[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2022097229A1 - スループット推定装置、スループット推定方法及びプログラム - Google Patents

スループット推定装置、スループット推定方法及びプログラム Download PDF

Info

Publication number
WO2022097229A1
WO2022097229A1 PCT/JP2020/041383 JP2020041383W WO2022097229A1 WO 2022097229 A1 WO2022097229 A1 WO 2022097229A1 JP 2020041383 W JP2020041383 W JP 2020041383W WO 2022097229 A1 WO2022097229 A1 WO 2022097229A1
Authority
WO
WIPO (PCT)
Prior art keywords
qoe
throughput
estimation
target
estimation unit
Prior art date
Application number
PCT/JP2020/041383
Other languages
English (en)
French (fr)
Inventor
太一 河野
正裕 小林
薫明 原田
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to US18/251,345 priority Critical patent/US12206921B2/en
Priority to PCT/JP2020/041383 priority patent/WO2022097229A1/ja
Priority to JP2022560563A priority patent/JP7494938B2/ja
Publication of WO2022097229A1 publication Critical patent/WO2022097229A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/24Monitoring of processes or resources, e.g. monitoring of server load, available bandwidth, upstream requests
    • H04N21/2402Monitoring of the downstream path of the transmission network, e.g. bandwidth available
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/238Interfacing the downstream path of the transmission network, e.g. adapting the transmission rate of a video stream to network bandwidth; Processing of multiplex streams
    • H04N21/2385Channel allocation; Bandwidth allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/24Monitoring of processes or resources, e.g. monitoring of server load, available bandwidth, upstream requests
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/25Management operations performed by the server for facilitating the content distribution or administrating data related to end-users or client devices, e.g. end-user or client device authentication, learning user preferences for recommending movies
    • H04N21/266Channel or content management, e.g. generation and management of keys and entitlement messages in a conditional access system, merging a VOD unicast channel into a multicast channel
    • H04N21/2662Controlling the complexity of the video stream, e.g. by scaling the resolution or bitrate of the video stream based on the client capabilities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/442Monitoring of processes or resources, e.g. detecting the failure of a recording device, monitoring the downstream bandwidth, the number of times a movie has been viewed, the storage space available from the internal hard disk
    • H04N21/44209Monitoring of downstream path of the transmission network originating from a server, e.g. bandwidth variations of a wireless network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/60Network structure or processes for video distribution between server and client or between remote clients; Control signalling between clients, server and network components; Transmission of management data between server and client, e.g. sending from server to client commands for recording incoming content stream; Communication details between server and client 
    • H04N21/63Control signaling related to video distribution between client, server and network components; Network processes for video distribution between server and clients or between remote clients, e.g. transmitting basic layer and enhancement layers over different transmission paths, setting up a peer-to-peer communication via Internet between remote STB's; Communication protocols; Addressing
    • H04N21/647Control signaling between network components and server or clients; Network processes for video distribution between server and clients, e.g. controlling the quality of the video stream, by dropping packets, protecting content from unauthorised alteration within the network, monitoring of network load, bridging between two different networks, e.g. between IP and wireless
    • H04N21/64723Monitoring of network processes or resources, e.g. monitoring of network load
    • H04N21/64738Monitoring network characteristics, e.g. bandwidth, congestion level

Definitions

  • the present invention relates to a throughput estimation device, a throughput estimation method and a program.
  • bit rate video distribution In many video distribution services, adaptive distribution is performed while changing the bit rate of video and audio (data amount per unit time when playing video and audio) according to the state of throughput (data transfer amount per unit time).
  • Bit rate video distribution is adopted.
  • video and audio data of different representations set of codec, bit rate, resolution, frame rate, etc. for video, set of codec, bit rate, etc. for audio
  • the terminal requests the server for a representation corresponding to an appropriate bit rate according to the throughput situation, and receives and reproduces video and sound while switching the bit rate.
  • the image quality or sound quality deteriorates due to the selection of a low bit rate as the throughput decreases, and the video / audio data transfer required for playback cannot be completed in time, and the video / audio data accumulated in the buffer of the receiving terminal is exhausted. Waiting for the start of reproduction or stopping the reproduction occurs due to the buffering process due to the above, and the QoE deteriorates.
  • Deterioration of QoE affects viewer engagement (viewing time, viewing withdrawal, viewing cancellation, etc.), but the QoE required to maintain proper engagement is in various contexts such as users, content, and fee structure. Depends on. Therefore, it is desirable to provide services with an appropriate QoE for each context.
  • Patent Document 1 there is a technique shown in Patent Document 1 as a technique for modeling the relationship between throughput and QoE.
  • This technique is a technique related to a model that estimates QoE by using throughput as an input, and it is possible to derive the corresponding throughput of any QoE by using the correspondence between the throughput of this model and QoE.
  • Non-Patent Document 1 As a technique for modeling the relationship between the bit rate and QoE, there are techniques shown in Non-Patent Document 1 and Non-Patent Document 2.
  • This technique is a technique for estimating QoE by inputting quality parameters such as video and audio bit rates, video resolutions, and video frame rates.
  • quality parameters such as video and audio bit rates, video resolutions, and video frame rates.
  • a bit rate is selected in which the total value of the video and audio bit rates is equal to or smaller than the throughput, so the total value of the selected video and audio bit rates is regarded as the throughput, and the bits are selected.
  • rate and QoE model it is possible to derive the corresponding throughput from the QoE.
  • Patent Document 1 estimates QoE by using only the throughput as an input, the difference in representation cannot be taken into consideration.
  • the bit rate is changed by switching the representation according to the throughput situation, but the selectable representation differs depending on the service, content, and the like. Therefore, even if the throughput is the same, the same representation is not always selected, and the QoE is not necessarily the same. For example, when the throughput is high and the representation including the high bit rate can be selected, the high bit rate is selected, so that the image quality is high and the QoE is high.
  • the relationship between QoE and throughput can be derived from the bit rate and QoE model on the premise that a bit rate equivalent to the throughput is selected, but the capacity of the server. Is finite and there are only a few selectable bitrates. Therefore, for a throughput interval in which a bit rate equivalent to the throughput does not exist, a bit rate far from the throughput is selected, or a plurality of bit rates are switched and selected. Therefore, it is difficult to accurately estimate the throughput from QoE with the existing technique that models the relationship between the bit rate and QoE.
  • the present invention has been made in view of the above points, and an object of the present invention is to improve the estimation accuracy of the throughput required to satisfy an arbitrary QoE.
  • the throughput estimation device includes a QoE estimation unit that estimates the QoE for each of the selection candidates based on each of the plurality of selection candidates for the parameter set related to the quality of the video delivered via the network. , The QoE estimation unit estimated for each selection candidate, the parameter set for each selection candidate, and the throughput estimation unit that estimates the throughput required to satisfy the target QoE by inputting the target QoE. Have.
  • FIG. 1 is a diagram showing a hardware configuration example of the throughput estimation device 10 according to the embodiment of the present invention.
  • the throughput estimation device 10 of FIG. 1 includes a drive device 100, an auxiliary storage device 102, a memory device 103, a CPU 104, an interface device 105, and the like, which are connected to each other by a bus B, respectively.
  • the program that realizes the processing in the throughput estimation device 10 is provided by a recording medium 101 such as a CD-ROM.
  • a recording medium 101 such as a CD-ROM.
  • the program is installed in the auxiliary storage device 102 from the recording medium 101 via the drive device 100.
  • the program does not necessarily have to be installed from the recording medium 101, and may be downloaded from another computer via the network.
  • the auxiliary storage device 102 stores the installed program and also stores necessary files, data, and the like.
  • the memory device 103 reads a program from the auxiliary storage device 102 and stores it when there is an instruction to start the program.
  • the CPU 104 executes the function related to the throughput estimation device 10 according to the program stored in the memory device 103.
  • the interface device 105 is used as an interface for connecting to a network.
  • FIG. 2 is a diagram showing a functional configuration example of the throughput estimation device 10 according to the embodiment of the present invention.
  • the throughput estimation device 10 has a throughput (data transfer amount from the server to the terminal per unit time) required for satisfying the quality (QoE: Quality of Experience) experienced by the user for the adaptive bit rate video distribution. It has a QoE estimation unit 11, a throughput estimation unit 12, and the like in order to estimate.
  • QoE estimation unit 11 a throughput estimation unit 12, and the like in order to estimate.
  • Each of these parts is realized by a process of causing the CPU 104 to execute one or more programs installed in the throughput estimation device 10. That is, each of these parts is realized by the cooperation between the hardware resource of the throughput estimation device 10 and the program (software) installed in the throughput estimation device 10.
  • the QoE estimation unit 11 inputs the representation information, estimates the QoE of each representation based on the representation information, and outputs the estimation information and the estimated QoE.
  • FIG. 3 is a diagram showing a configuration example of representation information.
  • the representation information includes one or more representations that can be selected (candidates for selection) for a certain video distribution service (hereinafter referred to as “target service”) whose minimum required throughput is estimated.
  • One representation is composed of a set of parameters (parameter set) related to the quality of the delivered video or audio, such as video bit rate, video resolution, video frame rate, audio bit rate, and the like.
  • the video bit rate and the audio bit rate are set values of the amount of data per unit time of the encoded data of each of the video and audio.
  • the video resolution is the number of pixels per frame (the number of pixels in the vertical direction x the number of pixels in the horizontal direction).
  • the video frame rate is the number of frames per second.
  • the representation information of the target service can be acquired by the server of the target service or the terminal that uses the target service.
  • the QoE estimation unit 11 acquires representation information via communication with the server or terminal.
  • the throughput estimation device 10 is installed on the network, and the correspondence between the network information such as 5 taples (source IP address, destination Ip address, protocol, source port, destination port) and the representation information is stored in the DB or the like in advance.
  • the representation information of the target service may be acquired by referring to the DB from the network information of the target service.
  • the QoE estimation unit 11 calculates an estimated value of QoE (hereinafter, simply referred to as "QoE") using the QoE estimation model for each representation included in the acquired representation information.
  • QoE the QoE estimation model
  • the ITU-T recommendation P.I. Existing techniques such as 1203 may be used.
  • FIG. 4 is a diagram showing a configuration example of QoE estimation information output from the QoE estimation unit 11.
  • FIG. 4 shows an example of QoE estimation information output by the QoE estimation unit 11 when FIG. 3 is an input.
  • the QoE estimation information includes the QoE calculated by the QoE estimation unit 11 for the representation for each representation.
  • the throughput estimation unit 12 inputs the QoE estimation information output from the target QoE and the QoE estimation unit 11, and estimates the minimum required throughput for satisfying the target QoE.
  • the target QoE is a QoE that is targeted for improving user engagement in the target service.
  • FIG. 5 is a diagram showing the relationship between QoE and throughput.
  • the horizontal axis corresponds to QoE
  • the vertical axis corresponds to the throughput or bit rate corresponding to QoE.
  • the dotted line shows the relationship between the bit rate and QoE when the reproduction stop does not occur.
  • the S-shaped curve converges to a certain QoE value as the bit rate becomes smaller or larger. Therefore, in order to satisfy the target QoE, it is sufficient that the bit rate corresponding to the target QoE is selected and the reproduction stop does not occur.
  • Adaptive Bit Rate Depends on the bit rate selection algorithm for video distribution, but in general, for any bit rate, if there is an equivalent or slightly higher throughput, that bit rate is selected.
  • FIG. 5 shows three examples of selectable bit rates.
  • QoE i and BR i indicate the i-th QoE and the i-th bit rate of the representation list.
  • the plot points (black circles) in FIG. 5 are uniquely determined based on the QoE estimation information output by the QoE estimation unit 11.
  • the relationship between the throughput and QoE between these plot points has the property (characteristic) of passing through both plot points and forming an upward convex curve as shown by the solid line. Therefore, as shown in FIG. 5, since the relationship between the bit rate and the QoE (dotted line) and the relationship between the throughput and the QoE are different, it is necessary to correctly derive the throughput for satisfying the target QoE only from the relationship between the bit rate and the QoE. I can't.
  • the throughput estimation unit 12 obtains plot points from the output result of the QoE estimation unit 11, and the section between the plot points (the section between each QoE estimated by the QoE estimation unit 11) is described above.
  • the throughput estimation unit 12 obtains plot points from the output result of the QoE estimation unit 11, and the section between the plot points (the section between each QoE estimated by the QoE estimation unit 11) is described above.
  • the throughput estimation unit 12 obtains plot points from the output result of the QoE estimation unit 11, and the section between the plot points (the section between each QoE estimated by the QoE estimation unit 11) is described above.
  • the throughput estimation unit 12 obtains plot points from the output result of the QoE estimation unit 11, and the section between the plot points (the section between each QoE estimated by the QoE estimation unit 11) is described above.
  • the following shows an estimation model formula of Throughput 0 , which is the throughput between QoE i and QoE i + 1 , assuming a condition where the fluctuation of the throughput is small like a bandwidth-guaranteed network.
  • the QoE target indicates the target QoE.
  • a indicates a coefficient.
  • Line's formula represents a straight line passing through points (QoE i + 1 , BR i + 1 ) and points (QoE i , BR i ), and Curve's formula represents points (QoE i + 1 , 0) and points (QoE i , 0). It represents a convex curve passing through (that is, two points on the horizontal axis corresponding to the two QoEs of QoE i + 1 and QoE i ), and by adding Line and Curve, the points (QoE i + 1 , BR i + 1 ) are represented. ) And a point (QoE i , BR i ) to obtain a convex curve.
  • the curve may be replaced by a convex curve formula that passes through the other two points.
  • ⁇ and ⁇ indicate coefficients.
  • the values of ⁇ and ⁇ are set according to the stability of the throughput of the provided network.
  • the values of ⁇ and ⁇ can be set with reference to the variance of the throughput, the standard deviation, the reliability interval, and the like.
  • ⁇ and ⁇ Each may be set to a value close to 0 and 1.
  • the values of ⁇ and ⁇ may be set to 0 and 1.
  • FIG. 6 is a flowchart for explaining an example of the processing procedure executed by the throughput estimation device 10.
  • step S101 the QoE estimation unit 11 calculates QoE for each representation included in the representation information of the target service (S101).
  • the QoE estimation unit 11 generates QoE estimation information by applying the calculated QoE to each representation included in the representation information, and inputs the QoE estimation information to the throughput estimation unit 12.
  • the throughput estimation unit 12 calculates the throughput required to satisfy the target QoE given as the input information based on the QoE estimation information (S102). That is, the throughput estimation unit 12 identifies each point in FIG. 5 based on the QoE estimation information, and QoE i (a section including the target QoE and the target QoE in between in any of the above estimation model formulas). By substituting the maximum QoE smaller than the target QoE), the QoE i + 1 (the smallest QoE larger than the target QoE), and the BRi and BRi + 1, the Threshold 0 or Throughput is calculated.
  • the target QoE and the representation information are used to estimate the throughput. Therefore, it is possible to improve the estimation accuracy of the throughput required to satisfy an arbitrary QoE such as the target QoE.
  • the present embodiment it is possible to grasp the throughput for satisfying the target QoE, and by designing and controlling the network based on the throughput, it is possible to provide the network for satisfying the target QoE. Become.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Databases & Information Systems (AREA)
  • Computer Security & Cryptography (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

スループット推定装置は、ネットワークを介して配信される映像の品質に関するパラメータセットについての複数の選択候補のそれぞれに基づき、前記各選択候補に対するQoEを推定するQoE推定部と、前記QoE推定部が前記選択候補ごとに推定したQoE、前記選択候補ごとの前記パラメータセット、及び目標QoEを入力とし、前記目標QoEを満たすために必要なスループットを推定するスループット推定部と、を有することで、任意のQoEを満たすために必要なスループットの推定精度を向上させる。

Description

スループット推定装置、スループット推定方法及びプログラム
 本発明は、 スループット推定装置、スループット推定方法及びプログラムに関する。
 ネットワークを介して映像、音響(音声も含む)等のデータを端末間又はサーバと端末との間で転送する様々な通信サービス(電話、映像配信、Web、テレビ会議、デスクトップ仮想化、IoT等)が普及している。
 映像や音響を用いた通信サービスにおいて、ネットワークのリソース不足、故障、不具合等が発生した場合、ネットワーク品質(スループット、パケット損失、パケット転送遅延等の)が劣化し、映像や音響に対して視聴者が体感する品質(QoE:Quality of Experience)が劣化してしまう。
 多くの映像配信サービスでは、スループット(単位時間当たりのデータ転送量)の状態に応じ、映像や音響のビットレート(映像や音響の再生時の単位時間当たりのデータ量)を変更しながら配信するアダプティブビットレート映像配信が採用されている。この配信方式では、異なるリプレゼンテーション(映像の場合、コーデック、ビットレート、解像度、フレームレート等のセット、音声の場合、コーデック、ビットレート等のセット)の映像や音響のデータが予め配信サーバに配置される。配信時にはスループットの状況に応じて端末が適切なビットレートに対応するリプレゼンテーションを都度サーバに要求し、ビットレートを切り替えながら映像及び音響を受信、再生する。そのため、スループットの低下に伴い低いビットレートが選択されることによる画質低下又は音質低下や、再生に必要な映像・音響データ転送が間に合わず、受信端末のバッファに蓄積される映像・音響データの枯渇によるバッファリング処理に伴う再生開始待ちや再生停止が発生し、QoEが劣化する。
 QoEの劣化は、視聴者のエンゲージメント(視聴時間、視聴離脱、視聴解約等)に影響を与えるが、エンゲージメントを適切に保つために必要とするQoEは、ユーザ、コンテンツ、料金体系等、様々なコンテキストによって異なる。したがって、コンテキストごとに適切なQoEでサービスを提供することが望ましい。
 そのため、映像配信事業者にとっては、ユーザのエンゲージメント向上のために所望のQoE(目標QoE)を満たすために十分なスループットを提供可能なネットワークを用いることが有益である。また、ネットワーク事業者としても、映像配信事業者に自社のネットワークをより多く利用してもらうために、目標QoEを満たす上で十分なスループットで提供することが望ましい。しかしながら、過剰なスループットを提供した場合、目標QoEは満たせるものの、ネットワークの設備コストが増加してしまう。そのため、必要最低限のスループットを把握し、それに基づいてネットワークを設計及び制御することがQoE及びコストの観点で重要である。
 したがって、任意のQoEを実現するための必要最低限のスループットを推定する技術が必要とされている。
 従来、スループットとQoEの関係をモデル化した技術として、特許文献1に示される技術がある。本技術は、スループットを入力としてQoEを推定するモデルに関する技術であり、このモデルのスループットとQoEの対応関係を利用することで、任意のQoEの対応するスループットを導くことが可能である。
 また、ビットレートとQoEの関係をモデル化した技術として、非特許文献1及び非特許文献2に示される技術がある。本技術は、映像及び音声のビットレート、映像解像度、映像フレームレートなどの品質パラメータを入力としてQoEを推定する技術である。一般的に、スループットに対して映像と音声のビットレートの合計値が同等もしくはそれよりも小さいビットレートが選択されるため、選ばれた映像と音声のビットレートの合計値をスループットとみなし、ビットレートとQoEのモデルを利用することで、QoEから対応するスループットを導くことが可能である。
特開2019-121847号公報
Parametric bitstream-based quality assessment of progressive download and adaptive audiovisual streaming services over reliable transport, ITU-T P.1203 K. Yamagishi and T. Hayashi, "Parametric Quality-Estimation Model for Adaptive-Bitrate Streaming Services," IEEE Transactions on Multimedia, 2017. DOI: 10.1109/TMM.2017.2669859
 しかしながら、特許文献1の技術は、スループットのみを入力としてQoEを推定しているため、リプレゼンテーションの違いを考慮できていない。アダプティブビットレート映像配信は、スループットの状況に応じて、リプレゼンテーションを切り替えることでビットレートを変更しているが、選択可能なリプレゼンテーションは、サービスやコンテンツ等により異なる。したがって、スループットが同じだとしても、同じリプレゼンテーションが選ばれるとは限らず、必ずしも同じQoEにはならない。例えば、スループットが高く、高いビットレートを含むリプレゼンテーションが選択可能な場合、高いビットレートが選ばれることにより、画質が高くなり、QoEが高くなる。一方、スループットが高くても、高いビットレートを含むリプレゼンテーションが選択肢にない場合、高いビットレートは選ばれず、画質が高くならないため、QoEが高くならない。そのため、既存技術では、リプレゼンテーションによっては、スループットを精度よく推定するのは困難である。
 また、非特許文献1及び非特許文献2の技術では、スループットと同等のビットレートが選ばれる前提で、ビットレートとQoEのモデルから、QoEとスループットの関係を導くことができるが、サーバの容量は有限であり、選択可能なビットレートは数種類に限られる。したがって、スループットと同等のビットレートが存在しないスループット区間については、スループットとかけ離れたビットレートが選択されたり、複数のビットレートが切り替えられながら選択されたりする。そのため、ビットレートとQoEの関係をモデル化した既存技術では、QoEからスループットを精度よく推定するのは困難である。
 本発明は、上記の点に鑑みてなされたものであって、任意のQoEを満たすために必要なスループットの推定精度を向上させることを目的とする。
 そこで上記課題を解決するため、スループット推定装置は、ネットワークを介して配信される映像の品質に関するパラメータセットについての複数の選択候補のそれぞれに基づき、前記各選択候補に対するQoEを推定するQoE推定部と、前記QoE推定部が前記選択候補ごとに推定したQoE、前記選択候補ごとの前記パラメータセット、及び目標QoEを入力とし、前記目標QoEを満たすために必要なスループットを推定するスループット推定部と、を有する。
 任意のQoEを満たすために必要なスループットの推定精度を向上させることができる。
本発明の実施の形態におけるスループット推定装置10のハードウェア構成例を示す図である。 本発明の実施の形態におけるスループット推定装置10の機能構成例を示す図である。 リプレゼンテーション情報の構成例を示す図である。 QoE推定部11から出力されるQoE推定情報の構成例を示す図である。 QoEとスループットの関係を示す図である。 スループット推定装置10が実行する処理手順の一例を説明するためのフローチャートである。
 以下、図面に基づいて本発明の実施の形態を説明する。図1は、本発明の実施の形態におけるスループット推定装置10のハードウェア構成例を示す図である。図1のスループット推定装置10は、それぞれバスBで相互に接続されているドライブ装置100、補助記憶装置102、メモリ装置103、CPU104、及びインタフェース装置105等を有する。
 スループット推定装置10での処理を実現するプログラムは、CD-ROM等の記録媒体101によって提供される。プログラムを記憶した記録媒体101がドライブ装置100にセットされると、プログラムが記録媒体101からドライブ装置100を介して補助記憶装置102にインストールされる。但し、プログラムのインストールは必ずしも記録媒体101より行う必要はなく、ネットワークを介して他のコンピュータよりダウンロードするようにしてもよい。補助記憶装置102は、インストールされたプログラムを格納すると共に、必要なファイルやデータ等を格納する。
 メモリ装置103は、プログラムの起動指示があった場合に、補助記憶装置102からプログラムを読み出して格納する。CPU104は、メモリ装置103に格納されたプログラムに従ってスループット推定装置10に係る機能を実行する。インタフェース装置105は、ネットワークに接続するためのインタフェースとして用いられる。
 図2は、本発明の実施の形態におけるスループット推定装置10の機能構成例を示す図である。図2において、スループット推定装置10は、アダプティブビットレート映像配信について、ユーザが体感する品質(QoE:Quality of Experience)を満たすための必要なスループット(単位時間当たりのサーバから端末へのデータ転送量)を推定するために、QoE推定部11及びスループット推定部12等を有する。これら各部は、スループット推定装置10にインストールされた1以上のプログラムが、CPU104に実行させる処理により実現される。すなわち、これら各部は、スループット推定装置10のハードウェア資源と、スループット推定装置10にインストールされたプログラム(ソフトウェア)との協働によって実現される。
 QoE推定部11は、リプレゼンテーション情報を入力とし、リプレゼンテーション情報に基づいて各リプレゼンテーションのQoEを推定し、リプレゼンテーション情報と推定したQoEとを出力する。
 図3は、リプレゼンテーション情報の構成例を示す図である。リプレゼンテーション情報は、必要最低限のスループットの推定対象の或る映像配信サービス(以下、「対象サービス」という。)について選択可能な(選択候補となる)1つ以上のリプレゼンテーションを含む。1つのリプレゼンテーションは、映像ビットレート、映像解像度、映像フレームレート、音声ビットレート等、配信される映像の品質又は音声に関するパラメータの組(パラメータセット)によって構成される。
 映像ビットレート及び音声ビットレートは、映像又は音声それぞれの符号化データの単位時間当たりのデータ量の設定値である。映像解像度は、1フレームあたりの画素数(垂直方向の画素数×水平方向の画素数)である。映像フレームレートは、1秒あたりのフレーム数である。
 対象サービスのリプレゼンテーション情報は、対象サービスのサーバ又は対象サービスを利用する端末で取得できる。スループット推定装置10がサーバ又は端末ではない箇所(ネットワーク上等)に設置される場合、QoE推定部11は、サーバ又は端末と通信を介してリプレゼンテーション情報を取得する。又は、スループット推定装置10がネットワーク上に設置され、5タプル(ソースIPアドレス,宛先Ipアドレス,プロトコル,ソースポート,宛先ポート)等のネットワーク情報とリプレゼンテーション情報の対応関係を予めDB等に格納し、対象サービスのネットワーク情報からDBを参照することで、対象サービスのリプレゼンテーション情報を取得してもよい。
 QoE推定部11は、取得したリプレゼンテーション情報に含まれるリプレゼンテーションごとに、QoE推定モデルを用いてQoEの推定値(以下、単に「QoE」という。)を算出する。QoE推定モデルとしては、映像ビットレート、映像解像度、映像フレームレート、音声ビットレートを入力にQoEを推定するITU-T勧告P.1203などの既存技術が用いられてもよい。
 図4は、QoE推定部11から出力されるQoE推定情報の構成例を示す図である。図4は、図3が入力である場合にQoE推定部11が出力するQoE推定情報の例を示す。図4に示されるように、QoE推定情報は、リプレゼンテーションごとに、当該リプレゼンテーションについてQoE推定部11が算出したQoEを含む。
 スループット推定部12は、目標QoE及びQoE推定部11から出力されるQoE推定情報を入力とし、目標QoEを満たす上での必要最低限のスループットを推定する。目標QoEとは、対象サービスにおいて、ユーザのエンゲージメント向上のために目標とされるQoEをいう。
 スループットの推定方法を説明する前に、QoEとスループットの関係について述べる。図5は、QoEとスループットの関係を示す図である。
 図5に示される座標系は、横軸がQoEに対応し、縦軸がQoEに対応するスループット又はビットレートに対応する座標系である。点線は、再生停止が発生していない場合のビットレートとQoEの関係を示している。この場合、ビットレートが小さくなる又は大きくなるにつれてそれぞれ或るQoEの値に収束していくようなS字曲線になることが知られている。したがって、目標QoEを満たすためには、目標QoEに対応するビットレートが選択され、かつ、再生停止が発生しなければよいことになる。アダプティブビットレート映像配信のビットレート選択アルゴリズムに依存するが、一般的には、任意のビットレートに対し、同等又は少し多いスループットがあれば、そのビットレートが選択される。しかしながら、実際にはビットレートの選択肢は限られている。また、サービスやコンテンツによって、選択可能なビットレートのバリエーションは異なる。図5は、選択可能なビットレートが3つの例である。QoE、BRは、リプレゼンテーションリストのi番目のQoE、i番目のビットレートを示す。
 図5におけるプロット点(黒丸)は、QoE推定部11が出力するQoE推定情報に基づき一意に定まる。これらプロット点の間におけるスループットとQoEの関係は、実線によって示されるように両プロット点を通り、上向きの凸型の曲線になる性質(特性)がある。したがって、図5に示すように、ビットレートとQoEの関係(点線)とスループットとQoEの関係は異なるため、ビットレートとQoEの関係のみからでは、目標QoEを満たすためのスループットを正しく導出することができない。
 そこで、本実施の形態において、スループット推定部12は、プロット点をQoE推定部11の出力結果より求め、プロット点の間(QoE推定部11によって推定された各QoEの間の区間)を上記の性質を考慮した推定モデルを用いて補完することで、様々なリプレゼンテーションリストに対するあらゆるQoEに対して、目標QoEからそれを満たすためのスループットを推定する。なお、QoEの最小値より小さい場合(図5のQoEより左側のQoE値)やQoEの最大値より大きい場合(図中のQoEより右側のQoE値)は、与えられたリプレゼンテーションリストにおいて、再生停止を伴わずにQoEを満たすスループットが存在しないため、本実施の形態では、目標QoEの入力として対象外とするか、又は目標QoEの値を変更する(最も値が近いQoEで目標QoEが置き換えるなど)こととされてもる。
 以下に、帯域保証型のネットワークのようにスループットの変動が少ない条件を想定した場合の、QoEとQoEi+1間のスループットであるThroughputの推定モデル式を示す。
Figure JPOXMLDOC01-appb-M000001
ここで、QoEtargetは目標QoEを示す。aは係数を示す。Lineの数式は、点(QoEi+1,BRi+1)と点(QoE,BR)を通る直線を表しており、Curveの数式は、点(QoEi+1,0)と点(QoE,0)(すなわち、QoEi+1及びQoEの2つのQoEに対応する横軸上の2つの点)を通る凸型の曲線を表しており、LineとCurveを加算することで、点(QoEi+1,BRi+1)と点(QoE,BR)を通る凸型の曲線が得られる。なお、当該曲線は、他の2点を通る凸型の曲線式で代替されても構わない。
 次に、ベストエフォート型のネットワークサービスのようなスループットが大きく変動し、スループットが大幅に下振れするような条件を想定した場合のスループットThroughputの推定モデル式を以下に示す。
Figure JPOXMLDOC01-appb-M000002
ここで、β、γは係数を示す。β及びγの値は、提供されるネットワークのスループットの安定性に応じて設定される。例えば、当該スループットの分散、標準偏差、信頼性区間などを参考にしてβ及びγの値を設定することができる。また、共有型のネットワークについて複数の通信を1つの回線に束ねてネットワーク設計及び制御を行う場合、統計多重化効果により、スループットの変動が他のスループットの変動に吸収されるため、β、γのそれぞれが0、1に近い値に設定されても構わない。更に、ネットワークの設計及び制御側でスループットの変動を加味して、スループットの下限を一定以上に保つ場合、β、γそれぞれの値が0、1に設定されてもよい。なお、Throughputは、Throughputの上振れ分を考慮したものであり、他の線形式(二次関数、三次関数など)や非線形式(対数関数など)によってThroughputの推定モデル式が代替しても構わない。
 以下、スループット推定装置10が実行する処理手順について説明する。図6は、スループット推定装置10が実行する処理手順の一例を説明するためのフローチャートである。
 ステップS101において、QoE推定部11は、対象サービスのリプレゼンテーション情報に含まれるリプレゼンテーションごとにQoEを算出する(S101)。QoE推定部11は、算出したQoEを、リプレゼンテーション情報に含まれる各リプレゼンテーションに付与することでQoE推定情報を生成し、当該QoE推定情報をスループット推定部12へ入力する。
 続いて、スループット推定部12は、当該QoE推定情報に基づいて、入力情報として与えられる目標QoEを満たすために必要なスループットを算出する(S102)。すなわち、スループット推定部12は、当該QoE推定情報に基づいて、図5における各点を特定し、上述したいずれかの推定モデル式に、目標QoEと、目標QoEを間に含む区間のQoE(目標QoEより小さい最大のQoE)とQoEi+1(目標QoEより大きい最小のQoE)と、BRi及びBRi+1とを代入することで、Throughput又はThroughputを算出する。
 上述したように、本実施の形態によれば、目標QoE及びリプレゼンテーション情報がスループットの推定に用いられる。したがって、目標QoE等、任意のQoEを満たすために必要なスループットの推定精度を向上させることができる。
 したがって、本実施の形態によれば、目標QoEを満たすためのスループットを把握することができ、それに基づいてネットワークを設計及び制御することで、目標QoEを満たすためのネットワークを提供することが可能となる。
 以上、本発明の実施の形態について詳述したが、本発明は斯かる特定の実施形態に限定されるものではなく、請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
10     スループット推定装置
11     QoE推定部
12     スループット推定部
100    ドライブ装置
101    記録媒体
102    補助記憶装置
103    メモリ装置
104    CPU
105    インタフェース装置
B      バス

Claims (6)

  1.  ネットワークを介して配信される映像の品質に関するパラメータセットについての複数の選択候補のそれぞれに基づき、前記各選択候補に対するQoEを推定するQoE推定部と、
     前記QoE推定部が前記選択候補ごとに推定したQoE、前記選択候補ごとの前記パラメータセット、及び目標QoEを入力とし、前記目標QoEを満たすために必要なスループットを推定するスループット推定部と、
    を有することを特徴とするスループット推定装置。
  2.  前記スループット推定部は、前記選択候補ごとのQoE及び前記選択候補ごとの前記パラメータセットから導き出される、QoEとそれを満たすために必要なスループットのモデル式を用いて、前記目標QoEを満たすためのスループットを推定する、
    ことを特徴とする請求項1記載のスループット推定装置。
  3.  前記モデル式は、前記QoE推定部が推定した各QoEの間の区間を、縦軸がスループットに対応し横軸がQoEに対応する座標系において、QoEと当該QoEを満たすのに必要なスループットの関係が凸型の曲線である性質に基づいて補完する、
    ことを特徴とする請求項2記載のスループット推定装置。
  4.  前記モデル式は、前記区間を通る直線に、前記区間の2つのQoEに対応する横軸上の点を通る凸型の曲線を加算することで前記区間を補完する、
    ことを特徴とする請求項3記載のスループット推定装置。
  5.  ネットワークを介して配信される映像の品質に関するパラメータセットについての複数の選択候補のそれぞれに基づき、前記各選択候補に対するQoEを推定するQoE推定手順と、
     前記QoE推定手順が前記選択候補ごとに推定したQoE、前記選択候補ごとの前記パラメータセット、及び目標QoEを入力とし、前記目標QoEを満たすために必要なスループットを推定するスループット推定手順と、
    をコンピュータが実行することを特徴とするスループット推定方法。
  6.  請求項1乃至4いずれか一項記載のスループット推定装置としてコンピュータを機能させることを特徴とするプログラム。
PCT/JP2020/041383 2020-11-05 2020-11-05 スループット推定装置、スループット推定方法及びプログラム WO2022097229A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/251,345 US12206921B2 (en) 2020-11-05 2020-11-05 Throughput estimation apparatus, throughput estimation method and program
PCT/JP2020/041383 WO2022097229A1 (ja) 2020-11-05 2020-11-05 スループット推定装置、スループット推定方法及びプログラム
JP2022560563A JP7494938B2 (ja) 2020-11-05 2020-11-05 スループット推定装置、スループット推定方法及びプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/041383 WO2022097229A1 (ja) 2020-11-05 2020-11-05 スループット推定装置、スループット推定方法及びプログラム

Publications (1)

Publication Number Publication Date
WO2022097229A1 true WO2022097229A1 (ja) 2022-05-12

Family

ID=81457029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/041383 WO2022097229A1 (ja) 2020-11-05 2020-11-05 スループット推定装置、スループット推定方法及びプログラム

Country Status (3)

Country Link
US (1) US12206921B2 (ja)
JP (1) JP7494938B2 (ja)
WO (1) WO2022097229A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012049598A (ja) * 2010-08-24 2012-03-08 Ntt Docomo Inc 無線通信システム、基地局および無線リソース割当方法
JP2019016961A (ja) * 2017-07-07 2019-01-31 日本電信電話株式会社 動画品質制御装置、ビットレート選択方法、及びプログラム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8391354B2 (en) * 2007-05-14 2013-03-05 Broadcom Corporation Method and system for transforming uncompressed video traffic to network-aware ethernet traffic with A/V bridging capabilities and A/V bridging extensions
US7706291B2 (en) * 2007-08-01 2010-04-27 Zeugma Systems Inc. Monitoring quality of experience on a per subscriber, per session basis
WO2010135333A1 (en) * 2009-05-19 2010-11-25 Beaumaris Networks Inc. Methods, apparatus and computer readable medium for managed adaptive bit rate for bandwidth reclamation
US20130067109A1 (en) * 2011-09-12 2013-03-14 Tektronix, Inc. Monitoring Over-the-Top Adaptive Video Streaming
US11159804B1 (en) * 2012-09-13 2021-10-26 Arris Enterprises Llc QoE feedback based intelligent video transport stream tuning
WO2015138993A1 (en) * 2014-03-14 2015-09-17 Huawei Technologies Co., Ltd. System and method for dynamic effective rate estimation for real-time video traffic
JP6700242B2 (ja) 2017-12-28 2020-05-27 日本電信電話株式会社 品質推定装置、品質推定方法及びプログラム
JP7200534B2 (ja) 2018-08-13 2023-01-10 日本電信電話株式会社 ネットワーク制御装置、ネットワーク制御方法及びプログラム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012049598A (ja) * 2010-08-24 2012-03-08 Ntt Docomo Inc 無線通信システム、基地局および無線リソース割当方法
JP2019016961A (ja) * 2017-07-07 2019-01-31 日本電信電話株式会社 動画品質制御装置、ビットレート選択方法、及びプログラム

Also Published As

Publication number Publication date
JPWO2022097229A1 (ja) 2022-05-12
JP7494938B2 (ja) 2024-06-04
US12206921B2 (en) 2025-01-21
US20240007691A1 (en) 2024-01-04

Similar Documents

Publication Publication Date Title
EP3172863B1 (en) Quality of experience based network resource management
JP5673538B2 (ja) 配信システム
US12167063B2 (en) Adaptive bitrate streaming
CN113038187B (zh) 视频体验质量公平的实用网络带宽分配方法、设备及介质
Su et al. Smooth control of adaptive media playout for video streaming
US20160028594A1 (en) Generating and Utilizing Contextual Network Analytics
US12200276B2 (en) Delivery and playback of content
JP4490374B2 (ja) 映像品質評価装置および方法
US9665646B1 (en) Method and system for providing bit rate adaptaion to video files having metadata
JP6611271B2 (ja) 動画品質制御装置、ビットレート選択方法、及びプログラム
CN104106246B (zh) 用于管理传输无关式多媒体体验质量的方法和系统
JP7380832B2 (ja) 数理モデル導出装置、数理モデル導出方法及びプログラム
US20220256213A1 (en) Systems, methods, and devices for network control
WO2022097229A1 (ja) スループット推定装置、スループット推定方法及びプログラム
WO2019216197A1 (ja) エンゲージメント推定装置、エンゲージメント推定方法及びプログラム
US11871061B1 (en) Automated adaptive bitrate encoding
JP3860957B2 (ja) マルチメディアデータの送出装置
WO2017018072A1 (ja) 配信レート選択装置、配信レート選択方法、及びプログラム
JP7040232B2 (ja) 視聴行動推定装置、視聴行動推定方法及びプログラム
JP2019129486A (ja) 推定装置、推定方法及びプログラム
JP6700242B2 (ja) 品質推定装置、品質推定方法及びプログラム
WO2020170869A1 (ja) エンゲージメント推定装置、エンゲージメント推定方法及びプログラム
US20190245749A1 (en) Optimizing cloud resources for abr systems
CN114245225A (zh) 用于经由内容分发网络流式传输媒体数据的方法及系统
JP7405256B2 (ja) 視聴完了率推定装置、視聴完了率推定方法及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20960782

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022560563

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18251345

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20960782

Country of ref document: EP

Kind code of ref document: A1