WO2022004286A1 - Manufacturing method for polyglycerin, and polyglycerin - Google Patents
Manufacturing method for polyglycerin, and polyglycerin Download PDFInfo
- Publication number
- WO2022004286A1 WO2022004286A1 PCT/JP2021/021573 JP2021021573W WO2022004286A1 WO 2022004286 A1 WO2022004286 A1 WO 2022004286A1 JP 2021021573 W JP2021021573 W JP 2021021573W WO 2022004286 A1 WO2022004286 A1 WO 2022004286A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- poly
- polyglycerin
- glycerin
- degree
- glycidyl ether
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B61/00—Other general methods
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C41/00—Preparation of ethers; Preparation of compounds having groups, groups or groups
- C07C41/01—Preparation of ethers
- C07C41/02—Preparation of ethers from oxiranes
- C07C41/03—Preparation of ethers from oxiranes by reaction of oxirane rings with hydroxy groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C43/00—Ethers; Compounds having groups, groups or groups
- C07C43/02—Ethers
- C07C43/03—Ethers having all ether-oxygen atoms bound to acyclic carbon atoms
- C07C43/04—Saturated ethers
- C07C43/13—Saturated ethers containing hydroxy or O-metal groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/02—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
- C08G65/26—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
Definitions
- the present invention relates to a method for producing polyglycerin and polyglycerin.
- Polyglycerin is used as a raw material for producing various chemicals such as moisturizers, thickeners, plasticizers, and monomers.
- the properties of polyglycerin in these applications vary depending on the degree of polymerization and the branched structure. Therefore, it is required to arbitrarily adjust the degree of polymerization and the branched structure according to the purpose of use.
- polyglycerin As a conventional method for producing polyglycerin, high-temperature dehydration polymerization of glycerin using an alkali catalyst and ring-opening polymerization reaction of glycidol are industrially common.
- the polyglycerin produced by the high temperature dehydration condensation method has a degree of polymerization of about 2 to 10 and has a linear structure with few branches.
- polyglycerin produced by the ring-opening polymerization reaction of glycidol has a degree of polymerization of about 4 to 40 and has a structure with many branches.
- the high-temperature dehydration condensation reaction has a low molecular weight and low branching
- the ring-opening polymerization reaction of glycidol has a high branching regardless of the molecular weight, and it is difficult to control the molecular weight and the degree of branching at the same time by the conventional production method.
- polyglycerin having a linear structure or polyglycerin having a large degree of branching obtained by polymerization of glycidol is used. It is difficult to obtain polyglycerin having a high molecular weight and a controlled degree of branching. Since the properties of polyglycerin change greatly depending on its molecular weight and degree of branching, it is desired to control this to produce various types of polyglycerin that can be applied to many uses.
- Patent Document 1 describes a method for producing polyglycerin using glycidol having a hydroxyl group protected with a benzyl group.
- the polyglycerin produced by this method is a substantially linear polyglycerin having an ether bond derived from a hydroxyl group at one end of glycerin and a secondary hydroxyl group at the center, and has a structure with many branches.
- Polyglycerin cannot be obtained, so it is not a fundamental solution.
- structural control of polyglycerin using such a protecting group has problems such as a decrease in productivity and an increase in cost due to an increase in the number of manufacturing processes such as protection and deprotection.
- Patent Document 2 describes a method for producing crosslinked polyglycerin by a reaction between polyglycerin and glycerol diglycidyl ether.
- branched polyglycerin is used as a raw material. Therefore, the obtained polyglycerin depends on the structure of the polyglycerin used as a raw material, the structure of the obtained polyglycerin is limited, and the polyglycerin having an arbitrary degree of branching and molecular weight cannot be obtained.
- Patent Document 3 describes highly branched high molecular weight polyglycerin and polyglycidol. However, since this is produced by polymerization of glycidol, it tends to be highly branched, and the degree of branching and the molecular weight cannot be arbitrarily adjusted. In addition, dichloromethane is used as the solvent, which increases the cost for ensuring the environmental load and the safety of the working environment.
- An object of the present invention is to provide a method for producing polyglycerin, which can produce a wider variety of polyglycerins with high productivity by making the molecular weight and the degree of branching adjustable.
- polyglycerin can be synthesized while controlling the molecular weight and the degree of branching by reacting (poly) glycerin with (poly) glycerin (poly) glycidyl ether, and have completed the present invention.
- rice field means “(poly) glycerin” and / or “polyglycerin”.
- (poly) glycidyl ether” means “glycidyl ether” and / or “polyglycidyl ether”.
- the present invention is a method for producing polyglycerin, which comprises reacting (poly) glycerin with (poly) glycerin (poly) glycidyl ether.
- the (poly) glycerin is preferably a (poly) glycerin having an average degree of polymerization of 1 to 20.
- the (poly) glycerin is preferably a linear polyglycerin.
- the (poly) glycerin (poly) glycidyl ether is preferably a (poly) glycerin (poly) glycidyl ether having a (poly) glycerin moiety having an average degree of polymerization of 1 to 20.
- the (poly) glycerin (poly) glycidyl ether is preferably a (poly) glycerin (poly) glycidyl ether having 1 to 22 glycidyl groups.
- the present invention is also a polyglycerin characterized by having a weight average molecular weight of 300 to 25,000 and a degree of branching of 0.1 to 0.6.
- the polyglycerin preferably has a dispersity of 3 or more.
- the polyglycerin preferably has a primary hydroxyl group / secondary hydroxyl group abundance ratio of 30/70 to 50/50.
- the present invention is a method for producing polyglycerin by reacting (poly) glycerin with a (poly) glycerin-based epoxy group, and is characterized in that the molecular weight and the degree of branching can be adjusted without introducing a protecting group into the raw material. And.
- polyglycerin having a high molecular weight and having a controlled degree of branching within a suitable range can be preferably obtained. It is also effective in that a desired polyglycerin can be produced without a decrease in productivity or an increase in cost due to an increase in the number of manufacturing steps such as introduction of a protecting group and an increase in a deprotecting group.
- the method for producing polyglycerin of the present invention is based on the reaction of (poly) glycerin and (poly) glycerin (poly) glycidyl ether. Further, in the reaction, the reaction proceeds by causing a reaction between the hydroxyl group and the epoxy group. More preferably, it is preferable to select reaction conditions that do not cause the formation of an ether bond due to the hydroxyl group-hydroxyl reaction. This results in one end of the reaction occurring in the epoxy ring of the (poly) glycerin (poly) glycidyl ether.
- the (poly) glycerin used as a raw material in the present invention is preferably (poly) glycerin having an average degree of polymerization of 1 to 20 calculated from the hydroxyl value, and more preferably 2 to 15 having an average degree of polymerization. To use. As the polyglycerin having an average degree of polymerization in the above range, one having a linear structure can be obtained.
- the (poly) glycerin is a polyglycerin having an average degree of polymerization of 3 or more, it is preferably linear. As described above, it is important to control the degree of branching of the final product polyglycerin in the present invention. Therefore, it is preferable to use a (poly) glycerin having a linear structure in order to control the degree of branching.
- the linear structure means a structure in which L13 is 0, or the value of L14 / L13 is 2 or more, and the ratio of D is 5% or less in the following measurement method.
- (poly) glycerin examples include glycerin, diglycerin, triglycerin, tetraglycerin, hexaglycerin, decaglycerin and the like, and commercially available products include glycerin, diglycerin S, R-PG and polyglycerin # 310. , Polyglycerin # 500, Polyglycerin # 750 (all manufactured by Sakamoto Yakuhin Kogyo Co., Ltd.) can be used.
- the hydroxyl group value in the above (formula 2) is a numerical value that is an index of the number of hydroxyl groups contained in polyglycerin, and contains acetic acid required for acetylating the free hydroxyl group contained in 1 g of polyglycerin.
- the number of milligrams of potassium hydroxide required for summing is calculated according to the editorial of the Japan Oil Chemists'Association, "Established by the Japan Oil Chemists' Society, Standard Oil and Fat Analysis Test Method, 2013 Edition".
- the (poly) glycerin (poly) glycidyl ether used as a raw material in the present invention is a compound in which one or more of the hydroxyl groups in the (poly) glycerin are substituted with a glycidyl ether group.
- the epoxy group in the glycidyl group opens and reacts with a hydroxyl group to obtain a high molecular weight polyglycerin. Then, the degree of branching can be controlled by utilizing the reaction of the epoxy group in the (poly) glycerin (poly) glycidyl ether.
- the (poly) glycerin which is the basis of the above (poly) glycerin (poly) glycidyl ether is preferably (poly) glycerin having an average degree of polymerization of 1 to 20 calculated from the hydroxyl value, and more preferably the average degree of polymerization. Use one that is 2 to 15. When the average degree of polymerization is in the above range, it becomes easy to control the reaction with (poly) glycerin.
- the (poly) glycerin (poly) glycidyl ether is preferably a linear polyglycerin like the above (poly) glycerin when the repeating unit of the glycerin skeleton is 3 or more.
- Such a compound obtained by converting (poly) glycerin into (poly) glycidyl ether is preferable in that the structure of the obtained polyglycerin can be suitably controlled.
- the term "linear" in (poly) glycerin is the same as the definition of the above-mentioned raw material in (poly) glycerin.
- (poly) glycerin (poly) glycidyl ether examples include glycerin (poly) glycidyl ether, diglycerin (poly) glycidyl ether, tetraglycerin (poly) glycidyl ether, hexaglycerin (poly) glycidyl ether, and decaglycerin (poly). ) Glyceridyl ether and the like, but are not limited thereto. Further, a mixture of two or more of these may be used as a raw material.
- the glycidyl group of the (poly) glycerin (poly) glycidyl ether is preferably 1 to 22 on average per molecule.
- the lower limit of the glycidyl group is more preferably 2, while the upper limit of the glycidyl group is more preferably 8.
- the glycidyl group is in the above range, the reactivity is good and the control becomes easy.
- the (poly) glycerin (poly) glycidyl ether preferably has an epoxy equivalent of 120 to 200.
- the lower limit of the epoxy equivalent is more preferably 130, while the upper limit of the epoxy equivalent is more preferably 195.
- the epoxy equivalent is in the above range, the polymerization of (poly) glycerin (poly) glycidyl ethers is suppressed, and the polymerization with (poly) glycerin proceeds preferably.
- the (poly) glycerin (poly) glycidyl ether may be a mixture of two or more compounds.
- polyglycerin having a low uniformity and a high dispersity those having various degrees of polymerization, the number of glycidyl groups, and the epoxy equivalent may be used in combination.
- the (poly) glycerin (poly) glycidyl ether can be easily produced by a conventionally known method. For example, a method of reacting (poly) glycerin with epichlorohydrin in the presence of Lewis acid in a solvent such as toluene and then epoxidizing with an alkali metal hydroxide can be mentioned.
- the degree of branching tends to be higher when low molecular weight (poly) glycerin is used, and the degree of branching when high molecular weight (poly) glycerin is used. Tends to be low. Further, when a low molecular weight (poly) glycerin (poly) glycidyl ether is used, the degree of branching tends to be high, and when a high molecular weight (poly) glycerin (poly) glycidyl ether is used, the degree of branching tends to be low.
- the reaction conditions are such that the epoxy group of (poly) glycerin (poly) glycidyl ether opens and reacts with the hydroxyl group of (poly) glycerin to form polyglycerin.
- the reaction conditions do not cause a reaction such that an ether bond is formed by the reaction between the hydroxyl groups. This is because when a branch based on such a reaction is generated, it becomes difficult to control the structure of polyglycerin, which is a product which is the object of the present invention.
- the blending ratio of the above (poly) glycerin and (poly) glycerin (poly) glycidyl ether may be appropriately set, and for example, (poly) glycerin (poly) glycerin (poly) glycerin, which is 0.05 to 2 times by weight as much as (poly) glycerin. It is preferable to react with poly) glycidyl ether.
- an acid catalyst and an alkaline catalyst can be used, but an alkaline catalyst is preferable from the viewpoint of suppressing side reactions, and alkali metal water such as sodium hydroxide, potassium hydroxide and cesium hydroxide is preferable. It is more preferable to use an oxide.
- the amount of these alkali metal hydroxides used is preferably 0.1 to 0.5 wt% with respect to the total amount of (poly) glycerin and (poly) glycerin (poly) glycidyl ether.
- the reaction temperature of (poly) glycerin and (poly) glycerin (poly) glycidyl ether is preferably 120 ° C to 180 ° C, more preferably 140 ° C to 160 ° C. If the temperature is lower than 120 ° C, the reaction rate may be significantly slowed down, and if the temperature exceeds 180 ° C, the product may be colored, an odor may be generated, and problems such as an etherification reaction between hydroxyl groups, which is a side reaction, may proceed. There is.
- the reaction between (poly) glycerin and (poly) glycerin (poly) glycidyl ether in the production method of the present invention is possible even in the absence of a solvent. Therefore, the production method of the present invention is useful in that it is excellent in safety, can easily produce polyglycerin, and has no environmental load.
- reaction between (poly) glycerin and (poly) glycerin (poly) glycidyl ether may be carried out in the presence of 5 to 20 wt% aprotic polar solvent, if necessary.
- the aprotonic polar solvent is not particularly limited, but polyethylene glycol alkyl ether is preferable, and specific examples thereof include diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, pentaethylene glycol dimethyl ether, and diethylene glycol diethyl ether. Examples thereof include triethylene glycol diethyl ether, tetraethylene glycol diethyl ether, and pentaethylene glycol diethyl ether. Of these, diethylene glycol dimethyl ether and triethylene glycol dimethyl ether are more preferable from the viewpoints that the boiling point is equal to or higher than the reaction temperature and the distillation is easy after polymerization.
- a method of adding (poly) glycerin (poly) glycidyl ether to (poly) glycerin and reacting the two is preferable.
- the addition of (poly) glycerin (poly) glycidyl ether is preferably a method of gradually dropping the ether, and the dropping rate is preferably defined as the rate at which the entire amount is dropped in 30 to 60 minutes.
- the obtained polyglycerin can be purified by further reducing the pressure or blowing saturated heated steam to distill off low molecular weight compounds, or by treating with activated carbon, ion exchange resin, adsorbent, etc. by reprecipitation or the like. good.
- the polyglycerin of the present invention may contain a chlorine component derived from the raw material used. Further, if necessary, the chlorine component may be removed by purification or the like.
- the present invention also relates to polyglycerin having a specific structure.
- a chemical structure is a structure that can be obtained by the method for producing polyglycerin of the present invention.
- the polyglycerin of the present invention preferably has a weight average molecular weight (Mw) in the range of 300 to 25,000.
- the lower limit is more preferably 500, further preferably 1,000, particularly preferably 1,300, and most preferably 3,600.
- the upper limit is more preferably 22,000 and even more preferably 20,000. If the upper limit of the weight average molecular weight is in the above range, the handleability is excellent. Further, if the lower limit is within the above range, polyglycerin having a high degree of dispersion can be obtained.
- the degree of dispersion (Mw / Mn) is preferably 3 to 90.
- the average molecular weights are the same, those with a high degree of dispersion (wide molecular weight distribution) are more likely to obtain the molecular weight effect in interfacial adsorption than those with monodisperse (narrow molecular weight distribution). , It is considered that the interfacial interaction is enhanced.
- the degree of dispersion can also be controlled. That is, both polyglycerin having a wide molecular weight distribution and polyglycerin having a narrow molecular weight distribution can be appropriately produced according to the purpose. Further, in the production method of the present invention, it is possible to produce polyglycerin having a dispersity that could not be produced in the past.
- the weight average molecular weight (Mw) and the number average molecular weight (Mn) are values measured by GFC analysis using polyethylene glycol / polyethylene oxide as a standard sample under the following equipment and conditions. Separation column: SB-806M (8 mm x 30 mm, Shodex) Column temperature: 40 ° C Mobile phase solvent: Ion-exchanged water Mobile phase flow rate: 1.0 mL / min Sample concentration: 0.5 wt% Injection volume: 50 ⁇ L Detector: RI detector (Waters2414, Waters)
- the polyglycerin of the present invention preferably has a branching degree (DB) in the range of 0.1 to 0.6 in consideration of the difficulty of production.
- DB branching degree
- the method for producing polyglycerin of the present invention can also control the degree of branching. Even if the molecular weight is high as described above, it is also preferable that a product having a controlled degree of branching can be preferably obtained. Since the degree of branching affects the physical properties such as the polarity and viscosity of polyglycerin, it is preferable in that it can be controlled within the above-mentioned specific range only by selecting the raw material to be used.
- the lower limit of the degree of branching is more preferably 0.15 and even more preferably 0.2.
- the upper limit of the degree of branching is more preferably 0.55, further preferably 0.4. The higher the degree of branching, the higher the hydrophilicity, and when the degree of branching is within the above range, a highly hydrophilic product can be obtained even if the molecular weight is small.
- polyglycerin having a high weight average molecular weight can be obtained while controlling the degree of branching, the weight average molecular weight is 300 to 25,000, and the degree of branching is 0.1 to 0.6.
- the weight average molecular weight is preferably 3,600 to 25,000, and the branching degree is more preferably 0.15 to 0.4.
- the degree of branching is a value calculated by 13 C-NMR according to the following equipment and conditions. Measurement conditions: Polyglycerin is dissolved in deuterated methanol so as to be 10 wt%. Equipment used: 175MHz 13C-NMR (Bruker AVANCE700) Measurement conditions: Quantitative measurement mode, pulse interval 10 seconds
- Glycerin present in polyglycerin can be classified into the following five structures according to the bonding mode of the hydroxyl group and the ether bond.
- the degree of branching (DB) is calculated by the following formula from the abundance ratios of D, L13, and L14.
- Branch degree (DB) 2D / (2D + L13 + L14)
- the polyglycerin of the present invention preferably has a primary hydroxyl group to a secondary hydroxyl group abundance ratio of 30/70 to 50/50. Further, it is more preferably 30/70 to 45/55. As described above, in the case of polyglycerin having a relatively large number of secondary hydroxyl groups, it is presumed that the ability to capture metal ions is particularly high due to the secondary hydroxyl groups existing inside the polyglycerin. Further, the production method of the present invention is also preferable in that the above ratio can be appropriately controlled.
- the abundance ratio of the primary hydroxyl group and the secondary hydroxyl group is the abundance ratio of L13, L14, D, T1 and T2 calculated in the above 13 C-NMR spectrum, and the abundance ratios of the primary hydroxyl group and the secondary hydroxyl group bonded to each. It is a value calculated from a number.
- the number of primary hydroxyl groups and secondary hydroxyl groups in each of the above structural units is as shown in Table 1.
- the abundance ratio of each hydroxyl group can be calculated by adding the value obtained by multiplying the abundance ratio of each structure in polyglycerin by the number of each hydroxyl group.
- the ratio of the ratio of the primary hydroxyl group to the secondary hydroxyl group obtained by the above formula is converted into a percentage and used as the abundance ratio of the primary hydroxyl group and the secondary hydroxyl group.
- the obtained polyglycerin can be used as a dispersant / resin raw material for various purposes. Further, for example, acrylic esterification, epoxidation, urethanization, allyl etherification, alkoxysilylation and the like can be performed by the reaction of hydroxyl groups, and these can be used as a resin raw material. Further, for example, use as a dispersant in fine particles of a metal oxide or the like can be mentioned.
- the polyglycerin of the present invention can convert a part of the hydroxyl group into an epoxy group by a known method.
- the polyglycerin of the present invention can also be acrylic esterified by reacting a part of the hydroxyl group with (meth) acrylic acid or a derivative thereof by a known method.
- the polyglycerin of the present invention can also be urinated by reacting a part of the hydroxyl group with an isocyanate compound by a known method.
- the polyglycerin of the present invention can also be converted to allyl ether by reacting a part of the hydroxyl group with an allyl compound by a known method.
- the polyglycerin of the present invention can also be alkoxysilylated by reacting a part of the hydroxyl group with an isocyanate compound having an alkoxysilyl at the end, an epoxy compound, or the like by a known method. Further, alkoxysilylation may be performed by a hydrosylation reaction with allyl ether.
- a resin having a polyglycerin skeleton can be obtained. Further, as described above, in the method for producing polyglycerin of the present invention, the structure thereof can be variously changed by adjusting the raw materials used and the blending ratio. Therefore, it is preferable in that a polyglycerin skeleton having the physical characteristics required for the application can be easily obtained.
- Example 1 Glycerin (manufactured by Sakamoto Yakuhin Kogyo Co., Ltd.) was previously dehydrated at 120 ° C. and 5 mmHg or less for 2 hours to remove water in the reaction system. 30.00 g of dehydrated glycerin and 0.15 g of sodium hydroxide were placed in a 100 mL eggplant flask equipped with a gym funnel, a temperature sensor, a nitrogen tube and a magnetic induction stirrer, and the temperature was raised to 140 ° C.
- Example 2 39.00 g of diglycerin (manufactured by Sakamoto Pharmaceutical Co., Ltd.) was used as (poly) glycerin, 40.03 g of SR-GLG was used as (poly) glycerin (poly) glycidyl ether, and 0.20 g of sodium hydroxide was used as a catalyst. Except for this, the reaction was carried out under the same conditions as in Example 1.
- Example 3 58.50 g of polyglycerin # 500 (average polymerization degree 6, manufactured by Sakamoto Yakuhin Kogyo Co., Ltd.) as (poly) glycerin, SR-4GL (epoxy equivalent 170, viscosity 1700 mPa ⁇ s) as (poly) glycerin (poly) glycidyl ether
- the reaction was carried out under the same conditions as in Example 1 except that 18.07 g of Sakamoto Yakuhin Kogyo Co., Ltd. was used and 0.29 g of sodium hydroxide was used as a catalyst.
- Example 4 55.01 g of polyglycerin # 500 as (poly) glycerin, 17.00 g of SR-GLG as (poly) glycerin (poly) glycidyl ether, 0.28 g of sodium hydroxide as a catalyst, and 4.46 g of diethylene glycol dimethyl ether as a solvent. The reaction was carried out under the same conditions as in Example 1 except that it was used.
- Example 5 58.50 g of polyglycerin # 500 as (poly) glycerin, 18.25 g of SR-DGE (epoxy equivalent 162, viscosity 650 mPa ⁇ s, manufactured by Sakamoto Yakuhin Kogyo Co., Ltd.) as (poly) glycerin (poly) glycidyl ether, The reaction was carried out under the same conditions as in Example 1 except that 0.29 g of sodium hydroxide was used as a catalyst.
- SR-DGE epoxy equivalent 162, viscosity 650 mPa ⁇ s, manufactured by Sakamoto Yakuhin Kogyo Co., Ltd.
- ⁇ Comparative Example 2> 9.40 g of dehydrated glycerin and 0.075 g of 85 wt% phosphoric acid were placed in a 100 mL eggplant flask equipped with a gym funnel, a temperature sensor, a nitrogen tube and a magnetic induction stirrer, and the temperature was raised to 120 ° C. 66.60 g of glycidol was added dropwise over 10 hours using a syringe pump, and the reaction was further carried out for another 2 hours after the addition was completed. 30 mL of ion-exchanged water was added and the mixture was stirred at 90 ° C. for 2 hours, and an acidic ion-exchange resin was added and stirred for 2 hours. The ion exchange resin was separated by filtration, and the obtained filtrate was concentrated to obtain polyglycerin.
- Comparative Example 3 The same procedure as in Comparative Example 2 was carried out except that 2.00 g of glycerin, 0.055 g of 85 wt% phosphoric acid and 62.75 g of glycidol were used to obtain polyglycerin.
- the contact angle was measured by the following method. For each polyglycerin, a 10 mass% aqueous solution was prepared with ion-exchanged water. In addition, slide glass (manufactured by Matsunami Glass) was used as the base material. These were measured after standing at 23 ° C./50% RH for one day. Using a surface tension meter Drop Master 500 (manufactured by Kyowa Interface Science), 1 ⁇ L of a polyglycerin aqueous solution was dropped onto a slide glass, and the contact angle after standing for 1 minute from the drop was determined using ⁇ / 2. It can be evaluated that when the contact angle is 30 ° or less, the wettability is excellent and the hydrophilicity of the solid surface is improved.
- Table 2 shows the evaluation results of Examples 1 to 5 and Comparative Examples 1 to 3.
- polyglycerin having a significantly different molecular weight can be obtained by changing the raw materials, and at the same time, polyglycerin having various branching degrees can be obtained. It can be seen that the production method of the present invention makes it possible to separately produce polyglycerins having different molecular weights and degree of branching.
- the method for producing polyglycerin of the present invention is preferable in that polyglycerin having a controlled molecular weight and degree of branching can be produced by a simple method.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Polyethers (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Provided is a manufacturing method for a polyglycerin with excellent productivity and controlled branch structures. A manufacturing method for a polyglycerin according to the present invention is characterized by reacting a (poly)glycerin and a (poly)glycerin (poly)glycidyl ether. A polyglycerin according to the present invention is characterized by having a weight-average molecular weight of 300-25,000 and a branching degree of 0.1-0.6.
Description
本発明は、ポリグリセリンの製造方法及びポリグリセリンに関するものである。
The present invention relates to a method for producing polyglycerin and polyglycerin.
ポリグリセリンは保湿剤、増粘剤、可塑剤、モノマー等の各種化学品を製造する際の原料として利用されている。これら用途におけるポリグリセリンの性質は、重合度と分岐構造によって変化する。このため、使用目的に応じて重合度や分岐構造を任意に調整することが求められる。
Polyglycerin is used as a raw material for producing various chemicals such as moisturizers, thickeners, plasticizers, and monomers. The properties of polyglycerin in these applications vary depending on the degree of polymerization and the branched structure. Therefore, it is required to arbitrarily adjust the degree of polymerization and the branched structure according to the purpose of use.
従来のポリグリセリンの製造方法は、グリセリンのアルカリ触媒による高温脱水重合、グリシドールの開環重合反応が工業的にも一般的である。高温脱水縮合法で製造されるポリグリセリンは、重合度は2~10程度であり、分岐の少ない直鎖構造となる。一方、グリシドールの開環重合反応によって製造されるポリグリセリンは、重合度は4~40程度であり、分岐の多い構造となる。つまり、高温脱水縮合反応では低分子量かつ低分岐、グリシドールの開環重合反応では、分子量によらず高分岐となり、従来の製造方法では、分子量と分岐度とを同時に制御することは困難である。
As a conventional method for producing polyglycerin, high-temperature dehydration polymerization of glycerin using an alkali catalyst and ring-opening polymerization reaction of glycidol are industrially common. The polyglycerin produced by the high temperature dehydration condensation method has a degree of polymerization of about 2 to 10 and has a linear structure with few branches. On the other hand, polyglycerin produced by the ring-opening polymerization reaction of glycidol has a degree of polymerization of about 4 to 40 and has a structure with many branches. That is, the high-temperature dehydration condensation reaction has a low molecular weight and low branching, and the ring-opening polymerization reaction of glycidol has a high branching regardless of the molecular weight, and it is difficult to control the molecular weight and the degree of branching at the same time by the conventional production method.
特に、高分子量ポリグリセリンを得るには、直鎖状の構造のポリグリセリンとするか、あるいは、グリシドールの重合によって得られた分岐度が大きいポリグリセリンとするかのいずれかとなる。高分子量でありつつ、分岐度が制御されたポリグリセリンを得ることは困難である。ポリグリセリンは、その分子量と分岐度によって性質が大きく変化するものであることから、これを制御して、多くの用途に適用できるような各種のポリグリセリンを多品種生産することが望まれる。
In particular, in order to obtain high molecular weight polyglycerin, either polyglycerin having a linear structure or polyglycerin having a large degree of branching obtained by polymerization of glycidol is used. It is difficult to obtain polyglycerin having a high molecular weight and a controlled degree of branching. Since the properties of polyglycerin change greatly depending on its molecular weight and degree of branching, it is desired to control this to produce various types of polyglycerin that can be applied to many uses.
特許文献1には、水酸基をベンジル基で保護したグリシドールを使用してポリグリセリンを製造する方法が記載されている。しかし、この方法で製造されるポリグリセリンは、グリセリンの一末端の水酸基と中央の2級水酸基とに由来するエーテル結合を有する、実質的には直鎖状のポリグリセリンであり、分岐の多い構造のポリグリセリンを得ることはできないことから、根本的な解決にはならない。加えて、このような保護基を用いたポリグリセリンの構造制御は、保護と脱保護といった製造工程数の増加による生産性の低下やコストの増加などの問題がある。
Patent Document 1 describes a method for producing polyglycerin using glycidol having a hydroxyl group protected with a benzyl group. However, the polyglycerin produced by this method is a substantially linear polyglycerin having an ether bond derived from a hydroxyl group at one end of glycerin and a secondary hydroxyl group at the center, and has a structure with many branches. Polyglycerin cannot be obtained, so it is not a fundamental solution. In addition, structural control of polyglycerin using such a protecting group has problems such as a decrease in productivity and an increase in cost due to an increase in the number of manufacturing processes such as protection and deprotection.
特許文献2には、ポリグリセリンとグリセロールジグリシジルエーテルとの反応による架橋ポリグリセリンの製造方法が記載されている。しかし、当該方法においては、原料として分岐型ポリグリセリンを使用するものである。このため、得られたポリグリセリンは、原料として使用するポリグリセリンの構造に依存することとなり、得られるポリグリセリンの構造が制限され、任意の分岐度や分子量を有するポリグリセリンを得ることができない。
Patent Document 2 describes a method for producing crosslinked polyglycerin by a reaction between polyglycerin and glycerol diglycidyl ether. However, in this method, branched polyglycerin is used as a raw material. Therefore, the obtained polyglycerin depends on the structure of the polyglycerin used as a raw material, the structure of the obtained polyglycerin is limited, and the polyglycerin having an arbitrary degree of branching and molecular weight cannot be obtained.
特許文献3には、高度に分岐した高分子量のポリグリセリンやポリグリシドールが記載されている。しかし、これはグリシドールの重合によって製造したものであることから、高分岐となりやすく、分岐度と分子量を任意に調整することはできない。また、溶媒として、ジクロロメタンを用いるものであり、環境負荷と作業環境の安全性を確保するためのコストが上昇する。
Patent Document 3 describes highly branched high molecular weight polyglycerin and polyglycidol. However, since this is produced by polymerization of glycidol, it tends to be highly branched, and the degree of branching and the molecular weight cannot be arbitrarily adjusted. In addition, dichloromethane is used as the solvent, which increases the cost for ensuring the environmental load and the safety of the working environment.
本発明は、分子量と分岐度を調整可能にして、より多種多様なポリグリセリンを、生産性良く製造することができるポリグリセリンの製造方法を提供することを目的とするものである。
An object of the present invention is to provide a method for producing polyglycerin, which can produce a wider variety of polyglycerins with high productivity by making the molecular weight and the degree of branching adjustable.
本発明者らは、(ポリ)グリセリンと(ポリ)グリセリン(ポリ)グリシジルエーテルとを反応させることにより、分子量と分岐度を制御しつつポリグリセリンを合成できることを見出し、本発明を完成するに至った。
なお、本明細書において「(ポリ)グリセリン」とは「グリセリン」及び/又は「ポリグリセリン」を意味するものである。
また、本明細書において「(ポリ)グリシジルエーテル」とは「グリシジルエーテル」及び/又は「ポリグリシジルエーテル」を意味するものである。 The present inventors have found that polyglycerin can be synthesized while controlling the molecular weight and the degree of branching by reacting (poly) glycerin with (poly) glycerin (poly) glycidyl ether, and have completed the present invention. rice field.
In addition, in this specification, "(poly) glycerin" means "glycerin" and / or "polyglycerin".
Further, in the present specification, "(poly) glycidyl ether" means "glycidyl ether" and / or "polyglycidyl ether".
なお、本明細書において「(ポリ)グリセリン」とは「グリセリン」及び/又は「ポリグリセリン」を意味するものである。
また、本明細書において「(ポリ)グリシジルエーテル」とは「グリシジルエーテル」及び/又は「ポリグリシジルエーテル」を意味するものである。 The present inventors have found that polyglycerin can be synthesized while controlling the molecular weight and the degree of branching by reacting (poly) glycerin with (poly) glycerin (poly) glycidyl ether, and have completed the present invention. rice field.
In addition, in this specification, "(poly) glycerin" means "glycerin" and / or "polyglycerin".
Further, in the present specification, "(poly) glycidyl ether" means "glycidyl ether" and / or "polyglycidyl ether".
本発明は、(ポリ)グリセリンと(ポリ)グリセリン(ポリ)グリシジルエーテルとを反応させることを特徴とするポリグリセリンの製造方法である。
The present invention is a method for producing polyglycerin, which comprises reacting (poly) glycerin with (poly) glycerin (poly) glycidyl ether.
上記(ポリ)グリセリンが、平均重合度が1~20の(ポリ)グリセリンであることが好ましい。
上記(ポリ)グリセリンが、直鎖状のポリグリセリンであることが好ましい。 The (poly) glycerin is preferably a (poly) glycerin having an average degree of polymerization of 1 to 20.
The (poly) glycerin is preferably a linear polyglycerin.
上記(ポリ)グリセリンが、直鎖状のポリグリセリンであることが好ましい。 The (poly) glycerin is preferably a (poly) glycerin having an average degree of polymerization of 1 to 20.
The (poly) glycerin is preferably a linear polyglycerin.
(ポリ)グリセリン(ポリ)グリシジルエーテルが、平均重合度1~20の(ポリ)グリセリン部を有する(ポリ)グリセリン(ポリ)グリシジルエーテルであることが好ましい。
(ポリ)グリセリン(ポリ)グリシジルエーテルが、1~22のグリシジル基を有する(ポリ)グリセリン(ポリ)グリシジルエーテルであることが好ましい。 The (poly) glycerin (poly) glycidyl ether is preferably a (poly) glycerin (poly) glycidyl ether having a (poly) glycerin moiety having an average degree of polymerization of 1 to 20.
The (poly) glycerin (poly) glycidyl ether is preferably a (poly) glycerin (poly) glycidyl ether having 1 to 22 glycidyl groups.
(ポリ)グリセリン(ポリ)グリシジルエーテルが、1~22のグリシジル基を有する(ポリ)グリセリン(ポリ)グリシジルエーテルであることが好ましい。 The (poly) glycerin (poly) glycidyl ether is preferably a (poly) glycerin (poly) glycidyl ether having a (poly) glycerin moiety having an average degree of polymerization of 1 to 20.
The (poly) glycerin (poly) glycidyl ether is preferably a (poly) glycerin (poly) glycidyl ether having 1 to 22 glycidyl groups.
本発明は、重量平均分子量が300~25,000であり、分岐度が0.1~0.6であることを特徴とするポリグリセリンでもある。
上記ポリグリセリンは、分散度が3以上であることが好ましい。
上記ポリグリセリンは、1級水酸基/2級水酸基の存在比が30/70~50/50であることが好ましい。 The present invention is also a polyglycerin characterized by having a weight average molecular weight of 300 to 25,000 and a degree of branching of 0.1 to 0.6.
The polyglycerin preferably has a dispersity of 3 or more.
The polyglycerin preferably has a primary hydroxyl group / secondary hydroxyl group abundance ratio of 30/70 to 50/50.
上記ポリグリセリンは、分散度が3以上であることが好ましい。
上記ポリグリセリンは、1級水酸基/2級水酸基の存在比が30/70~50/50であることが好ましい。 The present invention is also a polyglycerin characterized by having a weight average molecular weight of 300 to 25,000 and a degree of branching of 0.1 to 0.6.
The polyglycerin preferably has a dispersity of 3 or more.
The polyglycerin preferably has a primary hydroxyl group / secondary hydroxyl group abundance ratio of 30/70 to 50/50.
本発明は、(ポリ)グリセリンと(ポリ)グリセリン系エポキシ基との反応によるポリグリセリンの製造方法であり、原料に保護基を導入することなく、分子量と分岐度を調整可能であることを特徴とする。特に、高分子量であり、かつ、分岐度が好適な範囲に制御されたポリグリセリンを好適に得ることができる。
また、保護基の導入と脱保護基といった製造工程数の増加による生産性の低下やコストの増加がなく、所望のポリグリセリンを製造できる点でも有効である。 The present invention is a method for producing polyglycerin by reacting (poly) glycerin with a (poly) glycerin-based epoxy group, and is characterized in that the molecular weight and the degree of branching can be adjusted without introducing a protecting group into the raw material. And. In particular, polyglycerin having a high molecular weight and having a controlled degree of branching within a suitable range can be preferably obtained.
It is also effective in that a desired polyglycerin can be produced without a decrease in productivity or an increase in cost due to an increase in the number of manufacturing steps such as introduction of a protecting group and an increase in a deprotecting group.
また、保護基の導入と脱保護基といった製造工程数の増加による生産性の低下やコストの増加がなく、所望のポリグリセリンを製造できる点でも有効である。 The present invention is a method for producing polyglycerin by reacting (poly) glycerin with a (poly) glycerin-based epoxy group, and is characterized in that the molecular weight and the degree of branching can be adjusted without introducing a protecting group into the raw material. And. In particular, polyglycerin having a high molecular weight and having a controlled degree of branching within a suitable range can be preferably obtained.
It is also effective in that a desired polyglycerin can be produced without a decrease in productivity or an increase in cost due to an increase in the number of manufacturing steps such as introduction of a protecting group and an increase in a deprotecting group.
本発明のポリグリセリンの製造方法は、(ポリ)グリセリンと(ポリ)グリセリン(ポリ)グリシジルエーテルの反応によるものである。更に、当該反応においては、水酸基とエポキシ基との反応を生じさせることによって、反応が進行するものである。更に好ましくは、水酸基―水酸基の反応によるエーテル結合の生成を生じないような反応条件を選択することが好ましい。これによって、反応の一方の末端が(ポリ)グリセリン(ポリ)グリシジルエーテルのエポキシ環において生じることとなる。このため、使用する(ポリ)グリセリンの重合度や(ポリ)グリセリン(ポリ)グリシジルエーテルの重合度、グリシジル基導入度を調整することによって、また、各配合量を調整することによって、得られるポリグリセリンの重合度・分岐度を調整できるという点で好ましいものである。
The method for producing polyglycerin of the present invention is based on the reaction of (poly) glycerin and (poly) glycerin (poly) glycidyl ether. Further, in the reaction, the reaction proceeds by causing a reaction between the hydroxyl group and the epoxy group. More preferably, it is preferable to select reaction conditions that do not cause the formation of an ether bond due to the hydroxyl group-hydroxyl reaction. This results in one end of the reaction occurring in the epoxy ring of the (poly) glycerin (poly) glycidyl ether. Therefore, the poly obtained by adjusting the degree of polymerization of the (poly) glycerin used, the degree of polymerization of the (poly) glycerin (poly) glycidyl ether, and the degree of introduction of the glycidyl group, and by adjusting the respective blending amounts. It is preferable in that the degree of polymerization and the degree of branching of glycerin can be adjusted.
すなわち、(ポリ)グリセリンの重合度が低いものを使用し、(ポリ)グリセリン(ポリ)グリシジルエーテルの使用割合を高くすると、高分岐度のポリグリセリンを得やすくなり、その逆の原料選択((ポリ)グリセリンの重合度が高いものを使用し、(ポリ)グリセリン(ポリ)グリシジルエーテルの使用割合を低くする)を行うことで、低分岐度のポリグリセリンを得ることができる。
That is, if a material having a low degree of polymerization of (poly) glycerin is used and the proportion of (poly) glycerin (poly) glycidyl ether used is increased, it becomes easier to obtain polyglycerin having a high degree of branching, and vice versa. Poly) glycerin having a high degree of polymerization is used, and (poly) glycerin (poly) glycidyl ether is used in a low proportion) to obtain polyglycerin having a low degree of branching.
本発明において原料に用いられる(ポリ)グリセリンとしては、好ましくは水酸基価から算出される平均重合度が1~20の(ポリ)グリセリンであり、さらに好ましくは平均重合度が2~15であるものを使用する。平均重合度が上記範囲であるポリグリセリンは、直鎖構造のものを入手することができる。
The (poly) glycerin used as a raw material in the present invention is preferably (poly) glycerin having an average degree of polymerization of 1 to 20 calculated from the hydroxyl value, and more preferably 2 to 15 having an average degree of polymerization. To use. As the polyglycerin having an average degree of polymerization in the above range, one having a linear structure can be obtained.
また、(ポリ)グリセリンが平均重合度3以上のポリグリセリンの場合は、直鎖状であることが好ましい。上述したように、本発明においては最終生成物のポリグリセリンの分岐度の制御が重要である。このため、(ポリ)グリセリンは、直鎖構造のものを使用することが分岐度を制御する上で好ましい。
なお、本発明において、直鎖構造とは、下記測定方法おいて、L13が0である、もしくは、L14/L13の値が2以上である、かつDの割合が5%以下のものをいう。 When the (poly) glycerin is a polyglycerin having an average degree of polymerization of 3 or more, it is preferably linear. As described above, it is important to control the degree of branching of the final product polyglycerin in the present invention. Therefore, it is preferable to use a (poly) glycerin having a linear structure in order to control the degree of branching.
In the present invention, the linear structure means a structure in which L13 is 0, or the value of L14 / L13 is 2 or more, and the ratio of D is 5% or less in the following measurement method.
なお、本発明において、直鎖構造とは、下記測定方法おいて、L13が0である、もしくは、L14/L13の値が2以上である、かつDの割合が5%以下のものをいう。 When the (poly) glycerin is a polyglycerin having an average degree of polymerization of 3 or more, it is preferably linear. As described above, it is important to control the degree of branching of the final product polyglycerin in the present invention. Therefore, it is preferable to use a (poly) glycerin having a linear structure in order to control the degree of branching.
In the present invention, the linear structure means a structure in which L13 is 0, or the value of L14 / L13 is 2 or more, and the ratio of D is 5% or less in the following measurement method.
(ポリ)グリセリンの具体例としては、グリセリン、ジグリセリン、トリグリセリン、テトラグリセリン、ヘキサグリセリン、デカグリセリンなどが挙げられ、市販品としては、グリセリン、ジグリセリンS、R-PG、ポリグリセリン#310、ポリグリセリン#500、ポリグリセリン#750(何れも阪本薬品工業(株)製)を用いることができる。
Specific examples of (poly) glycerin include glycerin, diglycerin, triglycerin, tetraglycerin, hexaglycerin, decaglycerin and the like, and commercially available products include glycerin, diglycerin S, R-PG and polyglycerin # 310. , Polyglycerin # 500, Polyglycerin # 750 (all manufactured by Sakamoto Yakuhin Kogyo Co., Ltd.) can be used.
ここで、平均重合度は、末端基分析法による水酸基価から算出されるポリグリセリンの平均重合度(n)である。詳しくは、次式(式1)及び(式2)から平均重合度が算出される。
(式1)分子量=74n+18
(式2)水酸基価=56110(n+2)/分子量
上記(式2)中の水酸基価とは、ポリグリセリンに含まれる水酸基数の大小の指標となる数値であり、1gのポリグリセリンに含まれる遊離ヒドロキシル基をアセチル化するために必要な酢酸を中和するのに要する水酸化カリウムのミリグラム数をいう。水酸化カリウムのミリグラム数は、社団法人日本油化学会編集、「日本油化学会制定、基準油脂分析試験法、2013年度版」に準じて算出される。 Here, the average degree of polymerization is the average degree of polymerization (n) of polyglycerin calculated from the hydroxyl value by the end group analysis method. Specifically, the average degree of polymerization is calculated from the following equations (Equation 1) and (Equation 2).
(Equation 1) Molecular weight = 74n + 18
(Equation 2) Hydroxyl value = 56110 (n + 2) / molecular weight
The hydroxyl group value in the above (formula 2) is a numerical value that is an index of the number of hydroxyl groups contained in polyglycerin, and contains acetic acid required for acetylating the free hydroxyl group contained in 1 g of polyglycerin. The number of milligrams of potassium hydroxide required for summing. The number of milligrams of potassium hydroxide is calculated according to the editorial of the Japan Oil Chemists'Association, "Established by the Japan Oil Chemists' Society, Standard Oil and Fat Analysis Test Method, 2013 Edition".
(式1)分子量=74n+18
(式2)水酸基価=56110(n+2)/分子量
上記(式2)中の水酸基価とは、ポリグリセリンに含まれる水酸基数の大小の指標となる数値であり、1gのポリグリセリンに含まれる遊離ヒドロキシル基をアセチル化するために必要な酢酸を中和するのに要する水酸化カリウムのミリグラム数をいう。水酸化カリウムのミリグラム数は、社団法人日本油化学会編集、「日本油化学会制定、基準油脂分析試験法、2013年度版」に準じて算出される。 Here, the average degree of polymerization is the average degree of polymerization (n) of polyglycerin calculated from the hydroxyl value by the end group analysis method. Specifically, the average degree of polymerization is calculated from the following equations (Equation 1) and (Equation 2).
(Equation 1) Molecular weight = 74n + 18
(Equation 2) Hydroxyl value = 56110 (n + 2) / molecular weight
The hydroxyl group value in the above (formula 2) is a numerical value that is an index of the number of hydroxyl groups contained in polyglycerin, and contains acetic acid required for acetylating the free hydroxyl group contained in 1 g of polyglycerin. The number of milligrams of potassium hydroxide required for summing. The number of milligrams of potassium hydroxide is calculated according to the editorial of the Japan Oil Chemists'Association, "Established by the Japan Oil Chemists' Society, Standard Oil and Fat Analysis Test Method, 2013 Edition".
本発明において原料に用いられる(ポリ)グリセリン(ポリ)グリシジルエーテルは、(ポリ)グリセリンにおける水酸基のうち1以上がグリシジルエーテル基に置換された化合物である。本発明のポリグリセリンの製造方法は、当該グリシジル基中のエポキシ基が開環し、水酸基と反応することで、高分子量のポリグリセリンを得るものである。そして、(ポリ)グリセリン(ポリ)グリシジルエーテル中のエポキシ基の反応を利用することで、分岐度を制御することができる。
The (poly) glycerin (poly) glycidyl ether used as a raw material in the present invention is a compound in which one or more of the hydroxyl groups in the (poly) glycerin are substituted with a glycidyl ether group. In the method for producing polyglycerin of the present invention, the epoxy group in the glycidyl group opens and reacts with a hydroxyl group to obtain a high molecular weight polyglycerin. Then, the degree of branching can be controlled by utilizing the reaction of the epoxy group in the (poly) glycerin (poly) glycidyl ether.
上記(ポリ)グリセリン(ポリ)グリシジルエーテルの基礎となる(ポリ)グリセリンは、好ましくは水酸基価から算出される平均重合度が1~20の(ポリ)グリセリンであり、さらに好ましくは平均重合度が2~15であるものを使用する。平均重合度が上記範囲であることにより、(ポリ)グリセリンとの反応の制御が容易となる。
The (poly) glycerin which is the basis of the above (poly) glycerin (poly) glycidyl ether is preferably (poly) glycerin having an average degree of polymerization of 1 to 20 calculated from the hydroxyl value, and more preferably the average degree of polymerization. Use one that is 2 to 15. When the average degree of polymerization is in the above range, it becomes easy to control the reaction with (poly) glycerin.
上記(ポリ)グリセリン(ポリ)グリシジルエーテルは、グリセリン骨格の繰り返し単位が3以上の場合、上記(ポリ)グリセリンと同様、直鎖状のポリグリセリンであることが好ましい。このような(ポリ)グリセリンを(ポリ)グリシジルエーテル化した化合物によって、得られるポリグリセリンの構造を好適に制御できる点で好ましい。
なお、(ポリ)グリセリンにおける「直鎖状」であるとは、上記原料の(ポリ)グリセリンでの定義と同じである。 The (poly) glycerin (poly) glycidyl ether is preferably a linear polyglycerin like the above (poly) glycerin when the repeating unit of the glycerin skeleton is 3 or more. Such a compound obtained by converting (poly) glycerin into (poly) glycidyl ether is preferable in that the structure of the obtained polyglycerin can be suitably controlled.
The term "linear" in (poly) glycerin is the same as the definition of the above-mentioned raw material in (poly) glycerin.
なお、(ポリ)グリセリンにおける「直鎖状」であるとは、上記原料の(ポリ)グリセリンでの定義と同じである。 The (poly) glycerin (poly) glycidyl ether is preferably a linear polyglycerin like the above (poly) glycerin when the repeating unit of the glycerin skeleton is 3 or more. Such a compound obtained by converting (poly) glycerin into (poly) glycidyl ether is preferable in that the structure of the obtained polyglycerin can be suitably controlled.
The term "linear" in (poly) glycerin is the same as the definition of the above-mentioned raw material in (poly) glycerin.
(ポリ)グリセリン(ポリ)グリシジルエーテルの具体例としては、グリセリン(ポリ)グリシジルエーテル、ジグリセリン(ポリ)グリシジルエーテル、テトラグリセリン(ポリ)グリシジルエーテル、ヘキサグリセリン(ポリ)グリシジルエーテル、デカグリセリン(ポリ)グリシジルエーテル等が挙げられるが、これらに限定されるものではない。更に、これらの2種以上の混合物を原料とするものであってもよい。
Specific examples of (poly) glycerin (poly) glycidyl ether include glycerin (poly) glycidyl ether, diglycerin (poly) glycidyl ether, tetraglycerin (poly) glycidyl ether, hexaglycerin (poly) glycidyl ether, and decaglycerin (poly). ) Glyceridyl ether and the like, but are not limited thereto. Further, a mixture of two or more of these may be used as a raw material.
上記(ポリ)グリセリン(ポリ)グリシジルエーテルのグリシジル基は、1分子当たり、平均1~22であることが好ましい。当該グリシジル基の下限は、2がより好ましく、一方、当該グルシジル基の上限は、8がより好ましい。グリシジル基が上記範囲であることで、反応性がよく、制御が容易となる。
The glycidyl group of the (poly) glycerin (poly) glycidyl ether is preferably 1 to 22 on average per molecule. The lower limit of the glycidyl group is more preferably 2, while the upper limit of the glycidyl group is more preferably 8. When the glycidyl group is in the above range, the reactivity is good and the control becomes easy.
上記(ポリ)グリセリン(ポリ)グリシジルエーテルは、エポキシ当量が120~200であることが好ましい。当該エポキシ当量の下限は、130がより好ましく、一方、当該エポキシ当量の上限は、195がより好ましい。エポキシ当量が上記範囲であることにより、(ポリ)グリセリン(ポリ)グリシジルエーテル同士の重合が抑制され、(ポリ)グリセリンとの重合が好適に進行する。
The (poly) glycerin (poly) glycidyl ether preferably has an epoxy equivalent of 120 to 200. The lower limit of the epoxy equivalent is more preferably 130, while the upper limit of the epoxy equivalent is more preferably 195. When the epoxy equivalent is in the above range, the polymerization of (poly) glycerin (poly) glycidyl ethers is suppressed, and the polymerization with (poly) glycerin proceeds preferably.
更に、(ポリ)グリセリン(ポリ)グリシジルエーテルは、2種以上の化合物の混合物であってもよい。特に、均一性が低く、分散度が大きいポリグリセリンが必要な場合には、これら種々の重合度、グリシジル基数、エポキシ当量のものを併用して使用するものであってもよい。
Further, the (poly) glycerin (poly) glycidyl ether may be a mixture of two or more compounds. In particular, when polyglycerin having a low uniformity and a high dispersity is required, those having various degrees of polymerization, the number of glycidyl groups, and the epoxy equivalent may be used in combination.
上記(ポリ)グリセリン(ポリ)グリシジルエーテルは、従来公知の方法で容易に製造することができる。例えば、トルエンなどの溶媒中でルイス酸の存在下、(ポリ)グリセリンとエピクロルヒドリンを反応させた後、アルカリ金属水酸化物でエポキシ化する方法などが挙げられる。
The (poly) glycerin (poly) glycidyl ether can be easily produced by a conventionally known method. For example, a method of reacting (poly) glycerin with epichlorohydrin in the presence of Lewis acid in a solvent such as toluene and then epoxidizing with an alkali metal hydroxide can be mentioned.
上記(ポリ)グリセリンと(ポリ)グリセリン(ポリ)グリシジルエーテルとの組み合わせとしては、低分子量(ポリ)グリセリンを用いると分岐度が高くなる傾向にあり、高分子量(ポリ)グリセリンを用いると分岐度が低くなる傾向にある。
また、低分子量の(ポリ)グリセリン(ポリ)グリシジルエーテルを用いると分岐度が高くなる傾向にあり、高分子量の(ポリ)グリセリン(ポリ)グリシジルエーテルを用いると分岐度が低くなる傾向にある。 As a combination of the above (poly) glycerin and (poly) glycerin (poly) glycidyl ether, the degree of branching tends to be higher when low molecular weight (poly) glycerin is used, and the degree of branching when high molecular weight (poly) glycerin is used. Tends to be low.
Further, when a low molecular weight (poly) glycerin (poly) glycidyl ether is used, the degree of branching tends to be high, and when a high molecular weight (poly) glycerin (poly) glycidyl ether is used, the degree of branching tends to be low.
また、低分子量の(ポリ)グリセリン(ポリ)グリシジルエーテルを用いると分岐度が高くなる傾向にあり、高分子量の(ポリ)グリセリン(ポリ)グリシジルエーテルを用いると分岐度が低くなる傾向にある。 As a combination of the above (poly) glycerin and (poly) glycerin (poly) glycidyl ether, the degree of branching tends to be higher when low molecular weight (poly) glycerin is used, and the degree of branching when high molecular weight (poly) glycerin is used. Tends to be low.
Further, when a low molecular weight (poly) glycerin (poly) glycidyl ether is used, the degree of branching tends to be high, and when a high molecular weight (poly) glycerin (poly) glycidyl ether is used, the degree of branching tends to be low.
本発明のポリグリセリンの製造方法は、(ポリ)グリセリン(ポリ)グリシジルエーテルのエポキシ基が開環して、(ポリ)グリセリンの水酸基と反応し、ポリグリセリンを形成するような反応条件とすることが好適である。すなわち、副反応として、水酸基と水酸基との反応でエーテル結合を生成するような反応を生じない反応条件であることがより好ましい。このような反応に基づく分岐が生成すると、本発明の目的である生成物であるポリグリセリンの構造の制御が困難となるためである。
In the method for producing polyglycerin of the present invention, the reaction conditions are such that the epoxy group of (poly) glycerin (poly) glycidyl ether opens and reacts with the hydroxyl group of (poly) glycerin to form polyglycerin. Is preferable. That is, as a side reaction, it is more preferable that the reaction conditions do not cause a reaction such that an ether bond is formed by the reaction between the hydroxyl groups. This is because when a branch based on such a reaction is generated, it becomes difficult to control the structure of polyglycerin, which is a product which is the object of the present invention.
上記(ポリ)グリセリンと(ポリ)グリセリン(ポリ)グリシジルエーテルとの配合比は、適宜設定すればよく、例えば、(ポリ)グリセリンに対して、0.05~2重量倍の(ポリ)グリセリン(ポリ)グリシジルエーテルを反応させることが好適である。
The blending ratio of the above (poly) glycerin and (poly) glycerin (poly) glycidyl ether may be appropriately set, and for example, (poly) glycerin (poly) glycerin (poly) glycerin, which is 0.05 to 2 times by weight as much as (poly) glycerin. It is preferable to react with poly) glycidyl ether.
本発明に使用される触媒としては、酸触媒及びアルカリ触媒を用いることができるが、副反応の抑制の観点からアルカリ触媒が好ましく、水酸化ナトリウム、水酸化カリウム、水酸化セシウム等のアルカリ金属水酸化物を用いるのがより好ましい。これらのアルカリ金属水酸化物の使用量は、(ポリ)グリセリンと(ポリ)グリセリン(ポリ)グリシジルエーテルの総量に対して0.1~0.5wt%であることが好ましい。
As the catalyst used in the present invention, an acid catalyst and an alkaline catalyst can be used, but an alkaline catalyst is preferable from the viewpoint of suppressing side reactions, and alkali metal water such as sodium hydroxide, potassium hydroxide and cesium hydroxide is preferable. It is more preferable to use an oxide. The amount of these alkali metal hydroxides used is preferably 0.1 to 0.5 wt% with respect to the total amount of (poly) glycerin and (poly) glycerin (poly) glycidyl ether.
(ポリ)グリセリンと(ポリ)グリセリン(ポリ)グリシジルエーテルとの反応温度は120℃~180℃が好ましく、140℃~160℃がより好ましい。120℃未満では反応速度が著しく遅くなることがあり、180℃を超えると製品に着色を生じ、臭気が発生するとともに、副反応である水酸基同士のエーテル化反応が進行する等の問題が生じることがある。
The reaction temperature of (poly) glycerin and (poly) glycerin (poly) glycidyl ether is preferably 120 ° C to 180 ° C, more preferably 140 ° C to 160 ° C. If the temperature is lower than 120 ° C, the reaction rate may be significantly slowed down, and if the temperature exceeds 180 ° C, the product may be colored, an odor may be generated, and problems such as an etherification reaction between hydroxyl groups, which is a side reaction, may proceed. There is.
本発明の製造方法における、(ポリ)グリセリンと(ポリ)グリセリン(ポリ)グリシジルエーテルとの反応は、無溶媒下でも可能である。よって、本発明の製造方法は、安全性に優れ、簡易にポリグリセリンを製造でき、また環境負荷がない点でも有用である。
The reaction between (poly) glycerin and (poly) glycerin (poly) glycidyl ether in the production method of the present invention is possible even in the absence of a solvent. Therefore, the production method of the present invention is useful in that it is excellent in safety, can easily produce polyglycerin, and has no environmental load.
また、(ポリ)グリセリンと(ポリ)グリセリン(ポリ)グリシジルエーテルとの反応は、必要に応じて、5~20wt%の非プロトン性極性溶媒の存在下で実施してもよい。非プロトン性極性溶媒は、特に限定されるものではないが、ポリエチレングリコールアルキルエーテルが望ましく、具体的には、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル、ペンタエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、トリエチレングリコールジエチルエーテル、テトラエチレングリコールジエチルエーテル、又はペンタエチレングリコールジエチルエーテル等が挙げられる。このうち、沸点が反応温度以上であること、重合後に留去の容易さの観点から、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテルがより好ましい。
Further, the reaction between (poly) glycerin and (poly) glycerin (poly) glycidyl ether may be carried out in the presence of 5 to 20 wt% aprotic polar solvent, if necessary. The aprotonic polar solvent is not particularly limited, but polyethylene glycol alkyl ether is preferable, and specific examples thereof include diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, pentaethylene glycol dimethyl ether, and diethylene glycol diethyl ether. Examples thereof include triethylene glycol diethyl ether, tetraethylene glycol diethyl ether, and pentaethylene glycol diethyl ether. Of these, diethylene glycol dimethyl ether and triethylene glycol dimethyl ether are more preferable from the viewpoints that the boiling point is equal to or higher than the reaction temperature and the distillation is easy after polymerization.
(ポリ)グリセリンと(ポリ)グリセリン(ポリ)グリシジルエーテルとを反応させるにあたっては、(ポリ)グリセリンに、(ポリ)グリセリン(ポリ)グリシジルエーテルを添加し、両者を反応させる方法が好適である。
(ポリ)グリセリン(ポリ)グリシジルエーテルの添加は、徐々に滴下させる方法が好ましく、滴下速度は全量を30分~60分で滴下する速度に規定するのがよい。特に、30分より速く滴下した場合、未反応のグリシジルエーテルが反応系内に多く残り、グリシジルエーテル同士の反応が起こってしまう傾向にある。また、滴下終了後は5時間以上10時間以下、好ましくは6時間以上8時間以下で反応を継続するのが良い。5時間未満ではポリグリセリン骨格中にエポキシ基が残存し易く、10時間を超えると製品に着色を生じ、臭気が発生する等の問題が起きる場合がある。 In reacting (poly) glycerin with (poly) glycerin (poly) glycidyl ether, a method of adding (poly) glycerin (poly) glycidyl ether to (poly) glycerin and reacting the two is preferable.
The addition of (poly) glycerin (poly) glycidyl ether is preferably a method of gradually dropping the ether, and the dropping rate is preferably defined as the rate at which the entire amount is dropped in 30 to 60 minutes. In particular, when the solution is dropped faster than 30 minutes, a large amount of unreacted glycidyl ether remains in the reaction system, and the reaction between the glycidyl ethers tends to occur. Further, it is preferable to continue the reaction in 5 hours or more and 10 hours or less, preferably 6 hours or more and 8 hours or less after the completion of the dropping. If it is less than 5 hours, epoxy groups tend to remain in the polyglycerin skeleton, and if it exceeds 10 hours, the product may be colored and problems such as odor may occur.
(ポリ)グリセリン(ポリ)グリシジルエーテルの添加は、徐々に滴下させる方法が好ましく、滴下速度は全量を30分~60分で滴下する速度に規定するのがよい。特に、30分より速く滴下した場合、未反応のグリシジルエーテルが反応系内に多く残り、グリシジルエーテル同士の反応が起こってしまう傾向にある。また、滴下終了後は5時間以上10時間以下、好ましくは6時間以上8時間以下で反応を継続するのが良い。5時間未満ではポリグリセリン骨格中にエポキシ基が残存し易く、10時間を超えると製品に着色を生じ、臭気が発生する等の問題が起きる場合がある。 In reacting (poly) glycerin with (poly) glycerin (poly) glycidyl ether, a method of adding (poly) glycerin (poly) glycidyl ether to (poly) glycerin and reacting the two is preferable.
The addition of (poly) glycerin (poly) glycidyl ether is preferably a method of gradually dropping the ether, and the dropping rate is preferably defined as the rate at which the entire amount is dropped in 30 to 60 minutes. In particular, when the solution is dropped faster than 30 minutes, a large amount of unreacted glycidyl ether remains in the reaction system, and the reaction between the glycidyl ethers tends to occur. Further, it is preferable to continue the reaction in 5 hours or more and 10 hours or less, preferably 6 hours or more and 8 hours or less after the completion of the dropping. If it is less than 5 hours, epoxy groups tend to remain in the polyglycerin skeleton, and if it exceeds 10 hours, the product may be colored and problems such as odor may occur.
得られたポリグリセリンは、さらに減圧あるいは飽和加熱水蒸気を吹き込んで低分子化合物を留去したり、活性炭、イオン交換樹脂、吸着剤等、再沈殿等で処理したりすることにより、精製しても良い。
なお、本発明のポリグリセリンは、使用する原料に由来する塩素成分を含有するものであってもよい。また、必要に応じて、塩素成分が精製等により除去されたものであってもよい。 The obtained polyglycerin can be purified by further reducing the pressure or blowing saturated heated steam to distill off low molecular weight compounds, or by treating with activated carbon, ion exchange resin, adsorbent, etc. by reprecipitation or the like. good.
The polyglycerin of the present invention may contain a chlorine component derived from the raw material used. Further, if necessary, the chlorine component may be removed by purification or the like.
なお、本発明のポリグリセリンは、使用する原料に由来する塩素成分を含有するものであってもよい。また、必要に応じて、塩素成分が精製等により除去されたものであってもよい。 The obtained polyglycerin can be purified by further reducing the pressure or blowing saturated heated steam to distill off low molecular weight compounds, or by treating with activated carbon, ion exchange resin, adsorbent, etc. by reprecipitation or the like. good.
The polyglycerin of the present invention may contain a chlorine component derived from the raw material used. Further, if necessary, the chlorine component may be removed by purification or the like.
本発明は、特定の構造を有するポリグリセリンに関するものでもある。このような化学構造は、本発明のポリグリセリンの製造方法によって得ることができる構造である。
The present invention also relates to polyglycerin having a specific structure. Such a chemical structure is a structure that can be obtained by the method for producing polyglycerin of the present invention.
本発明のポリグリセリンは、重量平均分子量(Mw)が300~25,000の範囲内であることが好ましい。上記下限は、500であることがより好ましく、1,000であることが更に好ましく、1,300であることが特に好ましく、3,600であることが最も好ましい。上記上限は、22,000であることがより好ましく、20,000であることが更に好ましい。重量平均分子量の上限が上記範囲であればハンドリング性に優れる。また、下限が上記範囲であれば分散度の高いポリグリセリンが得られる。
The polyglycerin of the present invention preferably has a weight average molecular weight (Mw) in the range of 300 to 25,000. The lower limit is more preferably 500, further preferably 1,000, particularly preferably 1,300, and most preferably 3,600. The upper limit is more preferably 22,000 and even more preferably 20,000. If the upper limit of the weight average molecular weight is in the above range, the handleability is excellent. Further, if the lower limit is within the above range, polyglycerin having a high degree of dispersion can be obtained.
また、分散度(Mw/Mn)が3~90であることが好ましい。特に界面相互作用においては、平均分子量が同等の場合、分散度が高い(分子量分布が広い)ものは、単分散(分子量分布が狭い)ものと比較して、界面吸着における分子量効果が得やすいため、界面相互作用が高まると考えられる。
Further, the degree of dispersion (Mw / Mn) is preferably 3 to 90. Especially in the interfacial interaction, when the average molecular weights are the same, those with a high degree of dispersion (wide molecular weight distribution) are more likely to obtain the molecular weight effect in interfacial adsorption than those with monodisperse (narrow molecular weight distribution). , It is considered that the interfacial interaction is enhanced.
本発明の製造方法においては、分散度についても制御が可能である。すなわち、分子量分布の幅が広いポリグリセリンも、幅が狭いポリグリセリンも目的に応じて、適宜作り分けることができる。また、本発明の製造方法においては、従来は製造できなかった分散度を有するポリグリセリンの製造も可能である。
In the manufacturing method of the present invention, the degree of dispersion can also be controlled. That is, both polyglycerin having a wide molecular weight distribution and polyglycerin having a narrow molecular weight distribution can be appropriately produced according to the purpose. Further, in the production method of the present invention, it is possible to produce polyglycerin having a dispersity that could not be produced in the past.
なお、重量平均分子量(Mw)、数平均分子量(Mn)は、下記の装置及び条件により、ポリエチレングリコール/ポリエチレンオキシドを標準試料として用いたGFC分析により測定した値である。
分離カラム:SB-806M(8mm×30mm、Shodex)
カラム温度:40℃
移動相溶媒:イオン交換水
移動相流速:1.0 mL/min
試料濃度 :0.5wt%
注入量 :50μL
検出器 :RI検出器(Waters2414、Waters社) The weight average molecular weight (Mw) and the number average molecular weight (Mn) are values measured by GFC analysis using polyethylene glycol / polyethylene oxide as a standard sample under the following equipment and conditions.
Separation column: SB-806M (8 mm x 30 mm, Shodex)
Column temperature: 40 ° C
Mobile phase solvent: Ion-exchanged water
Mobile phase flow rate: 1.0 mL / min
Sample concentration: 0.5 wt%
Injection volume: 50 μL
Detector: RI detector (Waters2414, Waters)
分離カラム:SB-806M(8mm×30mm、Shodex)
カラム温度:40℃
移動相溶媒:イオン交換水
移動相流速:1.0 mL/min
試料濃度 :0.5wt%
注入量 :50μL
検出器 :RI検出器(Waters2414、Waters社) The weight average molecular weight (Mw) and the number average molecular weight (Mn) are values measured by GFC analysis using polyethylene glycol / polyethylene oxide as a standard sample under the following equipment and conditions.
Separation column: SB-806M (8 mm x 30 mm, Shodex)
Column temperature: 40 ° C
Mobile phase solvent: Ion-exchanged water
Mobile phase flow rate: 1.0 mL / min
Sample concentration: 0.5 wt%
Injection volume: 50 μL
Detector: RI detector (Waters2414, Waters)
更に、本発明のポリグリセリンは、製造の難易度を考慮し、分岐度(DB)が0.1~0.6の範囲内であることが好ましい。
Further, the polyglycerin of the present invention preferably has a branching degree (DB) in the range of 0.1 to 0.6 in consideration of the difficulty of production.
本発明のポリグリセリンの製造方法は、分岐度についても制御が可能である。上記のように分子量が高いものであっても、分岐度が制御されたものを好適に得ることができる点でも好ましい。分岐度は、ポリグリセリンの極性や粘度などの物性に影響を与えるものであることから、これを、使用する原料の選択のみで、上述した特定の範囲に制御できる点で好ましいものである。
The method for producing polyglycerin of the present invention can also control the degree of branching. Even if the molecular weight is high as described above, it is also preferable that a product having a controlled degree of branching can be preferably obtained. Since the degree of branching affects the physical properties such as the polarity and viscosity of polyglycerin, it is preferable in that it can be controlled within the above-mentioned specific range only by selecting the raw material to be used.
上記分岐度の下限は、0.15であることがより好ましく、0.2であることが更に好ましい。上記分岐度の上限は、0.55であることがより好ましく、0.4であることが更に好ましい。
分岐度が高いものほど親水性が高くなり、分岐度が上記範囲であると、分子量の小さいものであっても、親水性の高いものが得られる。 The lower limit of the degree of branching is more preferably 0.15 and even more preferably 0.2. The upper limit of the degree of branching is more preferably 0.55, further preferably 0.4.
The higher the degree of branching, the higher the hydrophilicity, and when the degree of branching is within the above range, a highly hydrophilic product can be obtained even if the molecular weight is small.
分岐度が高いものほど親水性が高くなり、分岐度が上記範囲であると、分子量の小さいものであっても、親水性の高いものが得られる。 The lower limit of the degree of branching is more preferably 0.15 and even more preferably 0.2. The upper limit of the degree of branching is more preferably 0.55, further preferably 0.4.
The higher the degree of branching, the higher the hydrophilicity, and when the degree of branching is within the above range, a highly hydrophilic product can be obtained even if the molecular weight is small.
本発明の製造方法は、分岐度を制御しながら、重量平均分子量が高いポリグリセリンを得ることができ、重量平均分子量300~25,000であり、分岐度が0.1~0.6であることが好ましく、重量平均分子量3,600~25,000であり、分岐度0.15~0.4であることがより好ましい。
In the production method of the present invention, polyglycerin having a high weight average molecular weight can be obtained while controlling the degree of branching, the weight average molecular weight is 300 to 25,000, and the degree of branching is 0.1 to 0.6. The weight average molecular weight is preferably 3,600 to 25,000, and the branching degree is more preferably 0.15 to 0.4.
なお、分岐度は、下記の装置及び条件により、13C-NMRにより算出された値である。
測定条件:ポリグリセリンを10wt%となるように重水素化メタノールに溶解させる。
使用装置:175MHz 13C-NMR(Bruker AVANCE700)
測定条件: 定量測定モード、パルス間隔10秒 The degree of branching is a value calculated by 13 C-NMR according to the following equipment and conditions.
Measurement conditions: Polyglycerin is dissolved in deuterated methanol so as to be 10 wt%.
Equipment used: 175MHz 13C-NMR (Bruker AVANCE700)
Measurement conditions: Quantitative measurement mode, pulse interval 10 seconds
測定条件:ポリグリセリンを10wt%となるように重水素化メタノールに溶解させる。
使用装置:175MHz 13C-NMR(Bruker AVANCE700)
測定条件: 定量測定モード、パルス間隔10秒 The degree of branching is a value calculated by 13 C-NMR according to the following equipment and conditions.
Measurement conditions: Polyglycerin is dissolved in deuterated methanol so as to be 10 wt%.
Equipment used: 175MHz 13C-NMR (Bruker AVANCE700)
Measurement conditions: Quantitative measurement mode, pulse interval 10 seconds
なお、以下に詳述する13C-NMRによるポリグリセリンの構造解析は、”Controlled Synthesis of Hyperbranched polyglycerols by Ring-Opening Multibranching Polymerization” Macromoleculers 1990, 32, 4240-4246に記載された方法に基づいて行った。
The structural analysis of polyglycerin by 13 C-NMR described in detail below was performed based on the method described in "Controlled Synthesis of Hyperbranched polyglycerols by Ring-Opening Multibranching Polymerization" Macromoleculers 1990, 32, 4240-4246. ..
ポリグリセリン中に存在するグリセリンは、その水酸基とエーテル結合の結合様式から、以下の5通りの構造に分類できる。
Glycerin present in polyglycerin can be classified into the following five structures according to the bonding mode of the hydroxyl group and the ether bond.
ポリグリセリンの13C-NMR測定を行うと、炭素はその化学的環境に基づいて幾つかに分かれてピークが観察される。このような13C-NMR測定結果の一例を図1に示す。ピークは、A~Hの8つのピークとして観察される。そして、これらのピークはそれぞれ、上述したL13,D,L14、T1,T2の各構造の特定の位置の炭素に同定されている。
したがって、それぞれのピークにおける積分比に基づいてL13,D,L14、T1,T2の各構造の量を算出することができる。 When a 13 C-NMR measurement of polyglycerin is performed, carbon is divided into several peaks based on its chemical environment. An example of such 13 C-NMR measurement results is shown in FIG. The peaks are observed as eight peaks A to H. Then, each of these peaks has been identified in the carbon at a specific position in each of the above-mentioned L13, D, L14, T1 and T2 structures.
Therefore, the amount of each structure of L13, D, L14, T1 and T2 can be calculated based on the integral ratio at each peak.
したがって、それぞれのピークにおける積分比に基づいてL13,D,L14、T1,T2の各構造の量を算出することができる。 When a 13 C-NMR measurement of polyglycerin is performed, carbon is divided into several peaks based on its chemical environment. An example of such 13 C-NMR measurement results is shown in FIG. The peaks are observed as eight peaks A to H. Then, each of these peaks has been identified in the carbon at a specific position in each of the above-mentioned L13, D, L14, T1 and T2 structures.
Therefore, the amount of each structure of L13, D, L14, T1 and T2 can be calculated based on the integral ratio at each peak.
具体的には、各ピークの積分比(IntA等)と下記式とを用いて、上記一般式で表されるL13,D,L14、T1,T2の各構造の存在割合を算出することができる。
L13=IntB
D=IntC
L14=(IntD/2+IntF-L13)/2
T1=(IntG+(IntE-2D)/2)/2
T2=(IntG+(IntE-2D)/2)/2 Specifically, the abundance ratio of each structure of L13, D, L14, T1 and T2 represented by the above general formula can be calculated by using the integral ratio of each peak (IntA or the like) and the following formula. ..
L13 = IntB
D = IntC
L14 = (IntD / 2 + IntF-L13) / 2
T1 = (IntG + (IntE-2D) / 2) / 2
T2 = (IntG + (IntE-2D) / 2) / 2
L13=IntB
D=IntC
L14=(IntD/2+IntF-L13)/2
T1=(IntG+(IntE-2D)/2)/2
T2=(IntG+(IntE-2D)/2)/2 Specifically, the abundance ratio of each structure of L13, D, L14, T1 and T2 represented by the above general formula can be calculated by using the integral ratio of each peak (IntA or the like) and the following formula. ..
L13 = IntB
D = IntC
L14 = (IntD / 2 + IntF-L13) / 2
T1 = (IntG + (IntE-2D) / 2) / 2
T2 = (IntG + (IntE-2D) / 2) / 2
分岐度(DB)は、上記D、L13、L14の存在比より、下記式によって算出される。
分岐度(DB)=2D/(2D+L13+L14) The degree of branching (DB) is calculated by the following formula from the abundance ratios of D, L13, and L14.
Branch degree (DB) = 2D / (2D + L13 + L14)
分岐度(DB)=2D/(2D+L13+L14) The degree of branching (DB) is calculated by the following formula from the abundance ratios of D, L13, and L14.
Branch degree (DB) = 2D / (2D + L13 + L14)
本発明のポリグリセリンは、1級水酸基と2級水酸基の存在比が、30/70~50/50であることが好ましい。また、30/70~45/55であることがより好ましい。
このように、2級水酸基が比較的多いポリグリセリンであると、特にポリグリセリンの内部に存在する2級水酸基により金属イオンの捕捉能が高いのではないかと推測される。
また、本発明の製造方法は、上記割合を適宜制御できる点でも好ましいものである。 The polyglycerin of the present invention preferably has a primary hydroxyl group to a secondary hydroxyl group abundance ratio of 30/70 to 50/50. Further, it is more preferably 30/70 to 45/55.
As described above, in the case of polyglycerin having a relatively large number of secondary hydroxyl groups, it is presumed that the ability to capture metal ions is particularly high due to the secondary hydroxyl groups existing inside the polyglycerin.
Further, the production method of the present invention is also preferable in that the above ratio can be appropriately controlled.
このように、2級水酸基が比較的多いポリグリセリンであると、特にポリグリセリンの内部に存在する2級水酸基により金属イオンの捕捉能が高いのではないかと推測される。
また、本発明の製造方法は、上記割合を適宜制御できる点でも好ましいものである。 The polyglycerin of the present invention preferably has a primary hydroxyl group to a secondary hydroxyl group abundance ratio of 30/70 to 50/50. Further, it is more preferably 30/70 to 45/55.
As described above, in the case of polyglycerin having a relatively large number of secondary hydroxyl groups, it is presumed that the ability to capture metal ions is particularly high due to the secondary hydroxyl groups existing inside the polyglycerin.
Further, the production method of the present invention is also preferable in that the above ratio can be appropriately controlled.
なお、1級水酸基と2級水酸基の存在比は、上記13C-NMRスペクトルにおいて算出したL13、L14、D、T1、T2の存在比とそれぞれに結合している1級水酸基と2級水酸基の数から算出された値である。
上記各構造単位中の1級水酸基と2級水酸基の数は、表1に示す通りである。 The abundance ratio of the primary hydroxyl group and the secondary hydroxyl group is the abundance ratio of L13, L14, D, T1 and T2 calculated in the above 13 C-NMR spectrum, and the abundance ratios of the primary hydroxyl group and the secondary hydroxyl group bonded to each. It is a value calculated from a number.
The number of primary hydroxyl groups and secondary hydroxyl groups in each of the above structural units is as shown in Table 1.
上記各構造単位中の1級水酸基と2級水酸基の数は、表1に示す通りである。 The abundance ratio of the primary hydroxyl group and the secondary hydroxyl group is the abundance ratio of L13, L14, D, T1 and T2 calculated in the above 13 C-NMR spectrum, and the abundance ratios of the primary hydroxyl group and the secondary hydroxyl group bonded to each. It is a value calculated from a number.
The number of primary hydroxyl groups and secondary hydroxyl groups in each of the above structural units is as shown in Table 1.
上記表1を参照すると、下記式により、ポリグリセリン中の各構造の存在比と上記各水酸基の数を乗じた値を足し合わせて、各水酸基の存在割合を算出することができる。
1級水酸基:(L13×1)+(T1×1)+(T2×2)
2級水酸基:(L14×1)+(T1×1)
上記式により求めた1級水酸基と2級水酸基の割合の比を百分率に換算し、1級水酸基と2級水酸基の存在比とする。 With reference to Table 1 above, the abundance ratio of each hydroxyl group can be calculated by adding the value obtained by multiplying the abundance ratio of each structure in polyglycerin by the number of each hydroxyl group.
Primary hydroxyl group: (L13 × 1) + (T1 × 1) + (T2 × 2)
Secondary hydroxyl group: (L14 × 1) + (T1 × 1)
The ratio of the ratio of the primary hydroxyl group to the secondary hydroxyl group obtained by the above formula is converted into a percentage and used as the abundance ratio of the primary hydroxyl group and the secondary hydroxyl group.
1級水酸基:(L13×1)+(T1×1)+(T2×2)
2級水酸基:(L14×1)+(T1×1)
上記式により求めた1級水酸基と2級水酸基の割合の比を百分率に換算し、1級水酸基と2級水酸基の存在比とする。 With reference to Table 1 above, the abundance ratio of each hydroxyl group can be calculated by adding the value obtained by multiplying the abundance ratio of each structure in polyglycerin by the number of each hydroxyl group.
Primary hydroxyl group: (L13 × 1) + (T1 × 1) + (T2 × 2)
Secondary hydroxyl group: (L14 × 1) + (T1 × 1)
The ratio of the ratio of the primary hydroxyl group to the secondary hydroxyl group obtained by the above formula is converted into a percentage and used as the abundance ratio of the primary hydroxyl group and the secondary hydroxyl group.
得られたポリグリセリンは、各種用途で、分散剤・樹脂原料として使用できる。また、例えば、水酸基の反応によってアクリルエステル化、エポキシ化、ウレタン化、アリルエーテル化、アルコキシシリル化等を行い、これを樹脂原料とすることもできる。更には、例えば、金属酸化物の微粒子等における分散剤としての使用等が挙げられる。
The obtained polyglycerin can be used as a dispersant / resin raw material for various purposes. Further, for example, acrylic esterification, epoxidation, urethanization, allyl etherification, alkoxysilylation and the like can be performed by the reaction of hydroxyl groups, and these can be used as a resin raw material. Further, for example, use as a dispersant in fine particles of a metal oxide or the like can be mentioned.
本発明のポリグリセリンは、公知の方法で水酸基の一部をエポキシ基に変換することができる。
本発明のポリグリセリンは、公知の方法で水酸基の一部を(メタ)アクリル酸又はその誘導体と反応させることで、アクリルエステル化することもできる。
本発明のポリグリセリンは、公知の方法で水酸基の一部をイソシアネート化合物と反応して、ウレタン化することもできる。
本発明のポリグリセリンは、公知の方法で水酸基の一部をアリル化合物と反応して、アリルエーテル化することもできる。
本発明のポリグリセリンは、公知の方法で水酸基の一部を末端にアルコキシシリルを有するイソシアネート化合物、エポキシ化合物等と反応して、アルコキシシリル化することもできる。また、アリルエーテルとのヒドロシレーション反応により、アルコキシシリル化してもよい。 The polyglycerin of the present invention can convert a part of the hydroxyl group into an epoxy group by a known method.
The polyglycerin of the present invention can also be acrylic esterified by reacting a part of the hydroxyl group with (meth) acrylic acid or a derivative thereof by a known method.
The polyglycerin of the present invention can also be urinated by reacting a part of the hydroxyl group with an isocyanate compound by a known method.
The polyglycerin of the present invention can also be converted to allyl ether by reacting a part of the hydroxyl group with an allyl compound by a known method.
The polyglycerin of the present invention can also be alkoxysilylated by reacting a part of the hydroxyl group with an isocyanate compound having an alkoxysilyl at the end, an epoxy compound, or the like by a known method. Further, alkoxysilylation may be performed by a hydrosylation reaction with allyl ether.
本発明のポリグリセリンは、公知の方法で水酸基の一部を(メタ)アクリル酸又はその誘導体と反応させることで、アクリルエステル化することもできる。
本発明のポリグリセリンは、公知の方法で水酸基の一部をイソシアネート化合物と反応して、ウレタン化することもできる。
本発明のポリグリセリンは、公知の方法で水酸基の一部をアリル化合物と反応して、アリルエーテル化することもできる。
本発明のポリグリセリンは、公知の方法で水酸基の一部を末端にアルコキシシリルを有するイソシアネート化合物、エポキシ化合物等と反応して、アルコキシシリル化することもできる。また、アリルエーテルとのヒドロシレーション反応により、アルコキシシリル化してもよい。 The polyglycerin of the present invention can convert a part of the hydroxyl group into an epoxy group by a known method.
The polyglycerin of the present invention can also be acrylic esterified by reacting a part of the hydroxyl group with (meth) acrylic acid or a derivative thereof by a known method.
The polyglycerin of the present invention can also be urinated by reacting a part of the hydroxyl group with an isocyanate compound by a known method.
The polyglycerin of the present invention can also be converted to allyl ether by reacting a part of the hydroxyl group with an allyl compound by a known method.
The polyglycerin of the present invention can also be alkoxysilylated by reacting a part of the hydroxyl group with an isocyanate compound having an alkoxysilyl at the end, an epoxy compound, or the like by a known method. Further, alkoxysilylation may be performed by a hydrosylation reaction with allyl ether.
このようにして得られた各誘導体を樹脂合成の際の原料の一部又は全部として使用することで、ポリグリセリン骨格を有する樹脂を得ることができる。
また、上述したように、本発明のポリグリセリンの製造方法は、使用原料や配合割合を調整することで、その構造を種々変化させることができる。このため、用途において必要とされる物性を有するポリグリセリン骨格を容易に得ることができる点で好ましい。 By using each of the derivatives thus obtained as a part or all of the raw materials for resin synthesis, a resin having a polyglycerin skeleton can be obtained.
Further, as described above, in the method for producing polyglycerin of the present invention, the structure thereof can be variously changed by adjusting the raw materials used and the blending ratio. Therefore, it is preferable in that a polyglycerin skeleton having the physical characteristics required for the application can be easily obtained.
また、上述したように、本発明のポリグリセリンの製造方法は、使用原料や配合割合を調整することで、その構造を種々変化させることができる。このため、用途において必要とされる物性を有するポリグリセリン骨格を容易に得ることができる点で好ましい。 By using each of the derivatives thus obtained as a part or all of the raw materials for resin synthesis, a resin having a polyglycerin skeleton can be obtained.
Further, as described above, in the method for producing polyglycerin of the present invention, the structure thereof can be variously changed by adjusting the raw materials used and the blending ratio. Therefore, it is preferable in that a polyglycerin skeleton having the physical characteristics required for the application can be easily obtained.
以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらによって何らの限定を受けるものではない。
Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
<実施例1>
グリセリン(阪本薬品工業(株)製)を予め、120℃、5mmHg以下の条件で2時間脱水し、反応系内の水分を除去した。ジムロート、温度センサー、窒素管、磁気誘導型撹拌機を備えた100mL容のナスフラスコに、脱水されたグリセリンを30.00g、水酸化ナトリウムを0.15g仕込み、140℃に昇温した。次いで、(ポリ)グリセリン(ポリ)グリシジルエーテルとしてSR-GLG(エポキシ当量142、粘度170mPa・s、阪本薬品工業(株)製)46.26gを30分かけて滴下した。140℃で7時間反応させた後、40mLのイオン交換水を加えて90℃で2時間、酸性イオン交換樹脂を加えて2時間撹拌した。イオン交換樹脂を濾別し、得られたろ液を濃縮することにより、ポリグリセリンを得た。
得られたポリグリセリンの各評価を上記測定・算出方法により行った。 <Example 1>
Glycerin (manufactured by Sakamoto Yakuhin Kogyo Co., Ltd.) was previously dehydrated at 120 ° C. and 5 mmHg or less for 2 hours to remove water in the reaction system. 30.00 g of dehydrated glycerin and 0.15 g of sodium hydroxide were placed in a 100 mL eggplant flask equipped with a gym funnel, a temperature sensor, a nitrogen tube and a magnetic induction stirrer, and the temperature was raised to 140 ° C. Then, 46.26 g of SR-GLG (epoxy equivalent 142, viscosity 170 mPa · s, manufactured by Sakamoto Yakuhin Kogyo Co., Ltd.) was added dropwise as (poly) glycerin (poly) glycidyl ether over 30 minutes. After reacting at 140 ° C. for 7 hours, 40 mL of ion-exchanged water was added and the mixture was stirred at 90 ° C. for 2 hours, and an acidic ion-exchange resin was added and stirred for 2 hours. The ion exchange resin was separated by filtration, and the obtained filtrate was concentrated to obtain polyglycerin.
Each evaluation of the obtained polyglycerin was performed by the above measurement / calculation method.
グリセリン(阪本薬品工業(株)製)を予め、120℃、5mmHg以下の条件で2時間脱水し、反応系内の水分を除去した。ジムロート、温度センサー、窒素管、磁気誘導型撹拌機を備えた100mL容のナスフラスコに、脱水されたグリセリンを30.00g、水酸化ナトリウムを0.15g仕込み、140℃に昇温した。次いで、(ポリ)グリセリン(ポリ)グリシジルエーテルとしてSR-GLG(エポキシ当量142、粘度170mPa・s、阪本薬品工業(株)製)46.26gを30分かけて滴下した。140℃で7時間反応させた後、40mLのイオン交換水を加えて90℃で2時間、酸性イオン交換樹脂を加えて2時間撹拌した。イオン交換樹脂を濾別し、得られたろ液を濃縮することにより、ポリグリセリンを得た。
得られたポリグリセリンの各評価を上記測定・算出方法により行った。 <Example 1>
Glycerin (manufactured by Sakamoto Yakuhin Kogyo Co., Ltd.) was previously dehydrated at 120 ° C. and 5 mmHg or less for 2 hours to remove water in the reaction system. 30.00 g of dehydrated glycerin and 0.15 g of sodium hydroxide were placed in a 100 mL eggplant flask equipped with a gym funnel, a temperature sensor, a nitrogen tube and a magnetic induction stirrer, and the temperature was raised to 140 ° C. Then, 46.26 g of SR-GLG (epoxy equivalent 142, viscosity 170 mPa · s, manufactured by Sakamoto Yakuhin Kogyo Co., Ltd.) was added dropwise as (poly) glycerin (poly) glycidyl ether over 30 minutes. After reacting at 140 ° C. for 7 hours, 40 mL of ion-exchanged water was added and the mixture was stirred at 90 ° C. for 2 hours, and an acidic ion-exchange resin was added and stirred for 2 hours. The ion exchange resin was separated by filtration, and the obtained filtrate was concentrated to obtain polyglycerin.
Each evaluation of the obtained polyglycerin was performed by the above measurement / calculation method.
<実施例2>
(ポリ)グリセリンとしてジグリセリン(阪本薬品工業(株)製)を39.00g、(ポリ)グリセリン(ポリ)グリシジルエーテルとしてSR-GLGを40.03g、触媒として水酸化ナトリウムを0.20g用いたこと以外は、実施例1と同様の条件にて反応を行った。 <Example 2>
39.00 g of diglycerin (manufactured by Sakamoto Pharmaceutical Co., Ltd.) was used as (poly) glycerin, 40.03 g of SR-GLG was used as (poly) glycerin (poly) glycidyl ether, and 0.20 g of sodium hydroxide was used as a catalyst. Except for this, the reaction was carried out under the same conditions as in Example 1.
(ポリ)グリセリンとしてジグリセリン(阪本薬品工業(株)製)を39.00g、(ポリ)グリセリン(ポリ)グリシジルエーテルとしてSR-GLGを40.03g、触媒として水酸化ナトリウムを0.20g用いたこと以外は、実施例1と同様の条件にて反応を行った。 <Example 2>
39.00 g of diglycerin (manufactured by Sakamoto Pharmaceutical Co., Ltd.) was used as (poly) glycerin, 40.03 g of SR-GLG was used as (poly) glycerin (poly) glycidyl ether, and 0.20 g of sodium hydroxide was used as a catalyst. Except for this, the reaction was carried out under the same conditions as in Example 1.
<実施例3>
(ポリ)グリセリンとしてポリグリセリン#500(平均重合度6、阪本薬品工業(株)製)を58.50g、(ポリ)グリセリン(ポリ)グリシジルエーテルとしてSR-4GL(エポキシ当量170、粘度1700mPa・s、阪本薬品工業(株)製)を18.07g、触媒として水酸化ナトリウムを0.29g用いたこと以外は、実施例1と同様の条件にて反応を行った。 <Example 3>
58.50 g of polyglycerin # 500 (average polymerization degree 6, manufactured by Sakamoto Yakuhin Kogyo Co., Ltd.) as (poly) glycerin, SR-4GL (epoxy equivalent 170, viscosity 1700 mPa · s) as (poly) glycerin (poly) glycidyl ether The reaction was carried out under the same conditions as in Example 1 except that 18.07 g of Sakamoto Yakuhin Kogyo Co., Ltd. was used and 0.29 g of sodium hydroxide was used as a catalyst.
(ポリ)グリセリンとしてポリグリセリン#500(平均重合度6、阪本薬品工業(株)製)を58.50g、(ポリ)グリセリン(ポリ)グリシジルエーテルとしてSR-4GL(エポキシ当量170、粘度1700mPa・s、阪本薬品工業(株)製)を18.07g、触媒として水酸化ナトリウムを0.29g用いたこと以外は、実施例1と同様の条件にて反応を行った。 <Example 3>
58.50 g of polyglycerin # 500 (average polymerization degree 6, manufactured by Sakamoto Yakuhin Kogyo Co., Ltd.) as (poly) glycerin, SR-4GL (epoxy equivalent 170, viscosity 1700 mPa · s) as (poly) glycerin (poly) glycidyl ether The reaction was carried out under the same conditions as in Example 1 except that 18.07 g of Sakamoto Yakuhin Kogyo Co., Ltd. was used and 0.29 g of sodium hydroxide was used as a catalyst.
<実施例4>
(ポリ)グリセリンとしてポリグリセリン#500を55.01g、(ポリ)グリセリン(ポリ)グリシジルエーテルとしてSR-GLGを17.00g、触媒として水酸化ナトリウムを0.28g、溶媒としてジエチレングリコールジメチルエーテルを4.46g用いたこと以外は、実施例1と同様の条件にて反応を行った。 <Example 4>
55.01 g of polyglycerin # 500 as (poly) glycerin, 17.00 g of SR-GLG as (poly) glycerin (poly) glycidyl ether, 0.28 g of sodium hydroxide as a catalyst, and 4.46 g of diethylene glycol dimethyl ether as a solvent. The reaction was carried out under the same conditions as in Example 1 except that it was used.
(ポリ)グリセリンとしてポリグリセリン#500を55.01g、(ポリ)グリセリン(ポリ)グリシジルエーテルとしてSR-GLGを17.00g、触媒として水酸化ナトリウムを0.28g、溶媒としてジエチレングリコールジメチルエーテルを4.46g用いたこと以外は、実施例1と同様の条件にて反応を行った。 <Example 4>
55.01 g of polyglycerin # 500 as (poly) glycerin, 17.00 g of SR-GLG as (poly) glycerin (poly) glycidyl ether, 0.28 g of sodium hydroxide as a catalyst, and 4.46 g of diethylene glycol dimethyl ether as a solvent. The reaction was carried out under the same conditions as in Example 1 except that it was used.
<実施例5>
(ポリ)グリセリンとして ポリグリセリン#500を58.50g、(ポリ)グリセリン(ポリ)グリシジルエーテルとしてSR-DGE(エポキシ当量162、粘度650mPa・s、阪本薬品工業(株)製)を18.25g、触媒として水酸化ナトリウムを0.29g、用いたこと以外は、実施例1と同様の条件にて反応を行った。 <Example 5>
58.50 g of polyglycerin # 500 as (poly) glycerin, 18.25 g of SR-DGE (epoxy equivalent 162, viscosity 650 mPa · s, manufactured by Sakamoto Yakuhin Kogyo Co., Ltd.) as (poly) glycerin (poly) glycidyl ether, The reaction was carried out under the same conditions as in Example 1 except that 0.29 g of sodium hydroxide was used as a catalyst.
(ポリ)グリセリンとして ポリグリセリン#500を58.50g、(ポリ)グリセリン(ポリ)グリシジルエーテルとしてSR-DGE(エポキシ当量162、粘度650mPa・s、阪本薬品工業(株)製)を18.25g、触媒として水酸化ナトリウムを0.29g、用いたこと以外は、実施例1と同様の条件にて反応を行った。 <Example 5>
58.50 g of polyglycerin # 500 as (poly) glycerin, 18.25 g of SR-DGE (epoxy equivalent 162, viscosity 650 mPa · s, manufactured by Sakamoto Yakuhin Kogyo Co., Ltd.) as (poly) glycerin (poly) glycidyl ether, The reaction was carried out under the same conditions as in Example 1 except that 0.29 g of sodium hydroxide was used as a catalyst.
<比較例1>
温度センサー、窒素管、撹拌機を備えた1L容のナスフラスコに、グリセリンを700g、水酸化ナトリウムを5.25g仕込んだ。260℃にて重縮合反応させ、水酸基価が960のポリグリセリンを得た。 <Comparative Example 1>
700 g of glycerin and 5.25 g of sodium hydroxide were placed in a 1 L eggplant flask equipped with a temperature sensor, a nitrogen tube and a stirrer. The polycondensation reaction was carried out at 260 ° C. to obtain polyglycerin having a hydroxyl value of 960.
温度センサー、窒素管、撹拌機を備えた1L容のナスフラスコに、グリセリンを700g、水酸化ナトリウムを5.25g仕込んだ。260℃にて重縮合反応させ、水酸基価が960のポリグリセリンを得た。 <Comparative Example 1>
700 g of glycerin and 5.25 g of sodium hydroxide were placed in a 1 L eggplant flask equipped with a temperature sensor, a nitrogen tube and a stirrer. The polycondensation reaction was carried out at 260 ° C. to obtain polyglycerin having a hydroxyl value of 960.
<比較例2>
ジムロート、温度センサー、窒素管、磁気誘導型撹拌機を備えた100mL容のナスフラスコに、脱水されたグリセリンを9.40g、85wt%リン酸を0.075g仕込み、120℃に昇温した。グリシドール66.60gを、シリンジポンプを用いて10時間かけて滴下し、滴下完了後さらに2時間反応させた。30mLのイオン交換水を加えて90℃で2時間、酸性イオン交換樹脂を加えて2時間撹拌した。イオン交換樹脂を濾別し、得られたろ液を濃縮することにより、ポリグリセリンを得た。 <Comparative Example 2>
9.40 g of dehydrated glycerin and 0.075 g of 85 wt% phosphoric acid were placed in a 100 mL eggplant flask equipped with a gym funnel, a temperature sensor, a nitrogen tube and a magnetic induction stirrer, and the temperature was raised to 120 ° C. 66.60 g of glycidol was added dropwise over 10 hours using a syringe pump, and the reaction was further carried out for another 2 hours after the addition was completed. 30 mL of ion-exchanged water was added and the mixture was stirred at 90 ° C. for 2 hours, and an acidic ion-exchange resin was added and stirred for 2 hours. The ion exchange resin was separated by filtration, and the obtained filtrate was concentrated to obtain polyglycerin.
ジムロート、温度センサー、窒素管、磁気誘導型撹拌機を備えた100mL容のナスフラスコに、脱水されたグリセリンを9.40g、85wt%リン酸を0.075g仕込み、120℃に昇温した。グリシドール66.60gを、シリンジポンプを用いて10時間かけて滴下し、滴下完了後さらに2時間反応させた。30mLのイオン交換水を加えて90℃で2時間、酸性イオン交換樹脂を加えて2時間撹拌した。イオン交換樹脂を濾別し、得られたろ液を濃縮することにより、ポリグリセリンを得た。 <Comparative Example 2>
9.40 g of dehydrated glycerin and 0.075 g of 85 wt% phosphoric acid were placed in a 100 mL eggplant flask equipped with a gym funnel, a temperature sensor, a nitrogen tube and a magnetic induction stirrer, and the temperature was raised to 120 ° C. 66.60 g of glycidol was added dropwise over 10 hours using a syringe pump, and the reaction was further carried out for another 2 hours after the addition was completed. 30 mL of ion-exchanged water was added and the mixture was stirred at 90 ° C. for 2 hours, and an acidic ion-exchange resin was added and stirred for 2 hours. The ion exchange resin was separated by filtration, and the obtained filtrate was concentrated to obtain polyglycerin.
<比較例3>
グリセリンを2.00g、85wt%リン酸を0.055g、グリシドールを62.75g用いた以外は、比較例2と同様に実施し、ポリグリセリンを得た。 <Comparative Example 3>
The same procedure as in Comparative Example 2 was carried out except that 2.00 g of glycerin, 0.055 g of 85 wt% phosphoric acid and 62.75 g of glycidol were used to obtain polyglycerin.
グリセリンを2.00g、85wt%リン酸を0.055g、グリシドールを62.75g用いた以外は、比較例2と同様に実施し、ポリグリセリンを得た。 <Comparative Example 3>
The same procedure as in Comparative Example 2 was carried out except that 2.00 g of glycerin, 0.055 g of 85 wt% phosphoric acid and 62.75 g of glycidol were used to obtain polyglycerin.
<評価>
接触角を下記方法により測定した。各々のポリグリセリンについて、イオン交換水で10質量%の水溶液を調製した。また、基材にはスライドガラス(松浪硝子製)を用いた。これらを23℃/50%RHで一日静置後に測定を行った。表面張力計Drop Master 500(協和界面科学製)を用い、スライドガラスに対してポリグリセリン水溶液を1μL滴下し、着滴から1分静置後の接触角をθ/2を用いて求めた。
接触角が30°以下であると濡れに優れ、固体表面の親水性が向上すると評価できる。 <Evaluation>
The contact angle was measured by the following method. For each polyglycerin, a 10 mass% aqueous solution was prepared with ion-exchanged water. In addition, slide glass (manufactured by Matsunami Glass) was used as the base material. These were measured after standing at 23 ° C./50% RH for one day. Using a surface tension meter Drop Master 500 (manufactured by Kyowa Interface Science), 1 μL of a polyglycerin aqueous solution was dropped onto a slide glass, and the contact angle after standing for 1 minute from the drop was determined using θ / 2.
It can be evaluated that when the contact angle is 30 ° or less, the wettability is excellent and the hydrophilicity of the solid surface is improved.
接触角を下記方法により測定した。各々のポリグリセリンについて、イオン交換水で10質量%の水溶液を調製した。また、基材にはスライドガラス(松浪硝子製)を用いた。これらを23℃/50%RHで一日静置後に測定を行った。表面張力計Drop Master 500(協和界面科学製)を用い、スライドガラスに対してポリグリセリン水溶液を1μL滴下し、着滴から1分静置後の接触角をθ/2を用いて求めた。
接触角が30°以下であると濡れに優れ、固体表面の親水性が向上すると評価できる。 <Evaluation>
The contact angle was measured by the following method. For each polyglycerin, a 10 mass% aqueous solution was prepared with ion-exchanged water. In addition, slide glass (manufactured by Matsunami Glass) was used as the base material. These were measured after standing at 23 ° C./50% RH for one day. Using a surface tension meter Drop Master 500 (manufactured by Kyowa Interface Science), 1 μL of a polyglycerin aqueous solution was dropped onto a slide glass, and the contact angle after standing for 1 minute from the drop was determined using θ / 2.
It can be evaluated that when the contact angle is 30 ° or less, the wettability is excellent and the hydrophilicity of the solid surface is improved.
実施例1~5、比較例1~3の評価結果を表2に示す。
Table 2 shows the evaluation results of Examples 1 to 5 and Comparative Examples 1 to 3.
表2の結果より、実施例1~5では、原料を変化させることで分子量が大きく異なるポリグリセリンを得ることができ、かつ、それと同時に多様な分岐度を有するポリグリセリンが得られており、本発明の製造方法により、分子量、分岐度の異なるポリグリセリンの作り分けができていることがわかる。
From the results in Table 2, in Examples 1 to 5, polyglycerin having a significantly different molecular weight can be obtained by changing the raw materials, and at the same time, polyglycerin having various branching degrees can be obtained. It can be seen that the production method of the present invention makes it possible to separately produce polyglycerins having different molecular weights and degree of branching.
本発明のポリグリセリンの製造方法によって、簡便な方法で、分子量及び分岐度が制御されたポリグリセリンを製造することができる点で好ましい。
The method for producing polyglycerin of the present invention is preferable in that polyglycerin having a controlled molecular weight and degree of branching can be produced by a simple method.
The method for producing polyglycerin of the present invention is preferable in that polyglycerin having a controlled molecular weight and degree of branching can be produced by a simple method.
Claims (8)
- (ポリ)グリセリンと(ポリ)グリセリン(ポリ)グリシジルエーテルとを反応させることを特徴とするポリグリセリンの製造方法。 A method for producing polyglycerin, which comprises reacting (poly) glycerin with (poly) glycerin (poly) glycidyl ether.
- 上記(ポリ)グリセリンが、平均重合度が1~20の(ポリ)グリセリンである請求項1記載のポリグリセリンの製造方法。 The method for producing polyglycerin according to claim 1, wherein the (poly) glycerin is (poly) glycerin having an average degree of polymerization of 1 to 20.
- 上記(ポリ)グリセリンが、直鎖状のポリグリセリンである請求項1又は2記載のポリグリセリンの製造方法。 The method for producing polyglycerin according to claim 1 or 2, wherein the (poly) glycerin is a linear polyglycerin.
- (ポリ)グリセリン(ポリ)グリシジルエーテルが、平均重合度1~20の(ポリ)グリセリン部を有する(ポリ)グリセリン(ポリ)グリシジルエーテルである請求項1~3いずれか1項に記載のポリグリセリンの製造方法。 The polyglycerin according to any one of claims 1 to 3, wherein the (poly) glycerin (poly) glycidyl ether is a (poly) glycerin (poly) glycidyl ether having a (poly) glycerin moiety having an average degree of polymerization of 1 to 20. Manufacturing method.
- (ポリ)グリセリン(ポリ)グリシジルエーテルが、1~22のグリシジル基を有する(ポリ)グリセリン(ポリ)グリシジルエーテルである請求項1~4いずれか1項に記載のポリグリセリンの製造方法。 The method for producing polyglycerin according to any one of claims 1 to 4, wherein the (poly) glycerin (poly) glycidyl ether is a (poly) glycerin (poly) glycidyl ether having 1 to 22 glycidyl groups.
- 重量平均分子量が300~25,000であり、分岐度が0.1~0.6であることを特徴とするポリグリセリン。 A polyglycerin having a weight average molecular weight of 300 to 25,000 and a degree of branching of 0.1 to 0.6.
- 分散度が3以上であることを特徴とする請求項6記載のポリグリセリン。 The polyglycerin according to claim 6, wherein the degree of dispersion is 3 or more.
- 1級水酸基/2級水酸基の存在比が30/70~50/50である請求項6又は7記載のポリグリセリン。 The polyglycerin according to claim 6 or 7, wherein the abundance ratio of the primary hydroxyl group / secondary hydroxyl group is 30/70 to 50/50.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020227038788A KR20230031815A (en) | 2020-07-01 | 2021-06-07 | Manufacturing method of polyglycerin and polyglycerin |
CN202180036161.4A CN115667363A (en) | 2020-07-01 | 2021-06-07 | Method for producing polyglycerol and polyglycerol |
JP2022533776A JPWO2022004286A1 (en) | 2020-07-01 | 2021-06-07 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-113797 | 2020-07-01 | ||
JP2020113797 | 2020-07-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022004286A1 true WO2022004286A1 (en) | 2022-01-06 |
Family
ID=79315286
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/021573 WO2022004286A1 (en) | 2020-07-01 | 2021-06-07 | Manufacturing method for polyglycerin, and polyglycerin |
Country Status (5)
Country | Link |
---|---|
JP (1) | JPWO2022004286A1 (en) |
KR (1) | KR20230031815A (en) |
CN (1) | CN115667363A (en) |
TW (1) | TW202212411A (en) |
WO (1) | WO2022004286A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001261775A (en) * | 2000-03-14 | 2001-09-26 | Sakamoto Yakuhin Kogyo Co Ltd | New oligomer-containing polyglycidyl ether compound, and curable resin composition using the same |
JP2010100531A (en) * | 2008-10-21 | 2010-05-06 | Sakamoto Yakuhin Kogyo Co Ltd | Polyglycerin alkyl ether, and method of producing the same |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09235246A (en) | 1996-02-29 | 1997-09-09 | Lion Corp | Production of polyglycerol compound having branched polyglycerol chain |
JP5502349B2 (en) | 2009-03-13 | 2014-05-28 | 出光興産株式会社 | Water based lubricant |
JP2018074048A (en) | 2016-10-31 | 2018-05-10 | 花王株式会社 | Polishing liquid composition for silicon wafer |
-
2021
- 2021-06-07 CN CN202180036161.4A patent/CN115667363A/en active Pending
- 2021-06-07 JP JP2022533776A patent/JPWO2022004286A1/ja active Pending
- 2021-06-07 WO PCT/JP2021/021573 patent/WO2022004286A1/en active Application Filing
- 2021-06-07 KR KR1020227038788A patent/KR20230031815A/en active Search and Examination
- 2021-06-28 TW TW110123600A patent/TW202212411A/en unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001261775A (en) * | 2000-03-14 | 2001-09-26 | Sakamoto Yakuhin Kogyo Co Ltd | New oligomer-containing polyglycidyl ether compound, and curable resin composition using the same |
JP2010100531A (en) * | 2008-10-21 | 2010-05-06 | Sakamoto Yakuhin Kogyo Co Ltd | Polyglycerin alkyl ether, and method of producing the same |
Also Published As
Publication number | Publication date |
---|---|
CN115667363A (en) | 2023-01-31 |
KR20230031815A (en) | 2023-03-07 |
TW202212411A (en) | 2022-04-01 |
JPWO2022004286A1 (en) | 2022-01-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6061494B2 (en) | Process for the preparation of alkoxylation products and DMC catalysts | |
US9783635B2 (en) | Polyoxyalkylenes with pendant long-chain acyloxy groups and method for producing same using DMC catalysts | |
Unnikrishnan et al. | Synthesis and characterization of cardanol-based epoxy systems | |
CA2703076C (en) | Process for the preparation of polyether alcohols from unsaturated starters having active hydrogen atoms | |
EP2022808A1 (en) | Polyether and method for producing the same | |
CN109970961B (en) | Preparation method of terminal alkenyl terminated unsaturated polyether | |
WO2022004286A1 (en) | Manufacturing method for polyglycerin, and polyglycerin | |
JP4329879B2 (en) | Active energy ray-curable composition and method for producing the same | |
JP5081625B2 (en) | Process for the preparation of pure alpha-alkoxy-omega-hydroxy-polyalkylene glycols | |
KR101884165B1 (en) | Polymers on the basis of glycerin carbonate and an alcohol | |
Dimitrov et al. | Triblock and Radial Star‐Block Copolymers Comprised of Poly (ethoxyethyl glycidyl ether), Polyglycidol, Poly (propylene oxide) and Polystyrene Obtained by Anionic Polymerization Initiated by Cs Initiators | |
CN103224621B (en) | The alcoholysis method improved and device | |
CN103946270B (en) | Nonmetal initiator is used to synthesize high molecular PEO | |
CN106242954B (en) | The preparation method of polyetheramine low molecular polyether polyalcohol | |
CN104812799A (en) | Polyalkylene carbonate resin and method for producing same | |
KR20140125736A (en) | Unsaturated polycarbonate diol, procedure to obtain such polycarbonate diol and its use | |
JPH10510315A (en) | Polyether glycols and alcohols derived from 3,4-epoxy-1-butene, tetrahydrofuran and initiator | |
Montornes et al. | Synthesis of New Reactive Polyethers: Poly (ω‐bromoalkyl‐1‐glycidylether) s | |
Sibaja et al. | Synthesis and Characterization of Interpenetrating Polymer Networks (IPNs) from Acrylated Soybean Oil and α-Resorcylic Acid: Part 1. Kinetics of Network Formation | |
CN112513138A (en) | Process for producing ether derivative | |
US20240191025A1 (en) | Novel polyethers on the basis of 2,3-epoxybutane and process for the preparation thereof | |
Jedliński et al. | Polymerization of chlorophenyl glycidyl ethers. VI: Chain transfer reaction in the potassium glycolates-lnitiated anionic polymerization of p-chlorophenyl glycidyl ether | |
CN106967212B (en) | A kind of compound more heteroacid and its method for being used to prepare small-molecular-weight glycerin polyether | |
JP6210815B2 (en) | Compound containing sulfonic acid (salt) group and amino group and method for producing the same | |
JP2022157467A (en) | Method for producing alkylene oxide adduct of sugar |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21833961 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022533776 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21833961 Country of ref document: EP Kind code of ref document: A1 |