group having 5 to 16 carbon atoms, preferably having from 6 to 14 carbon atoms, more preferably from 7 to 12 carbon atoms, more preferably 8 to 10 carbon atoms.
  • the chain aliphatic group means a group derived from the chain aliphatic compound, and the chain aliphatic compound may be saturated or unsaturated, and may be linear. It may be branched or may contain a hetero atom such as an oxygen atom.
  • R 2 is preferably an alkylene group having 5 to 16 carbon atoms, more preferably 6 to 14 carbon atoms, more preferably an alkylene group having 7 to 12 carbon atoms, with preference 8 to 10 carbon atoms It is an alkylene group.
  • the alkylene group may be a linear alkylene group or a branched alkylene group, but is preferably a linear alkylene group.
  • R 2 is at least one preferably selected from the group consisting of octamethylene and decamethylene group, and particularly preferably octamethylene.
  • a divalent chain aliphatic group having 5 to 16 carbon atoms including an ether group can be mentioned.
  • the carbon number is preferably 6 to 14, more preferably 7 to 12, and even more preferably 8 to 10.
  • it is preferably a divalent group represented by the following formula (R2-1) or (R2-2).
  • M 21 and m 22 are independently integers of 1 to 15, preferably 1 to 13, more preferably 1 to 11, and even more preferably 1 to 9.
  • M 23 to m 25 are respectively. Independently, it is an integer of 1 to 14, preferably 1 to 12, more preferably 1 to 10, and even more preferably 1 to 8).
  • R 2 is a divalent chain aliphatic group having 5 to 16 carbon atoms (preferably 6 to 14 carbon atoms, more preferably 7 to 12 carbon atoms, still more preferably 8 to 10 carbon atoms).
  • the divalent group represented by the formula (R2-1) has 5 to 16 carbon atoms (preferably 6 to 14 carbon atoms, more preferably 7 carbon atoms). It is selected so as to be in the range of ⁇ 12, more preferably 8 to 10). That is, m 21 + m 22 is 5 to 16 (preferably 6 to 14, more preferably 7 to 12, still more preferably 8 to 10).
  • m 23 to m 25 in the formula (R2-2) have a divalent group represented by the formula (R2-2) having 5 to 16 carbon atoms (preferably 6 to 14 carbon atoms, more preferably 6 to 14 carbon atoms). It is selected so as to be in the range of 7 to 12 carbon atoms, more preferably 8 to 10 carbon atoms). That is, m 23 + m 24 + m 25 is 5 to 16 (preferably 6 to 14 carbon atoms, more preferably 7 to 12 carbon atoms, still more preferably 8 to 10 carbon atoms).
  • X 2 is defined in the same manner as X 1 in the formula (1), and the preferred mode is also the same.
  • the content ratio of the repeating constituent unit of the formula (1) to the total of the repeating constituent unit of the formula (1) and the repeating constituent unit of the formula (2) is 20 to 70 mol%.
  • the content ratio of the repeating structural unit of the formula (1) is in the above range, the polyimide resin can be sufficiently crystallized even in a general injection molding cycle. If the content ratio is less than 20 mol%, the molding processability is lowered, and if it exceeds 70 mol%, the crystallinity is lowered and the heat resistance is lowered.
  • the content ratio of the repeating constituent unit of the formula (1) to the total of the repeating constituent unit of the formula (1) and the repeating constituent unit of the formula (2) is preferably 65 mol% or less from the viewpoint of exhibiting high crystallinity.
  • the content ratio of the repeating structural unit of the formula (1) to the total of the repeating structural unit of the formula (1) and the repeating structural unit of the formula (2) is preferably 20 mol% or more and less than 40 mol%. Within this range, the crystallinity of the polyimide resin (B) becomes high, and a resin composition having more excellent heat resistance can be obtained.
  • the content ratio is preferably 25 mol% or more, more preferably 30 mol% or more, still more preferably 32 mol% or more from the viewpoint of molding processability, and even more preferably from the viewpoint of exhibiting high crystallinity. Is 35 mol% or less.
  • the total content ratio of the repeating constituent unit of the formula (1) and the repeating constituent unit of the formula (2) to all the repeating constituent units constituting the polyimide resin (B) is preferably 50 to 100 mol%, more preferably 75. It is ⁇ 100 mol%, more preferably 80-100 mol%, still more preferably 85-100 mol%.
  • the polyimide resin (B) may further contain a repeating structural unit of the following formula (3).
  • the content ratio of the repeating structural unit of the formula (3) to the total of the repeating structural unit of the formula (1) and the repeating structural unit of the formula (2) is preferably 25 mol% or less.
  • the lower limit is not particularly limited and may exceed 0 mol%.
  • the content ratio is preferably 5 mol% or more, more preferably 10 mol% or more, from the viewpoint of improving heat resistance, and preferably 20 mol% or less, more preferably from the viewpoint of maintaining crystallinity. It is preferably 15 mol% or less.
  • R 3 is a divalent group having 6 to 22 carbon atoms containing at least one aromatic ring.
  • X 3 is a tetravalent group having 6 to 22 carbon atoms containing at least one aromatic ring.
  • R 3 is a divalent group with 6 to 22 carbon atoms containing at least one aromatic ring.
  • the aromatic ring may be a monocyclic ring or a condensed ring, and examples thereof include a benzene ring, a naphthalene ring, an anthracene ring, and a tetracene ring, but the aromatic ring is not limited thereto. Among these, a benzene ring and a naphthalene ring are preferable, and a benzene ring is more preferable.
  • R 3 has 6 to 22 carbon atoms, preferably 6 to 18 carbon atoms.
  • R 3 contains at least one aromatic ring, preferably 1 to 3 aromatic rings.
  • a monovalent or divalent electron-attracting group may be bonded to the aromatic ring.
  • the monovalent electron-attracting group include a nitro group, a cyano group, a p-toluenesulfonyl group, a halogen, an alkyl halide group, a phenyl group and an acyl group.
  • the divalent electron-attracting group includes a fluorinated alkylene group (for example, -C (CF 3 ) 2 -,-(CF 2 ) p- (where p is an integer of 1 to 10)).
  • a fluorinated alkylene group for example, -C (CF 3 ) 2 -,-(CF 2 ) p- (where p is an integer of 1 to 10).
  • p is an integer of 1 to 10
  • R 3 is preferably a divalent group represented by the following formula (R3-1) or (R3-2).
  • M 31 and m 32 are independently integers of 0 to 2, preferably 0 or 1.
  • m 33 and m 34 are independently integers of 0 to 2, preferably 0. Or 1.
  • R 21 , R 22 and R 23 are independently an alkyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 4 carbon atoms, or an alkynyl group having 2 to 4 carbon atoms.
  • p 21 , p 22 and p 23 are integers from 0 to 4, preferably 0.
  • L 21 is a single bond, an ether group, a carbonyl group or an alkylene group having 1 to 4 carbon atoms.) Since R 3 is a divalent group having 6 to 22 carbon atoms containing at least one aromatic ring, m 31 , m 32 , R 21 and p 21 in the formula (R3-1) are represented by the formula (R3-). The carbon number of the divalent group represented by 1) is selected to be in the range of 6 to 22. Similarly, L 21 , m 33 , m 34 , R 22 , R 23 , p 22 and p 23 in the formula (R3-2) have the carbon number of the divalent group represented by the formula (R3-2). It is selected to fall within the range of 12-22.
  • X 3 is defined in the same manner as X 1 in the formula (1), and the preferred mode is also the same.
  • the polyimide resin (B) may further contain a repeating structural unit represented by the following formula (4).
  • R 4 is a divalent group containing -SO 2- or -Si (R x ) (R y ) O-, and R x and R y are independent chain aliphatic compounds having 1 to 3 carbon atoms, respectively. group or .
  • X 4 which represents a phenyl group is a tetravalent radical having 6 to 22 carbon atoms containing at least one aromatic ring.
  • X 4 is defined in the same manner as X 1 in the formula (1), and the preferred mode is also the same.
  • the terminal structure of the polyimide resin (B) is not particularly limited, but it is preferable to have a chain aliphatic group having 5 to 14 carbon atoms at the terminal.
  • the chain aliphatic group may be saturated or unsaturated, and may be linear or branched.
  • the polyimide resin (B) has the above-mentioned specific group at the end, a resin composition having excellent heat aging resistance can be obtained.
  • the saturated chain aliphatic group having 5 to 14 carbon atoms include n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group and n-undecyl group.
  • unsaturated chain aliphatic groups having 5 to 14 carbon atoms 1-pentenyl group, 2-pentenyl group, 1-hexenyl group, 2-hexenyl group, 1-heptenyl group, 2-heptenyl group, 1- Examples thereof include an octenyl group, a 2-octenyl group, a nonenyl group, a decenyl group, a dodecenyl group, a tridecenyl group, a tetradecenyl group and the like.
  • the above-mentioned chain aliphatic group is preferably a saturated chain aliphatic group, and more preferably a saturated linear aliphatic group.
  • the chain aliphatic group preferably has 6 or more carbon atoms, more preferably 7 or more carbon atoms, still more preferably 8 or more carbon atoms, and preferably 12 or less carbon atoms, more preferably.
  • the above-mentioned chain aliphatic group may be only one kind or two or more kinds.
  • the chain aliphatic group is particularly preferably at least one selected from the group consisting of an n-octyl group, an isooctyl group, a 2-ethylhexyl group, an n-nonyl group, an isononyl group, an n-decyl group, and an isodecyl group.
  • the polyimide resin (B) preferably has only a chain aliphatic group having 5 to 14 carbon atoms at the terminal in addition to the terminal amino group and the terminal carboxy group.
  • the content thereof is preferably 10 mol% or less, more preferably 5 mol% or less, based on the chain aliphatic group having 5 to 14 carbon atoms.
  • the content of the chain aliphatic group having 5 to 14 carbon atoms in the polyimide resin (B) is 100 in total of all the repeating constituent units constituting the polyimide resin (B) from the viewpoint of exhibiting excellent heat aging resistance. It is preferably 0.01 mol% or more, more preferably 0.1 mol% or more, still more preferably 0.2 mol% or more with respect to mol%. Further, in order to secure a sufficient molecular weight and obtain good mechanical properties, the content of the chain aliphatic group having 5 to 14 carbon atoms in the polyimide resin (B) constitutes the polyimide resin (B).
  • the content of the chain aliphatic group having 5 to 14 carbon atoms in the polyimide resin (B) can be determined by depolymerizing the polyimide resin (B).
  • the polyimide resin (B) preferably has a melting point of 360 ° C. or lower and a glass transition temperature of 150 ° C. or higher.
  • the melting point of the polyimide resin (B) is more preferably 280 ° C. or higher, further preferably 290 ° C. or higher from the viewpoint of heat resistance, and preferably 345 ° C. or lower, more preferably from the viewpoint of exhibiting high molding processability. Is 340 ° C. or lower, more preferably 335 ° C. or lower.
  • the glass transition temperature of the polyimide resin (B) is more preferably 160 ° C. or higher, more preferably 170 ° C. or higher from the viewpoint of heat resistance, and preferably 250 ° C.
  • the polyimide resin (B) is cooled at a temperature lowering rate of 20 ° C./min after melting the polyimide resin by differential scanning calorimeter measurement.
  • the calorific value of the crystallization calorific value observed at the time of the crystallization is preferably 5.0 mJ / mg or more, and more preferably 10.0 mJ / mg or more. It is preferably 17.0 mJ / mg or more, and more preferably 17.0 mJ / mg or more.
  • the upper limit of the calorific value for crystallization is not particularly limited, but is usually 45.0 mJ / mg or less.
  • the melting point, the glass transition temperature, and the calorific value for crystallization of the polyimide resin (B) can be measured by the method described in Examples.
  • the logarithmic viscosity of the 5% by mass concentrated sulfuric acid solution of the polyimide resin (B) at 30 ° C. is preferably in the range of 0.2 to 2.0 dL / g, more preferably 0.3 to 1.8 dL / g.
  • the logarithmic viscosity ⁇ is obtained from the following formula by measuring the flow time of concentrated sulfuric acid and the polyimide resin solution at 30 ° C. using a Canon Fenceke viscometer.
  • ln (ts / t 0 ) / C t 0 : Time for concentrated sulfuric acid to flow ts: Time for polyimide resin solution to flow C: 0.5 (g / dL)
  • the weight average molecular weight Mw of the polyimide resin (B) is preferably 10,000 to 150,000, more preferably 15,000 to 100,000, still more preferably 20,000 to 80,000, still more preferably 30,. It is in the range of 000 to 70,000, more preferably 35,000 to 65,000.
  • the weight average molecular weight Mw of the polyimide resin (B) can be measured by a gel filtration chromatography (GPC) method using polymethylmethacrylate (PMMA) as a standard sample.
  • the polyimide resin (B) can be produced by reacting a tetracarboxylic acid component with a diamine component.
  • the tetracarboxylic acid component contains a tetracarboxylic acid containing at least one aromatic ring and / or a derivative thereof
  • the diamine component contains a diamine containing at least one alicyclic hydrocarbon structure and a chain aliphatic diamine. ..
  • the tetracarboxylic acid containing at least one aromatic ring is preferably a compound in which four carboxy groups are directly bonded to the aromatic ring, and an alkyl group may be contained in the structure. Further, the tetracarboxylic acid preferably has 6 to 26 carbon atoms. Examples of the tetracarboxylic acid include pyromellitic acid, 2,3,5,6-toluenetetracarboxylic acid, 3,3', 4,4'-benzophenone tetracarboxylic acid, 3,3', 4,4'-biphenyl. Tetracarboxylic acid, 1,4,5,8-naphthalenetetracarboxylic acid and the like are preferable. Of these, pyromellitic acid is more preferable.
  • Examples of the derivative of the tetracarboxylic acid containing at least one aromatic ring include an anhydride or an alkyl ester of the tetracarboxylic acid containing at least one aromatic ring.
  • the tetracarboxylic acid derivative preferably has 6 to 38 carbon atoms.
  • Examples of the tetracarboxylic acid anhydride include pyromellitic acid monoanhydride, pyromellitic acid dianhydride, 2,3,5,6-toluenetetracarboxylic acid dianhydride, 3,3', 4,4'-diphenyl.
  • Sulfonitetetracarboxylic acid dianhydride 3,3', 4,4'-benzophenone tetracarboxylic acid dianhydride, 3,3', 4,4'-biphenyltetracarboxylic acid dianhydride, 1,4,5,5 Examples thereof include 8-naphthalene tetracarboxylic acid dianhydride.
  • alkyl ester of tetracarboxylic acid examples include dimethyl pyromellitic acid, diethyl pyromellitic acid, dipropyl pyromellitic acid, diisopropyl pyromellitic acid, dimethyl 2,3,5,6-toluenetetracarboxylate, 3,3', 4 , 4'-Diphenylsulfonetetracarboxylate dimethyl, 3,3', 4,4'-benzophenone tetracarboxylate dimethyl, 3,3', 4,4'-biphenyltetracarboxylate dimethyl, 1,4,5,8 -Includes dimethyl naphthalenetetracarboxylate and the like.
  • the number of carbon atoms of the alkyl group is preferably 1 to 3.
  • At least one compound selected from the above may be used alone, or two or more compounds may be used in combination.
  • the diamine containing at least one alicyclic hydrocarbon structure preferably has 6 to 22 carbon atoms, for example, 1,2-bis (aminomethyl) cyclohexane, 1,3-bis (aminomethyl) cyclohexane, 1,4-.
  • diamines containing an alicyclic hydrocarbon structure generally have structural isomers, but the ratio of cis / trans isomers is not limited.
  • the chain aliphatic diamine may be linear or branched, and the number of carbon atoms is preferably 5 to 16, more preferably 6 to 14, and even more preferably 7 to 12. Further, if the number of carbon atoms in the chain portion is 5 to 16, an ether bond may be contained between them.
  • Examples of chain aliphatic diamines include 1,5-pentamethylenediamine, 2-methylpentane-1,5-diamine, 3-methylpentane-1,5-diamine, 1,6-hexamethylenediamine, 1,7-hepta.
  • the chain aliphatic diamine may be used alone or in combination of two or more.
  • chain aliphatic diamines having 8 to 10 carbon atoms can be preferably used, and at least one selected from the group consisting of 1,8-octamethylenediamine and 1,10-decamethylenediamine is particularly preferable. Can be used.
  • the molar amount of the diamine containing at least one alicyclic hydrocarbon structure to the total amount of the diamine containing at least one alicyclic hydrocarbon structure and the chain aliphatic diamine is preferably 20 to 70 mol%.
  • the molar amount is preferably 25 mol% or more, more preferably 30 mol% or more, still more preferably 32 mol% or more, and from the viewpoint of exhibiting high crystallinity, preferably 60 mol% or less, more preferably 50. It is mol% or less, more preferably less than 40 mol%, still more preferably 35 mol% or less.
  • the diamine component may contain a diamine containing at least one aromatic ring.
  • the number of carbon atoms of the diamine containing at least one aromatic ring is preferably 6 to 22, for example, orthoxylylene diamine, metaxylylene diamine, paraxylylene diamine, 1,2-diethynylbenzene diamine, 1,3-dietinyl.
  • the molar ratio of the amount of diamine containing at least one aromatic ring to the total amount of diamine containing at least one alicyclic hydrocarbon structure and the chain aliphatic diamine may be 25 mol% or less.
  • the lower limit is not particularly limited and may exceed 0 mol%.
  • the molar ratio is preferably 5 mol% or more, more preferably 10 mol% or more, from the viewpoint of improving heat resistance, and preferably 20 mol% or less, more preferably from the viewpoint of maintaining crystallinity. It is preferably 15 mol% or less.
  • the molar ratio is preferably 12 mol% or less, more preferably 10 mol% or less, still more preferably 5 mol% or less, still more preferably 0 mol%, from the viewpoint of reducing the coloring of the polyimide resin. ..
  • the ratio of the charged amount of the tetracarboxylic acid component to the diamine component is preferably 0.9 to 1.1 mol of the diamine component with respect to 1 mol of the tetracarboxylic acid component. ..
  • an end-capping agent may be mixed in addition to the tetracarboxylic acid component and the diamine component.
  • the terminal encapsulant at least one selected from the group consisting of monoamines and dicarboxylic acids is preferable.
  • the amount of the terminal encapsulant used may be any amount as long as a desired amount of terminal groups can be introduced into the polyimide resin (B), and 0.0001 to 0. 1 mol is preferable, 0.001 to 0.06 mol is more preferable, 0.002 to 0.035 mol is further preferable, 0.002 to 0.020 mol is more preferable, and 0.002 to 0.012 mol is more preferable. Is even more preferable.
  • a monoamine terminal encapsulant is preferable as the terminal encapsulant, and from the viewpoint of introducing the above-mentioned chain aliphatic group having 5 to 14 carbon atoms to the end of the polyimide resin (B) to improve heat aging resistance.
  • a monoamine having a chain aliphatic group having 5 to 14 carbon atoms is more preferable, and a monoamine having a saturated linear aliphatic group having 5 to 14 carbon atoms is further preferable.
  • the terminal encapsulant is particularly preferably at least one selected from the group consisting of n-octylamine, isooctylamine, 2-ethylhexylamine, n-nonylamine, isononylamine, n-decylamine, and isodecylamine. , More preferably at least one selected from the group consisting of n-octylamine, isooctylamine, 2-ethylhexylamine, n-nonylamine, and isononylamine, and most preferably n-octylamine, isooctylamine, and the like. And at least one selected from the group consisting of 2-ethylhexylamine.
  • polymerization method for producing the polyimide resin (B) As a polymerization method for producing the polyimide resin (B), a known polymerization method can be applied, and the method described in International Publication No. 2016/147996 can be used.
  • the mass ratio [(A) / (B)] of the liquid crystal polymer (A) and the polyimide resin (B) in the resin composition of the present invention is not particularly limited, and is 0.1 / 99.9 to 99. It may be in the range of 9 / 0.1.
  • the proportion of the polyimide resin (B) is preferably high from the viewpoint of obtaining good handleability at the time of melting, molding processability and low dielectric constant, and from the viewpoint of obtaining good melt kneading property and extrudability and low dielectric loss tangent.
  • the mass ratio in the resin composition of the present invention is preferably 0.1 / 99.9 to 70/30, more preferably 0.1 / 99.9 to 50/50, and even more preferably 0.1 / 99.9. It is in the range of ⁇ 40/60, more preferably 0.1 / 99.9 to 30/70.
  • the total content of the liquid crystal polymer (A) and the polyimide resin (B) in the resin composition of the present invention is preferably 30% by mass or more, more preferably 40% by mass or more from the viewpoint of obtaining the effect of the present invention. It is more preferably 50% by mass or more, still more preferably 65% by mass or more, still more preferably 70% by mass or more, still more preferably 80% by mass or more, still more preferably 90% by mass or more.
  • the upper limit is 100% by mass.
  • the resin composition of the present invention can further contain reinforcing fibers from the viewpoint of improving the mechanical strength, heat resistance and the like of the obtained resin composition and the molded product.
  • the reinforcing fiber include glass fiber, carbon fiber, aramid fiber, boron fiber, metal fiber and the like.
  • One type of reinforcing fiber may be used alone, or two or more types may be used in combination.
  • the form of the reinforcing fiber is not particularly limited, and either short fiber or continuous fiber can be used depending on the form of the obtained resin composition and the molded product, and both may be used in combination.
  • the form of the resin composition will be described later.
  • the reinforcing fiber is preferably a short fiber from the viewpoint of extrudability and the like.
  • the resin composition may be in the form of a prepreg in which a reinforcing fiber is impregnated with a mixture containing a liquid crystal polymer (A) and a polyimide resin (B), and the reinforcing fiber in this case is preferably a continuous fiber.
  • the average fiber length thereof is preferably 0.2 mm or more, more preferably 0.5 mm or more, still more preferably 2 mm or more, and extrusion formability or the like, from the viewpoint of strength and handleability. From the viewpoint of the above, it is preferably 25 mm or less, more preferably 15 mm or less, still more preferably less than 10 mm.
  • the reinforcing fibers are continuous fibers, for example, monofilaments or multifilaments are simply arranged so as to intersect in one direction or alternately, fabrics such as knitted fabrics, and various forms such as non-woven fabrics or mats can be mentioned.
  • the form of monofilament, cloth, non-woven fabric or mat is preferable, and the form of cloth is more preferable.
  • the reinforcing fiber is a continuous fiber
  • the fineness thereof is preferably 20 to 4,500 tex, more preferably 50 to 4,000 tex.
  • the fineness can be obtained by obtaining the weight of continuous fibers of an arbitrary length and converting it into the weight per 1,000 m.
  • the average fiber diameter of the reinforcing fibers is preferably 1 to 100 ⁇ m, more preferably 3 to 50 ⁇ m, and even more preferably 4 to 20 ⁇ m. When the average fiber diameter is in this range, the processing is easy and the elastic modulus and strength of the obtained molded product are excellent.
  • the average fiber length of the reinforcing fibers (short fibers) and the average fiber diameter of the reinforcing fibers are measured by randomly selecting 50 or more fibers using a scanning electron microscope (SEM) or the like, and observing and measuring the average number of fibers. Obtained by calculation.
  • the reinforcing fibers at least one selected from the group consisting of glass fiber and carbon fiber is preferable from the viewpoint of improving mechanical strength, and carbon fiber is more preferable from the viewpoint of improving mechanical strength and lightness.
  • the carbon fiber include polyacrylonitrile-based carbon fiber and pitch-based carbon fiber.
  • the number of filaments of the carbon fiber is usually in the range of 500 to 100,000, preferably 5,000 to 80,000, more preferably 10,000 to 70,000.
  • the carbon fibers are preferably surface-treated with a surface treatment agent in order to improve the wettability and interfacial adhesion with the liquid crystal polymer (A) and the polyimide resin (B).
  • the surface treatment agent is a concept including a converging agent and a sizing agent.
  • Examples of the surface treatment agent include epoxy-based materials, urethane-based materials, acrylic-based materials, polyamide-based materials, polyimide-based materials, polyester-based materials, vinyl ester-based materials, polyolefin-based materials, and polyether-based materials. One of these or two or more of them can be used in combination. From the viewpoint of obtaining higher mechanical properties, an epoxy-based material or a polyimide-based material is preferable as the surface treatment agent.
  • carbon fibers Commercially available products can also be used as carbon fiber.
  • Examples of commercially available carbon fibers include chopped fibers “CFUW”, “CFEPP”, “CFEPU”, “CFA4", “FX1”, “EX1”, and “BF-WS” manufactured by Nippon Polymer Industry Co., Ltd. , “CF-N”, “VX-1” series, “Pyrofil chopped fiber” series manufactured by Mitsubishi Chemical Corporation, “Tenax-J” series manufactured by Teijin Limited (HT C702, IM C702, etc.), Examples include the “Tenax-A” series (IM P303, HT P722, etc.).
  • the content thereof is preferably 0 in the resin composition from the viewpoint of the effect of improving mechanical strength and the viewpoint of achieving both low dielectric constant and low dielectric loss tangent. It is 05 to 70% by mass, more preferably 1 to 50% by mass, and further preferably 3 to 35% by mass.
  • the resin composition of the present invention includes fillers other than reinforcing fibers, matting agents, nucleating agents, plasticizers, antistatic agents, anticoloring agents, antigelling agents, flame retardants, coloring agents, slidability improving agents, and the like.
  • Additives such as antioxidants, ultraviolet absorbers, conductive agents, and resin modifiers may be contained, if necessary.
  • the content of the additive is not particularly limited, but from the viewpoint of exhibiting the effect of the additive while maintaining the physical characteristics derived from the liquid crystal polymer (A) and the polyimide resin (B), it is usually used in the resin composition. It is 50% by mass or less, preferably 0.0001 to 30% by mass, more preferably 0.0001 to 15% by mass, and further preferably 0.001 to 10% by mass.
  • the resin composition of the present invention can take any form, but is preferably pellets. Since the liquid crystal polymer (A) and the polyimide resin (B) have thermoplasticity, for example, the liquid crystal polymer (A), the polyimide resin (B), and various optional components are melt-kneaded in an extruder to extrude the strands. , Can be pelletized by cutting the strands. Further, by introducing the obtained pellets into various molding machines and thermoforming by the method described later, a molded body having a desired shape can be easily manufactured.
  • the crystallization temperature Tc of the resin composition of the present invention is preferably 270 ° C. or higher, more preferably 273 ° C. or higher.
  • the upper limit of Tc is not limited, but from the viewpoint of moldability, it is usually 290 ° C. or lower, preferably 285 ° C. or lower.
  • the crystallization temperature Tc of the resin composition is the peak top temperature of the crystallization exothermic peak observed when the resin composition is melted and then cooled at a temperature lowering rate of 20 ° C./min by differential scanning calorimetry. It can be observed as the crystallization temperature Tc, and specifically, it can be measured by the method described in Examples. When a peak top temperature of 2 or more is detected as the crystallization temperature Tc, it is preferable that the peak top temperature at the peak on the highest temperature side is in the above range.
  • the difference (Tm-Tc) between the melting point Tm and the crystallization temperature Tc of the resin composition of the present invention is preferably 80 ° C. or lower, more preferably 60 ° C. or lower, still more preferably 55 ° C. or lower. , More preferably 50 ° C. or lower, even more preferably 46 ° C. or lower, and even more preferably 45 ° C. or lower.
  • the lower limit of Tm-Tc is 0 ° C. or higher, and the smaller the value of Tm-Tc, the faster the crystallization and the higher the moldability of the resin composition.
  • the melting point Tm of the resin composition can be measured by the same method as that of the polyimide resin (B). When a peak top temperature of 2 or more is detected as the melting point Tm and the crystallization temperature Tc, it is preferable that the peak top temperature on the highest temperature side is adopted for both Tm and Tc, and the difference is within the above range.
  • the resin composition of the present invention by containing the liquid crystal polymer (A) and the polyimide resin (B), a resin composition having both a low dielectric constant and a low dielectric loss tangent can be obtained.
  • the resin composition of the present invention can achieve a dielectric constant of 3.0 or less and a dielectric loss tangent of 0.005 or less at a measurement frequency of 10 GHz.
  • the dielectric constant is preferably 2.90 or less, more preferably 2.85 or less, and the dielectric loss tangent is preferably 0.004 or less.
  • the dielectric constant and the dielectric loss tangent can be specifically measured by the method described in Examples.
  • the molded product of the present invention contains the resin composition of the present invention. Since the resin composition of the present invention has thermoplasticity, the molded product of the present invention can be easily produced by thermoforming.
  • the heat molding method include injection molding, extrusion molding, blow molding, hot press molding, vacuum molding, pressure molding, laser molding, welding, welding, and the like, and any molding method that goes through a heat melting step can be used. Is possible.
  • the molding temperature varies depending on the thermal characteristics (melting point and glass transition temperature) of the resin composition, but for example, in injection molding, molding can be performed at a molding temperature of less than 400 ° C. and a mold temperature of 220 ° C. or lower.
  • thermoforming the resin composition As a method for producing a molded product, it is preferable to have a step of thermoforming the resin composition at a temperature of less than 400 ° C.
  • Specific procedures include, for example, the following methods. First, the liquid crystal polymer (A), the polyimide resin (B), and various optional components are added and dry-blended, and then this is introduced into an extruder, preferably melted at a temperature of less than 400 ° C. and extruded. Melt kneading and extrusion are performed in the machine to prepare pellets.
  • the polyimide resin (B) is introduced into the extruder and melted preferably at a temperature of less than 400 ° C., and the liquid crystal polymer (A) and various optional components are introduced therein and melt-kneaded with the polyimide resin (B) in the extruder. Then, the above-mentioned pellets may be produced by extruding. After the pellets are dried, they can be introduced into various molding machines and thermoformed preferably at a temperature of less than 400 ° C. to produce a molded product having a desired shape.
  • the resin composition of the present invention is easy to melt-knead and extrude, and can achieve both a low dielectric constant and a low dielectric loss tangent.
  • the resin composition and the molded product containing the resin composition can be extruded, and are expected to be applied to applications requiring low dielectric constant and low dielectric loss tangent. For example, it can be applied to applications such as 5th generation mobile communication system (5G) related members, other electrical / electronic members, and insulating films.
  • applications of the resin composition of the present invention include resin multilayer boards, circuit boards, flexible boards (FPCs), rigid flexible boards, copper-clad laminated boards (CCLs), two-layer CCLs, printed wiring boards, and multilayer films.
  • Examples of applications of the resin composition containing reinforcing fibers include drones, robot arms, wind power generation blades, radomes and the like.
  • IR measurement ⁇ Infrared spectroscopic analysis (IR measurement)> The IR measurement of the polyimide resin was performed using "JIR-WINSPEC 50" manufactured by JEOL Ltd.
  • the melting point Tm of the polyimide resin, the liquid crystal polymer and the resin composition, the glass transition temperature Tg, the crystallization temperature Tc, and the crystallization calorific value ⁇ Hm of the polyimide resin are determined by a differential scanning calorimeter (SI Nanotechnology Co., Ltd.). DSC-6220 ”) was used for measurement. Under a nitrogen atmosphere, the sample was subjected to a thermal history under the following conditions. The conditions of the heat history are the first temperature rise (heating rate 10 ° C./min), then cooling (heating rate 20 ° C./min), and then the second temperature rise (heating rate 10 ° C./min).
  • the heating temperature was from room temperature to 400 ° C.
  • the melting point Tm was determined by reading the peak top value of the endothermic peak observed at the second temperature rise.
  • the glass transition temperature Tg was determined by reading the value observed at the second temperature rise.
  • the crystallization temperature Tc was determined by reading the peak top value of the exothermic peak observed during cooling.
  • the crystallization calorific value ⁇ Hm (mJ / mg) was calculated from the area of the exothermic peak observed during cooling.
  • ⁇ Semi-crystallization time> The semi-crystallization time of the polyimide resin was measured using a differential scanning calorimeter (“DSC-6220” manufactured by SII Nanotechnology Co., Ltd.). After holding at 420 ° C for 10 minutes in a nitrogen atmosphere to completely melt the polyimide resin, when the quenching operation was performed at a cooling rate of 70 ° C / min, the crystallization peak was observed from the time of appearance to the peak top. I calculated the time it took to reach it. In Table 1, when the semi-crystallization time is 20 seconds or less, it is expressed as " ⁇ 20".
  • ⁇ Bending strength and flexural modulus> Using the resin composition produced in each example, a molded product having an size of 80 mm ⁇ 10 mm ⁇ thickness 4 mm specified by ISO316 was prepared by a method described later and used for measurement. Using a bend graph (manufactured by Toyo Seiki Seisakusho Co., Ltd.), a bending test was performed at a temperature of 23 ° C. and a test speed of 2 mm / min in accordance with ISO178, and bending strength and flexural modulus were measured.
  • a bend graph manufactured by Toyo Seiki Seisakusho Co., Ltd.
  • ⁇ Tensile strength and modulus of elasticity> Using the resin composition produced in each example, a 1A type test piece specified in JIS K7161-2: 2014 was prepared by the method described later and used for measurement. Using a tensile tester (“Strograph VG-1E” manufactured by Toyo Seiki Co., Ltd.), the temperature is 23 ° C, the distance between grippers is 50 mm, and the test speed is based on JIS K7161-1: 2014 and K7161-2: 2014. A tensile test was performed at 5 mm / min, and the tensile strength and tensile elastic modulus were measured.
  • a tensile tester (“Strograph VG-1E” manufactured by Toyo Seiki Co., Ltd.)
  • the temperature is 23 ° C
  • the distance between grippers is 50 mm
  • the test speed is based on JIS K7161-1: 2014 and K7161-2: 2014.
  • a tensile test was performed at 5 mm / min, and the ten
  • Thermal deformation temperature (HDT)> Using the resin composition produced in each example, a molded product having a size of 80 mm ⁇ 10 mm ⁇ thickness 4 mm was produced by a method described later and used for measurement. The measurement was carried out in a flatwise manner in accordance with JIS K711-1, 2: 2015. Specifically, using the HDT test device "Auto-HDT3D-2" (manufactured by Toyo Seiki Seisakusho Co., Ltd.), heat is applied under the conditions of a distance between fulcrums of 64 mm, a load of 1.80 MPa, and a temperature rise rate of 120 ° C./hour. The deformation temperature was measured.
  • a molded body was produced by injection molding by a method described later, and then cutting was performed to obtain a test piece having a thickness of 1.5 mm ⁇ 80 mm ⁇ 1.5 mm. ..
  • the test piece was dried in a desiccator and then immediately used for measurement.
  • "PNA-L network analyzer N5230A” manufactured by Azilent Technology Co., Ltd. and "CP531" cavity resonator manufactured by Kanto Denshi Applied Development Co., Ltd. are used, and a cavity resonator perturbation method is used in accordance with IEC 62810.
  • the dielectric constant and the dielectric positive contact were measured at a temperature of 23 ° C., a humidity of 50%, and a measurement frequency of 10 GHz.
  • TMA measurements were performed in the range of 23 to 300 ° C. under the condition of ° C./min. According to JIS K7197: 2012 (compression mode), the measurement results in the range of 23 to 150 ° C. were analyzed, and the CTE of the molded product in the MD direction was obtained.
  • Production Example 1 (Production of Polyimide Resin 1) 500 g of 2- (2-methoxyethoxy) ethanol (manufactured by Nippon Embroidery Co., Ltd.) and pyromellitic acid dianhydride in a 2 L separable flask equipped with a Dean-Stark apparatus, a Leibich cooling tube, a thermoelectric pair, and four paddle blades. 218.12 g (1.00 mol) (manufactured by Mitsubishi Gas Chemical Company, Inc.) was introduced, and after flowing with nitrogen, the mixture was stirred at 150 rpm so as to have a uniform suspension solution.
  • the nitrogen flow state was set, and the rotation speed of the stirring blade was set to 250 rpm.
  • the dropping was completed, 130 g of 2- (2-methoxyethoxy) ethanol and 1.284 g (0.010 mol) of n-octylamine (manufactured by Kanto Chemical Co., Inc.) as a terminal encapsulant were added and further stirred. .. At this stage, a pale yellow polyamic acid solution was obtained.
  • the temperature of the polyamic acid solution in the 2 L separable flask was raised to 190 ° C.
  • the obtained polyimide resin 1 powder was melt-kneaded and extruded using a laboplast mill (manufactured by Toyo Seiki Seisakusho Co., Ltd.) at a barrel temperature of 350 ° C. and a screw rotation speed of 70 rpm.
  • the strands extruded from the extruder were air-cooled and then pelletized by a pelletizer (“Fan Cutter FC-Mini-4 / N” manufactured by Hoshi Plastic Co., Ltd.).
  • the obtained pellets were dried at 150 ° C. for 12 hours and then used for preparing a molded product.
  • Table 1 shows the composition and evaluation results of the polyimide resin in Production Example 1.
  • the mol% of the tetracarboxylic acid component and the diamine component in Table 1 is a value calculated from the amount of each component charged at the time of manufacturing the polyimide resin.
  • Examples 1 to 4 Preparation and evaluation of resin composition and molded product
  • a liquid crystal polymer 1 containing a repeating structural unit represented by the formula (IV) (“UENO LCP A8100” manufactured by Ueno Fine Chemicals Industry Co., Ltd., containing a structural unit derived from 6-hydroxy-2-naphthoic acid and p-hydroxybenzoic acid.
  • the pellets having a melting point (melting point 220 ° C.) and the pellets of the polyimide resin 1 obtained in Production Example 1 were used in the ratio shown in Table 2.
  • the resin 1 was introduced into the extruder and kneaded under the conditions of a cylinder set temperature of 335 ° C., a feed amount of 6 kg / h, and a screw rotation speed of 150 rpm to extrude the strands. At this time, the torque, the resin temperature, and the resin pressure were confirmed.
  • the strands extruded from the extruder were water-cooled, pelletized by a pelletizer (“Fan Cutter FC-Mini-4 / N” manufactured by Hoshi Plastic Co., Ltd.), and used for injection molding.
  • a pelletizer (“Fan Cutter FC-Mini-4 / N” manufactured by Hoshi Plastic Co., Ltd.)
  • injection molding is performed under the conditions of a cylinder set temperature of 370 ° C, a mold temperature of 200 ° C, and an injection speed of 80 mm / s, and used for various evaluations.
  • a molded product having a predetermined shape was produced.
  • various evaluations were performed by the above method. The results are shown in Tables 2 and 3.
  • Reference example 2 Molds were prepared in the same manner as in Examples 1 to 4 except that only the pellets of the polyimide resin 1 were used in Examples 1 to 4, and the water absorption rate and CTE were measured. Table 3 also shows the results of measuring the melting point, the glass transition temperature, the crystallization temperature, and the calorific value for crystallization of the polyimide resin 1 by the above method.
  • the resin compositions and molded bodies of Examples 1 to 4 can achieve both a low dielectric constant of 3.0 or less and a low dielectric loss tangent of 0.005 or less. Further, it can be seen that the higher the proportion of the liquid crystal polymer 1, the lower the torque, the resin temperature and the resin pressure at the time of strand extrusion, and the better the extrusion property. Further, as shown in Table 3, the resin compositions of Examples 1 to 4 have an improved crystallization temperature Tc as compared with the case of the liquid crystal polymer 1 alone (Reference Example 1) and the polyimide resin 1 alone (Reference Example 2). Therefore, it can be said that the elasticity at the time of high temperature melting does not decrease too much and the handleability is excellent.
  • the resin compositions of Examples 1 to 4 have a smaller Tm-Tc value than that of Reference Example 2, it is considered that the resin compositions have faster crystallization and improved moldability. From the comparison between Example 4 and Reference Example 2, it can be seen that the molded product made of the resin composition of the present invention has a low water absorption rate, a small CTE value, and excellent dimensional stability during heating.
  • Examples 5 to 10 (Preparation and evaluation of carbon fiber reinforced resin composition and molded product) Pellets of the liquid crystal polymer 1 (“UENO LCP A8100” manufactured by Ueno Pharmaceutical Co., Ltd.), pellets or powder of the polyimide resin 1 obtained in Production Example 1 (pellets in Examples 5 and 6, powder in Examples 7 to 10). ), Inorganic filler talc (“Nanoace D-800” manufactured by Nippon Talc Co., Ltd., average particle size (D50): 0.8 ⁇ m), and carbon fiber (“Tenax-J IM” manufactured by Teijin Co., Ltd.) "C702", average fiber length: 6 mm, sizing agent amount: 1.8%) was used in the ratio shown in Table 3.
  • UENO LCP A8100 manufactured by Ueno Pharmaceutical Co., Ltd.
  • Inorganic filler talc (“Nanoace D-800” manufactured by Nippon Talc Co., Ltd., average particle size (D50): 0.8 ⁇ m)
  • carbon fiber
  • Resin 1 and talc were introduced into the extruder, carbon fibers were side-fed, kneaded under the conditions of a cylinder set temperature of 350 ° C., a feed amount of 6 kg / h, and a screw rotation speed of 150 rpm, and the strands were extruded. At this time, the torque, the resin temperature, and the resin pressure were confirmed.
  • the strands extruded from the extruder were water-cooled, pelletized by a pelletizer (“Fan Cutter FC-Mini-4 / N” manufactured by Hoshi Plastic Co., Ltd.), and used for injection molding.
  • a pelletizer (“Fan Cutter FC-Mini-4 / N” manufactured by Hoshi Plastic Co., Ltd.)
  • injection molding is performed under the conditions of a cylinder set temperature of 370 ° C, a mold temperature of 200 ° C, and an injection speed of 30 mm / s, and used for various evaluations.
  • a molded product having a predetermined shape was produced.
  • various evaluations were performed by the above method. The results are shown in Table 4.
  • the resin composition of the present invention can be reinforced with carbon fibers to improve bending strength, flexural modulus, and HDT.
  • Examples 11 to 16 (Preparation and evaluation of glass fiber reinforced resin composition and molded product) Glass fiber reinforced liquid crystal polymer (“UENO LCP 6030G-NCSL” manufactured by Ueno Pharmaceutical Co., Ltd.) containing 70% by mass of liquid crystal polymer 2 and 30% by mass of glass fiber containing the repeating structural unit represented by the formula (IV), melting point. The pellets at 320 ° C.) and the pellets of the polyimide resin 1 obtained in Production Example 1 were used in the ratio shown in Table 5.
  • UENO LCP 6030G-NCSL manufactured by Ueno Pharmaceutical Co., Ltd.
  • the strands extruded from the extruder were water-cooled, pelletized by a pelletizer (“Fan Cutter FC-Mini-4 / N” manufactured by Hoshi Plastic Co., Ltd.), and used for injection molding.
  • a pelletizer (“Fan Cutter FC-Mini-4 / N” manufactured by Hoshi Plastic Co., Ltd.)
  • injection molding is performed under the conditions of a cylinder set temperature of 370 ° C, a mold temperature of 200 ° C, and an injection speed of 30 mm / s, and used for various evaluations.
  • a molded product having a predetermined shape was produced.
  • various evaluations were performed by the above method. The results are shown in Table 5.
  • the resin composition of the present invention can achieve both low dielectric constant and low dielectric loss tangent even when it contains glass fiber.
  • the resin composition of the present invention contains a liquid crystal polymer, it is excellent in handleability at the time of melting, is easily melt-kneaded and extruded, and can achieve both a low dielectric constant and a low dielectric loss tangent.
  • the resin composition and the molded product containing the resin composition can be extruded, and are expected to be applied to applications requiring low dielectric constant and low dielectric loss tangent. For example, it can be applied to applications such as 5th generation mobile communication system (5G) and 6th generation mobile communication system (6G) related members, other electrical / electronic members, and insulating films.
  • 5G 5th generation mobile communication system
  • 6G 6th generation mobile communication system

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

下記式(I)~式(IV)で示される繰り返し構成単位からなる群から選ばれる少なくとも1種の繰り返し構成単位を含む液晶ポリマー(A)と、所定のポリイミド樹脂(B)とを含有する樹脂組成物、及びこれを含む成形体である。 (a、b、cは平均繰り返し構成単位数を示す。)

Description

樹脂組成物及び成形体
 本発明は、樹脂組成物及び成形体に関する。
 熱可塑性樹脂である液晶ポリマーは、低誘電率、低誘電正接を有する有機材料として知られており、プリント配線板の絶縁層等を形成する材料として用いられている(例えば特許文献1、2参照)。
 その一方で、液晶ポリマーは結晶化速度が高く、且つ溶融時の弾性が低下するため、液晶ポリマーを溶融成形する場合の取り扱いが困難であるという問題があった。また液晶ポリマーはその構造上、硬く、屈曲性及び靭性が低いことから、機械物性の改良も望まれている。
 さらに近年、低誘電材料は第5世代移動通信システム(5G)及び第6世代移動通信システム(6G)関連部材としての需要が高まっており、高い電気特性を得る観点で、例えば、3.0以下の低誘電率で且つ0.005以下の低誘電正接を有する有機材料が求められている。しかしながら液晶ポリマー単独では、上記レベルの低誘電率と低誘電正接とを両立することは困難であった。
特開2005-317953号公報 特開2011-216841号公報
 本発明の課題は、液晶ポリマーを含み、溶融時の取り扱い性に優れるとともに溶融混練及び押出が容易であり、且つ低誘電率と低誘電正接とを両立し得る樹脂組成物、及び該樹脂組成物を含む成形体を提供することにある。
 本発明者らは、所定の液晶ポリマーと、特定の異なるポリイミド構成単位を特定の比率で組み合わせた結晶性熱可塑性ポリイミド樹脂とを含有する樹脂組成物が上記課題を解決できることを見出した。
 すなわち本発明は、下記に関する。
[1]下記式(I)~式(IV)で示される繰り返し構成単位からなる群から選ばれる少なくとも1種の繰り返し構成単位を含む液晶ポリマー(A)と、下記式(1)で示される繰り返し構成単位及び下記式(2)で示される繰り返し構成単位を含み、該式(1)の繰り返し構成単位と該式(2)の繰り返し構成単位の合計に対する該式(1)の繰り返し構成単位の含有比が20~70モル%のポリイミド樹脂(B)とを含有する樹脂組成物。
Figure JPOXMLDOC01-appb-C000003

(a、b、cは平均繰り返し構成単位数を示す。)
Figure JPOXMLDOC01-appb-C000004

(Rは少なくとも1つの脂環式炭化水素構造を含む炭素数6~22の2価の基である。Rは炭素数5~16の2価の鎖状脂肪族基である。X及びXは、それぞれ独立に、少なくとも1つの芳香環を含む炭素数6~22の4価の基である。)
[2]上記[1]に記載の樹脂組成物を含む成形体。
 本発明の樹脂組成物は液晶ポリマーを含有しながら、溶融時の取り扱い性に優れるとともに溶融混練及び押出が容易であり、且つ低誘電率と低誘電正接とを両立し得る。該樹脂組成物及びこれを含む成形体は、押出成形が可能であって、低誘電率及び低誘電正接が要求される用途への展開が期待される。例えば、第5世代移動通信システム(5G)及び第6世代移動通信システム(6G)関連部材、その他電気・電子部材、絶縁フィルム等の用途に適用できる。
[樹脂組成物]
 本発明の樹脂組成物は、下記式(I)~式(IV)で示される繰り返し構成単位からなる群から選ばれる少なくとも1種の繰り返し構成単位を含む液晶ポリマー(A)と、下記式(1)で示される繰り返し構成単位及び下記式(2)で示される繰り返し構成単位を含み、該式(1)の繰り返し構成単位と該式(2)の繰り返し構成単位の合計に対する該式(1)の繰り返し構成単位の含有比が20~70モル%のポリイミド樹脂(B)とを含有する樹脂組成物である。
Figure JPOXMLDOC01-appb-C000005

(a、b、cは平均繰り返し構成単位数を示す。)
Figure JPOXMLDOC01-appb-C000006

(Rは少なくとも1つの脂環式炭化水素構造を含む炭素数6~22の2価の基である。Rは炭素数5~16の2価の鎖状脂肪族基である。X及びXは、それぞれ独立に、少なくとも1つの芳香環を含む炭素数6~22の4価の基である。)
 本発明の樹脂組成物は上記構成を有することにより、液晶ポリマーを含有しながらも溶融時の取り扱い性に優れるとともに溶融混練及び押出が容易であり、且つ低誘電率と低誘電正接(例えば3.0以下の低誘電率と、0.005以下の低誘電正接)とを両立した樹脂組成物となる。
 本発明により上記効果が得られる理由については定かではないが、以下のように考えられる。
 液晶ポリマー(A)(以下、単に「成分(A)」ともいう)及びポリイミド樹脂(B)(以下、単に「成分(B)」ともいう)は共に結晶性熱可塑性樹脂であり、これらを溶融混練することによりアロイ化することができると考えられる。
 液晶ポリマー(A)は前記所定の繰り返し構成単位を含むことにより、光学的異方性を示すポリマーとすることができるとともに、例えば0.005以下の低誘電正接を達成できる。さらに、液晶ポリマー(A)をポリイミド樹脂(B)と併用することで結晶化温度が向上し、その結果、高温(200℃以上)での溶融時にも適度な弾性を有し、溶融時の取り扱い性に優れる樹脂組成物が得られると考えられる。
 また液晶ポリマー(A)単独では3.0以下の低誘電率を得ることが困難であるという課題を有していたが、特定構造を有するポリイミド樹脂(B)と併用することで低誘電率と低誘電正接との両立が可能になり、さらに、ポリイミド樹脂(B)単独使用の場合と比較して溶融混練及び押出時のトルク、樹脂温度、及び樹脂圧の上昇を抑えることができたと考えられる。
<液晶ポリマー(A)>
 本発明に用いる液晶ポリマーは、下記式(I)~式(IV)で示される繰り返し構成単位からなる群から選ばれる少なくとも1種の繰り返し構成単位を含むものである。液晶ポリマー(A)は該繰り返し構成単位を含むことにより、光学的異方性を示し、且つ低誘電正接を達成し得る液晶ポリマーとすることができる。
Figure JPOXMLDOC01-appb-C000007

(a、b、cは平均繰り返し構成単位数を示す。)
 式(I)で示される繰り返し構成単位は、ポリエチレングリコール、テレフタル酸、及び4-ヒドロキシ安息香酸に由来する構成単位からなる。
 式(II)で示される繰り返し構成単位は、4,4’-ジヒドロキシビフェニル、テレフタル酸、及び4-ヒドロキシ安息香酸に由来する構成単位からなる。
 式(III)で示される繰り返し構成単位は、ビス(4-ヒドロキシフェニル)プロパン(ビスフェノールA)、テレフタル酸、及び4-ヒドロキシ安息香酸に由来する構成単位からなる。
 式(IV)で示される繰り返し構成単位は、6-ヒドロキシ-2-ナフトエ酸及び4-ヒドロキシ安息香酸に由来する構成単位からなる。
 上記式中、a、b、cは平均繰り返し構成単位数を示し、それぞれ1以上の数であればよい。
 液晶ポリマー(A)は、式(I)~式(IV)で示される繰り返し構成単位のうち少なくとも1種を含んでいればよく、2種以上を含んでいてもよい。低誘電率及び低誘電正接を達成する観点からは、液晶ポリマー(A)は式(IV)で示される繰り返し構成単位を含むものであることがより好ましい。
 液晶ポリマー(A)中、式(I)~式(IV)で示される繰り返し構成単位の合計含有量は、低誘電正接の樹脂組成物を得る観点から、好ましくは50質量%以上、より好ましくは60質量%以上、更に好ましくは70質量%以上、より更に好ましくは80質量%以上であり、100質量%であってもよい。
 液晶ポリマー(A)は、式(I)~式(IV)で示される繰り返し構成単位に含まれる構成単位以外の、任意の構成単位を含んでいてもよい。該任意の構成単位としては、芳香族ヒドロキシカルボン酸、芳香族ジカルボン酸、芳香族ジオール、芳香族アミノカルボン酸、芳香族ヒドロキシアミン、芳香族ジアミン、脂肪族ジオール及び脂肪族ジカルボン酸からなる群から選ばれる1種以上に由来する構成単位が挙げられる。
 任意の構成単位である、芳香族ヒドロキシカルボン酸に由来する構成単位としては、式(I)~(III)のいずれかの繰り返し構成単位を含む液晶ポリマー(A)においては、3-ヒドロキシ安息香酸、2-ヒドロキシ安息香酸、6-ヒドロキシ-2-ナフトエ酸、5-ヒドロキシ-2-ナフトエ酸、7-ヒドロキシ-2-ナフトエ酸、3-ヒドロキシ-2-ナフトエ酸、4’-ヒドロキシフェニル-4-安息香酸、3’-ヒドロキシフェニル-4-安息香酸、4’-ヒドロキシフェニル-3-安息香酸に由来する構成単位等が挙げられる。式(IV)の繰り返し構成単位を含む液晶ポリマー(A)においては、上記のうち6-ヒドロキシ-2-ナフトエ酸以外の芳香族ヒドロキシカルボン酸に由来する構成単位が挙げられる。
 任意の構成単位である、芳香族ジカルボン酸に由来する構成単位としては、式(I)~(III)のいずれかの繰り返し構成単位を含む液晶ポリマー(A)においては、イソフタル酸、2,6-ナフタレンジカルボン酸、1,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、4,4’-ジカルボキシビフェニル、3,4’-ジカルボキシビフェニル、4,4’’-ジカルボキシターフェニル、エチレングリコールビス(4-カルボキシフェニル)エーテル、ビス(4-カルボキシフェノキシ)ブタン、ビス(4-カルボキシフェニル)エタン、エチレングリコールビス(3-カルボキシフェニル)エーテル、ビス(3-カルボキシフェニル)エタンに由来する構成単位等が挙げられる。式(IV)の繰り返し構成単位を含む液晶ポリマー(A)においては、上記に例示した芳香族ジカルボン酸に由来する構成単位の他、テレフタル酸に由来する構成単位が挙げられる。
 任意の構成単位である、芳香族ジオールに由来する構成単位としては、式(I)~(III)のいずれかの繰り返し構成単位を含む液晶ポリマー(A)においては、ハイドロキノン、レゾルシン、2,6-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、3,3’-ジヒドロキシビフェニル、3,4’-ジヒドロキシビフェニル、4,4’-ジヒドロキシビフェノールエーテル、ビス(4-ヒドロキシフェニル)エタン、2,2’-ジヒドロキシビナフチルに由来する構成単位等が挙げられる。式(IV)の繰り返し構成単位を含む液晶ポリマー(A)においては、上記に例示した芳香族ジオールに由来する構成単位の他、4,4’-ジヒドロキシビフェニル、ビス(4-ヒドロキシフェニル)プロパンに由来する構成単位が挙げられる。
 任意の構成単位である、芳香族アミノカルボン酸に由来する構成単位としては、4-アミノ安息香酸、3-アミノ安息香酸、6-アミノ-2-ナフトエ酸に由来する構成単位等が挙げられる。
 任意の構成単位である、芳香族ヒドロキシアミンに由来する構成単位としては、4-アミノフェノール、N-メチル-4-アミノフェノール、3-アミノフェノール、3-メチル-4-アミノフェノール、4-アミノ-1-ナフトール、4-アミノ-4’-ヒドロキシビフェニル、4-アミノ-4’-ヒドロキシビフェニルエーテル、4-アミノ-4’-ヒドロキシビフェニルメタン、4-アミノ-4’-ヒドロキシビフェニルスルフィド、2,2’-ジアミノビナフチルに由来する構成単位等が挙げられる。
 任意の構成単位である、芳香族ジアミンに由来する構成単位としては、1,4-フェニレンジアミン、1,3-フェニレンジアミン、1,5-ジアミノナフタレン、2,6-ジアミノナフタレン、1,8-ジアミノナフタレンに由来する構成単位等が挙げられる。
 なお、上記芳香族ジカルボン酸、芳香族ジオール、芳香族アミノカルボン酸、芳香族ヒドロキシアミン、及び芳香族ジアミンにおける芳香環上の水素原子は、アルキル基、アルコキシ基又はハロゲンにより置換されていてもよい。
 任意の構成単位である、脂肪族ジオールに由来する構成単位としては、式(I)の繰り返し構成単位を含む液晶ポリマー(A)においては、プロピレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオールに由来する構成単位等が挙げられる。式(II)~(IV)の繰り返し構成単位を含む液晶ポリマー(A)においては、上記に例示した脂肪族ジオールに由来する構成単位の他、エチレングリコールに由来する構成単位が挙げられる。
 任意の構成単位である、脂肪族ジカルボン酸に由来する構成単位としては、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸、テトラデカン二酸、フマル酸、マレイン酸、ヘキサヒドロテレフタル酸に由来する構成単位等が挙げられる。
 上記の任意の構成単位は、1種又は2種以上を含むことができる。但し、低誘電正接の樹脂組成物を得る観点から、液晶ポリマー(A)が任意の構成単位を含む場合、その含有量は、液晶ポリマー(A)中、好ましくは50質量%以下、より好ましくは40質量%以下、更に好ましくは30質量%以下、より更に好ましくは20質量%以下である。
 液晶ポリマー(A)の融点は、後述するポリイミド樹脂(B)との溶融混練及び押出の容易性の観点、及び得られる樹脂組成物の耐熱性の観点から、好ましくは180℃以上、より好ましくは200℃以上、更に好ましくは215℃以上である。液晶ポリマー(A)の融点の上限値は特に制限されないが、得られる樹脂組成物の成形加工性の観点から、好ましくは350℃以下、より好ましくは330℃以下である。
 液晶ポリマー(A)を製造する方法には特に制限はなく、液晶ポリマー(A)を構成する各繰り返し構成単位を形成するための重合性単量体を公知の方法により縮重合させて製造できる。
<ポリイミド樹脂(B)>
 本発明に用いるポリイミド樹脂(B)は、下記式(1)で示される繰り返し構成単位及び下記式(2)で示される繰り返し構成単位を含み、該式(1)の繰り返し構成単位と該式(2)の繰り返し構成単位の合計に対する該式(1)の繰り返し構成単位の含有比が20~70モル%である。本発明の樹脂組成物は液晶ポリマー(A)とポリイミド樹脂(B)とを共に含有することにより、溶融時の取り扱い性、溶融混練性及び押出性に優れるとともに、低誘電率及び低誘電正接を有する樹脂組成物を得ることができる。
Figure JPOXMLDOC01-appb-C000008

(Rは少なくとも1つの脂環式炭化水素構造を含む炭素数6~22の2価の基である。Rは炭素数5~16の2価の鎖状脂肪族基である。X及びXは、それぞれ独立に、少なくとも1つの芳香環を含む炭素数6~22の4価の基である。)
 本発明に用いるポリイミド樹脂(B)は熱可塑性樹脂であり、その形態としては粉末又はペレットであることが好ましい。熱可塑性ポリイミド樹脂は、例えばポリアミド酸等のポリイミド前駆体の状態で成形した後にイミド環を閉環して形成される、ガラス転移温度(Tg)を持たないポリイミド樹脂、あるいはガラス転移温度よりも低い温度で分解してしまうポリイミド樹脂とは区別される。
 式(1)の繰り返し構成単位について、以下に詳述する。
 Rは少なくとも1つの脂環式炭化水素構造を含む炭素数6~22の2価の基である。ここで、脂環式炭化水素構造とは、脂環式炭化水素化合物から誘導される環を意味し、該脂環式炭化水素化合物は、飽和であっても不飽和であってもよく、単環であっても多環であってもよい。
 脂環式炭化水素構造としては、シクロヘキサン環等のシクロアルカン環、シクロヘキセン等のシクロアルケン環、ノルボルナン環等のビシクロアルカン環、及びノルボルネン等のビシクロアルケン環が例示されるが、これらに限定されるわけではない。これらの中でも、好ましくはシクロアルカン環、より好ましくは炭素数4~7のシクロアルカン環、さらに好ましくはシクロヘキサン環である。
 Rの炭素数は6~22であり、好ましくは8~17である。
 Rは脂環式炭化水素構造を少なくとも1つ含み、好ましくは1~3個含む。
 Rは、好ましくは下記式(R1-1)又は(R1-2)で表される2価の基である。
Figure JPOXMLDOC01-appb-C000009

(m11及びm12は、それぞれ独立に、0~2の整数であり、好ましくは0又は1である。m13~m15は、それぞれ独立に、0~2の整数であり、好ましくは0又は1である。)
 Rは、特に好ましくは下記式(R1-3)で表される2価の基である。
Figure JPOXMLDOC01-appb-C000010

 なお、上記の式(R1-3)で表される2価の基において、2つのメチレン基のシクロヘキサン環に対する位置関係はシスであってもトランスであってもよく、またシスとトランスの比は如何なる値でもよい。
 Xは少なくとも1つの芳香環を含む炭素数6~22の4価の基である。前記芳香環は単環でも縮合環でもよく、ベンゼン環、ナフタレン環、アントラセン環、及びテトラセン環が例示されるが、これらに限定されるわけではない。これらの中でも、好ましくはベンゼン環及びナフタレン環であり、より好ましくはベンゼン環である。
 Xの炭素数は6~22であり、好ましくは6~18である。
 Xは芳香環を少なくとも1つ含み、好ましくは1~3個含む。
 Xは、好ましくは下記式(X-1)~(X-4)のいずれかで表される4価の基である。
Figure JPOXMLDOC01-appb-C000011

(R11~R18は、それぞれ独立に、炭素数1~4のアルキル基である。p11~p13は、それぞれ独立に、0~2の整数であり、好ましくは0である。p14、p15、p16及びp18は、それぞれ独立に、0~3の整数であり、好ましくは0である。p17は0~4の整数であり、好ましくは0である。L11~L13は、それぞれ独立に、単結合、エーテル基、カルボニル基又は炭素数1~4のアルキレン基である。)
 なお、Xは少なくとも1つの芳香環を含む炭素数6~22の4価の基であるので、式(X-2)におけるR12、R13、p12及びp13は、式(X-2)で表される4価の基の炭素数が10~22の範囲に入るように選択される。
 同様に、式(X-3)におけるL11、R14、R15、p14及びp15は、式(X-3)で表される4価の基の炭素数が12~22の範囲に入るように選択され、式(X-4)におけるL12、L13、R16、R17、R18、p16、p17及びp18は、式(X-4)で表される4価の基の炭素数が18~22の範囲に入るように選択される。
 Xは、特に好ましくは下記式(X-5)又は(X-6)で表される4価の基である。
Figure JPOXMLDOC01-appb-C000012
 次に、式(2)の繰り返し構成単位について、以下に詳述する。
 Rは炭素数5~16の2価の鎖状脂肪族基であり、好ましくは炭素数6~14、より好ましくは炭素数7~12、更に好ましくは炭素数8~10である。ここで、鎖状脂肪族基とは、鎖状脂肪族化合物から誘導される基を意味し、該鎖状脂肪族化合物は、飽和であっても不飽和であってもよく、直鎖状であっても分岐状であってもよく、酸素原子等のヘテロ原子を含んでいてもよい。
 Rは、好ましくは炭素数5~16のアルキレン基であり、より好ましくは炭素数6~14、更に好ましくは炭素数7~12のアルキレン基であり、なかでも好ましくは炭素数8~10のアルキレン基である。前記アルキレン基は、直鎖アルキレン基であっても分岐アルキレン基であってもよいが、好ましくは直鎖アルキレン基である。
 Rは、好ましくはオクタメチレン基及びデカメチレン基からなる群から選ばれる少なくとも1種であり、特に好ましくはオクタメチレン基である。
 また、Rの別の好適な様態として、エーテル基を含む炭素数5~16の2価の鎖状脂肪族基が挙げられる。該炭素数は、好ましくは炭素数6~14、より好ましくは炭素数7~12、更に好ましくは炭素数8~10である。その中でも好ましくは下記式(R2-1)又は(R2-2)で表される2価の基である。
Figure JPOXMLDOC01-appb-C000013

(m21及びm22は、それぞれ独立に、1~15の整数であり、好ましくは1~13、より好ましくは1~11、更に好ましくは1~9である。m23~m25は、それぞれ独立に、1~14の整数であり、好ましくは1~12、より好ましくは1~10、更に好ましくは1~8である。)
 なお、Rは炭素数5~16(好ましくは炭素数6~14、より好ましくは炭素数7~12、更に好ましくは炭素数8~10)の2価の鎖状脂肪族基であるので、式(R2-1)におけるm21及びm22は、式(R2-1)で表される2価の基の炭素数が5~16(好ましくは炭素数6~14、より好ましくは炭素数7~12、更に好ましくは炭素数8~10)の範囲に入るように選択される。すなわち、m21+m22は5~16(好ましくは6~14、より好ましくは7~12、更に好ましくは8~10)である。
 同様に、式(R2-2)におけるm23~m25は、式(R2-2)で表される2価の基の炭素数が5~16(好ましくは炭素数6~14、より好ましくは炭素数7~12、更に好ましくは炭素数8~10)の範囲に入るように選択される。すなわち、m23+m24+m25は5~16(好ましくは炭素数6~14、より好ましくは炭素数7~12、更に好ましくは炭素数8~10)である。
 Xは、式(1)におけるXと同様に定義され、好ましい様態も同様である。
 式(1)の繰り返し構成単位と式(2)の繰り返し構成単位の合計に対する、式(1)の繰り返し構成単位の含有比は20~70モル%である。式(1)の繰り返し構成単位の含有比が上記範囲である場合、一般的な射出成型サイクルにおいても、ポリイミド樹脂を十分に結晶化させ得ることが可能となる。該含有量比が20モル%未満であると成形加工性が低下し、70モル%を超えると結晶性が低下するため、耐熱性が低下する。
 式(1)の繰り返し構成単位と式(2)の繰り返し構成単位の合計に対する、式(1)の繰り返し構成単位の含有比は、高い結晶性を発現する観点から、好ましくは65モル%以下、より好ましくは60モル%以下、更に好ましくは50モル%以下である。
 中でも、式(1)の繰り返し構成単位と式(2)の繰り返し構成単位の合計に対する式(1)の繰り返し構成単位の含有比は20モル%以上、40モル%未満であることが好ましい。この範囲であるとポリイミド樹脂(B)の結晶性が高くなり、より耐熱性に優れる樹脂組成物を得ることができる。
 上記含有比は、成形加工性の観点からは、好ましくは25モル%以上、より好ましくは30モル%以上、更に好ましくは32モル%以上であり、高い結晶性を発現する観点から、より更に好ましくは35モル%以下である。
 ポリイミド樹脂(B)を構成する全繰り返し構成単位に対する、式(1)の繰り返し構成単位と式(2)の繰り返し構成単位の合計の含有比は、好ましくは50~100モル%、より好ましくは75~100モル%、更に好ましくは80~100モル%、より更に好ましくは85~100モル%である。
 ポリイミド樹脂(B)は、さらに、下記式(3)の繰り返し構成単位を含有してもよい。その場合、式(1)の繰り返し構成単位と式(2)の繰り返し構成単位の合計に対する、式(3)の繰り返し構成単位の含有比は、好ましくは25モル%以下である。一方で、下限は特に限定されず、0モル%を超えていればよい。
 前記含有比は、耐熱性の向上という観点からは、好ましくは5モル%以上、より好ましくは10モル%以上であり、一方で結晶性を維持する観点からは、好ましくは20モル%以下、より好ましくは15モル%以下である。
Figure JPOXMLDOC01-appb-C000014

(Rは少なくとも1つの芳香環を含む炭素数6~22の2価の基である。Xは少なくとも1つの芳香環を含む炭素数6~22の4価の基である。)
 Rは少なくとも1つの芳香環を含む炭素数6~22の2価の基である。前記芳香環は単環でも縮合環でもよく、ベンゼン環、ナフタレン環、アントラセン環、及びテトラセン環が例示されるが、これらに限定されるわけではない。これらの中でも、好ましくはベンゼン環及びナフタレン環であり、より好ましくはベンゼン環である。
 Rの炭素数は6~22であり、好ましくは6~18である。
 Rは芳香環を少なくとも1つ含み、好ましくは1~3個含む。
 また、前記芳香環には1価もしくは2価の電子求引性基が結合していてもよい。1価の電子求引性基としてはニトロ基、シアノ基、p-トルエンスルホニル基、ハロゲン、ハロゲン化アルキル基、フェニル基、アシル基などが挙げられる。2価の電子求引性基としては、フッ化アルキレン基(例えば-C(CF-、-(CF-(ここで、pは1~10の整数である))のようなハロゲン化アルキレン基のほかに、-CO-、-SO-、-SO-、-CONH-、-COO-などが挙げられる。
 Rは、好ましくは下記式(R3-1)又は(R3-2)で表される2価の基である。
Figure JPOXMLDOC01-appb-C000015

(m31及びm32は、それぞれ独立に、0~2の整数であり、好ましくは0又は1である。m33及びm34は、それぞれ独立に、0~2の整数であり、好ましくは0又は1である。R21、R22、及びR23は、それぞれ独立に、炭素数1~4のアルキル基、炭素数2~4のアルケニル基、又は炭素数2~4のアルキニル基である。p21、p22及びp23は0~4の整数であり、好ましくは0である。L21は、単結合、エーテル基、カルボニル基又は炭素数1~4のアルキレン基である。)
 なお、Rは少なくとも1つの芳香環を含む炭素数6~22の2価の基であるので、式(R3-1)におけるm31、m32、R21及びp21は、式(R3-1)で表される2価の基の炭素数が6~22の範囲に入るように選択される。
 同様に、式(R3-2)におけるL21、m33、m34、R22、R23、p22及びp23は、式(R3-2)で表される2価の基の炭素数が12~22の範囲に入るように選択される。
 Xは、式(1)におけるXと同様に定義され、好ましい様態も同様である。
 ポリイミド樹脂(B)は、さらに、下記式(4)で示される繰り返し構成単位を含有してもよい。
Figure JPOXMLDOC01-appb-C000016

(Rは-SO-又は-Si(R)(R)O-を含む2価の基であり、R及びRはそれぞれ独立に、炭素数1~3の鎖状脂肪族基又はフェニル基を表す。Xは少なくとも1つの芳香環を含む炭素数6~22の4価の基である。)
 Xは、式(1)におけるXと同様に定義され、好ましい様態も同様である。
 ポリイミド樹脂(B)の末端構造には特に制限はないが、炭素数5~14の鎖状脂肪族基を末端に有することが好ましい。
 該鎖状脂肪族基は、飽和であっても不飽和であってもよく、直鎖状であっても分岐状であってもよい。ポリイミド樹脂(B)が上記特定の基を末端に有すると、耐熱老化性に優れる樹脂組成物を得ることができる。
 炭素数5~14の飽和鎖状脂肪族基としては、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、ラウリル基、n-トリデシル基、n-テトラデシル基、イソペンチル基、ネオペンチル基、2-メチルペンチル基、2-メチルヘキシル基、2-エチルペンチル基、3-エチルペンチル基、イソオクチル基、2-エチルヘキシル基、3-エチルヘキシル基、イソノニル基、2-エチルオクチル基、イソデシル基、イソドデシル基、イソトリデシル基、イソテトラデシル基等が挙げられる。
 炭素数5~14の不飽和鎖状脂肪族基としては、1-ペンテニル基、2-ペンテニル基、1-へキセニル基、2-へキセニル基、1-ヘプテニル基、2-ヘプテニル基、1-オクテニル基、2-オクテニル基、ノネニル基、デセニル基、ドデセニル基、トリデセニル基、テトラデセニル基等が挙げられる。
 中でも、上記鎖状脂肪族基は飽和鎖状脂肪族基であることが好ましく、飽和直鎖状脂肪族基であることがより好ましい。また耐熱老化性を得る観点から、上記鎖状脂肪族基は好ましくは炭素数6以上、より好ましくは炭素数7以上、更に好ましくは炭素数8以上であり、好ましくは炭素数12以下、より好ましくは炭素数10以下、更に好ましくは炭素数9以下である。上記鎖状脂肪族基は1種のみでもよく、2種以上でもよい。
 上記鎖状脂肪族基は、特に好ましくはn-オクチル基、イソオクチル基、2-エチルヘキシル基、n-ノニル基、イソノニル基、n-デシル基、及びイソデシル基からなる群から選ばれる少なくとも1種であり、更に好ましくはn-オクチル基、イソオクチル基、2-エチルヘキシル基、n-ノニル基、及びイソノニル基からなる群から選ばれる少なくとも1種であり、最も好ましくはn-オクチル基、イソオクチル基、及び2-エチルヘキシル基からなる群から選ばれる少なくとも1種である。
 またポリイミド樹脂(B)は、耐熱老化性の観点から、末端アミノ基及び末端カルボキシ基以外に、炭素数5~14の鎖状脂肪族基のみを末端に有することが好ましい。上記以外の基を末端に有する場合、その含有量は、好ましくは炭素数5~14の鎖状脂肪族基に対し10モル%以下、より好ましくは5モル%以下である。
 ポリイミド樹脂(B)中の上記炭素数5~14の鎖状脂肪族基の含有量は、優れた耐熱老化性を発現する観点から、ポリイミド樹脂(B)を構成する全繰り返し構成単位の合計100モル%に対し、好ましくは0.01モル%以上、より好ましくは0.1モル%以上、更に好ましくは0.2モル%以上である。また、十分な分子量を確保し良好な機械的物性を得るためには、ポリイミド樹脂(B)中の上記炭素数5~14の鎖状脂肪族基の含有量は、ポリイミド樹脂(B)を構成する全繰り返し構成単位の合計100モル%に対し、好ましくは10モル%以下、より好ましくは6モル%以下、更に好ましくは3.5モル%以下、より更に好ましくは2.0モル%以下、より更に好ましくは1.2モル%以下である。
 ポリイミド樹脂(B)中の上記炭素数5~14の鎖状脂肪族基の含有量は、ポリイミド樹脂(B)を解重合することにより求めることができる。
 ポリイミド樹脂(B)は、360℃以下の融点を有し、かつ150℃以上のガラス転移温度を有することが好ましい。ポリイミド樹脂(B)の融点は、耐熱性の観点から、より好ましくは280℃以上、更に好ましくは290℃以上であり、高い成形加工性を発現する観点からは、好ましくは345℃以下、より好ましくは340℃以下、更に好ましくは335℃以下である。また、ポリイミド樹脂(B)のガラス転移温度は、耐熱性の観点から、より好ましくは160℃以上、より好ましくは170℃以上であり、高い成形加工性を発現する観点からは、好ましくは250℃以下、より好ましくは230℃以下、更に好ましくは200℃以下である。
 ポリイミド樹脂(B)の融点、ガラス転移温度は、いずれも示差走査型熱量計により測定することができる。
 またポリイミド樹脂(B)は、結晶性、耐熱性、機械的強度、耐薬品性を向上させる観点から、示差走査型熱量計測定により、該ポリイミド樹脂を溶融後、降温速度20℃/分で冷却した際に観測される結晶化発熱ピークの熱量(以下、単に「結晶化発熱量」ともいう)が、5.0mJ/mg以上であることが好ましく、10.0mJ/mg以上であることがより好ましく、17.0mJ/mg以上であることが更に好ましい。結晶化発熱量の上限値は特に限定されないが、通常、45.0mJ/mg以下である。
 ポリイミド樹脂(B)の融点、ガラス転移温度、結晶化発熱量は、具体的には実施例に記載の方法で測定できる。
 ポリイミド樹脂(B)の5質量%濃硫酸溶液の30℃における対数粘度は、好ましくは0.2~2.0dL/g、より好ましくは0.3~1.8dL/gの範囲である。対数粘度が0.2dL/g以上であれば、得られる樹脂組成物を成形体とした際に十分な機械的強度が得られ、2.0dL/g以下であると、成形加工性及び取り扱い性が良好になる。対数粘度μは、キャノンフェンスケ粘度計を使用して、30℃において濃硫酸及び上記ポリイミド樹脂溶液の流れる時間をそれぞれ測定し、下記式から求められる。
  μ=ln(ts/t)/C
   t:濃硫酸の流れる時間
   ts:ポリイミド樹脂溶液の流れる時間
   C:0.5(g/dL)
 ポリイミド樹脂(B)の重量平均分子量Mwは、好ましくは10,000~150,000、より好ましくは15,000~100,000、更に好ましくは20,000~80,000、より更に好ましくは30,000~70,000、より更に好ましくは35,000~65,000の範囲である。ポリイミド樹脂(B)の重量平均分子量Mwが10,000以上であれば機械的強度が良好になり、150,000以下であれば成形加工性が良好である。
 ポリイミド樹脂(B)の重量平均分子量Mwは、ポリメチルメタクリレート(PMMA)を標準試料としてゲルろ過クロマトグラフィー(GPC)法により測定することができる。
(ポリイミド樹脂(B)の製造方法)
 ポリイミド樹脂(B)は、テトラカルボン酸成分とジアミン成分とを反応させることにより製造することができる。該テトラカルボン酸成分は少なくとも1つの芳香環を含むテトラカルボン酸及び/又はその誘導体を含有し、該ジアミン成分は少なくとも1つの脂環式炭化水素構造を含むジアミン及び鎖状脂肪族ジアミンを含有する。
 少なくとも1つの芳香環を含むテトラカルボン酸は4つのカルボキシ基が直接芳香環に結合した化合物であることが好ましく、構造中にアルキル基を含んでいてもよい。また前記テトラカルボン酸は、炭素数6~26であるものが好ましい。前記テトラカルボン酸としては、ピロメリット酸、2,3,5,6-トルエンテトラカルボン酸、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、3,3’,4,4’-ビフェニルテトラカルボン酸、1,4,5,8-ナフタレンテトラカルボン酸等が好ましい。これらの中でもピロメリット酸がより好ましい。
 少なくとも1つの芳香環を含むテトラカルボン酸の誘導体としては、少なくとも1つの芳香環を含むテトラカルボン酸の無水物又はアルキルエステル体が挙げられる。前記テトラカルボン酸誘導体は、炭素数6~38であるものが好ましい。テトラカルボン酸の無水物としては、ピロメリット酸一無水物、ピロメリット酸二無水物、2,3,5,6-トルエンテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物等が挙げられる。テトラカルボン酸のアルキルエステル体としては、ピロメリット酸ジメチル、ピロメリット酸ジエチル、ピロメリット酸ジプロピル、ピロメリット酸ジイソプロピル、2,3,5,6-トルエンテトラカルボン酸ジメチル、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸ジメチル、3,3’,4,4’-ベンゾフェノンテトラカルボン酸ジメチル、3,3’,4,4’-ビフェニルテトラカルボン酸ジメチル、1,4,5,8-ナフタレンテトラカルボン酸ジメチル等が挙げられる。上記テトラカルボン酸のアルキルエステル体において、アルキル基の炭素数は1~3が好ましい。
 少なくとも1つの芳香環を含むテトラカルボン酸及び/又はその誘導体は、上記から選ばれる少なくとも1つの化合物を単独で用いてもよく、2つ以上の化合物を組み合わせて用いてもよい。
 少なくとも1つの脂環式炭化水素構造を含むジアミンの炭素数は6~22が好ましく、例えば、1,2-ビス(アミノメチル)シクロヘキサン、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、1,2-シクロヘキサンジアミン、1,3-シクロヘキサンジアミン、1,4-シクロヘキサンジアミン、4,4’-ジアミノジシクロヘキシルメタン、4,4’-メチレンビス(2-メチルシクロヘキシルアミン)、カルボンジアミン、リモネンジアミン、イソフォロンジアミン、ノルボルナンジアミン、ビス(アミノメチル)トリシクロ[5.2.1.02,6]デカン、3,3’-ジメチル-4,4’-ジアミノジシクロヘキシルメタン、4,4’-ジアミノジシクロヘキシルプロパン等が好ましい。これらの化合物を単独で用いてもよく、これらから選ばれる2つ以上の化合物を組み合わせて用いてもよい。これらのうち、1,3-ビス(アミノメチル)シクロヘキサンが好適に使用できる。なお、脂環式炭化水素構造を含むジアミンは一般的には構造異性体を持つが、シス体/トランス体の比率は限定されない。
 鎖状脂肪族ジアミンは、直鎖状であっても分岐状であってもよく、炭素数は5~16が好ましく、6~14がより好ましく、7~12が更に好ましい。また、鎖部分の炭素数が5~16であれば、その間にエーテル結合を含んでいてもよい。鎖状脂肪族ジアミンとして例えば1,5-ペンタメチレンジアミン、2-メチルペンタン-1,5-ジアミン、3-メチルペンタン-1,5-ジアミン、1,6-ヘキサメチレンジアミン、1,7-ヘプタメチレンジアミン、1,8-オクタメチレンジアミン、1,9-ノナメチレンジアミン、1,10-デカメチレンジアミン、1,11-ウンデカメチレンジアミン、1,12-ドデカメチレンジアミン、1,13-トリデカメチレンジアミン、1,14-テトラデカメチレンジアミン、1,16-ヘキサデカメチレンジアミン、2,2’-(エチレンジオキシ)ビス(エチレンアミン)等が好ましい。
 鎖状脂肪族ジアミンは1種類あるいは複数を混合して使用してもよい。これらのうち、炭素数が8~10の鎖状脂肪族ジアミンが好適に使用でき、特に1,8-オクタメチレンジアミン及び1,10-デカメチレンジアミンからなる群から選ばれる少なくとも1種が好適に使用できる。
 ポリイミド樹脂(B)を製造する際、少なくとも1つの脂環式炭化水素構造を含むジアミンと鎖状脂肪族ジアミンの合計量に対する、少なくとも1つの脂環式炭化水素構造を含むジアミンの仕込み量のモル比は20~70モル%であることが好ましい。該モル量は、好ましくは25モル%以上、より好ましくは30モル%以上、更に好ましくは32モル%以上であり、高い結晶性を発現する観点から、好ましくは60モル%以下、より好ましくは50モル%以下、更に好ましくは40モル%未満、更に好ましくは35モル%以下である。
 また、上記ジアミン成分中に、少なくとも1つの芳香環を含むジアミンを含有してもよい。少なくとも1つの芳香環を含むジアミンの炭素数は6~22が好ましく、例えば、オルトキシリレンジアミン、メタキシリレンジアミン、パラキシリレンジアミン、1,2-ジエチニルベンゼンジアミン、1,3-ジエチニルベンゼンジアミン、1,4-ジエチニルベンゼンジアミン、1,2-ジアミノベンゼン、1,3-ジアミノベンゼン、1,4-ジアミノベンゼン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルメタン、α,α’-ビス(4-アミノフェニル)1,4-ジイソプロピルベンゼン、α,α’-ビス(3-アミノフェニル)-1,4-ジイソプロピルベンゼン、2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕プロパン、2,6-ジアミノナフタレン、1,5-ジアミノナフタレン等が挙げられる。
 上記において、少なくとも1つの脂環式炭化水素構造を含むジアミンと鎖状脂肪族ジアミンの合計量に対する、少なくとも1つの芳香環を含むジアミンの仕込み量のモル比は、25モル%以下であることが好ましい。一方で、下限は特に限定されず、0モル%を超えていればよい。
 前記モル比は、耐熱性の向上という観点からは、好ましくは5モル%以上、より好ましくは10モル%以上であり、一方で結晶性を維持する観点からは、好ましくは20モル%以下、より好ましくは15モル%以下である。
 また、前記モル比は、ポリイミド樹脂の着色を少なくする観点からは、好ましくは12モル%以下、より好ましくは10モル%以下、更に好ましくは5モル%以下、より更に好ましくは0モル%である。
 ポリイミド樹脂(B)を製造する際、前記テトラカルボン酸成分と前記ジアミン成分の仕込み量比は、テトラカルボン酸成分1モルに対してジアミン成分が0.9~1.1モルであることが好ましい。
 またポリイミド樹脂(B)を製造する際、前記テトラカルボン酸成分、前記ジアミン成分の他に、末端封止剤を混合してもよい。末端封止剤としては、モノアミン類及びジカルボン酸類からなる群から選ばれる少なくとも1種が好ましい。末端封止剤の使用量は、ポリイミド樹脂(B)中に所望量の末端基を導入できる量であればよく、前記テトラカルボン酸及び/又はその誘導体1モルに対して0.0001~0.1モルが好ましく、0.001~0.06モルがより好ましく、0.002~0.035モルが更に好ましく、0.002~0.020モルがより更に好ましく、0.002~0.012モルがより更に好ましい。
 中でも、末端封止剤としてはモノアミン類末端封止剤が好ましく、ポリイミド樹脂(B)の末端に前述した炭素数5~14の鎖状脂肪族基を導入して耐熱老化性を向上させる観点から、炭素数5~14の鎖状脂肪族基を有するモノアミンがより好ましく、炭素数5~14の飽和直鎖状脂肪族基を有するモノアミンが更に好ましい。
 末端封止剤は、特に好ましくはn-オクチルアミン、イソオクチルアミン、2-エチルヘキシルアミン、n-ノニルアミン、イソノニルアミン、n-デシルアミン、及びイソデシルアミンからなる群から選ばれる少なくとも1種であり、更に好ましくはn-オクチルアミン、イソオクチルアミン、2-エチルヘキシルアミン、n-ノニルアミン、及びイソノニルアミンからなる群から選ばれる少なくとも1種であり、最も好ましくはn-オクチルアミン、イソオクチルアミン、及び2-エチルヘキシルアミンからなる群から選ばれる少なくとも1種である。
 ポリイミド樹脂(B)を製造するための重合方法としては、公知の重合方法が適用でき、国際公開第2016/147996号に記載の方法を用いることができる。
 本発明の樹脂組成物中の液晶ポリマー(A)と、ポリイミド樹脂(B)との質量比[(A)/(B)]は、特に制限されず、0.1/99.9~99.9/0.1の範囲であればよい。
 溶融時の良好な取り扱い性、成形加工性及び低誘電率を得る観点からはポリイミド樹脂(B)の割合が高いことが好ましく、良好な溶融混練性及び押出性、並びに低誘電正接を得る観点からは液晶ポリマー(A)の割合が高いことが好ましい。
 低誘電率及び低誘電正接を達成する観点、特に、誘電率が3.0以下で且つ誘電正接が0.005以下の樹脂組成物を得る観点からは、本発明の樹脂組成物中の質量比[(A)/(B)]は、好ましくは0.1/99.9~70/30、より好ましくは0.1/99.9~50/50、更に好ましくは0.1/99.9~40/60、より更に好ましくは0.1/99.9~30/70の範囲である。
 また、本発明の樹脂組成物中の液晶ポリマー(A)及びポリイミド樹脂(B)の合計含有量は、本発明の効果を得る観点から、好ましくは30質量%以上、より好ましくは40質量%以上、更に好ましくは50質量%以上、より更に好ましくは65質量%以上、より更に好ましくは70質量%以上、より更に好ましくは80質量%以上、より更に好ましくは90質量%以上である。また、上限は100質量%である。
(強化繊維)
 本発明の樹脂組成物は、得られる樹脂組成物及び成形体の機械的強度、耐熱性等を向上させる観点で、更に強化繊維を含有することができる。強化繊維としては、例えば、ガラス繊維、炭素繊維、アラミド繊維、ボロン繊維、金属繊維等が挙げられる。強化繊維は1種を単独で使用してもよいし、2種以上を併用してもよい。
 強化繊維の形態には特に制限はなく、得られる樹脂組成物及び成形体の形態に応じて、短繊維、連続繊維のいずれも用いることができ、両者を併用してもよい。
 樹脂組成物の形態については後述するが、例えば本発明の樹脂組成物がペレットである場合は、押出性等の観点から、強化繊維は短繊維であることが好ましい。また樹脂組成物は、液晶ポリマー(A)及びポリイミド樹脂(B)を含む混合物を強化繊維に含浸させたプリプレグの形態であってもよく、この場合の強化繊維は連続繊維であることが好ましい。
 強化繊維が短繊維である場合、その平均繊維長は、強度及び取り扱い性の観点から、好ましくは0.2mm以上、より好ましくは0.5mm以上、更に好ましくは2mm以上であり、押出成形性等の観点から、好ましくは25mm以下、より好ましくは15mm以下、更に好ましくは10mm未満である。
 強化繊維が連続繊維である場合、例えば単にモノフィラメント又はマルチフィラメントを一方向又は交互に交差するように並べたもの、編織物等の布帛、不織布あるいはマット等の種々の形態が挙げられる。これらのうち、モノフィラメント、布帛、不織布あるいはマットの形態が好ましく、布帛の形態がより好ましい。
 強化繊維が連続繊維である場合、その繊度は、20~4,500texが好ましく、50~4,000texがより好ましい。繊度がこの範囲であると、樹脂成分の含浸が容易であり、得られる成形体の弾性率及び強度が優れたものとなる。なお、繊度は任意の長さの連続繊維の重量を求めて、1,000m当たりの重量に換算して求めることができる。
 強化繊維の平均繊維径は、1~100μmであることが好ましく、3~50μmがより好ましく、4~20μmであることが更に好ましい。平均繊維径がこの範囲であると、加工が容易であり、得られる成形体の弾性率及び強度が優れたものとなる。
 なお、強化繊維(短繊維)の平均繊維長、及び強化繊維の平均繊維径は、走査型電子顕微鏡(SEM)等により50本以上の繊維を無作為に選んで観察、計測し、個数平均を算出することにより求められる。
 強化繊維の中でも、機械的強度向上の観点からはガラス繊維及び炭素繊維からなる群から選ばれる少なくとも1種が好ましく、機械的強度向上の観点、及び軽量性の観点からは炭素繊維がより好ましい。
 炭素繊維としては、例えばポリアクリロニトリル系炭素繊維、ピッチ系炭素繊維が挙げられる。
 炭素繊維のフィラメント数は通常、500~100,000の範囲であり、好ましくは5,000~80,000、より好ましくは10,000~70,000である。
 液晶ポリマー(A)及びポリイミド樹脂(B)との濡れ性、界面密着性を向上させるために、炭素繊維は表面処理剤で表面処理されたものであることが好ましい。当該表面処理剤は、収束剤、サイジング剤も含む概念である。
 表面処理剤としては、例えば、エポキシ系材料、ウレタン系材料、アクリル系材料、ポリアミド系材料、ポリイミド系材料、ポリエステル系材料、ビニルエステル系材料、ポリオレフィン系材料、及びポリエーテル系材料が挙げられ、これらのうち1種又は2種以上を組み合わせて用いることができる。より高い機械的特性を得る観点からは、表面処理剤としてはエポキシ系材料又はポリイミド系材料が好ましい。
 炭素繊維として、市販品を用いることもできる。市販の炭素繊維(短繊維)としては、例えば日本ポリマー産業(株)製のチョップドファイバー「CFUW」、「CFEPP」、「CFEPU」、「CFA4」、「FX1」、「EX1」、「BF-WS」、「CF-N」、「VX-1」シリーズ、三菱ケミカル(株)製の「パイロフィル チョップドファイバー」シリーズ、帝人(株)製の「Tenax-J」シリーズ(HT C702、IM C702等)、「Tenax-A」シリーズ(IM P303、HT P722等)が挙げられる。
 本発明の樹脂組成物が強化繊維を含有する場合、その含有量は、機械的強度向上効果の観点、並びに低誘電率及び低誘電正接を両立する観点から、樹脂組成物中、好ましくは0.05~70質量%、より好ましくは1~50質量%、更に好ましくは3~35質量%である。
<添加剤>
 本発明の樹脂組成物は、強化繊維以外の充填材、艶消剤、核剤、可塑剤、帯電防止剤、着色防止剤、ゲル化防止剤、難燃剤、着色剤、摺動性改良剤、酸化防止剤、紫外線吸収剤、導電剤、樹脂改質剤等の添加剤を、必要に応じて含有してもよい。
 上記添加剤の含有量には特に制限はないが、液晶ポリマー(A)及びポリイミド樹脂(B)由来の物性を維持しつつ添加剤の効果を発現させる観点からは、樹脂組成物中、通常、50質量%以下であり、好ましくは0.0001~30質量%、より好ましくは0.0001~15質量%、更に好ましくは0.001~10質量%である。
 本発明の樹脂組成物は任意の形態をとることができるが、ペレットであることが好ましい。
 液晶ポリマー(A)及びポリイミド樹脂(B)は熱可塑性を有するため、例えば液晶ポリマー(A)、ポリイミド樹脂(B)、及び必要に応じて各種任意成分を押出機内で溶融混練してストランドを押出し、ストランドをカットすることによりペレット化することができる。また、得られたペレットを各種成形機に導入して後述の方法で熱成形することにより、所望の形状を有する成形体を容易に製造することができる。
<熱特性>
 本発明の樹脂組成物においては、液晶ポリマー(A)とポリイミド樹脂(B)とを含有することにより、液晶ポリマー(A)を含有していても高温(200℃以上)での溶融時に適度な弾性を有し、取り扱い性に優れる樹脂組成物とすることができる。
 上記効果を得る観点から、本発明の樹脂組成物の結晶化温度Tcは、好ましくは270℃以上、より好ましくは273℃以上である。Tcの上限は限定されないが、成形加工性の観点から、通常は290℃以下、好ましくは285℃以下である。
 樹脂組成物の結晶化温度Tcは、該樹脂組成物を溶融後、示差走査型熱量計測定により、降温速度20℃/分で冷却した際に観測される結晶化発熱ピークのピークトップ温度を結晶化温度Tcとして観測することができ、具体的には実施例に記載の方法により測定できる。なお、結晶化温度Tcとして2以上のピークトップ温度が検出された場合は、最も高温側のピークにおけるピークトップ温度が上記範囲であることが好ましい。
 本発明の樹脂組成物においては、液晶ポリマー(A)とポリイミド樹脂(B)とを含有することにより、ポリイミド樹脂(B)単独の場合と比較して結晶化が速く、成形性の高い樹脂組成物とすることができる。
 上記効果を得る観点から、本発明の樹脂組成物の融点Tmと結晶化温度Tcとの差分(Tm-Tc)は、好ましくは80℃以下、より好ましくは60℃以下、更に好ましくは55℃以下、より更に好ましくは50℃以下、より更に好ましくは46℃以下、より更に好ましくは45℃以下である。Tm-Tcの下限は0℃以上であり、Tm-Tcの値が小さいほど結晶化が速く、成形性が高い樹脂組成物となる。
 樹脂組成物の融点Tmは、前記ポリイミド樹脂(B)と同様の方法で測定できる。また融点Tm、結晶化温度Tcとして2以上のピークトップ温度が検出された場合は、Tm、Tcともに、最も高温側のピークトップ温度を採用し、その差分が上記範囲であることが好ましい。
<電気特性>
 本発明の樹脂組成物においては、液晶ポリマー(A)とポリイミド樹脂(B)とを含有することにより、低誘電率と低誘電正接とを両立した樹脂組成物とすることができる。例えば本発明の樹脂組成物は、測定周波数10GHzにおける誘電率が3.0以下で且つ誘電正接が0.005以下を達成することができる。該誘電率は、好ましくは2.90以下、より好ましくは2.85以下であり、誘電正接は、好ましくは0.004以下である。誘電率及び誘電正接は、具体的には実施例に記載の方法により測定できる。
[成形体]
 本発明の成形体は、前記本発明の樹脂組成物を含むものである。
 本発明の樹脂組成物は熱可塑性を有するため、熱成形することにより容易に本発明の成形体を製造できる。熱成形方法としては射出成形、押出成形、ブロー成形、熱プレス成形、真空成形、圧空成形、レーザー成形、溶接、溶着等が挙げられ、熱溶融工程を経る成形方法であればいずれの方法でも成形が可能である。
 成形温度は樹脂組成物の熱特性(融点及びガラス転移温度)によっても異なるが、例えば射出成形においては、成形温度400℃未満、金型温度220℃以下での成形が可能である。
 成形体を製造する方法としては、樹脂組成物を400℃未満の温度で熱成形する工程を有することが好ましい。具体的な手順としては、例えば以下の方法が挙げられる。
 まず、液晶ポリマー(A)、ポリイミド樹脂(B)、及び必要に応じて各種任意成分を添加してドライブレンドした後、これを押出機内に導入して、好ましくは400℃未満で溶融して押出機内で溶融混練及び押出し、ペレットを作製する。あるいは、ポリイミド樹脂(B)を押出機内に導入して、好ましくは400℃未満で溶融し、ここに液晶ポリマー(A)及び各種任意成分を導入して押出機内でポリイミド樹脂(B)と溶融混練し、押出すことで前述のペレットを作製してもよい。
 上記ペレットを乾燥させた後、各種成形機に導入して好ましくは400℃未満で熱成形し、所望の形状を有する成形体を製造することができる。
 本発明の樹脂組成物は溶融混練及び押出が容易であり、低誘電率と低誘電正接とを両立し得る。該樹脂組成物及びこれを含む成形体は、押出成形が可能であって、低誘電率及び低誘電正接が要求される用途への展開が期待される。例えば、第5世代移動通信システム(5G)関連部材、その他電気・電子部材、絶縁フィルム等の用途に適用できる。
 上記に加えて、本発明の樹脂組成物の用途として、樹脂多層基板、回路基板、フレキシブル基板(FPC)、リジッドフレキ基板、銅張積層板(CCL)、2層CCL、プリント配線基板、多層フィルム、コンデンサフィルム、コンバータ、パワーセミコンダクター、スクリーン印刷用メッシュ、ミリ波レーダー、LED、高周波対応コネクター、アンテナ部材等が挙げられる。また強化繊維を含有する樹脂組成物の用途としては、ドローン、ロボットアーム、風力発電ブレード、レドーム等が挙げられる。
 次に実施例を挙げて本発明をより詳しく説明するが、本発明はこれに限定されるものではない。また、製造例及び実施例における各種測定、評価は以下のように行った。
<赤外線分光分析(IR測定)>
 ポリイミド樹脂のIR測定は日本電子(株)製「JIR-WINSPEC50」を用いて行った。
<対数粘度μ>
 ポリイミド樹脂を190~200℃で2時間乾燥した後、該ポリイミド樹脂0.100gを濃硫酸(96%、関東化学(株)製)20mLに溶解したポリイミド樹脂溶液を測定試料とし、キャノンフェンスケ粘度計を使用して30℃において測定を行った。対数粘度μは下記式により求めた。
μ=ln(ts/t)/C
:濃硫酸の流れる時間
ts:ポリイミド樹脂溶液の流れる時間
C:0.5g/dL
<融点、ガラス転移温度、結晶化温度、結晶化発熱量>
 ポリイミド樹脂、液晶ポリマー及び樹脂組成物の融点Tm、ガラス転移温度Tg、結晶化温度Tc、並びにポリイミド樹脂の結晶化発熱量ΔHmは、示差走査熱量計装置(エスアイアイ・ナノテクノロジー(株)製「DSC-6220」)を用いて測定した。
 窒素雰囲気下、試料に下記条件の熱履歴を課した。熱履歴の条件は、昇温1度目(昇温速度10℃/分)、その後冷却(降温速度20℃/分)、その後昇温2度目(昇温速度10℃/分)である。加熱温度は室温から400℃までとした。
 融点Tmは昇温2度目で観測された吸熱ピークのピークトップ値を読み取り決定した。ガラス転移温度Tgは昇温2度目で観測された値を読み取り決定した。結晶化温度Tcは冷却時に観測された発熱ピークのピークトップ値を読み取り決定した。
 また結晶化発熱量ΔHm(mJ/mg)は冷却時に観測された発熱ピークの面積から算出した。
<半結晶化時間>
 ポリイミド樹脂の半結晶化時間は、示差走査熱量計装置(エスアイアイ・ナノテクノロジー(株)製「DSC-6220」)を用いて測定した。
 窒素雰囲気下、420℃で10分保持し、ポリイミド樹脂を完全に溶融させたのち、冷却速度70℃/分の急冷操作を行った際に、観測される結晶化ピークの出現時からピークトップに達するまでにかかった時間を計算した。なお表1中、半結晶化時間が20秒以下である場合は「<20」と表記した。
<重量平均分子量>
 ポリイミド樹脂の重量平均分子量(Mw)は、昭和電工(株)製のゲルろ過クロマトグラフィー(GPC)測定装置「Shodex GPC-101」を用いて下記条件にて測定した。
 カラム:Shodex HFIP-806M
 移動相溶媒:トリフルオロ酢酸ナトリウム2mM含有HFIP
 カラム温度:40℃
 移動相流速:1.0mL/min
 試料濃度:約0.1質量%
 検出器:IR検出器
 注入量:100μm
 検量線:標準PMMA
<樹脂組成物の押出性>
 各例の樹脂組成物の製造において、押出機からストランドを押し出す際のトルク、樹脂温度及び樹脂圧を確認した。樹脂温度は押出機の出口での温度である。
<曲げ強度及び曲げ弾性率>
 各例で製造した樹脂組成物を用いて、後述する方法によりISO316で規定される80mm×10mm×厚さ4mmの成形体を作製し、測定に使用した。ベンドグラフ((株)東洋精機製作所製)を用いて、ISO178に準拠して、温度23℃、試験速度2mm/分で曲げ試験を行い、曲げ強度及び曲げ弾性率を測定した。
<引張強度及び引張弾性率>
 各例で製造した樹脂組成物を用いて、後述する方法によりJIS K7161-2:2014で規定される1A型試験片を作製し、測定に使用した。引張試験機(東洋精機株式会社製「ストログラフVG-1E」)を用いて、JIS K7161-1:2014及びK7161-2:2014に準拠して、温度23℃、つかみ具間距離50mm、試験速度5mm/分で引張試験を行い、引張強度及び引張弾性率を測定した。
<熱変形温度(HDT)>
 各例で製造した樹脂組成物を用いて、後述する方法により80mm×10mm×厚さ4mmの成形体を製造し、測定に使用した。
 測定はJIS K7191-1,2:2015に準拠して、フラットワイズでの試験を実施した。具体的には、HDT試験装置「Auto-HDT3D-2」((株)東洋精機製作所製)を用いて、支点間距離64mm、荷重1.80MPa、昇温速度120℃/時間の条件にて熱変形温度を測定した。
<誘電率及び誘電正接>
 各例で製造した樹脂組成物を用いて、後述する方法により射出成形して成形体を作製し、次いで切削加工を行って、1.5mm×80mm×厚さ1.5mmの試験片を得た。該試験片をデシケーターにて乾燥後、速やかに測定に使用した。測定装置として、アジレント・テクノロジー(株)製「PNA-Lネットワークアナライザ N5230A」及び(株)関東電子応用開発製の空洞共振器「CP531」を用い、IEC 62810に準拠して、空洞共振器摂動法により、温度23℃、湿度50%、測定周波数10GHzにおいて、誘電率及び誘電正接を測定した。測定値はn=2の平均値とした。
<吸水率>
 実施例4で製造した樹脂組成物、及び参考例2を用いて、後述する方法により射出成形して成形体を作製し、次いで切削加工を行って、30mm×20mm×厚さ4mm(約3g)の試験片を得た。該試験片を50℃で24時間乾燥後、吸水率測定に使用した。JIS K7209:2000に準拠して、試験片を23℃の水中に24時間浸漬した後の吸水率(%)を測定した。測定値はn=3の平均値とした。
<熱線膨張係数(CTE)>
 実施例4、参考例2で製造した樹脂組成物を用いて、後述する方法により射出成形して成形体を作製し、次いで切削加工を行って、5mm×4mm、長さ10mm、断面積20mmの試験片を得た。この際、成形体のMDが試験片の長さ方向となるように切削した。該試験片を用いて、熱機械的分析装置「TMA/SS6100」((株)日立ハイテクサイエンス製)を用いて、窒素流量150mL/minの雰囲気下で、圧縮モード、荷重49mN、昇温速度5℃/minの条件で23~300℃の範囲でTMA測定を行った。JIS K7197:2012(圧縮モード)に準拠して、23~150℃の範囲の測定結果を解析し、成形体のMD方向におけるCTEを求めた。
製造例1(ポリイミド樹脂1の製造)
 ディーンスターク装置、リービッヒ冷却管、熱電対、4枚パドル翼を設置した2Lセパラブルフラスコ中に2-(2-メトキシエトキシ)エタノール(日本乳化剤(株)製)500gとピロメリット酸二無水物(三菱ガス化学(株)製)218.12g(1.00mol)を導入し、窒素フローした後、均一な懸濁溶液になるように150rpmで撹拌した。一方で、500mLビーカーを用いて、1,3-ビス(アミノメチル)シクロヘキサン(三菱ガス化学(株)製、シス/トランス比=7/3)49.79g(0.35mol)、1,8-オクタメチレンジアミン(関東化学(株)製)93.77g(0.65mol)を2-(2-メトキシエトキシ)エタノール250gに溶解させ、混合ジアミン溶液を調製した。この混合ジアミン溶液を、プランジャーポンプを使用して徐々に加えた。滴下により発熱が起こるが、内温は40~80℃に収まるよう調整した。混合ジアミン溶液の滴下中はすべて窒素フロー状態とし、撹拌翼回転数は250rpmとした。滴下が終わったのちに、2-(2-メトキシエトキシ)エタノール130gと、末端封止剤であるn-オクチルアミン(関東化学(株)製)1.284g(0.010mol)を加えさらに撹拌した。この段階で、淡黄色のポリアミド酸溶液が得られた。次に、撹拌速度を200rpmとした後に、2Lセパラブルフラスコ中のポリアミド酸溶液を190℃まで昇温した。昇温を行っていく過程において、液温度が120~140℃の間にポリイミド樹脂粉末の析出と、イミド化に伴う脱水が確認された。190℃で30分保持した後、室温まで放冷を行い、濾過を行った。得られたポリイミド樹脂粉末は2-(2-メトキシエトキシ)エタノール300gとメタノール300gにより洗浄、濾過を行った後、乾燥機で180℃、10時間乾燥を行い、317gのポリイミド樹脂1の粉末を得た。
 また、得られたポリイミド樹脂1の粉末をラボプラストミル((株)東洋精機製作所製)を用いてバレル温度350℃、スクリュー回転数70rpmで溶融混練し押し出した。押出機より押し出されたストランドを空冷後、ペレタイザー((株)星プラスチック製「ファンカッターFC-Mini-4/N」)によってペレット化した。得られたペレットは150℃、12時間乾燥を行った後、成形体の作製に使用した。
 ポリイミド樹脂1のIRスペクトルを測定したところ、ν(C=O)1768、1697(cm-1)にイミド環の特性吸収が認められた。対数粘度は1.30dL/g、Tmは323℃、Tgは184℃、Tcは266℃、結晶化発熱量は21.0mJ/mg、半結晶化時間は20秒以下、Mwは55,000であった。
 製造例1におけるポリイミド樹脂の組成及び評価結果を表1に示す。なお、表1中のテトラカルボン酸成分及びジアミン成分のモル%は、ポリイミド樹脂製造時の各成分の仕込み量から算出した値である。
Figure JPOXMLDOC01-appb-T000017
 表中の略号は下記の通りである。
・PMDA;ピロメリット酸二無水物
・1,3-BAC;1,3-ビス(アミノメチル)シクロヘキサン
・OMDA;1,8-オクタメチレンジアミン
実施例1~4(樹脂組成物及び成形体の作製、評価)
 式(IV)で示される繰り返し構成単位を含む液晶ポリマー1(上野製薬(株)製「UENO LCP A8100」、6-ヒドロキシ-2-ナフトエ酸及びp-ヒドロキシ安息香酸に由来する構成単位を含む。融点220℃)のペレットと、製造例1で得られたポリイミド樹脂1のペレットとを、表2に示す割合で用いた。
 同方向回転二軸混練押出機((株)パーカーコーポレーション製「HK-25D」、スクリュー径D=25mmΦ、L/D=41(L:スクリュー長))の入口側のホッパーから液晶ポリマー1及びポリイミド樹脂1を押出機内に導入して、シリンダー設定温度335℃、フィード量6kg/h、スクリュー回転数150rpmの条件で混練し、ストランドを押し出した。この際、トルク、樹脂温度、及び樹脂圧を確認した。
 押出機より押し出されたストランドを水冷後、ペレタイザー((株)星プラスチック製「ファンカッターFC-Mini-4/N」)によってペレット化し、射出成形に使用した。
 射出成形機(ファナック(株)製「ロボショットα-S30iA」)を使用して、シリンダー設定温度370℃、金型温度200℃、射出速度80mm/sの条件で射出成形し、各種評価に用いる所定の形状の成形体を作製した。
 得られた成形体を用いて、前記方法により各種評価を行った。結果を表2及び表3に示す。
参考例1
 実施例1~4において、液晶ポリマー1のみを用い、ペレット化を行わずに表2に記載の条件で射出成形したこと以外は、実施例1~4と同様の方法で成形体を作製し、各種評価を行った。結果を表2及び表3に示す。
参考例2
 実施例1~4において、ポリイミド樹脂1のペレットのみを用いたこと以外は、実施例1~4と同様の方法で成形体を作製し、吸水率及びCTE測定を行った。またポリイミド樹脂1について、前記方法で融点、ガラス転移温度、結晶化温度、結晶化発熱量を測定した結果を併せて表3に示す。
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
 表2に示すように、実施例1~4の樹脂組成物及び成形体によれば、3.0以下の低誘電率と、0.005以下の低誘電正接とを両立できることがわかる。また、液晶ポリマー1の割合が高いほどストランド押出時のトルク、樹脂温度及び樹脂圧力が低下し、押出性が良好であることがわかる。
 さらに表3に示すように、実施例1~4の樹脂組成物は、液晶ポリマー1単独(参考例1)、及びポリイミド樹脂1単独(参考例2)の場合よりも結晶化温度Tcが向上していることから、高温溶融時の弾性が低下しすぎず、取り扱い性に優れるものであるといえる。また実施例1~4の樹脂組成物は、参考例2と比較してTm-Tcの値が小さいことから、結晶化が速く、成形性が向上していると考えられる。
 実施例4と参考例2との比較から、本発明の樹脂組成物からなる成形体は低吸水率であり、且つCTEの値も小さく加熱時の寸法安定性にも優れることがわかる。
実施例5~10(炭素繊維強化樹脂組成物及び成形体の作製、評価)
 前記液晶ポリマー1(上野製薬(株)製「UENO LCP A8100」)のペレット、製造例1で得られたポリイミド樹脂1のペレット又は粉末(実施例5、6ではペレット、実施例7~10では粉末を使用)、無機充填剤であるタルク(日本タルク(株)製「ナノエースD-800」、平均粒径(D50):0.8μm)、及び炭素繊維(帝人(株)製「Tenax-J IM C702」、平均繊維長:6mm、サイジング剤量:1.8%)を、表3に示す割合で用いた。
 同方向回転二軸混練押出機((株)パーカーコーポレーション製「HK-25D」、スクリュー径D=25mmΦ、L/D=41(L:スクリュー長))の入口側のホッパーから液晶ポリマー1、ポリイミド樹脂1、及びタルクを押出機内に導入し、炭素繊維をサイドフィードして、シリンダー設定温度350℃、フィード量6kg/h、スクリュー回転数150rpmの条件で混練し、ストランドを押し出した。この際、トルク、樹脂温度、及び樹脂圧を確認した。
 押出機より押し出されたストランドを水冷後、ペレタイザー((株)星プラスチック製「ファンカッターFC-Mini-4/N」)によってペレット化し、射出成形に使用した。
 射出成形機(ファナック(株)製「ロボショットα-S30iA」)を使用して、シリンダー設定温度370℃、金型温度200℃、射出速度30mm/sの条件で射出成形し、各種評価に用いる所定の形状の成形体を作製した。
 得られた成形体を用いて、前記方法により各種評価を行った。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000020
 表2と表4との対比から、本発明の樹脂組成物は炭素繊維で強化することで、曲げ強度、曲げ弾性率、及びHDTを向上できることがわかる。
実施例11~16(ガラス繊維強化樹脂組成物及び成形体の作製、評価)
 式(IV)で示される繰り返し構成単位を含む液晶ポリマー2を70質量%、ガラス繊維を30質量%含有する、ガラス繊維強化液晶ポリマー(上野製薬(株)製「UENO LCP 6030G-NCSL」、融点320℃)のペレットと、製造例1で得られたポリイミド樹脂1のペレットとを、表5に示す割合で用いた。
 同方向回転二軸混練押出機((株)パーカーコーポレーション製「HK-25D」、スクリュー径D=25mmΦ、L/D=41(L:スクリュー長))の入口側のホッパーからガラス繊維強化液晶ポリマー及びポリイミド樹脂1を押出機内に導入して、シリンダー設定温度335℃、フィード量6kg/h、スクリュー回転数150rpmの条件で混練し、ストランドを押し出した。この際、トルク、樹脂温度、及び樹脂圧を確認した。
 押出機より押し出されたストランドを水冷後、ペレタイザー((株)星プラスチック製「ファンカッターFC-Mini-4/N」)によってペレット化し、射出成形に使用した。
 射出成形機(ファナック(株)製「ロボショットα-S30iA」)を使用して、シリンダー設定温度370℃、金型温度200℃、射出速度30mm/sの条件で射出成形し、各種評価に用いる所定の形状の成形体を作製した。
 得られた成形体を用いて、前記方法により各種評価を行った。結果を表5に示す。
参考例3
 実施例11~16において、ガラス繊維強化液晶ポリマーのみを用い、ペレット化を行わずに射出成形したこと以外は、実施例11~16と同様の方法で成形体を作製し、各種評価を行った。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000021
 表5に示すように、本発明の樹脂組成物はガラス繊維を含有する場合でも、低誘電率及び低誘電正接を両立することができる。
 本発明の樹脂組成物は液晶ポリマーを含有しながら、溶融時の取り扱い性に優れるとともに溶融混練及び押出が容易であり、且つ低誘電率と低誘電正接とを両立し得る。該樹脂組成物及びこれを含む成形体は、押出成形が可能であって、低誘電率及び低誘電正接が要求される用途への展開が期待される。例えば、第5世代移動通信システム(5G)及び第6世代移動通信システム(6G)関連部材、その他電気・電子部材、絶縁フィルム等の用途に適用できる。

Claims (7)

  1.  下記式(I)~式(IV)で示される繰り返し構成単位からなる群から選ばれる少なくとも1種の繰り返し構成単位を含む液晶ポリマー(A)と、下記式(1)で示される繰り返し構成単位及び下記式(2)で示される繰り返し構成単位を含み、該式(1)の繰り返し構成単位と該式(2)の繰り返し構成単位の合計に対する該式(1)の繰り返し構成単位の含有比が20~70モル%のポリイミド樹脂(B)とを含有する樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001

    (a、b、cは平均繰り返し構成単位数を示す。)
    Figure JPOXMLDOC01-appb-C000002

    (Rは少なくとも1つの脂環式炭化水素構造を含む炭素数6~22の2価の基である。Rは炭素数5~16の2価の鎖状脂肪族基である。X及びXは、それぞれ独立に、少なくとも1つの芳香環を含む炭素数6~22の4価の基である。)
  2.  前記液晶ポリマー(A)と、前記ポリイミド樹脂(B)との質量比[(A)/(B)]が0.1/99.9~99.9/0.1の範囲である、請求項1に記載の樹脂組成物。
  3.  前記液晶ポリマー(A)の融点が180℃以上である、請求項1又は2に記載の樹脂組成物。
  4.  前記ポリイミド樹脂(B)において、前記式(1)の繰り返し構成単位と前記式(2)の繰り返し構成単位の合計に対する前記式(1)の繰り返し構成単位の含有比が20モル%以上、40モル%未満である、請求項1~3のいずれか1項に記載の樹脂組成物。
  5.  更に強化繊維を含有する、請求項1~4のいずれか1項に記載の樹脂組成物。
  6.  測定周波数10GHzにおける誘電率が3.0以下で且つ誘電正接が0.005以下である、請求項1~5のいずれか1項に記載の樹脂組成物。
  7.  請求項1~6のいずれか1項に記載の樹脂組成物を含む成形体。
PCT/JP2021/023493 2020-07-03 2021-06-22 樹脂組成物及び成形体 WO2022004471A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202180046728.6A CN115734987B (zh) 2020-07-03 2021-06-22 树脂组合物和成型体
JP2022533882A JPWO2022004471A1 (ja) 2020-07-03 2021-06-22
US18/003,565 US20230257515A1 (en) 2020-07-03 2021-06-22 Resin composition and molded article
EP21832177.6A EP4177295A4 (en) 2020-07-03 2021-06-22 RESIN COMPOSITION AND MOLDED ARTICLE
KR1020227046205A KR20230031850A (ko) 2020-07-03 2021-06-22 수지 조성물 및 성형체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020115774 2020-07-03
JP2020-115774 2020-07-03

Publications (1)

Publication Number Publication Date
WO2022004471A1 true WO2022004471A1 (ja) 2022-01-06

Family

ID=79316218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/023493 WO2022004471A1 (ja) 2020-07-03 2021-06-22 樹脂組成物及び成形体

Country Status (7)

Country Link
US (1) US20230257515A1 (ja)
EP (1) EP4177295A4 (ja)
JP (1) JPWO2022004471A1 (ja)
KR (1) KR20230031850A (ja)
CN (1) CN115734987B (ja)
TW (1) TW202212471A (ja)
WO (1) WO2022004471A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024062963A1 (ja) * 2022-09-21 2024-03-28 住友化学株式会社 樹脂組成物、及び成形体

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08104811A (ja) * 1989-12-05 1996-04-23 Mitsui Toatsu Chem Inc ポリイミド系樹脂組成物
JP2000516292A (ja) * 1996-08-19 2000-12-05 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ポリイミド重合体混合物
JP2006008976A (ja) * 2004-05-28 2006-01-12 Sumitomo Chemical Co Ltd フィルムおよびそれを用いた積層体
JP2007113011A (ja) * 2004-10-14 2007-05-10 Asahi Kasei Chemicals Corp 樹脂組成物
WO2016147996A1 (ja) 2015-03-19 2016-09-22 三菱瓦斯化学株式会社 ポリイミド樹脂
WO2016147997A1 (ja) * 2015-03-19 2016-09-22 三菱瓦斯化学株式会社 ポリイミド樹脂

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005317953A (ja) 2004-03-31 2005-11-10 Sumitomo Bakelite Co Ltd 多層配線板および多層配線板の製造方法
CN101831166B (zh) * 2004-10-14 2011-10-19 旭化成化学株式会社 树脂组合物
JP5399995B2 (ja) 2010-03-15 2014-01-29 パナソニック株式会社 多層プリント配線板及び多層金属張積層板
JP2016069651A (ja) * 2014-09-29 2016-05-09 荒川化学工業株式会社 ポリイミド樹脂組成物、接着剤組成物、プライマー組成物、積層体及び樹脂付き銅箔

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08104811A (ja) * 1989-12-05 1996-04-23 Mitsui Toatsu Chem Inc ポリイミド系樹脂組成物
JP2000516292A (ja) * 1996-08-19 2000-12-05 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ポリイミド重合体混合物
JP2006008976A (ja) * 2004-05-28 2006-01-12 Sumitomo Chemical Co Ltd フィルムおよびそれを用いた積層体
JP2007113011A (ja) * 2004-10-14 2007-05-10 Asahi Kasei Chemicals Corp 樹脂組成物
WO2016147996A1 (ja) 2015-03-19 2016-09-22 三菱瓦斯化学株式会社 ポリイミド樹脂
WO2016147997A1 (ja) * 2015-03-19 2016-09-22 三菱瓦斯化学株式会社 ポリイミド樹脂

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4177295A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024062963A1 (ja) * 2022-09-21 2024-03-28 住友化学株式会社 樹脂組成物、及び成形体

Also Published As

Publication number Publication date
EP4177295A4 (en) 2023-11-22
KR20230031850A (ko) 2023-03-07
CN115734987A (zh) 2023-03-03
JPWO2022004471A1 (ja) 2022-01-06
US20230257515A1 (en) 2023-08-17
CN115734987B (zh) 2024-06-11
EP4177295A1 (en) 2023-05-10
TW202212471A (zh) 2022-04-01

Similar Documents

Publication Publication Date Title
KR101744009B1 (ko) 폴리이미드 수지
TWI591099B (zh) 聚醯亞胺樹脂
JP6402716B2 (ja) ポリイミド樹脂
WO2021024624A1 (ja) 難燃性ポリイミド成形材料及び成形体
WO2022004471A1 (ja) 樹脂組成物及び成形体
JP6856173B2 (ja) 難燃性ポリイミド成形材料及び成形体
JP6879438B1 (ja) ポリイミド樹脂組成物及び成形体
CN114867788A (zh) 聚酰亚胺树脂组合物及成形体
WO2022065063A1 (ja) ポリイミド樹脂組成物及び成形体
WO2023105969A1 (ja) ポリイミド樹脂組成物及び成形体
TWI857187B (zh) 聚醯亞胺樹脂組成物及成形體
JPWO2019220966A1 (ja) ポリイミド樹脂組成物
WO2023120303A1 (ja) 発光成形体及び波長変換部材
WO2022220007A1 (ja) 熱可塑性ポリイミド樹脂組成物及び成形品
CN115516013A (zh) 纤维增强复合材料的制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21832177

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022533882

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2021832177

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE