[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022003808A1 - Livestock barn management system - Google Patents

Livestock barn management system Download PDF

Info

Publication number
WO2022003808A1
WO2022003808A1 PCT/JP2020/025624 JP2020025624W WO2022003808A1 WO 2022003808 A1 WO2022003808 A1 WO 2022003808A1 JP 2020025624 W JP2020025624 W JP 2020025624W WO 2022003808 A1 WO2022003808 A1 WO 2022003808A1
Authority
WO
WIPO (PCT)
Prior art keywords
livestock
area
air volume
areas
control device
Prior art date
Application number
PCT/JP2020/025624
Other languages
French (fr)
Japanese (ja)
Inventor
功 四方
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2022533301A priority Critical patent/JP7341344B2/en
Priority to PCT/JP2020/025624 priority patent/WO2022003808A1/en
Publication of WO2022003808A1 publication Critical patent/WO2022003808A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K1/00Housing animals; Equipment therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/70Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in livestock or poultry

Definitions

  • This disclosure relates to a barn management system that controls the amount of air blown that is comfortable for livestock in the barn.
  • Patent Document 1 controls the rotation speed of a plurality of blowers provided in the barn based on information including the position of the livestock in the barn and the average value of the body temperature of the livestock existing in the barn. A technique for selecting a blower and controlling the rotation speed of the selected blower is disclosed.
  • Patent Document 1 has a problem that it is difficult to provide a comfortable environment for all livestock in the barn. For example, when the position of a livestock with a high body temperature is close to the position of a livestock with a low body temperature, if the rotation speed of the blower is controlled according to the livestock with a high body temperature, the wind will hit too much for the livestock with a low body temperature. You may get sick. Therefore, there has been a demand for a technique capable of providing an environment in the barn so that each livestock in the barn feels comfortable.
  • the present disclosure has been made in view of the above, and an object thereof is to obtain a barn management system capable of providing livestock with an environment in which each livestock in the barn feels comfortable.
  • the barn management system of the present disclosure is a barn management system that manages the air volume in a barn having a breeding area where livestock are bred, and is a blower and a first control. It is equipped with a device.
  • the blower is a plurality of areas in which the breeding area is divided, and is arranged in each of the plurality of areas where livestock can move to each other.
  • the first control device controls the operation of the blower.
  • the first control device controls the operation of the blower so that the air volumes in at least two of the plurality of areas are different from each other.
  • the barn management system has the effect of being able to provide livestock with an environment in which each livestock in the barn feels comfortable.
  • the figure which shows the other example of the structure of the barn management system according to Embodiment 1. A flowchart showing an example of the procedure of the barn management method according to the first embodiment.
  • FIG. 1 is a diagram schematically showing an example of the configuration of the barn management system according to the first embodiment.
  • the barn management system 10 is provided in the barn 11 in which the livestock 21 is bred, for example.
  • An example of livestock 21 is a pig, cow, sheep, dog, cat or chicken.
  • the barn 11 includes a floor 12, a side wall 13, a ceiling 14, and a fence 15.
  • the livestock 21 is bred in the breeding area 70 which is the area surrounded by the fence 15 or the area surrounded by the fence 15 and the side wall 13.
  • the barn management system 10 includes an infrared sensor 31, a blower 32, and a control device 50.
  • the infrared sensor 31 and the control device 50, and the blower 32 and the control device 50 are communicably connected via wiring or a network 40.
  • the network 40 may be wired or wireless. Further, the network 40 may include an internet line. As a result, data is exchanged between the infrared sensor 31 and the control device 50, and between the blower 32 and the control device 50 via wiring or the network 40. Further, by connecting the barn 11 and the control device 50 via the network 40, it is possible to control the blower 32 in the barn 11 from a position physically distant from the barn 11.
  • the infrared sensor 31 is an example of a livestock number detection unit that is installed in the livestock barn 11 and detects the number of livestock 21.
  • the infrared sensor 31 detects the temperature of an object existing in the breeding area 70.
  • the infrared sensor 31 is installed on the ceiling 14 of the barn 11.
  • the infrared sensor 31 includes a detection unit 311 which is a sensor for detecting the surface temperature of the livestock 21 and a cylindrical holding unit 312 for holding the detection unit 311.
  • the detection unit 311 is arranged parallel to the cylindrical axis which is the central axis of the cylindrical holding unit 312, and the detection unit 311 detects a linear range parallel to the cylindrical axis.
  • the holding portion 312 is rotatable about a cylindrical axis. By rotating the holding unit 312, the detection unit 311 can detect a planar range.
  • the infrared sensor 31 scans a predetermined area of the barn 11, measures the temperature of an object existing in the scanned breeding area 70, and outputs the measurement result to the control device 50.
  • the infrared sensor 31 may be installed on the side wall 13 or the fence 15 as long as the breeding area 70 can be detected.
  • the blower 32 is a device that sends wind to the livestock 21 in the breeding area 70.
  • the blower 32 is installed on the fence 15.
  • the blower 32 may be installed on the side wall 13 or the ceiling 14 instead of the fence 15.
  • the breeding area 70 is divided into a plurality of virtual areas.
  • FIG. 2 is a plan view showing an example of a breeding area in the barn management system according to the first embodiment.
  • the breeding area 70 is divided into three areas 71A, 71B, 71C.
  • the rearing area 70 is large enough for one or one livestock 21 and has a movable area.
  • one or more or one or more livestock 21 are bred.
  • the plurality of areas 71A, 71B, and 71C are virtual areas, and there is no boundary that physically separates the areas. Therefore, the livestock 21 can freely cross not only within each area 71A, 71B, 71C but also between areas 71A, 71B, 71C.
  • the barn management system 10 includes a plurality of infrared sensors 31A, 31B, 31C and a plurality of blowers 32A, 32B, 32C. That is, the infrared sensor 31A and the blower 32A are arranged in the area 71A, the infrared sensor 31B and the blower 32B are arranged in the area 71B, and the infrared sensor 31C and the blower 32C are arranged in the area 71C. .. In the example of FIG.
  • each of the infrared sensors 31A, 31B, 31C is provided on the ceiling 14 corresponding to the central portion of the respective areas 71A, 71B, 71C, and each of the blowers 32A, 32B, 32C is provided in each area. It is provided on the fence 15 of 71A, 71B, 71C.
  • the holding unit 312 rotates so that the entire areas 71A, 71B, and 71C can be detected by the detection unit 311, respectively.
  • two or more blowers 32A, 32B, 32C may be provided in each area 71A, 71B, 71C.
  • Area 71A is an area where the air volume is mainly controlled by the blower 32A
  • area 71B is an area where the air volume is mainly controlled by the blower 32B
  • area 71C is an area where the air volume is mainly controlled by the blower 32C. It is an area. That is, the areas 71A, 71B, and 71C are areas that virtually divide the areas where the air volume is mainly controlled by the blowers 32A, 32B, and 32C, respectively.
  • the infrared sensors 31A, 31B and 31C it is referred to as an infrared sensor 31, and when it is not necessary to distinguish the blowers 32A, 32B and 32C, it is referred to as a blower 32.
  • the area 71 when it is not necessary to distinguish the areas 71A, 71B and 71C, it is described as the area 71.
  • control device 50 processes the input data from the infrared sensor 31, calculates the number of livestock 21 existing in each area 71, and controls the operation of the blower 32 based on the number of livestock 21.
  • the control device 50 includes an input data processing unit 51, a livestock number calculation unit 52, and a drive control unit 53.
  • the input data processing unit 51 processes the input data which is the detection result from the infrared sensor 31, and in one example, generates a thermal image showing the temperature distribution for the detected area 71.
  • the area scanned by each infrared sensor 31 corresponds to each area 71. That is, the thermal image obtained from each infrared sensor 31 can be associated with the captured area 71.
  • the livestock number calculation unit 52 calculates the number of livestock 21 existing in each area 71 from the thermal image of each area 71 generated by the input data processing unit 51. Normally, the floor 12 and the livestock 21 have different temperatures, so that they are displayed at different temperatures in the thermal image. Therefore, the livestock number calculation unit 52 can easily distinguish between the floor 12 and the livestock 21 in the detection area from the thermal image, so that the living body such as the livestock 21 can be easily detected.
  • the livestock number calculation unit 52 outputs the area state information, which is the calculated number of livestock 21 in each area 71, to the drive control unit 53.
  • the drive control unit 53 controls the operation of the blower 32 provided in each area 71 based on the area state information.
  • the drive control unit 53 controls the operation of the blower 32 so as to be in the first state in which the blowers 32 in at least two of the plurality of areas 71 in the breeding area 70 are operated with different air volumes.
  • the drive control unit 53 controls the air volume of the blower 32 based on the number of livestock 21 in each area 71 of the area state information.
  • the drive control unit 53 operates the blower 32 so that the air volume in at least one area 71 of each area 71 is different from that in the first state, based on the number of livestock 21 in each area 71.
  • the air volume of the blower 32 is controlled so as to be in the second state.
  • FIG. 3 is a diagram schematically showing an example of blower control in the barn management system according to the first embodiment.
  • FIG. 2 a case where the breeding area 70 is divided into three areas 71A, 71B, and 71C will be taken as an example.
  • the drive control unit 53 of the control device 50 controls the operation of the blowers 32 arranged in each area 71 so that the amount of air blown is in the relationship of area 71A> area 71B> area 71C.
  • the air volume of the blower 32 can be set in five stages from “0" to "5", and the larger the value, the larger the air volume.
  • the drive control unit 53 is in the first state where the air volume is "4" in the area 71A, the air volume is "3" in the area 71B, and the air volume is "2" in the area 71C.
  • the operation of the blower 32 is controlled. That is, in the breeding area 70, areas 71 having different air volumes exist at the same time.
  • a plurality of livestock 21 such as pigs are bred, and within the breeding area 70, the livestock 21 can move between the areas 71.
  • the livestock 21 is an organism that can feel a hot area or a cool area by moving in the breeding area 70 and can act autonomously by learning. That is, the livestock 21 is an animal that can move to an area 71 that is cooler than the present when it feels hot, and can move to an area 71 that is hotter than the present when it feels cold. be.
  • the air volume of each area 71 is set so that the air volume gradually decreases or increases along the direction in which the areas 71 are arranged. By doing so, the livestock 21 can learn in which direction the air volume decreases or increases.
  • an example is taken when the livestock 21 feels hot due to factors such as an increase in the outside air temperature.
  • the livestock 21 instinctively moves to a cooler area 71A or 71B with a large air volume.
  • the number of livestock 21 existing in the area 71C is reduced, or the livestock 21 disappears.
  • Such a state is detected by the livestock number calculation unit 52 by analyzing the thermal image obtained from the input data from the infrared sensor 31 that scans each area 71.
  • the drive control unit 53 causes the livestock 21 to heat up when the number of livestock 21 in the area 71C having the smallest air volume continues to be smaller than the predetermined comparison reference value for a predetermined period. Judge that you are feeling. Then, the drive control unit 53 controls to raise the air volume of each area 71 in the breeding area 70 by one step. In this case, the drive control unit 53 raises the air volume in the area 71A to "5", raises the air volume in the area 71B to "4", and raises the air volume in the area 71C to "3". , Control the operation of the blower 32. That is, as described above, the blower 32 is operated so that the air volume of at least one of the plurality of areas 71 is different from the state at the time of the previous air volume control, in this case, the first state. There is.
  • the livestock 21 determines that he does not feel the heat.
  • the number of livestock 21 in the area 71C is the same as the comparison reference value, it may be determined that the livestock 21 feels the heat, or it may be determined that the livestock 21 does not feel the heat. ..
  • the livestock 21 feels cool due to factors such as a decrease in the outside air temperature from the state where the air volume is increased by one step is taken as an example.
  • the livestock 21 instinctively moves to a warmer area 71B or 71C with a smaller air volume, contrary to the case where the livestock 21 feels hot.
  • the number of livestock 21 existing in the area 71A decreases, or the livestock 21 disappears.
  • Such a state is detected by the livestock number calculation unit 52 by analyzing the thermal image obtained from the input data from the infrared sensor 31 that scans each area 71.
  • the drive control unit 53 feels cool when the number of livestock 21 in the area 71A having the maximum air volume is smaller than the comparison reference value for a predetermined period of time. That is, it is judged that the heat is not felt. Then, the drive control unit 53 controls to reduce the air volume of each area 71 in the breeding area 70 by one step. In this case, the drive control unit 53 lowers the air volume in the area 71A to "4", lowers the air volume in the area 71B to "3", and lowers the air volume in the area 71C to "2". , Control the operation of the blower 32. Again, as described above, the blower 32 is operated so that the air volume in at least one of the plurality of areas 71 is different from the state at the time when the air volume control was performed last time.
  • the livestock 21 determines that he does not feel cool.
  • the number of livestock 21 in the area 71A is the same as the comparison reference value, it may be determined that the livestock 21 feels cool or does not feel cool. ..
  • the drive control unit 53 raises the air volume in each area 71 of the breeding area 70 by one step. .. Further, when the number of livestock 21 in the area 71 on the high air volume side is smaller than the comparison reference value, the drive control unit 53 lowers the air volume in each area 71 of the breeding area 70 by one step. By repeatedly performing such control, it is possible to realize a breeding area 70 that maintains an optimum air volume environment in real time.
  • the air volume increases or decreases from the area 71 at one end to the area 71 at the other end in a certain direction. It is desirable to control the operation of the blower 32 in each area 71.
  • the air volume is controlled by using the number of livestock 21 in each area 71 is shown, but at least the number of livestock 21 in the area 71A having the maximum air volume and the area 71C having the minimum air volume is used. Anything may be used as long as the air volume is controlled using the indicated index.
  • An example of an index showing the number of livestock 21 is the ratio of the number of livestock 21 in each area 71, the average value of the livestock 21 in each area 71 in a predetermined period, or the area 71A having the maximum air volume and the air volume.
  • the number of livestock 21 in the smallest area 71C can be used.
  • the drive control unit 53 may control the air volume of each area 71 in the breeding area 70 by determining the ratio of the number of livestock 21 in each area 71. ..
  • the average value of the number of livestock 21 in each area 71 in a certain time may be obtained, and the air volume may be controlled based on the average value.
  • the infrared sensor 31 may be provided only in the area 71A having the maximum air volume and the area 71C having the minimum air volume. Then, the drive control unit 53 can also control the air volume by using only the detection results from the area 71A having the maximum air volume and the area 71C having the minimum air volume.
  • the livestock 21 learns from the state where the livestock 21 instinctively moves while searching for a favorable environment, and can move without searching for a favorable environment. Therefore, in order to further improve the learning effect, the range in which the livestock 21 can be seen in each area 71 may be colored.
  • the floor 12, the side wall 13 of the area 71A, the wall and the fence 15 may be colored with a cool color
  • the floor 12, the wall and the fence 15 of the area 71C may be colored with a warm color. good.
  • the learning effect on the air volume of the livestock 21 is improved, and when the livestock 21 feels hot, it moves to the cold color area 71A, and when it feels cold, it moves to the warm color area 71C. You will be able to move to.
  • the color is not limited to the warm color and the cold color, and any color can be used.
  • FIG. 4 is a diagram schematically showing another example of the configuration of the barn management system according to the first embodiment.
  • the barn management system 10 of FIG. 4 shows a case where the barn 11 is an open type barn 11A without a side wall 13. In the open type livestock barn 11A, there is no side wall 13, and the ceiling 14 has a structure supported by pillars 16 erected on the floor 12.
  • the barn management system 10 further includes an outside air temperature measuring unit 33 for measuring the outside air temperature outside the open barn 11A.
  • the outside air temperature measuring unit 33 is connected to the control device 50 via the network 40.
  • An example of the outside air temperature measuring unit 33 is a thermocouple and a resistance temperature measuring resistor. The outside air temperature measuring unit 33 outputs the detected air temperature to the control device 50.
  • the drive control unit 53 of the control device 50 is in addition to an index indicating the number of livestock 21 in the area 71 having the maximum air volume or the area 71 having the minimum air volume, especially at sunrise and sunset when the outside air temperature changes suddenly.
  • the air volume of the blower 32 is controlled in consideration of the outside air temperature measured by the outside air temperature measuring unit 33. For example, when the outside air temperature rises sharply, the temperature inside the open-type livestock barn 11A is expected to rise after that, so that the air volume is controlled to increase. Further, when the outside air temperature drops sharply, the temperature inside the open-type livestock barn 11A is expected to drop after that, so that the air volume is controlled to be lowered. As a result, the optimum environment for the livestock 21 can be realized at an earlier timing.
  • the same components as those in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted.
  • the infrared sensor 31 rotates the holding unit 312 around the cylindrical axis to move the detection unit 311 so that the linear detection range of the detection unit 311 is in each area 71. I was trying to be.
  • the infrared sensor 31 may be an infrared array sensor capable of detecting a planar range.
  • the holding portion 312 does not necessarily have to be rotatable.
  • the livestock number calculation unit 52 obtains the surface temperature of each livestock 21 included in the thermal image, and the absolute value of the difference between the surface temperature and the predetermined first set value is a predetermined second set value. If it is larger than the above, it may have a function of extracting the corresponding livestock 21 as a livestock 21 that may be out of order.
  • the first set value is the average value of the surface temperature of the livestock 21.
  • the livestock number calculation unit 52 may obtain the average temperature, which is the average value of the surface temperature of the livestock 21, and use it as the first set value. Further, even if the livestock number calculation unit 52 has a function of extracting livestock 21 having a difference between the surface temperature and the average temperature higher than the second set value as livestock 21 which may be out of order.
  • the position of the livestock 21 which may be out of order can be obtained from the thermal image. Further, the livestock number calculation unit 52 may notify the manager who manages the barns 11, 11A, for example, of an alarm indicating that the livestock 21 which may be out of order exists. This makes it possible to detect livestock 21 that may be out of order at an early stage.
  • the drive control unit 53 changes the air volume according to the number of livestock 21 in the areas 71 having different air volumes. You may. In one example, if the number of livestock 21 in another area 71 that has a larger air volume than that of one area 71 is less than the predetermined ratio of the number of livestock 21 in one area 71, the other The air volume of the area 71 may be reduced so that the number of livestock 21 among the areas 71 becomes equal.
  • the air volume is particularly large near the blower 32 in each area 71, and the air volume decreases as the distance from the blower 32 increases. Therefore, by using the input data from the infrared sensor 31 to calculate the position of the livestock 21 in the area 71, that is, the distance of the livestock 21 from the blower 32, the feeling of heat by the livestock 21 is estimated. Can be done. Then, the feeling of heat by the livestock 21 can be used for controlling the air volume.
  • the livestock number calculation unit 52 calculates the distance of the livestock 21 from the blower 32 from the thermal image, and the drive control unit 53 considers the feeling of heat by the livestock 21 from the distance of the livestock 21 from the blower 32. Then, the air volume is controlled. For example, when the distance of the livestock 21 from the blower 32 is large, it is possible to control the livestock 21 to lower the stage of the air volume, assuming that the livestock 21 does not feel the heat.
  • step S11 the drive control unit 53 of the control device 50 controls the air volume of the blower 32 in each area 71 in the breeding area 70 according to a predetermined setting (step S11).
  • the drive control unit 53 operates the blowers 32 in at least two areas 71 out of the plurality of areas 71 with different air volumes.
  • the drive control unit 53 controls the operation of the blower 32 in each area 71 so that the air volumes in all the areas 71 are all different.
  • the input data processing unit 51 of the control device 50 acquires the input data from the infrared sensor 31 of each area 71, processes the input data, and generates a thermal image of each area 71 (step S12).
  • the livestock number calculation unit 52 of the control device 50 calculates the number of livestock 21 existing in each area 71 from the thermal image (step S13).
  • the number of livestock 21 in the area 71A is calculated using the thermal image generated from the input data of the infrared sensor 31A.
  • the number of livestock 21 in the area 71B is calculated using the thermal image generated from the input data of the infrared sensor 31B.
  • the number of livestock 21 in the area 71C is calculated using the thermal image generated from the input data of the infrared sensor 31C.
  • the drive control unit 53 determines whether the number of livestock 21 in the area 71 having the minimum air volume is smaller than the comparison reference value (step S14).
  • the comparison reference value is appropriately set according to the type of livestock 21, the total number of livestock 21 in the breeding area 70, and the like.
  • the drive control unit 53 starts timing (step S15).
  • the input data processing unit 51 acquires the input data from the infrared sensor 31 of each area 71, processes the input data, and generates a thermal image of each area 71 (step S16).
  • the livestock number calculation unit 52 calculates the number of livestock 21 existing in each area 71 from the thermal image (step S17).
  • the drive control unit 53 determines whether the number of livestock 21 in the area 71 having the minimum air volume exceeds the comparison reference value (step S18). When the number of livestock 21 in the area 71 with the minimum air volume exceeds the comparison reference value (Yes in step S18), the drive control unit 53 ends the timekeeping (step S19) and processes to step S12. Is back.
  • step S20 determines whether the number of livestock 21 is continuously reduced beyond a predetermined period in order to exclude the case where the number of livestock 21 in the area 71 with the minimum air volume is accidentally reduced. It is a thing.
  • the predetermined period varies depending on the type of livestock 21, but in one example, it can be 10 minutes. If a predetermined period has not elapsed since the start of timekeeping (No in step S20), the process returns to step S16.
  • step S20 When a predetermined period has elapsed from the start of timekeeping (yes in step S20), it is determined that many livestock 21 are feeling the heat, and the drive control unit 53 determines that all areas. Control is performed to raise the air volume of the blower 32 of 71 by one step (step S21). In the area 71 where the air volume of the blower 32 is at the maximum stage, the air volume is maintained at the maximum stage. After that, the process returns to step S12.
  • the drive control unit 53 determines the number of livestock 21 in the area 71 having the maximum air volume. Is less than the comparison reference value (step S22). When the number of livestock 21 in the area 71 having the maximum air volume is smaller than the comparison reference value (Yes in step S22), the drive control unit 53 starts timing (step S23).
  • the input data processing unit 51 acquires the input data from the infrared sensor 31 of each area 71, processes the input data, and generates a thermal image of each area 71 (step S24).
  • the livestock number calculation unit 52 calculates the number of livestock 21 existing in each area 71 from the thermal image (step S25).
  • the drive control unit 53 determines whether the number of livestock 21 in the area 71 having the maximum air volume exceeds the comparison reference value (step S26). When the number of livestock 21 in the area 71 with the minimum air volume exceeds the comparison reference value (Yes in step S26), the drive control unit 53 ends the timekeeping (step S27) and processes to step S12. Is back.
  • step S26 When the number of livestock 21 in the area 71 having the maximum air volume does not exceed the comparison reference value (No in step S26), the drive control unit 53 elapses a predetermined period from the start of timekeeping. It is determined whether or not it has been done (step S28). If a predetermined period has not elapsed since the start of timekeeping (No in step S28), the process returns to step S24.
  • step S28 When a predetermined period has elapsed from the start of timekeeping (Yes in step S28), it is determined that many livestock 21 are feeling cool, and the drive control unit 53 determines that all areas are cool. Control is performed to reduce the air volume of the blower 32 of 71 by one step (step S29). In the area 71 where the air volume of the blower 32 is at the minimum stage, the air volume is maintained at the minimum stage. After that, the process returns to step S12.
  • step S22 When the number of livestock 21 in the area 71 having the maximum air volume in step S22 is not less than the comparison reference value (No in step S22), it is determined that many livestock 21 are satisfied with the current air volume. Then, the drive control unit 53 maintains the air volume of the blower 32 in each area 71 (step S30), and the process returns to step S12. Then, the above processing will be repeatedly executed.
  • a plurality of areas 71 having different airflow volumes through which the livestock 21 can come and go are prepared, the livestock 21 are bred in the areas 71, and the area 71 where the livestock 21 is located is monitored by the infrared sensor 31. If the number of livestock 21 in the area 71 with the minimum air flow is less than the predetermined number, it is determined that the livestock 21 feels hot, and the air volume of at least one or more areas 71 is increased, and vice versa. In addition, when the number of livestock 21 in the area 71 having the maximum air volume is less than the predetermined number, it is determined that the livestock 21 does not feel the heat, and the air volume of at least one area 71 is determined. I tried to lower it.
  • the livestock 21 moves to the area 71 having an air volume that the livestock 21 itself feels comfortable, so that it is possible to provide the area 71 that both feel comfortable. That is, it is possible to provide the livestock 21 with an environment in which each of the livestock 21 in the barns 11 and 11A feels comfortable.
  • Embodiment 2 In the first embodiment, an infrared sensor 31 is provided in each of the plurality of areas 71 provided in the breeding area 70, and the number of livestock 21 in each area 71 is calculated based on the input data from the infrared sensor 31 of each area 71. It was calculated. In the second embodiment, a case where the number of livestock 21 in each area 71 is calculated by detecting the position of the livestock 21 in the breeding area 70 will be described.
  • FIG. 7 is a diagram schematically showing an example of the configuration of the barn management system according to the second embodiment.
  • the same components as those in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted.
  • the barn management system 10 according to the second embodiment includes an infrared sensor 34 which is a position detection unit capable of detecting the position of the livestock 21 existing in the breeding area 70. That is, in the first embodiment, the infrared sensor 31 is provided for each area 71 in order to obtain the number of livestock 21 in each area 71, but in the second embodiment, the infrared sensor 34 is a breeding area 70. It is provided in. In one example, the infrared sensor 34 is installed on the ceiling 14 of the barn 11 corresponding to the central portion of the breeding area 70.
  • the infrared sensor 34 includes a detection unit 341, which is a sensor for detecting the surface temperature of the livestock 21, and a cylindrical holding unit 342 for holding the detection unit 341.
  • the detection unit 341 is arranged parallel to the cylindrical axis, which is the central axis of the cylindrical holding unit 342, and the detection unit 341 detects a linear range parallel to the cylindrical axis.
  • the holding portion 342 is rotatable about a cylindrical axis. By rotating the holding unit 342, the detection unit 341 can detect a planar range.
  • the infrared sensor 34 scans the breeding area 70, measures the temperature of the object existing in the scanned breeding area 70, and outputs the measurement result to the control device 50.
  • the infrared sensor 34 may be installed on the side wall 13 or the fence 15 as long as the entire breeding area 70 can be detected.
  • the infrared sensor 34 rotates the holding unit 342 around the cylindrical axis to move the detection unit 341 so that the linear detection range of the detection unit 341 becomes the breeding area 70.
  • the infrared sensor 34 may be an infrared array sensor capable of detecting a planar range.
  • the holding portion 342 does not necessarily have to be rotatable.
  • FIG. 8 is a diagram showing an example of a breeding area in the barn management system according to the second embodiment.
  • the same components as those in FIG. 2 are designated by the same reference numerals, and the description thereof will be omitted.
  • one infrared sensor 34 is provided at the position of the ceiling 14 corresponding to the central portion of the breeding area 70.
  • the holding unit 342 rotates so that the entire breeding area 70 can be detected by the detecting unit 341.
  • control device 50 has the same configuration as that of the first embodiment, but the processing is different from that of the first embodiment.
  • the input data processing unit 51 processes the input data from the infrared sensor 34 and generates a thermal image showing the temperature distribution over the entire breeding area 70.
  • the livestock number calculation unit 52 detects the position of the livestock 21 existing in the breeding area 70 from the thermal image. As described above, since the temperature of the floor 12 and the livestock 21 are different, the livestock number calculation unit 52 can detect the livestock 21 by the thermal image. Further, the scan range of the infrared sensor 34 is the breeding area 70, and by associating the position of the breeding area 70 with the thermal image, the livestock number calculation unit 52 may detect the livestock 21 in the thermal image in the breeding area 70. The position on the top can be calculated. Then, the livestock number calculation unit 52 calculates the number of livestock 21 existing in each area 71A, 71B, 71C, and generates the area state information in which the number of livestock 21 is calculated for each of the areas 71A, 71B, 71C.
  • the drive control unit 53 performs the processing in the same manner as in the first embodiment, but at this time, the number of livestock 21 in each area 71A, 71B, 71C is used with reference to the area state information.
  • the barn management method in such a barn management system 10 is the same as that described in FIGS. 5 and 6 of the first embodiment. However, the following points are different from the first embodiment.
  • the input data processing unit 51 acquires the input data from the infrared sensor 34 and generates a thermal image of the breeding area 70.
  • the livestock number calculation unit 52 obtains the position of each livestock 21 from the thermal image of the breeding area 70, and calculates the number of livestock 21 existing in each area 71.
  • the breeding area 70 is detected by one infrared sensor 34, but the number of infrared sensors 34 is smaller than the number of areas 71 included in the breeding area 70. 34 may be arranged.
  • the number of infrared sensors 34 is smaller than the number of areas 71 included in the breeding area 70, and the control device 50 detects the position of the livestock 21 using the input data from the infrared sensor 34. Then, the number of livestock 21 existing in each area 71 was calculated. As a result, the number of infrared sensors 34 can be reduced as compared with the case of the first embodiment.
  • the livestock 21 may repeatedly move between the areas 71 due to the air volume control.
  • the drive control unit 53 of the control device 50 extends the air volume control cycle, which is a period for giving a control instruction to change the air volume of the blower 32 of each area 71, so that the livestock 21 between the areas 71 Movement can be eased. That is, the drive control unit 53 changes the next air volume after a predetermined period has elapsed from the time when the air volume is changed.
  • the predetermined cycle may be any period as long as the livestock 21 can settle down without frequent movement, and in one example, it may be a one-hour cycle.
  • the breeding area 70 is divided into two areas 71, an area A and an area B.
  • the states shown in (1) to (3) below are repeated.
  • (3) When the air volume in area A is "2" and the air volume in area B is "3", the livestock 21 gather in area A.
  • the livestock 21 will always move.
  • the movement of the livestock 21 can be mitigated by setting an appropriate change cycle, for example, every hour.
  • the drive control unit 53 causes the livestock 21 to have an air volume. It may be determined that "2" is the optimum air volume, and the air volumes in areas A and B may be set to "2". In this case, it is desirable that the drive control unit 53 periodically changes the air volume to check whether the optimum air volume for the livestock 21 has changed.
  • the air volume control process is predetermined so that the livestock 21 does not move frequently. I tried to do it in a cycle. As a result, it is possible to obtain the effect that the movement of the livestock 21 between the areas 71 provided in the breeding area 70 can be alleviated.
  • Embodiment 4 when the breeding area 70 has a plurality of areas 71, the blower 32 is controlled so that the air volume differs in at least two areas 71.
  • the blower 32 is controlled so that the air volume differs in at least two areas 71.
  • the breeding area 70 has three areas 71 and the respective air volumes are "large”, “medium”, and “small”
  • the air volume is compared to the "large” and "small” areas 71.
  • the drive control unit 53 of the control device 50 may change at least one of the areas 71 in which the air volume is “small” and “large” to “medium”.
  • the drive control unit 53 may control to create two areas 71 having an air volume of "medium” or to set the air volume to "medium” in all the areas 71.
  • the drive control unit 53 sets the area 71 having a smaller number of livestock 21 to "medium”. Select as the area 71 to be set. Further, when the ratio of the livestock 21 existing in the area 71 where the most livestock 21 are gathered is larger than the predetermined determination reference value, two or more areas 71 having the same air volume may be created.
  • control device 50 controls the blower 32 so that the air volume differs in the plurality of areas 71, and when a large number of livestock 21 are gathered in any one of the areas 71, the other The blower 32 is controlled so that at least one of the areas 71 has the same air volume as the area 71 where many livestock 21 are gathered. This has the effect of eliminating the situation where many livestock 21 are gathered in one area 71.
  • FIG. 9 is a diagram schematically showing an example of a hardware configuration that realizes the control device according to the first to fourth embodiments.
  • the control device 50 can be realized by the processing circuit 100 shown in FIG.
  • the processing circuit 100 includes a processor 101, a memory 102, an input circuit 103, and an output circuit 104.
  • the processor 101 is a CPU (Central Processing Unit, central processing unit, processing unit, arithmetic unit, microprocessor, microcomputer, processor, also referred to as DSP), a system LSI (Large Scale Integration), or the like.
  • the memory 102 is a non-volatile or non-volatile memory such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), EEPROM (registered trademark) (Electrically Erasable Programmable Read-Only Memory). Volatile semiconductor memory, magnetic disk, flexible disk, optical disk, compact disk, mini disk, DVD (Digital Versatile Disc), etc.
  • the control device 50 can be realized by reading the corresponding program from the memory 102 and executing the processor 101.
  • the input circuit 103 is used when receiving information processed by the processor 101, information stored in the memory 102, and the like from the outside.
  • the output circuit 104 is used to output the information generated by the processor 101 and the information stored in the memory 102 to the outside.
  • one control device 50 includes an input data processing unit 51, a livestock number calculation unit 52, and a drive control unit 53, but these functional processing units are used in another control device 50. It may be provided.
  • the drive control unit 53 may be provided as the first control device, and the input data processing unit 51 and the livestock number calculation unit 52 may be provided as the second control device.
  • the infrared sensor 31 or the infrared sensor 34 and the second control device may be integrally configured and configured as an infrared sensor module.
  • the configuration shown in the above embodiments is an example, and can be combined with another known technique, can be combined with each other, and does not deviate from the gist. It is also possible to omit or change a part of the configuration.
  • 10 barn management system 11, 11A barn, 12 floors, 13 side walls, 14 ceilings, 15 fences, 16 pillars, 21 livestock, 31, 31A, 31B, 31C, 34 infrared sensors, 32, 32A, 32B, 32C blowers, 33 Outside temperature measurement unit, 40 network, 50 control device, 51 input data processing unit, 52 livestock number calculation unit, 53 drive control unit, 70 breeding area, 71, 71A, 71B, 71C area, 311, 341 detection unit, 312 342 Holding part.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Zoology (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Housing For Livestock And Birds (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

This livestock barn management system (10) manages airflow volume in a livestock barn (11) having a rearing region (70) where livestock animals (21) are to be raised, said system being provided with blowers (32) and a first control device. The blowers (32) are respectively disposed in a plurality of areas obtained by dividing the rearing region (70), where the livestock animals (21) are allowed to move from one area to another. The first control device performs control on the operation of the blowers (32). The first control device controls the operation the blowers (32) such that at least two of the areas have mutually different volumes of airflow.

Description

畜舎管理システムBarn management system
 本開示は、畜舎内で家畜にとって快適と感じられる送風量の制御を行う畜舎管理システムに関する。 This disclosure relates to a barn management system that controls the amount of air blown that is comfortable for livestock in the barn.
 夏季に、送風機からの風を家畜に当てることによって、家畜を冷却する効果があることが知られている。近年の温暖化の進行によって、人間に飼育される鳥獣である家畜に対して送風による冷却が重要になっており、また、送風による冷却が必要な地域は、北上し、拡大傾向にある。しかし、家畜に対して風を当てすぎると、家畜の体調を崩してしまうなどの問題があった。また、家畜を飼育している農家では、家畜の行動を基にした経験によって送風機を操作していることがほとんどである。つまり、どれぐらいの風量環境が家畜にとって最適であるのかをリアルタイムに知ること、および各飼育環境で家畜にとって最適な風量制御を行うことについては、従来では考慮されていなかった。 It is known that by blowing the wind from the blower to the livestock in the summer, it has the effect of cooling the livestock. Due to the progress of global warming in recent years, it has become important for livestock, which are birds and beasts raised by humans, to be cooled by blowing air, and the areas that require cooling by blowing air are moving northward and expanding. However, there is a problem that if the livestock is exposed to the wind too much, the livestock will get sick. In addition, most farmers who raise livestock operate the blower based on their experience based on the behavior of livestock. In other words, in the past, it was not considered to know in real time how much air volume environment is optimal for livestock, and to perform optimal air volume control for livestock in each breeding environment.
 特許文献1には、畜舎内における家畜の位置と、畜舎内に存在する家畜の体温の平均値と、を含む情報に基づいて、畜舎内に設けられる複数の送風機のうち、回転数を制御する送風機を選択し、選択した送風機の回転数を制御する技術が開示されている。 Patent Document 1 controls the rotation speed of a plurality of blowers provided in the barn based on information including the position of the livestock in the barn and the average value of the body temperature of the livestock existing in the barn. A technique for selecting a blower and controlling the rotation speed of the selected blower is disclosed.
特開2019-216718号公報Japanese Unexamined Patent Publication No. 2019-216718
 しかしながら、特許文献1に記載の技術では、畜舎内の家畜全体に対して快適と感じられる環境を提供することが難しいという問題があった。例えば、体温が高い家畜の位置と体温が低い家畜の位置とが近い場合に、体温が高い家畜に合わせて送風機の回転数の制御を行うと、体温が低い家畜にとっては、風が当たり過ぎて体調を崩してしまう可能性がある。このため、畜舎内の家畜がそれぞれ快適と感じられるような畜舎内の環境を提供することができる技術が望まれていた。 However, the technique described in Patent Document 1 has a problem that it is difficult to provide a comfortable environment for all livestock in the barn. For example, when the position of a livestock with a high body temperature is close to the position of a livestock with a low body temperature, if the rotation speed of the blower is controlled according to the livestock with a high body temperature, the wind will hit too much for the livestock with a low body temperature. You may get sick. Therefore, there has been a demand for a technique capable of providing an environment in the barn so that each livestock in the barn feels comfortable.
 本開示は、上記に鑑みてなされたものであって、畜舎内の家畜のそれぞれが快適と感じられる環境を家畜に提供することができる畜舎管理システムを得ることを目的とする。 The present disclosure has been made in view of the above, and an object thereof is to obtain a barn management system capable of providing livestock with an environment in which each livestock in the barn feels comfortable.
 上述した課題を解決し、目的を達成するために、本開示の畜舎管理システムは、家畜が飼育される飼育領域を有する畜舎における風量を管理する畜舎管理システムであって、送風機と、第1制御装置と、を備える。送風機は、飼育領域を分割した複数のエリアであって、家畜が相互に移動可能な複数のエリアのそれぞれに配置される。第1制御装置は、送風機の動作を制御する。第1制御装置は、複数のエリアのうち少なくとも2つのエリアにおける風量が互いに異なるように送風機の動作を制御する。 In order to solve the above-mentioned problems and achieve the object, the barn management system of the present disclosure is a barn management system that manages the air volume in a barn having a breeding area where livestock are bred, and is a blower and a first control. It is equipped with a device. The blower is a plurality of areas in which the breeding area is divided, and is arranged in each of the plurality of areas where livestock can move to each other. The first control device controls the operation of the blower. The first control device controls the operation of the blower so that the air volumes in at least two of the plurality of areas are different from each other.
 本開示にかかる畜舎管理システムは、畜舎内の家畜のそれぞれが快適と感じられる環境を家畜に提供することができるという効果を奏する。 The barn management system according to this disclosure has the effect of being able to provide livestock with an environment in which each livestock in the barn feels comfortable.
実施の形態1による畜舎管理システムの構成の一例を模式的に示す図The figure which shows typically an example of the structure of the barn management system by Embodiment 1. 実施の形態1による畜舎管理システムにおける飼育領域の一例を示す平面図Top view showing an example of the breeding area in the barn management system according to the first embodiment. 実施の形態1による畜舎管理システムにおける送風制御の一例を模式的に示す図The figure which shows typically an example of the blast control in the barn management system according to Embodiment 1. 実施の形態1による畜舎管理システムの構成の他の例を模式的に示す図The figure which shows the other example of the structure of the barn management system according to Embodiment 1. 実施の形態1による畜舎管理方法の手順の一例を示すフローチャートA flowchart showing an example of the procedure of the barn management method according to the first embodiment. 実施の形態1による畜舎管理方法の手順の一例を示すフローチャートA flowchart showing an example of the procedure of the barn management method according to the first embodiment. 実施の形態2による畜舎管理システムの構成の一例を模式的に示す図The figure which shows typically an example of the structure of the barn management system by Embodiment 2. 実施の形態2による畜舎管理システムにおける飼育領域の一例を示す図The figure which shows an example of the breeding area in the barn management system by Embodiment 2. 実施の形態1から4による制御装置を実現するハードウェア構成の一例を模式的に示す図The figure which shows typically an example of the hardware composition which realizes the control apparatus by Embodiments 1 to 4.
 以下に、本開示の実施の形態にかかる畜舎管理システムを図面に基づいて詳細に説明する。 The livestock barn management system according to the embodiment of the present disclosure will be described in detail below based on the drawings.
実施の形態1.
 図1は、実施の形態1による畜舎管理システムの構成の一例を模式的に示す図である。畜舎管理システム10は、一例では、家畜21が飼育される畜舎11に設けられる。家畜21の一例は、豚、牛、羊、犬、猫または鶏である。畜舎11は、床12と、側壁13と、天井14と、柵15と、を備える。この例では、柵15に囲まれた領域、あるいは柵15と側壁13とで囲まれた領域である飼育領域70で家畜21が飼育される。
Embodiment 1.
FIG. 1 is a diagram schematically showing an example of the configuration of the barn management system according to the first embodiment. The barn management system 10 is provided in the barn 11 in which the livestock 21 is bred, for example. An example of livestock 21 is a pig, cow, sheep, dog, cat or chicken. The barn 11 includes a floor 12, a side wall 13, a ceiling 14, and a fence 15. In this example, the livestock 21 is bred in the breeding area 70 which is the area surrounded by the fence 15 or the area surrounded by the fence 15 and the side wall 13.
 畜舎管理システム10は、赤外線センサ31と、送風機32と、制御装置50と、を備える。赤外線センサ31と制御装置50との間、および送風機32と制御装置50との間は、配線またはネットワーク40を介して通信可能に接続される。ネットワーク40は、有線であってもよいし、無線であってもよい。また、ネットワーク40には、インタネット回線が含まれていてもよい。これによって、赤外線センサ31と制御装置50との間、および送風機32と制御装置50との間は、配線またはネットワーク40を介してデータの授受が行われる。また、畜舎11と制御装置50とがネットワーク40を介して接続されることで、畜舎11から物理的に遠方に存在する位置から、畜舎11内の送風機32の制御が可能となる。 The barn management system 10 includes an infrared sensor 31, a blower 32, and a control device 50. The infrared sensor 31 and the control device 50, and the blower 32 and the control device 50 are communicably connected via wiring or a network 40. The network 40 may be wired or wireless. Further, the network 40 may include an internet line. As a result, data is exchanged between the infrared sensor 31 and the control device 50, and between the blower 32 and the control device 50 via wiring or the network 40. Further, by connecting the barn 11 and the control device 50 via the network 40, it is possible to control the blower 32 in the barn 11 from a position physically distant from the barn 11.
 赤外線センサ31は、畜舎11に設置され、家畜21の数を検知する家畜数検知部の一例である。赤外線センサ31は、飼育領域70内に存在する物体の温度を検知する。図1の例では、赤外線センサ31は、畜舎11の天井14に設置される。 The infrared sensor 31 is an example of a livestock number detection unit that is installed in the livestock barn 11 and detects the number of livestock 21. The infrared sensor 31 detects the temperature of an object existing in the breeding area 70. In the example of FIG. 1, the infrared sensor 31 is installed on the ceiling 14 of the barn 11.
 赤外線センサ31は、家畜21の表面温度を検知するセンサである検知部311と、検知部311を保持する円筒状の保持部312と、を備える。検知部311は、円筒状の保持部312の中心軸である円筒軸に平行に配置され、検知部311は、円筒軸に平行な線状の範囲を検知する。保持部312は、円筒軸を中心に回転可能である。保持部312が回転することによって、検知部311で平面状の範囲を検知することが可能となる。 The infrared sensor 31 includes a detection unit 311 which is a sensor for detecting the surface temperature of the livestock 21 and a cylindrical holding unit 312 for holding the detection unit 311. The detection unit 311 is arranged parallel to the cylindrical axis which is the central axis of the cylindrical holding unit 312, and the detection unit 311 detects a linear range parallel to the cylindrical axis. The holding portion 312 is rotatable about a cylindrical axis. By rotating the holding unit 312, the detection unit 311 can detect a planar range.
 赤外線センサ31は、畜舎11の予め定められた領域をスキャンして、スキャンした飼育領域70に存在する物体の温度を測定し、測定結果を制御装置50に出力する。なお、ここでは、赤外線センサ31が天井14に設置される例を示したが、飼育領域70を検知することができれば、側壁13または柵15に設置されてもよい。 The infrared sensor 31 scans a predetermined area of the barn 11, measures the temperature of an object existing in the scanned breeding area 70, and outputs the measurement result to the control device 50. Although the example in which the infrared sensor 31 is installed on the ceiling 14 is shown here, it may be installed on the side wall 13 or the fence 15 as long as the breeding area 70 can be detected.
 送風機32は、飼育領域70内の家畜21に対して風を送る機器である。図1の例では、送風機32は、柵15に設置されている。しかし、送風機32は、柵15ではなく、側壁13または天井14に設置されていてもよい。 The blower 32 is a device that sends wind to the livestock 21 in the breeding area 70. In the example of FIG. 1, the blower 32 is installed on the fence 15. However, the blower 32 may be installed on the side wall 13 or the ceiling 14 instead of the fence 15.
 実施の形態1では、飼育領域70は、複数の仮想的なエリアに分割される。図2は、実施の形態1による畜舎管理システムにおける飼育領域の一例を示す平面図である。図2の例では、飼育領域70は、3つのエリア71A,71B,71Cに分割される。飼育領域70は、1頭または1羽の家畜21に対して十分に広く、移動可能な広さを有する。飼育領域70では、1頭以上または1羽以上の家畜21が飼育される。複数のエリア71A,71B,71Cは、仮想的なエリアであり、エリア間を物理的に区切る境界がある訳ではない。このため、家畜21は、各エリア71A,71B,71C内だけでなく、エリア71A,71B,71C間を自由に横断することができる。 In the first embodiment, the breeding area 70 is divided into a plurality of virtual areas. FIG. 2 is a plan view showing an example of a breeding area in the barn management system according to the first embodiment. In the example of FIG. 2, the breeding area 70 is divided into three areas 71A, 71B, 71C. The rearing area 70 is large enough for one or one livestock 21 and has a movable area. In the breeding area 70, one or more or one or more livestock 21 are bred. The plurality of areas 71A, 71B, and 71C are virtual areas, and there is no boundary that physically separates the areas. Therefore, the livestock 21 can freely cross not only within each area 71A, 71B, 71C but also between areas 71A, 71B, 71C.
 赤外線センサ31および送風機32は、エリア71A,71B,71Cごとに設けられるので、畜舎管理システム10は、複数の赤外線センサ31A,31B,31Cと、複数の送風機32A,32B,32Cと、を備える。すなわち、エリア71Aには、赤外線センサ31Aと送風機32Aとが配置され、エリア71Bには、赤外線センサ31Bと送風機32Bとが配置され、エリア71Cには、赤外線センサ31Cと送風機32Cとが配置される。図2の例では、赤外線センサ31A,31B,31Cのそれぞれは、それぞれのエリア71A,71B,71Cの中央部に対応する天井14に設けられ、送風機32A,32B,32Cのそれぞれは、それぞれのエリア71A,71B,71Cの柵15に設けられる。赤外線センサ31A,31B,31Cにおいて、それぞれエリア71A,71B,71Cの全体を検知部311で検知することができるように、保持部312が回転する。なお、送風機32A,32B,32Cは、各エリア71A,71B,71Cに2つ以上設けられてもよい。 Since the infrared sensor 31 and the blower 32 are provided for each area 71A, 71B, 71C, the barn management system 10 includes a plurality of infrared sensors 31A, 31B, 31C and a plurality of blowers 32A, 32B, 32C. That is, the infrared sensor 31A and the blower 32A are arranged in the area 71A, the infrared sensor 31B and the blower 32B are arranged in the area 71B, and the infrared sensor 31C and the blower 32C are arranged in the area 71C. .. In the example of FIG. 2, each of the infrared sensors 31A, 31B, 31C is provided on the ceiling 14 corresponding to the central portion of the respective areas 71A, 71B, 71C, and each of the blowers 32A, 32B, 32C is provided in each area. It is provided on the fence 15 of 71A, 71B, 71C. In the infrared sensors 31A, 31B, and 31C, the holding unit 312 rotates so that the entire areas 71A, 71B, and 71C can be detected by the detection unit 311, respectively. In addition, two or more blowers 32A, 32B, 32C may be provided in each area 71A, 71B, 71C.
 エリア71Aは、主に送風機32Aによって風量が制御される領域であり、エリア71Bは、主に送風機32Bによって風量が制御される領域であり、エリア71Cは、主に送風機32Cによって風量が制御される領域である。つまり、エリア71A,71B,71Cは、それぞれ主に送風機32A,32B,32Cによって風量が制御される領域を仮想的に区切る領域となっている。なお、以下では、赤外線センサ31A,31B,31Cを区別する必要がない場合には、赤外線センサ31と表記し、送風機32A,32B,32Cを区別する必要がない場合には、送風機32と表記し、エリア71A,71B,71Cを区別する必要がない場合には、エリア71と表記する。 Area 71A is an area where the air volume is mainly controlled by the blower 32A, area 71B is an area where the air volume is mainly controlled by the blower 32B, and area 71C is an area where the air volume is mainly controlled by the blower 32C. It is an area. That is, the areas 71A, 71B, and 71C are areas that virtually divide the areas where the air volume is mainly controlled by the blowers 32A, 32B, and 32C, respectively. In the following, when it is not necessary to distinguish the infrared sensors 31A, 31B and 31C, it is referred to as an infrared sensor 31, and when it is not necessary to distinguish the blowers 32A, 32B and 32C, it is referred to as a blower 32. , When it is not necessary to distinguish the areas 71A, 71B and 71C, it is described as the area 71.
 図1に戻り、制御装置50は、赤外線センサ31からの入力データを処理し、各エリア71に存在する家畜21の数を算出し、家畜21の数に基づいて送風機32の動作を制御する。制御装置50は、入力データ処理部51と、家畜数算出部52と、駆動制御部53と、を備える。 Returning to FIG. 1, the control device 50 processes the input data from the infrared sensor 31, calculates the number of livestock 21 existing in each area 71, and controls the operation of the blower 32 based on the number of livestock 21. The control device 50 includes an input data processing unit 51, a livestock number calculation unit 52, and a drive control unit 53.
 入力データ処理部51は、赤外線センサ31からの検知結果である入力データを処理し、一例では検知したエリア71について温度の分布を示す熱画像を生成する。各赤外線センサ31でスキャンされるエリアは、各エリア71と対応している。つまり、各赤外線センサ31から得られる熱画像は、撮像したエリア71と対応付けることができる。 The input data processing unit 51 processes the input data which is the detection result from the infrared sensor 31, and in one example, generates a thermal image showing the temperature distribution for the detected area 71. The area scanned by each infrared sensor 31 corresponds to each area 71. That is, the thermal image obtained from each infrared sensor 31 can be associated with the captured area 71.
 家畜数算出部52は、入力データ処理部51によって生成された各エリア71の熱画像から各エリア71に存在する家畜21の数を算出する。通常、床12と家畜21とは温度が異なるため、熱画像では、異なる温度で表示されることになる。このため、家畜数算出部52は、熱画像から検知エリアにおける床12と家畜21との識別が容易になるので、家畜21等の生体の検出が容易になる。家畜数算出部52は、算出した各エリア71の家畜21の数であるエリア状態情報を駆動制御部53に出力する。 The livestock number calculation unit 52 calculates the number of livestock 21 existing in each area 71 from the thermal image of each area 71 generated by the input data processing unit 51. Normally, the floor 12 and the livestock 21 have different temperatures, so that they are displayed at different temperatures in the thermal image. Therefore, the livestock number calculation unit 52 can easily distinguish between the floor 12 and the livestock 21 in the detection area from the thermal image, so that the living body such as the livestock 21 can be easily detected. The livestock number calculation unit 52 outputs the area state information, which is the calculated number of livestock 21 in each area 71, to the drive control unit 53.
 駆動制御部53は、エリア状態情報に基づいて、各エリア71に設けられる送風機32の動作を制御する。駆動制御部53は、飼育領域70内の複数のエリア71のうち少なくとも2つのエリア71における送風機32を互いに異なる風量で動作させる第1状態となるように、送風機32の動作を制御する。また、駆動制御部53は、エリア状態情報の各エリア71の家畜21の数に基づいて送風機32の風量を制御する。一例では、駆動制御部53は、各エリア71の家畜21の数に基づいて、各エリア71のうち少なくとも1つのエリア71における風量が第1状態とは異なる風量となるように送風機32を動作させる第2状態となるように、送風機32の風量を制御する。 The drive control unit 53 controls the operation of the blower 32 provided in each area 71 based on the area state information. The drive control unit 53 controls the operation of the blower 32 so as to be in the first state in which the blowers 32 in at least two of the plurality of areas 71 in the breeding area 70 are operated with different air volumes. Further, the drive control unit 53 controls the air volume of the blower 32 based on the number of livestock 21 in each area 71 of the area state information. In one example, the drive control unit 53 operates the blower 32 so that the air volume in at least one area 71 of each area 71 is different from that in the first state, based on the number of livestock 21 in each area 71. The air volume of the blower 32 is controlled so as to be in the second state.
 ここで、制御装置50による畜舎11内での風量の制御について説明する。図3は、実施の形態1による畜舎管理システムにおける送風制御の一例を模式的に示す図である。ここでは、図2と同様に、飼育領域70が3つのエリア71A,71B,71Cで区切られる場合を例に挙げる。 Here, the control of the air volume in the barn 11 by the control device 50 will be described. FIG. 3 is a diagram schematically showing an example of blower control in the barn management system according to the first embodiment. Here, as in FIG. 2, a case where the breeding area 70 is divided into three areas 71A, 71B, and 71C will be taken as an example.
 制御装置50の駆動制御部53は、送風量が、エリア71A>エリア71B>エリア71Cの関係となるように、各エリア71に配置されている送風機32の動作を制御する。一例では、送風機32の風量が「0」から「5」の5段階に設定可能であり、数値が大きくなるほど、風量が大きくなるものとする。図3の例では、駆動制御部53は、エリア71Aでは風量が「4」であり、エリア71Bでは風量が「3」であり、エリア71Cでは風量が「2」である第1状態となるように、送風機32の動作を制御する。つまり、飼育領域70には、風量の異なるエリア71が同時に存在している。 The drive control unit 53 of the control device 50 controls the operation of the blowers 32 arranged in each area 71 so that the amount of air blown is in the relationship of area 71A> area 71B> area 71C. In one example, the air volume of the blower 32 can be set in five stages from "0" to "5", and the larger the value, the larger the air volume. In the example of FIG. 3, the drive control unit 53 is in the first state where the air volume is "4" in the area 71A, the air volume is "3" in the area 71B, and the air volume is "2" in the area 71C. In addition, the operation of the blower 32 is controlled. That is, in the breeding area 70, areas 71 having different air volumes exist at the same time.
 飼育領域70では、豚などの複数の家畜21が飼育されており、飼育領域70内では、家畜21はエリア71間を移動することができる。また、家畜21は、飼育領域70内を移動することで、暑い領域または涼しい領域を感じることができ、学習によって自律的に行動することが可能な生物である。すなわち、家畜21は、暑いと感じている場合には、現在よりも涼しいエリア71へと移動し、寒いと感じている場合には、現在よりも暑いエリア71へと移動することができる動物である。 In the breeding area 70, a plurality of livestock 21 such as pigs are bred, and within the breeding area 70, the livestock 21 can move between the areas 71. In addition, the livestock 21 is an organism that can feel a hot area or a cool area by moving in the breeding area 70 and can act autonomously by learning. That is, the livestock 21 is an animal that can move to an area 71 that is cooler than the present when it feels hot, and can move to an area 71 that is hotter than the present when it feels cold. be.
 図3に示されるように、飼育領域70内では、エリア71が配置される方向に沿って、風量が段階的に減少または増加するように各エリア71の風量が設定されることが望ましい。このようにすることで、家畜21はどちらの方向に移動すれば、風量が減少または増加するかを学習することができるからである。 As shown in FIG. 3, in the breeding area 70, it is desirable that the air volume of each area 71 is set so that the air volume gradually decreases or increases along the direction in which the areas 71 are arranged. By doing so, the livestock 21 can learn in which direction the air volume decreases or increases.
 ここで、外気温が上がるなどの要因によって家畜21が暑く感じた場合を例に挙げる。このような場合には、家畜21は、本能によって風量の多いより涼しいエリア71Aまたはエリア71Bに移動する。この結果、エリア71Cに存在する家畜21の数は少なくなるか、または家畜21は居なくなる。このような状態が、各エリア71をスキャンする赤外線センサ31からの入力データによって得られる熱画像を解析することで、家畜数算出部52によって検出される。 Here, an example is taken when the livestock 21 feels hot due to factors such as an increase in the outside air temperature. In such a case, the livestock 21 instinctively moves to a cooler area 71A or 71B with a large air volume. As a result, the number of livestock 21 existing in the area 71C is reduced, or the livestock 21 disappears. Such a state is detected by the livestock number calculation unit 52 by analyzing the thermal image obtained from the input data from the infrared sensor 31 that scans each area 71.
 一例では、駆動制御部53は、風量が最も少ないエリア71Cの家畜21の数が予め定められた比較基準値よりも少ない状態が、予め定められた期間継続した場合に、家畜21は暑さを感じていると判断する。そして、駆動制御部53は、飼育領域70内の各エリア71の風量を1段階上げる制御を行う。この場合には、駆動制御部53は、エリア71Aの風量を「5」に上げ、エリア71Bの風量を「4」に上げ、エリア71Cの風量を「3」に上げる第2状態となるように、送風機32の動作を制御する。つまり、上記したように、複数のエリア71のうち少なくとも1つのエリア71の風量が、前回風量制御を行った時点における状態、この場合には第1状態とは異なるように送風機32を動作させている。 In one example, the drive control unit 53 causes the livestock 21 to heat up when the number of livestock 21 in the area 71C having the smallest air volume continues to be smaller than the predetermined comparison reference value for a predetermined period. Judge that you are feeling. Then, the drive control unit 53 controls to raise the air volume of each area 71 in the breeding area 70 by one step. In this case, the drive control unit 53 raises the air volume in the area 71A to "5", raises the air volume in the area 71B to "4", and raises the air volume in the area 71C to "3". , Control the operation of the blower 32. That is, as described above, the blower 32 is operated so that the air volume of at least one of the plurality of areas 71 is different from the state at the time of the previous air volume control, in this case, the first state. There is.
 また、エリア71Cの家畜21の数が比較基準値よりも多い場合、あるいはエリア71Cの家畜21の数が比較基準値よりも少ない状態が、予め定められた期間継続しなかった場合には、家畜21は暑さを感じていないと判断する。なお、エリア71Cの家畜21の数が比較基準値と同じである場合には、家畜21が暑さを感じていると判断してもよいし、暑さを感じていないと判断してもよい。 Further, when the number of livestock 21 in the area 71C is larger than the comparison reference value, or when the number of livestock 21 in the area 71C is smaller than the comparison reference value does not continue for a predetermined period, the livestock 21 determines that he does not feel the heat. When the number of livestock 21 in the area 71C is the same as the comparison reference value, it may be determined that the livestock 21 feels the heat, or it may be determined that the livestock 21 does not feel the heat. ..
 一方、風量を1段階上げた状態から、外気温が下がるなどの要因によって家畜21が涼しさを感じた場合を例に挙げる。このような場合には、家畜21が暑く感じた場合とは逆に、家畜21は、本能によって風量の少ないより温かいエリア71Bまたはエリア71Cに移動する。この結果、エリア71Aに存在する家畜21の数は少なくなるか、または家畜21は居なくなる。このような状態が、各エリア71をスキャンする赤外線センサ31からの入力データによって得られる熱画像を解析することで、家畜数算出部52によって検出される。 On the other hand, the case where the livestock 21 feels cool due to factors such as a decrease in the outside air temperature from the state where the air volume is increased by one step is taken as an example. In such a case, the livestock 21 instinctively moves to a warmer area 71B or 71C with a smaller air volume, contrary to the case where the livestock 21 feels hot. As a result, the number of livestock 21 existing in the area 71A decreases, or the livestock 21 disappears. Such a state is detected by the livestock number calculation unit 52 by analyzing the thermal image obtained from the input data from the infrared sensor 31 that scans each area 71.
 一例では、駆動制御部53は、風量が最大のエリア71Aの家畜21の数が比較基準値よりも少ない状態が、予め定められた期間継続した場合に、家畜21は涼しさを感じている、すなわち暑さを感じていないと判断する。そして、駆動制御部53は、飼育領域70内の各エリア71の風量を1段階下げる制御を行う。この場合には、駆動制御部53は、エリア71Aの風量を「4」に下げ、エリア71Bの風量を「3」に下げ、エリア71Cの風量を「2」に下げる第2状態となるように、送風機32の動作を制御する。ここでも、上記したように、複数のエリア71のうち少なくとも1つのエリア71の風量が前回風量制御を行った時点における状態とは異なるように送風機32を動作させている。 In one example, the drive control unit 53 feels cool when the number of livestock 21 in the area 71A having the maximum air volume is smaller than the comparison reference value for a predetermined period of time. That is, it is judged that the heat is not felt. Then, the drive control unit 53 controls to reduce the air volume of each area 71 in the breeding area 70 by one step. In this case, the drive control unit 53 lowers the air volume in the area 71A to "4", lowers the air volume in the area 71B to "3", and lowers the air volume in the area 71C to "2". , Control the operation of the blower 32. Again, as described above, the blower 32 is operated so that the air volume in at least one of the plurality of areas 71 is different from the state at the time when the air volume control was performed last time.
 また、エリア71Aの家畜21の数が比較基準値よりも多い場合、あるいはエリア71Aの家畜21の数が比較基準値よりも少ない状態が、予め定められた期間継続しなかった場合には、家畜21は涼しさを感じていないと判断する。なお、エリア71Aの家畜21の数が比較基準値と同じである場合には、家畜21が涼しさを感じていると判断してもよいし、涼しさを感じていないと判断してもよい。 Further, if the number of livestock 21 in the area 71A is larger than the comparison reference value, or if the number of livestock 21 in the area 71A is less than the comparison reference value does not continue for a predetermined period, the livestock 21 determines that he does not feel cool. When the number of livestock 21 in the area 71A is the same as the comparison reference value, it may be determined that the livestock 21 feels cool or does not feel cool. ..
 このように、上記の例では、駆動制御部53は、低風量側のエリア71における家畜21の数が比較基準値よりも少ない場合に、飼育領域70のそれぞれのエリア71の風量を1段階上げる。また、駆動制御部53は、高風量側のエリア71における家畜21の数が比較基準値よりも少ない場合に、飼育領域70のそれぞれのエリア71の風量を1段階下げる。このような制御を繰り返し行うことで、リアルタイムに最適な風量環境を維持する飼育領域70を実現することができる。この場合には、飼育領域70を分割する複数のエリア71がある方向に配列される場合には、ある方向の一端のエリア71から他端のエリア71に向かって風量が増加または減少するように、各エリア71の送風機32の動作を制御することが望ましい。 As described above, in the above example, when the number of livestock 21 in the area 71 on the low air volume side is smaller than the comparison reference value, the drive control unit 53 raises the air volume in each area 71 of the breeding area 70 by one step. .. Further, when the number of livestock 21 in the area 71 on the high air volume side is smaller than the comparison reference value, the drive control unit 53 lowers the air volume in each area 71 of the breeding area 70 by one step. By repeatedly performing such control, it is possible to realize a breeding area 70 that maintains an optimum air volume environment in real time. In this case, when a plurality of areas 71 that divide the breeding area 70 are arranged in a certain direction, the air volume increases or decreases from the area 71 at one end to the area 71 at the other end in a certain direction. It is desirable to control the operation of the blower 32 in each area 71.
 なお、上記した例では、各エリア71内の家畜21の数を用いて風量制御を行う場合を示したが、少なくとも風量が最大のエリア71Aおよび風量が最小のエリア71C内の家畜21の数を示す指標を用いて風量制御を行うものであればよい。家畜21の数を示す指標の一例は、各エリア71内の家畜21の数の割合、各エリア71内の家畜21の予め定められた期間における平均値、あるいは風量が最大のエリア71Aおよび風量が最小のエリア71C内の家畜21の数などを使用することができる。 In the above example, the case where the air volume is controlled by using the number of livestock 21 in each area 71 is shown, but at least the number of livestock 21 in the area 71A having the maximum air volume and the area 71C having the minimum air volume is used. Anything may be used as long as the air volume is controlled using the indicated index. An example of an index showing the number of livestock 21 is the ratio of the number of livestock 21 in each area 71, the average value of the livestock 21 in each area 71 in a predetermined period, or the area 71A having the maximum air volume and the air volume. The number of livestock 21 in the smallest area 71C can be used.
 一例では、駆動制御部53は、家畜21の数が多い場合には、各エリア71の家畜21の数の割合で判断して、飼育領域70内における各エリア71の風量を制御してもよい。 In one example, when the number of livestock 21 is large, the drive control unit 53 may control the air volume of each area 71 in the breeding area 70 by determining the ratio of the number of livestock 21 in each area 71. ..
 また、移動が激しい家畜21においては、一定時間における各エリア71における家畜21の数の平均値を求め、平均値に基づいて風量制御を行ってもよい。 Further, in the livestock 21 that moves rapidly, the average value of the number of livestock 21 in each area 71 in a certain time may be obtained, and the air volume may be controlled based on the average value.
 さらに、飼育領域70全体での家畜21の数が分かっている場合には、風量が最大のエリア71Aおよび風量が最小のエリア71Cにのみ、赤外線センサ31を設けてもよい。そして、駆動制御部53は、風量が最大のエリア71Aおよび風量が最小のエリア71Cからの検知結果のみを用いて、風量制御を行うことも可能である。 Further, when the number of livestock 21 in the entire breeding area 70 is known, the infrared sensor 31 may be provided only in the area 71A having the maximum air volume and the area 71C having the minimum air volume. Then, the drive control unit 53 can also control the air volume by using only the detection results from the area 71A having the maximum air volume and the area 71C having the minimum air volume.
 また、家畜21が本能的に好ましい環境を探しながら移動する状態から、家畜21が学習し、好ましい環境を探さなくても移動できる状態になることが望ましい。このため、より学習効果を上げるために、各エリア71において家畜21が見ることができる範囲を着色してもよい。一例では、エリア71Aの床12、側壁13である壁および柵15を寒色系の色で着色し、エリア71Cの床12、側壁13である壁および柵15を暖色系の色で着色してもよい。このようにすることで、家畜21の風量に対する学習効果が向上し、家畜21が暑いと感じたときには寒色系の色のエリア71Aへと移動し、寒いと感じたときには暖色系の色のエリア71Cへと移動することができるようになる。なお、色は、暖色系の色および寒色系の色に限定されず、任意の色を使用することができる。 In addition, it is desirable that the livestock 21 learns from the state where the livestock 21 instinctively moves while searching for a favorable environment, and can move without searching for a favorable environment. Therefore, in order to further improve the learning effect, the range in which the livestock 21 can be seen in each area 71 may be colored. In one example, the floor 12, the side wall 13 of the area 71A, the wall and the fence 15 may be colored with a cool color, and the floor 12, the wall and the fence 15 of the area 71C may be colored with a warm color. good. By doing so, the learning effect on the air volume of the livestock 21 is improved, and when the livestock 21 feels hot, it moves to the cold color area 71A, and when it feels cold, it moves to the warm color area 71C. You will be able to move to. The color is not limited to the warm color and the cold color, and any color can be used.
 図4は、実施の形態1による畜舎管理システムの構成の他の例を模式的に示す図である。図4の畜舎管理システム10では、畜舎11が側壁13のない開放型の畜舎11Aである場合を示している。開放型の畜舎11Aでは、側壁13がなく、天井14は床12に立てられる柱16によって支持される構造となる。このように、開放型の畜舎11Aの場合には、外気温の変化が重要である。このため、畜舎管理システム10は、開放型の畜舎11Aの外部に、外気温を測定する外気温測定部33をさらに備える。外気温測定部33はネットワーク40を介して制御装置50と接続される。外気温測定部33の一例は、熱電対、測温抵抗体である。外気温測定部33は、検知された気温を制御装置50に出力する。 FIG. 4 is a diagram schematically showing another example of the configuration of the barn management system according to the first embodiment. The barn management system 10 of FIG. 4 shows a case where the barn 11 is an open type barn 11A without a side wall 13. In the open type livestock barn 11A, there is no side wall 13, and the ceiling 14 has a structure supported by pillars 16 erected on the floor 12. As described above, in the case of the open type livestock barn 11A, the change in the outside air temperature is important. Therefore, the barn management system 10 further includes an outside air temperature measuring unit 33 for measuring the outside air temperature outside the open barn 11A. The outside air temperature measuring unit 33 is connected to the control device 50 via the network 40. An example of the outside air temperature measuring unit 33 is a thermocouple and a resistance temperature measuring resistor. The outside air temperature measuring unit 33 outputs the detected air temperature to the control device 50.
 制御装置50の駆動制御部53は、特に、急激に外気温が変化する日の出および日の入りなどでは、風量が最大のエリア71または風量が最小のエリア71の家畜21の数を示す指標に加えて、外気温測定部33で測定された外気温も考慮して、送風機32の風量制御を行う。例えば急激に外気温が上昇している場合には、その後の開放型の畜舎11A内の気温上昇が予想されるので、風量を上げる制御が行われる。また、急激に外気温が低下している場合には、その後の開放型の畜舎11A内の気温低下が予想されるので、風量を下げる制御が行われる。これによって、より早いタイミングで家畜21に対しての最適な環境を実現することができる。なお、図1と同一の構成要素には、同一の符号を付して、その説明を省略する。 The drive control unit 53 of the control device 50 is in addition to an index indicating the number of livestock 21 in the area 71 having the maximum air volume or the area 71 having the minimum air volume, especially at sunrise and sunset when the outside air temperature changes suddenly. The air volume of the blower 32 is controlled in consideration of the outside air temperature measured by the outside air temperature measuring unit 33. For example, when the outside air temperature rises sharply, the temperature inside the open-type livestock barn 11A is expected to rise after that, so that the air volume is controlled to increase. Further, when the outside air temperature drops sharply, the temperature inside the open-type livestock barn 11A is expected to drop after that, so that the air volume is controlled to be lowered. As a result, the optimum environment for the livestock 21 can be realized at an earlier timing. The same components as those in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted.
 図1、図2および図4では、赤外線センサ31は、円筒軸を中心に保持部312を回転させて、検知部311を移動させることによって、検知部311の線状の検知範囲が各エリア71となるようにしていた。しかし、赤外線センサ31が面状の範囲を検知できる赤外線アレイセンサであってもよい。この場合には、必ずしも保持部312は回転可能である必要はない。 In FIGS. 1, 2 and 4, the infrared sensor 31 rotates the holding unit 312 around the cylindrical axis to move the detection unit 311 so that the linear detection range of the detection unit 311 is in each area 71. I was trying to be. However, the infrared sensor 31 may be an infrared array sensor capable of detecting a planar range. In this case, the holding portion 312 does not necessarily have to be rotatable.
 また、家畜数算出部52は、熱画像に含まれるそれぞれの家畜21の表面温度を求め、表面温度と予め定められた第1設定値との差の絶対値が予め定められた第2設定値よりも大きい場合に、該当する家畜21を調子の悪い可能性がある家畜21として抽出する機能を有していてもよい。一例では、第1設定値は、家畜21の表面温度の平均値である。この場合、家畜数算出部52は、家畜21の表面温度の平均値である平均温度を求め、第1設定値としてもよい。そして、家畜数算出部52は、表面温度と平均温度との差が第2設定値よりも高い家畜21を、調子の悪い可能性がある家畜21であるとして抽出する機能を有していてもよい。この場合、調子の悪い可能性がある家畜21の位置は、熱画像から求めることができる。また、家畜数算出部52は、調子の悪い可能性がある家畜21が存在することを示すアラームを、例えば畜舎11,11Aを管理する管理者に通知してもよい。これによって、調子の悪い可能性がある家畜21を早期に発見することができる。 Further, the livestock number calculation unit 52 obtains the surface temperature of each livestock 21 included in the thermal image, and the absolute value of the difference between the surface temperature and the predetermined first set value is a predetermined second set value. If it is larger than the above, it may have a function of extracting the corresponding livestock 21 as a livestock 21 that may be out of order. In one example, the first set value is the average value of the surface temperature of the livestock 21. In this case, the livestock number calculation unit 52 may obtain the average temperature, which is the average value of the surface temperature of the livestock 21, and use it as the first set value. Further, even if the livestock number calculation unit 52 has a function of extracting livestock 21 having a difference between the surface temperature and the average temperature higher than the second set value as livestock 21 which may be out of order. good. In this case, the position of the livestock 21 which may be out of order can be obtained from the thermal image. Further, the livestock number calculation unit 52 may notify the manager who manages the barns 11, 11A, for example, of an alarm indicating that the livestock 21 which may be out of order exists. This makes it possible to detect livestock 21 that may be out of order at an early stage.
 さらに、他のエリア71に比してあるエリア71内に多数の家畜21が居る場合には、駆動制御部53は、風量の異なるエリア71内に居る家畜21の数に応じて風量を変化させてもよい。一例では、あるエリア71内の家畜21の数に比して、このあるエリア71よりも風量が大きい他のエリア71内の家畜21の数が予め定められた割合よりも少ない場合には、他のエリア71の風量を弱めて、エリア71間における家畜21の数が均等になるようにしてもよい。 Further, when there are a large number of livestock 21 in the area 71 as compared with the other areas 71, the drive control unit 53 changes the air volume according to the number of livestock 21 in the areas 71 having different air volumes. You may. In one example, if the number of livestock 21 in another area 71 that has a larger air volume than that of one area 71 is less than the predetermined ratio of the number of livestock 21 in one area 71, the other The air volume of the area 71 may be reduced so that the number of livestock 21 among the areas 71 becomes equal.
 また、各エリア71の送風機32に近い所では、特に風量が大きく、送風機32から離れるにしたがって風量が小さくなる。そこで、赤外線センサ31からの入力データを用いて、エリア71内での家畜21の位置、すなわち送風機32からの家畜21の距離を算出することによって、家畜21による暑さの感じ具合を推定することができる。そして、この家畜21による暑さの感じ具合を、風量の制御に利用することもできる。一例では、家畜数算出部52が、熱画像から送風機32からの家畜21の距離を算出し、駆動制御部53が、送風機32からの家畜21の距離から家畜21による暑さの感じ具合を考慮して、風量の制御を行う。例えば、送風機32からの家畜21の距離が大きい場合には、家畜21は暑さを感じていないとして、風量の段階を下げる制御を行うことができる。 In addition, the air volume is particularly large near the blower 32 in each area 71, and the air volume decreases as the distance from the blower 32 increases. Therefore, by using the input data from the infrared sensor 31 to calculate the position of the livestock 21 in the area 71, that is, the distance of the livestock 21 from the blower 32, the feeling of heat by the livestock 21 is estimated. Can be done. Then, the feeling of heat by the livestock 21 can be used for controlling the air volume. In one example, the livestock number calculation unit 52 calculates the distance of the livestock 21 from the blower 32 from the thermal image, and the drive control unit 53 considers the feeling of heat by the livestock 21 from the distance of the livestock 21 from the blower 32. Then, the air volume is controlled. For example, when the distance of the livestock 21 from the blower 32 is large, it is possible to control the livestock 21 to lower the stage of the air volume, assuming that the livestock 21 does not feel the heat.
 つぎに、畜舎管理システム10における畜舎管理方法について説明する。図5および図6は、実施の形態1による畜舎管理方法の手順の一例を示すフローチャートである。まず、制御装置50の駆動制御部53は、予め定められた設定にしたがって、飼育領域70内の各エリア71の送風機32の風量を制御する(ステップS11)。このとき、駆動制御部53は、複数のエリア71のうち少なくとも2つのエリア71における送風機32を互いに異なる風量で動作させる。この例では、駆動制御部53は、すべてのエリア71の風量がすべて異なるように各エリア71の送風機32の動作を制御する。 Next, the barn management method in the barn management system 10 will be described. 5 and 6 are flowcharts showing an example of the procedure of the barn management method according to the first embodiment. First, the drive control unit 53 of the control device 50 controls the air volume of the blower 32 in each area 71 in the breeding area 70 according to a predetermined setting (step S11). At this time, the drive control unit 53 operates the blowers 32 in at least two areas 71 out of the plurality of areas 71 with different air volumes. In this example, the drive control unit 53 controls the operation of the blower 32 in each area 71 so that the air volumes in all the areas 71 are all different.
 ついで、制御装置50の入力データ処理部51は、各エリア71の赤外線センサ31からの入力データを取得し、入力データを処理して各エリア71の熱画像を生成する(ステップS12)。その後、制御装置50の家畜数算出部52は、熱画像から各エリア71に存在する家畜21の数を算出する(ステップS13)。図2の例では、赤外線センサ31Aの入力データから生成される熱画像を用いて、エリア71Aの家畜21の数が算出される。赤外線センサ31Bの入力データから生成される熱画像を用いて、エリア71Bの家畜21の数が算出される。赤外線センサ31Cの入力データから生成される熱画像を用いて、エリア71Cの家畜21の数が算出される。 Next, the input data processing unit 51 of the control device 50 acquires the input data from the infrared sensor 31 of each area 71, processes the input data, and generates a thermal image of each area 71 (step S12). After that, the livestock number calculation unit 52 of the control device 50 calculates the number of livestock 21 existing in each area 71 from the thermal image (step S13). In the example of FIG. 2, the number of livestock 21 in the area 71A is calculated using the thermal image generated from the input data of the infrared sensor 31A. The number of livestock 21 in the area 71B is calculated using the thermal image generated from the input data of the infrared sensor 31B. The number of livestock 21 in the area 71C is calculated using the thermal image generated from the input data of the infrared sensor 31C.
 ついで、駆動制御部53は、風量が最小のエリア71における家畜21の数が比較基準値よりも少ないかを判定する(ステップS14)。比較基準値は、家畜21の種類、または飼育領域70内の家畜21の総数などによって適宜設定される。風量が最小のエリア71における家畜21の数が比較基準値よりも少ない場合(ステップS14でYesの場合)には、駆動制御部53は、計時を開始する(ステップS15)。 Next, the drive control unit 53 determines whether the number of livestock 21 in the area 71 having the minimum air volume is smaller than the comparison reference value (step S14). The comparison reference value is appropriately set according to the type of livestock 21, the total number of livestock 21 in the breeding area 70, and the like. When the number of livestock 21 in the area 71 having the minimum air volume is smaller than the comparison reference value (Yes in step S14), the drive control unit 53 starts timing (step S15).
 その後、入力データ処理部51は、各エリア71の赤外線センサ31からの入力データを取得し、入力データを処理して各エリア71の熱画像を生成する(ステップS16)。ついで、家畜数算出部52は、熱画像から各エリア71に存在する家畜21の数を算出する(ステップS17)。駆動制御部53は、風量が最小のエリア71の家畜21の数が比較基準値を超えたかを判定する(ステップS18)。風量が最小のエリア71の家畜21の数が比較基準値を超えた場合(ステップS18でYesの場合)には、駆動制御部53は、計時を終了し(ステップS19)、ステップS12へと処理が戻る。 After that, the input data processing unit 51 acquires the input data from the infrared sensor 31 of each area 71, processes the input data, and generates a thermal image of each area 71 (step S16). Next, the livestock number calculation unit 52 calculates the number of livestock 21 existing in each area 71 from the thermal image (step S17). The drive control unit 53 determines whether the number of livestock 21 in the area 71 having the minimum air volume exceeds the comparison reference value (step S18). When the number of livestock 21 in the area 71 with the minimum air volume exceeds the comparison reference value (Yes in step S18), the drive control unit 53 ends the timekeeping (step S19) and processes to step S12. Is back.
 風量が最小のエリア71の家畜21の数が比較基準値を超えていない場合(ステップS18でNoの場合)には、駆動制御部53は、計時を開始してから予め定められた期間が経過したかを判定する(ステップS20)。これは、風量が最小のエリア71の家畜21の数が偶然に少なくなっている場合を除くために、予め定められた期間を超えて継続的に家畜21の数が少なくなっているかを判定するものである。予め定められた期間としては、家畜21の種類に応じて変化するが、一例では10分とすることができる。計時を開始してから予め定められた期間が経過していない場合(ステップS20でNoの場合)には、ステップS16へと処理が戻る。 When the number of livestock 21 in the area 71 with the minimum air volume does not exceed the comparison reference value (No in step S18), the drive control unit 53 elapses a predetermined period from the start of timekeeping. It is determined whether or not it has been done (step S20). This determines whether the number of livestock 21 is continuously reduced beyond a predetermined period in order to exclude the case where the number of livestock 21 in the area 71 with the minimum air volume is accidentally reduced. It is a thing. The predetermined period varies depending on the type of livestock 21, but in one example, it can be 10 minutes. If a predetermined period has not elapsed since the start of timekeeping (No in step S20), the process returns to step S16.
 計時を開始してから予め定められた期間が経過した場合(ステップS20でYesの場合)には、多くの家畜21が暑さを感じていると判定し、駆動制御部53は、すべてのエリア71の送風機32の風量を1段階上げる制御を行う(ステップS21)。なお、送風機32の風量が最大の段階にあるエリア71では、風量は最大の段階に維持される。その後、ステップS12へと処理が戻る。 When a predetermined period has elapsed from the start of timekeeping (yes in step S20), it is determined that many livestock 21 are feeling the heat, and the drive control unit 53 determines that all areas. Control is performed to raise the air volume of the blower 32 of 71 by one step (step S21). In the area 71 where the air volume of the blower 32 is at the maximum stage, the air volume is maintained at the maximum stage. After that, the process returns to step S12.
 また、風量が最小のエリア71における家畜21の数が比較基準値よりも少なくない場合(ステップS14でNoの場合)には、駆動制御部53は、風量が最大のエリア71における家畜21の数が比較基準値よりも少ないかを判定する(ステップS22)。風量が最大のエリア71における家畜21の数が比較基準値よりも少ない場合(ステップS22でYesの場合)には、駆動制御部53は、計時を開始する(ステップS23)。 When the number of livestock 21 in the area 71 having the minimum air volume is not less than the comparison reference value (No in step S14), the drive control unit 53 determines the number of livestock 21 in the area 71 having the maximum air volume. Is less than the comparison reference value (step S22). When the number of livestock 21 in the area 71 having the maximum air volume is smaller than the comparison reference value (Yes in step S22), the drive control unit 53 starts timing (step S23).
 その後、入力データ処理部51は、各エリア71の赤外線センサ31からの入力データを取得し、入力データを処理して各エリア71の熱画像を生成する(ステップS24)。ついで、家畜数算出部52は、熱画像から各エリア71に存在する家畜21の数を算出する(ステップS25)。駆動制御部53は、風量が最大のエリア71の家畜21の数が比較基準値を超えたかを判定する(ステップS26)。風量が最小のエリア71の家畜21の数が比較基準値を超えた場合(ステップS26でYesの場合)には、駆動制御部53は、計時を終了し(ステップS27)、ステップS12へと処理が戻る。 After that, the input data processing unit 51 acquires the input data from the infrared sensor 31 of each area 71, processes the input data, and generates a thermal image of each area 71 (step S24). Next, the livestock number calculation unit 52 calculates the number of livestock 21 existing in each area 71 from the thermal image (step S25). The drive control unit 53 determines whether the number of livestock 21 in the area 71 having the maximum air volume exceeds the comparison reference value (step S26). When the number of livestock 21 in the area 71 with the minimum air volume exceeds the comparison reference value (Yes in step S26), the drive control unit 53 ends the timekeeping (step S27) and processes to step S12. Is back.
 風量が最大のエリア71の家畜21の数が比較基準値を超えていない場合(ステップS26でNoの場合)には、駆動制御部53は、計時を開始してから予め定められた期間が経過したかを判定する(ステップS28)。計時を開始してから予め定められた期間が経過していない場合(ステップS28でNoの場合)には、ステップS24へと処理が戻る。 When the number of livestock 21 in the area 71 having the maximum air volume does not exceed the comparison reference value (No in step S26), the drive control unit 53 elapses a predetermined period from the start of timekeeping. It is determined whether or not it has been done (step S28). If a predetermined period has not elapsed since the start of timekeeping (No in step S28), the process returns to step S24.
 計時を開始してから予め定められた期間が経過した場合(ステップS28でYesの場合)には、多くの家畜21が涼しさを感じていると判定し、駆動制御部53は、すべてのエリア71の送風機32の風量を1段階下げる制御を行う(ステップS29)。なお、送風機32の風量が最小の段階にあるエリア71では、風量は最小の段階に維持される。その後、ステップS12へと処理が戻る。 When a predetermined period has elapsed from the start of timekeeping (Yes in step S28), it is determined that many livestock 21 are feeling cool, and the drive control unit 53 determines that all areas are cool. Control is performed to reduce the air volume of the blower 32 of 71 by one step (step S29). In the area 71 where the air volume of the blower 32 is at the minimum stage, the air volume is maintained at the minimum stage. After that, the process returns to step S12.
 ステップS22で風量が最大のエリア71における家畜21の数が比較基準値よりも少なくない場合(ステップS22でNoの場合)には、多くの家畜21は、現状の風量で満足していると判定し、駆動制御部53は、各エリア71の送風機32の風量を維持し(ステップS30)、ステップS12へと処理が戻る。そして、以上の処理が繰り返し実行されることになる。 When the number of livestock 21 in the area 71 having the maximum air volume in step S22 is not less than the comparison reference value (No in step S22), it is determined that many livestock 21 are satisfied with the current air volume. Then, the drive control unit 53 maintains the air volume of the blower 32 in each area 71 (step S30), and the process returns to step S12. Then, the above processing will be repeatedly executed.
 実施の形態1では、家畜21が行き来できる送風量の異なる複数のエリア71を用意し、この中で家畜21を飼育し、家畜21の居るエリア71を赤外線センサ31でモニタする。送風量が最小のエリア71に居る家畜21の数が予め定められた数よりも少ない場合には、家畜21が暑く感じていると判定し、少なくとも1つ以上のエリア71の風量を上げ、逆に、送風量が最大のエリア71に居る家畜21の数が予め定められた数よりも少ない場合には、家畜21が暑さを感じていないと判定し、少なくとも1つ以上のエリア71の風量を下げるようにした。これによって、体温が高い家畜21および体温が低い家畜21が共存する場合でも、家畜21自身が快適と感じる風量のエリア71に移動するため、両者が快適と感じるエリア71を提供することができる。つまり、畜舎11,11A内の家畜21のそれぞれが快適と感じられる環境を家畜21に提供することができる。 In the first embodiment, a plurality of areas 71 having different airflow volumes through which the livestock 21 can come and go are prepared, the livestock 21 are bred in the areas 71, and the area 71 where the livestock 21 is located is monitored by the infrared sensor 31. If the number of livestock 21 in the area 71 with the minimum air flow is less than the predetermined number, it is determined that the livestock 21 feels hot, and the air volume of at least one or more areas 71 is increased, and vice versa. In addition, when the number of livestock 21 in the area 71 having the maximum air volume is less than the predetermined number, it is determined that the livestock 21 does not feel the heat, and the air volume of at least one area 71 is determined. I tried to lower it. As a result, even when the livestock 21 having a high body temperature and the livestock 21 having a low body temperature coexist, the livestock 21 moves to the area 71 having an air volume that the livestock 21 itself feels comfortable, so that it is possible to provide the area 71 that both feel comfortable. That is, it is possible to provide the livestock 21 with an environment in which each of the livestock 21 in the barns 11 and 11A feels comfortable.
 なお、家畜21によっては敏感に動作しないものも居る。このような家畜21の場合には、駆動制御部53が風量を切り替える期間である制御時間を長くすることで、効果がある場合もある。 Note that some livestock 21 do not move sensitively. In the case of such livestock 21, it may be effective to lengthen the control time, which is the period during which the drive control unit 53 switches the air volume.
実施の形態2.
 実施の形態1では、飼育領域70に設けられる複数のエリア71のそれぞれに赤外線センサ31を設け、各エリア71の赤外線センサ31からの入力データに基づいて、各エリア71内の家畜21の数を算出していた。実施の形態2では、飼育領域70における家畜21の位置を検知することによって、各エリア71における家畜21の数を算出する場合を説明する。
Embodiment 2.
In the first embodiment, an infrared sensor 31 is provided in each of the plurality of areas 71 provided in the breeding area 70, and the number of livestock 21 in each area 71 is calculated based on the input data from the infrared sensor 31 of each area 71. It was calculated. In the second embodiment, a case where the number of livestock 21 in each area 71 is calculated by detecting the position of the livestock 21 in the breeding area 70 will be described.
 図7は、実施の形態2による畜舎管理システムの構成の一例を模式的に示す図である。なお、図1と同一の構成要素には、同一の符号を付して、その説明を省略する。実施の形態2による畜舎管理システム10では、飼育領域70内に存在する家畜21の位置を検出することができる位置検出部である赤外線センサ34を備える。つまり、実施の形態1では、赤外線センサ31は、各エリア71内の家畜21の数を求めるためにエリア71ごとに設けられていたが、実施の形態2では、赤外線センサ34は、飼育領域70に設けられる。一例では、赤外線センサ34は、飼育領域70の中央部に対応する畜舎11の天井14に設置される。 FIG. 7 is a diagram schematically showing an example of the configuration of the barn management system according to the second embodiment. The same components as those in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted. The barn management system 10 according to the second embodiment includes an infrared sensor 34 which is a position detection unit capable of detecting the position of the livestock 21 existing in the breeding area 70. That is, in the first embodiment, the infrared sensor 31 is provided for each area 71 in order to obtain the number of livestock 21 in each area 71, but in the second embodiment, the infrared sensor 34 is a breeding area 70. It is provided in. In one example, the infrared sensor 34 is installed on the ceiling 14 of the barn 11 corresponding to the central portion of the breeding area 70.
 赤外線センサ34は、家畜21の表面温度を検知するセンサである検知部341と、検知部341を保持する円筒状の保持部342と、を備える。検知部341は、円筒状の保持部342の中心軸である円筒軸に平行に配置され、検知部341は、円筒軸に平行な線状の範囲を検知する。保持部342は、円筒軸を中心に回転可能である。保持部342が回転することによって、検知部341で平面状の範囲を検知することが可能となる。 The infrared sensor 34 includes a detection unit 341, which is a sensor for detecting the surface temperature of the livestock 21, and a cylindrical holding unit 342 for holding the detection unit 341. The detection unit 341 is arranged parallel to the cylindrical axis, which is the central axis of the cylindrical holding unit 342, and the detection unit 341 detects a linear range parallel to the cylindrical axis. The holding portion 342 is rotatable about a cylindrical axis. By rotating the holding unit 342, the detection unit 341 can detect a planar range.
 赤外線センサ34は、飼育領域70をスキャンして、スキャンした飼育領域70に存在する物体の温度を測定し、測定結果を制御装置50に出力する。なお、ここでは、赤外線センサ34が天井14に設置される例を示したが、飼育領域70の全体を検知することができれば、側壁13または柵15に設置されてもよい。 The infrared sensor 34 scans the breeding area 70, measures the temperature of the object existing in the scanned breeding area 70, and outputs the measurement result to the control device 50. Although the example in which the infrared sensor 34 is installed on the ceiling 14 is shown here, it may be installed on the side wall 13 or the fence 15 as long as the entire breeding area 70 can be detected.
 なお、赤外線センサ34は、円筒軸を中心に保持部342を回転させて、検知部341を移動させることによって、検知部341の線状の検知範囲が飼育領域70となるようにしていた。しかし、赤外線センサ34が面状の範囲を検知できる赤外線アレイセンサであってもよい。この場合には、必ずしも保持部342は回転可能である必要はない。 The infrared sensor 34 rotates the holding unit 342 around the cylindrical axis to move the detection unit 341 so that the linear detection range of the detection unit 341 becomes the breeding area 70. However, the infrared sensor 34 may be an infrared array sensor capable of detecting a planar range. In this case, the holding portion 342 does not necessarily have to be rotatable.
 図8は、実施の形態2による畜舎管理システムにおける飼育領域の一例を示す図である。なお、図2と同一の構成要素には、同一の符号を付して、その説明を省略する。図8では、飼育領域70の中央部に対応する天井14の位置に1台の赤外線センサ34が設けられている。赤外線センサ34において、飼育領域70の全体を検知部341で検知することができるように、保持部342が回転する。 FIG. 8 is a diagram showing an example of a breeding area in the barn management system according to the second embodiment. The same components as those in FIG. 2 are designated by the same reference numerals, and the description thereof will be omitted. In FIG. 8, one infrared sensor 34 is provided at the position of the ceiling 14 corresponding to the central portion of the breeding area 70. In the infrared sensor 34, the holding unit 342 rotates so that the entire breeding area 70 can be detected by the detecting unit 341.
 図7に戻り、実施の形態2による制御装置50は、実施の形態1と同一の構成を有するが、処理が実施の形態1の場合とは異なる。入力データ処理部51は、赤外線センサ34からの入力データを処理し、飼育領域70の全体について温度の分布を示す熱画像を生成する。 Returning to FIG. 7, the control device 50 according to the second embodiment has the same configuration as that of the first embodiment, but the processing is different from that of the first embodiment. The input data processing unit 51 processes the input data from the infrared sensor 34 and generates a thermal image showing the temperature distribution over the entire breeding area 70.
 家畜数算出部52は、熱画像から飼育領域70に存在する家畜21についての位置を検出する。上記したように、床12と家畜21とは温度が異なるため、家畜数算出部52は、熱画像で家畜21を検出することができる。また、赤外線センサ34のスキャン範囲は、飼育領域70となっており、飼育領域70の位置と熱画像とを対応付けることによって、家畜数算出部52は、熱画像で検出した家畜21の飼育領域70上での位置を算出することができる。そして、家畜数算出部52は、各エリア71A,71B,71Cに存在する家畜21の数を算出し、エリア71A,71B,71Cごとに家畜21の数を算出したエリア状態情報を生成する。 The livestock number calculation unit 52 detects the position of the livestock 21 existing in the breeding area 70 from the thermal image. As described above, since the temperature of the floor 12 and the livestock 21 are different, the livestock number calculation unit 52 can detect the livestock 21 by the thermal image. Further, the scan range of the infrared sensor 34 is the breeding area 70, and by associating the position of the breeding area 70 with the thermal image, the livestock number calculation unit 52 may detect the livestock 21 in the thermal image in the breeding area 70. The position on the top can be calculated. Then, the livestock number calculation unit 52 calculates the number of livestock 21 existing in each area 71A, 71B, 71C, and generates the area state information in which the number of livestock 21 is calculated for each of the areas 71A, 71B, 71C.
 駆動制御部53は、実施の形態1と同様に処理を行うが、このときエリア状態情報を参照して各エリア71A,71B,71Cの家畜21の数を用いる。 The drive control unit 53 performs the processing in the same manner as in the first embodiment, but at this time, the number of livestock 21 in each area 71A, 71B, 71C is used with reference to the area state information.
 このような畜舎管理システム10における畜舎管理方法は、実施の形態1の図5および図6で説明したものと同様である。ただし、以下の点が実施の形態1とは異なる。ステップS12,S16,S24では、入力データ処理部51は、赤外線センサ34からの入力データを取得し、飼育領域70の熱画像を生成する。また、ステップS13,S17,S25では、家畜数算出部52は、飼育領域70の熱画像から各家畜21の位置を求め、各エリア71に存在する家畜21の数を算出する。 The barn management method in such a barn management system 10 is the same as that described in FIGS. 5 and 6 of the first embodiment. However, the following points are different from the first embodiment. In steps S12, S16, and S24, the input data processing unit 51 acquires the input data from the infrared sensor 34 and generates a thermal image of the breeding area 70. Further, in steps S13, S17, and S25, the livestock number calculation unit 52 obtains the position of each livestock 21 from the thermal image of the breeding area 70, and calculates the number of livestock 21 existing in each area 71.
 なお、上記した例では、飼育領域70を1つの赤外線センサ34で検知する例を挙げたが、飼育領域70に含まれるエリア71の数よりも少ない赤外線センサ34の数となるように、赤外線センサ34が配置されればよい。 In the above example, the breeding area 70 is detected by one infrared sensor 34, but the number of infrared sensors 34 is smaller than the number of areas 71 included in the breeding area 70. 34 may be arranged.
 実施の形態2では、飼育領域70に含まれるエリア71の数よりも少ない数の赤外線センサ34を配置し、制御装置50は、赤外線センサ34からの入力データを用いて、家畜21の位置を検出し、各エリア71に存在する家畜21の数を算出した。これによって、赤外線センサ34の数を実施の形態1の場合に比して少なくすることができる。 In the second embodiment, the number of infrared sensors 34 is smaller than the number of areas 71 included in the breeding area 70, and the control device 50 detects the position of the livestock 21 using the input data from the infrared sensor 34. Then, the number of livestock 21 existing in each area 71 was calculated. As a result, the number of infrared sensors 34 can be reduced as compared with the case of the first embodiment.
実施の形態3.
 実施の形態1,2で、風量制御によって、家畜21がエリア71間の移動を繰り返す動作を起こす場合がある。この場合には、制御装置50の駆動制御部53は、各エリア71の送風機32の風量を変化させる制御の指示を与える期間である風量制御周期を長くすることで、家畜21のエリア71間の移動を緩和させることができる。つまり、駆動制御部53は、風量の変更を行った時点から予め定められた期間が経過した後に、次の風量の変更を行うようにする。予め定められた周期は、家畜21が頻繁に移動することなく落ち着くことができる期間であればよく、一例では1時間周期とすることができる。
Embodiment 3.
In the first and second embodiments, the livestock 21 may repeatedly move between the areas 71 due to the air volume control. In this case, the drive control unit 53 of the control device 50 extends the air volume control cycle, which is a period for giving a control instruction to change the air volume of the blower 32 of each area 71, so that the livestock 21 between the areas 71 Movement can be eased. That is, the drive control unit 53 changes the next air volume after a predetermined period has elapsed from the time when the air volume is changed. The predetermined cycle may be any period as long as the livestock 21 can settle down without frequent movement, and in one example, it may be a one-hour cycle.
 例えば、飼育領域70は、エリアAおよびエリアBの2つのエリア71に分割されているものとする。このとき、以下に示す(1)から(3)に示す状態が繰り返されるものとする。
(1)エリアAの風量が「1」であり、エリアBの風量が「2」である場合に、家畜21はエリアBに集まる。
(2)エリアAおよびエリアBの風量を1段階上げ、エリアAの風量を「2」とし、エリアBの風量を「3」とする。
(3)エリアAの風量が「2」であり、エリアBの風量が「3」である場合に、家畜21はエリアAに集まる。
For example, it is assumed that the breeding area 70 is divided into two areas 71, an area A and an area B. At this time, it is assumed that the states shown in (1) to (3) below are repeated.
(1) When the air volume in the area A is "1" and the air volume in the area B is "2", the livestock 21 gather in the area B.
(2) The air volume of area A and area B is increased by one step, the air volume of area A is set to "2", and the air volume of area B is set to "3".
(3) When the air volume in area A is "2" and the air volume in area B is "3", the livestock 21 gather in area A.
 このような場合、変更周期を短時間にすると、家畜21は常に移動することになる。しかし、例えば1時間毎などのように、適切な変更周期を設定することによって、家畜21の移動を緩和することができる。 In such a case, if the change cycle is shortened, the livestock 21 will always move. However, the movement of the livestock 21 can be mitigated by setting an appropriate change cycle, for example, every hour.
 また、他の方法として、(1)から(3)に示す状態が繰り返し発生した場合、すなわち風量が「2」のエリアに家畜21が集まる場合には、駆動制御部53は、家畜21にとって風量「2」が最適風量であると判断して、エリアAおよびエリアBの風量を「2」としてもよい。この場合、駆動制御部53は、定期的に風量を変化させて、家畜21にとっての最適風量に変化がないかを確認することが望ましい。 As another method, when the states shown in (1) to (3) are repeatedly generated, that is, when the livestock 21 gather in the area where the air volume is "2", the drive control unit 53 causes the livestock 21 to have an air volume. It may be determined that "2" is the optimum air volume, and the air volumes in areas A and B may be set to "2". In this case, it is desirable that the drive control unit 53 periodically changes the air volume to check whether the optimum air volume for the livestock 21 has changed.
 実施の形態3では、風量制御によってエリア71の風量を変更したときに、家畜21が移動を繰り返すような場合に、風量制御の処理を、家畜21が頻繁に移動することがない予め定められた周期で行うようにした。これによって、飼育領域70内に設けられたエリア71間の家畜21の移動を緩和することができるという効果を得ることができる。 In the third embodiment, when the livestock 21 repeatedly moves when the air volume in the area 71 is changed by the air volume control, the air volume control process is predetermined so that the livestock 21 does not move frequently. I tried to do it in a cycle. As a result, it is possible to obtain the effect that the movement of the livestock 21 between the areas 71 provided in the breeding area 70 can be alleviated.
実施の形態4.
 実施の形態1,2では、飼育領域70が複数のエリア71を有する場合に、少なくとも2つのエリア71において風量が異なるように、送風機32を制御していた。例えば、飼育領域70が3つのエリア71を有し、それぞれの風量が「大」、「中」、「小」である場合で、風量が「大」および「小」のエリア71に比して、風量が「中」のエリア71に家畜21が多く集まっていた場合には、風量が「中」のエリア71を快適に思う家畜21が多いということである。このため、制御装置50の駆動制御部53は、風量が「小」および「大」のエリア71のうち少なくとも一方を「中」に変更してもよい。つまり、駆動制御部53は、風量が「中」のエリア71を2つ作る、または全てのエリア71で風量を「中」にするという制御を行うようにしてもよい。風量が「小」または「大」のエリア71を風量が「中」のエリア71にする場合には、一例では、駆動制御部53は、家畜21の数が少ない方のエリア71を「中」にするエリア71として選択する。また、最も多く家畜21が集まっているエリア71に存在する家畜21の割合が予め定められた判定基準値よりも多い場合に、風量が同じエリア71を2つ以上作るようにしてもよい。
Embodiment 4.
In the first and second embodiments, when the breeding area 70 has a plurality of areas 71, the blower 32 is controlled so that the air volume differs in at least two areas 71. For example, when the breeding area 70 has three areas 71 and the respective air volumes are "large", "medium", and "small", the air volume is compared to the "large" and "small" areas 71. When a large number of livestock 21 are gathered in the area 71 where the air volume is "medium", it means that there are many livestock 21 who feel comfortable in the area 71 where the air volume is "medium". Therefore, the drive control unit 53 of the control device 50 may change at least one of the areas 71 in which the air volume is “small” and “large” to “medium”. That is, the drive control unit 53 may control to create two areas 71 having an air volume of "medium" or to set the air volume to "medium" in all the areas 71. When the area 71 having a "small" or "large" air volume is changed to the area 71 having a "medium" air volume, in one example, the drive control unit 53 sets the area 71 having a smaller number of livestock 21 to "medium". Select as the area 71 to be set. Further, when the ratio of the livestock 21 existing in the area 71 where the most livestock 21 are gathered is larger than the predetermined determination reference value, two or more areas 71 having the same air volume may be created.
 実施の形態4では、制御装置50は、複数のエリア71で風量が異なるように送風機32を制御している場合に、いずれか1つのエリア71に家畜21が多く集まっている場合に、他のエリア71のうち少なくとも1つを家畜21が多く集まっているエリア71と同じ風量となるように、送風機32を制御する。これによって、1つのエリア71に家畜21が多く集まっている状態を解消することができるという効果を有する。 In the fourth embodiment, the control device 50 controls the blower 32 so that the air volume differs in the plurality of areas 71, and when a large number of livestock 21 are gathered in any one of the areas 71, the other The blower 32 is controlled so that at least one of the areas 71 has the same air volume as the area 71 where many livestock 21 are gathered. This has the effect of eliminating the situation where many livestock 21 are gathered in one area 71.
 つぎに、制御装置50を実現するハードウェアの構成について説明する。図9は、実施の形態1から4による制御装置を実現するハードウェア構成の一例を模式的に示す図である。制御装置50は、図9に示される処理回路100で実現可能である。 Next, the configuration of the hardware that realizes the control device 50 will be described. FIG. 9 is a diagram schematically showing an example of a hardware configuration that realizes the control device according to the first to fourth embodiments. The control device 50 can be realized by the processing circuit 100 shown in FIG.
 処理回路100は、プロセッサ101、メモリ102、入力回路103および出力回路104を有する。プロセッサ101は、CPU(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、DSPともいう)、システムLSI(Large Scale Integration)などである。メモリ102は、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(登録商標)(Electrically Erasable Programmable Read-Only Memory)等の、不揮発性または揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスクまたはDVD(Digital Versatile Disc)等である。 The processing circuit 100 includes a processor 101, a memory 102, an input circuit 103, and an output circuit 104. The processor 101 is a CPU (Central Processing Unit, central processing unit, processing unit, arithmetic unit, microprocessor, microcomputer, processor, also referred to as DSP), a system LSI (Large Scale Integration), or the like. The memory 102 is a non-volatile or non-volatile memory such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), EEPROM (registered trademark) (Electrically Erasable Programmable Read-Only Memory). Volatile semiconductor memory, magnetic disk, flexible disk, optical disk, compact disk, mini disk, DVD (Digital Versatile Disc), etc.
 制御装置50は、対応するプログラムをメモリ102から読み出してプロセッサ101が実行することにより実現できる。入力回路103は、プロセッサ101が処理する情報、メモリ102が記憶する情報などを外部から受け取る際に使用される。出力回路104は、プロセッサ101が生成した情報、メモリ102が記憶している情報を外部へ出力する際に使用される。 The control device 50 can be realized by reading the corresponding program from the memory 102 and executing the processor 101. The input circuit 103 is used when receiving information processed by the processor 101, information stored in the memory 102, and the like from the outside. The output circuit 104 is used to output the information generated by the processor 101 and the information stored in the memory 102 to the outside.
 なお、上記した例では、1つの制御装置50が入力データ処理部51、家畜数算出部52および駆動制御部53を備える場合を示したが、これらの機能処理部が別箇の制御装置50に設けられていてもよい。一例では、駆動制御部53が、第1制御装置として設けられ、入力データ処理部51と家畜数算出部52とが第2制御装置として設けられてもよい。また、この場合、赤外線センサ31または赤外線センサ34と第2制御装置とが一体的に構成され、赤外線センサモジュールとして構成されていてもよい。 In the above example, one control device 50 includes an input data processing unit 51, a livestock number calculation unit 52, and a drive control unit 53, but these functional processing units are used in another control device 50. It may be provided. In one example, the drive control unit 53 may be provided as the first control device, and the input data processing unit 51 and the livestock number calculation unit 52 may be provided as the second control device. Further, in this case, the infrared sensor 31 or the infrared sensor 34 and the second control device may be integrally configured and configured as an infrared sensor module.
 以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、実施の形態同士を組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration shown in the above embodiments is an example, and can be combined with another known technique, can be combined with each other, and does not deviate from the gist. It is also possible to omit or change a part of the configuration.
 10 畜舎管理システム、11,11A 畜舎、12 床、13 側壁、14 天井、15 柵、16 柱、21 家畜、31,31A,31B,31C,34 赤外線センサ、32,32A,32B,32C 送風機、33 外気温測定部、40 ネットワーク、50 制御装置、51 入力データ処理部、52 家畜数算出部、53 駆動制御部、70 飼育領域、71,71A,71B,71C エリア、311,341 検知部、312,342 保持部。 10 barn management system, 11, 11A barn, 12 floors, 13 side walls, 14 ceilings, 15 fences, 16 pillars, 21 livestock, 31, 31A, 31B, 31C, 34 infrared sensors, 32, 32A, 32B, 32C blowers, 33 Outside temperature measurement unit, 40 network, 50 control device, 51 input data processing unit, 52 livestock number calculation unit, 53 drive control unit, 70 breeding area, 71, 71A, 71B, 71C area, 311, 341 detection unit, 312 342 Holding part.

Claims (13)

  1.  家畜が飼育される飼育領域を有する畜舎における風量を管理する畜舎管理システムであって、
     前記飼育領域を分割した複数のエリアであって、前記家畜が相互に移動可能な前記複数のエリアのそれぞれに配置される送風機と、
     前記送風機の動作を制御する第1制御装置と、
     を備え、
     前記第1制御装置は、前記複数のエリアのうち少なくとも2つのエリアにおける風量が互いに異なるように前記送風機の動作を制御することを特徴とする畜舎管理システム。
    It is a barn management system that manages the air volume in a barn that has a breeding area where livestock are raised.
    Blowers arranged in each of the plurality of areas in which the breeding area is divided and the livestock can move to each other, and
    The first control device that controls the operation of the blower and
    Equipped with
    The first control device is a barn management system characterized in that the operation of the blower is controlled so that the air volumes in at least two of the plurality of areas are different from each other.
  2.  前記複数のエリアの各エリアに設けられ、前記各エリア内に存在する前記家畜の数を検知する家畜数検知部と、
     前記家畜数検知部での検知結果から前記各エリア内に存在する前記家畜の数を示す指標を算出する第2制御装置と、
     をさらに備え、
     前記第1制御装置は、前記各エリア内の前記家畜の数を示す指標に基づいて前記送風機の風量を制御することを特徴とする請求項1に記載の畜舎管理システム。
    A livestock number detecting unit provided in each area of the plurality of areas and detecting the number of the livestock existing in each area, and a livestock number detecting unit.
    A second control device that calculates an index indicating the number of livestock existing in each area from the detection result of the livestock number detection unit, and
    Further prepare
    The barn management system according to claim 1, wherein the first control device controls the air volume of the blower based on an index indicating the number of livestock in each area.
  3.  前記飼育領域内に存在する前記家畜の位置を検出する位置検出部と、
     前記位置検出部での検知結果から、前記飼育領域内における前記家畜の位置を検出し、前記家畜の位置から前記各エリア内に存在する前記家畜の数を示す指標を算出する第2制御装置と、
     をさらに備え、
     前記第1制御装置は、前記各エリア内の前記家畜の数を示す指標に基づいて前記送風機の風量を制御することを特徴とする請求項1に記載の畜舎管理システム。
    A position detection unit that detects the position of the livestock existing in the breeding area, and
    A second control device that detects the position of the livestock in the breeding area from the detection result of the position detection unit and calculates an index indicating the number of the livestock existing in each area from the position of the livestock. ,
    Further prepare
    The barn management system according to claim 1, wherein the first control device controls the air volume of the blower based on an index indicating the number of livestock in each area.
  4.  前記第1制御装置は、前記複数のエリアのうち少なくとも1つのエリアにおける前記風量が、前回風量制御を行った時点における状態とは異なる風量となるように前記送風機の風量を制御することを特徴とする請求項2または3に記載の畜舎管理システム。 The first control device is characterized in that the air volume of the blower is controlled so that the air volume in at least one of the plurality of areas is different from the air volume at the time when the previous air volume control is performed. The barn management system according to claim 2 or 3.
  5.  前記第1制御装置は、前記複数のエリアのうち前記風量が最小のエリアにおける前記家畜の数を示す指標が予め定められた判定基準値よりも少ない場合に、前回風量制御を行った時点における状態に比して、前記複数のエリアのすべての前記風量を上げることを特徴とする請求項4に記載の畜舎管理システム。 The first control device is in a state at the time of the previous air volume control when the index indicating the number of livestock in the area where the air volume is the smallest among the plurality of areas is less than a predetermined determination reference value. The livestock barn management system according to claim 4, wherein the air volume of all of the plurality of areas is increased as compared with the above.
  6.  前記第1制御装置は、前記複数のエリアのうち前記風量が最大のエリアにおける前記家畜の数を示す指標が予め定められた判定基準値よりも少ない場合に、前回風量制御を行った時点における状態に比して、前記複数のエリアのすべての前記風量を下げることを特徴とする請求項4に記載の畜舎管理システム。 The first control device is in a state at the time of the previous air volume control when the index indicating the number of livestock in the area having the maximum air volume among the plurality of areas is less than a predetermined determination reference value. The livestock barn management system according to claim 4, wherein the air volume in all of the plurality of areas is reduced as compared with the above.
  7.  前記第1制御装置は、前記風量の変更を行った時点から予め定められた期間が経過した後に、つぎの前記風量の変更を行うことを特徴とする請求項4から6のいずれか1つに記載の畜舎管理システム。 The first control device according to any one of claims 4 to 6, wherein the first control device changes the next air volume after a predetermined period has elapsed from the time when the air volume is changed. The described barn management system.
  8.  前記第1制御装置は、前記複数のエリアのうち、ある1つのエリアに存在する前記家畜の数が他のエリアに存在する前記家畜の数よりも多い場合に、前記他のエリアの少なくとも1つを前記ある1つのエリアと同じ風量となるように前記送風機を制御することを特徴とする請求項4から7のいずれか1つに記載の畜舎管理システム。 The first control device is at least one of the other areas when the number of the livestock existing in one area is larger than the number of the livestock existing in the other area among the plurality of areas. The livestock barn management system according to any one of claims 4 to 7, wherein the blower is controlled so that the air volume is the same as that of the one area.
  9.  前記家畜数検知部は、赤外線センサであることを特徴とする請求項2に記載の畜舎管理システム。 The livestock barn management system according to claim 2, wherein the livestock number detection unit is an infrared sensor.
  10.  前記位置検出部は、赤外線センサであることを特徴とする請求項3に記載の畜舎管理システム。 The barn management system according to claim 3, wherein the position detection unit is an infrared sensor.
  11.  前記第2制御装置は、前記赤外線センサから得られるデータを用いて前記家畜の表面温度を測定し、前記表面温度と予め定められた第1設定値との差の絶対値が予め定められた第2設定値よりも大きい場合に、該当する前記家畜を調子の悪い可能性がある家畜として抽出する機能をさらに有することを特徴とする請求項9または10に記載の畜舎管理システム。 The second control device measures the surface temperature of the livestock using the data obtained from the infrared sensor, and the absolute value of the difference between the surface temperature and the predetermined first set value is predetermined. 2. The barn management system according to claim 9 or 10, further comprising a function of extracting the relevant livestock as livestock that may be out of order when the value is larger than the set value.
  12.  前記複数のエリアの壁、柵または床に、前記エリアごとに異なった色を着色することを特徴とする請求項1から11のいずれか1つに記載の畜舎管理システム。 The barn management system according to any one of claims 1 to 11, wherein the walls, fences or floors of the plurality of areas are colored with different colors for each area.
  13.  前記畜舎の外部の気温を測定する外気温測定部をさらに備え、
     前記第1制御装置は、前記各エリアの前記家畜の数を示す指標と前記外部の気温とに基づいて前記複数のエリアの前記風量を制御することを特徴とする請求項1から12のいずれか1つに記載の畜舎管理システム。
    Further equipped with an outside air temperature measuring unit for measuring the outside air temperature of the barn,
    One of claims 1 to 12, wherein the first control device controls the air volume in the plurality of areas based on an index indicating the number of livestock in each area and the outside air temperature. The barn management system described in one.
PCT/JP2020/025624 2020-06-30 2020-06-30 Livestock barn management system WO2022003808A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022533301A JP7341344B2 (en) 2020-06-30 2020-06-30 Livestock management system
PCT/JP2020/025624 WO2022003808A1 (en) 2020-06-30 2020-06-30 Livestock barn management system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/025624 WO2022003808A1 (en) 2020-06-30 2020-06-30 Livestock barn management system

Publications (1)

Publication Number Publication Date
WO2022003808A1 true WO2022003808A1 (en) 2022-01-06

Family

ID=79315728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/025624 WO2022003808A1 (en) 2020-06-30 2020-06-30 Livestock barn management system

Country Status (2)

Country Link
JP (1) JP7341344B2 (en)
WO (1) WO2022003808A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102701458B1 (en) * 2023-11-10 2024-09-04 주식회사 엑소에어 Cattle shed cooling system using artificial intelligence

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0284120A (en) * 1988-09-20 1990-03-26 Akao Tekkosho:Kk Method for ventilating and supplying air to barn
JP2004027921A (en) * 2002-06-25 2004-01-29 Aichi Electric Co Ltd Drive control device for blower
JP2007267698A (en) * 2006-03-31 2007-10-18 Fujitsu Ltd Breeding support system and gate control method
US20160120144A1 (en) * 2014-10-30 2016-05-05 Electronics And Telecommunications Research Institute Livestock house management system and management method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0284120A (en) * 1988-09-20 1990-03-26 Akao Tekkosho:Kk Method for ventilating and supplying air to barn
JP2004027921A (en) * 2002-06-25 2004-01-29 Aichi Electric Co Ltd Drive control device for blower
JP2007267698A (en) * 2006-03-31 2007-10-18 Fujitsu Ltd Breeding support system and gate control method
US20160120144A1 (en) * 2014-10-30 2016-05-05 Electronics And Telecommunications Research Institute Livestock house management system and management method thereof

Also Published As

Publication number Publication date
JPWO2022003808A1 (en) 2022-01-06
JP7341344B2 (en) 2023-09-08

Similar Documents

Publication Publication Date Title
Youssef et al. Towards real-time control of chicken activity in a ventilated chamber
US8381539B2 (en) Method and control system for decreasing the thermal load on animals
Fox et al. Climate-driven tipping-points could lead to sudden, high-intensity parasite outbreaks
KR102126304B1 (en) System and method for grooming-related farm decision support
US9485966B1 (en) Device and method of animal reward
WO2022003808A1 (en) Livestock barn management system
JP6956510B2 (en) Environmental control system and environmental control method
CN105091205A (en) Air conditioner, detection device of air conditioner and detection method and control method of air conditioner
KR20210123081A (en) Method for operating Home appliance system
TW202139827A (en) Temperature control method, temperature control device, temperature control program, and temperature control system
de Souza Granja Barros et al. PID temperature controller in pig nursery: spatial characterization of thermal environment
Campos et al. Prediction of free-stall occupancy rate in dairycattle barns through fuzzy sets
KR200454695Y1 (en) Kennel ventilation system
Mundinger et al. Artificially raised roost temperatures lead to larger body sizes in wild bats
Sokoloff et al. Thermoregulatory behavior in infant Norway rats (Rattus norvegicus) and Syrian golden hamsters (Mesocricetus auratus): Arousal, orientation, and locomotion.
JP7455209B2 (en) Livestock management systems, learning devices and reasoning devices
JP7337275B2 (en) blower control system
CN114704948A (en) Method and device for controlling air conditioner, air conditioner and storage medium
JP7487784B2 (en) Blower Control System
Sobejana et al. Development and Construction of Poultry Egg Incubator Temperature and Humidity Controller (Peitch) With SMS Notification
Rizzo et al. Variation in and relationship among environmental condition and total locomotor activity in dairy cows.
Xiong Engineering solutions to address several current livestock and poultry housing challenges
JP7412578B2 (en) blower control system
US20240268330A1 (en) Devices and methods for managing animals in an enclosure
Aerts et al. Environmental management for laying hens.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20943175

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022533301

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20943175

Country of ref document: EP

Kind code of ref document: A1