WO2022097762A1 - Multi-remote controller auto-switching module, and unmanned aerial vehicle having same - Google Patents
Multi-remote controller auto-switching module, and unmanned aerial vehicle having same Download PDFInfo
- Publication number
- WO2022097762A1 WO2022097762A1 PCT/KR2020/015253 KR2020015253W WO2022097762A1 WO 2022097762 A1 WO2022097762 A1 WO 2022097762A1 KR 2020015253 W KR2020015253 W KR 2020015253W WO 2022097762 A1 WO2022097762 A1 WO 2022097762A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- remote controller
- unmanned aerial
- aerial vehicle
- control
- switching module
- Prior art date
Links
- 238000004891 communication Methods 0.000 claims abstract description 30
- 238000000034 method Methods 0.000 claims description 23
- 230000005540 biological transmission Effects 0.000 claims description 3
- 101100326920 Caenorhabditis elegans ctl-1 gene Proteins 0.000 description 25
- 101100494773 Caenorhabditis elegans ctl-2 gene Proteins 0.000 description 14
- 238000010586 diagram Methods 0.000 description 6
- 230000000630 rising effect Effects 0.000 description 5
- 238000003708 edge detection Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- RZVHIXYEVGDQDX-UHFFFAOYSA-N 9,10-anthraquinone Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3C(=O)C2=C1 RZVHIXYEVGDQDX-UHFFFAOYSA-N 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U10/00—Type of UAV
- B64U10/10—Rotorcrafts
- B64U10/13—Flying platforms
- B64U10/16—Flying platforms with five or more distinct rotor axes, e.g. octocopters
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W12/00—Security arrangements; Authentication; Protecting privacy or anonymity
- H04W12/06—Authentication
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W12/00—Security arrangements; Authentication; Protecting privacy or anonymity
- H04W12/08—Access security
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U2201/00—UAVs characterised by their flight controls
- B64U2201/20—Remote controls
Definitions
- the present invention relates to a multi-remote controller auto-switching module and an unmanned aerial vehicle equipped therewith, and more particularly, a multi-remote controller auto-switching module for auto-switching control rights between multi-remote controllers for controlling an unmanned aerial vehicle over multiple points. And it relates to an unmanned aerial vehicle equipped with the same.
- UAV System Unmanned Aerial Vehicle System
- UAVs are being used in various fields (cargo transportation, crop control, fire suppression, crime control, cadastral investigations, port management, submarine drones, etc.).
- Unmanned aerial vehicles do not have actual pilots on board, but fly automatically or semi-automatically according to a pre-programmed route on the ground. collectively referred to as the entire system of
- Drone is an English slang term for unmanned aerial vehicles.
- Unmanned aerial vehicles and model aircraft are classified according to whether or not they are mounted on an aircraft in an automatic flight control system (FCS).
- FCS automatic flight control system
- an automatic flight device if an automatic flight device is included, it is an unmanned aerial vehicle even if it is small in size, and if it does not include an automatic flying device, it is called a model aircraft, no matter how large the aircraft.
- different remote controllers may be used depending on the distance between the points when delivering multi-point delivery. In this case, if switching between the remote controllers is not performed smoothly, a problem of losing control of the unmanned aerial vehicle may occur.
- emergency measures may be devised to program the route and automatically move the unmanned aerial vehicle based on the location information of a plurality of points.
- these measures cannot be a good solution because it cannot completely control safety accidents, crash accidents, and fall accidents that may occur in unmanned aerial vehicles.
- the present invention devised by the above necessity does not cause a gap in control and control of the unmanned aerial vehicle by automatically switching the control right to a remote controller located on a preset route when the unmanned aerial vehicle delivers goods from multiple points.
- An object of the present invention is to provide a multi-remote controller auto-switching module and an unmanned aerial vehicle equipped with the same that prevent the problem of control taking over by unauthorized remote controllers.
- a multi-remote controller auto-switching module includes: a communication unit for wirelessly communicating with a plurality of remote controllers respectively located at a plurality of points; a determination unit for authenticating a control signal received from a specific remote controller through the communication unit using a module encryption method to determine whether to comply with the control of the corresponding remote controller; and a switching unit for switching the control right from the previous remote controller to the new remote controller according to the result of the determination unit.
- the communication unit includes a plurality of receivers to individually receive control signals from a plurality of remote controllers.
- the communication unit is a receiving unit including one or a plurality of receivers, or includes a receiving unit and other communication means.
- the communication unit may include a plurality of receivers including a plurality of radio frequency (RF) receivers, and a short-channel photo coupler between the plurality of RF receivers and the determination unit, respectively.
- RF radio frequency
- the communication unit a PPM signal output connector that transmits a pulse position modulation (PPM) signal, which is an RF signal received by one of the plurality of receivers, to the determination unit as an output PPM signal via the short-channel photocoupler.
- PPM pulse position modulation
- the determination unit divides the received PPM signal into a PWM signal, and then uses the frequency information, remote controller identification information, and time information included in the separated PWM signal to transmit the PWM signal. Validate.
- An unmanned aerial vehicle having a multi-remote controller auto-switching module includes: a frame for assembling various parts of the unmanned aerial vehicle; a propeller including a motor and a transmission installed in a plurality of areas of the frame; a flight controller installed on the frame to process various controls for maintaining the flight function of the unmanned aerial vehicle; A plurality of sensors for sensing information about the surrounding situation of the unmanned aerial vehicle; and a battery for supplying power to the propeller, the flight controller, and a plurality of sensors, wherein the flight controller includes: a communication unit for wirelessly communicating with a plurality of remote controllers located at a plurality of points, respectively; a determination unit for authenticating a control signal received from a specific remote controller through the communication unit using a module encryption method to determine whether to comply with the control of the corresponding remote controller; and a switching unit for switching the control right from the previous remote controller to the control right of the new remote controller according to the result of the determination unit; and a multi-re
- the communication unit includes a plurality of receivers to individually receive control signals from a plurality of remote controllers.
- the communication unit may configure the plurality of receivers as radio frequency (RF) receivers, and may further include a short-channel photo coupler between the RF receiver and the determination unit, respectively.
- RF radio frequency
- the communication unit a PPM signal output connector that transmits a PPM (Radio Control Signal) signal, which is an RF signal received by one of the plurality of receivers, to the determination unit as an output PPM signal via the short-channel photo coupler.
- PPM Radio Control Signal
- the determination unit separates the PWM signal from the received PPM signal, and uses the frequency information, remote controller identification information, and time information included in the separated PWM signal of the remote controller that transmits the PWM signal. Validation can be verified.
- the unmanned aerial vehicle delivers goods from multiple points, by automatically switching the control right to a remote controller located on a preset route, there is no gap in the control and control of the unmanned aerial vehicle. to be effective,
- the control right of the remote controller is switched with high reliability, thereby exhibiting the effect of preventing various communication problems that may occur in the unmanned aerial vehicle due to communication interruption, radio wave interference, drone hacking, etc. .
- FIG. 1 is a view exemplarily explaining the structure of an unmanned aerial vehicle according to an embodiment of the present invention
- FIG. 2 is a block diagram for illustratively explaining the function of an unmanned aerial vehicle according to an embodiment of the present invention
- FIG. 3 is a view exemplarily explaining the operation of an unmanned aerial vehicle according to an embodiment of the present invention.
- FIG. 4 is a view exemplarily illustrating the structure of a receiver of a multi-remote controller auto-switching module according to another embodiment of the present invention.
- FIG. 5 is a view exemplarily explaining the structure of a flight controller including a multi-remote controller auto-switching module according to another embodiment of the present invention.
- FIG. 6 is a view exemplarily explaining an example of separating a control signal by a determination unit constituting a multi-remote controller auto-switching module according to another embodiment of the present invention
- FIG. 7 exemplarily shows a 2 ⁇ 8 box header of a display unit constituting a multi-remote controller auto-switching module according to another embodiment of the present invention.
- the unmanned aerial vehicle 10 to be described below performs duties such as logistics transportation, forest fire extinguishing, disaster response relief material transportation, terrain and feature mapping, search and reconnaissance, and LTE/5G or other cellular method real-time video transmission.
- duties such as logistics transportation, forest fire extinguishing, disaster response relief material transportation, terrain and feature mapping, search and reconnaissance, and LTE/5G or other cellular method real-time video transmission.
- it is not limited to these tasks and can be variously changed in design within the scope of the technical spirit of the present invention.
- the unmanned aerial vehicle 10 may be designed in the form of an 8-axis multicopter type air vehicle, or may be designed in other ways.
- the total take-off weight of the unmanned aerial vehicle 10 may be designed differently depending on the purpose of 48 kg or less, 25 kg or less, or 12 kg or less.
- the unmanned aerial vehicle 10 may be designed differently for the weight of the payload (20 kg or less, 10 kg or less, 5 kg or less) according to the total take-off weight.
- the size of the unmanned aerial vehicle is 2200 ⁇ 2200 ⁇ 800 (mm), 1,600 ⁇ 1,600 ⁇ 850 (mm), 960 ⁇ 960 ⁇ 600 (mm), etc., and can be designed in various ways according to specifications.
- the unmanned aerial vehicle 10 of the present invention is capable of automatic flight in all sections of the transportation route.
- the flight speed of the unmanned aerial vehicle 10 may be designed to be a flight speed of 10 m/s to 20 m/s, more preferably, a flight speed of 15 m/s.
- the maximum operating altitude of the unmanned aerial vehicle 10 may be variously designed according to specifications, such as 1500 m, 1000 m, or 500 m.
- the unmanned aerial vehicle 10 may be operated in a temperature range of -10°C to 40°C.
- the remote control distance of the unmanned aerial vehicle 10 of the present invention is a distance capable of RF communication up to a maximum of 2,000 m.
- the unmanned aerial vehicle 10 may be operated in the range of 30 to 40 minutes when there is no load.
- the automatic flight distance of the unmanned aerial vehicle 10 of the present invention is about 10 km, for example, 8 km to 12 km, in the LTE mode, and around 1.2 km in the TELE mode.
- the unmanned aerial vehicle 10 includes a flight controller 110 installed inside a frame 160 , and a plurality of propellers 120 - provided at the edge of the frame 160 . 1 to 120-8), a plurality of sensors 130 provided in one area of the frame 160, a battery 140 installed inside the frame 160, and a frame 150 for integrating each component includes
- the unmanned aerial vehicle 10 shown in FIG. 1 is an unmanned aerial vehicle composed of eight propellers 120-1 to 120-8.
- the unmanned aerial vehicle 10 may use the propulsion generated by eight propellers, and may manually fly a predetermined route under the control of an RF controller (not shown), or may automatically fly in LTE or TELE mode. In the case of manual flight, it can be switched from automatic to manual once it is within the control range of the RF regulator.
- the unmanned aerial vehicle 10 receives the control signal received from the RF manipulator, it undergoes a procedure of authenticating the received control signal through a cryptographic modularization method.
- the unmanned aerial vehicle 10 switches control to an authenticated RF manipulator according to the cryptographic modularization method.
- the cryptographic modularization method may be implemented with any one of various cryptographic functions selected from cryptographic (symmetric/asymmetric), random number generation, prime number determination, hash, digital signature, and authentication, and may be implemented in software, hardware, firmware, or a combination thereof. can be implemented Alternatively, if it is out of the control range of the RF controller, it can fly at a fixed speed in the automatic flight method.
- an individual RF controller is provided for each point, and the coordinator can control the unmanned aerial vehicle 10 using the corresponding RF controller, and the unmanned aerial vehicle 10 automatically In the case of cruising in a flying manner, the control right of the unmanned aerial vehicle 10 may be obtained and adjusted.
- FIG. 2 is a block diagram for illustratively explaining the function of an unmanned aerial vehicle according to an embodiment of the present invention. Referring to FIG. 2 , an operation of switching the control right among the four remote controllers Ctl_1 to Ctl_4 for controlling the unmanned aerial vehicle 10 will be described.
- the multi-remote controller auto switch module may be implemented in an integrated form in the flight controller 110 of the unmanned aerial vehicle 10 or implemented as a separate module.
- the multi-remote controller auto switch module includes software, hardware, firmware, or a combination of any one of various cryptographic functions selected from encryption (symmetric/asymmetric), random number generation, decimal determination, hash, digital signature, and authentication. More modules may be included.
- the multi-remote controller auto switch module of the present invention includes a receiving unit 111 , a determining unit 112 , a switching unit 113 , and a synchronization blank detecting unit 114 .
- the determination unit 112 , the switching unit 113 , and the synchronization blank sensing unit 114 may be configured as one integrated module, but hereinafter, an example implemented as an individual configuration will be mainly described.
- the unmanned aerial vehicle 10 may communicate with the plurality of remote controllers Ctl_1 to Ctl_4 in an RF manner.
- the control range of the unmanned aerial vehicle 10 and the plurality of remote controllers Ctl_1 to Ctl_4 is about 2Km, and may be controlled, for example, from 1.5Km to 2.5Km, and may be larger or smaller than that in some cases.
- the unmanned aerial vehicle 10 may get out of control of the remote controller Ctl during flight, and in this case, it may automatically fly according to the control of the remote server by the built-in LTE communication module or TELE communication module.
- the unmanned aerial vehicle 10 flies under the control of the first remote controller Ctl_1 among the plurality of remote controllers Ctl_1 to Ctl_4 .
- the unmanned aerial vehicle 10 receives the RF signal received from the first remote controller Ctl_1 using an antenna.
- the unmanned aerial vehicle 10 transmits the received RF signal to the determination unit 112 as a PPM signal through the reception unit 111 .
- the PPM signal is a pulse position modulation signal.
- the determination unit 112 After receiving the PPM signal, the determination unit 112 separates the PWM signal for each specific channel included in the PPM signal according to a predetermined algorithm, and a frequency band included in the separated PWM signal, identification information of the remote controller, and reception time , it is identified that the remote controller that has transmitted the PWM signal is the first remote controller (Ctl_1) in consideration of location information, etc. By transferring the identified control signal of the first remote controller Ctl_1 to the propeller 120 and controlling the operation of the propeller 120 according to the control signal, the operation of the unmanned aerial vehicle 10 may be controlled.
- the determination unit 112 of the unmanned aerial vehicle 10 uses the frequency characteristics of the PWM signal, location information, time information, remote controller identification information received from the remote server, etc. 1
- the remote controller (Ctl_1) can be identified. If the PWM signal frequency characteristics, location information, time information, remote controller identification information, etc. do not match, the matching remote controller is found by searching for information on other remote controllers that match the signal information included in the PWM signal. .
- the unmanned air 10 receives it through an antenna.
- the received RF signal is transmitted to the determining unit 112 as a PPM signal via the receiving unit 111 .
- the determination unit 112 separates the PWM signal from the PPM signal, and then uses the characteristics of the separated PWM signal, location information (time information), reception time, remote controller identification information, etc. determine the situation If the situation in which the control right of the first remote controller Ctl_1 can remain and it also belongs to the control right of the second remote controller Ctl_2, the data received in the next cycle while maintaining the control right of the first remote controller Ctl_1 When it is determined that the control right of the first remote controller Ctl_1 is out of control by analyzing the RF signal, the control right may be transferred to the second remote controller Ctl_2.
- the determination unit 112 belongs to the control right of the first remote controller (Ctl_1), but the flight direction of the unmanned aerial vehicle 10 is at the first point where the first remote controller (Ctl_1) is located. If the controller Ctl_2 is moving to the second point where the controller Ctl_2 is located, the control right may be transferred from the first remote controller Ctl_1 to the second remote controller Ctl_2 .
- the determination unit 112 synthesizes the current flight direction of the unmanned aerial vehicle 10, flight path, location information, frequency characteristics (strength, band, etc.) of the RF signal, identification information about the remote controller received from the remote server, and the like. to decide whether to switch the control right of the remote controller or not.
- the present invention may provide a method for controlling an unmanned aerial vehicle having a multi-remote controller auto-switching module. That is, it is possible to provide a method of controlling the unmanned aerial vehicle for cruising a plurality of points.
- the plurality of points may be an island and a control method of the unmanned aerial vehicle for cruising the islands.
- the unmanned aerial vehicle moves from a first point to a second point, the unmanned aerial vehicle is controlled by a first remote controller at the first point, and the unmanned aerial vehicle is controlled by a second remote controller at the second point .
- the first remote controller controls the control of the unmanned aerial vehicle at the first point
- the unmanned aerial vehicle is in the first control range
- the aircraft flies manually by the first remote controller, and when the unmanned aerial vehicle is out of the first control range, it is switched to an automatic flight mode and moves a predetermined route, and when the unmanned aerial vehicle enters the second control range, the control right is transferred to the first
- the remote controller is switched to the second remote controller, and the unmanned aerial vehicle is manually operated by the second remote controller in the second control range.
- the first remote controller performs the first When there is a region belonging to at least one of the first control range for controlling the control of the unmanned aerial vehicle at a point and the second control range for the second remote controller to control the control of the unmanned aerial vehicle at the second point,
- the unmanned aerial vehicle flies manually by the first remote controller, and when the unmanned aerial vehicle enters the common range of the first control range and the second control range, the control right is transferred from the first remote controller to the second remote controller It is switched to the controller, and in the second control range, the unmanned aerial vehicle is manually operated by the second remote controller.
- the multi-remote controller auto-switching module further includes a transmitter to transmit information switched to an automatic flight mode out of the first control range to a second remote controller, and further includes a flight time calculator to control the first control of the unmanned aerial vehicle Based on the time of flying the range, for example, by obtaining the average flight speed of the unmanned aerial vehicle, the time for the unmanned aerial vehicle to enter the second control range in the automatic flight mode is calculated, and the transmitter returns the unmanned aerial vehicle to the second control range.
- the expected incoming time may be transmitted to the second remote controller in real time.
- the multi-remote controller auto-switching module is further provided with an output unit to increase the speed of the unmanned aerial vehicle in the output unit when the average flight speed of the unmanned aerial vehicle is later than the entry time of the preset second control range, so that the preset second control range is reached. It can be controlled to match the entry time. Accordingly, it is possible to predict flight time fluctuations according to wind speed or minimize the fluctuation time to prepare for manual operation of the second remote controller, and to predict battery consumption according to an increase in output, so that after moving from the first point to the second point, another Information about battery charging time can also be predicted when moving to a point.
- the distance between the first point and the second point is a first control range in which the first remote controller can control the control of the unmanned aerial vehicle at the first point and the second remote controller between the first point and the second point If there is an area that does not belong to at least one of the second control ranges capable of controlling the control of the unmanned aerial vehicle at the second point, it may be 5 km to 7 km. Meanwhile, between the first point and the second point, a first control range in which the first remote controller can control the control of the unmanned aerial vehicle at the first point and the second remote controller control the unmanned aerial vehicle at the second point If there is an area belonging to at least any one of the second control range that can control , it may be 0.5 km to 1.5 km. In addition, a remote operation distance of the first remote controller and the second remote controller may be 1.8 km to 2.2 km.
- the multi-remote controller auto-switching module of the present invention further includes a positioning unit and a control unit, to confirm the position of the unmanned aerial vehicle in real time by the positioning unit, and the control unit is configured to set the manual flight path of the remote controller to the preset flight path. If it determines that it is out of a certain range, it can switch to automatic flight to stop the control of the remote controller and move to a preset flight path.
- the control unit may control to generate a control right of the remote controller.
- the control right is switched from the first remote controller to the second remote controller, the position of the unmanned aerial vehicle is confirmed in real time by the positioning unit, and the control unit is manually operated by the second remote controller If it is determined that the flight path is out of a certain range of the pre-set flight path, it stops the control of the second remote controller and switches to automatic flight to move to the pre-set flight path.
- the control unit may control to generate a control right of the second remote controller. By doing this, it is possible to minimize errors that may occur due to manual control.
- FIG. 3 is a diagram exemplarily illustrating an operation of an unmanned aerial vehicle according to an embodiment of the present invention.
- the unmanned aerial vehicle 10 is an example of cruising the multi-point moving from the first point POS_1 to the second point POS_2 and the third point POS_3 again to the first point POS_1. is showing
- the distance between the first point and the second point (the distance of the first section) is about 7,3 km
- the distance between the second point and the third point (the distance of the second section) is about 6.2 km
- the third point and the second section are about 6.2 km.
- the distance between points 1 (the third section distance) is about 5.8 km.
- the remote operation distance of the first to third remote controllers Ctl_1 to Ctl_3 provided at the first to third points is about 2 km.
- the first to third control ranges in FIG. 3 show the control ranges when it is assumed that the remote operation distance is 2 km.
- the unmanned aerial vehicle 10 Since the unmanned aerial vehicle 10 belongs to the control right of the first remote controller Ctl_1 immediately after leaving the first point POS_1 , it may be manually controlled according to the control of the first remote controller Ctl_1 . When a flight time of several minutes has elapsed immediately after departure, the unmanned aerial vehicle 10 is out of the first control range during a section (first section) moving from the first point (POS_1) to the second point (POS_2). When the unmanned aerial vehicle 10 leaves the control of the first remote controller Ctl_1 , the unmanned aerial vehicle 10 may be switched from the manual flight mode to the automatic flight mode. When the unmanned aerial vehicle 10 flies in the automatic flight mode, the unmanned aerial vehicle 10 performs a cruise flight along a predetermined route.
- the control right is transferred from the first remote controller Ctl_1 to the second remote controller Ctl_2 Execute switching processing.
- the unmanned aerial vehicle 10 receives an RF signal from the surroundings while entering the second control range, and when the validity of the second remote controller Ctl_2 is verified, the control right of the first remote controller Ctl_1 is discarded and the second remote controller Ctl_2 is validated. Allows control of the controller (Ctl_2).
- the unmanned aerial vehicle 10 When the unmanned aerial vehicle 10 starts flying to a third point after performing a predefined mission at the second point, it flies in a manual flight mode under the control of the second remote controller Ctl_2. When a flight time of several minutes has elapsed immediately after departure, the unmanned aerial vehicle 10 is out of the second control range during a section (second section) moving from the second point (POS_2) to the third point (POS_3). When the unmanned aerial vehicle 10 leaves the control of the second remote controller Ctl_2 , the unmanned aerial vehicle 10 may be switched from the manual flight mode to the automatic flight mode. When the unmanned aerial vehicle 10 flies in the automatic flight mode, the unmanned aerial vehicle 10 performs a cruise flight along a predetermined route.
- the control right is switched from the second remote controller Ctl_2 to the third remote controller Ctl_3. Execute switching processing.
- the unmanned aerial vehicle 10 receives an RF signal from the surroundings while entering the third control range, and when the validity of the third remote controller Ctl_3 is verified, the control right of the third remote controller Ctl_3 is discarded and the third remote controller Ctl_3 is validated. Allows control of the controller (Ctl_3).
- the unmanned aerial vehicle 10 When the unmanned aerial vehicle 10 starts flying to the first point after performing a predefined mission at the third point, it flies in a manual flight mode under the control of the third remote controller Ctl_3. When a flight time of several minutes has elapsed immediately after departure, the unmanned aerial vehicle 10 is out of the third control range during a section (third section) moving from the third point POS_3 to the first point POS_1. When the unmanned aerial vehicle 10 leaves the control of the third remote controller Ctl_3 , the unmanned aerial vehicle 10 may be switched from the manual flight mode to the automatic flight mode. When the unmanned aerial vehicle 10 flies in the automatic flight mode, the unmanned aerial vehicle 10 performs a cruise flight along a predetermined route.
- the receiver 111 is configured by connecting a plurality of RC receivers in parallel.
- the RC receiver is connected to an individual connector, and the connector is individually connected to the photo coupler, and the output of the photo coupler for each RC receiver is input to the input/output node of the determination unit 112 .
- the PPM signal which is an RF signal received by any one of the plurality of RC receivers, is input to the port coupler through individual connectors, and the output terminals of the plurality of port couplers are connected to one PPM signal output connector to determine the PPM signal forward to (112).
- the plurality of receivers of FIG. 4 shows an example of connecting four controllers, and may be configured by connecting the four controllers to port C of the flight controller 110 to be described below.
- the determination unit 112 may be integrated with an AVR microcontroller.
- the AVR microcontroller shown in FIG. 5 exemplifies the ATmega 128 model.
- the determination unit 112 may be integrated into the flight controller 110 of the present invention, and the flight controller 110 is an AVR developed by ATMEL, and is a microcontroller that currently provides an 8-bit AVR and a 32-bit AVR.
- the flight controller 110 shown in FIG. 5 can process one command in one clock cycle, and can operate any voltage from 1.8V to 5.5V.
- the flight controller 110 may be designed to operate with low power when picoPower technology is applied.
- the flight controller 110 has 32 general-purpose registers and may be designed in a RISC structure.
- the flight controller 110 may implement an ISP (In-System Programming) function or a JTAG function provided as a 6-pin or 10-pin interface.
- the plurality of coordinators Ctl_1 to Ctl_4 may be connected to one of the ports C (PC1 to PC7).
- FIG. 6 is a view exemplarily explaining an example of separating a control signal by a determination unit constituting a multi-remote controller auto-switching module according to another embodiment of the present invention.
- the PPM signal when the PPM signal enters the receiver 111 through the RF receiver, it can be sequentially detected from the first channel.
- the PWM signal of the next channel is differentiated from the plurality of PWM signal groups by the synchronization time at a predetermined interval.
- Such a channel section may be viewed as a synchronization time. Using this synchronization time, it is possible to know where channel 1 starts.
- the interval between the last channel (channel 8) and channel 1 is longer than the interval between other channels, so it is possible to distinguish the last channel from the first channel by recognizing this long time interval.
- the flight controller 110 may separate the PWM from the PPM using an interrupt and a timer and a counter. For example, looking at the pulse of channel 1, it becomes ON (rising edge) and turns off (falling edge) after a certain period of time. The same goes for other channels.
- the flight controller 110 may perform rising edge detection and falling edge detection when using an interrupt.
- the flight controller 110 may separate the PWM signal from the PPM signal by combining the rising edge and the falling edge detection.
- the flight controller 110 senses an interrupt when detecting a rising edge of channel 1, and immediately changes the setting to a falling edge sensing mode at this time. Flight controller 110 after a little time (approximately 1 ⁇ 2ms) the falling edge of the channel 1 proceeds, and at this time, an interrupt is also detected (falling edge).
- a counter is operated inside the flight controller 110 .
- the flight controller 110 reads the counter value (eg, TCNT1) in the interrupt routine at the rising edge, and reads the counter value (TCNT1) again when the interrupt is executed at the falling edge again.
- the flight controller 110 can know the time length of the ON section of channel 1.
- the flight controller 110 can measure and calculate the movement of the control stick fairly accurately by setting the resolution (measurement time unit) of the counter TCNT1 to 1000 us.
- the resolution (measurement time) unit of Timer/Counter1 of the flight controller 110 is set in 1us units. If the clock frequency of the timer/counter 1 of the flight controller 110 is about 1Mhz (1us if calculated as a cycle), it may be sufficient to measure the ON time of an individual channel.
- FIG. 7 is a diagram exemplarily illustrating a 2 ⁇ 8 box header of a display unit constituting a multi-remote controller auto-switching module according to another embodiment of the present invention.
- the LCD display may be displayed with a box header having 16 terminals. Each terminal of the 2x8 box header of the display unit enters as an input to port A of the flight controller 110 .
Landscapes
- Engineering & Computer Science (AREA)
- Computer Security & Cryptography (AREA)
- Remote Sensing (AREA)
- Aviation & Aerospace Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mechanical Engineering (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Radar, Positioning & Navigation (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
- Selective Calling Equipment (AREA)
Abstract
Disclosed are a multi-remote controller auto-switching module and an unmanned aerial vehicle having same. The multi-remote controller auto-switching module of the present invention comprises: a communication unit which wirelessly communicates with a plurality of remote controllers located at a plurality of respective points; a determination unit which determines, on the basis of a control signal received from a specific remote controller through the communication unit, whether to comply with the control of the remote controller; and a switching unit which switches control from the previous remote controller to a new remote controller according to the result of the determination unit.
Description
본 발명은 멀티 리모트 컨트롤러 오토 스위칭 모듈 및 이를 탑재한 무인항공기에 관한 것으로써, 보다 상세하게는 무인 항공기를 다지점에 걸쳐서 조정하기 위한 멀티 리모트 컨트롤러 사이에 제어권을 오토 스위칭하는 멀티 리모트 컨트롤러 오토 스위칭 모듈 및 이를 탑재한 무인항공기에 관한 것이다.The present invention relates to a multi-remote controller auto-switching module and an unmanned aerial vehicle equipped therewith, and more particularly, a multi-remote controller auto-switching module for auto-switching control rights between multi-remote controllers for controlling an unmanned aerial vehicle over multiple points. And it relates to an unmanned aerial vehicle equipped with the same.
무인항공기(無人航空機, 영어: Unmanned Aerial Vehicle System, UAV System)에 관한 기술이 발전함에 따라. 다양한 분야(화물수송, 농작물 방제, 화재 진압, 범죄 단속, 지적 조사, 항만 관리, 해저 드론 등)에 무인항공기를 활용하고 있다. As the technology for unmanned aerial vehicles (Unmanned Aerial Vehicle System, UAV System) develops. UAVs are being used in various fields (cargo transportation, crop control, fire suppression, crime control, cadastral investigations, port management, submarine drones, etc.).
무인항공기는 실제 조종사가 직접 탑승하지 않고, 지상에서 사전 프로그램된 경로에 따라 자동 또는 반자동으로 비행하는 비행체, 탑재임무장비, 지상통제장비(GCS), 통신장비(데이터 링크), 지원장비 및 운용인력의 전체 시스템을 통칭한다. Unmanned aerial vehicles (UAVs) do not have actual pilots on board, but fly automatically or semi-automatically according to a pre-programmed route on the ground. collectively referred to as the entire system of
드론(Drone)은 무인항공기의 영문 속어이다. 무인항공기와 모형항공기는 자동비행장치(FCS: Flight Control System)에 비행체에 탑재되어 있는가 여부로 구분된다. 즉, 자동비행장치가 포함되면 크기가 작더라도 무인항공기이고, 포함되어 있지 않다면 아무리 큰 비행체라도 모형항공기라고 한다.Drone is an English slang term for unmanned aerial vehicles. Unmanned aerial vehicles and model aircraft are classified according to whether or not they are mounted on an aircraft in an automatic flight control system (FCS). In other words, if an automatic flight device is included, it is an unmanned aerial vehicle even if it is small in size, and if it does not include an automatic flying device, it is called a model aircraft, no matter how large the aircraft.
이러한 무인항공기를 활용하여 물건 배송을 할 경우에, 다지점을 배송시에는 지점간의 거리에 따라 서로 다른 리모트 컨트롤러를 사용할 수도 있다. 이 경우에 리모트 컨트롤러 간의 스위칭이 원활히 이루어지지 않을 경우에는 무인항공기의 제어권을 잃게 되는 문제점이 발생될 수 있다. In the case of delivering goods using such an unmanned aerial vehicle, different remote controllers may be used depending on the distance between the points when delivering multi-point delivery. In this case, if switching between the remote controllers is not performed smoothly, a problem of losing control of the unmanned aerial vehicle may occur.
이러한 문제점을 해결하기 위해서 다지점 물건 배송을 할 경우에 경로를 프로그램화하여 자동으로 복수의 지점의 위치 정보에 기초하여 무인항공기를 이동하도록 하는 비상 조치를 강구할 수도 있다. 하지만, 이러한 조치는 무인항공기에서 발생될 수 있는 안전사고, 충돌사고, 추락사고 등을 완벽히 통제할 수 없으므로, 좋은 해결책이 될 수 없다.In order to solve this problem, in the case of multi-point product delivery, emergency measures may be devised to program the route and automatically move the unmanned aerial vehicle based on the location information of a plurality of points. However, these measures cannot be a good solution because it cannot completely control safety accidents, crash accidents, and fall accidents that may occur in unmanned aerial vehicles.
따라서, 다지점에 물건을 배송하는 상황에서 지점별 서로 다른 리모트 컨트롤러를 구성하고, 이러한 복수의 리모트 컨트롤러 사이의 스위칭 동작이 원활히 이루어지기 위한 스위칭 장치에 대한 개발의 필요성이 요구된다.Accordingly, there is a need to develop a switching device for configuring different remote controllers for each branch and smoothly performing a switching operation between the plurality of remote controllers in a situation where goods are delivered to multiple locations.
상술한 필요성에 의해서 안출된 본 발명은 무인항공기가 다지점에서 물건을 배송할 경우에 미리 설정된 경로 상에 위치한 리모트 컨트롤러에 제어권을 자동으로 스위칭함으로써 무인항공기에 대한 제어 및 통제 상에 공백이 발생하지 않게 하고, 인증되지 않은 리모트 컨트롤러에 의한 통제권 탈취 문제가 발생하지 않도록 하는 멀티 리모트 컨트롤러 오토 스위칭 모듈 및 이를 탑재한 무인항공기를 제공하는 것을 목적으로 한다.The present invention devised by the above necessity does not cause a gap in control and control of the unmanned aerial vehicle by automatically switching the control right to a remote controller located on a preset route when the unmanned aerial vehicle delivers goods from multiple points. An object of the present invention is to provide a multi-remote controller auto-switching module and an unmanned aerial vehicle equipped with the same that prevent the problem of control taking over by unauthorized remote controllers.
상기 목적을 달성하기 위하여 본 발명의 일 실시 예에 따른 멀티 리모트 컨트롤러 오토 스위칭 모듈은, 복수의 지점에 각각 위치하는 복수의 리모트 컨트롤러와 무선으로 통신하는 통신부; 상기 통신부를 통해서 특정 리모트 컨트롤러로부터 수신된 제어 신호를 모듈 암호화 방식으로 인증하여 해당 리모트 컨트롤러의 제어에 따를지 여부를 판단하는 판단부; 및 상기 판단부의 결과에 따라 이전 리모트 컨트롤러에서 신규 리모트 컨트롤러로 제어권을 스위칭하는 스위칭부;를 포함한다.In order to achieve the above object, a multi-remote controller auto-switching module according to an embodiment of the present invention includes: a communication unit for wirelessly communicating with a plurality of remote controllers respectively located at a plurality of points; a determination unit for authenticating a control signal received from a specific remote controller through the communication unit using a module encryption method to determine whether to comply with the control of the corresponding remote controller; and a switching unit for switching the control right from the previous remote controller to the new remote controller according to the result of the determination unit.
이 경우에, 상기 통신부는, 복수의 리모트 컨트롤러로부터 개별적으로 제어 신호를 수신하도록 복수의 수신기를 포함한다. 예를 들어, 상기 통신부는 하나 또는 복수의 수신기로 이루어진 수신부이거나, 수신부 및 다른 통신수단을 포함한다. In this case, the communication unit includes a plurality of receivers to individually receive control signals from a plurality of remote controllers. For example, the communication unit is a receiving unit including one or a plurality of receivers, or includes a receiving unit and other communication means.
이 경우에, 상기 통신부는, 상기 복수의 수신기를 복수의 RF(Radio Frequency) 수신기로 구성하고, 상기 복수의 RF 수신기와 상기 판단부 사이에 각각 단채널 포토 커플러(Photo Coupler)를 더 구비할 수 있다.In this case, the communication unit may include a plurality of receivers including a plurality of radio frequency (RF) receivers, and a short-channel photo coupler between the plurality of RF receivers and the determination unit, respectively. there is.
이 경우에, 상기 통신부는, 상기 복수의 수신기 중 하나로 수신된 RF 신호인 PPM(pulse position modulation) 신호를 상기 단채널 포토 커플러를 경유하여 출력 PPM 신호로써 상기 판단부로 전달하는 PPM 신호 출력 커넥터를 더 포함한다.In this case, the communication unit, a PPM signal output connector that transmits a pulse position modulation (PPM) signal, which is an RF signal received by one of the plurality of receivers, to the determination unit as an output PPM signal via the short-channel photocoupler. include
이 경우에, 상기 판단부는, 수신된 PPM 신호를 PWM신호로 분리한 뒤, 분리된 PWM 신호에 포함된 주파수 정보, 리모트 컨트롤러 식별 정보 및 시간 정보 등을 이용하여 해당 PWM 신호를 전송한 리모트 컨트롤러의 유효성을 검증한다.In this case, the determination unit divides the received PPM signal into a PWM signal, and then uses the frequency information, remote controller identification information, and time information included in the separated PWM signal to transmit the PWM signal. Validate.
본 발명의 다른 실시 예에 따른 멀티 리모트 컨트롤러 오토 스위칭 모듈을 구비한 무인항공기는, 무인 항공기의 각종 부품을 조립하는 프레임; 상기 프레임의 다수의 영역에 설치되는 모터 및 변속기를 포함하는 프로펠러; 상기 프레임에 설치되서 무인항공기의 비행 기능 유지를 위한 각종의 제어를 처리하는 비행 컨트롤러; 무인항공기의 주변 상황에 대한 정보를 센싱하는 복수의 센서; 및 상기 프로펠러, 비행 컨트롤러 및 복수의 센서에 전원을 공급하는 배터리;를 포함하되, 상기 비행 컨트롤러는, 복수의 지점에 각각 위치하는 복수의 리모트 컨트롤러와 무선으로 통신하는 통신부; 상기 통신부를 통해서 특정 리모트 컨트롤러로부터 수신된 제어 신호를 모듈 암호화 방식으로 인증하여 해당 리모트 컨트롤러의 제어에 따를지 여부를 판단하는 판단부; 및 상기 판단부의 결과에 따라 이전 리모트 컨트롤러에서의 제어권을 신규 리모트 컨트롤러의 제어권으로 스위칭하는 스위칭부;를 포함하는 멀티 리모트 컨트롤러 오토 스위칭 모듈을 더 포함한다. An unmanned aerial vehicle having a multi-remote controller auto-switching module according to another embodiment of the present invention includes: a frame for assembling various parts of the unmanned aerial vehicle; a propeller including a motor and a transmission installed in a plurality of areas of the frame; a flight controller installed on the frame to process various controls for maintaining the flight function of the unmanned aerial vehicle; A plurality of sensors for sensing information about the surrounding situation of the unmanned aerial vehicle; and a battery for supplying power to the propeller, the flight controller, and a plurality of sensors, wherein the flight controller includes: a communication unit for wirelessly communicating with a plurality of remote controllers located at a plurality of points, respectively; a determination unit for authenticating a control signal received from a specific remote controller through the communication unit using a module encryption method to determine whether to comply with the control of the corresponding remote controller; and a switching unit for switching the control right from the previous remote controller to the control right of the new remote controller according to the result of the determination unit; and a multi-remote controller auto switching module including a.
이 경우에, 상기 통신부는, 복수의 리모트 컨트롤러로부터 개별적으로 제어 신호를 수신하도록 복수의 수신기를 포함한다.In this case, the communication unit includes a plurality of receivers to individually receive control signals from a plurality of remote controllers.
이 경우에, 상기 통신부는, 상기 복수의 수신기를 RF(Radio Frequency) 수신기로 구성하고, 상기 RF 수신기와 상기 판단부 사이에 각각 단채널 포토 커플러(Photo Coupler)를 더 구비할 수 있다.In this case, the communication unit may configure the plurality of receivers as radio frequency (RF) receivers, and may further include a short-channel photo coupler between the RF receiver and the determination unit, respectively.
이 경우에, 상기 통신부는, 상기 복수의 수신기 중 하나로 수신된 RF 신호인 PPM(Radio Control Signal) 신호를 상기 단채널 포토 커플러를 경유하여 출력 PPM 신호로써 상기 판단부로 전달하는 PPM 신호 출력 커넥터를 더 포함한다.In this case, the communication unit, a PPM signal output connector that transmits a PPM (Radio Control Signal) signal, which is an RF signal received by one of the plurality of receivers, to the determination unit as an output PPM signal via the short-channel photo coupler. include
이 경우에, 상기 판단부는, 수신된 PPM 신호로부터 PWM 신호를 분리한 뒤, 분리된 PWM 신호에 포함된 주파수 정보, 리모트 컨트롤러 식별 정보 및 시간 정보 등을 이용하여 해당 PWM 신호를 전송한 리모트 컨트롤러의 유효성을 검증할 수 있다.In this case, the determination unit separates the PWM signal from the received PPM signal, and uses the frequency information, remote controller identification information, and time information included in the separated PWM signal of the remote controller that transmits the PWM signal. Validation can be verified.
본 발명의 다양한 실시 예에 따르면, 무인항공기가 다지점에서 물건을 배송할 경우에 미리 설정된 경로 상에 위치한 리모트 컨트롤러에 제어권을 자동으로 스위칭함으로써 무인항공기에 대한 제어 및 통제 상에 공백이 발생하지 않는 효과를 발휘하고,According to various embodiments of the present disclosure, when the unmanned aerial vehicle delivers goods from multiple points, by automatically switching the control right to a remote controller located on a preset route, there is no gap in the control and control of the unmanned aerial vehicle. to be effective,
또한, 통신 문제 상황 등이 발생하더라도 리모트 컨트롤러의 제어권을 신뢰성 높게 스위칭함으로써 통신 두절, 전파 간섭, 드론 해킹 등으로 인하여 무인항공기에 발생될 수 있는 다양한 통신상의 문제점을 사전에 예방할 수 있는 효과를 발휘한다.In addition, even if a communication problem occurs, the control right of the remote controller is switched with high reliability, thereby exhibiting the effect of preventing various communication problems that may occur in the unmanned aerial vehicle due to communication interruption, radio wave interference, drone hacking, etc. .
도 1은 본 발명의 일 실시 예 따른 무인 항공기의 구조를 예시적으로 설명하는 도면,1 is a view exemplarily explaining the structure of an unmanned aerial vehicle according to an embodiment of the present invention;
도 2는 본 발명의 일 실시 예에 따른 무인 항공기의 기능을 예시적으로 설명하기 위한 블록도, 2 is a block diagram for illustratively explaining the function of an unmanned aerial vehicle according to an embodiment of the present invention;
도 3은 본 발명의 일 실시 예에 따른 무인 항공기의 동작을 예시적으로 설명하는 도면,3 is a view exemplarily explaining the operation of an unmanned aerial vehicle according to an embodiment of the present invention;
도 4는 본 발명의 다른 실시 예에 따른 멀티 리모트 컨트롤러 오토 스위칭 모듈의 수신부의 구조를 예시적으로 설명하는 도면,4 is a view exemplarily illustrating the structure of a receiver of a multi-remote controller auto-switching module according to another embodiment of the present invention;
도 5는 본 발명의 다른 실시 예에 따른 멀티 리모트 컨트롤러 오토 스위칭 모듈을 포함하는 비행 컨트롤러의 구조를 예시적으로 설명하는 도면,5 is a view exemplarily explaining the structure of a flight controller including a multi-remote controller auto-switching module according to another embodiment of the present invention;
도 6은 본 발명의 다른 실시 예에 따른 멀티 리모트 컨트롤러 오토 스위칭 모듈을 구성하는 판단부에 의해서 제어 신호를 분리하는 일 예를 예시적으로 설명하는 도면, 그리고, 6 is a view exemplarily explaining an example of separating a control signal by a determination unit constituting a multi-remote controller auto-switching module according to another embodiment of the present invention;
도 7은 본 발명의 다른 실시 예에 따른 멀티 리모트 컨트롤러 오토 스위칭 모듈을 구성하는 디스플레이부의 2×8 박스 헤더를 예시적으로 도시한 도면.7 exemplarily shows a 2×8 box header of a display unit constituting a multi-remote controller auto-switching module according to another embodiment of the present invention.
이하에서 도면을 참고하여 본 발명의 바람직한 실시 예에 대해서 설명한다. 이하에서 설명하는 무인항공기(10)는 물류 운송, 산불진화, 재난대응 구호물자 운송, 지형·지물 지도 제작, 탐색 및 정찰용 및 LTE/5G 그밖의 셀룰러 방식의 실시간 영상 전송 등의 입무를 수행할 수 있되, 이러한 임무에 국한되지 않고 본 발명의 기술적 사상의 범위 내에서 다양하게 설게 변경될 수 있다.Hereinafter, a preferred embodiment of the present invention will be described with reference to the drawings. The unmanned aerial vehicle 10 to be described below performs duties such as logistics transportation, forest fire extinguishing, disaster response relief material transportation, terrain and feature mapping, search and reconnaissance, and LTE/5G or other cellular method real-time video transmission. However, it is not limited to these tasks and can be variously changed in design within the scope of the technical spirit of the present invention.
무인항공기(10)는 8축의 멀티콥터 방식의 비행체 형태로 설계될 수 있고, 그 밖의 방식으로 설계될 수도 있다. 또한, 무인 항공기(10)의 총 이륙 중량은 48kg 이하, 25kg 이하, 12kg 이하로 용도에 따라 다르게 설계될 수 있다. 무인 항공기(10)는 총 이륙 중량에 따라 탑재 화물의 중량(20kg 이하, 10kg 이하, 5kg 이하등)을 다르게 설계될 수 있다. 무인 항공기의 크기는 2200 × 2200 × 800(mm), 1,600 × 1,600 × 850(mm), 960 × 960 × 600(mm) 등으로 스펙에 따라 다양하게 설계될 수 있다. The unmanned aerial vehicle 10 may be designed in the form of an 8-axis multicopter type air vehicle, or may be designed in other ways. In addition, the total take-off weight of the unmanned aerial vehicle 10 may be designed differently depending on the purpose of 48 kg or less, 25 kg or less, or 12 kg or less. The unmanned aerial vehicle 10 may be designed differently for the weight of the payload (20 kg or less, 10 kg or less, 5 kg or less) according to the total take-off weight. The size of the unmanned aerial vehicle is 2200 × 2200 × 800 (mm), 1,600 × 1,600 × 850 (mm), 960 × 960 × 600 (mm), etc., and can be designed in various ways according to specifications.
본 발명의 무인항공기(10)는 운송 경로의 전구간에서 자동비행이 가능하다. 무인항공기(10)의 비행속도는 10m/s 내지 20m/s의 운항속도, 보다 바람직하게는 15m/s의 운항속도 설계될 수 있다. 무인항공기(10)의 최대 운용고도는 1500m, 1000m 또는 500m 등으로 스펙에 따라 다양하게 설계될 수 있다. 무인항공기(10)는 -10℃ 내지 40℃ 범위의 온도 범위에서 운용할 수 있다.The unmanned aerial vehicle 10 of the present invention is capable of automatic flight in all sections of the transportation route. The flight speed of the unmanned aerial vehicle 10 may be designed to be a flight speed of 10 m/s to 20 m/s, more preferably, a flight speed of 15 m/s. The maximum operating altitude of the unmanned aerial vehicle 10 may be variously designed according to specifications, such as 1500 m, 1000 m, or 500 m. The unmanned aerial vehicle 10 may be operated in a temperature range of -10°C to 40°C.
본 발명의 무인항공기(10)의 원격 조정거리는 최대 2,000m까지 RF 통신이 가능한 거리이다. 또한, 무인항공기(10)는 탑재 화물이 없는 경우에 30분 내지 40분 범위에서 운용할 수 있다. 본 발명의 무인항공기(10)의 자동 비행거리는 LTE 모드의 경우에는 10km 내외, 예를 들어 8km 내지 12km이고, TELE 모드의 경우에는 1.2km 내외이다.The remote control distance of the unmanned aerial vehicle 10 of the present invention is a distance capable of RF communication up to a maximum of 2,000 m. In addition, the unmanned aerial vehicle 10 may be operated in the range of 30 to 40 minutes when there is no load. The automatic flight distance of the unmanned aerial vehicle 10 of the present invention is about 10 km, for example, 8 km to 12 km, in the LTE mode, and around 1.2 km in the TELE mode.
도 1은 본 발명의 일 실시 예 따른 무인 항공기의 구조를 예시적으로 설명하는 도면이다. 도 1을 참고하면, 본 발명의 일 실시 예에 따른 무인항공기(10)는 프레임(160)의 내부에 설치되는 비행 컨트롤러(110), 프레임(160)의 가장자리에 구비된 복수의 프로펠러(120-1 내지 120-8), 프레임(160)의 일 영역에 구비되는 복수의 센서(130), 프레임(160)의 내부에 설치되는 배터리(140) 및 각각의 구성요소를 통합하시키는 프레임(150)을 포함한다.1 is a view exemplarily explaining the structure of an unmanned aerial vehicle according to an embodiment of the present invention. Referring to FIG. 1 , the unmanned aerial vehicle 10 according to an embodiment of the present invention includes a flight controller 110 installed inside a frame 160 , and a plurality of propellers 120 - provided at the edge of the frame 160 . 1 to 120-8), a plurality of sensors 130 provided in one area of the frame 160, a battery 140 installed inside the frame 160, and a frame 150 for integrating each component includes
도 1에 도시된 무인항공기(10)는 8개의 프로펠러(120-1 내지 120-8)로 구성된 무인비행체이다. 이러한 무인항공기(10)는 8개의 프로펠러에 의해서 발생되는 추진력을 이용하고, 정해진 경로를 RF 조종기(미도시)의 제어에 따라 수동 비행하거나, LTE 또는 TELE 모드로 자동 비행을 할 수 있다. 수동 비행의 경우에는 RF 조정기의 제어권 범위에 들어오면 자동에서 수동으로 스위칭될 수 있다. 이때, 무인항공기(10)는 RF 조종기로부터 수신한 제어 신호를 수신하면, 수신된 제어 신호를 암호 모듈화 방식을 통해서 인증하는 절차를 거친다. 무인 항공기(10)는 암호 모듈화 방식에 따라 인증된 RF 조종기로 제어권을 스위칭한다. 이때, 암호 모듈화 방식은 암호(대칭/비대칭), 난수 생성, 소수 판정, 해시, 전자서명, 인증에서 선택된 어느 하나의 다양한 암호 기능으로 구현될 수 있고, 소프트웨어, 하드웨어, 펌웨어 또는 이를 조합하는 형태로 구현할 수 있다. 또는 RF 조정기의 제어권 범위 밖일 경우에는 자동 비행 방식으로 정해진 경로를 항속 비행할 수 있다. The unmanned aerial vehicle 10 shown in FIG. 1 is an unmanned aerial vehicle composed of eight propellers 120-1 to 120-8. The unmanned aerial vehicle 10 may use the propulsion generated by eight propellers, and may manually fly a predetermined route under the control of an RF controller (not shown), or may automatically fly in LTE or TELE mode. In the case of manual flight, it can be switched from automatic to manual once it is within the control range of the RF regulator. At this time, when the unmanned aerial vehicle 10 receives the control signal received from the RF manipulator, it undergoes a procedure of authenticating the received control signal through a cryptographic modularization method. The unmanned aerial vehicle 10 switches control to an authenticated RF manipulator according to the cryptographic modularization method. At this time, the cryptographic modularization method may be implemented with any one of various cryptographic functions selected from cryptographic (symmetric/asymmetric), random number generation, prime number determination, hash, digital signature, and authentication, and may be implemented in software, hardware, firmware, or a combination thereof. can be implemented Alternatively, if it is out of the control range of the RF controller, it can fly at a fixed speed in the automatic flight method.
출발지와 도착지 사이에 다수의 경유지가 있을 경우에 각각의 지점별로 개별적인 RF조정기를 구비하고, 조정자는 해당 RF 조정기를 이용하여 무인항공기(10)를 제어할 수 있고, 해당 무인항공기(10)가 자동 비행 방식으로 순항을 하는 경우에 해당 무인항공기(10)의 제어권을 획득하여 조절할 수 있다.When there are a number of waypoints between the departure point and the destination, an individual RF controller is provided for each point, and the coordinator can control the unmanned aerial vehicle 10 using the corresponding RF controller, and the unmanned aerial vehicle 10 automatically In the case of cruising in a flying manner, the control right of the unmanned aerial vehicle 10 may be obtained and adjusted.
도 2는 본 발명의 일 실시 예에 따른 무인 항공기의 기능을 예시적으로 설명하기 위한 블록도이다. 도 2를 참고하면, 무인항공기(10)를 제어하는 4개의 리모트 컨트롤러(Ctl_1 내지 Ctl_4) 사이에 제어권을 스위칭하는 동작을 설명한다.2 is a block diagram for illustratively explaining the function of an unmanned aerial vehicle according to an embodiment of the present invention. Referring to FIG. 2 , an operation of switching the control right among the four remote controllers Ctl_1 to Ctl_4 for controlling the unmanned aerial vehicle 10 will be described.
본 발명의 일 실시 예에 따른 멀티 리모트 컨트롤러 오토 스위치 모듈은 무인항공기(10)의 비행 컨트롤러(110)에 통합된 형태로 구현되거나 별도의 모듈로 구현될 수 있다. 멀티 리모트 컨트롤러 오토 스위치 모듈에는 암호(대칭/비대칭), 난수 생성, 소수 판정, 해시, 전자서명, 인증에서 선택된 어느 하나의 다양한 암호기능으로 구현되는 소프트웨어, 하드웨어, 펌웨어 또는 이를 조합된 형태로 구현된 모듈이 더 포함될 수 있다.The multi-remote controller auto switch module according to an embodiment of the present invention may be implemented in an integrated form in the flight controller 110 of the unmanned aerial vehicle 10 or implemented as a separate module. The multi-remote controller auto switch module includes software, hardware, firmware, or a combination of any one of various cryptographic functions selected from encryption (symmetric/asymmetric), random number generation, decimal determination, hash, digital signature, and authentication. More modules may be included.
도 2에서는 비행 컨트롤러(110)에 통합 모듈로 구현되는 예를 중심으로 설명한다. 본 발명의 멀티 리모트 컨트롤러 오토 스위치 모듈은 수신부(111), 판단부(112), 스위칭부(113) 및 동기화 블랭크 감지부(114)를 포함한다. 실시 예에 따라서는 판단부(112), 스위칭부(113) 및 동기화 블랭크 감지부(114)를 하나의 통합 모듈로 구성할 수도 있으나, 이하에서는 개별적 구성으로 구현된 예를 중심으로 설명한다.In FIG. 2, an example implemented as an integrated module in the flight controller 110 will be mainly described. The multi-remote controller auto switch module of the present invention includes a receiving unit 111 , a determining unit 112 , a switching unit 113 , and a synchronization blank detecting unit 114 . In some embodiments, the determination unit 112 , the switching unit 113 , and the synchronization blank sensing unit 114 may be configured as one integrated module, but hereinafter, an example implemented as an individual configuration will be mainly described.
무인항공기(10)는 복수의 리모트 컨트롤러(Ctl_1 내지 Ctl_4)와 RF 방식을 통신할 수 있다. 여기서 무인항공기(10)와 복수의 리모트 컨트롤러(Ctl_1 내지 Ctl_4)의 제어 범위는 2Km 내외이고, 예를 들어 1.5Km 내지 2.5Km 로 제어될 수 있고, 경우에 따라서 그보다 커지거나 작아질 수 있다. The unmanned aerial vehicle 10 may communicate with the plurality of remote controllers Ctl_1 to Ctl_4 in an RF manner. Here, the control range of the unmanned aerial vehicle 10 and the plurality of remote controllers Ctl_1 to Ctl_4 is about 2Km, and may be controlled, for example, from 1.5Km to 2.5Km, and may be larger or smaller than that in some cases.
무인항공기(10)는 비행 도중에 리모트 컨트롤러(Ctl)의 제어권을 벗어날 수 있고, 이 경우에는 자체 내장된 LTE 통신 모듈 또는 TELE 통신 모듈에 의해서 원격 서버에 통제에 따라 자동 비행을 할 수도 있다.The unmanned aerial vehicle 10 may get out of control of the remote controller Ctl during flight, and in this case, it may automatically fly according to the control of the remote server by the built-in LTE communication module or TELE communication module.
무인항공기(10)는 복수의 리모트 컨트롤러(Ctl_1 내지 Ctl_4) 중 제1 리모트 컨트롤러(Ctl_1)의 제어권 하에서 제어되는 상태에서 비행을 한다. 무인항공기(10)는 제1 리모트 컨트롤러(Ctl_1)로부터 수신된 RF신호를 안테나를 이용해서 수신한다. 무인항공기(10)는 수신된 RF 신호를 수신부(111)를 거쳐서 PPM 신호로 판단부(112)에 전달한다. PPM 신호는 펄스 위치 변조(pulse position modulation) 신호이다. 판단부(112)는 PPM 신호를 수신한 뒤 소정의 알고리즘에 따라 PPM 신호에 포함된 특정 채널별로 PWM 신호를 분리하고, 이렇게 분리된 PWM 신호에 포함된 주파수 대역, 리모트 컨트롤러의 식별 정보, 수신 시간, 위치 정보 등을 고려하여 해당 PWM 신호를 전송한 리모트 컨트롤러가 제1 리모트 컨트롤러(Ctl_1)인 것을 식별한다. 이렇게 식별된 제1 리모트 컨트롤러(Ctl_1)의 제어 신호를 프로펠러(120)로 전달해서 제어 신호에 따라 프로펠러(120)의 동작을 제어함으로써, 무인항공기(10)의 동작을 제어할 수 있다.The unmanned aerial vehicle 10 flies under the control of the first remote controller Ctl_1 among the plurality of remote controllers Ctl_1 to Ctl_4 . The unmanned aerial vehicle 10 receives the RF signal received from the first remote controller Ctl_1 using an antenna. The unmanned aerial vehicle 10 transmits the received RF signal to the determination unit 112 as a PPM signal through the reception unit 111 . The PPM signal is a pulse position modulation signal. After receiving the PPM signal, the determination unit 112 separates the PWM signal for each specific channel included in the PPM signal according to a predetermined algorithm, and a frequency band included in the separated PWM signal, identification information of the remote controller, and reception time , it is identified that the remote controller that has transmitted the PWM signal is the first remote controller (Ctl_1) in consideration of location information, etc. By transferring the identified control signal of the first remote controller Ctl_1 to the propeller 120 and controlling the operation of the propeller 120 according to the control signal, the operation of the unmanned aerial vehicle 10 may be controlled.
이때, 무인항공기(10)의 판단부(112)는 PWM 신호의 주파수 특성, 위치정보, 시간정보, 원격 서버로 부터 수신한 리모트 컨트롤러 식별 정보 등을 이용하여 해당 PWM 신호를 발신한 리모트 컨트롤러가 제1 리모트 컨트롤러(Ctl_1)임을 식별할 수 있다. 만약, PWM 신호의 주파수 특성, 위치정보, 시간정보, 리모트 컨트롤러 식별 정보 등이 불일치하는 경우에는 해당 PWM 신호에 포함된 신호 정보와 일치하는 다른 리모트 컨트롤러의 정보를 검색하여 일치하는 리모트 컨트롤러를 찾게 된다.At this time, the determination unit 112 of the unmanned aerial vehicle 10 uses the frequency characteristics of the PWM signal, location information, time information, remote controller identification information received from the remote server, etc. 1 The remote controller (Ctl_1) can be identified. If the PWM signal frequency characteristics, location information, time information, remote controller identification information, etc. do not match, the matching remote controller is found by searching for information on other remote controllers that match the signal information included in the PWM signal. .
만약, 무인항공기(10)가 제1 리모트 컨트롤러(Ctl_1)의 제어에 따라 비행하던 중에 제1 리모트 컨트롤러(Ctl_1)의 제어권을 벗어나거나 자동 비행 모드로 전환되는 이벤트가 발생되면, 제어권을 스위칭하는 처리를 실행할 수 있다.If, while the unmanned aerial vehicle 10 is flying under the control of the first remote controller (Ctl_1), the control right of the first remote controller (Ctl_1) is deviated or an event of switching to the automatic flight mode occurs, the process of switching the control right can run
즉, 무인한공기(10)는 제1 리모트 컨트롤러(Ctl_1)로부터 수신된 RF 신호 이외에 제2 리모트 컨트롤러(Ctl_2)로부터 수신된 RF 신호가 있으면, 안테나를 통해서 수신한다.That is, if there is an RF signal received from the second remote controller Ctl_2 in addition to the RF signal received from the first remote controller Ctl_1, the unmanned air 10 receives it through an antenna.
수신된 RF 신호를 수신부(111)를 경유해서 PPM 신호로 판단부(112)로 전달된다. 판단부(112)는 PPM 신호로부터 PWM 신호를 분리한 뒤, 분리된 PWM 신호의 특성, 위치정보(혠 정보), 수신시간, 리모트 컨트롤러 식별 정보 등을 이용하여 리모트 컨트롤러의 제어권 스위칭 이벤트가 발생된 상황인지 판단한다. 만약, 제1 리모트 컨트롤러(Ctl_1)의 제어권에 남아 있어도 되는 상황이면서 동시에 제2 리모트 컨트롤러(Ctl_2)의 제어권에도 속하는 경우에는 제1 리모트 컨트롤러(Ctl_1)의 제어권을 유지한 상태에서 다음 주기에 수신된 RF 신호를 분석하여 제1 리모트 컨트롤러(Ctl_1)의 제어권을 벗어났다는 판단이 될 경우에 제2 리모트 컨트롤러(Ctl_2)으로 제어권을 전환할 수 있다. The received RF signal is transmitted to the determining unit 112 as a PPM signal via the receiving unit 111 . The determination unit 112 separates the PWM signal from the PPM signal, and then uses the characteristics of the separated PWM signal, location information (time information), reception time, remote controller identification information, etc. determine the situation If the situation in which the control right of the first remote controller Ctl_1 can remain and it also belongs to the control right of the second remote controller Ctl_2, the data received in the next cycle while maintaining the control right of the first remote controller Ctl_1 When it is determined that the control right of the first remote controller Ctl_1 is out of control by analyzing the RF signal, the control right may be transferred to the second remote controller Ctl_2.
경우에 따라서는 판단부(112)는 제1 리모트 컨트롤러(Ctl_1)의 제어권에 속하고 있는 상황이지만 무인항공기(10)의 비행 방향이 제1 리모트 컨트롤러(Ctl_1)가 위치한 제 1지점에서 제2 리모트 컨트롤러(Ctl_2)가 위치한 제2 지점으로 이동 중인 경우라면 제1 리모트 컨트롤러(Ctl_1)에서 제2 리모트 컨트롤러(Ctl_2)로 제어권을 전환시킬 수 도 있다.In some cases, the determination unit 112 belongs to the control right of the first remote controller (Ctl_1), but the flight direction of the unmanned aerial vehicle 10 is at the first point where the first remote controller (Ctl_1) is located. If the controller Ctl_2 is moving to the second point where the controller Ctl_2 is located, the control right may be transferred from the first remote controller Ctl_1 to the second remote controller Ctl_2 .
즉, 판단부(112)는 현재 무인항공기(10)의 비행 방향, 비행 경로, 위치 정보, RF신호의 주파수 특성(세기, 대역 등), 원격 서버로부터 수신된 리모트 컨트롤러에 관한 식별 정보 등을 종합적으로 고려하여 리모트 컨트롤러의 제어권을 전환할지 여부를 결정한다.That is, the determination unit 112 synthesizes the current flight direction of the unmanned aerial vehicle 10, flight path, location information, frequency characteristics (strength, band, etc.) of the RF signal, identification information about the remote controller received from the remote server, and the like. to decide whether to switch the control right of the remote controller or not.
본 발명은 멀티 리모트 컨트롤러 오토 스위칭 모듈을 구비한 무인항공기의 제어 방법을 제공할 수 있다. 즉, 복수의 지점을 순항하기 위한 무인항공기의 제어 방법을 제공할 수 있다.예를 들어, 복수의 지점은 섬과 섬을 순항하기 위한 무인항공기의 제어 방법일 수 있다. The present invention may provide a method for controlling an unmanned aerial vehicle having a multi-remote controller auto-switching module. That is, it is possible to provide a method of controlling the unmanned aerial vehicle for cruising a plurality of points. For example, the plurality of points may be an island and a control method of the unmanned aerial vehicle for cruising the islands.
상기 무인 항공기는 제1 지점에서 제2 지점으로 이동하며, 상기 제1 지점에는 제1 리모트 컨트롤러에 의하여 상기 무인항공기가 제어되며, 상기 제2 지점에는 제2 리모트 컨트롤러에 의하여 상기 무인항공기가 제어된다. The unmanned aerial vehicle moves from a first point to a second point, the unmanned aerial vehicle is controlled by a first remote controller at the first point, and the unmanned aerial vehicle is controlled by a second remote controller at the second point .
여기서, 상기 제1 지점과 제2 지점 사이에 제1 제어범위와 제2 제어범위의 적어도 어느 하나에도 속하지 않는 영역이 있는 경우, 즉 상기 제1 리모트 컨트롤러가 제1 지점에서 무인항공기의 제어를 통제할 수 있는 제1 제어범위와 상기 제2 리모트 컨트롤러가 제2 지점에서 무인항공기의 제어를 통제할 수 있는 제2 제어범위의 적어도 어느 하나에도 속하지 않는 영역이 있는 경우, 상기 제1 제어범위에서 무인항공기는 제1 리모트 컨트롤러에 의하여 수동 비행하며, 무인항공기가 상기 제1 제어범위를 벗어나면 자동 비행 모드로 스위칭되어 정해진 경로를 이동하며, 무인항공기가 제2 제어범위로 들어오면 제어권을 상기 제1 리모트 컨트롤러에서 상기 제2 리모트 컨트롤러로 스위칭되고, 상기 제2 제어범위에서 무인항공기는 제2 리모트 컨트롤러에 의하여 수동 비행된다. Here, when there is an area between the first point and the second point that does not belong to at least one of the first control range and the second control range, that is, the first remote controller controls the control of the unmanned aerial vehicle at the first point When there is a region that does not belong to at least one of the first control range that can be performed and the second control range that the second remote controller can control the control of the unmanned aerial vehicle from at the second point, the unmanned aerial vehicle is in the first control range The aircraft flies manually by the first remote controller, and when the unmanned aerial vehicle is out of the first control range, it is switched to an automatic flight mode and moves a predetermined route, and when the unmanned aerial vehicle enters the second control range, the control right is transferred to the first The remote controller is switched to the second remote controller, and the unmanned aerial vehicle is manually operated by the second remote controller in the second control range.
한편, 상기 제1 지점과 제2 지점 사이에 제1 제어범위와 제2 제어범위의 적어도 어느 하나의 영역이 있는 경우, 즉 상기 제1 지점과 제2 지점 사이에 상기 제1 리모트 컨트롤러가 제1 지점에서 무인항공기의 제어를 통제할 수 있는 제1 제어범위와 상기 제2 리모트 컨트롤러가 제2 지점에서 무인항공기의 제어를 통제할 수 있는 제2 제어범위의 적어도 어느 하나에 속하는 영역이 있는 경우, 상기 제1 제어범위에서 무인항공기는 제1 리모트 컨트롤러에 의하여 수동 비행하며, 무인항공기가 상기 제1 제어범위와 제2 제어범위의 공통범위로 들어오면 제어권을 상기 제1 리모트 컨트롤러에서 상기 제2 리모트 컨트롤러로 스위칭되고, 상기 제2 제어범위에서 무인항공기는 제2 리모트 컨트롤러에 의하여 수동 비행된다. On the other hand, when there is at least one area of the first control range and the second control range between the first point and the second point, that is, between the first point and the second point, the first remote controller performs the first When there is a region belonging to at least one of the first control range for controlling the control of the unmanned aerial vehicle at a point and the second control range for the second remote controller to control the control of the unmanned aerial vehicle at the second point, In the first control range, the unmanned aerial vehicle flies manually by the first remote controller, and when the unmanned aerial vehicle enters the common range of the first control range and the second control range, the control right is transferred from the first remote controller to the second remote controller It is switched to the controller, and in the second control range, the unmanned aerial vehicle is manually operated by the second remote controller.
상기 제1 리모트 컨트롤러에서 상기 제2 리모트 컨트롤러로 스위칭은, RF 수신기로 RF 신호를 수신하여 제2 리모트 컨트롤러의 유효성이 검증되면, 제1 리모트 컨트롤러의 제어권은 폐기되고 제2 리모트 컨트롤러의 제어권을 허용하여 이루어진다. In switching from the first remote controller to the second remote controller, when the validity of the second remote controller is verified by receiving an RF signal to the RF receiver, the control right of the first remote controller is discarded and the control right of the second remote controller is allowed is done by
상기 멀티 리모트 컨트롤러 오토 스위칭 모듈은 송신부를 더욱 구비하여 상기 제1 제어범위를 벗어나서 자동 비행 모드로 스위칭되는 정보를 제2 리모트 컨트롤러에 송신하며, 또한 비행시간계산부를 더욱 구비하여 무인항공기가 제1 제어범위를 비행한 시간에 기초하여, 예를 들어 무인항공기의 비행 평균 속도를 획득하여, 무인항공기가 자동 비행 모드에서 제2 제어범위로 들어오는 시간을 계산하고, 송신부에서 무인항공기가 제2 제어범위로 들어오는 예상 시간을 제2 리모트 컨트롤러에 실시간으로 송신할 수 있다. 또한, 상기 멀티 리모트 컨트롤러 오토 스위칭 모듈은 출력부를 더욱 구비하여 무인항공기의 비행 평균 속도가 기 설정된 제2 제어범위의 진입 시간보다 늦어지면 출력부에서 무인항공기의 속도를 높여서 기 설정된 제2 제어범위의 진입 시간에 맞추도록 제어할 수 있다. 이에 따라, 풍속 등에 따라 비행시간 변동을 예측하거나 변동 시간을 최소화하여 제2 리모트 컨트롤러의 수동 동작을 준비하며, 출력 상승에 따른 배터리 소모양을 예측할 수 있어 제1 지점에서 제2 지점으로 이동후, 다른 지점으로 이동할 때 배터리 충전 시간에 대한 정보도 예측할 수 있다. The multi-remote controller auto-switching module further includes a transmitter to transmit information switched to an automatic flight mode out of the first control range to a second remote controller, and further includes a flight time calculator to control the first control of the unmanned aerial vehicle Based on the time of flying the range, for example, by obtaining the average flight speed of the unmanned aerial vehicle, the time for the unmanned aerial vehicle to enter the second control range in the automatic flight mode is calculated, and the transmitter returns the unmanned aerial vehicle to the second control range. The expected incoming time may be transmitted to the second remote controller in real time. In addition, the multi-remote controller auto-switching module is further provided with an output unit to increase the speed of the unmanned aerial vehicle in the output unit when the average flight speed of the unmanned aerial vehicle is later than the entry time of the preset second control range, so that the preset second control range is reached. It can be controlled to match the entry time. Accordingly, it is possible to predict flight time fluctuations according to wind speed or minimize the fluctuation time to prepare for manual operation of the second remote controller, and to predict battery consumption according to an increase in output, so that after moving from the first point to the second point, another Information about battery charging time can also be predicted when moving to a point.
제1 지점과 제2 지점 사이의 거리는, 상기 제1 지점과 제2 지점 사이에 상기 제1 리모트 컨트롤러가 제1 지점에서 무인항공기의 제어를 통제할 수 있는 제1 제어범위와 상기 제2 리모트 컨트롤러가 제2 지점에서 무인항공기의 제어를 통제할 수 있는 제2 제어범위의 적어도 어느 하나에도 속하지 않는 영역이 있는 경우, 5km 내지 7km일 수 있다. 한편, 상기 제1 지점과 제2 지점 사이에 상기 제1 리모트 컨트롤러가 제1 지점에서 무인항공기의 제어를 통제할 수 있는 제1 제어범위와 상기 제2 리모트 컨트롤러가 제2 지점에서 무인항공기의 제어를 통제할 수 있는 제2 제어범위의 적어도 어느 하나에 속하는 영역이 있는 경우, 0.5km 내지 1.5km일 수 있다. 또한, 제1 리모트 컨트롤러 및 제2 리모트 컨트롤러의 원격 조작 거리는 1.8km 내지 2.2km일 수 있다. The distance between the first point and the second point is a first control range in which the first remote controller can control the control of the unmanned aerial vehicle at the first point and the second remote controller between the first point and the second point If there is an area that does not belong to at least one of the second control ranges capable of controlling the control of the unmanned aerial vehicle at the second point, it may be 5 km to 7 km. Meanwhile, between the first point and the second point, a first control range in which the first remote controller can control the control of the unmanned aerial vehicle at the first point and the second remote controller control the unmanned aerial vehicle at the second point If there is an area belonging to at least any one of the second control range that can control , it may be 0.5 km to 1.5 km. In addition, a remote operation distance of the first remote controller and the second remote controller may be 1.8 km to 2.2 km.
본 발명의 멀티 리모트 컨트롤러 오토 스위칭 모듈은 위치 확인부 및 제어부를 더욱 구비하여, 상기 위치 확인부에 의하여 무인항공기의 위치를 실시간으로 확인하고, 제어부는 리모트 컨트롤러의 수동 비행 경로가 기 설정된 비행 경로의 일정 범위를 벗어난다고 판단하면 리모트 컨트롤러의 제어권을 정지하고 기 설정된 비행 경로로 이동하도록 자동 비행으로 전환할 수 있다. 여기서, 기 설정된 비행 경로의 일정 범위로 무인 항공기가 들어오는 것을 위치 확인부에 의하여 확인되면 제어부는 리모트 컨트롤러의 제어권을 생성하도록 제어할 수 있다. The multi-remote controller auto-switching module of the present invention further includes a positioning unit and a control unit, to confirm the position of the unmanned aerial vehicle in real time by the positioning unit, and the control unit is configured to set the manual flight path of the remote controller to the preset flight path. If it determines that it is out of a certain range, it can switch to automatic flight to stop the control of the remote controller and move to a preset flight path. Here, when it is confirmed by the positioning unit that the unmanned aerial vehicle enters into a predetermined range of a preset flight path, the control unit may control to generate a control right of the remote controller.
즉, 무인 항공기가 제2 제어범위로 들어오면 제어권은 제1 리모트 컨트롤러에서 제2 리모트 컨트롤러로 스위칭되고, 위치 확인부에 의하여 무인 항공기의 위치를 실시간으로 확인되고, 제어부는 제2 리모트 컨트롤러의 수동 비행 경로가 기 설정된 비행 경로의 일정 범위를 벗어난다고 판단하면 제2 리모트 컨트롤러의 제어권을 정지하고 기 설정된 비행 경로로 이동하도록 자동 비행으로 전환하고, 또한 기 설정된 비행 경로의 일정 범위로 자동 비행에 의하여 무인 항공기가 들어오는 것을 위치 확인부에 의하여 확인되면 제어부는 제2 리모트 컨트롤러의 제어권을 생성하도록 제어할 수 있다. 이와 같이 함으로써, 수동 제어에 따라 발생할 수 있는 오차를 최소화할 수 있다. That is, when the unmanned aerial vehicle enters the second control range, the control right is switched from the first remote controller to the second remote controller, the position of the unmanned aerial vehicle is confirmed in real time by the positioning unit, and the control unit is manually operated by the second remote controller If it is determined that the flight path is out of a certain range of the pre-set flight path, it stops the control of the second remote controller and switches to automatic flight to move to the pre-set flight path. When it is confirmed by the positioning unit that the unmanned aerial vehicle enters, the control unit may control to generate a control right of the second remote controller. By doing this, it is possible to minimize errors that may occur due to manual control.
도 3은 본 발명의 일 실시 예에 따른 무인 항공기의 동작을 예시적으로 설명하는 도면이다. 도 3에는 무인항공기(10)는 제1 지점(POS_1)에서 제2 지점(POS_2), 제3 지점(POS_3)을 경유해서 다시 제1 지점(POS_1)으로 이동하는 다지점을 순항 비행하는 예시를 도시하고 있다.3 is a diagram exemplarily illustrating an operation of an unmanned aerial vehicle according to an embodiment of the present invention. In FIG. 3 , the unmanned aerial vehicle 10 is an example of cruising the multi-point moving from the first point POS_1 to the second point POS_2 and the third point POS_3 again to the first point POS_1. is showing
제1 지점과 제2 지점 사이의 거리(제1 구간 거리)는 약7,3km이고, 제2 지점과 제3 지점 사이의 거리(제2 구간 거리)는 약6.2km이고, 제3 지점과 제1 지점 사이의 거리(제3 구간 거리)는 약5.8km이다.The distance between the first point and the second point (the distance of the first section) is about 7,3 km, the distance between the second point and the third point (the distance of the second section) is about 6.2 km, and the third point and the second section are about 6.2 km. The distance between points 1 (the third section distance) is about 5.8 km.
제1 내지 3지점에 구비된 제1 내지 3 리모트 컨트롤러(Ctl_1 내지 Ctl_3)의 원격 조작 거리는 약 2km이다. 도 3에서 제1 내지 3 제어 범위는 원격 조작 거리를 2km로 가정한 경우에 제어 범위를 도시한 것이다.The remote operation distance of the first to third remote controllers Ctl_1 to Ctl_3 provided at the first to third points is about 2 km. The first to third control ranges in FIG. 3 show the control ranges when it is assumed that the remote operation distance is 2 km.
제1 지점(POS_1)을 출발한 직후에 무인항공기(10)는 제1 리모트 컨트롤러(Ctl_1)의 제어권에 속하기 때문에, 제1 리모트 컨트롤러(Ctl_1)의 제어에 따라 수동 제어될 수 있다. 출발 직후 몇분의 비행시간이 경과하면 무인항공기(10)는 제1 지점(POS_1)에서 제2 지점(POS_2)으로 이동하는 구간(제1 구간) 중에 제1 제어 범위를 벗어나게 된다. 무인항공기(10)는 제1 리모트 컨트롤러(Ctl_1)의 제어권을 벗어나면, 수동 비행 모드에서 자동 비행 모드로 전환될 수 있다. 무인항공기(10)는 자동 비행 모드로 비행할 경우에는 정해진 경로를 따라 항속 비행을 하게 된다.Since the unmanned aerial vehicle 10 belongs to the control right of the first remote controller Ctl_1 immediately after leaving the first point POS_1 , it may be manually controlled according to the control of the first remote controller Ctl_1 . When a flight time of several minutes has elapsed immediately after departure, the unmanned aerial vehicle 10 is out of the first control range during a section (first section) moving from the first point (POS_1) to the second point (POS_2). When the unmanned aerial vehicle 10 leaves the control of the first remote controller Ctl_1 , the unmanned aerial vehicle 10 may be switched from the manual flight mode to the automatic flight mode. When the unmanned aerial vehicle 10 flies in the automatic flight mode, the unmanned aerial vehicle 10 performs a cruise flight along a predetermined route.
무인항공기(10)는 제1 구간에서 제2 리모트 컨트롤러(Ctl_2)의 제어권 영역인 제2 제어 범위에 진입하게 되면, 제어권을 제1 리모트 컨트롤러(Ctl_1)에서 제2 리모트 컨트롤러(Ctl_2)으로 전화시키는 스위칭 처리를 실행한다.When the unmanned aerial vehicle 10 enters the second control range, which is the control area of the second remote controller Ctl_2 in the first section, the control right is transferred from the first remote controller Ctl_1 to the second remote controller Ctl_2 Execute switching processing.
무인항공기(10)는 제2 제어 범위에 진입하면서 주변으로부터 RF 신호를 수신하게 되고, 제2 리모트 컨트롤러(Ctl_2)의 유효성이 검증되면, 제1 리모트 컨트롤러(Ctl_1)의 제어권을 폐기하고 제2 리모트 컨트롤러(Ctl_2)의 제어권을 허용한다.The unmanned aerial vehicle 10 receives an RF signal from the surroundings while entering the second control range, and when the validity of the second remote controller Ctl_2 is verified, the control right of the first remote controller Ctl_1 is discarded and the second remote controller Ctl_2 is validated. Allows control of the controller (Ctl_2).
무인항공기(10)는 제2 지점에서 기 정의된 임무를 수행한 뒤에, 제3 지점으로 비행을 시작하면, 제2 리모트 컨트롤러(Ctl_2)의 제어에 따라 수동 비행 모드로 비행하게 된다. 출발 직후 몇분의 비행시간이 경과하면 무인항공기(10)는 제2 지점(POS_2)에서 제3 지점(POS_3)으로 이동하는 구간(제2 구간) 중에 제2 제어 범위를 벗어나게 된다. 무인항공기(10)는 제2 리모트 컨트롤러(Ctl_2)의 제어권을 벗어나면, 수동 비행 모드에서 자동 비행 모드로 전환될 수 있다. 무인항공기(10)는 자동 비행 모드로 비행할 경우에는 정해진 경로를 따라 항속 비행을 하게 된다.When the unmanned aerial vehicle 10 starts flying to a third point after performing a predefined mission at the second point, it flies in a manual flight mode under the control of the second remote controller Ctl_2. When a flight time of several minutes has elapsed immediately after departure, the unmanned aerial vehicle 10 is out of the second control range during a section (second section) moving from the second point (POS_2) to the third point (POS_3). When the unmanned aerial vehicle 10 leaves the control of the second remote controller Ctl_2 , the unmanned aerial vehicle 10 may be switched from the manual flight mode to the automatic flight mode. When the unmanned aerial vehicle 10 flies in the automatic flight mode, the unmanned aerial vehicle 10 performs a cruise flight along a predetermined route.
무인항공기(10)는 제2 구간에서 제3 리모트 컨트롤러(Ctl_3)의 제어권 영역인 제3 제어 범위에 진입하게 되면, 제어권을 제2 리모트 컨트롤러(Ctl_2)에서 제3 리모트 컨트롤러(Ctl_3)으로 전환시키는 스위칭 처리를 실행한다.When the unmanned aerial vehicle 10 enters the third control range, which is the control right area of the third remote controller Ctl_3 in the second section, the control right is switched from the second remote controller Ctl_2 to the third remote controller Ctl_3. Execute switching processing.
무인항공기(10)는 제3 제어 범위에 진입하면서 주변으로부터 RF 신호를 수신하게 되고, 제3 리모트 컨트롤러(Ctl_3)의 유효성이 검증되면, 제3 리모트 컨트롤러(Ctl_3)의 제어권을 폐기하고 제3 리모트 컨트롤러(Ctl_3)의 제어권을 허용한다.The unmanned aerial vehicle 10 receives an RF signal from the surroundings while entering the third control range, and when the validity of the third remote controller Ctl_3 is verified, the control right of the third remote controller Ctl_3 is discarded and the third remote controller Ctl_3 is validated. Allows control of the controller (Ctl_3).
무인항공기(10)는 제3 지점에서 기 정의된 임무를 수행한 뒤에, 제1 지점으로 비행을 시작하면, 제3 리모트 컨트롤러(Ctl_3)의 제어에 따라 수동 비행 모드로 비행하게 된다. 출발 직후 몇분의 비행시간이 경과하면 무인항공기(10)는 제3 지점(POS_3)에서 제1 지점(POS_1)으로 이동하는 구간(제3 구간) 중에 제3 제어 범위를 벗어나게 된다. 무인항공기(10)는 제3 리모트 컨트롤러(Ctl_3)의 제어권을 벗어나면, 수동 비행 모드에서 자동 비행 모드로 전환될 수 있다. 무인항공기(10)는 자동 비행 모드로 비행할 경우에는 정해진 경로를 따라 항속 비행을 하게 된다.When the unmanned aerial vehicle 10 starts flying to the first point after performing a predefined mission at the third point, it flies in a manual flight mode under the control of the third remote controller Ctl_3. When a flight time of several minutes has elapsed immediately after departure, the unmanned aerial vehicle 10 is out of the third control range during a section (third section) moving from the third point POS_3 to the first point POS_1. When the unmanned aerial vehicle 10 leaves the control of the third remote controller Ctl_3 , the unmanned aerial vehicle 10 may be switched from the manual flight mode to the automatic flight mode. When the unmanned aerial vehicle 10 flies in the automatic flight mode, the unmanned aerial vehicle 10 performs a cruise flight along a predetermined route.
도 4는 본 발명의 다른 실시 예에 따른 멀티 리모트 컨트롤러 오토 스위칭 모듈의 수신부의 구조를 예시적으로 설명하는 도면이다. 도 4를 참고하면, 수신부(111)는 복수의 RC 수신기를 병렬 연결하여 구성한다. RC 수신기와 개별적인 커넥터로 연결하고, 커넥터는 포토 커플러와 개별적으로 연결되며, 각각의 RC 수신기 별로 포토 커플러의 출력은 판단부(112)의 입출력 노드로 입력된다. 또한, 복수의 RC 수신기 중 어느 하나로 수신된 RF 신호인 PPM 신호를 개별 커넥터를 통과해서 포터 커플러로 입력되고, 복수의 포터 커플러의 출력 단자를 하나의 PPM 신호 출력 커넥터에 연결해서 PPM 신호를 판단부(112)로 전달한다. 4 is a diagram exemplarily illustrating a structure of a receiver of a multi-remote controller auto-switching module according to another embodiment of the present invention. Referring to FIG. 4 , the receiver 111 is configured by connecting a plurality of RC receivers in parallel. The RC receiver is connected to an individual connector, and the connector is individually connected to the photo coupler, and the output of the photo coupler for each RC receiver is input to the input/output node of the determination unit 112 . In addition, the PPM signal, which is an RF signal received by any one of the plurality of RC receivers, is input to the port coupler through individual connectors, and the output terminals of the plurality of port couplers are connected to one PPM signal output connector to determine the PPM signal forward to (112).
도 4의 복수의 수신기는 4개의 조정기를 연결한 예를 도시한 것이며, 4개의 조정기를 이하에서 설명하는 비행 컨트롤러(110)의 포트 C에 연결하여 구성할 수 있다.The plurality of receivers of FIG. 4 shows an example of connecting four controllers, and may be configured by connecting the four controllers to port C of the flight controller 110 to be described below.
도 5는 본 발명의 다른 실시 예에 따른 멀티 리모트 컨트롤러 오토 스위칭 모듈을 포함하는 비행 컨트롤러의 구조를 예시적으로 설명하는 도면이다. 도 5를 참고하면, 판단부(112)는 AVR microcontroller로 통합 구현할 수 있다. 도 5에 도시된 AVR 마이크로컨트롤러는 ATmega 128 기종을 예시적으로 나타내고 있다. 이러한 판단부(112)는 본 발명의 비행 컨트롤러(110)로 통합될 수 있고, 이러한 비행 컨트롤러(110)는 ATMEL사가 개발한 AVR로서 현재 8비트 AVR과 32비트 AVR을 제공하고 있는 마이크로 컨트롤러이다. 도 5에 도시된 비행 컨트롤러(110)는 1개의 클록 사이클에 1개의 명령을 처리 할 수 있으며, 1.8V에서 5.5V까지 어느 전압이든 동작 시킬 수 있다. 또한 비행 컨트롤러(110)는 피코파워(picoPower) 기술이 적용될 경우에 저전력으로 동작되도록 설계될 수 있다. 비행 컨트롤러(110)는 32개의 범용 레지스터를 갖고, RISC 구조로 설계될 수 있다. 비행 컨트롤러(110)는 6핀 또는 10핀 인터페이스로 제공되는 ISP(In-System Programming)기능이나 JTAG 기능을 구현할 수 있다. 본 발명의 일 실시 예에 따르면 복수 개의 조정기(Ctl_1 내지 Ctl_4)는 포트 C(PC1 내지 PC7) 중 하나의 포트에 연결될 수 있다.5 is a diagram exemplarily illustrating the structure of a flight controller including a multi-remote controller auto-switching module according to another embodiment of the present invention. Referring to FIG. 5 , the determination unit 112 may be integrated with an AVR microcontroller. The AVR microcontroller shown in FIG. 5 exemplifies the ATmega 128 model. The determination unit 112 may be integrated into the flight controller 110 of the present invention, and the flight controller 110 is an AVR developed by ATMEL, and is a microcontroller that currently provides an 8-bit AVR and a 32-bit AVR. The flight controller 110 shown in FIG. 5 can process one command in one clock cycle, and can operate any voltage from 1.8V to 5.5V. In addition, the flight controller 110 may be designed to operate with low power when picoPower technology is applied. The flight controller 110 has 32 general-purpose registers and may be designed in a RISC structure. The flight controller 110 may implement an ISP (In-System Programming) function or a JTAG function provided as a 6-pin or 10-pin interface. According to an embodiment of the present invention, the plurality of coordinators Ctl_1 to Ctl_4 may be connected to one of the ports C (PC1 to PC7).
도 6은 본 발명의 다른 실시 예에 따른 멀티 리모트 컨트롤러 오토 스위칭 모듈을 구성하는 판단부에 의해서 제어 신호를 분리하는 일 예를 예시적으로 설명하는 도면이다. 6 is a view exemplarily explaining an example of separating a control signal by a determination unit constituting a multi-remote controller auto-switching module according to another embodiment of the present invention.
도 6(a)를 참고하면, PPM신호가 RF 수신기를 통해서 수신부(111)에 들어올때 1번 채널 부터 순차적으로 감지할 수 있다. 도 6에 도시된 바와 같이 복수의 PWM 신호 그룹과는 일정 간격을 동기화 시간에 의해서 구별된 다음 채널의 PWM 신호가 들어온다. 이러한 채널 구간을 동기화 시간(Sync time)으로 볼 수 있다. 이러한 동기화 시간을 활용하면 채널1번이 어디서부터 시작하는지를 알 수 있다. 도 6에 도시된 첫번째 PWM 신호의 그룹은 4채널 송신기에서 보내는 PPM신호의 예이지만, 채널수가 더 많은 송신기(예를 들면 8채널)일지라도 맨 마지막 채널(8번채널)과 1번 채널사이의 간격은 다른 채널사이 간격보다 더 길게 되므로, 이 긴 시간틈을 인식해서 맨 마지막 채널과 첫번째 채널을 구분할 수 있다. Referring to FIG. 6( a ), when the PPM signal enters the receiver 111 through the RF receiver, it can be sequentially detected from the first channel. As shown in FIG. 6 , the PWM signal of the next channel is differentiated from the plurality of PWM signal groups by the synchronization time at a predetermined interval. Such a channel section may be viewed as a synchronization time. Using this synchronization time, it is possible to know where channel 1 starts. The first group of PWM signals shown in FIG. 6 is an example of a PPM signal sent from a 4-channel transmitter, but even in a transmitter with more channels (eg, 8 channels), the interval between the last channel (channel 8) and channel 1 is longer than the interval between other channels, so it is possible to distinguish the last channel from the first channel by recognizing this long time interval.
비행 컨트롤러(110)는 인터럽트(Interrupt)와 타이머 및 카운터(Timer and Counter)를 이용하여 PPM에서 PWM을 분리할 수 있다. 예를 들어, 1번 채널의 펄스를 살펴보면, ON(Rising edge)이 되고 일정 시간후에 Off(Falling edge)가 된다. 다른 채널도 마찬가지이다. 비행 컨트롤러(110)는 인터럽트을 이용할때에 상승에지 검출(Rising edge detection)과 하강에지 검출(Falling edge detection)을 할 수 있다. 비행 컨트롤러(110)는 상승에지와 하강에지 검출을 조합하여 PPM 신호에서 PWM 신호를 분리할 수 있다. The flight controller 110 may separate the PWM from the PPM using an interrupt and a timer and a counter. For example, looking at the pulse of channel 1, it becomes ON (rising edge) and turns off (falling edge) after a certain period of time. The same goes for other channels. The flight controller 110 may perform rising edge detection and falling edge detection when using an interrupt. The flight controller 110 may separate the PWM signal from the PPM signal by combining the rising edge and the falling edge detection.
도 6(a)를 참고하면, 비행 컨트롤러(110)는 채널1번의 상승에지를 검출할때 인터럽트 감지(Rising edge sense)하고 이때 바로 감지모드를 하강에지(falling edge)로 설정을 바꾼다. 비행 컨트롤러(110)는 조금 시간이 흐른뒤(대략1 ~ 2ms) 채널1의 하강에지가 진행되며 이때 또 인터럽트가 감지(falling edge)된다. 비행 컨트롤러(110)의 내부에서 카운터가 동작된다. 비행 컨트롤러(110)는 상승에지때 인터럽트 루틴에서 카운터값(예를 들면 TCNT1)을 읽고, 다시 하강에지때 인터럽트가 실행되면 또 카운터값(TCNT1)을 읽는다. 비행 컨트롤러(110)는 두 값의 차이를 구하면 채널1번의 ON구간의 시간길이를 알수 있다. 만약 1ms정도 이면 조종기 스틱이 왼쪽 끝으로 움직인것이고 2ms이면 오른쪽끝으로 움직인 것으로 인식할 수 있다. 대략 1.5ms이면 중간(중립)에 있다고 인식할 수 있다. 비행 컨트롤러(110)는 카운터(TCNT1)의 해상도(측정 시간 단위)를 1000us로 설정하여 상당히 정확하게 조종스틱의 움직임을 측정하여 계산할 수 있다. 비행 컨트롤러(110)의 Timer/Counter1의 해상도(측정시간) 단위를 1us 단위로 설정한다. 비행 컨트롤러(110)의 타이머/카운터1의 클럭주파수를 1Mhz(주기로 계산하면 1us)정도로 하면 개별채널의 ON시간을 측정하는 데 충분할 수 있다.Referring to FIG. 6( a ), the flight controller 110 senses an interrupt when detecting a rising edge of channel 1, and immediately changes the setting to a falling edge sensing mode at this time. Flight controller 110 after a little time (approximately 1 ~ 2ms) the falling edge of the channel 1 proceeds, and at this time, an interrupt is also detected (falling edge). A counter is operated inside the flight controller 110 . The flight controller 110 reads the counter value (eg, TCNT1) in the interrupt routine at the rising edge, and reads the counter value (TCNT1) again when the interrupt is executed at the falling edge again. When the flight controller 110 obtains the difference between the two values, the flight controller 110 can know the time length of the ON section of channel 1. If it is about 1ms, it can be recognized that the remote controller stick has moved to the left end, and if it is 2ms, it can be recognized as moving to the right end. If it is about 1.5ms, it can be recognized that it is in the middle (neutral). The flight controller 110 can measure and calculate the movement of the control stick fairly accurately by setting the resolution (measurement time unit) of the counter TCNT1 to 1000 us. The resolution (measurement time) unit of Timer/Counter1 of the flight controller 110 is set in 1us units. If the clock frequency of the timer/counter 1 of the flight controller 110 is about 1Mhz (1us if calculated as a cycle), it may be sufficient to measure the ON time of an individual channel.
도 7은 본 발명의 다른 실시 예에 따른 멀티 리모트 컨트롤러 오토 스위칭 모듈을 구성하는 디스플레이부의 2×8 박스 헤더를 예시적으로 도시한 도면이다. 도 7을 참고하면, 16개 단자를 갖는 박스 헤더로 LCD 디스플레이를 표시할 수 있다. 디스플레이부의 2×8 박스 헤더의 각 단자는 비행 컨트롤러(110)의 포트 A에 입력으로 들어간다.7 is a diagram exemplarily illustrating a 2×8 box header of a display unit constituting a multi-remote controller auto-switching module according to another embodiment of the present invention. Referring to FIG. 7 , the LCD display may be displayed with a box header having 16 terminals. Each terminal of the 2x8 box header of the display unit enters as an input to port A of the flight controller 110 .
Claims (9)
- 멀티 리모트 컨트롤러 오토 스위칭 모듈에 있어서,In the multi-remote controller auto switching module,복수의 지점에 각각 위치하는 복수의 리모트 컨트롤러와 무선으로 통신하는 통신부;a communication unit for wirelessly communicating with a plurality of remote controllers respectively located at a plurality of points;상기 통신부를 통해서 특정 리모트 컨트롤러로부터 수신된 제어 신호를 모듈암호화 방식으로 인증하여 해당 리모트 컨트롤러의 제어에 따를지 여부를 판단하는 판단부; 및a determination unit for authenticating a control signal received from a specific remote controller through the communication unit using a module encryption method and determining whether to comply with the control of the corresponding remote controller; and상기 판단부의 결과에 따라 이전 리모트 컨트롤러에서 신규 리모트 컨트롤러로 제어권을 스위칭하는 스위칭부;를 포함하는A switching unit for switching the control right from the previous remote controller to the new remote controller according to the result of the determination unit;멀티 리모트 컨트롤러 오토 스위칭 모듈.Multi-remote controller auto-switching module.
- 제1 항에 있어서,According to claim 1,상기 통신부는, 복수의 리모트 컨트롤러로부터 개별적으로 제어 신호를 수신하도록 복수의 수신기를 포함하는 것을 특징으로 하는The communication unit, characterized in that it comprises a plurality of receivers to individually receive control signals from a plurality of remote controllers멀티 리모트 컨트롤러 오토 스위칭 모듈.Multi-remote controller auto-switching module.
- 제2 항에 있어서,3. The method of claim 2,상기 통신부는, 상기 복수의 수신기를 RF(Radio Frequency) 수신기로 구성하고, 상기 RF 수신기와 상기 판단부 사이에 각각 단채널 포토 커플러(Photo Coupler)를 더 구비하는 것을 특징으로 하는The communication unit, comprising the plurality of receivers as RF (Radio Frequency) receivers, characterized in that each further comprises a short-channel photo coupler (Photo Coupler) between the RF receiver and the determination unit멀티 리모트 컨트롤러 오토 스위칭 모듈.Multi-remote controller auto-switching module.
- 제3 항에 있어서,4. The method of claim 3,상기 통신부는, 상기 복수의 수신기 중 하나로 수신된 RF 신호인 PPM(pulse position modulation) 신호를 상기 단채널 포토 커플러를 경유하여 출력 PPM 신호로써 상기 판단부로 전달하는 PPM 신호 출력 커넥터를 더 포함하는The communication unit further comprises a PPM signal output connector that transmits a pulse position modulation (PPM) signal, which is an RF signal received by one of the plurality of receivers, to the determination unit as an output PPM signal via the short-channel photo coupler.멀티 리모트 컨트롤러 오토 스위칭 모듈.Multi-remote controller auto-switching module.
- 멀티 리모트 컨트롤러 오토 스위칭 모듈을 구비한 무인항공기에 있어서,In an unmanned aerial vehicle equipped with a multi-remote controller auto-switching module,무인 항공기의 각종 부품을 조립하는 프레임;Frame for assembling various parts of the drone;상기 프레임의 다수의 영역에 설치되는 모터 및 변속기를 포함하는 프로펠러;a propeller including a motor and a transmission installed in a plurality of areas of the frame;상기 프레임에 설치되서 무인항공기의 비행 기능 유지를 위한 각종의 제어를 처리하는 비행 컨트롤러;a flight controller installed on the frame to process various controls for maintaining the flight function of the unmanned aerial vehicle;무인항공기의 주변 상황에 대한 정보를 센싱하는 복수의 센서; 및A plurality of sensors for sensing information about the surrounding situation of the unmanned aerial vehicle; and상기 프로펠러, 비행 컨트롤러 및 복수의 센서에 전원을 공급하는 배터리;를 포함하되,A battery for supplying power to the propeller, the flight controller, and a plurality of sensors; including,상기 비행 컨트롤러는, 복수의 지점에 각각 위치하는 복수의 리모트 컨트롤러와 무선으로 통신하는 통신부; 상기 통신부를 통해서 특정 리모트 컨트롤러로부터 수신된 제어 신호를 모듈 암호화 방식으로 인증하여 해당 리모트 컨트롤러의 제어에 따를지 여부를 판단하는 판단부; 및 상기 판단부의 결과에 따라 이전 리모트 컨트롤러에서의 제어권을 신규 리모트 컨트롤러의 제어권으로 스위칭하는 스위칭부;를 포함하는 멀티 리모트 컨트롤러 오토 스위칭 모듈을 더 포함하는 것을 특징으로 하는 The flight controller includes: a communication unit for wirelessly communicating with a plurality of remote controllers respectively located at a plurality of points; a determination unit for authenticating a control signal received from a specific remote controller through the communication unit using a module encryption method and determining whether to comply with the control of the corresponding remote controller; and a multi-remote controller auto-switching module comprising a; and a switching unit for switching the control right from the previous remote controller to the control right of the new remote controller according to the result of the determination unit멀티 리모트 컨트롤러 오토 스위칭 모듈을 구비한 무인항공기.Unmanned aerial vehicle equipped with multi-remote controller auto-switching module.
- 제5 항에 있어서,6. The method of claim 5,상기 통신부는, 복수의 리모트 컨트롤러로부터 개별적으로 제어 신호를 수신하도록 복수의 수신기를 포함하는 것을 특징으로 하는 The communication unit, characterized in that it comprises a plurality of receivers to individually receive control signals from a plurality of remote controllers멀티 리모트 컨트롤러 오토 스위칭 모듈을 구비한 무인항공기.Unmanned aerial vehicle equipped with multi-remote controller auto-switching module.
- 제6 항에 있어서,7. The method of claim 6,상기 통신부는, 상기 복수의 수신기를 RF(Radio Frequency) 수신기로 구성하고, 상기 RF 수신기와 상기 판단부 사이에 각각 단채널 포토 커플러(Photo Coupler)를 더 구비하는 것을 특징으로 하는The communication unit, comprising the plurality of receivers as RF (Radio Frequency) receivers, characterized in that each further comprises a short-channel photo coupler (Photo Coupler) between the RF receiver and the determination unit멀티 리모트 컨트롤러 오토 스위칭 모듈을 구비한 무인항공기.Unmanned aerial vehicle equipped with multi-remote controller auto-switching module.
- 제7 항에 있어서,8. The method of claim 7,상기 통신부는, 상기 복수의 수신기 중 하나로 수신된 RF 신호인 PPM(Radio Control Signal) 신호를 상기 단채널 포토 커플러를 경유하여 출력 PPM 신호로써 상기 판단부로 전달하는 PPM 신호 출력 커넥터를 더 포함하는 것을 특징으로 하는 The communication unit further comprises a PPM signal output connector for transmitting a PPM (Radio Control Signal) signal, which is an RF signal received by one of the plurality of receivers, to the determination unit as an output PPM signal via the short-channel photo coupler. to do멀티 리모트 컨트롤러 오토 스위칭 모듈을 구비한 무인항공기Unmanned aerial vehicle equipped with multi-remote controller auto-switching module
- 청구항 5 내지 8의 어느 한 항에 기재된 멀티 리모트 컨트롤러 오토 스위칭 모듈을 구비하고, 복수의 지점을 순항하기 위한 무인항공기의 제어 방법.A control method of an unmanned aerial vehicle comprising the multi-remote controller auto-switching module according to any one of claims 5 to 8, for cruising a plurality of points.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/KR2020/015253 WO2022097762A1 (en) | 2020-11-03 | 2020-11-03 | Multi-remote controller auto-switching module, and unmanned aerial vehicle having same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/KR2020/015253 WO2022097762A1 (en) | 2020-11-03 | 2020-11-03 | Multi-remote controller auto-switching module, and unmanned aerial vehicle having same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022097762A1 true WO2022097762A1 (en) | 2022-05-12 |
Family
ID=81457983
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2020/015253 WO2022097762A1 (en) | 2020-11-03 | 2020-11-03 | Multi-remote controller auto-switching module, and unmanned aerial vehicle having same |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2022097762A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20180036073A (en) * | 2016-09-30 | 2018-04-09 | 연세대학교 산학협력단 | Method and Apparatus for Management of Controlling Authority of Aerial Vehicle |
KR101852851B1 (en) * | 2017-11-10 | 2018-04-27 | (유)동아하이테크 | An apparatus for controlling a drone |
KR101897597B1 (en) * | 2017-06-19 | 2018-09-13 | 주식회사 스카이텍 | Remote controller connection system for drone control |
KR101959832B1 (en) * | 2018-08-20 | 2019-03-19 | 한화시스템 주식회사 | System and method for controlling drone |
KR102144231B1 (en) * | 2019-11-18 | 2020-08-12 | 에이미파이(주) | Method for transmitting video pictures being captured by a drone through cellular networks in real time and apparatus for said method |
-
2020
- 2020-11-03 WO PCT/KR2020/015253 patent/WO2022097762A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20180036073A (en) * | 2016-09-30 | 2018-04-09 | 연세대학교 산학협력단 | Method and Apparatus for Management of Controlling Authority of Aerial Vehicle |
KR101897597B1 (en) * | 2017-06-19 | 2018-09-13 | 주식회사 스카이텍 | Remote controller connection system for drone control |
KR101852851B1 (en) * | 2017-11-10 | 2018-04-27 | (유)동아하이테크 | An apparatus for controlling a drone |
KR101959832B1 (en) * | 2018-08-20 | 2019-03-19 | 한화시스템 주식회사 | System and method for controlling drone |
KR102144231B1 (en) * | 2019-11-18 | 2020-08-12 | 에이미파이(주) | Method for transmitting video pictures being captured by a drone through cellular networks in real time and apparatus for said method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102256892B1 (en) | Multi-remote controller auto switching module and unmanned aerial vehicle equipped with the same | |
WO2017065485A1 (en) | Communication apparatus and method for unmanned aerial vehicle | |
WO2018066744A1 (en) | System and method for controlling multidrone | |
WO2017065486A1 (en) | Communication apparatus and method for unmanned aerial vehicle | |
KR101732357B1 (en) | System and method for controlling landing and takeoff of dron | |
US5310134A (en) | Tethered vehicle positioning system | |
CN109774940A (en) | It is a kind of to examine the integrated synthesis avionics system for beating unmanned plane | |
US20170078142A1 (en) | Avionics calculator with integrated routing module, related communication network and communication installation, and aircraft comprising such a communication installation | |
WO2019045242A1 (en) | Unmanned aircraft black box system | |
US8743020B1 (en) | Avionics display architecture with independent processing and monitoring channels | |
WO2013100808A1 (en) | Integrated complex of on-board equipment for a multifunctional aeroplane | |
CN112672323A (en) | Unmanned aerial vehicle networking flight system and unmanned aerial vehicle remote communication method applying same | |
KR20110101602A (en) | System and method for smart GPS control and video transmission platform for WLAN based on distributed network | |
US11563642B2 (en) | Smart point of presence (SPOP) aircraft-based high availability edge network architecture | |
WO2022097762A1 (en) | Multi-remote controller auto-switching module, and unmanned aerial vehicle having same | |
WO2015140795A1 (en) | Core UxV Control System | |
KR20160128144A (en) | Air traffic Control System for Small Size UAV using Commercial Cellular Networks | |
US11477088B2 (en) | Smart point of presence (SPOP) devices for aircraft-based high availability edge network architecture | |
CN113039503A (en) | Control system, control method, device and storage medium for movable platform | |
KR20170113765A (en) | Collision Avoidance System | |
KR100324581B1 (en) | method for controlling of a pilotless airplane and apparatus for performming the same | |
CN106160837A (en) | A kind of UAS and information distribution system | |
CN114508965B (en) | Multi-machine cooperative miniature seeker and control method thereof | |
CN206524902U (en) | Radio transmission apparatus for the aerial dirigible system of line walking | |
CN114614880A (en) | Long-distance unmanned aerial vehicle signal relay system of low time delay |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20960864 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20960864 Country of ref document: EP Kind code of ref document: A1 |